Development of a multi-electrode array for spinal cord epidural stimulation to facilitate stepping and standing after a complete spinal cord injury in adult rats

Background Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological conditions. Using a wide range of animal models, many studies have shown that stimulation applied to the neural networks intrinsic to the spin...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroengineering and rehabilitation Vol. 10; no. 1; p. 2
Main Authors Gad, Parag, Choe, Jaehoon, Nandra, Mandheerej Singh, Zhong, Hui, Roy, Roland R, Tai, Yu-Chong, Edgerton, V Reggie
Format Journal Article
LanguageEnglish
Published London BioMed Central 21.01.2013
BioMed Central Ltd
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1743-0003
1743-0003
DOI10.1186/1743-0003-10-2

Cover

Abstract Background Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological conditions. Using a wide range of animal models, many studies have shown that stimulation applied to the neural networks intrinsic to the spinal cord can result in a dramatic improvement of motor ability, even allowing an animal to step and stand after a complete spinal cord transection. Clinical use of this technology, however, has been slow to develop due to the invasive nature of the implantation procedures, the lack of versatility in conventional stimulation technology, and the difficulty of ascertaining specific sites of stimulation that would provide optimal amelioration of the motor deficits. Moreover, the development of tools available to control precise stimulation chronically via biocompatible electrodes has been limited. In this paper, we outline the development of this technology and its use in the spinal rat model, demonstrating the ability to identify and stimulate specific sites of the spinal cord to produce discrete motor behaviors in spinal rats using this array. Methods We have designed a chronically implantable, rapidly switchable, high-density platinum based multi-electrode array that can be used to stimulate at 1–100 Hz and 1–10 V in both monopolar and bipolar configurations to examine the electrophysiological and behavioral effects of spinal cord epidural stimulation in complete spinal cord transected rats. Results In this paper, we have demonstrated the effectiveness of using high-resolution stimulation parameters in the context of improving motor recovery after a spinal cord injury. We observed that rats whose hindlimbs were paralyzed can stand and step when specific sets of electrodes of the array are stimulated tonically (40 Hz). Distinct patterns of stepping and standing were produced by stimulation of different combinations of electrodes on the array located at specific spinal cord levels and by specific stimulation parameters, i.e., stimulation frequency and intensity, and cathode/anode orientation. The array also was used to assess functional connectivity between the cord dorsum to interneuronal circuits and specific motor pools via evoked potentials induced at 1 Hz stimulation in the absence of any anesthesia. Conclusions Therefore the high density electrode array allows high spatial resolution and the ability to selectively activate different neural pathways within the lumbosacral region of the spinal cord to facilitate standing and stepping in adult spinal rats and provides the capability to evoke motor potentials and thus a means for assessing connectivity between sensory circuits and specific motor pools and muscles.
AbstractList Doc number: 2 Abstract Background: Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological conditions. Using a wide range of animal models, many studies have shown that stimulation applied to the neural networks intrinsic to the spinal cord can result in a dramatic improvement of motor ability, even allowing an animal to step and stand after a complete spinal cord transection. Clinical use of this technology, however, has been slow to develop due to the invasive nature of the implantation procedures, the lack of versatility in conventional stimulation technology, and the difficulty of ascertaining specific sites of stimulation that would provide optimal amelioration of the motor deficits. Moreover, the development of tools available to control precise stimulation chronically via biocompatible electrodes has been limited. In this paper, we outline the development of this technology and its use in the spinal rat model, demonstrating the ability to identify and stimulate specific sites of the spinal cord to produce discrete motor behaviors in spinal rats using this array. Methods: We have designed a chronically implantable, rapidly switchable, high-density platinum based multi-electrode array that can be used to stimulate at 1-100 Hz and 1-10 V in both monopolar and bipolar configurations to examine the electrophysiological and behavioral effects of spinal cord epidural stimulation in complete spinal cord transected rats. Results: In this paper, we have demonstrated the effectiveness of using high-resolution stimulation parameters in the context of improving motor recovery after a spinal cord injury. We observed that rats whose hindlimbs were paralyzed can stand and step when specific sets of electrodes of the array are stimulated tonically (40 Hz). Distinct patterns of stepping and standing were produced by stimulation of different combinations of electrodes on the array located at specific spinal cord levels and by specific stimulation parameters, i.e., stimulation frequency and intensity, and cathode/anode orientation. The array also was used to assess functional connectivity between the cord dorsum to interneuronal circuits and specific motor pools via evoked potentials induced at 1 Hz stimulation in the absence of any anesthesia. Conclusions: Therefore the high density electrode array allows high spatial resolution and the ability to selectively activate different neural pathways within the lumbosacral region of the spinal cord to facilitate standing and stepping in adult spinal rats and provides the capability to evoke motor potentials and thus a means for assessing connectivity between sensory circuits and specific motor pools and muscles.
Background Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological conditions. Using a wide range of animal models, many studies have shown that stimulation applied to the neural networks intrinsic to the spinal cord can result in a dramatic improvement of motor ability, even allowing an animal to step and stand after a complete spinal cord transection. Clinical use of this technology, however, has been slow to develop due to the invasive nature of the implantation procedures, the lack of versatility in conventional stimulation technology, and the difficulty of ascertaining specific sites of stimulation that would provide optimal amelioration of the motor deficits. Moreover, the development of tools available to control precise stimulation chronically via biocompatible electrodes has been limited. In this paper, we outline the development of this technology and its use in the spinal rat model, demonstrating the ability to identify and stimulate specific sites of the spinal cord to produce discrete motor behaviors in spinal rats using this array. Methods We have designed a chronically implantable, rapidly switchable, high-density platinum based multi-electrode array that can be used to stimulate at 1-100 Hz and 1-10 V in both monopolar and bipolar configurations to examine the electrophysiological and behavioral effects of spinal cord epidural stimulation in complete spinal cord transected rats. Results In this paper, we have demonstrated the effectiveness of using high-resolution stimulation parameters in the context of improving motor recovery after a spinal cord injury. We observed that rats whose hindlimbs were paralyzed can stand and step when specific sets of electrodes of the array are stimulated tonically (40 Hz). Distinct patterns of stepping and standing were produced by stimulation of different combinations of electrodes on the array located at specific spinal cord levels and by specific stimulation parameters, i.e., stimulation frequency and intensity, and cathode/anode orientation. The array also was used to assess functional connectivity between the cord dorsum to interneuronal circuits and specific motor pools via evoked potentials induced at 1 Hz stimulation in the absence of any anesthesia. Conclusions Therefore the high density electrode array allows high spatial resolution and the ability to selectively activate different neural pathways within the lumbosacral region of the spinal cord to facilitate standing and stepping in adult spinal rats and provides the capability to evoke motor potentials and thus a means for assessing connectivity between sensory circuits and specific motor pools and muscles. Keywords: Spinal cord electrode array, Spinal cord injury, Epidural stimulation, Motor recovery
Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological conditions. Using a wide range of animal models, many studies have shown that stimulation applied to the neural networks intrinsic to the spinal cord can result in a dramatic improvement of motor ability, even allowing an animal to step and stand after a complete spinal cord transection. Clinical use of this technology, however, has been slow to develop due to the invasive nature of the implantation procedures, the lack of versatility in conventional stimulation technology, and the difficulty of ascertaining specific sites of stimulation that would provide optimal amelioration of the motor deficits. Moreover, the development of tools available to control precise stimulation chronically via biocompatible electrodes has been limited. In this paper, we outline the development of this technology and its use in the spinal rat model, demonstrating the ability to identify and stimulate specific sites of the spinal cord to produce discrete motor behaviors in spinal rats using this array. We have designed a chronically implantable, rapidly switchable, high-density platinum based multi-electrode array that can be used to stimulate at 1-100 Hz and 1-10 V in both monopolar and bipolar configurations to examine the electrophysiological and behavioral effects of spinal cord epidural stimulation in complete spinal cord transected rats. In this paper, we have demonstrated the effectiveness of using high-resolution stimulation parameters in the context of improving motor recovery after a spinal cord injury. We observed that rats whose hindlimbs were paralyzed can stand and step when specific sets of electrodes of the array are stimulated tonically (40 Hz). Distinct patterns of stepping and standing were produced by stimulation of different combinations of electrodes on the array located at specific spinal cord levels and by specific stimulation parameters, i.e., stimulation frequency and intensity, and cathode/anode orientation. The array also was used to assess functional connectivity between the cord dorsum to interneuronal circuits and specific motor pools via evoked potentials induced at 1 Hz stimulation in the absence of any anesthesia. Therefore the high density electrode array allows high spatial resolution and the ability to selectively activate different neural pathways within the lumbosacral region of the spinal cord to facilitate standing and stepping in adult spinal rats and provides the capability to evoke motor potentials and thus a means for assessing connectivity between sensory circuits and specific motor pools and muscles.
Background Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological conditions. Using a wide range of animal models, many studies have shown that stimulation applied to the neural networks intrinsic to the spinal cord can result in a dramatic improvement of motor ability, even allowing an animal to step and stand after a complete spinal cord transection. Clinical use of this technology, however, has been slow to develop due to the invasive nature of the implantation procedures, the lack of versatility in conventional stimulation technology, and the difficulty of ascertaining specific sites of stimulation that would provide optimal amelioration of the motor deficits. Moreover, the development of tools available to control precise stimulation chronically via biocompatible electrodes has been limited. In this paper, we outline the development of this technology and its use in the spinal rat model, demonstrating the ability to identify and stimulate specific sites of the spinal cord to produce discrete motor behaviors in spinal rats using this array. Methods We have designed a chronically implantable, rapidly switchable, high-density platinum based multi-electrode array that can be used to stimulate at 1–100 Hz and 1–10 V in both monopolar and bipolar configurations to examine the electrophysiological and behavioral effects of spinal cord epidural stimulation in complete spinal cord transected rats. Results In this paper, we have demonstrated the effectiveness of using high-resolution stimulation parameters in the context of improving motor recovery after a spinal cord injury. We observed that rats whose hindlimbs were paralyzed can stand and step when specific sets of electrodes of the array are stimulated tonically (40 Hz). Distinct patterns of stepping and standing were produced by stimulation of different combinations of electrodes on the array located at specific spinal cord levels and by specific stimulation parameters, i.e., stimulation frequency and intensity, and cathode/anode orientation. The array also was used to assess functional connectivity between the cord dorsum to interneuronal circuits and specific motor pools via evoked potentials induced at 1 Hz stimulation in the absence of any anesthesia. Conclusions Therefore the high density electrode array allows high spatial resolution and the ability to selectively activate different neural pathways within the lumbosacral region of the spinal cord to facilitate standing and stepping in adult spinal rats and provides the capability to evoke motor potentials and thus a means for assessing connectivity between sensory circuits and specific motor pools and muscles.
Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological conditions. Using a wide range of animal models, many studies have shown that stimulation applied to the neural networks intrinsic to the spinal cord can result in a dramatic improvement of motor ability, even allowing an animal to step and stand after a complete spinal cord transection. Clinical use of this technology, however, has been slow to develop due to the invasive nature of the implantation procedures, the lack of versatility in conventional stimulation technology, and the difficulty of ascertaining specific sites of stimulation that would provide optimal amelioration of the motor deficits. Moreover, the development of tools available to control precise stimulation chronically via biocompatible electrodes has been limited. In this paper, we outline the development of this technology and its use in the spinal rat model, demonstrating the ability to identify and stimulate specific sites of the spinal cord to produce discrete motor behaviors in spinal rats using this array. We have designed a chronically implantable, rapidly switchable, high-density platinum based multi-electrode array that can be used to stimulate at 1-100 Hz and 1-10 V in both monopolar and bipolar configurations to examine the electrophysiological and behavioral effects of spinal cord epidural stimulation in complete spinal cord transected rats. In this paper, we have demonstrated the effectiveness of using high-resolution stimulation parameters in the context of improving motor recovery after a spinal cord injury. We observed that rats whose hindlimbs were paralyzed can stand and step when specific sets of electrodes of the array are stimulated tonically (40 Hz). Distinct patterns of stepping and standing were produced by stimulation of different combinations of electrodes on the array located at specific spinal cord levels and by specific stimulation parameters, i.e., stimulation frequency and intensity, and cathode/anode orientation. The array also was used to assess functional connectivity between the cord dorsum to interneuronal circuits and specific motor pools via evoked potentials induced at 1 Hz stimulation in the absence of any anesthesia. Therefore the high density electrode array allows high spatial resolution and the ability to selectively activate different neural pathways within the lumbosacral region of the spinal cord to facilitate standing and stepping in adult spinal rats and provides the capability to evoke motor potentials and thus a means for assessing connectivity between sensory circuits and specific motor pools and muscles.
Background: Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological conditions. Using a wide range of animal models, many studies have shown that stimulation applied to the neural networks intrinsic to the spinal cord can result in a dramatic improvement of motor ability, even allowing an animal to step and stand after a complete spinal cord transection. Clinical use of this technology, however, has been slow to develop due to the invasive nature of the implantation procedures, the lack of versatility in conventional stimulation technology, and the difficulty of ascertaining specific sites of stimulation that would provide optimal amelioration of the motor deficits. Moreover, the development of tools available to control precise stimulation chronically via biocompatible electrodes has been limited. In this paper, we outline the development of this technology and its use in the spinal rat model, demonstrating the ability to identify and stimulate specific sites of the spinal cord to produce discrete motor behaviors in spinal rats using this array. Methods: We have designed a chronically implantable, rapidly switchable, high-density platinum based multi-electrode array that can be used to stimulate at 1-100 Hz and 1-10 V in both monopolar and bipolar configurations to examine the electrophysiological and behavioral effects of spinal cord epidural stimulation in complete spinal cord transected rats. Results: In this paper, we have demonstrated the effectiveness of using high-resolution stimulation parameters in the context of improving motor recovery after a spinal cord injury. We observed that rats whose hindlimbs were paralyzed can stand and step when specific sets of electrodes of the array are stimulated tonically (40 Hz). Distinct patterns of stepping and standing were produced by stimulation of different combinations of electrodes on the array located at specific spinal cord levels and by specific stimulation parameters, i.e., stimulation frequency and intensity, and cathode/anode orientation. The array also was used to assess functional connectivity between the cord dorsum to interneuronal circuits and specific motor pools via evoked potentials induced at 1 Hz stimulation in the absence of any anesthesia. Conclusions: Therefore the high density electrode array allows high spatial resolution and the ability to selectively activate different neural pathways within the lumbosacral region of the spinal cord to facilitate standing and stepping in adult spinal rats and provides the capability to evoke motor potentials and thus a means for assessing connectivity between sensory circuits and specific motor pools and muscles.
Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological conditions. Using a wide range of animal models, many studies have shown that stimulation applied to the neural networks intrinsic to the spinal cord can result in a dramatic improvement of motor ability, even allowing an animal to step and stand after a complete spinal cord transection. Clinical use of this technology, however, has been slow to develop due to the invasive nature of the implantation procedures, the lack of versatility in conventional stimulation technology, and the difficulty of ascertaining specific sites of stimulation that would provide optimal amelioration of the motor deficits. Moreover, the development of tools available to control precise stimulation chronically via biocompatible electrodes has been limited. In this paper, we outline the development of this technology and its use in the spinal rat model, demonstrating the ability to identify and stimulate specific sites of the spinal cord to produce discrete motor behaviors in spinal rats using this array.BACKGROUNDStimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological conditions. Using a wide range of animal models, many studies have shown that stimulation applied to the neural networks intrinsic to the spinal cord can result in a dramatic improvement of motor ability, even allowing an animal to step and stand after a complete spinal cord transection. Clinical use of this technology, however, has been slow to develop due to the invasive nature of the implantation procedures, the lack of versatility in conventional stimulation technology, and the difficulty of ascertaining specific sites of stimulation that would provide optimal amelioration of the motor deficits. Moreover, the development of tools available to control precise stimulation chronically via biocompatible electrodes has been limited. In this paper, we outline the development of this technology and its use in the spinal rat model, demonstrating the ability to identify and stimulate specific sites of the spinal cord to produce discrete motor behaviors in spinal rats using this array.We have designed a chronically implantable, rapidly switchable, high-density platinum based multi-electrode array that can be used to stimulate at 1-100 Hz and 1-10 V in both monopolar and bipolar configurations to examine the electrophysiological and behavioral effects of spinal cord epidural stimulation in complete spinal cord transected rats.METHODSWe have designed a chronically implantable, rapidly switchable, high-density platinum based multi-electrode array that can be used to stimulate at 1-100 Hz and 1-10 V in both monopolar and bipolar configurations to examine the electrophysiological and behavioral effects of spinal cord epidural stimulation in complete spinal cord transected rats.In this paper, we have demonstrated the effectiveness of using high-resolution stimulation parameters in the context of improving motor recovery after a spinal cord injury. We observed that rats whose hindlimbs were paralyzed can stand and step when specific sets of electrodes of the array are stimulated tonically (40 Hz). Distinct patterns of stepping and standing were produced by stimulation of different combinations of electrodes on the array located at specific spinal cord levels and by specific stimulation parameters, i.e., stimulation frequency and intensity, and cathode/anode orientation. The array also was used to assess functional connectivity between the cord dorsum to interneuronal circuits and specific motor pools via evoked potentials induced at 1 Hz stimulation in the absence of any anesthesia.RESULTSIn this paper, we have demonstrated the effectiveness of using high-resolution stimulation parameters in the context of improving motor recovery after a spinal cord injury. We observed that rats whose hindlimbs were paralyzed can stand and step when specific sets of electrodes of the array are stimulated tonically (40 Hz). Distinct patterns of stepping and standing were produced by stimulation of different combinations of electrodes on the array located at specific spinal cord levels and by specific stimulation parameters, i.e., stimulation frequency and intensity, and cathode/anode orientation. The array also was used to assess functional connectivity between the cord dorsum to interneuronal circuits and specific motor pools via evoked potentials induced at 1 Hz stimulation in the absence of any anesthesia.Therefore the high density electrode array allows high spatial resolution and the ability to selectively activate different neural pathways within the lumbosacral region of the spinal cord to facilitate standing and stepping in adult spinal rats and provides the capability to evoke motor potentials and thus a means for assessing connectivity between sensory circuits and specific motor pools and muscles.CONCLUSIONSTherefore the high density electrode array allows high spatial resolution and the ability to selectively activate different neural pathways within the lumbosacral region of the spinal cord to facilitate standing and stepping in adult spinal rats and provides the capability to evoke motor potentials and thus a means for assessing connectivity between sensory circuits and specific motor pools and muscles.
ArticleNumber 2
Audience Academic
Author Choe, Jaehoon
Zhong, Hui
Nandra, Mandheerej Singh
Roy, Roland R
Tai, Yu-Chong
Edgerton, V Reggie
Gad, Parag
AuthorAffiliation 4 Department of Neurobiology, University of California, 90095, Los Angeles, CA, USA
9 Department of Bioengineering, California Institute of Technology, 91125, Pasadena, CA, USA
3 Department of Integrative Biology and Physiology, University of California, Los Angeles, Terasaki Life Sciences Building, 610 Charles E. Young Drive East, 90095-7239, Los Angeles, CA, USA
5 Department of Neurosurgery, University of California, 90095, Los Angeles, CA, USA
7 Department of Electrical Engineering, California Institute of Technology, 91125, Pasadena, CA, USA
2 Neuroscience IDP, University of California, 90095, Los Angeles, CA, USA
8 Department of Mechanical Engineering, California Institute of Technology, 91125, Pasadena, CA, USA
6 Brain Research Institute, University of California, 90095, Los Angeles, CA, USA
1 Biomedical Engineering IDP, University of California, 90095, Los Angeles, CA, USA
AuthorAffiliation_xml – name: 7 Department of Electrical Engineering, California Institute of Technology, 91125, Pasadena, CA, USA
– name: 4 Department of Neurobiology, University of California, 90095, Los Angeles, CA, USA
– name: 1 Biomedical Engineering IDP, University of California, 90095, Los Angeles, CA, USA
– name: 9 Department of Bioengineering, California Institute of Technology, 91125, Pasadena, CA, USA
– name: 8 Department of Mechanical Engineering, California Institute of Technology, 91125, Pasadena, CA, USA
– name: 2 Neuroscience IDP, University of California, 90095, Los Angeles, CA, USA
– name: 6 Brain Research Institute, University of California, 90095, Los Angeles, CA, USA
– name: 3 Department of Integrative Biology and Physiology, University of California, Los Angeles, Terasaki Life Sciences Building, 610 Charles E. Young Drive East, 90095-7239, Los Angeles, CA, USA
– name: 5 Department of Neurosurgery, University of California, 90095, Los Angeles, CA, USA
Author_xml – sequence: 1
  givenname: Parag
  surname: Gad
  fullname: Gad, Parag
  organization: Biomedical Engineering IDP, University of California, Department of Integrative Biology and Physiology, University of California, Los Angeles
– sequence: 2
  givenname: Jaehoon
  surname: Choe
  fullname: Choe, Jaehoon
  organization: Neuroscience IDP, University of California, Department of Integrative Biology and Physiology, University of California, Los Angeles
– sequence: 3
  givenname: Mandheerej Singh
  surname: Nandra
  fullname: Nandra, Mandheerej Singh
  organization: Department of Electrical Engineering, California Institute of Technology
– sequence: 4
  givenname: Hui
  surname: Zhong
  fullname: Zhong, Hui
  organization: Department of Integrative Biology and Physiology, University of California, Los Angeles
– sequence: 5
  givenname: Roland R
  surname: Roy
  fullname: Roy, Roland R
  organization: Department of Integrative Biology and Physiology, University of California, Los Angeles, Brain Research Institute, University of California
– sequence: 6
  givenname: Yu-Chong
  surname: Tai
  fullname: Tai, Yu-Chong
  organization: Department of Electrical Engineering, California Institute of Technology, Department of Mechanical Engineering, California Institute of Technology, Department of Bioengineering, California Institute of Technology
– sequence: 7
  givenname: V Reggie
  surname: Edgerton
  fullname: Edgerton, V Reggie
  email: vre@ucla.edu
  organization: Department of Integrative Biology and Physiology, University of California, Los Angeles, Department of Neurobiology, University of California, Department of Neurosurgery, University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23336733$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhiNURD_gyhFZ4sIlWzvO5wWpKp9SJS5wtrzOePHKsYPtFO3P4Z8y6S6rtCoCRYo94_edTB7PeXbivIMse8noirG2vmRNyXNKKc8ZzYsn2dkxcbLYn2bnMW5xU9KqfJadFpzzuuH8LPv1Dm7B-nEAl4jXRJJhssnkYEGl4HsgMgS5I9oHEkfjpCXKh57AaPopYBSTQYdMxjuSPNFSGWuSTIAnMKJjQ6TrMcD3XaATBPyM8sNoYZYtqhq3ncIOFyJ7bIMEmeLz7KmWNsKLw3qRffvw_uv1p_zmy8fP11c3uaqqNuUFlRVvm6JWmq1rLntVQidZ0zPa0jU0nWJIggGvapDrDnTRsKrmWpc1U1oW_CK73Ned3Ch3P6W1YgxmkGEnGBUzbDHzFDPPOTM73u4d47QeoFeIEIkcXV4acf_Eme9i428Fr7qOlhQLvDkUCP7HBDGJwUQF1koHfoqC8YIXZVvT7j-k2GDHOK1R-vqBdOungIzvVGXXcc4Wqo20IIzTHltUc1FxVfGy7nhRzL-4ekSFTw-DUTiK2mD-nuHVkskRxp-JQ0G5F6jgYwyghZrHBccHKxv7d9arB7Z_Xs7hOiMK3QbCgsLjjt-Sqwcw
CitedBy_id crossref_primary_10_1038_sc_2015_106
crossref_primary_10_1126_sciadv_abg7833
crossref_primary_10_17547_kjsr_2017_25_1_1
crossref_primary_10_21595_jve_2021_21595
crossref_primary_10_3389_fnins_2017_00715
crossref_primary_10_3390_brainsci10100744
crossref_primary_10_1149_2_0181705jes
crossref_primary_10_3389_fnins_2016_00584
crossref_primary_10_1152_jn_00020_2021
crossref_primary_10_1523_JNEUROSCI_1688_13_2013
crossref_primary_10_1016_j_expneurol_2022_114138
crossref_primary_10_1088_1741_2552_aab90d
crossref_primary_10_1016_j_expneurol_2018_07_015
crossref_primary_10_1021_acsnano_6b08390
crossref_primary_10_1002_acn3_50983
crossref_primary_10_1007_s10544_015_0011_5
crossref_primary_10_1109_TBME_2015_2431911
crossref_primary_10_1152_jn_00278_2021
crossref_primary_10_1109_TNSRE_2016_2625312
crossref_primary_10_1186_s12984_015_0019_3
crossref_primary_10_1152_japplphysiol_00293_2021
crossref_primary_10_1515_bmt_2022_0420
crossref_primary_10_1109_TNSRE_2022_3158393
crossref_primary_10_1109_MDAT_2016_2533358
crossref_primary_10_1109_TBCAS_2017_2679441
crossref_primary_10_3390_brainsci14070650
crossref_primary_10_3389_fnins_2017_00333
crossref_primary_10_3390_jcm11133670
crossref_primary_10_1038_s41598_019_50938_y
crossref_primary_10_1088_1741_2552_aaa87a
crossref_primary_10_1089_neu_2015_4256
crossref_primary_10_1038_s41536_021_00176_6
crossref_primary_10_1109_TBCAS_2013_2297695
crossref_primary_10_1088_1741_2552_aca0c2
crossref_primary_10_1016_j_pmr_2018_12_009
crossref_primary_10_1126_science_1260318
crossref_primary_10_1038_s41596_018_0030_9
crossref_primary_10_1109_TNSRE_2022_3229200
crossref_primary_10_1021_acsnano_3c02637
crossref_primary_10_1093_jsxmed_qdae190
crossref_primary_10_3389_fnins_2018_00953
crossref_primary_10_1136_bmjopen_2021_059126
crossref_primary_10_2478_physio_2013_0047
crossref_primary_10_1152_jn_00489_2013
crossref_primary_10_3389_fnins_2018_00432
crossref_primary_10_1002_adma_202107207
crossref_primary_10_1088_1741_2552_abe805
crossref_primary_10_1109_TNSRE_2023_3234580
crossref_primary_10_1371_journal_pone_0133998
crossref_primary_10_4103_1673_5374_153687
crossref_primary_10_3390_brainsci7020021
crossref_primary_10_3389_fnsys_2020_559313
crossref_primary_10_1089_neu_2018_6006
crossref_primary_10_1113_JP281146
crossref_primary_10_1152_jn_00918_2014
crossref_primary_10_1109_LCSYS_2017_2734060
crossref_primary_10_1177_1073858417699554
crossref_primary_10_62051_4038gh20
crossref_primary_10_1016_S1474_4422_14_70144_9
crossref_primary_10_1177_1545968319876891
crossref_primary_10_3389_fnhum_2024_1478423
crossref_primary_10_1155_2020_8865889
crossref_primary_10_1016_j_expneurol_2023_114589
crossref_primary_10_4103_1673_5374_320987
crossref_primary_10_1016_j_brs_2019_09_013
crossref_primary_10_1016_j_jelekin_2014_09_008
crossref_primary_10_1070_QEL18070
crossref_primary_10_1109_TBCAS_2014_2330859
crossref_primary_10_1089_neu_2016_4516
Cites_doi 10.1152/jn.1997.77.2.797
10.1109/MEMB.2005.1511500
10.1152/jappl.1991.70.6.2522
10.1016/j.neulet.2005.04.049
10.1523/JNEUROSCI.1069-08.2008
10.1152/jn.00836.2007
10.1023/A:1022199214515
10.1016/S0140-6736(11)60547-3
10.1016/0006-8993(91)90343-T
10.1152/jn.00325.2006
10.1104/pp.55.2.247
10.1016/j.snb.2005.11.010
10.1007/s11055-007-0166-5
10.1523/JNEUROSCI.1881-08.2008
10.1038/nn.2401
10.1002/mus.880111103
10.1523/JNEUROSCI.1208-10.2010
10.1146/annurev.neuro.27.070203.144308
10.1249/00005768-199412000-00013
10.1152/jn.1979.42.4.936
10.1016/S0079-6123(02)37013-4
10.1152/jn.1978.41.3.778
10.1002/(SICI)1096-9861(19960122)364:4<651::AID-CNE4>3.0.CO;2-2
ContentType Journal Article
Copyright Gad et al; licensee BioMed Central Ltd. 2013 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
COPYRIGHT 2013 BioMed Central Ltd.
2013 Gad et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2013 Gad et al; licensee BioMed Central Ltd. 2013 Gad et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Gad et al; licensee BioMed Central Ltd. 2013 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: COPYRIGHT 2013 BioMed Central Ltd.
– notice: 2013 Gad et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2013 Gad et al; licensee BioMed Central Ltd. 2013 Gad et al; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7TB
7TK
7TS
7X7
7XB
88C
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
L6V
LK8
M0S
M0T
M1P
M7P
M7S
NAPCQ
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/1743-0003-10-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
ProQuest Nursing & Allied Health Database
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Physical Education Index
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Engineering Collection
Biological Sciences
Health & Medical Collection (Alumni Edition)
Healthcare Administration Database (Proquest)
Medical Database
ProQuest Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
Physical Education Index
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE


Neurosciences Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Occupational Therapy & Rehabilitation
Physical Therapy
EISSN 1743-0003
EndPage 2
ExternalDocumentID 10.1186/1743-0003-10-2
PMC3599040
2910230281
A534693222
23336733
10_1186_1743_0003_10_2
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
Los Angeles California
GeographicLocations_xml – name: United States
– name: Los Angeles California
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01EB007615
GroupedDBID ---
0R~
29L
2QV
2WC
4.4
53G
5GY
5VS
7RV
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
I-F
IAO
IHR
INH
INR
IPNFZ
IPY
ITC
KQ8
L6V
LK8
M0T
M1P
M48
M7P
M7S
ML0
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TB
7TK
7TS
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
2VQ
ADTOC
UNPAY
ID FETCH-LOGICAL-c558t-20a538726cf1b63adc4e9a17d1080be79c10001e356eab9ef271563ff461cfa23
IEDL.DBID M48
ISSN 1743-0003
IngestDate Sun Oct 26 04:16:11 EDT 2025
Tue Sep 30 16:59:11 EDT 2025
Thu Sep 04 20:07:16 EDT 2025
Thu Sep 04 17:39:15 EDT 2025
Sat Oct 18 23:46:01 EDT 2025
Mon Oct 20 22:50:02 EDT 2025
Mon Oct 20 17:04:18 EDT 2025
Thu Jan 02 22:13:44 EST 2025
Wed Oct 01 03:01:28 EDT 2025
Thu Apr 24 23:09:03 EDT 2025
Sat Sep 06 07:18:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Epidural stimulation
Spinal cord injury
Spinal cord electrode array
Motor recovery
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c558t-20a538726cf1b63adc4e9a17d1080be79c10001e356eab9ef271563ff461cfa23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1743-0003-10-2
PMID 23336733
PQID 1314993316
PQPubID 55356
PageCount 1
ParticipantIDs unpaywall_primary_10_1186_1743_0003_10_2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3599040
proquest_miscellaneous_1323248609
proquest_miscellaneous_1318691306
proquest_journals_1314993316
gale_infotracmisc_A534693222
gale_infotracacademiconefile_A534693222
pubmed_primary_23336733
crossref_citationtrail_10_1186_1743_0003_10_2
crossref_primary_10_1186_1743_0003_10_2
springer_journals_10_1186_1743_0003_10_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-21
PublicationDateYYYYMMDD 2013-01-21
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-21
  day: 21
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Journal of neuroengineering and rehabilitation
PublicationTitleAbbrev J NeuroEngineering Rehabil
PublicationTitleAlternate J Neuroeng Rehabil
PublicationYear 2013
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
References I Lavrov (435_CR7) 2008; 28
DC Rodger (435_CR16) 2006; 117
G Courtine (435_CR20) 2009; 12
A Etlin (435_CR27) 2010; 30
RM Ichiyama (435_CR17) 2008; 28
C Rivero-Melián (435_CR25) 1996; 364
DC Rodger (435_CR14) 2005; 24
G Manzano (435_CR24) 1988; 11
MS Nandra (435_CR13) 2011
S Grillner (435_CR1) 1975; 55
SJ Harkema (435_CR8) 2011; 377
VR Edgerton (435_CR2) 2004; 27
CP de Guzman (435_CR23) 1991; 555
I Lavrov (435_CR21) 2006; 96
YP Gerasimenko (435_CR11) 2007; 98
JA Hodgson (435_CR3) 1994; 26
SJ Harkema (435_CR5) 1997; 77
H Forssberg (435_CR4) 1979; 42
RR Roy (435_CR18) 1992; 42
S Nelson (435_CR26) 1978; 41
435_CR9
PE Musienko (435_CR6) 2007; 37
RD de Leon (435_CR22) 2002; 137
RR Roy (435_CR19) 1991; 70
YP Gerasimenko (435_CR10) 2003; 33
RM Ichiyama (435_CR12) 2005; 383
L Wolgemuth (435_CR15) 2000; 22
18667609 - J Neurosci. 2008 Jul 30;28(31):7774-80
16248117 - IEEE Eng Med Biol Mag. 2005 Sep-Oct;24(5):52-7
16823028 - J Neurophysiol. 2006 Oct;96(4):1699-710
25889487 - J Neuroeng Rehabil. 2015;12:33
479924 - J Neurophysiol. 1979 Jul;42(4):936-53
18632941 - J Neurosci. 2008 Jul 16;28(29):7370-5
15217329 - Annu Rev Neurosci. 2004;27:145-67
7869884 - Med Sci Sports Exerc. 1994 Dec;26(12):1491-7
19767747 - Nat Neurosci. 2009 Oct;12(10):1333-42
1434492 - Lab Anim Sci. 1992 Aug;42(4):335-43
9065851 - J Neurophysiol. 1997 Feb;77(2):797-811
17855582 - J Neurophysiol. 2007 Nov;98(5):2525-36
20685976 - J Neurosci. 2010 Aug 4;30(31):10324-36
149185 - J Neurophysiol. 1978 May;41(3):778-87
1885445 - J Appl Physiol (1985). 1991 Jun;70(6):2522-9
17187210 - Neurosci Behav Physiol. 2007 Feb;37(2):181-90
1933334 - Brain Res. 1991 Aug 2;555(2):202-14
3226427 - Muscle Nerve. 1988 Nov;11(11):1115-22
8821452 - J Comp Neurol. 1996 Jan 22;364(4):651-63
12440365 - Prog Brain Res. 2002;137:141-9
1144530 - Physiol Rev. 1975 Apr;55(2):247-304
22236709 - J Neurophysiol. 2012 Apr;107(8):2072-82
21601270 - Lancet. 2011 Jun 4;377(9781):1938-47
15878636 - Neurosci Lett. 2005 Aug 5;383(3):339-44
21841938 - Conf Proc IEEE Eng Med Biol Soc. 2011 Jan 23;2011:1007-1010
12762591 - Neurosci Behav Physiol. 2003 Mar;33(3):247-54
References_xml – volume: 77
  start-page: 797
  year: 1997
  ident: 435_CR5
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1997.77.2.797
– volume: 24
  start-page: 52
  year: 2005
  ident: 435_CR14
  publication-title: IEEE Eng Med Biol Mag
  doi: 10.1109/MEMB.2005.1511500
– volume: 70
  start-page: 2522
  year: 1991
  ident: 435_CR19
  publication-title: J Appl Physiolology
  doi: 10.1152/jappl.1991.70.6.2522
– volume: 22
  start-page: 42
  year: 2000
  ident: 435_CR15
  publication-title: Med Device Diagn Ind
– start-page: 1007
  volume-title: Proceedings of the 24th IEEE Conference Engineering in Medicine and Biological Society
  year: 2011
  ident: 435_CR13
– volume: 383
  start-page: 339
  year: 2005
  ident: 435_CR12
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2005.04.049
– volume: 28
  start-page: 7774
  year: 2008
  ident: 435_CR7
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1069-08.2008
– volume: 98
  start-page: 2525
  year: 2007
  ident: 435_CR11
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00836.2007
– volume: 42
  start-page: 335
  year: 1992
  ident: 435_CR18
  publication-title: Lab Anim Sci
– volume: 33
  start-page: 247
  year: 2003
  ident: 435_CR10
  publication-title: Neurosci Behav Physiol
  doi: 10.1023/A:1022199214515
– volume: 377
  start-page: 1938
  year: 2011
  ident: 435_CR8
  publication-title: Lancet
  doi: 10.1016/S0140-6736(11)60547-3
– volume: 555
  start-page: 202
  year: 1991
  ident: 435_CR23
  publication-title: Brain Res
  doi: 10.1016/0006-8993(91)90343-T
– volume: 96
  start-page: 1699
  year: 2006
  ident: 435_CR21
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00325.2006
– volume: 55
  start-page: 247
  year: 1975
  ident: 435_CR1
  publication-title: Physiol Rev
  doi: 10.1104/pp.55.2.247
– volume: 117
  start-page: 107
  year: 2006
  ident: 435_CR16
  publication-title: Sensor Actuator B Chem
  doi: 10.1016/j.snb.2005.11.010
– volume: 37
  start-page: 180
  year: 2007
  ident: 435_CR6
  publication-title: Neurosci Behav Physiol
  doi: 10.1007/s11055-007-0166-5
– ident: 435_CR9
– volume: 28
  start-page: 7370
  year: 2008
  ident: 435_CR17
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1881-08.2008
– volume: 12
  start-page: 1333
  year: 2009
  ident: 435_CR20
  publication-title: Nat Neurosci
  doi: 10.1038/nn.2401
– volume: 11
  start-page: 1115
  year: 1988
  ident: 435_CR24
  publication-title: Muscle Nerve
  doi: 10.1002/mus.880111103
– volume: 30
  start-page: 10324
  issue: 31
  year: 2010
  ident: 435_CR27
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1208-10.2010
– volume: 27
  start-page: 145
  year: 2004
  ident: 435_CR2
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.neuro.27.070203.144308
– volume: 26
  start-page: 1491
  year: 1994
  ident: 435_CR3
  publication-title: Med Sci Sports Exercise
  doi: 10.1249/00005768-199412000-00013
– volume: 42
  start-page: 936
  year: 1979
  ident: 435_CR4
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1979.42.4.936
– volume: 137
  start-page: 141
  year: 2002
  ident: 435_CR22
  publication-title: Prog Brain Res
  doi: 10.1016/S0079-6123(02)37013-4
– volume: 41
  start-page: 778
  issue: 3
  year: 1978
  ident: 435_CR26
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1978.41.3.778
– volume: 364
  start-page: 651
  year: 1996
  ident: 435_CR25
  publication-title: J Comp Neurol
  doi: 10.1002/(SICI)1096-9861(19960122)364:4<651::AID-CNE4>3.0.CO;2-2
– reference: 9065851 - J Neurophysiol. 1997 Feb;77(2):797-811
– reference: 1434492 - Lab Anim Sci. 1992 Aug;42(4):335-43
– reference: 19767747 - Nat Neurosci. 2009 Oct;12(10):1333-42
– reference: 1933334 - Brain Res. 1991 Aug 2;555(2):202-14
– reference: 3226427 - Muscle Nerve. 1988 Nov;11(11):1115-22
– reference: 25889487 - J Neuroeng Rehabil. 2015;12:33
– reference: 7869884 - Med Sci Sports Exerc. 1994 Dec;26(12):1491-7
– reference: 16823028 - J Neurophysiol. 2006 Oct;96(4):1699-710
– reference: 15217329 - Annu Rev Neurosci. 2004;27:145-67
– reference: 18632941 - J Neurosci. 2008 Jul 16;28(29):7370-5
– reference: 17187210 - Neurosci Behav Physiol. 2007 Feb;37(2):181-90
– reference: 21841938 - Conf Proc IEEE Eng Med Biol Soc. 2011 Jan 23;2011:1007-1010
– reference: 22236709 - J Neurophysiol. 2012 Apr;107(8):2072-82
– reference: 149185 - J Neurophysiol. 1978 May;41(3):778-87
– reference: 12762591 - Neurosci Behav Physiol. 2003 Mar;33(3):247-54
– reference: 18667609 - J Neurosci. 2008 Jul 30;28(31):7774-80
– reference: 21601270 - Lancet. 2011 Jun 4;377(9781):1938-47
– reference: 20685976 - J Neurosci. 2010 Aug 4;30(31):10324-36
– reference: 12440365 - Prog Brain Res. 2002;137:141-9
– reference: 17855582 - J Neurophysiol. 2007 Nov;98(5):2525-36
– reference: 1885445 - J Appl Physiol (1985). 1991 Jun;70(6):2522-9
– reference: 16248117 - IEEE Eng Med Biol Mag. 2005 Sep-Oct;24(5):52-7
– reference: 8821452 - J Comp Neurol. 1996 Jan 22;364(4):651-63
– reference: 1144530 - Physiol Rev. 1975 Apr;55(2):247-304
– reference: 479924 - J Neurophysiol. 1979 Jul;42(4):936-53
– reference: 15878636 - Neurosci Lett. 2005 Aug 5;383(3):339-44
SSID ssj0034054
Score 2.2923167
Snippet Background Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological...
Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological conditions....
Background Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological...
Doc number: 2 Abstract Background: Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by...
Background: Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2
SubjectTerms Animals
Behavior, Animal - physiology
Biocompatibility
Bioengineering
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Brain stimulation
Care and treatment
Colleges & universities
Computer engineering
Data Interpretation, Statistical
Design
Electric Impedance
Electric Stimulation Therapy - instrumentation
Electrodes
Electrodes, Implanted
Electromyography
Electronics
Electrophysiology
Epidural Space - physiology
Equipment Design
Female
From neuroscience to neuro-rehabilitation: transferring basic neuroscientific principles from laboratory to bedside
Head
Hindlimb - physiology
Human subjects
Life sciences
Locomotion - physiology
Muscle, Skeletal - innervation
Muscle, Skeletal - physiology
Neural networks
Neurology
Neurosciences
Paralysis - physiopathology
Paralysis - rehabilitation
Physiological aspects
Rats
Rats, Sprague-Dawley
Rehabilitation Medicine
Rodents
Spinal cord injuries
Spinal Cord Injuries - psychology
Spinal Cord Injuries - rehabilitation
Transplants & implants
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEB_qFdQ--HFWjVZZwY--hN7uJpvkQaRKSxF6lNJC38Jms6uVM3feB9I_x__UmdwmJoXWp0B2LslNZmZnMjO_AXibOJWiHIgQQ-UyjGSkwlQ7HRqRJFobVSaaGpyPx-roPPp6EV9swLjphaGyysYm1oa6nBr6Rr7HJfryGH1z9Wn2K6SpUZRdbUZoaD9aofxYQ4zdgU1ByFgD2Px8MD45bWyzRPck8tCNPFV75I5TX3VdniV6W9N1A93Zoa5XT7Yp1C24t6pm-uq3nkw6u9ThI3jg3Uu2v5aHx7BhqyFsdUAHh3D32KfTh_CuizHMztYAA-w9O-3Bdw_h4Yl_mw3NE_jTqTZiU8c0q0sTQz9Wp7RMz-f6iqFPzBYzGr3FKM5ldnZZEtIHQ9Py048OY8spc9qsb2hxxRJoxDemq5I1fTesHmaOt6lr4C2Rda56Wf1A2cADq_FEGIr1YhvODw_OvhyFftxDaOI4XaK-arS-iVDG8UJJXZrIZponJZVBFjbJDOUiuJWxsrrIrBMJBp_SuUhx47SQT2FQTSv7HJhy0ajE1VTyghDhCh6VQrgiMiZyXIwCCJs3nRvPTBrJMcnrmChVOUkGJeYlnREBfGjpZ2sUkJspSXByMg94RaN9lwM-FwFt5fsxqkNG6a0AdnqUqNamv9yIXu7NyiL_pwQBvGmX6ZdUKlfZ6aqmSVWGrsmtNORIp2qUBfBsLc3t_xJSSpVIGUDSk_OWgADJ-yvV5fcamFzG6NtEyN3dRiM6j34Du3ZbjfkPZ1_czpCXcF_Uk0p4KPgODJbzlX2F_uKyeO2NwF_5U2qY
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB-kgtoHP86vaJUV_OhL8PYjm-SxFEsRKiIt9C1sNrt6cuaOuyvSP8f_1Jm9TUgqVZ8C2ckm2Z2ZnWFmfgPwOve6QD4QKbrKTaqk0mlhvEmtyHNjrG5yQwXOJ5_08Zn6eJ6dxwRZqoUZxu95od-TwUyVzyGBClXtTTygdAjK6sNO40o0OlQEZPzzmdGBc1XtDs6dqzmRfWB0F25ftEtz-dPM54Oz5-g-3I1GIzvY7vIDuOHaCewOoAQncOskBskn8GaIHMxOt7AB7C37MgLlnsC9z3GPOpqH8GuQQ8QWnhkWEg7T2CynccysVuaSoaXL1ktqqMXIe2VuOWsIv4OhwvgRG4KxzYJ5Y7cvdDjiCAriKzNtw7pqGhZalONrQma7I7LBrLP2O-44XlhACWHIrOtHcHb04fTwOI1NHFKbZcUGpdCgTs2Ftp7XWprGKlcanjeU3Fi7vLQUYeBOZtqZunRe5OhSSu-V5tYbIR_DTrto3VNg2qtpg6OF5DXhvNVcNUL4WlmrPBfTBNJupysbF5Mabcyr4OkUuiLOoHC7pDsigXc9_XKL7XE9JTFORUKPM1oTaxfwuwg-qzrIkMlLClolsDeiRGG14-GO9aqoLNYVl-imllJyncCrfpiepAS41i0uAk2hSzQ4_kpD5nGhp2UCT7bc3P-XkFLqXMoE8hGf9wQEMz4eaWffAty4zNBiUbi6-51EDD79muXa7yXmHyv77P9nfQ53ROhFwlPB92Bns7pwL9Ai3NQvgzr4DUofWq4
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hVAJ6oBBehoIWiUcvTuNde20fI0RVIbWqUCOVk7Ve79KU4ER5CJV_wz9lxl5bTlCBA6dI2c-PXc_MzmhnvgF4HVuZoBxwH0Plwg9FKP1EWeVrHsdKaVnEigqcT07l8Tj8eBFduHZAVAtzVdE4mhKDzUuVD7o16NO6xIFaKJjF4bywtcYn8pC8aiqPrrKs0B7vyAgd8x7sjE_PRp_rksga4Ggbf79oY1vaNs6d3Wk7c7I9Pt2FO-tyrq6_q-m0s0Md7cG0mVudmPJ1sF7lA_1ji_bxP03-Ptxzniwb1aL3AG6Zsg-7HX7DPtw-cSf3fXjTpTNm5zWXAXvLPm0whfdh78wJToN5CD87iU1sZpliVRak7zr4FIapxUJdM3S_2XJOXb4YhdTMzCcFkYowtGLfXJcytpoxq3T9QIMjhvgpvjBVFqwp8WFV33R8TJVubwjWueukvEIxxB9WUZcw1KDlIxgffTh_f-y7zhK-jqJkhaZBoaGPudQ2yKVQhQ5NqoK4oIzL3MSppmOPwIhIGpWnxvIY41xhbSgDbRUXj6FXzkrzFJi04bDA0UQEOZHP5UFYcG7zUOvQBnzogd8IVqbdYlL3j2lWhV-JzOgDUg6AoH-4B-9a_LwmHLkZSXKakSXCO2rlCirwvYjTKxtFqHkpnaR5sL-BRAuiN4cbSc-cBVtmgcDYORUikB68aofpSsrKK81sXWESmaIX9EcM-eyJHKYePKmVp50XF0LIWAgP4g21agHEfb45Uk4uKw50EaEbFeLqHjQK2Hn1G5broFXQv6zss3-HPoe7vGqQEvg82IfearE2L9BNXeUvnfn5BcTij48
  priority: 102
  providerName: Unpaywall
Title Development of a multi-electrode array for spinal cord epidural stimulation to facilitate stepping and standing after a complete spinal cord injury in adult rats
URI https://link.springer.com/article/10.1186/1743-0003-10-2
https://www.ncbi.nlm.nih.gov/pubmed/23336733
https://www.proquest.com/docview/1314993316
https://www.proquest.com/docview/1318691306
https://www.proquest.com/docview/1323248609
https://pubmed.ncbi.nlm.nih.gov/PMC3599040
https://jneuroengrehab.biomedcentral.com/counter/pdf/10.1186/1743-0003-10-2
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: RBZ
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: KQ8
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: KQ8
  dateStart: 20041001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: ABDBF
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: DIK
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: RPM
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: AAJSJ
  dateStart: 20041201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: C6C
  dateStart: 20040112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zj9MwELZgVwL2gaMsEFgqI3HsS6CxUyd5QKhUW1ZIrarVVipPkePYUFTS0kPQn8M_ZcY5SBYWeGnUzuSyZ8YznfE3hDwNjAhBDpgLoXLq-twXbiiNdBULAimVSAOJG5yHI3E68d9Pu9Nf9U_FAK7_GNphP6nJav7y-9fdG1D411bhQ_EKnWrcHW2LrMAc78MqFWEbh6FfZRQ4OCZ-vjky5y0AHH8_v7FAXTTTtXXqYg1llUg9INe32VLuvsn5vLZWDW6Tm4WTSXu5VNwhV3TWIgc16MEWuTYskuot8qyONEzPc5gB-pyeNUC8W-TWuJjTkucu-VGrOaILQyW1BYpu0Vwn1VSuVnJHwTOm6yU24KIY7VK9nKWI90HBwHwpGojRzYIaqfIbaqBohI74SGWW0nL3DbUtzeE2thJeI1vtqrPsM0gIHKhFFaEg3OtDMhmcnPdP3aLpg6u63XADWivBBgdMKOMlgstU-TqSXpBiMWSig0hhRsLTvCu0TCJtWAAhKDfGF54ykvF7ZC9bZPoBocL4nRSoIfcSxIVLPD9lzCS-Ur7xWMchbjnTsSoGExtzzGMbGYUiRsnA9DzHX5hDXlT8yxwL5HJOFJwYxRauqGSx1wGeC-G24l4XlCLCJJdDjhqcoNyqSS5FLy51I_Y4hLUR555wyJOKjGdiwVymF1vLE4oIHJS_8qA7HYpO5JD7uTRX78U45yLg3CFBQ84rBoQlb1Ky2ScLT8674OH4MLrHpUbUHv2S4TquNOYfI_vwv-fgEbnBbOsSz2XeEdnbrLb6MTiQm6RNrgbTAD7Dwbs22X97Mhqfwbe-6LftXzJtazmAMhmNex9-Ag-mcYI
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRaL0wCO8DAUWiUIvVrMPr50DQhVQpbSpEEql3Mx6vQtBwQl5qMrP4Q_wG5nxC7tSy6mnSNmJ7ex-Mzvjmf2GkFehUxHggPsQKqe-FFL5kXbaNzwMtTYqDTUecB6cqv6Z_DQKRhvkT3UWBssqK5uYG-p0avAd-T4T4MtD9M3Uu9kvH7tGYXa1aqFRwOLYrs8hZFu8PfoA67vL-eHH4fu-X3YV8E0QREuAhQYlD7kyjiVK6NRI29MsTLHaLrFhz-Arb2ZFoKxOetbxEGIc4ZxUzDiNRAdg8m9IAbYE9Ccc1QGeAOdHlsSQLFL76Ozjqe28-Iu3Nr6L5r-x_12szawTtNtka5XN9PpcTyaNPfDwLrldOq_0oEDbPbJhsw7ZblAadsjNQZms75DdJoMxHRb0BfQ1_dIiB--QO59LrFQy98nvRi0TnTqqaV746JdNe1JL9Xyu1xQ8brqYYWMvilE0tbNxijwiFAzXz7IxGV1OqdOmuKGFEYuUFN-ozlJaneqheat0uE1eYW9RrHHVcfYDkAcfNGcroaA0iwfk7FqW_SHZzKaZfUyocrKbwmgkWIJ8cwmTKecukcZIx3jXI3610rEpJxMbfkziPOKKVIzIwLS_wG-4R97U8rOCY-RySQROjMYHrmh0eYYCngtpvOKDAJSth8kzj-y0JMFomPZwBb24NFqL-J-KeeRlPYy_xEK8zE5XuUykeuD4XCmDbnqkuj2PPCrQXP8vLoRQoRAeCVs4rwWQ7rw9ko2_57TnIgDPScLs7lUa0Xj0S6Zrr9aY_8zsk6sn5AXZ6g8HJ_HJ0enxU3KL5z1RmM_ZDtlczlf2GXimy-R5bg4o-Xrd9ucvYk-giQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwEB5VRSr0gWOhJVDASBx9ibqxHSeReKkWVuVoVaFW6lvkODZstWRXewj15_BPmcmlpKjAU6R44iT2zHhGM_MNwKvIqRj5gPvoKue-FFL5sXbaNzyKtDYqjzQVOB-fqKNz-ekivNiAd00tTJnt3oQkq5oGQmkqVgfz3FUiHqsDMqOpHrpMq0IFfEviyUb9C0Zq1OhhgaaIrGEa_3ymdwxdV8ad0-h6pmQbLt2G2-tirq9-6um0cyKN78Pd2pRkh9XeP4ANWwxguwMwOICt4zp0PoDXXTxhdlaBCbA37GsPqnsA907rnWtoHsKvTmYRmzmmWZmG6NctdHLL9GKhrxjav2w5pzZbjHxaZueTnFA9GKqRH3WbMLaaMadN9UKLI5YAIr4xXeSsqbFhZeNyfE2Z726JrDPrpLhEPsALK7FDGLLw8hGcjz-cjY78urWDb8IwXqFsatS0EVfGBZkSOjfSJjqIckp5zGyUGIo7BFaEyuossY5H6GgK56QKjNNc7MBmMSvsY2DKyWGOo7EIMkJ_ywKZc-4yaYx0AR964Dc7nZp6Man9xjQt_Z9YpcQZFIQXdId78Laln1eIHzdTEuOkpApwRqPrigb8LgLVSg9DZP2EQlke7PUoUYRNf7hhvbRWIcs0EOi8JkIEyoOX7TA9SWlxhZ2tS5pYJWiG_JWGjOZYDRMPditubv-LCyFUJIQHUY_PWwICH--PFJPvJQi5CNGOkbi6-41EdD79huXabyXmHyv75P9nfQFbp-_H6ZePJ5-fwh1eNisJfB7sweZqsbbP0GRcZc9LzfAbBMpl5A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hVAJ6oBBehoIWiUcvTuNde20fI0RVIbWqUCOVk7Ve79KU4ER5CJV_wz9lxl5bTlCBA6dI2c-PXc_MzmhnvgF4HVuZoBxwH0Plwg9FKP1EWeVrHsdKaVnEigqcT07l8Tj8eBFduHZAVAtzVdE4mhKDzUuVD7o16NO6xIFaKJjF4bywtcYn8pC8aiqPrrKs0B7vyAgd8x7sjE_PRp_rksga4Ggbf79oY1vaNs6d3Wk7c7I9Pt2FO-tyrq6_q-m0s0Md7cG0mVudmPJ1sF7lA_1ji_bxP03-Ptxzniwb1aL3AG6Zsg-7HX7DPtw-cSf3fXjTpTNm5zWXAXvLPm0whfdh78wJToN5CD87iU1sZpliVRak7zr4FIapxUJdM3S_2XJOXb4YhdTMzCcFkYowtGLfXJcytpoxq3T9QIMjhvgpvjBVFqwp8WFV33R8TJVubwjWueukvEIxxB9WUZcw1KDlIxgffTh_f-y7zhK-jqJkhaZBoaGPudQ2yKVQhQ5NqoK4oIzL3MSppmOPwIhIGpWnxvIY41xhbSgDbRUXj6FXzkrzFJi04bDA0UQEOZHP5UFYcG7zUOvQBnzogd8IVqbdYlL3j2lWhV-JzOgDUg6AoH-4B-9a_LwmHLkZSXKakSXCO2rlCirwvYjTKxtFqHkpnaR5sL-BRAuiN4cbSc-cBVtmgcDYORUikB68aofpSsrKK81sXWESmaIX9EcM-eyJHKYePKmVp50XF0LIWAgP4g21agHEfb45Uk4uKw50EaEbFeLqHjQK2Hn1G5broFXQv6zss3-HPoe7vGqQEvg82IfearE2L9BNXeUvnfn5BcTij48
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+multi-electrode+array+for+spinal+cord+epidural+stimulation+to+facilitate+stepping+and+standing+after+a+complete+spinal+cord+injury+in+adult+rats&rft.jtitle=Journal+of+neuroengineering+and+rehabilitation&rft.au=Gad%2C+Parag&rft.au=Choe%2C+Jaehoon&rft.au=Nandra%2C+Mandheerej+Singh&rft.au=Zhong%2C+Hui&rft.date=2013-01-21&rft.issn=1743-0003&rft.eissn=1743-0003&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1186%2F1743-0003-10-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_1743_0003_10_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1743-0003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1743-0003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1743-0003&client=summon