Predicting fruit fly’s sensing rate with insect flight simulations
Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to stabilize their flight? How often and how fast must insects adjust their wings to remain stable? To gain insights into algorithms used by insects...
Saved in:
| Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 31; pp. 11246 - 11251 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
National Academy of Sciences
05.08.2014
National Acad Sciences |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0027-8424 1091-6490 1091-6490 |
| DOI | 10.1073/pnas.1314738111 |
Cover
| Abstract | Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to stabilize their flight? How often and how fast must insects adjust their wings to remain stable? To gain insights into algorithms used by insects to control their dynamic instability, we develop a simulation tool to study free flight. To stabilize flight, we construct a control algorithm that modulates wing motion based on discrete measurements of the body-pitch orientation. Our simulations give theoretical bounds on both the sensing rate and the delay time between sensing and actuation. Interpreting our findings together with experimental results on fruit flies’ reaction time and sensory motor reflexes, we conjecture that fruit flies sense their kinematic states every wing beat to stabilize their flight. We further propose a candidate for such a control involving the fly’s haltere and first basalar motor neuron. Although we focus on fruit flies as a case study, the framework for our simulation and discrete control algorithms is applicable to studies of both natural and man-made fliers. |
|---|---|
| AbstractList | Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to stabilize their flight? How often and how fast must insects adjust their wings to remain stable? To gain insights into algorithms used by insects to control their dynamic instability, we develop a simulation tool to study free flight. To stabilize flight, we construct a control algorithm that modulates wing motion based on discrete measurements of the body-pitch orientation. Our simulations give theoretical bounds on both the sensing rate and the delay time between sensing and actuation. Interpreting our findings together with experimental results on fruit flies’ reaction time and sensory motor reflexes, we conjecture that fruit flies sense their kinematic states every wing beat to stabilize their flight. We further propose a candidate for such a control involving the fly’s haltere and first basalar motor neuron. Although we focus on fruit flies as a case study, the framework for our simulation and discrete control algorithms is applicable to studies of both natural and man-made fliers. Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to stabilize their flight? How often and how fast must insects adjust their wings to remain stable? To gain insights into algorithms used by insects to control their dynamic instability, we develop a simulation tool to study free flight. To stabilize flight, we construct a control algorithm that modulates wing motion based on discrete measurements of the body-pitch orientation. Our simulations give theoretical bounds on both the sensing rate and the delay time between sensing and actuation. Interpreting our findings together with experimental results on fruit flies' reaction time and sensory motor reflexes, we conjecture that fruit flies sense their kinematic states every wing beat to stabilize their flight. We further propose a candidate for such a control involving the fly's haltere and first basalar motor neuron. Although we focus on fruit flies as a case study, the framework for our simulation and discrete control algorithms is applicable to studies of both natural and man-made fliers.Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to stabilize their flight? How often and how fast must insects adjust their wings to remain stable? To gain insights into algorithms used by insects to control their dynamic instability, we develop a simulation tool to study free flight. To stabilize flight, we construct a control algorithm that modulates wing motion based on discrete measurements of the body-pitch orientation. Our simulations give theoretical bounds on both the sensing rate and the delay time between sensing and actuation. Interpreting our findings together with experimental results on fruit flies' reaction time and sensory motor reflexes, we conjecture that fruit flies sense their kinematic states every wing beat to stabilize their flight. We further propose a candidate for such a control involving the fly's haltere and first basalar motor neuron. Although we focus on fruit flies as a case study, the framework for our simulation and discrete control algorithms is applicable to studies of both natural and man-made fliers. To balance in air, insects not only need to generate enough lift, but also have to make subtle adjustments to their wing movement to stabilize themselves. The tiny changes during complex wing movement, together with the intricacy of the underlying neural feedback system, make it extremely difficult to observe the key changes and to tease out the internal control algorithms insects use to stabilize themselves. With computational simulations and analyses, we can now make predictions about how fast and how frequently a model insect must sense and act to stabilize itself. Our results offer a strategy for effective stabilization of flapping flight and lead us to conjecture that fruit flies sense their kinematic state every wing beat. Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to stabilize their flight? How often and how fast must insects adjust their wings to remain stable? To gain insights into algorithms used by insects to control their dynamic instability, we develop a simulation tool to study free flight. To stabilize flight, we construct a control algorithm that modulates wing motion based on discrete measurements of the body-pitch orientation. Our simulations give theoretical bounds on both the sensing rate and the delay time between sensing and actuation. Interpreting our findings together with experimental results on fruit flies’ reaction time and sensory motor reflexes, we conjecture that fruit flies sense their kinematic states every wing beat to stabilize their flight. We further propose a candidate for such a control involving the fly’s haltere and first basalar motor neuron. Although we focus on fruit flies as a case study, the framework for our simulation and discrete control algorithms is applicable to studies of both natural and man-made fliers. To balance in air, insects not only need to generate enough lift, but also have to make subtle adjustments to their wing movement to stabilize themselves. The tiny changes during complex wing movement, together with the intricacy of the underlying neural feedback system, make it extremely difficult to observe the key changes and to tease out the internal control algorithms insects use to stabilize themselves. With computational simulations and analyses, we can now make predictions about how fast and how frequently a model insect must sense and act to stabilize itself. Our results offer a strategy for effective stabilization of flapping flight and lead us to conjecture that fruit flies sense their kinematic state every wing beat. Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to stabilize their flight? How often and how fast must insects adjust their wings to remain stable? To gain insights into algorithms used by insects to control their dynamic instability, we develop a simulation tool to study free flight. To stabilize flight, we construct a control algorithm that modulates wing motion based on discrete measurements of the body-pitch orientation. Our simulations give theoretical bounds on both the sensing rate and the delay time between sensing and actuation. Interpreting our findings together with experimental results on fruit flies’ reaction time and sensory motor reflexes, we conjecture that fruit flies sense their kinematic states every wing beat to stabilize their flight. We further propose a candidate for such a control involving the fly’s haltere and first basalar motor neuron. Although we focus on fruit flies as a case study, the framework for our simulation and discrete control algorithms is applicable to studies of both natural and man-made fliers. |
| Author | Wang, Z. Jane Chang, Song |
| Author_xml | – sequence: 1 givenname: Song surname: Chang fullname: Chang, Song – sequence: 2 givenname: Z. Jane surname: Wang fullname: Wang, Z. Jane |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25049376$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk1vEzEQhi1URNPCmROwEhcuaWf8sfZekFD5lCqBBD1bztZOHG28wfZS5cbf4O_xS_CS0EAP5DTSzDPjd97xCTkKfbCEPEY4Q5DsfB1MOkOGXDKFiPfIBKHBac0bOCITACqnilN-TE5SWgJAIxQ8IMdUAG-YrCfk9ador32bfZhXLg4-V67b_Pz-I1XJhjRmo8m2uvF5UfmQbDsCfr7IVfKroTPZ9yE9JPed6ZJ9tIun5Ortmy8X76eXH999uHh1OW2FUHkqJFIL1rHGMkUtdw5mHKUzKFsAQQEdpa2ctbVxM0ZnjROjzpIwRkEr2SmB7dwhrM3mxnSdXke_MnGjEfRoiB4N0XtDSsvLbct6mK3sdWtDjmbf1huv_60Ev9Dz_pvmSBUCLQNe7AbE_utgU9Yrn1rbdSbYfihvKWDFck7ZYbRGrDkKFIdRIVBRxeS49PM76LIfYig-jxTjUIPghXr69563C_65dAHEFmhjn1K0Trc-_z5fWdt3_zHw_E7fYcurnZSxcEsjaoYlUD6KebJFlin3cS-WKRBSNqX-bFt3ptdmHn3SV5_L_6gBkLOmVuwXZaXphg |
| CitedBy_id | crossref_primary_10_1242_jeb_137570 crossref_primary_10_1088_1748_3190_aab801 crossref_primary_10_1103_PhysRevE_105_054403 crossref_primary_10_1016_j_cophys_2020_11_004 crossref_primary_10_1016_j_conb_2022_102546 crossref_primary_10_1098_rsif_2018_0408 crossref_primary_10_1242_bio_046730 crossref_primary_10_1088_1748_3190_accc23 crossref_primary_10_1242_jeb_122622 crossref_primary_10_1126_sciadv_abo7461 crossref_primary_10_1093_icb_icab041 crossref_primary_10_1098_rsif_2017_0068 crossref_primary_10_1146_annurev_conmatphys_031113_133853 crossref_primary_10_1098_rsif_2023_0229 crossref_primary_10_1103_PhysRevE_104_044410 crossref_primary_10_2514_1_G004754 crossref_primary_10_1088_0034_4885_79_11_110001 crossref_primary_10_1115_1_4055691 crossref_primary_10_1016_j_jtbi_2017_10_014 crossref_primary_10_1126_science_abg0946 crossref_primary_10_1038_srep40221 crossref_primary_10_1242_jeb_137539 crossref_primary_10_1017_jfm_2018_337 |
| Cites_doi | 10.1017/CBO9780511665479 10.1146/annurev.fluid.36.050802.121940 10.1152/jn.1999.82.4.1916 10.1016/j.cma.2007.06.012 10.1016/S0021-9991(03)00310-3 10.1242/jeb.01407 10.1103/PhysRevLett.93.144501 10.1523/JNEUROSCI.16-16-05225.1996 10.1073/pnas.1000615107 10.1242/jeb.199.8.1711 10.1098/rsif.2012.0072 10.1098/rstb.1948.0007 10.1103/PhysRevLett.85.2216 10.1007/978-1-4899-7560-7 10.1242/jeb.062760 10.1017/S0022112007006209 10.1098/rsif.2013.0237 10.1242/jeb.004507 10.1016/j.jtbi.2010.02.018 10.1016/j.jcp.2005.12.016 10.1515/9780691186344 10.1007/s10409-007-0068-3 10.1017/S0022112099008071 10.1017/S002211200500594X 10.1098/rstb.1940.0003 10.1242/jeb.00501 10.1109/MRA.2008.929923 10.1016/S0065-2806(07)34005-8 10.2514/1.29862 10.1007/BF00337435 10.1103/PhysRevLett.104.148101 10.1126/science.1231806 10.1126/science.288.5463.100 |
| ContentType | Journal Article |
| Copyright | copyright © 1993—2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Aug 5, 2014 |
| Copyright_xml | – notice: copyright © 1993—2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Aug 5, 2014 |
| DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM ADTOC UNPAY |
| DOI | 10.1073/pnas.1314738111 |
| DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts MEDLINE AGRICOLA Entomology Abstracts CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Fruit fly’s sensing rate from flight simulations |
| EISSN | 1091-6490 |
| EndPage | 11251 |
| ExternalDocumentID | 10.1073/pnas.1314738111 PMC4128102 3403596861 25049376 10_1073_pnas_1314738111 111_31_11246 23805779 US201600143968 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Feature |
| GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM ADXHL - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c558t-5712e0ef39e382e4ff0b417fa17c005201f22c7bc6afb32b9f550497bcaa80c73 |
| IEDL.DBID | UNPAY |
| ISSN | 0027-8424 1091-6490 |
| IngestDate | Wed Oct 29 12:07:52 EDT 2025 Tue Sep 30 16:52:17 EDT 2025 Wed Oct 01 17:24:42 EDT 2025 Fri Sep 05 12:15:14 EDT 2025 Thu Sep 04 15:54:47 EDT 2025 Sat Aug 16 22:12:07 EDT 2025 Thu Apr 03 07:10:56 EDT 2025 Thu Apr 24 22:54:40 EDT 2025 Wed Oct 01 02:36:33 EDT 2025 Wed Nov 11 00:30:14 EST 2020 Thu May 29 08:40:55 EDT 2025 Thu Apr 03 09:45:14 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 31 |
| Keywords | discrete time-delayed controller b1 motor neuron stability of flapping flight quantitative study of organismal behavior |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c558t-5712e0ef39e382e4ff0b417fa17c005201f22c7bc6afb32b9f550497bcaa80c73 |
| Notes | http://dx.doi.org/10.1073/pnas.1314738111 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: Z.J.W. designed research; S.C. and Z.J.W. performed research; S.C. and Z.J.W. analyzed data; and Z.J.W. wrote the paper. Edited by William Bialek, Princeton University, Princeton, NJ, and approved May 27, 2014 (received for review August 12, 2013) |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.pnas.org/content/pnas/111/31/11246.full.pdf |
| PMID | 25049376 |
| PQID | 1553406054 |
| PQPubID | 42026 |
| PageCount | 6 |
| ParticipantIDs | fao_agris_US201600143968 proquest_miscellaneous_1551828377 crossref_citationtrail_10_1073_pnas_1314738111 pnas_primary_111_31_11246 proquest_miscellaneous_1611641515 jstor_primary_23805779 crossref_primary_10_1073_pnas_1314738111 proquest_miscellaneous_1803091423 pubmed_primary_25049376 proquest_journals_1553406054 unpaywall_primary_10_1073_pnas_1314738111 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4128102 |
| ProviderPackageCode | RNA PNE CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-08-05 |
| PublicationDateYYYYMMDD | 2014-08-05 |
| PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-05 day: 05 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Washington |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2014 |
| Publisher | National Academy of Sciences National Acad Sciences |
| Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
| References | Zanker JM (e_1_3_3_35_2) 1990; 327 Ellington CP (e_1_3_3_6_2) 1984; 305 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 Heisenberg M (e_1_3_3_7_2) 1993; 5 Goldstein H (e_1_3_3_21_2) 1980 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 Etkin B (e_1_3_3_14_2) 1993 10753108 - Science. 2000 Apr 7;288(5463):100-6 20481964 - Phys Rev Lett. 2010 Apr 9;104(14):148101 22116752 - J Exp Biol. 2011 Dec 15;214(Pt 24):4092-106 23641114 - Science. 2013 May 3;340(6132):603-7 10970501 - Phys Rev Lett. 2000 Sep 4;85(10):2216-9 15671333 - J Exp Biol. 2005 Feb;208(Pt 3):447-59 10515981 - J Neurophysiol. 1999 Oct;82(4):1916-26 20194789 - Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4820-4 15524800 - Phys Rev Lett. 2004 Oct 1;93(14):144501 22491980 - J R Soc Interface. 2012 Sep 7;9(74):2033-46 8708578 - J Exp Biol. 1996 Aug;199(Pt 8):1711-26 8420552 - Rev Oculomot Res. 1993;5:265-83 8756451 - J Neurosci. 1996 Aug 15;16(16):5225-32 20170664 - J Theor Biol. 2010 May 21;264(2):538-52 17644686 - J Exp Biol. 2007 Aug;210(Pt 15):2714-22 23697713 - J R Soc Interface. 2013 Aug 6;10(85):20130237 12847126 - J Exp Biol. 2003 Aug;206(Pt 16):2803-29 |
| References_xml | – ident: e_1_3_3_22_2 doi: 10.1017/CBO9780511665479 – ident: e_1_3_3_28_2 doi: 10.1146/annurev.fluid.36.050802.121940 – ident: e_1_3_3_37_2 doi: 10.1152/jn.1999.82.4.1916 – volume-title: Dynamics of Flight Stability and Control year: 1993 ident: e_1_3_3_14_2 – ident: e_1_3_3_31_2 doi: 10.1016/j.cma.2007.06.012 – ident: e_1_3_3_29_2 doi: 10.1016/S0021-9991(03)00310-3 – volume: 5 start-page: 265 year: 1993 ident: e_1_3_3_7_2 article-title: The sensory-motor link in motion-dependent flight control of flies publication-title: Rev Oculomot Res – ident: e_1_3_3_17_2 doi: 10.1242/jeb.01407 – ident: e_1_3_3_32_2 doi: 10.1103/PhysRevLett.93.144501 – ident: e_1_3_3_36_2 doi: 10.1523/JNEUROSCI.16-16-05225.1996 – ident: e_1_3_3_12_2 doi: 10.1073/pnas.1000615107 – ident: e_1_3_3_38_2 doi: 10.1242/jeb.199.8.1711 – ident: e_1_3_3_20_2 doi: 10.1098/rsif.2012.0072 – ident: e_1_3_3_1_2 doi: 10.1098/rstb.1948.0007 – volume-title: Classical Mechanics year: 1980 ident: e_1_3_3_21_2 – ident: e_1_3_3_27_2 doi: 10.1103/PhysRevLett.85.2216 – ident: e_1_3_3_23_2 doi: 10.1007/978-1-4899-7560-7 – ident: e_1_3_3_13_2 doi: 10.1242/jeb.062760 – ident: e_1_3_3_25_2 doi: 10.1017/S0022112007006209 – volume: 305 start-page: 41 year: 1984 ident: e_1_3_3_6_2 article-title: The aerodynamics of hovering insect flight. iii. Kinematics publication-title: Philos Trans R Soc B – ident: e_1_3_3_2_2 doi: 10.1098/rsif.2013.0237 – ident: e_1_3_3_18_2 doi: 10.1242/jeb.004507 – ident: e_1_3_3_19_2 doi: 10.1016/j.jtbi.2010.02.018 – ident: e_1_3_3_30_2 doi: 10.1016/j.jcp.2005.12.016 – ident: e_1_3_3_8_2 doi: 10.1515/9780691186344 – ident: e_1_3_3_15_2 doi: 10.1007/s10409-007-0068-3 – ident: e_1_3_3_26_2 doi: 10.1017/S0022112099008071 – ident: e_1_3_3_33_2 doi: 10.1017/S002211200500594X – ident: e_1_3_3_34_2 doi: 10.1098/rstb.1940.0003 – ident: e_1_3_3_16_2 doi: 10.1242/jeb.00501 – ident: e_1_3_3_3_2 doi: 10.1109/MRA.2008.929923 – ident: e_1_3_3_10_2 doi: 10.1016/S0065-2806(07)34005-8 – volume: 327 start-page: 45 year: 1990 ident: e_1_3_3_35_2 article-title: The wingbeat of drosophila melanogaster. iii. Control publication-title: Philos Trans R Soc B – ident: e_1_3_3_24_2 doi: 10.2514/1.29862 – ident: e_1_3_3_5_2 doi: 10.1007/BF00337435 – ident: e_1_3_3_11_2 doi: 10.1103/PhysRevLett.104.148101 – ident: e_1_3_3_4_2 doi: 10.1126/science.1231806 – ident: e_1_3_3_9_2 doi: 10.1126/science.288.5463.100 – reference: 12847126 - J Exp Biol. 2003 Aug;206(Pt 16):2803-29 – reference: 20481964 - Phys Rev Lett. 2010 Apr 9;104(14):148101 – reference: 10753108 - Science. 2000 Apr 7;288(5463):100-6 – reference: 15524800 - Phys Rev Lett. 2004 Oct 1;93(14):144501 – reference: 22116752 - J Exp Biol. 2011 Dec 15;214(Pt 24):4092-106 – reference: 20170664 - J Theor Biol. 2010 May 21;264(2):538-52 – reference: 8708578 - J Exp Biol. 1996 Aug;199(Pt 8):1711-26 – reference: 17644686 - J Exp Biol. 2007 Aug;210(Pt 15):2714-22 – reference: 10970501 - Phys Rev Lett. 2000 Sep 4;85(10):2216-9 – reference: 23697713 - J R Soc Interface. 2013 Aug 6;10(85):20130237 – reference: 23641114 - Science. 2013 May 3;340(6132):603-7 – reference: 10515981 - J Neurophysiol. 1999 Oct;82(4):1916-26 – reference: 15671333 - J Exp Biol. 2005 Feb;208(Pt 3):447-59 – reference: 8420552 - Rev Oculomot Res. 1993;5:265-83 – reference: 20194789 - Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4820-4 – reference: 22491980 - J R Soc Interface. 2012 Sep 7;9(74):2033-46 – reference: 8756451 - J Neurosci. 1996 Aug 15;16(16):5225-32 |
| SSID | ssj0009580 |
| Score | 2.281191 |
| Snippet | Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to... To balance in air, insects not only need to generate enough lift, but also have to make subtle adjustments to their wing movement to stabilize themselves. The... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref pnas jstor fao |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 11246 |
| SubjectTerms | Aerodynamic stability Aircraft pitch Algorithms Animal behavior Animals Biological Sciences Biomechanical Phenomena case studies Computer Simulation Control algorithms Diptera Drosophila melanogaster - physiology flight Flight dynamics Flight mechanics Flight, Animal - physiology Free flight fruit flies Fruits Hovering insect control Insect flight Insects Kinematics Models, Biological motor neurons Neurons Physical Sciences prediction Reaction Time - physiology reflexes Sensation - physiology Simulation simulation models Time Factors Torque Vehicular flight wings Wings, Animal - physiology |
| Title | Predicting fruit fly’s sensing rate with insect flight simulations |
| URI | https://www.jstor.org/stable/23805779 http://www.pnas.org/content/111/31/11246.abstract https://www.ncbi.nlm.nih.gov/pubmed/25049376 https://www.proquest.com/docview/1553406054 https://www.proquest.com/docview/1551828377 https://www.proquest.com/docview/1611641515 https://www.proquest.com/docview/1803091423 https://pubmed.ncbi.nlm.nih.gov/PMC4128102 https://www.pnas.org/content/pnas/111/31/11246.full.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 111 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1091-6490 dateEnd: 20250503 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: HH5 dateStart: 19150101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150115 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: DIK dateStart: 19150101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1091-6490 dateEnd: 20250503 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: RPM dateStart: 19150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB2R9AAXoECpoVRG4tAe7Ho_7LWPFVAqJKpKECmcrPV6FyKCE8WJUDnxN_h7_BJmbMclfBTBKdJ6stHujGff7ry8BXgiuE6TsnQBd0UWyILrQDvBA-ZSJ8tEGsPo38ivzpLTkXw5jsfd0UXd0Srnla6bIj6xtTH1HlHDEfFvBMMPLpOQzqbDeekGsJXECMKHsDU6Oz9-2xI6MO_K9jpbXA2DRGbRWtRHiaazkAkmFS5WjG2sRwOnZ2tiIqmdounvkOevBMrrq2quLz7p6fSH1enkFozX42pJKR_C1bIIzeefJB__Y-C34WaHWP3jNsS24Zqt7sB2lxNq_6ATrj68C8_OF1T2ISK17xarydJ304tvX77Wfk00eWwlXQqfjn79SVVjqkUDOhzw68nH7hqx-h6MTp6_eXoadLc0BCaO02UQK8ZtZJ3IrEi5lc5FhWTKaaZMw7JhjnOjCpNoVwheZA43RTLDBq3TyCixA8NqVtld8JMilaywCCmkkdhVVloCMMYRiMps6UG49lVuOglzukljmjeldCVymrD80rkeHPRfmLfqHX823UXn5_od5tZ89JqT8h5pH2ZJ6sFOExF9FwhzEOaqzAOv6aXvGjdTguWNpzzYW8dN3qUF_Lk4FoigECZ78Lh_jC80VWl0ZWerxgb3fKlQ6gqbhOE2l7DoFTYpVc8YwmUP7rfhejkA8gAuLR6ojUDuDUh0fPNJNXnfiI9LKr1G3IPDPuT_NrUP_sH2IdzAqZcNxTLeg-FysbKPEPYti30YvBiz_e5F_w7YwVKC |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB7R9AAXoECpoSAjcWgPdr0Pe-1jBVQVElUliBRO1nq9CxHBieJEqJz4G_w9fgkzfpXwKIJTpPVko90Zz3678-VbgKeC6zQpSxdwV2SBLLgOtBM8YC51skykMYz-jfzqLDkdy5eTeNIdXdQdrXJR6bop4hNbG1PvETUcEf9GMPzgMgnpbDpclG4LtpMYQfgItsdn58dvW0IH5l3ZXmeLq2GQyCzqRX2UaDoLmWBS4WLF2MZ6tOX0vCcmktopmv4Oef5KoLy-rhb64pOezX5YnU5uwaQfV0tK-RCuV0VoPv8k-fgfA78NNzvE6h-3IbYD12x1B3a6nFD7B51w9eFdeH6-pLIPEal9t1xPV76bXXz78rX2a6LJYyvpUvh09OtPqxpTLRrQ4YBfTz9214jV92B88uLNs9Ogu6UhMHGcroJYMW4j60RmRcqtdC4qJFNOM2Ualg1znBtVmES7QvAic7gpkhk2aJ1GRoldGFXzyu6BnxSpZIVFSCGNxK6y0hKAMY5AVGZLD8LeV7npJMzpJo1Z3pTSlchpwvJL53pwMHxh0ap3_Nl0D52f63eYW_Pxa07Ke6R9mCWpB7tNRAxdIMxBmKsyD7yml6Fr3EwJljee8mC_j5u8Swv4c3EsEEEhTPbgyfAYX2iq0ujKzteNDe75UqHUFTYJw20uYdErbFKqnjGEyx7cb8P1cgDkAVxaPFAbgTwYkOj45pNq-r4RH5dUeo24B4dDyP9tah_8g-1DuIFTLxuKZbwPo9VybR8h7FsVj7tX_DvvX1GR |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+fruit+fly%E2%80%99s+sensing+rate+with+insect+flight+simulations&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Chang%2C+Song&rft.au=Wang%2C+Z+Jane&rft.date=2014-08-05&rft.issn=0027-8424&rft.volume=111&rft.issue=31+p.11246-11251&rft.spage=11246&rft.epage=11251&rft_id=info:doi/10.1073%2Fpnas.1314738111&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F31.cover.gif |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F31.cover.gif |