Multiple Breeds and Countries’ Predictions of Mineral Contents in Milk from Milk Mid-Infrared Spectrometry

Measuring the mineral composition of milk is of major interest in the dairy sector. This study aims to develop and validate robust multi-breed and multi-country models predicting the major minerals through milk mid-infrared spectrometry using partial least square regressions. A total of 1281 samples...

Full description

Saved in:
Bibliographic Details
Published inFoods Vol. 10; no. 9; p. 2235
Main Authors Christophe, Octave S., Grelet, Clément, Bertozzi, Carlo, Veselko, Didier, Lecomte, Christophe, Höeckels, Peter, Werner, Andreas, Auer, Franz-Josef, Gengler, Nicolas, Dehareng, Frédéric, Soyeurt, Hélène
Format Journal Article Web Resource
LanguageEnglish
Published Switzerland MDPI AG 21.09.2021
MDPI
Subjects
Online AccessGet full text
ISSN2304-8158
2304-8158
DOI10.3390/foods10092235

Cover

Abstract Measuring the mineral composition of milk is of major interest in the dairy sector. This study aims to develop and validate robust multi-breed and multi-country models predicting the major minerals through milk mid-infrared spectrometry using partial least square regressions. A total of 1281 samples coming from five countries were analyzed to obtain spectra and in ICP-AES to measure the mineral reference contents. Models were built from records coming from four countries (n = 1181) and validated using records from the fifth country, Austria (n = 100). The importance of including local samples was tested by integrating 30 Austrian samples in the model while validating with the remaining 70 samples. The best performances were achieved using this second set of models, confirming the need to cover the spectral variability of a country before making a prediction. Validation root mean square errors were 54.56, 63.60, 7.30, 59.87, and 152.89 mg/kg for Na, Ca, Mg, P, and K, respectively. The built models were applied on the Walloon milk recording large-scale spectral database, including 3,510,077. The large-scale predictions on this dairy herd improvement database provide new insight regarding the minerals’ variability in the population, as well as the effect of parity, stage of lactation, breeds, and seasons.
AbstractList Measuring the mineral composition of milk is of major interest in the dairy sector. This study aims to develop and validate robust multi-breed and multi-country models predicting the major minerals through milk mid-infrared spectrometry using partial least square regressions. A total of 1281 samples coming from five countries were analyzed to obtain spectra and in ICP-AES to measure the mineral reference contents. Models were built from records coming from four countries ( = 1181) and validated using records from the fifth country, Austria ( = 100). The importance of including local samples was tested by integrating 30 Austrian samples in the model while validating with the remaining 70 samples. The best performances were achieved using this second set of models, confirming the need to cover the spectral variability of a country before making a prediction. Validation root mean square errors were 54.56, 63.60, 7.30, 59.87, and 152.89 mg/kg for Na, Ca, Mg, P, and K, respectively. The built models were applied on the Walloon milk recording large-scale spectral database, including 3,510,077. The large-scale predictions on this dairy herd improvement database provide new insight regarding the minerals' variability in the population, as well as the effect of parity, stage of lactation, breeds, and seasons.
Measuring the mineral composition of milk is of major interest in the dairy sector. This study aims to develop and validate robust multi-breed and multi-country models predicting the major minerals through milk mid-infrared spectrometry using partial least square regressions. A total of 1281 samples coming from five countries were analyzed to obtain spectra and in ICP-AES to measure the mineral reference contents. Models were built from records coming from four countries (n = 1181) and validated using records from the fifth country, Austria (n = 100). The importance of including local samples was tested by integrating 30 Austrian samples in the model while validating with the remaining 70 samples. The best performances were achieved using this second set of models, confirming the need to cover the spectral variability of a country before making a prediction. Validation root mean square errors were 54.56, 63.60, 7.30, 59.87, and 152.89 mg/kg for Na, Ca, Mg, P, and K, respectively. The built models were applied on the Walloon milk recording large-scale spectral database, including 3,510,077. The large-scale predictions on this dairy herd improvement database provide new insight regarding the minerals’ variability in the population, as well as the effect of parity, stage of lactation, breeds, and seasons.
Measuring the mineral composition of milk is of major interest in the dairy sector. This study aims to develop and validate robust multi-breed and multi-country models predicting the major minerals through milk mid-infrared spectrometry using partial least square regressions. A total of 1281 samples coming from five countries were analyzed to obtain spectra and in ICP-AES to measure the mineral reference contents. Models were built from records coming from four countries ( n = 1181) and validated using records from the fifth country, Austria ( n = 100). The importance of including local samples was tested by integrating 30 Austrian samples in the model while validating with the remaining 70 samples. The best performances were achieved using this second set of models, confirming the need to cover the spectral variability of a country before making a prediction. Validation root mean square errors were 54.56, 63.60, 7.30, 59.87, and 152.89 mg/kg for Na, Ca, Mg, P, and K, respectively. The built models were applied on the Walloon milk recording large-scale spectral database, including 3,510,077. The large-scale predictions on this dairy herd improvement database provide new insight regarding the minerals’ variability in the population, as well as the effect of parity, stage of lactation, breeds, and seasons.
Measuring the mineral composition of milk is of major interest in the dairy sector. This study aims to develop and validate robust multi-breed and multi-country models predicting the major minerals through milk mid-infrared spectrometry using partial least square regressions. A total of 1281 samples coming from five countries were analyzed to obtain spectra and in ICP-AES to measure the mineral reference contents. Models were built from records coming from four countries (n = 1181) and validated using records from the fifth country, Austria (n = 100). The importance of including local samples was tested by integrating 30 Austrian samples in the model while validating with the remaining 70 samples. The best performances were achieved using this second set of models, confirming the need to cover the spectral variability of a country before making a prediction. Validation root mean square errors were 54.56, 63.60, 7.30, 59.87, and 152.89 mg/kg for Na, Ca, Mg, P, and K, respectively. The built models were applied on the Walloon milk recording large-scale spectral database, including 3,510,077. The large-scale predictions on this dairy herd improvement database provide new insight regarding the minerals' variability in the population, as well as the effect of parity, stage of lactation, breeds, and seasons.Measuring the mineral composition of milk is of major interest in the dairy sector. This study aims to develop and validate robust multi-breed and multi-country models predicting the major minerals through milk mid-infrared spectrometry using partial least square regressions. A total of 1281 samples coming from five countries were analyzed to obtain spectra and in ICP-AES to measure the mineral reference contents. Models were built from records coming from four countries (n = 1181) and validated using records from the fifth country, Austria (n = 100). The importance of including local samples was tested by integrating 30 Austrian samples in the model while validating with the remaining 70 samples. The best performances were achieved using this second set of models, confirming the need to cover the spectral variability of a country before making a prediction. Validation root mean square errors were 54.56, 63.60, 7.30, 59.87, and 152.89 mg/kg for Na, Ca, Mg, P, and K, respectively. The built models were applied on the Walloon milk recording large-scale spectral database, including 3,510,077. The large-scale predictions on this dairy herd improvement database provide new insight regarding the minerals' variability in the population, as well as the effect of parity, stage of lactation, breeds, and seasons.
Author Dehareng, Frédéric
Bertozzi, Carlo
Lecomte, Christophe
Grelet, Clément
Werner, Andreas
Veselko, Didier
Christophe, Octave S.
Soyeurt, Hélène
Gengler, Nicolas
Auer, Franz-Josef
Höeckels, Peter
AuthorAffiliation 1 Walloon Agricultural Research Center (CRA-W), 24 Chaussée de Namur, 5030 Gembloux, Belgium; o.christophe@cra.wallonie.be (O.S.C.); c.grelet@cra.wallonie.be (C.G.)
5 Landeskontrollverband Nordrhein-Westfalen e.V., Bischofstraße 85, 47809 Krefeld, Germany; hoeckels@lkv-nrw.de
2 Elevéo Asbl, AWE Group, 4, Rue des Champs Elysées, 5590 Ciney, Belgium; cbertozzi@awenet.be
4 France Conseil Elevage, Maison du Lait, 42 Rue de Chateaudun, 75009 Paris, France; christophe.lecomte@france-conseil-elevage.fr
6 LKV Baden Württemberg, Heinrich-Baumann Str. 1-3, 70190 Stuttgart, Germany; awerner@lkvbw.de
8 Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium; nicolas.gengler@uliege.be (N.G.); hsoyeurt@uliege.be (H.S.)
3 Comité du Lait de Battice Route de Herve 104, 4651 Battice, Belgium; didier.veselko@comitedulait.be
7 LKV Austria Gemeinnützige GmbH, Dresdnerstr. 89/B1/18, 1200 Wien, Austria; Franz-Josef.Auer@lkv-austria.at
AuthorAffiliation_xml – name: 1 Walloon Agricultural Research Center (CRA-W), 24 Chaussée de Namur, 5030 Gembloux, Belgium; o.christophe@cra.wallonie.be (O.S.C.); c.grelet@cra.wallonie.be (C.G.)
– name: 2 Elevéo Asbl, AWE Group, 4, Rue des Champs Elysées, 5590 Ciney, Belgium; cbertozzi@awenet.be
– name: 4 France Conseil Elevage, Maison du Lait, 42 Rue de Chateaudun, 75009 Paris, France; christophe.lecomte@france-conseil-elevage.fr
– name: 5 Landeskontrollverband Nordrhein-Westfalen e.V., Bischofstraße 85, 47809 Krefeld, Germany; hoeckels@lkv-nrw.de
– name: 3 Comité du Lait de Battice Route de Herve 104, 4651 Battice, Belgium; didier.veselko@comitedulait.be
– name: 7 LKV Austria Gemeinnützige GmbH, Dresdnerstr. 89/B1/18, 1200 Wien, Austria; Franz-Josef.Auer@lkv-austria.at
– name: 8 Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium; nicolas.gengler@uliege.be (N.G.); hsoyeurt@uliege.be (H.S.)
– name: 6 LKV Baden Württemberg, Heinrich-Baumann Str. 1-3, 70190 Stuttgart, Germany; awerner@lkvbw.de
Author_xml – sequence: 1
  givenname: Octave S.
  orcidid: 0000-0002-9037-8079
  surname: Christophe
  fullname: Christophe, Octave S.
– sequence: 2
  givenname: Clément
  orcidid: 0000-0003-3313-485X
  surname: Grelet
  fullname: Grelet, Clément
– sequence: 3
  givenname: Carlo
  surname: Bertozzi
  fullname: Bertozzi, Carlo
– sequence: 4
  givenname: Didier
  surname: Veselko
  fullname: Veselko, Didier
– sequence: 5
  givenname: Christophe
  surname: Lecomte
  fullname: Lecomte, Christophe
– sequence: 6
  givenname: Peter
  surname: Höeckels
  fullname: Höeckels, Peter
– sequence: 7
  givenname: Andreas
  surname: Werner
  fullname: Werner, Andreas
– sequence: 8
  givenname: Franz-Josef
  surname: Auer
  fullname: Auer, Franz-Josef
– sequence: 9
  givenname: Nicolas
  orcidid: 0000-0002-5981-5509
  surname: Gengler
  fullname: Gengler, Nicolas
– sequence: 10
  givenname: Frédéric
  orcidid: 0000-0002-6733-4334
  surname: Dehareng
  fullname: Dehareng, Frédéric
– sequence: 11
  givenname: Hélène
  orcidid: 0000-0001-9883-9047
  surname: Soyeurt
  fullname: Soyeurt, Hélène
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34574345$$D View this record in MEDLINE/PubMed
BookMark eNqFkstuEzEUhkeoiJbSJVs0Ehs2A757ZoNEIy6RGoEErC2P5zg4OHawZyp1x2vwejwJTlJCg4Twwj6yv_-3z_F5WJ2EGKCqHmP0nNIOvbAxDhkj1BFC-b3qjFDEmhbz9uROfFpd5LxCZXSYtpQ8qE4p45KV6azyi8mPbuOhvkwAQ651GOpZnMKYHOSf33_UHxIMzowuhlxHWy9cgKR9YcIIYcy1C2XPf61tiut9tHBDMw826aKsP27AjOUIxnTzqLpvtc9wcbueV5_fvP40e9dcvX87n726agzn7dgIS4UUwCW3hgI3A3CLO4JbYc1gGJZM2552XU-pEUT0wiDair7XDPO-6Oh5Nd_7DlGv1Ca5tU43KmqndhsxLZVOozMeVCe15V0vObOYSUAtGgjVsmtBME04FK-Xe6_N1K9hMCXnkv6R6fFJcF_UMl6rlklEGSkGdG_gHSyhXN47dU12wl08-fIao3pQhIhWkQ7hFhfVs9trU_w2QR7V2mUD3usAccqKCCpKJQSi_0e5lIwTiURBn_6FruKUQvmLLSUYkpzKQj25m_Ih199dU4BmD5gUc05gDwhGatuY6qgx_5TgwBs36m1LlYo5_w_VL2U-50M
CitedBy_id crossref_primary_10_1016_j_foodcont_2024_110983
crossref_primary_10_3390_ani12192663
crossref_primary_10_3168_jds_2023_23458
crossref_primary_10_3168_jds_2024_25440
crossref_primary_10_3168_jdsc_2022_0294
crossref_primary_10_1080_1828051X_2024_2353226
crossref_primary_10_1016_j_foodchem_2024_140800
crossref_primary_10_1111_1471_0307_13041
crossref_primary_10_3168_jds_2022_21975
crossref_primary_10_3168_jds_2023_23729
crossref_primary_10_3168_jds_2024_25711
crossref_primary_10_3390_ani13030509
Cites_doi 10.1017/S0022029916000224
10.3168/jds.2013-6831
10.1016/0958-6946(96)00006-4
10.1017/S1751731112000791
10.2134/jeq2012.0482
10.3168/jds.2015-10477
10.1111/j.1399-3054.2007.01033.x
10.1016/j.clay.2016.01.038
10.3168/jds.2018-14878
10.3168/jds.2008-1734
10.3168/jds.S0022-0302(93)77499-8
10.3390/ani9070430
10.1542/peds.2004-0548
10.1007/978-3-319-14892-2
10.3168/jds.2016-11053
10.3390/ani10050873
10.1080/07315724.2000.10718083
10.3945/ajcn.113.080259
10.3168/jds.2014-8764
10.3168/jds.S0022-0302(06)72190-7
10.1139/cjas-2018-0058
10.3168/jds.2020-19638
10.1016/j.idairyj.2017.03.009
10.1051/vetres:2003026
10.3168/jds.2016-10953
10.1016/j.livprodsci.2004.12.014
10.3168/jds.2014-8752
10.1039/c0nr00158a
10.3168/jds.2017-13419
10.5713/ajas.2011.10233
10.1111/asj.13095
10.1017/S0022029900023268
10.3168/jds.S0022-0302(93)77504-9
10.1016/j.ymeth.2020.07.012
10.1097/MOL.0000000000000033
10.3168/jds.2014-8909
10.1016/S0301-6226(97)00027-4
10.1016/j.idairyj.2014.10.002
10.4081/ijas.2009.s2.435
10.1080/10408340600969403
10.1016/0169-7439(94)85050-X
10.1017/S0022029900011857
10.1080/1828051X.2017.1398055
10.3168/jds.2020-18870
10.3390/ani11020533
10.3168/jds.2015-10087
10.1016/j.biosystemseng.2005.05.001
ContentType Journal Article
Web Resource
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
3V.
7QR
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
HCIFZ
M0K
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
Q33
5PM
DOA
DOI 10.3390/foods10092235
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Université de Liège - Open Repository and Bibliography (ORBI)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
CrossRef
Agricultural Science Database
AGRICOLA



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
DocumentTitleAlternate Prédiction des concentrations en minéraux du lait par une approche multi-races et multi-pays via la spectrométrie en moyen infrarouge du lait
EISSN 2304-8158
ExternalDocumentID oai_doaj_org_article_97af59b754f147e080d23a798e64a25e
PMC8470342
oai_orbi_ulg_ac_be_2268_290181
34574345
10_3390_foods10092235
Genre Journal Article
GeographicLocations Austria
Belgium
France
United States--US
Luxembourg
Germany
GeographicLocations_xml – name: Austria
– name: Germany
– name: Belgium
– name: Luxembourg
– name: France
– name: United States--US
GroupedDBID 53G
5VS
7X2
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KQ8
M0K
M48
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
3V.
7QR
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
7S9
L.6
Q33
5PM
ID FETCH-LOGICAL-c558t-6f3676e575fc3e5cde5f192186fcdc4174afb399b33c626b6c0386bba415b6e53
IEDL.DBID M48
ISSN 2304-8158
IngestDate Wed Aug 27 01:25:37 EDT 2025
Thu Aug 21 18:26:29 EDT 2025
Fri Jul 18 15:34:51 EDT 2025
Fri Sep 05 03:05:58 EDT 2025
Thu Sep 04 23:51:55 EDT 2025
Mon Jun 30 11:13:26 EDT 2025
Thu Jan 02 22:39:58 EST 2025
Tue Jul 01 04:28:50 EDT 2025
Thu Apr 24 22:58:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords milk
minerals
mid-infrared
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c558t-6f3676e575fc3e5cde5f192186fcdc4174afb399b33c626b6c0386bba415b6e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
scopus-id:2-s2.0-85115613164
ORCID 0000-0002-9037-8079
0000-0002-6733-4334
0000-0002-5981-5509
0000-0001-9883-9047
0000-0003-3313-485X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/foods10092235
PMID 34574345
PQID 2576407537
PQPubID 2032399
ParticipantIDs doaj_primary_oai_doaj_org_article_97af59b754f147e080d23a798e64a25e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8470342
liege_orbi_v2_oai_orbi_ulg_ac_be_2268_290181
proquest_miscellaneous_2636417603
proquest_miscellaneous_2577452706
proquest_journals_2576407537
pubmed_primary_34574345
crossref_primary_10_3390_foods10092235
crossref_citationtrail_10_3390_foods10092235
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210921
PublicationDateYYYYMMDD 2021-09-21
PublicationDate_xml – month: 9
  year: 2021
  text: 20210921
  day: 21
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Foods
PublicationTitleAlternate Foods
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Whelton (ref_7) 2014; 25
ref_50
Zhang (ref_10) 1996; 6
Kitchen (ref_43) 1984; 51
Beckely (ref_57) 1966; 49
Visentin (ref_23) 2016; 99
Kurzbaum (ref_17) 2016; 123
(ref_42) 2003; 34
ref_11
Soyeurt (ref_19) 2009; 92
Grelet (ref_32) 2016; 99
Summer (ref_47) 2010; 8
Visentin (ref_53) 2018; 17
ref_18
Hovinen (ref_44) 2016; 83
Kume (ref_56) 1993; 76
Huth (ref_4) 2006; 89
Batavani (ref_41) 2007; 8
Sarkhot (ref_16) 2013; 42
Lucey (ref_48) 1993; 76
Fleming (ref_25) 2018; 99
Murcia (ref_30) 1999; 32
He (ref_6) 2008; 133
Hamann (ref_13) 1997; 48
ref_24
Bastin (ref_15) 2016; 99
Blackburn (ref_58) 1966; 33
Sanchez (ref_49) 2018; 101
Auldist (ref_12) 1998; 53
ref_28
Thachepan (ref_9) 2010; 2
(ref_33) 1994; 25
Rousseeuw (ref_31) 2006; 36
Pointillart (ref_3) 2000; 19
Bonfatti (ref_22) 2016; 99
ref_35
Sharma (ref_59) 2011; 24
Toffanin (ref_20) 2015; 41
Holt (ref_55) 2013; 96
Uribarri (ref_8) 2014; 99
Qayyum (ref_14) 2016; 36
Soyeurt (ref_34) 2020; 103
ref_39
ref_37
Bittante (ref_51) 2015; 98
Cuvelier (ref_52) 2005; 22
Lanou (ref_5) 2005; 115
Grelet (ref_27) 2020; 186
Grelet (ref_29) 2015; 98
Zamberlin (ref_1) 2012; 62
Saeys (ref_36) 2005; 91
Franzoi (ref_40) 2018; 101
Gottardo (ref_21) 2015; 98
ref_2
Manuelian (ref_54) 2018; 89
Zaalberg (ref_26) 2021; 104
Oh (ref_38) 2017; 71
Soyeurt (ref_45) 2012; 6
Norberg (ref_46) 2005; 96
References_xml – volume: 83
  start-page: 219
  year: 2016
  ident: ref_44
  article-title: N-acetyl-[...]-D-glucosaminidase activity in cow milk as an indicator of mastitis
  publication-title: J. Dairy Res.
  doi: 10.1017/S0022029916000224
– volume: 96
  start-page: 6127
  year: 2013
  ident: ref_55
  article-title: Invited review: Caseins and the casein micelle: Their biological functions, structures, and behavior in foods
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2013-6831
– volume: 6
  start-page: 769
  year: 1996
  ident: ref_10
  article-title: Behaviour of calcium and phosphate in bovine casein micelles
  publication-title: Int. Dairy J.
  doi: 10.1016/0958-6946(96)00006-4
– volume: 6
  start-page: 1830
  year: 2012
  ident: ref_45
  article-title: Mid-infrared prediction of lactoferrin content in bovine milk: Potential indicator of mastitis
  publication-title: Animal
  doi: 10.1017/S1751731112000791
– volume: 42
  start-page: 1545
  year: 2013
  ident: ref_16
  article-title: Effectiveness of Biochar for Sorption of Ammonium and Phosphate from Dairy Effluent
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2012.0482
– ident: ref_35
– volume: 53
  start-page: 28
  year: 1998
  ident: ref_12
  article-title: Effects of mastitis on raw milk and dairy products
  publication-title: Aust. J. Dairy Technol.
– volume: 99
  start-page: 4816
  year: 2016
  ident: ref_32
  article-title: Development of Fourier transform mid-infrared calibrations to predict acetone, β-hydroxybutyrate, and citrate contents in bovine milk through a European dairy network
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2015-10477
– volume: 133
  start-page: 725
  year: 2008
  ident: ref_6
  article-title: Beneficial effects of potassium on human health
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2007.01033.x
– volume: 123
  start-page: 182
  year: 2016
  ident: ref_17
  article-title: The potential of phosphate removal from dairy wastewater and municipal wastewater effluents using a lanthanum-modified bentonite
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2016.01.038
– volume: 101
  start-page: 10048
  year: 2018
  ident: ref_49
  article-title: Genetic parameters for cheese-making properties and milk composition predicted from mid-infrared spectra in a large data set of Montbéliarde cows
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2018-14878
– volume: 92
  start-page: 2444
  year: 2009
  ident: ref_19
  article-title: Potential estimation of major mineral contents in cow milk using mid-infrared spectrometry
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2008-1734
– volume: 76
  start-page: 1654
  year: 1993
  ident: ref_56
  article-title: Effect of Parity on Colostral Mineral Concentrations of Holstein Cows and Value of Colostrum as a Mineral Source for Newborn Calves
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(93)77499-8
– volume: 32
  start-page: 175
  year: 1999
  ident: ref_30
  article-title: Fast Determination of the Ca, Mg, K, Na and Zn Contents in Milk and Nondairy Imitation Milk Using ICP-AES without Mineralization Stage
  publication-title: Food Sci. Technol.
– volume: 22
  start-page: 1
  year: 2005
  ident: ref_52
  article-title: L’alimentation de la vache laitiere aliments, calculs de ration, indicateurs d’évaluation des déséquilibres de la ration et pathologies d’origine
  publication-title: Livret Agric.
– ident: ref_24
  doi: 10.3390/ani9070430
– volume: 62
  start-page: 111
  year: 2012
  ident: ref_1
  article-title: Mineral elements in milk and dairy products
  publication-title: Mljekarstvo
– volume: 115
  start-page: 736
  year: 2005
  ident: ref_5
  article-title: Calcium, Dairy Products, and Bone Health in Children and Young Adults: A Reevaluation of the Evidence
  publication-title: Pediatrics
  doi: 10.1542/peds.2004-0548
– volume: 36
  start-page: 275
  year: 2016
  ident: ref_14
  article-title: Investigation of Milk and Blood Serum Biochemical Profile as an Indicator of Sub-Clinical Mastitis in Cholistani Cattle
  publication-title: Pak. Vet. J.
– ident: ref_37
  doi: 10.1007/978-3-319-14892-2
– volume: 99
  start-page: 8137
  year: 2016
  ident: ref_23
  article-title: Predictive ability of mid-infrared spectroscopy for major mineral composition and coagulation traits of bovine milk by using the uninformative variable selection algorithm
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2016-11053
– ident: ref_50
  doi: 10.3390/ani10050873
– volume: 19
  start-page: 119S
  year: 2000
  ident: ref_3
  article-title: The Bioavailability of Dietary Calcium
  publication-title: J. Am. Coll. Nutr.
  doi: 10.1080/07315724.2000.10718083
– volume: 99
  start-page: 247
  year: 2014
  ident: ref_8
  article-title: Dietary phosphorus intake and health
  publication-title: Am. J. Clin. Nutr.
  doi: 10.3945/ajcn.113.080259
– volume: 98
  start-page: 2150
  year: 2015
  ident: ref_29
  article-title: Standardization of milk mid-infrared spectra from a European dairy network
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2014-8764
– volume: 8
  start-page: 205
  year: 2007
  ident: ref_41
  article-title: The effect of subclinical mastitis on milk composition in dairy cows
  publication-title: Iran. J. Vet. Res.
– volume: 49
  start-page: 746
  year: 1966
  ident: ref_57
  article-title: Five year study of California mastitis test testing on a commercial dairy herd
  publication-title: J. Dairy Sci.
– volume: 89
  start-page: 1207
  year: 2006
  ident: ref_4
  article-title: Major Scientific Advances with Dairy Foods in Nutrition and Health
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(06)72190-7
– volume: 99
  start-page: 218
  year: 2018
  ident: ref_25
  article-title: Phenotypic investigation of fine milk components in bovine milk and their prediction using mid-infrared spectroscopy
  publication-title: Can. J. Anim. Sci.
  doi: 10.1139/cjas-2018-0058
– volume: 104
  start-page: 8947
  year: 2021
  ident: ref_26
  article-title: Genetic analysis on infrared-predicted milk minerals for Danish dairy cattle
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2020-19638
– volume: 71
  start-page: 89
  year: 2017
  ident: ref_38
  article-title: Magnesium in milk
  publication-title: Int. Dairy J.
  doi: 10.1016/j.idairyj.2017.03.009
– volume: 34
  start-page: 565
  year: 2003
  ident: ref_42
  article-title: Indicators of inflammation in the diagnosis of mastitis
  publication-title: J. Vet. Res.
  doi: 10.1051/vetres:2003026
– volume: 99
  start-page: 8216
  year: 2016
  ident: ref_22
  article-title: Short communication: Mid-infrared spectroscopy prediction of fine milk composition and technological properties in Italian Simmental
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2016-10953
– volume: 96
  start-page: 129
  year: 2005
  ident: ref_46
  article-title: Electrical conductivity of milk as a phenotypic and genetic indicator of bovine mastitis: A review
  publication-title: Livest. Prod. Sci.
  doi: 10.1016/j.livprodsci.2004.12.014
– ident: ref_11
– volume: 98
  start-page: 4168
  year: 2015
  ident: ref_21
  article-title: Technical note: Improving the accuracy of mid-infrared prediction models by selecting the most informative wavelengths
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2014-8752
– volume: 2
  start-page: 2400
  year: 2010
  ident: ref_9
  article-title: Mesoscale crystallization of calcium phosphate nanostructures in protein (casein) micelles
  publication-title: Nanoscale
  doi: 10.1039/c0nr00158a
– volume: 101
  start-page: 1883
  year: 2018
  ident: ref_40
  article-title: Technical note: Development and validation of a new method for the quantification of soluble and micellar calcium, magnesium, and potassium in milk
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2017-13419
– volume: 24
  start-page: 429
  year: 2011
  ident: ref_59
  article-title: Relationship of somatic cell count and mastitis: An overview
  publication-title: Asian Australas. J. Anim. Sci.
  doi: 10.5713/ajas.2011.10233
– volume: 89
  start-page: 1622
  year: 2018
  ident: ref_54
  article-title: Mineral composition of cow milk from multibreed herds
  publication-title: Anim. Sci. J.
  doi: 10.1111/asj.13095
– volume: 51
  start-page: 11
  year: 1984
  ident: ref_43
  article-title: Relationship between the level of N-acetyl-β-D-glucosaminidase (NAGase) in bovine milk and the presence of mastitis pathogens
  publication-title: J. Dairy Res.
  doi: 10.1017/S0022029900023268
– volume: 76
  start-page: 1714
  year: 1993
  ident: ref_48
  article-title: Importance of Calcium and Phosphate in Cheese Manufacture: A Review
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(93)77504-9
– ident: ref_18
– volume: 186
  start-page: 97
  year: 2020
  ident: ref_27
  article-title: Large-scale phenotyping in dairy sector using milk MIR spectra: Key factors affecting the quality of predictions
  publication-title: Methods
  doi: 10.1016/j.ymeth.2020.07.012
– volume: 25
  start-page: 75
  year: 2014
  ident: ref_7
  article-title: Health effects of sodium and potassium in humans
  publication-title: Curr. Opin. Lipidol.
  doi: 10.1097/MOL.0000000000000033
– ident: ref_2
– volume: 98
  start-page: 2759
  year: 2015
  ident: ref_51
  article-title: Effect of dairy farming system, herd, season, parity, and days in milk on modeling of the coagulation, curd firming, and syneresis of bovine milk
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2014-8909
– volume: 48
  start-page: 201
  year: 1997
  ident: ref_13
  article-title: Potential of specific milk composition variables for cow health management
  publication-title: Livest. Prod. Sci.
  doi: 10.1016/S0301-6226(97)00027-4
– volume: 41
  start-page: 68
  year: 2015
  ident: ref_20
  article-title: Effectiveness of mid-infrared spectroscopy for prediction of the contents of calcium and phosphorus, and titratable acidity of milk and their relationship with milk quality and coagulation properties
  publication-title: Int. Dairy J.
  doi: 10.1016/j.idairyj.2014.10.002
– volume: 8
  start-page: 435
  year: 2010
  ident: ref_47
  article-title: Influence of somatic cell count on mineral content and salt equilibria of milk
  publication-title: Ital. J. Anim. Sci.
  doi: 10.4081/ijas.2009.s2.435
– volume: 36
  start-page: 221
  year: 2006
  ident: ref_31
  article-title: Robustness and outlier detection in chemometrics
  publication-title: Crit. Rev. Anal. Chem.
  doi: 10.1080/10408340600969403
– volume: 25
  start-page: 313
  year: 1994
  ident: ref_33
  article-title: Comparing the predictive accuracy of models using a simple randomization test
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(94)85050-X
– volume: 33
  start-page: 193
  year: 1966
  ident: ref_58
  article-title: The variation in the cell count of cow’s milk throughout lactation and from one lactation to the next
  publication-title: J. Dairy Res.
  doi: 10.1017/S0022029900011857
– volume: 17
  start-page: 549
  year: 2018
  ident: ref_53
  article-title: Phenotypic characterisation of major mineral composition predicted by mid-infrared spectroscopy in cow milk
  publication-title: Ital. J. Anim. Sci.
  doi: 10.1080/1828051X.2017.1398055
– volume: 103
  start-page: 11585
  year: 2020
  ident: ref_34
  article-title: A comparison of 4 different machine learning algorithms to predict lactoferrin content in bovine milk from mid-infrared spectra
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2020-18870
– ident: ref_28
  doi: 10.3390/ani11020533
– volume: 99
  start-page: 4080
  year: 2016
  ident: ref_15
  article-title: On the role of mid-infrared predicted phenotypes in fertility and health dairy breeding programs
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2015-10087
– volume: 91
  start-page: 393
  year: 2005
  ident: ref_36
  article-title: Potential for Onsite and Online Analysis of Pig Manure using Visible and Near Infrared Reflectance Spectroscopy
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2005.05.001
– ident: ref_39
  doi: 10.1007/978-3-319-14892-2
RestrictionsOnAccess open access
SSID ssj0000913832
Score 2.2583191
Snippet Measuring the mineral composition of milk is of major interest in the dairy sector. This study aims to develop and validate robust multi-breed and...
SourceID doaj
pubmedcentral
liege
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2235
SubjectTerms Analytical chemistry
Animal production & animal husbandry
Austria
Calibration
dairy herds
Dairy industry
Datasets
Dietary minerals
Emission analysis
Environmental impact
Food Science
Health (social science)
Health Professions (miscellaneous)
herd improvement
Hypertension
Inductively coupled plasma
Infrared spectra
Infrared spectroscopy
Lactation
least squares
Life sciences
Microbiology
mid-infrared
Milk
milk composition
Mineral composition
mineral content
Minerals
Plant Science
Potassium
prediction
Predictions
Productions animales & zootechnie
Sciences des denrées alimentaires
Sciences du vivant
Scientific imaging
Sodium
Spectrometry
spectroscopy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kT15E11d0lRZkT4ZN-pXk6KrLKsziwYW9NekXBkMiSUbwtn_Dv-cvsaqTGWfEx8VbSKpDuqsq_RVV_RUhz53lHpCoSlUo6lRwBi5VlS61zjFVWgibMzzgvLpQ55fi3ZW82mn1hTVhMz3wvHAnVVEHWZlCipCLwgPAcYzXRVV6JWomPf59syrbCabiP7jKIfRiM6kmh7j-JPS9G3OkGGKxtdvPTShy9QM2bTFL_Tug-Wu95M4GdHab3FqQI305f_EdcsN3hyR53fiJHtOF3rOlFxt2_bukXS3FgvR0gD1qpHXnKJ5Bxx5a4_frb_T9gGmaaHm0D3TVRApqGhmrummkTQf32k8Uz6DMV6vGpW-7MGDZOsXe9RPSHUzD13vk8uzNh1fn6dJcIbVSlhPoBrnaPKC1AOqS1nkZkButVME6KyBQqYMB9GI4txD0GGUzXipjatjxDYzj98lB13f-IaEBfF4Yj02PasGVAZUVWahyy6xxlfUJebFZbW0X5nFsgNFqiEBQOXpPOQk53op_nik3_iR4iqrbCiFTdrwB9qMX-9H_sh_4uKh4GGQa_YXFt8TrdQtvsdp4DRC11JhwLvOEHG3sQy_ePmoM2iAwlrxIyLPtY_BTTL7Une_XUaYQkhWZ-ouM4gpWXmU8IQ9mk9tOjgsJYE_ApIs9Y9yb_f6TrvkY-cIBgCDR46P_sVyPyU2GVT2Yl8uPyME0rP0TgGWTeRo98AeVLTee
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9sIF8Sa0ICOhnoiajR9JDgix0Kog7apCVOrNil8lIkrabBaJG3-Dv8cvYcabbFkEvUXJJLIz4_E3HvsbQl5awxwgURlLn5UxZykMqSK3sbE2lbmBsDnBA87zhTw54x_PxfkOWYxnYXBb5egTg6O2rcE18kMExhB8CJa9ubyKsWoUZlfHEhrlUFrBvg4UY7fILrhkkUzI7uxocfpps-qCLJhgw2uyTQbx_qFvW7ucIvVQGkq-XU9OgcMfMGuN2et_AdC_91H-MTEd3yV3BkRJ365N4B7Zcc19Er2vXE8P6ED7WdPFyLr_gNTzYRMhnXUwdy1p2ViKZ9Oxttby14-f9LTD9E2wSNp6Oq8CNTUNTFZNv6RVA_fqrxTPpqyv5pWNPzS-w-3sFGva90iD0HffH5Kz46PP707ioehCbITIe9AZcrg5QHEe1CiMdcIjZ1ouvbGGQwBTeg2oRjNmIBjS0iQsl1qXgAQ0vMcekUnTNu4JoR58AdcOiyGVnEldZGWW-GJqUqNtYVxEXo1_W5mBkRwLY9QKIhNUjtpSTkQONuKXayqO_wnOUHUbIWTQDjfa7kINA1JBY7wodCa4n_LMAXC2KSuzIneSl6nAxgXFw0u6Ut_S8JVwvarhK0ZppwC65goT0fk0IvujfajBCyzVtc1G5MXmMYxfTMqUjWtXQSbjIs0SeYOMZBL-vExYRB6vTW7TOcYFgEAOnc62jHGr99tPmupL4BEHYIIEkE9vbvoeuZ3iPh7MxE33yaTvVu4ZALFePx9G12_uUTY3
  priority: 102
  providerName: ProQuest
Title Multiple Breeds and Countries’ Predictions of Mineral Contents in Milk from Milk Mid-Infrared Spectrometry
URI https://www.ncbi.nlm.nih.gov/pubmed/34574345
https://www.proquest.com/docview/2576407537
https://www.proquest.com/docview/2577452706
https://www.proquest.com/docview/2636417603
http://orbi.ulg.ac.be/handle/2268/290181
https://pubmed.ncbi.nlm.nih.gov/PMC8470342
https://doaj.org/article/97af59b754f147e080d23a798e64a25e
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db5RAEN9om5i-GL9F62VNTH0RBfYDeDDG0zbV5C6N8ZK-EfarogQUOGP_e2f2uLOnrW8Ehg3szLC_YWZ_Q8gzo5kFJCpD6dIy5CwBl8ozE2pjEplpCJsj3OA8m8vjBf94Kk7_UAqNE9hfGtphP6lFV7_89eP8DTj8a4w4IWR_5drW9DGyByVMXCe7PlWEVXwj0vcf5TyGWCzxreYiHmaxyFaMm_-OsEduMC5gZcUtThcWK8_pDxi2xmz2ZYD077rKCwvV0S1yc0SY9O3KJG6Ta7a5Q4L3lR3oAR1pQGs6X7Pw3yVfZ2NRIZ12sJb1tGwMxb3q2Gurf05POkzmePukraOzyhNVU89r1Qw9rRo4V3-juFNldTSrTPihcR0Wt1PscD8gKcLQnd8ji6PDz--Ow7EFQ6iFyAbQIDK6WcB0DpQqtLHCIYNaJp02mkM4UzoFGEcxpiE0UlJHLJNKlYALFNzH7pOdpm3sQ0IdfBm4stgaqeRMqjwt08jlsU60Mrm2AXmxnutCj_zk2CajLiBOQS0VW1oKyMFG_PuKmOMqwSkqbiOEfNr-RNudFaN7FvAwTuQqFdzFPLUAo03CyjTPrORlIvDhvNrhJlUVPxM_ij9e1jCKLpQtAMhmBaalszgg-2vrKNYmXWBoB-GzYGlAnm4ugzdjiqZsbLv0MikXSRrJ_8hIJmHmZcQC8mBlcJuXWxtuQNItU9x6--0rTfXFs4oDTEE6yEdXjvmY7CVY0IMpuXif7Azd0j4BRDaoCdmdHs5PPk38H42J97zfHGs1GQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbK9gAXxD-BAkaCnoiajRMnOVSIpa12aXdVQSv1FuI_iAjJkqSg3ngNXoaH4UmY8SZbFkFvvUWJY9kez_izZ_wNIc-UZBqQKHe5iTI3YD6oVBIrVyrl81jCttnDC87TGR8fB29OwpM18rO_C4Nhlb1NtIZaVRLPyLcQGMPmI2TRy_kXF7NGoXe1T6GRdakV1LalGOsuduzrs2-whWu2Jzsg7-e-v7d79HrsdlkGXBmGcQuNRNIyDbDFQLtDqXRokCQs5kYqGQBiz4yAZVwwJgH9Cy49FnMhMlj6BPzHoN4rZD3AA5QBWR_tzg7fLk95kHUTdGZB7slY4m2ZqlLNEKmOfJti7nwxtDkDACMX6C3_F-D9O27zj4Vw7wa53iFY-mox5W6SNV3eIs5Orlu6STua0YLOepb_26SYdkGLdFTDWtnQrFQU78JjLq_m1_cf9LBGd5HVAFoZOs0tFTa1zFll29C8hHfFJ4p3YRZP01y5k9LUGD5P381tKp_Puq3P7pDjSxn-u2RQVqW-T6gB2xMIjcmXsoBxkURZ5JlkKH0pVCK1Q170o53KjgEdE3EUKeyEUDjpinAcsrksPl9Qf_yv4AhFtyyEjN32RVV_SDsDkEJjTJiIKAzMMIg0AHXlsyxKYs2DzA-xcVbw8JPI06--rcU-nxZQi0yFTgEqxyk6vuOhQzb6-ZF2VqdJz3XEIU-Xn8FeoBMoK3V1astEQehHHr-gDGccRp57zCH3FlNu2TkWhAA6A-h0tDIZV3q_-qXMP1recgBCSDj54OKmPyFXx0fTg_RgMtt_SK75GEOEXsDhBhm09al-BCCwFY87TaPk_WUr929q23Nw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVkJcEP8YCiwS9IQVx2uv7UOFCGnUUBJFQKXejPcPLIwdbAfUG6_BK_EYPAkzGyclCHrrzbLH1v7N7Dee2W8IeaIk04BEuctNlLkB80Glkli5UimfxxLcZg8POE-m_PA4eHUSnmyRn6uzMJhWubKJ1lCrSuI_8h4CY3A-Qhb1TJcWMRuOns-_uFhBCiOtq3IaWVdmQe1burHukMeRPv0G7lyzPx7C3D_1_dHBu5eHbldxwJVhGLfQYCQw0wBhDPQhlEqHBgnDYm6kkgGg98wI2NIFYxI8AcGlx2IuRAbboID3GHz3EtmJQAQcwZ3BwXT2Zv3HBxk4QX-WRJ-MJV7PVJVq-kh75Ntyc2cbo60fAHi5wMj5v8Dv3zmcf2yKo2vkaodm6Yvl8rtOtnR5gzjDXLd0j3aUowWdrhj_b5Ji0iUw0kEN-2ZDs1JRPBePdb2aX99_0FmNoSOrDbQydJJbWmxqWbTKtqF5CfeKTxTPxSyvJrlyx6WpMZWevp3bsj6fdVuf3iLHFzL8t8l2WZX6LqEG7FAgNBZiygLGRRJlkWeSvvSlUInUDnm2Gu1UdmzoWJSjSMErwslJNybHIXtr8fmSBuR_ggOcurUQsnfbG1X9Ie2MQQqNMWEiojAw_SDSANqVz7IoiTUPMj_ExtmJh5dEnn717Vfs9aKAr8hU6BRgc5xiEDzuO2R3tT7SzgI16Zm-OOTx-jHYDgwIZaWuFlYmCkI_8vg5MpxxGHnuMYfcWS65dedYEAIADaDT0cZi3Oj95pMy_2g5zAEUIfnkvfOb_ohcBiVPX4-nR_fJFR_TiTAg2N8l22290A8AD7biYadolLy_aN3-Dc0kd7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Breeds+and+Countries%27+Predictions+of+Mineral+Contents+in+Milk+from+Milk+Mid-Infrared+Spectrometry&rft.jtitle=Foods&rft.au=Christophe%2C+Octave+S&rft.au=Grelet%2C+Cl%C3%A9ment&rft.au=Bertozzi%2C+Carlo&rft.au=Veselko%2C+Didier&rft.date=2021-09-21&rft.issn=2304-8158&rft.eissn=2304-8158&rft.volume=10&rft.issue=9&rft_id=info:doi/10.3390%2Ffoods10092235&rft_id=info%3Apmid%2F34574345&rft.externalDocID=34574345
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2304-8158&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2304-8158&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2304-8158&client=summon