Predicting fruit fly’s sensing rate with insect flight simulations

Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to stabilize their flight? How often and how fast must insects adjust their wings to remain stable? To gain insights into algorithms used by insects...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 31; pp. 11246 - 11251
Main Authors Chang, Song, Wang, Z. Jane
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 05.08.2014
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1314738111

Cover

Abstract Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to stabilize their flight? How often and how fast must insects adjust their wings to remain stable? To gain insights into algorithms used by insects to control their dynamic instability, we develop a simulation tool to study free flight. To stabilize flight, we construct a control algorithm that modulates wing motion based on discrete measurements of the body-pitch orientation. Our simulations give theoretical bounds on both the sensing rate and the delay time between sensing and actuation. Interpreting our findings together with experimental results on fruit flies’ reaction time and sensory motor reflexes, we conjecture that fruit flies sense their kinematic states every wing beat to stabilize their flight. We further propose a candidate for such a control involving the fly’s haltere and first basalar motor neuron. Although we focus on fruit flies as a case study, the framework for our simulation and discrete control algorithms is applicable to studies of both natural and man-made fliers.
AbstractList Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to stabilize their flight? How often and how fast must insects adjust their wings to remain stable? To gain insights into algorithms used by insects to control their dynamic instability, we develop a simulation tool to study free flight. To stabilize flight, we construct a control algorithm that modulates wing motion based on discrete measurements of the body-pitch orientation. Our simulations give theoretical bounds on both the sensing rate and the delay time between sensing and actuation. Interpreting our findings together with experimental results on fruit flies’ reaction time and sensory motor reflexes, we conjecture that fruit flies sense their kinematic states every wing beat to stabilize their flight. We further propose a candidate for such a control involving the fly’s haltere and first basalar motor neuron. Although we focus on fruit flies as a case study, the framework for our simulation and discrete control algorithms is applicable to studies of both natural and man-made fliers.
Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to stabilize their flight? How often and how fast must insects adjust their wings to remain stable? To gain insights into algorithms used by insects to control their dynamic instability, we develop a simulation tool to study free flight. To stabilize flight, we construct a control algorithm that modulates wing motion based on discrete measurements of the body-pitch orientation. Our simulations give theoretical bounds on both the sensing rate and the delay time between sensing and actuation. Interpreting our findings together with experimental results on fruit flies' reaction time and sensory motor reflexes, we conjecture that fruit flies sense their kinematic states every wing beat to stabilize their flight. We further propose a candidate for such a control involving the fly's haltere and first basalar motor neuron. Although we focus on fruit flies as a case study, the framework for our simulation and discrete control algorithms is applicable to studies of both natural and man-made fliers.Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to stabilize their flight? How often and how fast must insects adjust their wings to remain stable? To gain insights into algorithms used by insects to control their dynamic instability, we develop a simulation tool to study free flight. To stabilize flight, we construct a control algorithm that modulates wing motion based on discrete measurements of the body-pitch orientation. Our simulations give theoretical bounds on both the sensing rate and the delay time between sensing and actuation. Interpreting our findings together with experimental results on fruit flies' reaction time and sensory motor reflexes, we conjecture that fruit flies sense their kinematic states every wing beat to stabilize their flight. We further propose a candidate for such a control involving the fly's haltere and first basalar motor neuron. Although we focus on fruit flies as a case study, the framework for our simulation and discrete control algorithms is applicable to studies of both natural and man-made fliers.
To balance in air, insects not only need to generate enough lift, but also have to make subtle adjustments to their wing movement to stabilize themselves. The tiny changes during complex wing movement, together with the intricacy of the underlying neural feedback system, make it extremely difficult to observe the key changes and to tease out the internal control algorithms insects use to stabilize themselves. With computational simulations and analyses, we can now make predictions about how fast and how frequently a model insect must sense and act to stabilize itself. Our results offer a strategy for effective stabilization of flapping flight and lead us to conjecture that fruit flies sense their kinematic state every wing beat. Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to stabilize their flight? How often and how fast must insects adjust their wings to remain stable? To gain insights into algorithms used by insects to control their dynamic instability, we develop a simulation tool to study free flight. To stabilize flight, we construct a control algorithm that modulates wing motion based on discrete measurements of the body-pitch orientation. Our simulations give theoretical bounds on both the sensing rate and the delay time between sensing and actuation. Interpreting our findings together with experimental results on fruit flies’ reaction time and sensory motor reflexes, we conjecture that fruit flies sense their kinematic states every wing beat to stabilize their flight. We further propose a candidate for such a control involving the fly’s haltere and first basalar motor neuron. Although we focus on fruit flies as a case study, the framework for our simulation and discrete control algorithms is applicable to studies of both natural and man-made fliers.
To balance in air, insects not only need to generate enough lift, but also have to make subtle adjustments to their wing movement to stabilize themselves. The tiny changes during complex wing movement, together with the intricacy of the underlying neural feedback system, make it extremely difficult to observe the key changes and to tease out the internal control algorithms insects use to stabilize themselves. With computational simulations and analyses, we can now make predictions about how fast and how frequently a model insect must sense and act to stabilize itself. Our results offer a strategy for effective stabilization of flapping flight and lead us to conjecture that fruit flies sense their kinematic state every wing beat. Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to stabilize their flight? How often and how fast must insects adjust their wings to remain stable? To gain insights into algorithms used by insects to control their dynamic instability, we develop a simulation tool to study free flight. To stabilize flight, we construct a control algorithm that modulates wing motion based on discrete measurements of the body-pitch orientation. Our simulations give theoretical bounds on both the sensing rate and the delay time between sensing and actuation. Interpreting our findings together with experimental results on fruit flies’ reaction time and sensory motor reflexes, we conjecture that fruit flies sense their kinematic states every wing beat to stabilize their flight. We further propose a candidate for such a control involving the fly’s haltere and first basalar motor neuron. Although we focus on fruit flies as a case study, the framework for our simulation and discrete control algorithms is applicable to studies of both natural and man-made fliers.
Author Wang, Z. Jane
Chang, Song
Author_xml – sequence: 1
  givenname: Song
  surname: Chang
  fullname: Chang, Song
– sequence: 2
  givenname: Z. Jane
  surname: Wang
  fullname: Wang, Z. Jane
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25049376$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhi1URNPCmROwEhcuaWf8sfZekFD5lCqBBD1bztZOHG28wfZS5cbf4O_xS_CS0EAP5DTSzDPjd97xCTkKfbCEPEY4Q5DsfB1MOkOGXDKFiPfIBKHBac0bOCITACqnilN-TE5SWgJAIxQ8IMdUAG-YrCfk9ador32bfZhXLg4-V67b_Pz-I1XJhjRmo8m2uvF5UfmQbDsCfr7IVfKroTPZ9yE9JPed6ZJ9tIun5Ortmy8X76eXH999uHh1OW2FUHkqJFIL1rHGMkUtdw5mHKUzKFsAQQEdpa2ctbVxM0ZnjROjzpIwRkEr2SmB7dwhrM3mxnSdXke_MnGjEfRoiB4N0XtDSsvLbct6mK3sdWtDjmbf1huv_60Ev9Dz_pvmSBUCLQNe7AbE_utgU9Yrn1rbdSbYfihvKWDFck7ZYbRGrDkKFIdRIVBRxeS49PM76LIfYig-jxTjUIPghXr69563C_65dAHEFmhjn1K0Trc-_z5fWdt3_zHw_E7fYcurnZSxcEsjaoYlUD6KebJFlin3cS-WKRBSNqX-bFt3ptdmHn3SV5_L_6gBkLOmVuwXZaXphg
CitedBy_id crossref_primary_10_1242_jeb_137570
crossref_primary_10_1088_1748_3190_aab801
crossref_primary_10_1103_PhysRevE_105_054403
crossref_primary_10_1016_j_cophys_2020_11_004
crossref_primary_10_1016_j_conb_2022_102546
crossref_primary_10_1098_rsif_2018_0408
crossref_primary_10_1242_bio_046730
crossref_primary_10_1088_1748_3190_accc23
crossref_primary_10_1242_jeb_122622
crossref_primary_10_1126_sciadv_abo7461
crossref_primary_10_1093_icb_icab041
crossref_primary_10_1098_rsif_2017_0068
crossref_primary_10_1146_annurev_conmatphys_031113_133853
crossref_primary_10_1098_rsif_2023_0229
crossref_primary_10_1103_PhysRevE_104_044410
crossref_primary_10_2514_1_G004754
crossref_primary_10_1088_0034_4885_79_11_110001
crossref_primary_10_1115_1_4055691
crossref_primary_10_1016_j_jtbi_2017_10_014
crossref_primary_10_1126_science_abg0946
crossref_primary_10_1038_srep40221
crossref_primary_10_1242_jeb_137539
crossref_primary_10_1017_jfm_2018_337
Cites_doi 10.1017/CBO9780511665479
10.1146/annurev.fluid.36.050802.121940
10.1152/jn.1999.82.4.1916
10.1016/j.cma.2007.06.012
10.1016/S0021-9991(03)00310-3
10.1242/jeb.01407
10.1103/PhysRevLett.93.144501
10.1523/JNEUROSCI.16-16-05225.1996
10.1073/pnas.1000615107
10.1242/jeb.199.8.1711
10.1098/rsif.2012.0072
10.1098/rstb.1948.0007
10.1103/PhysRevLett.85.2216
10.1007/978-1-4899-7560-7
10.1242/jeb.062760
10.1017/S0022112007006209
10.1098/rsif.2013.0237
10.1242/jeb.004507
10.1016/j.jtbi.2010.02.018
10.1016/j.jcp.2005.12.016
10.1515/9780691186344
10.1007/s10409-007-0068-3
10.1017/S0022112099008071
10.1017/S002211200500594X
10.1098/rstb.1940.0003
10.1242/jeb.00501
10.1109/MRA.2008.929923
10.1016/S0065-2806(07)34005-8
10.2514/1.29862
10.1007/BF00337435
10.1103/PhysRevLett.104.148101
10.1126/science.1231806
10.1126/science.288.5463.100
ContentType Journal Article
Copyright copyright © 1993—2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Aug 5, 2014
Copyright_xml – notice: copyright © 1993—2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Aug 5, 2014
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOI 10.1073/pnas.1314738111
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic


Virology and AIDS Abstracts
MEDLINE
AGRICOLA
Entomology Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Fruit fly’s sensing rate from flight simulations
EISSN 1091-6490
EndPage 11251
ExternalDocumentID 10.1073/pnas.1314738111
PMC4128102
3403596861
25049376
10_1073_pnas_1314738111
111_31_11246
23805779
US201600143968
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
ADXHL
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c558t-5712e0ef39e382e4ff0b417fa17c005201f22c7bc6afb32b9f550497bcaa80c73
IEDL.DBID UNPAY
ISSN 0027-8424
1091-6490
IngestDate Wed Oct 29 12:07:52 EDT 2025
Tue Sep 30 16:52:17 EDT 2025
Wed Oct 01 17:24:42 EDT 2025
Fri Sep 05 12:15:14 EDT 2025
Thu Sep 04 15:54:47 EDT 2025
Sat Aug 16 22:12:07 EDT 2025
Thu Apr 03 07:10:56 EDT 2025
Thu Apr 24 22:54:40 EDT 2025
Wed Oct 01 02:36:33 EDT 2025
Wed Nov 11 00:30:14 EST 2020
Thu May 29 08:40:55 EDT 2025
Thu Apr 03 09:45:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords discrete time-delayed controller
b1 motor neuron
stability of flapping flight
quantitative study of organismal behavior
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c558t-5712e0ef39e382e4ff0b417fa17c005201f22c7bc6afb32b9f550497bcaa80c73
Notes http://dx.doi.org/10.1073/pnas.1314738111
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: Z.J.W. designed research; S.C. and Z.J.W. performed research; S.C. and Z.J.W. analyzed data; and Z.J.W. wrote the paper.
Edited by William Bialek, Princeton University, Princeton, NJ, and approved May 27, 2014 (received for review August 12, 2013)
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.pnas.org/content/pnas/111/31/11246.full.pdf
PMID 25049376
PQID 1553406054
PQPubID 42026
PageCount 6
ParticipantIDs fao_agris_US201600143968
proquest_miscellaneous_1551828377
crossref_citationtrail_10_1073_pnas_1314738111
pnas_primary_111_31_11246
proquest_miscellaneous_1611641515
jstor_primary_23805779
crossref_primary_10_1073_pnas_1314738111
proquest_miscellaneous_1803091423
pubmed_primary_25049376
proquest_journals_1553406054
unpaywall_primary_10_1073_pnas_1314738111
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4128102
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-05
PublicationDateYYYYMMDD 2014-08-05
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Zanker JM (e_1_3_3_35_2) 1990; 327
Ellington CP (e_1_3_3_6_2) 1984; 305
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
Heisenberg M (e_1_3_3_7_2) 1993; 5
Goldstein H (e_1_3_3_21_2) 1980
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
Etkin B (e_1_3_3_14_2) 1993
10753108 - Science. 2000 Apr 7;288(5463):100-6
20481964 - Phys Rev Lett. 2010 Apr 9;104(14):148101
22116752 - J Exp Biol. 2011 Dec 15;214(Pt 24):4092-106
23641114 - Science. 2013 May 3;340(6132):603-7
10970501 - Phys Rev Lett. 2000 Sep 4;85(10):2216-9
15671333 - J Exp Biol. 2005 Feb;208(Pt 3):447-59
10515981 - J Neurophysiol. 1999 Oct;82(4):1916-26
20194789 - Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4820-4
15524800 - Phys Rev Lett. 2004 Oct 1;93(14):144501
22491980 - J R Soc Interface. 2012 Sep 7;9(74):2033-46
8708578 - J Exp Biol. 1996 Aug;199(Pt 8):1711-26
8420552 - Rev Oculomot Res. 1993;5:265-83
8756451 - J Neurosci. 1996 Aug 15;16(16):5225-32
20170664 - J Theor Biol. 2010 May 21;264(2):538-52
17644686 - J Exp Biol. 2007 Aug;210(Pt 15):2714-22
23697713 - J R Soc Interface. 2013 Aug 6;10(85):20130237
12847126 - J Exp Biol. 2003 Aug;206(Pt 16):2803-29
References_xml – ident: e_1_3_3_22_2
  doi: 10.1017/CBO9780511665479
– ident: e_1_3_3_28_2
  doi: 10.1146/annurev.fluid.36.050802.121940
– ident: e_1_3_3_37_2
  doi: 10.1152/jn.1999.82.4.1916
– volume-title: Dynamics of Flight Stability and Control
  year: 1993
  ident: e_1_3_3_14_2
– ident: e_1_3_3_31_2
  doi: 10.1016/j.cma.2007.06.012
– ident: e_1_3_3_29_2
  doi: 10.1016/S0021-9991(03)00310-3
– volume: 5
  start-page: 265
  year: 1993
  ident: e_1_3_3_7_2
  article-title: The sensory-motor link in motion-dependent flight control of flies
  publication-title: Rev Oculomot Res
– ident: e_1_3_3_17_2
  doi: 10.1242/jeb.01407
– ident: e_1_3_3_32_2
  doi: 10.1103/PhysRevLett.93.144501
– ident: e_1_3_3_36_2
  doi: 10.1523/JNEUROSCI.16-16-05225.1996
– ident: e_1_3_3_12_2
  doi: 10.1073/pnas.1000615107
– ident: e_1_3_3_38_2
  doi: 10.1242/jeb.199.8.1711
– ident: e_1_3_3_20_2
  doi: 10.1098/rsif.2012.0072
– ident: e_1_3_3_1_2
  doi: 10.1098/rstb.1948.0007
– volume-title: Classical Mechanics
  year: 1980
  ident: e_1_3_3_21_2
– ident: e_1_3_3_27_2
  doi: 10.1103/PhysRevLett.85.2216
– ident: e_1_3_3_23_2
  doi: 10.1007/978-1-4899-7560-7
– ident: e_1_3_3_13_2
  doi: 10.1242/jeb.062760
– ident: e_1_3_3_25_2
  doi: 10.1017/S0022112007006209
– volume: 305
  start-page: 41
  year: 1984
  ident: e_1_3_3_6_2
  article-title: The aerodynamics of hovering insect flight. iii. Kinematics
  publication-title: Philos Trans R Soc B
– ident: e_1_3_3_2_2
  doi: 10.1098/rsif.2013.0237
– ident: e_1_3_3_18_2
  doi: 10.1242/jeb.004507
– ident: e_1_3_3_19_2
  doi: 10.1016/j.jtbi.2010.02.018
– ident: e_1_3_3_30_2
  doi: 10.1016/j.jcp.2005.12.016
– ident: e_1_3_3_8_2
  doi: 10.1515/9780691186344
– ident: e_1_3_3_15_2
  doi: 10.1007/s10409-007-0068-3
– ident: e_1_3_3_26_2
  doi: 10.1017/S0022112099008071
– ident: e_1_3_3_33_2
  doi: 10.1017/S002211200500594X
– ident: e_1_3_3_34_2
  doi: 10.1098/rstb.1940.0003
– ident: e_1_3_3_16_2
  doi: 10.1242/jeb.00501
– ident: e_1_3_3_3_2
  doi: 10.1109/MRA.2008.929923
– ident: e_1_3_3_10_2
  doi: 10.1016/S0065-2806(07)34005-8
– volume: 327
  start-page: 45
  year: 1990
  ident: e_1_3_3_35_2
  article-title: The wingbeat of drosophila melanogaster. iii. Control
  publication-title: Philos Trans R Soc B
– ident: e_1_3_3_24_2
  doi: 10.2514/1.29862
– ident: e_1_3_3_5_2
  doi: 10.1007/BF00337435
– ident: e_1_3_3_11_2
  doi: 10.1103/PhysRevLett.104.148101
– ident: e_1_3_3_4_2
  doi: 10.1126/science.1231806
– ident: e_1_3_3_9_2
  doi: 10.1126/science.288.5463.100
– reference: 12847126 - J Exp Biol. 2003 Aug;206(Pt 16):2803-29
– reference: 20481964 - Phys Rev Lett. 2010 Apr 9;104(14):148101
– reference: 10753108 - Science. 2000 Apr 7;288(5463):100-6
– reference: 15524800 - Phys Rev Lett. 2004 Oct 1;93(14):144501
– reference: 22116752 - J Exp Biol. 2011 Dec 15;214(Pt 24):4092-106
– reference: 20170664 - J Theor Biol. 2010 May 21;264(2):538-52
– reference: 8708578 - J Exp Biol. 1996 Aug;199(Pt 8):1711-26
– reference: 17644686 - J Exp Biol. 2007 Aug;210(Pt 15):2714-22
– reference: 10970501 - Phys Rev Lett. 2000 Sep 4;85(10):2216-9
– reference: 23697713 - J R Soc Interface. 2013 Aug 6;10(85):20130237
– reference: 23641114 - Science. 2013 May 3;340(6132):603-7
– reference: 10515981 - J Neurophysiol. 1999 Oct;82(4):1916-26
– reference: 15671333 - J Exp Biol. 2005 Feb;208(Pt 3):447-59
– reference: 8420552 - Rev Oculomot Res. 1993;5:265-83
– reference: 20194789 - Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4820-4
– reference: 22491980 - J R Soc Interface. 2012 Sep 7;9(74):2033-46
– reference: 8756451 - J Neurosci. 1996 Aug 15;16(16):5225-32
SSID ssj0009580
Score 2.281191
Snippet Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to...
To balance in air, insects not only need to generate enough lift, but also have to make subtle adjustments to their wing movement to stabilize themselves. The...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11246
SubjectTerms Aerodynamic stability
Aircraft pitch
Algorithms
Animal behavior
Animals
Biological Sciences
Biomechanical Phenomena
case studies
Computer Simulation
Control algorithms
Diptera
Drosophila melanogaster - physiology
flight
Flight dynamics
Flight mechanics
Flight, Animal - physiology
Free flight
fruit flies
Fruits
Hovering
insect control
Insect flight
Insects
Kinematics
Models, Biological
motor neurons
Neurons
Physical Sciences
prediction
Reaction Time - physiology
reflexes
Sensation - physiology
Simulation
simulation models
Time Factors
Torque
Vehicular flight
wings
Wings, Animal - physiology
Title Predicting fruit fly’s sensing rate with insect flight simulations
URI https://www.jstor.org/stable/23805779
http://www.pnas.org/content/111/31/11246.abstract
https://www.ncbi.nlm.nih.gov/pubmed/25049376
https://www.proquest.com/docview/1553406054
https://www.proquest.com/docview/1551828377
https://www.proquest.com/docview/1611641515
https://www.proquest.com/docview/1803091423
https://pubmed.ncbi.nlm.nih.gov/PMC4128102
https://www.pnas.org/content/pnas/111/31/11246.full.pdf
UnpaywallVersion publishedVersion
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250503
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: HH5
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150115
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: DIK
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250503
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: RPM
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB2R9AAXoECpoVRG4tAe7Ho_7LWPFVAqJKpKECmcrPV6FyKCE8WJUDnxN_h7_BJmbMclfBTBKdJ6stHujGff7ry8BXgiuE6TsnQBd0UWyILrQDvBA-ZSJ8tEGsPo38ivzpLTkXw5jsfd0UXd0Srnla6bIj6xtTH1HlHDEfFvBMMPLpOQzqbDeekGsJXECMKHsDU6Oz9-2xI6MO_K9jpbXA2DRGbRWtRHiaazkAkmFS5WjG2sRwOnZ2tiIqmdounvkOevBMrrq2quLz7p6fSH1enkFozX42pJKR_C1bIIzeefJB__Y-C34WaHWP3jNsS24Zqt7sB2lxNq_6ATrj68C8_OF1T2ISK17xarydJ304tvX77Wfk00eWwlXQqfjn79SVVjqkUDOhzw68nH7hqx-h6MTp6_eXoadLc0BCaO02UQK8ZtZJ3IrEi5lc5FhWTKaaZMw7JhjnOjCpNoVwheZA43RTLDBq3TyCixA8NqVtld8JMilaywCCmkkdhVVloCMMYRiMps6UG49lVuOglzukljmjeldCVymrD80rkeHPRfmLfqHX823UXn5_od5tZ89JqT8h5pH2ZJ6sFOExF9FwhzEOaqzAOv6aXvGjdTguWNpzzYW8dN3qUF_Lk4FoigECZ78Lh_jC80VWl0ZWerxgb3fKlQ6gqbhOE2l7DoFTYpVc8YwmUP7rfhejkA8gAuLR6ojUDuDUh0fPNJNXnfiI9LKr1G3IPDPuT_NrUP_sH2IdzAqZcNxTLeg-FysbKPEPYti30YvBiz_e5F_w7YwVKC
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB7R9AAXoECpoSAjcWgPdr0Pe-1jBVQVElUliBRO1nq9CxHBieJEqJz4G_w9fgkzfpXwKIJTpPVko90Zz3678-VbgKeC6zQpSxdwV2SBLLgOtBM8YC51skykMYz-jfzqLDkdy5eTeNIdXdQdrXJR6bop4hNbG1PvETUcEf9GMPzgMgnpbDpclG4LtpMYQfgItsdn58dvW0IH5l3ZXmeLq2GQyCzqRX2UaDoLmWBS4WLF2MZ6tOX0vCcmktopmv4Oef5KoLy-rhb64pOezX5YnU5uwaQfV0tK-RCuV0VoPv8k-fgfA78NNzvE6h-3IbYD12x1B3a6nFD7B51w9eFdeH6-pLIPEal9t1xPV76bXXz78rX2a6LJYyvpUvh09OtPqxpTLRrQ4YBfTz9214jV92B88uLNs9Ogu6UhMHGcroJYMW4j60RmRcqtdC4qJFNOM2Ualg1znBtVmES7QvAic7gpkhk2aJ1GRoldGFXzyu6BnxSpZIVFSCGNxK6y0hKAMY5AVGZLD8LeV7npJMzpJo1Z3pTSlchpwvJL53pwMHxh0ap3_Nl0D52f63eYW_Pxa07Ke6R9mCWpB7tNRAxdIMxBmKsyD7yml6Fr3EwJljee8mC_j5u8Swv4c3EsEEEhTPbgyfAYX2iq0ujKzteNDe75UqHUFTYJw20uYdErbFKqnjGEyx7cb8P1cgDkAVxaPFAbgTwYkOj45pNq-r4RH5dUeo24B4dDyP9tah_8g-1DuIFTLxuKZbwPo9VybR8h7FsVj7tX_DvvX1GR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+fruit+fly%E2%80%99s+sensing+rate+with+insect+flight+simulations&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Chang%2C+Song&rft.au=Wang%2C+Z+Jane&rft.date=2014-08-05&rft.issn=0027-8424&rft.volume=111&rft.issue=31+p.11246-11251&rft.spage=11246&rft.epage=11251&rft_id=info:doi/10.1073%2Fpnas.1314738111&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F31.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F31.cover.gif