Multiple Breeds and Countries’ Predictions of Mineral Contents in Milk from Milk Mid-Infrared Spectrometry
Measuring the mineral composition of milk is of major interest in the dairy sector. This study aims to develop and validate robust multi-breed and multi-country models predicting the major minerals through milk mid-infrared spectrometry using partial least square regressions. A total of 1281 samples...
Saved in:
Published in | Foods Vol. 10; no. 9; p. 2235 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article Web Resource |
Language | English |
Published |
Switzerland
MDPI AG
21.09.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2304-8158 2304-8158 |
DOI | 10.3390/foods10092235 |
Cover
Abstract | Measuring the mineral composition of milk is of major interest in the dairy sector. This study aims to develop and validate robust multi-breed and multi-country models predicting the major minerals through milk mid-infrared spectrometry using partial least square regressions. A total of 1281 samples coming from five countries were analyzed to obtain spectra and in ICP-AES to measure the mineral reference contents. Models were built from records coming from four countries (n = 1181) and validated using records from the fifth country, Austria (n = 100). The importance of including local samples was tested by integrating 30 Austrian samples in the model while validating with the remaining 70 samples. The best performances were achieved using this second set of models, confirming the need to cover the spectral variability of a country before making a prediction. Validation root mean square errors were 54.56, 63.60, 7.30, 59.87, and 152.89 mg/kg for Na, Ca, Mg, P, and K, respectively. The built models were applied on the Walloon milk recording large-scale spectral database, including 3,510,077. The large-scale predictions on this dairy herd improvement database provide new insight regarding the minerals’ variability in the population, as well as the effect of parity, stage of lactation, breeds, and seasons. |
---|---|
AbstractList | Measuring the mineral composition of milk is of major interest in the dairy sector. This study aims to develop and validate robust multi-breed and multi-country models predicting the major minerals through milk mid-infrared spectrometry using partial least square regressions. A total of 1281 samples coming from five countries were analyzed to obtain spectra and in ICP-AES to measure the mineral reference contents. Models were built from records coming from four countries (
= 1181) and validated using records from the fifth country, Austria (
= 100). The importance of including local samples was tested by integrating 30 Austrian samples in the model while validating with the remaining 70 samples. The best performances were achieved using this second set of models, confirming the need to cover the spectral variability of a country before making a prediction. Validation root mean square errors were 54.56, 63.60, 7.30, 59.87, and 152.89 mg/kg for Na, Ca, Mg, P, and K, respectively. The built models were applied on the Walloon milk recording large-scale spectral database, including 3,510,077. The large-scale predictions on this dairy herd improvement database provide new insight regarding the minerals' variability in the population, as well as the effect of parity, stage of lactation, breeds, and seasons. Measuring the mineral composition of milk is of major interest in the dairy sector. This study aims to develop and validate robust multi-breed and multi-country models predicting the major minerals through milk mid-infrared spectrometry using partial least square regressions. A total of 1281 samples coming from five countries were analyzed to obtain spectra and in ICP-AES to measure the mineral reference contents. Models were built from records coming from four countries (n = 1181) and validated using records from the fifth country, Austria (n = 100). The importance of including local samples was tested by integrating 30 Austrian samples in the model while validating with the remaining 70 samples. The best performances were achieved using this second set of models, confirming the need to cover the spectral variability of a country before making a prediction. Validation root mean square errors were 54.56, 63.60, 7.30, 59.87, and 152.89 mg/kg for Na, Ca, Mg, P, and K, respectively. The built models were applied on the Walloon milk recording large-scale spectral database, including 3,510,077. The large-scale predictions on this dairy herd improvement database provide new insight regarding the minerals’ variability in the population, as well as the effect of parity, stage of lactation, breeds, and seasons. Measuring the mineral composition of milk is of major interest in the dairy sector. This study aims to develop and validate robust multi-breed and multi-country models predicting the major minerals through milk mid-infrared spectrometry using partial least square regressions. A total of 1281 samples coming from five countries were analyzed to obtain spectra and in ICP-AES to measure the mineral reference contents. Models were built from records coming from four countries ( n = 1181) and validated using records from the fifth country, Austria ( n = 100). The importance of including local samples was tested by integrating 30 Austrian samples in the model while validating with the remaining 70 samples. The best performances were achieved using this second set of models, confirming the need to cover the spectral variability of a country before making a prediction. Validation root mean square errors were 54.56, 63.60, 7.30, 59.87, and 152.89 mg/kg for Na, Ca, Mg, P, and K, respectively. The built models were applied on the Walloon milk recording large-scale spectral database, including 3,510,077. The large-scale predictions on this dairy herd improvement database provide new insight regarding the minerals’ variability in the population, as well as the effect of parity, stage of lactation, breeds, and seasons. Measuring the mineral composition of milk is of major interest in the dairy sector. This study aims to develop and validate robust multi-breed and multi-country models predicting the major minerals through milk mid-infrared spectrometry using partial least square regressions. A total of 1281 samples coming from five countries were analyzed to obtain spectra and in ICP-AES to measure the mineral reference contents. Models were built from records coming from four countries (n = 1181) and validated using records from the fifth country, Austria (n = 100). The importance of including local samples was tested by integrating 30 Austrian samples in the model while validating with the remaining 70 samples. The best performances were achieved using this second set of models, confirming the need to cover the spectral variability of a country before making a prediction. Validation root mean square errors were 54.56, 63.60, 7.30, 59.87, and 152.89 mg/kg for Na, Ca, Mg, P, and K, respectively. The built models were applied on the Walloon milk recording large-scale spectral database, including 3,510,077. The large-scale predictions on this dairy herd improvement database provide new insight regarding the minerals' variability in the population, as well as the effect of parity, stage of lactation, breeds, and seasons.Measuring the mineral composition of milk is of major interest in the dairy sector. This study aims to develop and validate robust multi-breed and multi-country models predicting the major minerals through milk mid-infrared spectrometry using partial least square regressions. A total of 1281 samples coming from five countries were analyzed to obtain spectra and in ICP-AES to measure the mineral reference contents. Models were built from records coming from four countries (n = 1181) and validated using records from the fifth country, Austria (n = 100). The importance of including local samples was tested by integrating 30 Austrian samples in the model while validating with the remaining 70 samples. The best performances were achieved using this second set of models, confirming the need to cover the spectral variability of a country before making a prediction. Validation root mean square errors were 54.56, 63.60, 7.30, 59.87, and 152.89 mg/kg for Na, Ca, Mg, P, and K, respectively. The built models were applied on the Walloon milk recording large-scale spectral database, including 3,510,077. The large-scale predictions on this dairy herd improvement database provide new insight regarding the minerals' variability in the population, as well as the effect of parity, stage of lactation, breeds, and seasons. |
Author | Dehareng, Frédéric Bertozzi, Carlo Lecomte, Christophe Grelet, Clément Werner, Andreas Veselko, Didier Christophe, Octave S. Soyeurt, Hélène Gengler, Nicolas Auer, Franz-Josef Höeckels, Peter |
AuthorAffiliation | 1 Walloon Agricultural Research Center (CRA-W), 24 Chaussée de Namur, 5030 Gembloux, Belgium; o.christophe@cra.wallonie.be (O.S.C.); c.grelet@cra.wallonie.be (C.G.) 5 Landeskontrollverband Nordrhein-Westfalen e.V., Bischofstraße 85, 47809 Krefeld, Germany; hoeckels@lkv-nrw.de 2 Elevéo Asbl, AWE Group, 4, Rue des Champs Elysées, 5590 Ciney, Belgium; cbertozzi@awenet.be 4 France Conseil Elevage, Maison du Lait, 42 Rue de Chateaudun, 75009 Paris, France; christophe.lecomte@france-conseil-elevage.fr 6 LKV Baden Württemberg, Heinrich-Baumann Str. 1-3, 70190 Stuttgart, Germany; awerner@lkvbw.de 8 Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium; nicolas.gengler@uliege.be (N.G.); hsoyeurt@uliege.be (H.S.) 3 Comité du Lait de Battice Route de Herve 104, 4651 Battice, Belgium; didier.veselko@comitedulait.be 7 LKV Austria Gemeinnützige GmbH, Dresdnerstr. 89/B1/18, 1200 Wien, Austria; Franz-Josef.Auer@lkv-austria.at |
AuthorAffiliation_xml | – name: 1 Walloon Agricultural Research Center (CRA-W), 24 Chaussée de Namur, 5030 Gembloux, Belgium; o.christophe@cra.wallonie.be (O.S.C.); c.grelet@cra.wallonie.be (C.G.) – name: 2 Elevéo Asbl, AWE Group, 4, Rue des Champs Elysées, 5590 Ciney, Belgium; cbertozzi@awenet.be – name: 4 France Conseil Elevage, Maison du Lait, 42 Rue de Chateaudun, 75009 Paris, France; christophe.lecomte@france-conseil-elevage.fr – name: 5 Landeskontrollverband Nordrhein-Westfalen e.V., Bischofstraße 85, 47809 Krefeld, Germany; hoeckels@lkv-nrw.de – name: 3 Comité du Lait de Battice Route de Herve 104, 4651 Battice, Belgium; didier.veselko@comitedulait.be – name: 7 LKV Austria Gemeinnützige GmbH, Dresdnerstr. 89/B1/18, 1200 Wien, Austria; Franz-Josef.Auer@lkv-austria.at – name: 8 Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium; nicolas.gengler@uliege.be (N.G.); hsoyeurt@uliege.be (H.S.) – name: 6 LKV Baden Württemberg, Heinrich-Baumann Str. 1-3, 70190 Stuttgart, Germany; awerner@lkvbw.de |
Author_xml | – sequence: 1 givenname: Octave S. orcidid: 0000-0002-9037-8079 surname: Christophe fullname: Christophe, Octave S. – sequence: 2 givenname: Clément orcidid: 0000-0003-3313-485X surname: Grelet fullname: Grelet, Clément – sequence: 3 givenname: Carlo surname: Bertozzi fullname: Bertozzi, Carlo – sequence: 4 givenname: Didier surname: Veselko fullname: Veselko, Didier – sequence: 5 givenname: Christophe surname: Lecomte fullname: Lecomte, Christophe – sequence: 6 givenname: Peter surname: Höeckels fullname: Höeckels, Peter – sequence: 7 givenname: Andreas surname: Werner fullname: Werner, Andreas – sequence: 8 givenname: Franz-Josef surname: Auer fullname: Auer, Franz-Josef – sequence: 9 givenname: Nicolas orcidid: 0000-0002-5981-5509 surname: Gengler fullname: Gengler, Nicolas – sequence: 10 givenname: Frédéric orcidid: 0000-0002-6733-4334 surname: Dehareng fullname: Dehareng, Frédéric – sequence: 11 givenname: Hélène orcidid: 0000-0001-9883-9047 surname: Soyeurt fullname: Soyeurt, Hélène |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34574345$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstuEzEUhkeoiJbSJVs0Ehs2A757ZoNEIy6RGoEErC2P5zg4OHawZyp1x2vwejwJTlJCg4Twwj6yv_-3z_F5WJ2EGKCqHmP0nNIOvbAxDhkj1BFC-b3qjFDEmhbz9uROfFpd5LxCZXSYtpQ8qE4p45KV6azyi8mPbuOhvkwAQ651GOpZnMKYHOSf33_UHxIMzowuhlxHWy9cgKR9YcIIYcy1C2XPf61tiut9tHBDMw826aKsP27AjOUIxnTzqLpvtc9wcbueV5_fvP40e9dcvX87n726agzn7dgIS4UUwCW3hgI3A3CLO4JbYc1gGJZM2552XU-pEUT0wiDair7XDPO-6Oh5Nd_7DlGv1Ca5tU43KmqndhsxLZVOozMeVCe15V0vObOYSUAtGgjVsmtBME04FK-Xe6_N1K9hMCXnkv6R6fFJcF_UMl6rlklEGSkGdG_gHSyhXN47dU12wl08-fIao3pQhIhWkQ7hFhfVs9trU_w2QR7V2mUD3usAccqKCCpKJQSi_0e5lIwTiURBn_6FruKUQvmLLSUYkpzKQj25m_Ih199dU4BmD5gUc05gDwhGatuY6qgx_5TgwBs36m1LlYo5_w_VL2U-50M |
CitedBy_id | crossref_primary_10_1016_j_foodcont_2024_110983 crossref_primary_10_3390_ani12192663 crossref_primary_10_3168_jds_2023_23458 crossref_primary_10_3168_jds_2024_25440 crossref_primary_10_3168_jdsc_2022_0294 crossref_primary_10_1080_1828051X_2024_2353226 crossref_primary_10_1016_j_foodchem_2024_140800 crossref_primary_10_1111_1471_0307_13041 crossref_primary_10_3168_jds_2022_21975 crossref_primary_10_3168_jds_2023_23729 crossref_primary_10_3168_jds_2024_25711 crossref_primary_10_3390_ani13030509 |
Cites_doi | 10.1017/S0022029916000224 10.3168/jds.2013-6831 10.1016/0958-6946(96)00006-4 10.1017/S1751731112000791 10.2134/jeq2012.0482 10.3168/jds.2015-10477 10.1111/j.1399-3054.2007.01033.x 10.1016/j.clay.2016.01.038 10.3168/jds.2018-14878 10.3168/jds.2008-1734 10.3168/jds.S0022-0302(93)77499-8 10.3390/ani9070430 10.1542/peds.2004-0548 10.1007/978-3-319-14892-2 10.3168/jds.2016-11053 10.3390/ani10050873 10.1080/07315724.2000.10718083 10.3945/ajcn.113.080259 10.3168/jds.2014-8764 10.3168/jds.S0022-0302(06)72190-7 10.1139/cjas-2018-0058 10.3168/jds.2020-19638 10.1016/j.idairyj.2017.03.009 10.1051/vetres:2003026 10.3168/jds.2016-10953 10.1016/j.livprodsci.2004.12.014 10.3168/jds.2014-8752 10.1039/c0nr00158a 10.3168/jds.2017-13419 10.5713/ajas.2011.10233 10.1111/asj.13095 10.1017/S0022029900023268 10.3168/jds.S0022-0302(93)77504-9 10.1016/j.ymeth.2020.07.012 10.1097/MOL.0000000000000033 10.3168/jds.2014-8909 10.1016/S0301-6226(97)00027-4 10.1016/j.idairyj.2014.10.002 10.4081/ijas.2009.s2.435 10.1080/10408340600969403 10.1016/0169-7439(94)85050-X 10.1017/S0022029900011857 10.1080/1828051X.2017.1398055 10.3168/jds.2020-18870 10.3390/ani11020533 10.3168/jds.2015-10087 10.1016/j.biosystemseng.2005.05.001 |
ContentType | Journal Article Web Resource |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION NPM 3V. 7QR 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 HCIFZ M0K P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 7S9 L.6 Q33 5PM DOA |
DOI | 10.3390/foods10092235 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database SciTech Premium Collection Agricultural Science Database Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic Université de Liège - Open Repository and Bibliography (ORBI) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed CrossRef Agricultural Science Database AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition |
DocumentTitleAlternate | Prédiction des concentrations en minéraux du lait par une approche multi-races et multi-pays via la spectrométrie en moyen infrarouge du lait |
EISSN | 2304-8158 |
ExternalDocumentID | oai_doaj_org_article_97af59b754f147e080d23a798e64a25e PMC8470342 oai_orbi_ulg_ac_be_2268_290181 34574345 10_3390_foods10092235 |
Genre | Journal Article |
GeographicLocations | Austria Belgium France United States--US Luxembourg Germany |
GeographicLocations_xml | – name: Austria – name: Germany – name: Belgium – name: Luxembourg – name: France – name: United States--US |
GroupedDBID | 53G 5VS 7X2 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO ITC KQ8 M0K M48 MODMG M~E OK1 PHGZM PHGZT PIMPY PROAC RPM NPM 3V. 7QR 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 P64 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 7S9 L.6 Q33 5PM |
ID | FETCH-LOGICAL-c558t-6f3676e575fc3e5cde5f192186fcdc4174afb399b33c626b6c0386bba415b6e53 |
IEDL.DBID | M48 |
ISSN | 2304-8158 |
IngestDate | Wed Aug 27 01:25:37 EDT 2025 Thu Aug 21 18:26:29 EDT 2025 Fri Jul 18 15:34:51 EDT 2025 Fri Sep 05 03:05:58 EDT 2025 Thu Sep 04 23:51:55 EDT 2025 Mon Jun 30 11:13:26 EDT 2025 Thu Jan 02 22:39:58 EST 2025 Tue Jul 01 04:28:50 EDT 2025 Thu Apr 24 22:58:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | milk minerals mid-infrared |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c558t-6f3676e575fc3e5cde5f192186fcdc4174afb399b33c626b6c0386bba415b6e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 scopus-id:2-s2.0-85115613164 |
ORCID | 0000-0002-9037-8079 0000-0002-6733-4334 0000-0002-5981-5509 0000-0001-9883-9047 0000-0003-3313-485X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/foods10092235 |
PMID | 34574345 |
PQID | 2576407537 |
PQPubID | 2032399 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_97af59b754f147e080d23a798e64a25e pubmedcentral_primary_oai_pubmedcentral_nih_gov_8470342 liege_orbi_v2_oai_orbi_ulg_ac_be_2268_290181 proquest_miscellaneous_2636417603 proquest_miscellaneous_2577452706 proquest_journals_2576407537 pubmed_primary_34574345 crossref_primary_10_3390_foods10092235 crossref_citationtrail_10_3390_foods10092235 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210921 |
PublicationDateYYYYMMDD | 2021-09-21 |
PublicationDate_xml | – month: 9 year: 2021 text: 20210921 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Foods |
PublicationTitleAlternate | Foods |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Whelton (ref_7) 2014; 25 ref_50 Zhang (ref_10) 1996; 6 Kitchen (ref_43) 1984; 51 Beckely (ref_57) 1966; 49 Visentin (ref_23) 2016; 99 Kurzbaum (ref_17) 2016; 123 (ref_42) 2003; 34 ref_11 Soyeurt (ref_19) 2009; 92 Grelet (ref_32) 2016; 99 Summer (ref_47) 2010; 8 Visentin (ref_53) 2018; 17 ref_18 Hovinen (ref_44) 2016; 83 Kume (ref_56) 1993; 76 Huth (ref_4) 2006; 89 Batavani (ref_41) 2007; 8 Sarkhot (ref_16) 2013; 42 Lucey (ref_48) 1993; 76 Fleming (ref_25) 2018; 99 Murcia (ref_30) 1999; 32 He (ref_6) 2008; 133 Hamann (ref_13) 1997; 48 ref_24 Bastin (ref_15) 2016; 99 Blackburn (ref_58) 1966; 33 Sanchez (ref_49) 2018; 101 Auldist (ref_12) 1998; 53 ref_28 Thachepan (ref_9) 2010; 2 (ref_33) 1994; 25 Rousseeuw (ref_31) 2006; 36 Pointillart (ref_3) 2000; 19 Bonfatti (ref_22) 2016; 99 ref_35 Sharma (ref_59) 2011; 24 Toffanin (ref_20) 2015; 41 Holt (ref_55) 2013; 96 Uribarri (ref_8) 2014; 99 Qayyum (ref_14) 2016; 36 Soyeurt (ref_34) 2020; 103 ref_39 ref_37 Bittante (ref_51) 2015; 98 Cuvelier (ref_52) 2005; 22 Lanou (ref_5) 2005; 115 Grelet (ref_27) 2020; 186 Grelet (ref_29) 2015; 98 Zamberlin (ref_1) 2012; 62 Saeys (ref_36) 2005; 91 Franzoi (ref_40) 2018; 101 Gottardo (ref_21) 2015; 98 ref_2 Manuelian (ref_54) 2018; 89 Zaalberg (ref_26) 2021; 104 Oh (ref_38) 2017; 71 Soyeurt (ref_45) 2012; 6 Norberg (ref_46) 2005; 96 |
References_xml | – volume: 83 start-page: 219 year: 2016 ident: ref_44 article-title: N-acetyl-[...]-D-glucosaminidase activity in cow milk as an indicator of mastitis publication-title: J. Dairy Res. doi: 10.1017/S0022029916000224 – volume: 96 start-page: 6127 year: 2013 ident: ref_55 article-title: Invited review: Caseins and the casein micelle: Their biological functions, structures, and behavior in foods publication-title: J. Dairy Sci. doi: 10.3168/jds.2013-6831 – volume: 6 start-page: 769 year: 1996 ident: ref_10 article-title: Behaviour of calcium and phosphate in bovine casein micelles publication-title: Int. Dairy J. doi: 10.1016/0958-6946(96)00006-4 – volume: 6 start-page: 1830 year: 2012 ident: ref_45 article-title: Mid-infrared prediction of lactoferrin content in bovine milk: Potential indicator of mastitis publication-title: Animal doi: 10.1017/S1751731112000791 – volume: 42 start-page: 1545 year: 2013 ident: ref_16 article-title: Effectiveness of Biochar for Sorption of Ammonium and Phosphate from Dairy Effluent publication-title: J. Environ. Qual. doi: 10.2134/jeq2012.0482 – ident: ref_35 – volume: 53 start-page: 28 year: 1998 ident: ref_12 article-title: Effects of mastitis on raw milk and dairy products publication-title: Aust. J. Dairy Technol. – volume: 99 start-page: 4816 year: 2016 ident: ref_32 article-title: Development of Fourier transform mid-infrared calibrations to predict acetone, β-hydroxybutyrate, and citrate contents in bovine milk through a European dairy network publication-title: J. Dairy Sci. doi: 10.3168/jds.2015-10477 – volume: 133 start-page: 725 year: 2008 ident: ref_6 article-title: Beneficial effects of potassium on human health publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2007.01033.x – volume: 123 start-page: 182 year: 2016 ident: ref_17 article-title: The potential of phosphate removal from dairy wastewater and municipal wastewater effluents using a lanthanum-modified bentonite publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2016.01.038 – volume: 101 start-page: 10048 year: 2018 ident: ref_49 article-title: Genetic parameters for cheese-making properties and milk composition predicted from mid-infrared spectra in a large data set of Montbéliarde cows publication-title: J. Dairy Sci. doi: 10.3168/jds.2018-14878 – volume: 92 start-page: 2444 year: 2009 ident: ref_19 article-title: Potential estimation of major mineral contents in cow milk using mid-infrared spectrometry publication-title: J. Dairy Sci. doi: 10.3168/jds.2008-1734 – volume: 76 start-page: 1654 year: 1993 ident: ref_56 article-title: Effect of Parity on Colostral Mineral Concentrations of Holstein Cows and Value of Colostrum as a Mineral Source for Newborn Calves publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(93)77499-8 – volume: 32 start-page: 175 year: 1999 ident: ref_30 article-title: Fast Determination of the Ca, Mg, K, Na and Zn Contents in Milk and Nondairy Imitation Milk Using ICP-AES without Mineralization Stage publication-title: Food Sci. Technol. – volume: 22 start-page: 1 year: 2005 ident: ref_52 article-title: L’alimentation de la vache laitiere aliments, calculs de ration, indicateurs d’évaluation des déséquilibres de la ration et pathologies d’origine publication-title: Livret Agric. – ident: ref_24 doi: 10.3390/ani9070430 – volume: 62 start-page: 111 year: 2012 ident: ref_1 article-title: Mineral elements in milk and dairy products publication-title: Mljekarstvo – volume: 115 start-page: 736 year: 2005 ident: ref_5 article-title: Calcium, Dairy Products, and Bone Health in Children and Young Adults: A Reevaluation of the Evidence publication-title: Pediatrics doi: 10.1542/peds.2004-0548 – volume: 36 start-page: 275 year: 2016 ident: ref_14 article-title: Investigation of Milk and Blood Serum Biochemical Profile as an Indicator of Sub-Clinical Mastitis in Cholistani Cattle publication-title: Pak. Vet. J. – ident: ref_37 doi: 10.1007/978-3-319-14892-2 – volume: 99 start-page: 8137 year: 2016 ident: ref_23 article-title: Predictive ability of mid-infrared spectroscopy for major mineral composition and coagulation traits of bovine milk by using the uninformative variable selection algorithm publication-title: J. Dairy Sci. doi: 10.3168/jds.2016-11053 – ident: ref_50 doi: 10.3390/ani10050873 – volume: 19 start-page: 119S year: 2000 ident: ref_3 article-title: The Bioavailability of Dietary Calcium publication-title: J. Am. Coll. Nutr. doi: 10.1080/07315724.2000.10718083 – volume: 99 start-page: 247 year: 2014 ident: ref_8 article-title: Dietary phosphorus intake and health publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.113.080259 – volume: 98 start-page: 2150 year: 2015 ident: ref_29 article-title: Standardization of milk mid-infrared spectra from a European dairy network publication-title: J. Dairy Sci. doi: 10.3168/jds.2014-8764 – volume: 8 start-page: 205 year: 2007 ident: ref_41 article-title: The effect of subclinical mastitis on milk composition in dairy cows publication-title: Iran. J. Vet. Res. – volume: 49 start-page: 746 year: 1966 ident: ref_57 article-title: Five year study of California mastitis test testing on a commercial dairy herd publication-title: J. Dairy Sci. – volume: 89 start-page: 1207 year: 2006 ident: ref_4 article-title: Major Scientific Advances with Dairy Foods in Nutrition and Health publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(06)72190-7 – volume: 99 start-page: 218 year: 2018 ident: ref_25 article-title: Phenotypic investigation of fine milk components in bovine milk and their prediction using mid-infrared spectroscopy publication-title: Can. J. Anim. Sci. doi: 10.1139/cjas-2018-0058 – volume: 104 start-page: 8947 year: 2021 ident: ref_26 article-title: Genetic analysis on infrared-predicted milk minerals for Danish dairy cattle publication-title: J. Dairy Sci. doi: 10.3168/jds.2020-19638 – volume: 71 start-page: 89 year: 2017 ident: ref_38 article-title: Magnesium in milk publication-title: Int. Dairy J. doi: 10.1016/j.idairyj.2017.03.009 – volume: 34 start-page: 565 year: 2003 ident: ref_42 article-title: Indicators of inflammation in the diagnosis of mastitis publication-title: J. Vet. Res. doi: 10.1051/vetres:2003026 – volume: 99 start-page: 8216 year: 2016 ident: ref_22 article-title: Short communication: Mid-infrared spectroscopy prediction of fine milk composition and technological properties in Italian Simmental publication-title: J. Dairy Sci. doi: 10.3168/jds.2016-10953 – volume: 96 start-page: 129 year: 2005 ident: ref_46 article-title: Electrical conductivity of milk as a phenotypic and genetic indicator of bovine mastitis: A review publication-title: Livest. Prod. Sci. doi: 10.1016/j.livprodsci.2004.12.014 – ident: ref_11 – volume: 98 start-page: 4168 year: 2015 ident: ref_21 article-title: Technical note: Improving the accuracy of mid-infrared prediction models by selecting the most informative wavelengths publication-title: J. Dairy Sci. doi: 10.3168/jds.2014-8752 – volume: 2 start-page: 2400 year: 2010 ident: ref_9 article-title: Mesoscale crystallization of calcium phosphate nanostructures in protein (casein) micelles publication-title: Nanoscale doi: 10.1039/c0nr00158a – volume: 101 start-page: 1883 year: 2018 ident: ref_40 article-title: Technical note: Development and validation of a new method for the quantification of soluble and micellar calcium, magnesium, and potassium in milk publication-title: J. Dairy Sci. doi: 10.3168/jds.2017-13419 – volume: 24 start-page: 429 year: 2011 ident: ref_59 article-title: Relationship of somatic cell count and mastitis: An overview publication-title: Asian Australas. J. Anim. Sci. doi: 10.5713/ajas.2011.10233 – volume: 89 start-page: 1622 year: 2018 ident: ref_54 article-title: Mineral composition of cow milk from multibreed herds publication-title: Anim. Sci. J. doi: 10.1111/asj.13095 – volume: 51 start-page: 11 year: 1984 ident: ref_43 article-title: Relationship between the level of N-acetyl-β-D-glucosaminidase (NAGase) in bovine milk and the presence of mastitis pathogens publication-title: J. Dairy Res. doi: 10.1017/S0022029900023268 – volume: 76 start-page: 1714 year: 1993 ident: ref_48 article-title: Importance of Calcium and Phosphate in Cheese Manufacture: A Review publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(93)77504-9 – ident: ref_18 – volume: 186 start-page: 97 year: 2020 ident: ref_27 article-title: Large-scale phenotyping in dairy sector using milk MIR spectra: Key factors affecting the quality of predictions publication-title: Methods doi: 10.1016/j.ymeth.2020.07.012 – volume: 25 start-page: 75 year: 2014 ident: ref_7 article-title: Health effects of sodium and potassium in humans publication-title: Curr. Opin. Lipidol. doi: 10.1097/MOL.0000000000000033 – ident: ref_2 – volume: 98 start-page: 2759 year: 2015 ident: ref_51 article-title: Effect of dairy farming system, herd, season, parity, and days in milk on modeling of the coagulation, curd firming, and syneresis of bovine milk publication-title: J. Dairy Sci. doi: 10.3168/jds.2014-8909 – volume: 48 start-page: 201 year: 1997 ident: ref_13 article-title: Potential of specific milk composition variables for cow health management publication-title: Livest. Prod. Sci. doi: 10.1016/S0301-6226(97)00027-4 – volume: 41 start-page: 68 year: 2015 ident: ref_20 article-title: Effectiveness of mid-infrared spectroscopy for prediction of the contents of calcium and phosphorus, and titratable acidity of milk and their relationship with milk quality and coagulation properties publication-title: Int. Dairy J. doi: 10.1016/j.idairyj.2014.10.002 – volume: 8 start-page: 435 year: 2010 ident: ref_47 article-title: Influence of somatic cell count on mineral content and salt equilibria of milk publication-title: Ital. J. Anim. Sci. doi: 10.4081/ijas.2009.s2.435 – volume: 36 start-page: 221 year: 2006 ident: ref_31 article-title: Robustness and outlier detection in chemometrics publication-title: Crit. Rev. Anal. Chem. doi: 10.1080/10408340600969403 – volume: 25 start-page: 313 year: 1994 ident: ref_33 article-title: Comparing the predictive accuracy of models using a simple randomization test publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/0169-7439(94)85050-X – volume: 33 start-page: 193 year: 1966 ident: ref_58 article-title: The variation in the cell count of cow’s milk throughout lactation and from one lactation to the next publication-title: J. Dairy Res. doi: 10.1017/S0022029900011857 – volume: 17 start-page: 549 year: 2018 ident: ref_53 article-title: Phenotypic characterisation of major mineral composition predicted by mid-infrared spectroscopy in cow milk publication-title: Ital. J. Anim. Sci. doi: 10.1080/1828051X.2017.1398055 – volume: 103 start-page: 11585 year: 2020 ident: ref_34 article-title: A comparison of 4 different machine learning algorithms to predict lactoferrin content in bovine milk from mid-infrared spectra publication-title: J. Dairy Sci. doi: 10.3168/jds.2020-18870 – ident: ref_28 doi: 10.3390/ani11020533 – volume: 99 start-page: 4080 year: 2016 ident: ref_15 article-title: On the role of mid-infrared predicted phenotypes in fertility and health dairy breeding programs publication-title: J. Dairy Sci. doi: 10.3168/jds.2015-10087 – volume: 91 start-page: 393 year: 2005 ident: ref_36 article-title: Potential for Onsite and Online Analysis of Pig Manure using Visible and Near Infrared Reflectance Spectroscopy publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2005.05.001 – ident: ref_39 doi: 10.1007/978-3-319-14892-2 |
RestrictionsOnAccess | open access |
SSID | ssj0000913832 |
Score | 2.2583191 |
Snippet | Measuring the mineral composition of milk is of major interest in the dairy sector. This study aims to develop and validate robust multi-breed and... |
SourceID | doaj pubmedcentral liege proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2235 |
SubjectTerms | Analytical chemistry Animal production & animal husbandry Austria Calibration dairy herds Dairy industry Datasets Dietary minerals Emission analysis Environmental impact Food Science Health (social science) Health Professions (miscellaneous) herd improvement Hypertension Inductively coupled plasma Infrared spectra Infrared spectroscopy Lactation least squares Life sciences Microbiology mid-infrared Milk milk composition Mineral composition mineral content Minerals Plant Science Potassium prediction Predictions Productions animales & zootechnie Sciences des denrées alimentaires Sciences du vivant Scientific imaging Sodium Spectrometry spectroscopy |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kT15E11d0lRZkT4ZN-pXk6KrLKsziwYW9NekXBkMiSUbwtn_Dv-cvsaqTGWfEx8VbSKpDuqsq_RVV_RUhz53lHpCoSlUo6lRwBi5VlS61zjFVWgibMzzgvLpQ55fi3ZW82mn1hTVhMz3wvHAnVVEHWZlCipCLwgPAcYzXRVV6JWomPf59syrbCabiP7jKIfRiM6kmh7j-JPS9G3OkGGKxtdvPTShy9QM2bTFL_Tug-Wu95M4GdHab3FqQI305f_EdcsN3hyR53fiJHtOF3rOlFxt2_bukXS3FgvR0gD1qpHXnKJ5Bxx5a4_frb_T9gGmaaHm0D3TVRApqGhmrummkTQf32k8Uz6DMV6vGpW-7MGDZOsXe9RPSHUzD13vk8uzNh1fn6dJcIbVSlhPoBrnaPKC1AOqS1nkZkButVME6KyBQqYMB9GI4txD0GGUzXipjatjxDYzj98lB13f-IaEBfF4Yj02PasGVAZUVWahyy6xxlfUJebFZbW0X5nFsgNFqiEBQOXpPOQk53op_nik3_iR4iqrbCiFTdrwB9qMX-9H_sh_4uKh4GGQa_YXFt8TrdQtvsdp4DRC11JhwLvOEHG3sQy_ePmoM2iAwlrxIyLPtY_BTTL7Une_XUaYQkhWZ-ouM4gpWXmU8IQ9mk9tOjgsJYE_ApIs9Y9yb_f6TrvkY-cIBgCDR46P_sVyPyU2GVT2Yl8uPyME0rP0TgGWTeRo98AeVLTee priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9sIF8Sa0ICOhnoiajR9JDgix0Kog7apCVOrNil8lIkrabBaJG3-Dv8cvYcabbFkEvUXJJLIz4_E3HvsbQl5awxwgURlLn5UxZykMqSK3sbE2lbmBsDnBA87zhTw54x_PxfkOWYxnYXBb5egTg6O2rcE18kMExhB8CJa9ubyKsWoUZlfHEhrlUFrBvg4UY7fILrhkkUzI7uxocfpps-qCLJhgw2uyTQbx_qFvW7ucIvVQGkq-XU9OgcMfMGuN2et_AdC_91H-MTEd3yV3BkRJ365N4B7Zcc19Er2vXE8P6ED7WdPFyLr_gNTzYRMhnXUwdy1p2ViKZ9Oxttby14-f9LTD9E2wSNp6Oq8CNTUNTFZNv6RVA_fqrxTPpqyv5pWNPzS-w-3sFGva90iD0HffH5Kz46PP707ioehCbITIe9AZcrg5QHEe1CiMdcIjZ1ouvbGGQwBTeg2oRjNmIBjS0iQsl1qXgAQ0vMcekUnTNu4JoR58AdcOiyGVnEldZGWW-GJqUqNtYVxEXo1_W5mBkRwLY9QKIhNUjtpSTkQONuKXayqO_wnOUHUbIWTQDjfa7kINA1JBY7wodCa4n_LMAXC2KSuzIneSl6nAxgXFw0u6Ut_S8JVwvarhK0ZppwC65goT0fk0IvujfajBCyzVtc1G5MXmMYxfTMqUjWtXQSbjIs0SeYOMZBL-vExYRB6vTW7TOcYFgEAOnc62jHGr99tPmupL4BEHYIIEkE9vbvoeuZ3iPh7MxE33yaTvVu4ZALFePx9G12_uUTY3 priority: 102 providerName: ProQuest |
Title | Multiple Breeds and Countries’ Predictions of Mineral Contents in Milk from Milk Mid-Infrared Spectrometry |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34574345 https://www.proquest.com/docview/2576407537 https://www.proquest.com/docview/2577452706 https://www.proquest.com/docview/2636417603 http://orbi.ulg.ac.be/handle/2268/290181 https://pubmed.ncbi.nlm.nih.gov/PMC8470342 https://doaj.org/article/97af59b754f147e080d23a798e64a25e |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db5RAEN9om5i-GL9F62VNTH0RBfYDeDDG0zbV5C6N8ZK-EfarogQUOGP_e2f2uLOnrW8Ehg3szLC_YWZ_Q8gzo5kFJCpD6dIy5CwBl8ozE2pjEplpCJsj3OA8m8vjBf94Kk7_UAqNE9hfGtphP6lFV7_89eP8DTj8a4w4IWR_5drW9DGyByVMXCe7PlWEVXwj0vcf5TyGWCzxreYiHmaxyFaMm_-OsEduMC5gZcUtThcWK8_pDxi2xmz2ZYD077rKCwvV0S1yc0SY9O3KJG6Ta7a5Q4L3lR3oAR1pQGs6X7Pw3yVfZ2NRIZ12sJb1tGwMxb3q2Gurf05POkzmePukraOzyhNVU89r1Qw9rRo4V3-juFNldTSrTPihcR0Wt1PscD8gKcLQnd8ji6PDz--Ow7EFQ6iFyAbQIDK6WcB0DpQqtLHCIYNaJp02mkM4UzoFGEcxpiE0UlJHLJNKlYALFNzH7pOdpm3sQ0IdfBm4stgaqeRMqjwt08jlsU60Mrm2AXmxnutCj_zk2CajLiBOQS0VW1oKyMFG_PuKmOMqwSkqbiOEfNr-RNudFaN7FvAwTuQqFdzFPLUAo03CyjTPrORlIvDhvNrhJlUVPxM_ij9e1jCKLpQtAMhmBaalszgg-2vrKNYmXWBoB-GzYGlAnm4ugzdjiqZsbLv0MikXSRrJ_8hIJmHmZcQC8mBlcJuXWxtuQNItU9x6--0rTfXFs4oDTEE6yEdXjvmY7CVY0IMpuXif7Azd0j4BRDaoCdmdHs5PPk38H42J97zfHGs1GQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbK9gAXxD-BAkaCnoiajRMnOVSIpa12aXdVQSv1FuI_iAjJkqSg3ngNXoaH4UmY8SZbFkFvvUWJY9kez_izZ_wNIc-UZBqQKHe5iTI3YD6oVBIrVyrl81jCttnDC87TGR8fB29OwpM18rO_C4Nhlb1NtIZaVRLPyLcQGMPmI2TRy_kXF7NGoXe1T6GRdakV1LalGOsuduzrs2-whWu2Jzsg7-e-v7d79HrsdlkGXBmGcQuNRNIyDbDFQLtDqXRokCQs5kYqGQBiz4yAZVwwJgH9Cy49FnMhMlj6BPzHoN4rZD3AA5QBWR_tzg7fLk95kHUTdGZB7slY4m2ZqlLNEKmOfJti7nwxtDkDACMX6C3_F-D9O27zj4Vw7wa53iFY-mox5W6SNV3eIs5Orlu6STua0YLOepb_26SYdkGLdFTDWtnQrFQU78JjLq_m1_cf9LBGd5HVAFoZOs0tFTa1zFll29C8hHfFJ4p3YRZP01y5k9LUGD5P381tKp_Puq3P7pDjSxn-u2RQVqW-T6gB2xMIjcmXsoBxkURZ5JlkKH0pVCK1Q170o53KjgEdE3EUKeyEUDjpinAcsrksPl9Qf_yv4AhFtyyEjN32RVV_SDsDkEJjTJiIKAzMMIg0AHXlsyxKYs2DzA-xcVbw8JPI06--rcU-nxZQi0yFTgEqxyk6vuOhQzb6-ZF2VqdJz3XEIU-Xn8FeoBMoK3V1astEQehHHr-gDGccRp57zCH3FlNu2TkWhAA6A-h0tDIZV3q_-qXMP1recgBCSDj54OKmPyFXx0fTg_RgMtt_SK75GEOEXsDhBhm09al-BCCwFY87TaPk_WUr929q23Nw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVkJcEP8YCiwS9IQVx2uv7UOFCGnUUBJFQKXejPcPLIwdbAfUG6_BK_EYPAkzGyclCHrrzbLH1v7N7Dee2W8IeaIk04BEuctNlLkB80Glkli5UimfxxLcZg8POE-m_PA4eHUSnmyRn6uzMJhWubKJ1lCrSuI_8h4CY3A-Qhb1TJcWMRuOns-_uFhBCiOtq3IaWVdmQe1burHukMeRPv0G7lyzPx7C3D_1_dHBu5eHbldxwJVhGLfQYCQw0wBhDPQhlEqHBgnDYm6kkgGg98wI2NIFYxI8AcGlx2IuRAbboID3GHz3EtmJQAQcwZ3BwXT2Zv3HBxk4QX-WRJ-MJV7PVJVq-kh75Ntyc2cbo60fAHi5wMj5v8Dv3zmcf2yKo2vkaodm6Yvl8rtOtnR5gzjDXLd0j3aUowWdrhj_b5Ji0iUw0kEN-2ZDs1JRPBePdb2aX99_0FmNoSOrDbQydJJbWmxqWbTKtqF5CfeKTxTPxSyvJrlyx6WpMZWevp3bsj6fdVuf3iLHFzL8t8l2WZX6LqEG7FAgNBZiygLGRRJlkWeSvvSlUInUDnm2Gu1UdmzoWJSjSMErwslJNybHIXtr8fmSBuR_ggOcurUQsnfbG1X9Ie2MQQqNMWEiojAw_SDSANqVz7IoiTUPMj_ExtmJh5dEnn717Vfs9aKAr8hU6BRgc5xiEDzuO2R3tT7SzgI16Zm-OOTx-jHYDgwIZaWuFlYmCkI_8vg5MpxxGHnuMYfcWS65dedYEAIADaDT0cZi3Oj95pMy_2g5zAEUIfnkvfOb_ohcBiVPX4-nR_fJFR_TiTAg2N8l22290A8AD7biYadolLy_aN3-Dc0kd7Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Breeds+and+Countries%27+Predictions+of+Mineral+Contents+in+Milk+from+Milk+Mid-Infrared+Spectrometry&rft.jtitle=Foods&rft.au=Christophe%2C+Octave+S&rft.au=Grelet%2C+Cl%C3%A9ment&rft.au=Bertozzi%2C+Carlo&rft.au=Veselko%2C+Didier&rft.date=2021-09-21&rft.issn=2304-8158&rft.eissn=2304-8158&rft.volume=10&rft.issue=9&rft_id=info:doi/10.3390%2Ffoods10092235&rft_id=info%3Apmid%2F34574345&rft.externalDocID=34574345 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2304-8158&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2304-8158&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2304-8158&client=summon |