Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals Conserved Myeloid Populations across Individuals and Species

Tumor-infiltrating myeloid cells (TIMs) comprise monocytes, macrophages, dendritic cells, and neutrophils, and have emerged as key regulators of cancer growth. These cells can diversify into a spectrum of states, which might promote or limit tumor outgrowth but remain poorly understood. Here, we use...

Full description

Saved in:
Bibliographic Details
Published inImmunity (Cambridge, Mass.) Vol. 50; no. 5; pp. 1317 - 1334.e10
Main Authors Zilionis, Rapolas, Engblom, Camilla, Pfirschke, Christina, Savova, Virginia, Zemmour, David, Saatcioglu, Hatice D., Krishnan, Indira, Maroni, Giorgia, Meyerovitz, Claire V., Kerwin, Clara M., Choi, Sun, Richards, William G., De Rienzo, Assunta, Tenen, Daniel G., Bueno, Raphael, Levantini, Elena, Pittet, Mikael J., Klein, Allon M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 21.05.2019
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1074-7613
1097-4180
1097-4180
DOI10.1016/j.immuni.2019.03.009

Cover

Abstract Tumor-infiltrating myeloid cells (TIMs) comprise monocytes, macrophages, dendritic cells, and neutrophils, and have emerged as key regulators of cancer growth. These cells can diversify into a spectrum of states, which might promote or limit tumor outgrowth but remain poorly understood. Here, we used single-cell RNA sequencing (scRNA-seq) to map TIMs in non-small-cell lung cancer patients. We uncovered 25 TIM states, most of which were reproducibly found across patients. To facilitate translational research of these populations, we also profiled TIMs in mice. In comparing TIMs across species, we identified a near-complete congruence of population structures among dendritic cells and monocytes; conserved neutrophil subsets; and species differences among macrophages. By contrast, myeloid cell population structures in patients’ blood showed limited overlap with those of TIMs. This study determines the lung TIM landscape and sets the stage for future investigations into the potential of TIMs as immunotherapy targets. [Display omitted] •Human dendritic cell and monocyte subsets show one-to-one equivalence in mouse•Neutrophils exhibit tumor-associated phenotypes that are conserved across species•Myeloid subsets in patient blood only partially overlap with those in their tumors•Unique markers define myeloid cell subsets and associate with clinical prognosis Tumor-infiltrating myeloid cells (TIMs) have emerged as key cancer regulators and potential next-generation immunotherapy targets, yet they remain incompletely understood. Using scRNA-seq, Zilionis et al. map the TIM landscape in human and murine lung tumors and systematically compare cell states, revealing conserved myeloid populations across individuals and species.
AbstractList Tumor-infiltrating myeloid cells (TIMs) comprise monocytes, macrophages, dendritic cells, and neutrophils, and have emerged as key regulators of cancer growth. These cells can diversify into a spectrum of states, which might promote or limit tumor outgrowth but remain poorly understood. Here, we used single-cell RNA sequencing (scRNA-seq) to map TIMs in non-small-cell lung cancer patients. We uncovered 25 TIM states, most of which were reproducibly found across patients. To facilitate translational research of these populations, we also profiled TIMs in mice. In comparing TIMs across species, we identified a near-complete congruence of population structures among dendritic cells and monocytes; conserved neutrophil subsets; and species differences among macrophages. By contrast, myeloid cell population structures in patients' blood showed limited overlap with those of TIMs. This study determines the lung TIM landscape and sets the stage for future investigations into the potential of TIMs as immunotherapy targets.Tumor-infiltrating myeloid cells (TIMs) comprise monocytes, macrophages, dendritic cells, and neutrophils, and have emerged as key regulators of cancer growth. These cells can diversify into a spectrum of states, which might promote or limit tumor outgrowth but remain poorly understood. Here, we used single-cell RNA sequencing (scRNA-seq) to map TIMs in non-small-cell lung cancer patients. We uncovered 25 TIM states, most of which were reproducibly found across patients. To facilitate translational research of these populations, we also profiled TIMs in mice. In comparing TIMs across species, we identified a near-complete congruence of population structures among dendritic cells and monocytes; conserved neutrophil subsets; and species differences among macrophages. By contrast, myeloid cell population structures in patients' blood showed limited overlap with those of TIMs. This study determines the lung TIM landscape and sets the stage for future investigations into the potential of TIMs as immunotherapy targets.
Tumor-infiltrating myeloid cells (TIMs) comprise monocytes, macrophages, dendritic cells and neutrophils, and have emerged as key regulators of cancer growth. These cells can diversify into a spectrum of states, which may promote or limit tumor outgrowth, but remain poorly understood. Here, we used single-cell RNA sequencing to map TIMs in non-small cell lung cancer patients. We uncovered 25 TIM states, most of which were reproducibly found across patients. To facilitate translational research of these populations, we also profiled TIMs in mice. In comparing TIMs across species, we identified a near-complete congruence of population structures among dendritic cells and monocytes; conserved neutrophil subsets; and species differences among macrophages. By contrast, myeloid cell population structures in patients’ blood showed limited overlap with those of TIMs. This study determines the lung TIM landscape and sets the stage for future investigations into the potential of TIMs as immunotherapy targets. Tumor-infiltrating myeloid cells (TIM) have emerged as key cancer regulators and potential next-generation immunotherapy targets, yet they remain incompletely understood. Using single cell RNA-seq, Zilionis et al. map the TIM landscape in human and murine lung tumors and systematically compare cell states, revealing conserved myeloid populations across individuals and species.
SummaryTumor-infiltrating myeloid cells (TIMs) comprise monocytes, macrophages, dendritic cells, and neutrophils, and have emerged as key regulators of cancer growth. These cells can diversify into a spectrum of states, which might promote or limit tumor outgrowth but remain poorly understood. Here, we used single-cell RNA sequencing (scRNA-seq) to map TIMs in non-small-cell lung cancer patients. We uncovered 25 TIM states, most of which were reproducibly found across patients. To facilitate translational research of these populations, we also profiled TIMs in mice. In comparing TIMs across species, we identified a near-complete congruence of population structures among dendritic cells and monocytes; conserved neutrophil subsets; and species differences among macrophages. By contrast, myeloid cell population structures in patients’ blood showed limited overlap with those of TIMs. This study determines the lung TIM landscape and sets the stage for future investigations into the potential of TIMs as immunotherapy targets.
Tumor-infiltrating myeloid cells (TIMs) comprise monocytes, macrophages, dendritic cells, and neutrophils, and have emerged as key regulators of cancer growth. These cells can diversify into a spectrum of states, which might promote or limit tumor outgrowth but remain poorly understood. Here, we used single-cell RNA sequencing (scRNA-seq) to map TIMs in non-small-cell lung cancer patients. We uncovered 25 TIM states, most of which were reproducibly found across patients. To facilitate translational research of these populations, we also profiled TIMs in mice. In comparing TIMs across species, we identified a near-complete congruence of population structures among dendritic cells and monocytes; conserved neutrophil subsets; and species differences among macrophages. By contrast, myeloid cell population structures in patients' blood showed limited overlap with those of TIMs. This study determines the lung TIM landscape and sets the stage for future investigations into the potential of TIMs as immunotherapy targets.
Tumor-infiltrating myeloid cells (TIMs) comprise monocytes, macrophages, dendritic cells, and neutrophils, and have emerged as key regulators of cancer growth. These cells can diversify into a spectrum of states, which might promote or limit tumor outgrowth but remain poorly understood. Here, we used single-cell RNA sequencing (scRNA-seq) to map TIMs in non-small-cell lung cancer patients. We uncovered 25 TIM states, most of which were reproducibly found across patients. To facilitate translational research of these populations, we also profiled TIMs in mice. In comparing TIMs across species, we identified a near-complete congruence of population structures among dendritic cells and monocytes; conserved neutrophil subsets; and species differences among macrophages. By contrast, myeloid cell population structures in patients’ blood showed limited overlap with those of TIMs. This study determines the lung TIM landscape and sets the stage for future investigations into the potential of TIMs as immunotherapy targets. [Display omitted] •Human dendritic cell and monocyte subsets show one-to-one equivalence in mouse•Neutrophils exhibit tumor-associated phenotypes that are conserved across species•Myeloid subsets in patient blood only partially overlap with those in their tumors•Unique markers define myeloid cell subsets and associate with clinical prognosis Tumor-infiltrating myeloid cells (TIMs) have emerged as key cancer regulators and potential next-generation immunotherapy targets, yet they remain incompletely understood. Using scRNA-seq, Zilionis et al. map the TIM landscape in human and murine lung tumors and systematically compare cell states, revealing conserved myeloid populations across individuals and species.
Author Levantini, Elena
Kerwin, Clara M.
Savova, Virginia
Saatcioglu, Hatice D.
Choi, Sun
Krishnan, Indira
Richards, William G.
Bueno, Raphael
Engblom, Camilla
Zemmour, David
Tenen, Daniel G.
Zilionis, Rapolas
Maroni, Giorgia
Pfirschke, Christina
Pittet, Mikael J.
Meyerovitz, Claire V.
De Rienzo, Assunta
Klein, Allon M.
AuthorAffiliation 2 Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
4 Graduate Program in Immunology, Harvard Medical School, Boston, MA, USA
5 Precision Immunology, Immunology and Inflammation Therapeutic Area, Sanofi, US
8 Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
12 Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore
3 Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
7 Pediatric Surgical Research Laboratories, Massachusetts General Hospital and Department of Surgery, Harvard Medical School, Boston, MA
9 Beth Israel Deaconess Medical Center, Boston, MA, USA
11 Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
10 Institute of Biomedical Technologies, National Research Council (CNR), Pisa, Italy
1 Department of System
AuthorAffiliation_xml – name: 9 Beth Israel Deaconess Medical Center, Boston, MA, USA
– name: 4 Graduate Program in Immunology, Harvard Medical School, Boston, MA, USA
– name: 11 Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
– name: 5 Precision Immunology, Immunology and Inflammation Therapeutic Area, Sanofi, US
– name: 6 Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
– name: 8 Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
– name: 10 Institute of Biomedical Technologies, National Research Council (CNR), Pisa, Italy
– name: 12 Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore
– name: 1 Department of Systems Biology, Harvard Medical School, Boston, MA, USA
– name: 2 Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
– name: 3 Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
– name: 7 Pediatric Surgical Research Laboratories, Massachusetts General Hospital and Department of Surgery, Harvard Medical School, Boston, MA
Author_xml – sequence: 1
  givenname: Rapolas
  surname: Zilionis
  fullname: Zilionis, Rapolas
  organization: Department of Systems Biology, Harvard Medical School, Boston, MA, USA
– sequence: 2
  givenname: Camilla
  surname: Engblom
  fullname: Engblom, Camilla
  organization: Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
– sequence: 3
  givenname: Christina
  surname: Pfirschke
  fullname: Pfirschke, Christina
  organization: Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
– sequence: 4
  givenname: Virginia
  surname: Savova
  fullname: Savova, Virginia
  email: virginia.savova@sanofi.com
  organization: Department of Systems Biology, Harvard Medical School, Boston, MA, USA
– sequence: 5
  givenname: David
  surname: Zemmour
  fullname: Zemmour, David
  organization: Graduate Program in Immunology, Harvard Medical School, Boston, MA, USA
– sequence: 6
  givenname: Hatice D.
  surname: Saatcioglu
  fullname: Saatcioglu, Hatice D.
  organization: Pediatric Surgical Research Laboratories, Massachusetts General Hospital and Department of Surgery, Harvard Medical School, Boston, MA, USA
– sequence: 7
  givenname: Indira
  surname: Krishnan
  fullname: Krishnan, Indira
  organization: Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
– sequence: 8
  givenname: Giorgia
  surname: Maroni
  fullname: Maroni, Giorgia
  organization: Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
– sequence: 9
  givenname: Claire V.
  surname: Meyerovitz
  fullname: Meyerovitz, Claire V.
  organization: Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
– sequence: 10
  givenname: Clara M.
  surname: Kerwin
  fullname: Kerwin, Clara M.
  organization: Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
– sequence: 11
  givenname: Sun
  surname: Choi
  fullname: Choi, Sun
  organization: Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
– sequence: 12
  givenname: William G.
  surname: Richards
  fullname: Richards, William G.
  organization: Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
– sequence: 13
  givenname: Assunta
  surname: De Rienzo
  fullname: De Rienzo, Assunta
  organization: Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
– sequence: 14
  givenname: Daniel G.
  surname: Tenen
  fullname: Tenen, Daniel G.
  organization: Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
– sequence: 15
  givenname: Raphael
  surname: Bueno
  fullname: Bueno, Raphael
  organization: Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
– sequence: 16
  givenname: Elena
  surname: Levantini
  fullname: Levantini, Elena
  organization: Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
– sequence: 17
  givenname: Mikael J.
  surname: Pittet
  fullname: Pittet, Mikael J.
  email: mpittet@mgh.harvard.edu
  organization: Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
– sequence: 18
  givenname: Allon M.
  surname: Klein
  fullname: Klein, Allon M.
  email: allon_klein@hms.harvard.edu
  organization: Department of Systems Biology, Harvard Medical School, Boston, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30979687$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v1DAUjFAR_YB_gJAlLlwSnvPhxByQUAS00iIQLWfLa78sXiV2sJNIvfHTcbpbBD3AyZbfzOh5Zs6TE-ssJslzChkFyl7vMzMMszVZDpRnUGQA_FFyRoHXaUkbOFnvdZnWjBanyXkIewBaVhyeJKdFBHHW1GfJz2tjdz2mLfY9ufHSBuXNOLnBqEBcRy7nQVoirSaf3ByQbGa7I620Cn0gX3FB2QfSOhvQLxhBt9g7o8kXN869nEwcEKm8C4FcWW0Wo-eVsOpdj6gMhqfJ4y4-4bPjeZF8-_D-pr1MN58_XrXvNqmqqnpKsWsq3Wmmmi4vtkzqqpSg9baqUWvoOsWo0koynmvFGNWMQlODZKWCXMmCFRfJ24PuOG8H1Art5GUvRm8G6W-Fk0b8PbHmu9i5RTCWA5Q8Crw6Cnj3Y8YwicEEFW2TFqM1Is-BsxhFlUfoywfQvZu9jd-LqLypmoLzJqJe_LnR71Xuw4mANwfAnYEeO6HMdGdqXND0goJYmyD24tAEsTZBQCFiEyK5fEC-1_8P7WgTxiwWg16EmFKMWxuPahLamX8L_AJOVdMg
CitedBy_id crossref_primary_10_1038_s41467_025_57361_0
crossref_primary_10_1016_j_celrep_2020_107873
crossref_primary_10_1038_s41467_021_26271_2
crossref_primary_10_1002_path_6015
crossref_primary_10_1038_s41467_021_22973_9
crossref_primary_10_1158_1535_7163_MCT_22_0130
crossref_primary_10_3390_cells9020291
crossref_primary_10_4049_jimmunol_2200154
crossref_primary_10_1080_15569543_2023_2204334
crossref_primary_10_1186_s13046_024_03255_w
crossref_primary_10_1038_s41467_022_28020_5
crossref_primary_10_1016_j_immuni_2024_08_014
crossref_primary_10_3389_fonc_2025_1514281
crossref_primary_10_1016_j_pccm_2022_11_001
crossref_primary_10_1016_j_trecan_2019_07_006
crossref_primary_10_1158_2767_9764_CRC_22_0373
crossref_primary_10_1016_j_it_2022_12_004
crossref_primary_10_1556_650_2021_32176
crossref_primary_10_1016_j_mtadv_2022_100216
crossref_primary_10_1016_j_tcb_2024_09_001
crossref_primary_10_3389_fimmu_2020_593300
crossref_primary_10_3389_fimmu_2024_1404209
crossref_primary_10_1002_smtd_202402058
crossref_primary_10_1016_j_it_2022_04_008
crossref_primary_10_1038_s41467_021_27018_9
crossref_primary_10_1186_s12885_025_13525_1
crossref_primary_10_2174_1570159X20666220706115957
crossref_primary_10_3389_fimmu_2021_802080
crossref_primary_10_3389_fimmu_2020_01842
crossref_primary_10_1038_s41586_025_08633_8
crossref_primary_10_3390_cells11172630
crossref_primary_10_1002_mog2_47
crossref_primary_10_1136_jitc_2023_007441
crossref_primary_10_1016_j_isci_2024_110529
crossref_primary_10_3389_fimmu_2023_1264774
crossref_primary_10_3389_fimmu_2022_1041010
crossref_primary_10_1093_nar_gkac922
crossref_primary_10_3389_fimmu_2024_1405748
crossref_primary_10_1084_jem_20191847
crossref_primary_10_3390_biomedicines10112709
crossref_primary_10_1038_s41467_020_16904_3
crossref_primary_10_1002_ctm2_1155
crossref_primary_10_1126_sciadv_abl8247
crossref_primary_10_3390_biomedicines9050505
crossref_primary_10_1093_abbs_gmaa032
crossref_primary_10_1038_s41586_022_05443_0
crossref_primary_10_3389_fimmu_2022_791158
crossref_primary_10_1038_s42003_023_04928_6
crossref_primary_10_7554_eLife_53839
crossref_primary_10_1186_s12967_024_05123_9
crossref_primary_10_1186_s40164_024_00521_7
crossref_primary_10_17709_2410_1893_2023_10_4_1
crossref_primary_10_1007_s10911_023_09553_x
crossref_primary_10_3389_fimmu_2023_1261257
crossref_primary_10_1038_s41467_022_31596_7
crossref_primary_10_3390_ijms25074049
crossref_primary_10_1038_s41590_022_01311_1
crossref_primary_10_1016_j_metop_2025_100347
crossref_primary_10_1002_eji_202350616
crossref_primary_10_1038_s41577_021_00571_6
crossref_primary_10_3390_cancers13236131
crossref_primary_10_1016_j_immuni_2022_04_004
crossref_primary_10_1158_2326_6066_CIR_20_1026
crossref_primary_10_1002_gcc_22944
crossref_primary_10_3389_fimmu_2023_1196731
crossref_primary_10_3389_fimmu_2023_1161869
crossref_primary_10_1007_s00262_021_02916_5
crossref_primary_10_3389_fgene_2024_1431684
crossref_primary_10_1016_j_xcrm_2022_100848
crossref_primary_10_1038_s41586_022_05672_3
crossref_primary_10_1186_s12943_024_01936_w
crossref_primary_10_1016_j_kint_2022_08_026
crossref_primary_10_1158_2326_6066_CIR_22_0439
crossref_primary_10_1038_s41467_022_28407_4
crossref_primary_10_1126_sciadv_abo7621
crossref_primary_10_3390_genes15030298
crossref_primary_10_3389_fimmu_2023_1268939
crossref_primary_10_1080_2162402X_2022_2059876
crossref_primary_10_1126_scitranslmed_abm9043
crossref_primary_10_1002_anie_201915153
crossref_primary_10_3390_cells11050805
crossref_primary_10_1038_s41598_024_82903_9
crossref_primary_10_1126_sciadv_adh1653
crossref_primary_10_1158_2767_9764_CRC_23_0399
crossref_primary_10_2174_1389202921999201020203249
crossref_primary_10_1080_2162402X_2020_1790125
crossref_primary_10_1038_s41467_022_33052_y
crossref_primary_10_1016_j_intimp_2024_113634
crossref_primary_10_1038_s41577_024_01079_5
crossref_primary_10_1038_s12276_020_0422_0
crossref_primary_10_3390_ijms22073493
crossref_primary_10_1002_ctd2_70003
crossref_primary_10_3390_genes15070961
crossref_primary_10_1093_nar_gkae1312
crossref_primary_10_3390_cancers14030833
crossref_primary_10_1126_sciimmunol_aav3942
crossref_primary_10_1164_rccm_202406_1168ST
crossref_primary_10_1152_physrev_00036_2021
crossref_primary_10_1016_j_celrep_2023_111991
crossref_primary_10_1021_acs_analchem_9b05047
crossref_primary_10_1158_2159_8290_CD_24_0421
crossref_primary_10_1002_ctm2_1340
crossref_primary_10_1016_j_medj_2023_04_008
crossref_primary_10_1016_j_drudis_2021_02_017
crossref_primary_10_3389_fimmu_2023_1182553
crossref_primary_10_1084_jem_20201574
crossref_primary_10_3389_fimmu_2023_1287656
crossref_primary_10_1038_s41385_021_00480_w
crossref_primary_10_1016_j_immuni_2022_03_007
crossref_primary_10_1002_adbi_202300159
crossref_primary_10_1002_biot_202400329
crossref_primary_10_1111_febs_16022
crossref_primary_10_1038_s41586_021_03234_7
crossref_primary_10_1186_s13045_023_01473_x
crossref_primary_10_1080_2162402X_2022_2026583
crossref_primary_10_21105_joss_05603
crossref_primary_10_1038_s41698_021_00248_2
crossref_primary_10_1016_j_it_2020_10_002
crossref_primary_10_1186_s40364_021_00336_2
crossref_primary_10_3390_cells12151981
crossref_primary_10_1007_s11306_022_01934_3
crossref_primary_10_1126_sciimmunol_abb5439
crossref_primary_10_1002_cac2_70021
crossref_primary_10_1038_s41571_022_00620_6
crossref_primary_10_1038_s43018_022_00490_y
crossref_primary_10_1016_j_oraloncology_2022_106013
crossref_primary_10_1038_s41577_019_0260_2
crossref_primary_10_3389_fimmu_2023_1148061
crossref_primary_10_3390_ijms25116160
crossref_primary_10_1038_s41598_025_93916_3
crossref_primary_10_1016_j_ccell_2024_06_014
crossref_primary_10_1038_s42003_021_01897_6
crossref_primary_10_1158_2159_8290_CD_21_0369
crossref_primary_10_1038_s41551_020_0524_y
crossref_primary_10_1016_j_cell_2021_12_004
crossref_primary_10_1042_BSR20202711
crossref_primary_10_1016_j_heliyon_2023_e20164
crossref_primary_10_1126_sciimmunol_abi8800
crossref_primary_10_1016_j_cell_2021_08_004
crossref_primary_10_1038_s41467_020_20139_7
crossref_primary_10_1038_s41423_021_00753_1
crossref_primary_10_1016_j_cell_2024_02_005
crossref_primary_10_1084_jem_20200264
crossref_primary_10_1111_brv_12975
crossref_primary_10_1016_j_ccell_2021_08_011
crossref_primary_10_1016_j_ccell_2022_10_008
crossref_primary_10_3389_fimmu_2022_868813
crossref_primary_10_1136_jitc_2021_003571
crossref_primary_10_1038_s41598_020_58939_y
crossref_primary_10_1016_j_heliyon_2024_e37092
crossref_primary_10_1016_j_immuni_2022_02_006
crossref_primary_10_3389_fimmu_2022_900155
crossref_primary_10_1002_ijc_34711
crossref_primary_10_1016_j_celrep_2021_109955
crossref_primary_10_1126_sciimmunol_adc9081
crossref_primary_10_1186_s13046_021_02022_5
crossref_primary_10_1016_j_compbiomed_2023_106933
crossref_primary_10_1158_2326_6066_CIR_21_1075
crossref_primary_10_1038_s41467_020_19973_6
crossref_primary_10_3390_cells11203289
crossref_primary_10_7554_eLife_67396
crossref_primary_10_3389_fonc_2020_00349
crossref_primary_10_3389_fimmu_2020_00339
crossref_primary_10_1038_s41577_019_0271_z
crossref_primary_10_1172_JCI169653
crossref_primary_10_3390_cancers14225506
crossref_primary_10_1016_j_compbiomed_2022_106409
crossref_primary_10_3390_cancers14163972
crossref_primary_10_1002_ctm2_1786
crossref_primary_10_1016_j_canlet_2024_216610
crossref_primary_10_1097_PPO_0000000000000486
crossref_primary_10_1016_j_ymthe_2021_03_003
crossref_primary_10_3390_cancers14081976
crossref_primary_10_1016_j_ccell_2022_10_024
crossref_primary_10_3390_cancers16010059
crossref_primary_10_1038_s41568_020_0281_y
crossref_primary_10_1016_j_immuni_2019_12_010
crossref_primary_10_1016_j_xcrm_2023_101386
crossref_primary_10_1016_j_xcrm_2023_101380
crossref_primary_10_1172_jci_insight_139237
crossref_primary_10_3389_fimmu_2020_02103
crossref_primary_10_3389_fonc_2022_897968
crossref_primary_10_1016_j_immuni_2021_09_005
crossref_primary_10_1016_j_cell_2021_07_015
crossref_primary_10_1007_s12672_023_00784_2
crossref_primary_10_1016_j_isci_2022_104962
crossref_primary_10_1016_j_cell_2019_10_003
crossref_primary_10_1016_j_immuni_2019_06_025
crossref_primary_10_1186_s13073_023_01164_9
crossref_primary_10_3390_nano14201669
crossref_primary_10_1186_s10020_024_00970_0
crossref_primary_10_1158_0008_5472_CAN_21_1230
crossref_primary_10_1002_jgm_3690
crossref_primary_10_1186_s13619_024_00195_w
crossref_primary_10_1016_j_bbcan_2024_189231
crossref_primary_10_1158_2767_9764_CRC_23_0319
crossref_primary_10_3389_fimmu_2020_585048
crossref_primary_10_1158_1078_0432_CCR_21_3145
crossref_primary_10_3390_cancers12071860
crossref_primary_10_1038_s41590_020_0661_1
crossref_primary_10_1111_sji_12889
crossref_primary_10_1158_2159_8290_CD_21_0316
crossref_primary_10_1186_s13059_022_02677_z
crossref_primary_10_1136_jitc_2021_003771
crossref_primary_10_1016_j_gde_2020_12_003
crossref_primary_10_3389_fimmu_2019_01786
crossref_primary_10_1158_0008_5472_CAN_21_3896
crossref_primary_10_3389_fcimb_2022_940906
crossref_primary_10_1038_s41598_020_80512_w
crossref_primary_10_1093_brain_awab203
crossref_primary_10_1038_s41467_020_20019_0
crossref_primary_10_1111_imm_13154
crossref_primary_10_1016_j_isci_2023_107273
crossref_primary_10_1126_sciadv_adn2136
crossref_primary_10_1038_s41597_023_02074_6
crossref_primary_10_1096_fj_202000181R
crossref_primary_10_1038_s41467_021_21043_4
crossref_primary_10_1038_s41388_021_01734_4
crossref_primary_10_1002_cam4_70387
crossref_primary_10_1038_s43018_022_00500_z
crossref_primary_10_1182_bloodadvances_2021005047
crossref_primary_10_3390_ijms21113930
crossref_primary_10_1038_s41591_019_0566_4
crossref_primary_10_1002_advs_202309026
crossref_primary_10_1038_s41467_021_21361_7
crossref_primary_10_1053_j_gastro_2022_11_029
crossref_primary_10_1007_s00262_023_03573_6
crossref_primary_10_1016_j_canlet_2023_216408
crossref_primary_10_1021_acs_analchem_0c03059
crossref_primary_10_1136_gutjnl_2021_326070
crossref_primary_10_1146_annurev_immunol_110519_071134
crossref_primary_10_1126_sciimmunol_abm9409
crossref_primary_10_1002_advs_202205442
crossref_primary_10_1016_j_celrep_2020_108164
crossref_primary_10_1590_0001_3765202420231212
crossref_primary_10_1016_j_bbamcr_2023_119493
crossref_primary_10_1055_s_0040_1721799
crossref_primary_10_1038_s41392_023_01542_0
crossref_primary_10_1002_cti2_1252
crossref_primary_10_1093_bioinformatics_btac141
crossref_primary_10_4049_jimmunol_2300674
crossref_primary_10_3390_cancers14030680
crossref_primary_10_1016_j_it_2020_12_001
crossref_primary_10_1053_j_gastro_2023_05_036
crossref_primary_10_1093_nargab_lqaf023
crossref_primary_10_1126_sciimmunol_adf2223
crossref_primary_10_1016_j_trecan_2021_01_007
crossref_primary_10_1016_j_esmoop_2021_100101
crossref_primary_10_1159_000530319
crossref_primary_10_2174_0113892029300608240531111743
crossref_primary_10_1016_j_bcp_2020_113963
crossref_primary_10_1016_j_ccell_2025_02_024
crossref_primary_10_3389_fonc_2021_800235
crossref_primary_10_1016_j_immuni_2020_05_014
crossref_primary_10_3389_fimmu_2019_02035
crossref_primary_10_1161_CIRCRESAHA_121_319153
crossref_primary_10_1186_s12935_024_03532_w
crossref_primary_10_1038_s42003_024_06111_x
crossref_primary_10_1146_annurev_pathmechdis_012418_013058
crossref_primary_10_1158_2326_6066_CIR_21_0265
crossref_primary_10_1186_s12885_021_08992_1
crossref_primary_10_1038_s44161_022_00028_6
crossref_primary_10_3389_fonc_2022_1022716
crossref_primary_10_1146_annurev_pathmechdis_051222_015009
crossref_primary_10_1016_j_bbcan_2021_188632
crossref_primary_10_3389_fimmu_2023_1256453
crossref_primary_10_1016_j_cytogfr_2024_07_005
crossref_primary_10_1016_j_immuni_2024_05_006
crossref_primary_10_1186_s13073_023_01256_6
crossref_primary_10_1016_j_ccell_2021_10_009
crossref_primary_10_3389_fimmu_2022_961601
crossref_primary_10_1016_j_celrep_2023_113560
crossref_primary_10_1038_s41571_023_00846_y
crossref_primary_10_1016_j_smim_2021_101481
crossref_primary_10_1038_s42003_024_07154_w
crossref_primary_10_1186_s12864_020_07358_4
crossref_primary_10_1016_j_cell_2021_09_019
crossref_primary_10_3389_fimmu_2021_756722
crossref_primary_10_1016_j_smim_2023_101848
crossref_primary_10_1002_path_5403
crossref_primary_10_1158_1078_0432_CCR_23_0219
crossref_primary_10_3389_fimmu_2022_908023
crossref_primary_10_1161_ATVBAHA_123_318974
crossref_primary_10_1126_sciimmunol_abi7083
crossref_primary_10_1038_s41568_023_00637_8
crossref_primary_10_1038_s41590_023_01645_4
crossref_primary_10_1016_j_imbio_2024_152836
crossref_primary_10_1038_s41420_024_01970_z
crossref_primary_10_1186_s12967_024_05307_3
crossref_primary_10_3389_fimmu_2023_1139391
crossref_primary_10_3389_fphar_2022_1095757
crossref_primary_10_1016_j_ccell_2019_05_007
crossref_primary_10_1016_j_scib_2024_11_012
crossref_primary_10_1172_JCI180893
crossref_primary_10_1097_MOH_0000000000000716
crossref_primary_10_1136_jitc_2024_010547
crossref_primary_10_1016_j_healun_2022_05_005
crossref_primary_10_1038_s41467_021_21789_x
crossref_primary_10_3389_fimmu_2024_1397469
crossref_primary_10_1016_j_ebiom_2023_104555
crossref_primary_10_1126_sciimmunol_adg7995
crossref_primary_10_1007_s00262_025_03950_3
crossref_primary_10_1172_jci_insight_184545
crossref_primary_10_1038_s41423_024_01216_z
crossref_primary_10_1007_s00262_022_03173_w
crossref_primary_10_3390_cells10010145
crossref_primary_10_1111_cas_15701
crossref_primary_10_1021_acsnano_1c09762
crossref_primary_10_1002_ctm2_422
crossref_primary_10_1186_s12864_024_11036_0
crossref_primary_10_1002_hed_27774
crossref_primary_10_1111_imr_13175
crossref_primary_10_1111_imr_13176
crossref_primary_10_3389_fimmu_2022_994319
crossref_primary_10_1111_imr_13177
crossref_primary_10_1016_j_cell_2021_11_017
crossref_primary_10_3389_fgene_2022_1012164
crossref_primary_10_3390_cancers14143424
crossref_primary_10_1136_jitc_2022_004533
crossref_primary_10_3390_cells10092406
crossref_primary_10_1080_2162402X_2024_2432726
crossref_primary_10_1038_s41467_023_37515_8
crossref_primary_10_1038_s41467_024_54874_y
crossref_primary_10_3390_ijms21155497
crossref_primary_10_1016_j_coph_2022_102191
crossref_primary_10_1158_0008_5472_CAN_24_0830
crossref_primary_10_3390_ijms24032020
crossref_primary_10_3389_fimmu_2020_01070
crossref_primary_10_1016_j_actbio_2021_03_038
crossref_primary_10_1172_JCI157649
crossref_primary_10_1038_s41413_022_00237_6
crossref_primary_10_1016_j_cellimm_2022_104579
crossref_primary_10_1016_j_cell_2021_09_014
crossref_primary_10_1084_jem_20240045
crossref_primary_10_2147_JIR_S506807
crossref_primary_10_3389_fimmu_2023_1190034
crossref_primary_10_1183_16000617_0060_2020
crossref_primary_10_3389_fgene_2021_756235
crossref_primary_10_1111_imcb_12787
crossref_primary_10_1111_jcmm_17493
crossref_primary_10_1039_D0CB00022A
crossref_primary_10_1016_j_xcrm_2022_100522
crossref_primary_10_1093_bioadv_vbae134
crossref_primary_10_1002_advs_202101501
crossref_primary_10_3389_fimmu_2022_883758
crossref_primary_10_1096_fj_202400240R
crossref_primary_10_1016_j_drup_2023_101041
crossref_primary_10_1172_jci_insight_136678
crossref_primary_10_3390_cells12060839
crossref_primary_10_1172_JCI148036
crossref_primary_10_5483_BMBRep_2021_54_1_224
crossref_primary_10_1016_j_trecan_2019_05_001
crossref_primary_10_1126_sciadv_aax9856
crossref_primary_10_3390_cells11213521
crossref_primary_10_1016_j_cell_2020_03_048
crossref_primary_10_1136_jitc_2019_000473
crossref_primary_10_1016_j_csbj_2023_08_029
crossref_primary_10_1016_j_jaci_2022_12_004
crossref_primary_10_1080_08820139_2022_2109486
crossref_primary_10_1016_j_isci_2022_104492
crossref_primary_10_1007_s00018_023_04923_4
crossref_primary_10_1016_j_ccell_2024_09_011
crossref_primary_10_1002_eji_202249923
crossref_primary_10_3390_cells12131673
crossref_primary_10_1038_s41467_024_44787_1
crossref_primary_10_1158_1078_0432_CCR_24_1690
crossref_primary_10_1016_j_ejim_2024_02_020
crossref_primary_10_1038_s41590_022_01267_2
crossref_primary_10_1158_0008_5472_CAN_22_1890
crossref_primary_10_1038_s41568_022_00547_1
crossref_primary_10_1371_journal_pbio_3000859
crossref_primary_10_1126_scitranslmed_abd1616
crossref_primary_10_7555_JBR_36_20220007
crossref_primary_10_1038_s41590_024_02029_y
crossref_primary_10_1136_jitc_2023_006896
crossref_primary_10_1126_scitranslmed_adk3160
crossref_primary_10_1016_j_tranon_2022_101568
crossref_primary_10_1016_j_cell_2024_06_012
crossref_primary_10_1038_s41590_023_01505_1
crossref_primary_10_2147_OTT_S295102
crossref_primary_10_1111_his_14463
crossref_primary_10_1016_j_ccell_2020_02_008
crossref_primary_10_1016_j_xcrm_2022_100779
crossref_primary_10_1093_bioinformatics_btae198
crossref_primary_10_1016_j_celrep_2022_111769
crossref_primary_10_1093_jleuko_qiae189
crossref_primary_10_1016_j_bbcan_2022_188762
crossref_primary_10_1186_s40164_023_00469_0
crossref_primary_10_1021_jacs_3c03477
crossref_primary_10_1016_j_it_2022_01_006
crossref_primary_10_1038_s41573_022_00520_5
crossref_primary_10_1038_s41591_021_01576_3
crossref_primary_10_1038_s41591_023_02371_y
crossref_primary_10_1038_s43018_024_00756_7
crossref_primary_10_3389_fimmu_2023_1238454
crossref_primary_10_1038_s41467_022_32052_2
crossref_primary_10_1038_s41698_024_00608_8
crossref_primary_10_1038_s41467_021_22801_0
crossref_primary_10_1111_imr_12944
crossref_primary_10_3390_cancers13030433
crossref_primary_10_3390_cells12060885
crossref_primary_10_1016_j_immuni_2021_10_020
crossref_primary_10_3389_fcell_2020_613116
crossref_primary_10_3389_fimmu_2023_1224045
crossref_primary_10_1038_s41467_021_21312_2
crossref_primary_10_2139_ssrn_3950749
crossref_primary_10_1038_s41590_022_01189_z
crossref_primary_10_1016_j_bbcan_2025_189291
crossref_primary_10_1016_j_molcel_2021_08_004
crossref_primary_10_1186_s13045_022_01335_y
crossref_primary_10_1093_bib_bbad341
crossref_primary_10_1080_14728222_2024_2374743
crossref_primary_10_1038_s41556_024_01546_0
crossref_primary_10_1002_mco2_658
crossref_primary_10_1186_s13045_024_01629_3
crossref_primary_10_1158_1078_0432_CCR_21_0792
crossref_primary_10_3390_cancers13112584
crossref_primary_10_1186_s13073_022_01050_w
crossref_primary_10_1038_s41568_023_00635_w
crossref_primary_10_3389_fddsv_2024_1495208
crossref_primary_10_1016_j_chembiol_2019_12_007
crossref_primary_10_1016_j_jid_2022_12_009
crossref_primary_10_1084_jem_20220011
crossref_primary_10_3389_fimmu_2023_1180402
crossref_primary_10_1038_s41698_023_00455_z
crossref_primary_10_1038_s43018_024_00830_0
crossref_primary_10_3389_fimmu_2024_1458035
crossref_primary_10_1016_j_cpt_2025_02_004
crossref_primary_10_1146_annurev_cancerbio_061521_085949
crossref_primary_10_1007_s10555_020_09931_5
crossref_primary_10_1002_1873_3468_15009
crossref_primary_10_1016_j_jaci_2023_08_010
crossref_primary_10_1038_s41467_024_46735_5
crossref_primary_10_1093_bioinformatics_btab711
crossref_primary_10_1038_s41467_023_41792_8
crossref_primary_10_3389_fimmu_2024_1498942
crossref_primary_10_1016_j_devcel_2024_10_010
crossref_primary_10_1002_cac2_12613
crossref_primary_10_3389_fimmu_2023_1214255
crossref_primary_10_1080_2162402X_2024_2384674
crossref_primary_10_1016_j_oraloncology_2024_107078
crossref_primary_10_3390_biology11060929
crossref_primary_10_1002_1873_3468_15017
crossref_primary_10_1016_j_it_2023_10_006
crossref_primary_10_1016_j_it_2023_10_009
crossref_primary_10_1038_s41586_022_05680_3
crossref_primary_10_1038_s41419_023_05983_x
crossref_primary_10_1158_0008_5472_CAN_20_0069
crossref_primary_10_1016_j_it_2021_10_007
crossref_primary_10_1016_j_smim_2020_101408
crossref_primary_10_1016_j_ccell_2023_02_005
crossref_primary_10_3389_fonc_2023_1136803
crossref_primary_10_1016_j_drup_2024_101175
crossref_primary_10_1016_j_ccell_2023_02_009
crossref_primary_10_1002_JLB_1MIR0420_076R
crossref_primary_10_1038_s41590_021_00920_6
crossref_primary_10_1111_cas_15698
crossref_primary_10_1172_jci_insight_168792
crossref_primary_10_1158_1078_0432_CCR_21_1694
crossref_primary_10_1016_j_smim_2020_101410
crossref_primary_10_1172_JCI178079
crossref_primary_10_1016_j_bbcan_2025_189264
crossref_primary_10_1038_s41598_021_93807_3
crossref_primary_10_1038_s41573_023_00688_4
crossref_primary_10_3389_fimmu_2022_931630
crossref_primary_10_1126_sciadv_aaz6105
crossref_primary_10_1038_s41422_023_00909_w
crossref_primary_10_1016_j_mucimm_2024_11_009
crossref_primary_10_1038_s41590_022_01312_0
crossref_primary_10_1080_14712598_2024_2357714
crossref_primary_10_1002_jcp_30139
crossref_primary_10_1007_s41999_024_01032_8
crossref_primary_10_1016_j_immuni_2021_03_010
crossref_primary_10_1038_s41586_022_05400_x
crossref_primary_10_1126_sciadv_aaz8521
crossref_primary_10_3389_fimmu_2021_734188
crossref_primary_10_1158_2767_9764_CRC_22_0017
crossref_primary_10_1038_s41590_020_0736_z
crossref_primary_10_1016_j_gpb_2023_06_003
crossref_primary_10_1016_j_ccell_2020_04_015
crossref_primary_10_3390_cancers14071681
crossref_primary_10_3390_cells12172147
crossref_primary_10_1038_s41590_019_0568_x
crossref_primary_10_1038_s41467_021_27599_5
crossref_primary_10_1016_j_celrep_2024_115023
crossref_primary_10_1158_0008_5472_CAN_21_3181
crossref_primary_10_1038_s41467_023_38134_z
crossref_primary_10_1136_jitc_2020_002242
crossref_primary_10_1038_s41467_022_34872_8
crossref_primary_10_3390_cancers13081850
crossref_primary_10_1002_cncy_22305
crossref_primary_10_1126_science_abi8175
crossref_primary_10_1007_s12032_023_02226_z
crossref_primary_10_1016_j_gendis_2021_12_012
crossref_primary_10_1177_0271678X211000137
crossref_primary_10_1038_s41467_023_36062_6
crossref_primary_10_1186_s13045_021_01105_2
crossref_primary_10_1016_j_xcrm_2024_101556
crossref_primary_10_1136_jitc_2019_000417
crossref_primary_10_1515_mr_2021_0014
crossref_primary_10_1016_j_isci_2024_111513
crossref_primary_10_1016_j_cbpa_2022_102117
crossref_primary_10_3390_cells10061323
crossref_primary_10_1016_j_it_2021_10_012
crossref_primary_10_1016_j_copbio_2023_102984
crossref_primary_10_1126_sciadv_adk8805
crossref_primary_10_1038_s41467_023_35832_6
crossref_primary_10_3389_fimmu_2021_689019
crossref_primary_10_1038_s41423_023_01061_6
crossref_primary_10_1016_j_it_2023_05_006
crossref_primary_10_3390_cancers15143691
crossref_primary_10_1016_j_isci_2020_100993
crossref_primary_10_1038_s41467_022_34271_z
crossref_primary_10_1002_cam4_70622
crossref_primary_10_1038_s42003_020_01463_6
crossref_primary_10_3389_fgene_2020_548719
crossref_primary_10_1016_j_ccell_2020_11_005
crossref_primary_10_3389_fimmu_2020_01779
crossref_primary_10_3389_fimmu_2022_938075
crossref_primary_10_1038_s44321_023_00013_x
crossref_primary_10_1002_JLB_5MR0321_170R
crossref_primary_10_1016_j_biopha_2023_115954
crossref_primary_10_1038_s41568_024_00761_z
crossref_primary_10_15252_embj_2022110757
crossref_primary_10_3389_fgene_2024_1417415
crossref_primary_10_3390_cells10082012
crossref_primary_10_3892_br_2024_1751
crossref_primary_10_1038_s41392_022_00990_4
crossref_primary_10_1146_annurev_immunol_090419_020340
crossref_primary_10_4049_jimmunol_2100867
crossref_primary_10_1007_s10911_021_09486_3
crossref_primary_10_1038_s41590_023_01495_0
crossref_primary_10_1080_2162402X_2021_1876597
crossref_primary_10_3390_biom14121496
crossref_primary_10_1172_JCI137585
crossref_primary_10_3389_fimmu_2021_786429
crossref_primary_10_3390_biomedicines10020431
crossref_primary_10_1016_j_csbj_2023_12_021
crossref_primary_10_3390_cells8121647
crossref_primary_10_3389_fimmu_2025_1501603
crossref_primary_10_1016_j_ccell_2020_05_001
crossref_primary_10_1371_journal_pone_0238509
crossref_primary_10_1093_neuonc_noab135
crossref_primary_10_1038_s41586_021_03651_8
crossref_primary_10_1210_endrev_bnab004
crossref_primary_10_1038_s41467_021_21865_2
crossref_primary_10_1038_s41698_022_00262_y
crossref_primary_10_1158_2159_8290_CD_22_0244
crossref_primary_10_1002_imt2_233
crossref_primary_10_3389_fimmu_2020_01513
crossref_primary_10_1016_j_jare_2024_10_008
crossref_primary_10_1038_s41577_020_00413_x
crossref_primary_10_1093_bib_bbab588
crossref_primary_10_1038_s41590_024_02006_5
crossref_primary_10_3390_cells11193028
crossref_primary_10_1126_sciadv_abd9738
crossref_primary_10_1016_j_ccell_2023_02_016
crossref_primary_10_1016_j_cell_2023_03_007
crossref_primary_10_3389_fimmu_2023_1194642
crossref_primary_10_1016_j_celrep_2021_110171
crossref_primary_10_1038_s41467_022_34175_y
crossref_primary_10_1073_pnas_2322356121
crossref_primary_10_1038_s41467_023_37674_8
crossref_primary_10_1038_s41588_023_01355_5
crossref_primary_10_1186_s12974_024_03294_2
crossref_primary_10_1093_bib_bbad512
crossref_primary_10_1126_sciimmunol_aaz1974
crossref_primary_10_1016_j_isci_2023_108094
crossref_primary_10_1038_s41590_020_00836_7
crossref_primary_10_1093_cei_uxac026
crossref_primary_10_1016_j_jare_2024_10_012
crossref_primary_10_1016_j_cell_2022_06_007
crossref_primary_10_3389_fcell_2021_686544
crossref_primary_10_3390_antiox13040477
crossref_primary_10_1016_j_imlet_2025_106970
crossref_primary_10_1038_s43018_022_00338_5
crossref_primary_10_1128_spectrum_05121_22
crossref_primary_10_1158_1078_0432_CCR_20_4717
crossref_primary_10_1038_s41586_024_07121_9
crossref_primary_10_1016_j_ccell_2023_12_005
crossref_primary_10_1038_s43587_023_00420_2
crossref_primary_10_1073_pnas_2110887118
crossref_primary_10_1002_ange_201915153
crossref_primary_10_1080_2162402X_2022_2085432
crossref_primary_10_1016_j_ccell_2020_06_012
crossref_primary_10_1158_0008_5472_CAN_20_2870
crossref_primary_10_1158_2159_8290_CD_21_0003
crossref_primary_10_1007_s13402_023_00816_7
crossref_primary_10_1038_s41467_024_51873_x
crossref_primary_10_1097_BS9_0000000000000013
crossref_primary_10_3389_fimmu_2022_900284
crossref_primary_10_1080_14728222_2021_1954162
crossref_primary_10_1111_imr_13301
crossref_primary_10_1136_jitc_2023_008254
crossref_primary_10_1172_JCI170501
crossref_primary_10_2139_ssrn_4151505
crossref_primary_10_1038_s41587_020_00801_7
crossref_primary_10_1158_1535_7163_MCT_24_0311
crossref_primary_10_1038_s43018_023_00695_9
crossref_primary_10_18632_aging_202288
crossref_primary_10_1038_s41467_021_26940_2
crossref_primary_10_1111_bph_17352
crossref_primary_10_1016_j_cell_2020_10_003
crossref_primary_10_1242_dmm_047340
crossref_primary_10_20517_cdr_2024_24
crossref_primary_10_1038_s41467_022_35615_5
crossref_primary_10_7554_eLife_46349
crossref_primary_10_1038_s41571_024_00926_7
crossref_primary_10_1038_s41408_019_0246_0
crossref_primary_10_1038_s41590_024_02065_8
crossref_primary_10_1136_jitc_2024_008983
crossref_primary_10_1038_s41467_022_29366_6
crossref_primary_10_3390_cancers14163846
crossref_primary_10_1016_j_chest_2024_02_013
crossref_primary_10_3389_fonc_2021_759894
crossref_primary_10_1038_s41423_020_00613_4
crossref_primary_10_1002_mco2_152
crossref_primary_10_1136_jitc_2021_003464
crossref_primary_10_3389_fimmu_2022_885267
crossref_primary_10_1002_advs_202401287
crossref_primary_10_1002_ctm2_1429
crossref_primary_10_1038_s41419_024_07020_x
crossref_primary_10_1126_scitranslmed_adk9145
crossref_primary_10_1038_s41467_024_54791_0
crossref_primary_10_1016_j_trecan_2022_02_006
crossref_primary_10_1002_ggn2_202200002
crossref_primary_10_1016_j_jbc_2023_104827
crossref_primary_10_1038_s41577_024_01091_9
crossref_primary_10_1093_bib_bbac625
crossref_primary_10_1002_ijc_33991
crossref_primary_10_1038_s41568_021_00347_z
crossref_primary_10_1093_genetics_iyae167
crossref_primary_10_3389_fimmu_2023_1288027
crossref_primary_10_1038_s41467_022_33758_z
crossref_primary_10_1084_jem_20202345
crossref_primary_10_3389_fimmu_2022_878740
crossref_primary_10_1016_j_scib_2025_02_043
crossref_primary_10_3390_cancers13174302
crossref_primary_10_1016_j_ymthe_2025_02_002
crossref_primary_10_1038_s41467_021_23330_6
crossref_primary_10_1038_s41388_023_02738_y
crossref_primary_10_1016_j_cell_2023_02_032
crossref_primary_10_1055_s_0043_1777704
crossref_primary_10_1128_JVI_00876_19
crossref_primary_10_1136_jitc_2023_007117
crossref_primary_10_1084_jem_20190457
crossref_primary_10_1016_j_jaci_2021_09_031
crossref_primary_10_1038_s41467_023_38426_4
crossref_primary_10_3389_fimmu_2019_01642
crossref_primary_10_1097_BOR_0000000000000887
crossref_primary_10_1186_s13045_020_01005_x
crossref_primary_10_1172_jci_insight_161042
crossref_primary_10_3390_cells12192404
crossref_primary_10_1016_j_gep_2024_119375
crossref_primary_10_1016_j_isci_2024_110854
crossref_primary_10_1016_j_devcel_2022_06_017
crossref_primary_10_1016_j_trecan_2022_10_006
crossref_primary_10_1038_s41467_019_13368_y
crossref_primary_10_1182_blood_2020007145
crossref_primary_10_1038_s43018_023_00599_8
crossref_primary_10_3390_cancers13235972
crossref_primary_10_1016_j_immuni_2020_07_006
crossref_primary_10_3389_fcell_2021_767897
crossref_primary_10_1016_j_immuni_2023_03_007
crossref_primary_10_1158_0008_5472_CAN_23_1698
crossref_primary_10_1021_acsnano_3c08034
crossref_primary_10_1038_s41591_019_0750_6
crossref_primary_10_1093_bioinformatics_btad449
crossref_primary_10_5227_skincancer_38_155
crossref_primary_10_4049_jimmunol_2300459
crossref_primary_10_1038_s41467_021_27322_4
crossref_primary_10_1136_jitc_2020_002045
crossref_primary_10_3389_fonc_2020_593085
crossref_primary_10_3389_fgene_2022_858808
crossref_primary_10_1007_s13258_023_01456_9
crossref_primary_10_1016_j_ccell_2021_01_011
crossref_primary_10_1016_j_celrep_2021_108948
crossref_primary_10_1038_s41571_024_00859_1
crossref_primary_10_1016_j_immuni_2020_07_017
crossref_primary_10_3389_fimmu_2021_715234
crossref_primary_10_3389_fonc_2022_817548
crossref_primary_10_1016_j_coi_2023_102345
crossref_primary_10_1016_j_xcrm_2023_101054
crossref_primary_10_1016_j_intimp_2024_112253
crossref_primary_10_1016_j_celrep_2020_108633
crossref_primary_10_26508_lsa_202201458
crossref_primary_10_1186_s13045_021_01156_5
crossref_primary_10_1136_jitc_2022_004807
crossref_primary_10_1158_1078_0432_CCR_19_1868
crossref_primary_10_1038_s43018_024_00731_2
crossref_primary_10_1126_science_ade2292
crossref_primary_10_3389_fimmu_2022_733800
crossref_primary_10_1007_s00432_024_05777_4
crossref_primary_10_3389_fimmu_2024_1325090
crossref_primary_10_3389_fonc_2022_892510
crossref_primary_10_3389_fimmu_2025_1527592
crossref_primary_10_3390_cancers11081082
crossref_primary_10_1136_jitc_2024_011308
crossref_primary_10_1002_adbi_201900307
crossref_primary_10_1093_bfgp_elad011
crossref_primary_10_3389_fgene_2022_867880
crossref_primary_10_1016_j_immuni_2024_12_009
crossref_primary_10_3390_cancers13153772
crossref_primary_10_1016_j_immuni_2020_12_003
crossref_primary_10_1126_sciimmunol_abj5761
crossref_primary_10_1016_j_cell_2020_09_058
crossref_primary_10_26508_lsa_202302332
crossref_primary_10_1038_s41467_024_49885_8
crossref_primary_10_1002_cti2_1108
crossref_primary_10_3389_fonc_2021_596798
crossref_primary_10_3389_fimmu_2019_02155
crossref_primary_10_1002_sctm_21_0264
crossref_primary_10_1017_erm_2022_8
crossref_primary_10_3389_fimmu_2020_571085
crossref_primary_10_1038_s41467_024_48700_8
crossref_primary_10_1002_pdi3_61
crossref_primary_10_1002_mco2_325
crossref_primary_10_3389_fonc_2020_01399
crossref_primary_10_1172_jci_insight_158183
crossref_primary_10_3390_cancers13092184
crossref_primary_10_1136_jitc_2022_005545
crossref_primary_10_1136_jitc_2022_004698
crossref_primary_10_1186_s40779_019_0222_9
crossref_primary_10_7554_eLife_52176
crossref_primary_10_3389_fimmu_2022_993771
crossref_primary_10_3389_fimmu_2022_882718
crossref_primary_10_1016_j_labinv_2023_100176
crossref_primary_10_1016_j_immuni_2021_07_007
crossref_primary_10_1186_s12935_024_03335_z
crossref_primary_10_1038_s41418_021_00866_0
crossref_primary_10_1093_jleuko_qiae222
crossref_primary_10_1128_mbio_02764_22
crossref_primary_10_1002_med_21876
crossref_primary_10_3389_fimmu_2022_1026954
crossref_primary_10_1111_cas_15800
crossref_primary_10_1038_s41467_022_35710_7
crossref_primary_10_1084_jem_20220509
crossref_primary_10_4110_in_2021_21_e31
crossref_primary_10_1016_j_ebiom_2022_104371
crossref_primary_10_1038_s41423_023_00990_6
crossref_primary_10_3390_life12050678
crossref_primary_10_3389_fphar_2021_676399
crossref_primary_10_4049_jimmunol_2400234
crossref_primary_10_1158_1078_0432_CCR_23_3616
crossref_primary_10_3389_fimmu_2021_723908
crossref_primary_10_3390_ijms232214466
crossref_primary_10_4049_jimmunol_1901046
crossref_primary_10_1016_j_cell_2023_08_043
crossref_primary_10_1002_advs_202400370
crossref_primary_10_1172_JCI162088
crossref_primary_10_1158_2326_6066_CIR_21_0326
crossref_primary_10_31083_j_fbl2908293
crossref_primary_10_1038_s41598_022_06500_4
crossref_primary_10_1097_MD_0000000000039300
crossref_primary_10_3389_fimmu_2023_1164448
crossref_primary_10_1158_0008_5472_CAN_22_3140
crossref_primary_10_1126_sciadv_adl1710
crossref_primary_10_1016_j_celrep_2024_114868
crossref_primary_10_1093_intimm_dxab027
crossref_primary_10_3390_vaccines8020208
crossref_primary_10_3389_fimmu_2022_1003419
crossref_primary_10_3389_fimmu_2022_1022136
crossref_primary_10_2147_LCTT_S430967
crossref_primary_10_1016_j_coi_2020_08_003
crossref_primary_10_1002_adma_202208782
crossref_primary_10_1002_eji_202149632
crossref_primary_10_1101_cshperspect_a041324
crossref_primary_10_1038_s41569_019_0326_7
crossref_primary_10_3389_fimmu_2022_1056144
crossref_primary_10_3390_cancers17030342
crossref_primary_10_1002_jev2_12390
crossref_primary_10_3389_fcell_2022_803947
crossref_primary_10_1002_wsbm_1458
crossref_primary_10_1016_j_lfs_2024_122896
crossref_primary_10_3390_cells10010018
crossref_primary_10_1097_JCMA_0000000000000535
crossref_primary_10_1016_j_celrep_2020_108472
crossref_primary_10_1186_s12967_024_05722_6
crossref_primary_10_1093_bioinformatics_btae028
crossref_primary_10_1158_2326_6066_CIR_23_1075
crossref_primary_10_1126_science_adf6493
crossref_primary_10_1038_s41573_020_0077_5
crossref_primary_10_1016_j_ccell_2023_06_008
crossref_primary_10_1371_journal_pgen_1011301
crossref_primary_10_1038_s41586_023_06803_0
crossref_primary_10_4046_trd_2023_0190
crossref_primary_10_1158_0008_5472_CAN_22_0094
crossref_primary_10_1093_bib_bbac180
crossref_primary_10_1016_j_lfs_2022_120466
crossref_primary_10_3389_fimmu_2020_00924
crossref_primary_10_1038_s12276_023_01028_7
crossref_primary_10_1038_s41586_024_08257_4
crossref_primary_10_1038_s41467_020_18207_z
crossref_primary_10_3390_cancers16122211
crossref_primary_10_1016_j_ccell_2021_04_004
crossref_primary_10_1016_j_immuni_2023_08_014
crossref_primary_10_1016_j_celrep_2022_110769
crossref_primary_10_1016_j_ebiom_2023_104452
crossref_primary_10_1158_1541_7786_MCR_20_0622
crossref_primary_10_1038_s41423_022_00936_4
crossref_primary_10_1038_s41568_022_00546_2
crossref_primary_10_3390_cancers14174278
crossref_primary_10_3389_fimmu_2021_711329
crossref_primary_10_1093_bib_bbae112
crossref_primary_10_1002_mco2_70063
crossref_primary_10_1016_j_jhep_2024_08_008
crossref_primary_10_1016_j_smim_2021_101538
crossref_primary_10_1158_2326_6066_CIR_23_0642
crossref_primary_10_1038_s41590_023_01504_2
crossref_primary_10_1136_jitc_2020_001204
crossref_primary_10_1016_j_resinv_2024_07_013
crossref_primary_10_7554_eLife_63003
crossref_primary_10_1016_j_smim_2021_101546
crossref_primary_10_1038_s42003_025_07515_z
crossref_primary_10_1016_j_ebiom_2020_102686
crossref_primary_10_3389_fimmu_2023_1194745
crossref_primary_10_3389_fimmu_2024_1287459
crossref_primary_10_1093_jleuko_qiae042
crossref_primary_10_1093_bib_bbad294
crossref_primary_10_3389_fimmu_2021_697840
crossref_primary_10_3389_fphar_2023_1113182
crossref_primary_10_1038_s41590_022_01153_x
crossref_primary_10_1126_sciimmunol_adq8843
crossref_primary_10_3389_fimmu_2023_1285540
crossref_primary_10_1038_s41591_021_01579_0
crossref_primary_10_3390_cancers14030510
crossref_primary_10_1016_j_smim_2021_101506
crossref_primary_10_3390_cells11101720
crossref_primary_10_1186_s12915_020_00947_5
crossref_primary_10_1038_s42003_024_06478_x
crossref_primary_10_3389_fimmu_2019_01907
crossref_primary_10_1038_s41586_021_03626_9
crossref_primary_10_1016_j_trecan_2024_01_010
crossref_primary_10_1038_s43018_024_00855_5
crossref_primary_10_1002_ctm2_70009
crossref_primary_10_1158_2767_9764_CRC_22_0513
crossref_primary_10_1007_s11864_024_01256_7
crossref_primary_10_3389_fimmu_2022_941976
crossref_primary_10_1007_s13402_025_01051_y
crossref_primary_10_1093_bib_bbad042
crossref_primary_10_3389_fimmu_2021_827611
crossref_primary_10_3390_cancers12113342
crossref_primary_10_1016_j_xcrm_2022_100657
crossref_primary_10_1038_s43018_023_00612_0
crossref_primary_10_1016_j_cell_2021_01_010
crossref_primary_10_1016_j_gpb_2021_01_007
crossref_primary_10_1186_s13046_020_01781_x
crossref_primary_10_3390_ijms232113258
crossref_primary_10_1038_s41577_022_00675_7
crossref_primary_10_1016_j_csbj_2021_10_027
crossref_primary_10_1002_eji_202048881
crossref_primary_10_1038_s41556_023_01208_7
crossref_primary_10_3390_cancers14164037
crossref_primary_10_1016_j_eng_2022_11_006
crossref_primary_10_3389_fgene_2020_00942
crossref_primary_10_1016_j_stem_2021_04_002
crossref_primary_10_1038_s41467_022_29516_w
crossref_primary_10_1126_sciimmunol_adf4726
crossref_primary_10_1172_jci_insight_167042
crossref_primary_10_1158_2767_9764_CRC_22_0334
crossref_primary_10_1136_jitc_2023_006714
crossref_primary_10_1038_s41467_021_26214_x
crossref_primary_10_1093_bib_bbab039
crossref_primary_10_4049_immunohorizons_2200079
crossref_primary_10_1016_j_celrep_2022_110977
crossref_primary_10_1136_jitc_2022_005560
crossref_primary_10_3389_fimmu_2021_787116
crossref_primary_10_1152_ajpcell_00652_2023
crossref_primary_10_3389_fcell_2021_797984
crossref_primary_10_1186_s12859_022_04861_1
crossref_primary_10_1016_j_cmet_2023_07_001
crossref_primary_10_1172_JCI143759
crossref_primary_10_1016_j_omtn_2024_102315
crossref_primary_10_1002_ctm2_1199
crossref_primary_10_1016_j_bcp_2019_113672
crossref_primary_10_1016_j_cell_2022_10_006
crossref_primary_10_1158_2159_8290_CD_23_0299
crossref_primary_10_1016_j_it_2020_08_008
crossref_primary_10_1038_s41588_022_01134_8
crossref_primary_10_1016_j_immuni_2023_07_019
crossref_primary_10_1016_j_xgen_2022_100211
crossref_primary_10_1038_s41593_020_00789_y
crossref_primary_10_1038_s41556_019_0378_2
crossref_primary_10_1155_2022_8655343
crossref_primary_10_1016_j_jconrel_2024_05_006
crossref_primary_10_3389_fimmu_2020_00938
crossref_primary_10_1084_jem_20210562
crossref_primary_10_1084_jem_20210564
crossref_primary_10_1186_s40164_023_00459_2
crossref_primary_10_1161_CIRCRESAHA_120_317200
crossref_primary_10_1007_s11427_020_1853_4
crossref_primary_10_1080_07853890_2024_2418338
crossref_primary_10_3390_cells10092364
crossref_primary_10_1002_eji_202149487
crossref_primary_10_1007_s40259_024_00700_2
crossref_primary_10_3390_cells10040960
crossref_primary_10_1038_s41591_019_0736_4
crossref_primary_10_1172_JCI174249
crossref_primary_10_1172_jci_insight_148510
Cites_doi 10.1016/j.immuni.2018.09.024
10.1109/TSMC.1979.4310076
10.1182/blood-2009-07-235028
10.1007/s13238-018-0505-z
10.1038/nmeth.3337
10.1126/science.aah4573
10.1126/science.aaa8172
10.1016/j.immuni.2017.04.018
10.1038/nm.3909
10.1038/ni.2419
10.1016/j.ccell.2016.06.003
10.1136/jmedgenet-2015-103690
10.1038/nprot.2016.154
10.1016/j.jaci.2017.12.988
10.1016/j.cellimm.2014.08.006
10.1038/s41577-018-0088-1
10.1038/nri3671
10.1016/j.cell.2015.04.044
10.1038/s41590-018-0051-0
10.1093/bioinformatics/btx792
10.1038/ni1008-1091
10.3109/08820139.2012.680634
10.1126/science.aar5780
10.1016/j.immuni.2015.11.024
10.1126/science.1247651
10.1007/s10875-017-0434-2
10.1016/j.immuni.2016.07.019
10.1172/JCI77053
10.1111/j.1600-065X.2011.01067.x
10.1038/nature08118
10.1371/journal.pone.0082241
10.1016/j.jmoldx.2011.08.002
10.1016/j.ccell.2014.09.007
10.1038/nrc.2016.52
10.1016/j.immuni.2016.08.015
10.1126/science.aar4362
10.1126/science.aag3009
10.1126/science.aal5081
10.1038/s41591-018-0014-x
10.1038/nrc.2016.54
10.1038/nrclinonc.2016.217
10.1182/blood-2013-02-484188
10.1038/ncomms14049
10.1038/ni.3324
10.1006/cgip.1994.1037
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
2019. Elsevier Inc.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
– notice: 2019. Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1016/j.immuni.2019.03.009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Nursing and Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Nursing & Allied Health Premium
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Virology and AIDS Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1097-4180
EndPage 1334.e10
ExternalDocumentID PMC6620049
30979687
10_1016_j_immuni_2019_03_009
S1074761319301268
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Singapore
GeographicLocations_xml – name: Singapore
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R35 CA197697
– fundername: NCI NIH HHS
  grantid: R33 CA212697
– fundername: NHLBI NIH HHS
  grantid: P01 HL131477
– fundername: NIAID NIH HHS
  grantid: R01 AI084880
– fundername: NCI NIH HHS
  grantid: R01 CA218579
– fundername: NCI NIH HHS
  grantid: P50 CA086355
– fundername: NCI NIH HHS
  grantid: R01 CA206890
GroupedDBID ---
--K
-DZ
0R~
0SF
1RT
1~5
2WC
4.4
457
4G.
53G
5GY
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAVLU
AAXUO
ABMAC
ABOCM
ABVKL
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADEZE
ADFRT
ADVLN
AEFWE
AENEX
AEXQZ
AFKRA
AFRAH
AFTJW
AGGSO
AGKMS
AHMBA
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BPHCQ
BVXVI
C45
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HCIFZ
IH2
IHE
IXB
J1W
JIG
LK8
LX5
M2O
M3Z
M41
M7P
N9A
O-L
O9-
OK1
OVD
P2P
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SES
SSZ
TEORI
TR2
.55
.GJ
29I
5VS
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AHHHB
AIGII
AKBMS
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
OHT
OZT
R2-
UHS
X7M
Y6R
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
EFKBS
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c557t-ef85dfd6c8f23b6ad54a0ddb57edd0ffc61cdca692dc661d610870a64c02ca363
IEDL.DBID IXB
ISSN 1074-7613
1097-4180
IngestDate Thu Aug 21 13:40:47 EDT 2025
Sat Sep 27 21:27:20 EDT 2025
Fri Jul 25 10:39:58 EDT 2025
Thu Apr 03 07:01:47 EDT 2025
Thu Apr 24 23:11:01 EDT 2025
Tue Jul 01 01:58:41 EDT 2025
Tue Jul 16 04:31:01 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords macrophage heterogeneity
tumor immunology
myeloid cells
neutrophil heterogeneity
dendritic cell heterogeneity
mouse-human comparison
tumor microenvironment
single-cell analysis
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c557t-ef85dfd6c8f23b6ad54a0ddb57edd0ffc61cdca692dc661d610870a64c02ca363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Lead Contact: Allon M. Klein
RZ, CE, CP, VS, MJP and AMK initiated the study, performed the analyses, prepared the figures and wrote the manuscript. CE and CP carried out mouse experiments and prepared mouse samples. RZ and VS carried out scRNA-Seq experiments and computational analyses. DZ developed the Bayesian classifier and assisted in data analysis. HDS performed RNA in situ hybridization and immunohistochemical analysis on patient tumor sections. CVM, CMK, SC, WGR, ADR, IK, GM, EL, DGT, and RB obtained and prepared human patient samples, specifically: CVM, CMK and SC consented patients, maintained IRB approval, obtained blood, gathered clinical data and provided the specimens; WGR, ADR helped in the design of sample collection, provided infrastructure and quality assurance; RB supervised human sample collection and processing, initiated the collaboration, reviewed the work and provided clinical context. IK and GM processed patient samples; EL and DGT initiated the collaboration and coordinated patient sample experiments. AMK and MJP supervised the study.
These authors contributed equally
Author contributions
OpenAccessLink http://www.cell.com/article/S1074761319301268/pdf
PMID 30979687
PQID 2228583998
PQPubID 2031079
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6620049
proquest_miscellaneous_2209601952
proquest_journals_2228583998
pubmed_primary_30979687
crossref_citationtrail_10_1016_j_immuni_2019_03_009
crossref_primary_10_1016_j_immuni_2019_03_009
elsevier_sciencedirect_doi_10_1016_j_immuni_2019_03_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-21
PublicationDateYYYYMMDD 2019-05-21
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Immunity (Cambridge, Mass.)
PublicationTitleAlternate Immunity
PublicationYear 2019
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Wagner, Weinreb, Collins, Briggs, Megason, Klein (bib40) 2018; 360
Zemmour, Zilionis, Kiner, Klein, Mathis, Benoist (bib45) 2018; 19
Gautier, Shay, Miller, Greter, Jakubzick, Ivanov, Helft, Chow, Elpek, Gordonov (bib14) 2012; 13
Bogaert, Dullaers, Lambrecht, Vermaelen, De Baere, Haerynck (bib3) 2016; 53
Coffelt, Wellenstein, de Visser (bib7) 2016; 16
Klein, Mazutis, Akartuna, Tallapragada, Veres, Li, Peshkin, Weitz, Kirschner (bib25) 2015; 161
Binnewies, Roberts, Kersten, Chan, Fearon, Merad, Coussens, Gabrilovich, Ostrand-Rosenberg, Hedrick (bib2) 2018; 24
See, Dutertre, Chen, Günther, McGovern, Irac, Gunawan, Beyer, Händler, Duan (bib36) 2017; 356
Zheng, Terry, Belgrader, Ryvkin, Bent, Wilson, Ziraldo, Wheeler, McDermott, Zhu (bib46) 2017; 8
Győrffy, Surowiak, Budczies, Lánczky (bib20) 2013; 8
Roberts, Broz, Binnewies, Headley, Nelson, Wolf, Kaisho, Bogunovic, Bhardwaj, Krummel (bib33) 2016; 30
Ardouin, Luche, Chelbi, Carpentier, Shawket, Montanana Sanchis, Santa Maria, Grenot, Alexandre, Grégoire (bib1) 2016; 45
Dutertre, Wang, Ginhoux (bib8) 2014; 291
Gentles, Newman, Liu, Bratman, Feng, Kim, Nair, Xu, Khuong, Hoang (bib15) 2015; 21
Guffroy, Mourot-Cottet, Gérard, Gies, Lagresle, Pouliet, Nitschké, Hanein, Bienvenu, Chanet (bib18) 2017; 37
Otsu (bib29) 1979; 9
Sharma, Allison (bib38) 2015; 348
Zanoni, Ostuni, Capuano, Collini, Caccia, Ronchi, Rocchetti, Mingozzi, Foti, Chirico (bib44) 2009; 460
Briggs, Weinreb, Wagner, Megason, Peshkin, Kirschner, Klein (bib4) 2018; 360
Wolock, Lopez, Klein (bib43) 2018
Newman, Liu, Green, Gentles, Feng, Xu, Hoang, Diehn, Alizadeh (bib28) 2015; 12
Eisenbarth (bib9) 2019; 19
Mildner, Schonheit, Giladi, David, Lara-Astiaso, Lorenzo-Vivas, Paul, Chappell-Maor, Priller, Leutz (bib27) 2017; 46
Zilionis, Nainys, Veres, Savova, Zemmour, Klein, Mazutis (bib47) 2017; 12
Rickert, Jellusova, Miletic (bib32) 2011; 244
Engblom, Pfirschke, Pittet (bib10) 2016; 16
Eruslanov, Bhojnagarwala, Quatromoni, Stephen, Ranganathan, Deshpande, Akimova, Vachani, Litzky, Hancock (bib12) 2014; 124
Guilliams, Dutertre, Scott, McGovern, Sichien, Chakarov, Van Gassen, Chen, Poidinger, De Prijck (bib19) 2016; 45
Broz, Binnewies, Boldajipour, Nelson, Pollack, Erle, Barczak, Rosenblum, Daud, Barber (bib5) 2014; 26
Weinreb, Wolock, Klein (bib42) 2018; 34
Garris, Arlauckas, Kohler, Trefny, Garren, Piot, Engblom, Pfirschke, Siwicki, Gungabeesoon (bib13) 2018; 49
Wang, Flanagan, Su, Wang, Bui, Nielson, Wu, Vo, Ma, Luo (bib41) 2012; 14
Heng, Painter (bib21) 2008; 9
Hou, Zhu, Tian, Sun, Wang, Zhang, Zhao (bib22) 2018; 9
Ingersoll, Spanbroek, Lottaz, Gautier, Frankenberger, Hoffmann, Lang, Haniffa, Collin, Tacke (bib23) 2010; 115
Raber, Ochoa, Rodríguez (bib31) 2012; 41
Calzetti, Tamassia, Micheletti, Finotti, Bianchetto-Aguilera, Cassatella (bib6) 2018; 141
Schmidl, Renner, Peter, Eder, Lassmann, Balwierz, Itoh, Nagao-Sato, Kawaji, Carninci (bib35) 2014; 123
Ruifrok, Johnston (bib34) 2001; 23
Engblom, Pfirschke, Zilionis, Da Silva Martins, Bos, Courties, Rickelt, Severe, Baryawno, Faget (bib11) 2017; 358
Villani, Satija, Reynolds, Sarkizova, Shekhar, Fletcher, Griesbeck, Butler, Zheng, Lazo (bib39) 2017; 356
Jaitin, Kenigsberg, Keren-Shaul, Elefant, Paul, Zaretsky, Mildner, Cohen, Jung, Tanay, Amit (bib24) 2014; 343
Shanbhag (bib37) 1994; 56
Ginhoux, Schultze, Murray, Ochando, Biswas (bib17) 2016; 17
Mantovani, Marchesi, Malesci, Laghi, Allavena (bib26) 2017; 14
Pfirschke, Engblom, Rickelt, Cortez-Retamozo, Garris, Pucci, Yamazaki, Poirier-Colame, Newton, Redouane (bib30) 2016; 44
Ginhoux, Jung (bib16) 2014; 14
Wang (10.1016/j.immuni.2019.03.009_bib41) 2012; 14
Dutertre (10.1016/j.immuni.2019.03.009_bib8) 2014; 291
Ingersoll (10.1016/j.immuni.2019.03.009_bib23) 2010; 115
Calzetti (10.1016/j.immuni.2019.03.009_bib6) 2018; 141
Eruslanov (10.1016/j.immuni.2019.03.009_bib12) 2014; 124
Zilionis (10.1016/j.immuni.2019.03.009_bib47) 2017; 12
Guffroy (10.1016/j.immuni.2019.03.009_bib18) 2017; 37
Hou (10.1016/j.immuni.2019.03.009_bib22) 2018; 9
See (10.1016/j.immuni.2019.03.009_bib36) 2017; 356
Ginhoux (10.1016/j.immuni.2019.03.009_bib16) 2014; 14
Gautier (10.1016/j.immuni.2019.03.009_bib14) 2012; 13
Engblom (10.1016/j.immuni.2019.03.009_bib11) 2017; 358
Otsu (10.1016/j.immuni.2019.03.009_bib29) 1979; 9
Binnewies (10.1016/j.immuni.2019.03.009_bib2) 2018; 24
Eisenbarth (10.1016/j.immuni.2019.03.009_bib9) 2019; 19
Weinreb (10.1016/j.immuni.2019.03.009_bib42) 2018; 34
Zemmour (10.1016/j.immuni.2019.03.009_bib45) 2018; 19
Ginhoux (10.1016/j.immuni.2019.03.009_bib17) 2016; 17
Shanbhag (10.1016/j.immuni.2019.03.009_bib37) 1994; 56
Guilliams (10.1016/j.immuni.2019.03.009_bib19) 2016; 45
Zheng (10.1016/j.immuni.2019.03.009_bib46) 2017; 8
Roberts (10.1016/j.immuni.2019.03.009_bib33) 2016; 30
Coffelt (10.1016/j.immuni.2019.03.009_bib7) 2016; 16
Wolock (10.1016/j.immuni.2019.03.009_bib43) 2018
Sharma (10.1016/j.immuni.2019.03.009_bib38) 2015; 348
Jaitin (10.1016/j.immuni.2019.03.009_bib24) 2014; 343
Wagner (10.1016/j.immuni.2019.03.009_bib40) 2018; 360
Heng (10.1016/j.immuni.2019.03.009_bib21) 2008; 9
Zanoni (10.1016/j.immuni.2019.03.009_bib44) 2009; 460
Pfirschke (10.1016/j.immuni.2019.03.009_bib30) 2016; 44
Győrffy (10.1016/j.immuni.2019.03.009_bib20) 2013; 8
Rickert (10.1016/j.immuni.2019.03.009_bib32) 2011; 244
Broz (10.1016/j.immuni.2019.03.009_bib5) 2014; 26
Garris (10.1016/j.immuni.2019.03.009_bib13) 2018; 49
Raber (10.1016/j.immuni.2019.03.009_bib31) 2012; 41
Klein (10.1016/j.immuni.2019.03.009_bib25) 2015; 161
Villani (10.1016/j.immuni.2019.03.009_bib39) 2017; 356
Briggs (10.1016/j.immuni.2019.03.009_bib4) 2018; 360
Ruifrok (10.1016/j.immuni.2019.03.009_bib34) 2001; 23
Mantovani (10.1016/j.immuni.2019.03.009_bib26) 2017; 14
Bogaert (10.1016/j.immuni.2019.03.009_bib3) 2016; 53
Mildner (10.1016/j.immuni.2019.03.009_bib27) 2017; 46
Schmidl (10.1016/j.immuni.2019.03.009_bib35) 2014; 123
Engblom (10.1016/j.immuni.2019.03.009_bib10) 2016; 16
Newman (10.1016/j.immuni.2019.03.009_bib28) 2015; 12
Gentles (10.1016/j.immuni.2019.03.009_bib15) 2015; 21
Ardouin (10.1016/j.immuni.2019.03.009_bib1) 2016; 45
References_xml – volume: 141
  start-page: 2276
  year: 2018
  end-page: 2279.e3
  ident: bib6
  article-title: Human dendritic cell subset 4 (DC4) correlates to a subset of CD14
  publication-title: J. Allergy Clin. Immunol.
– volume: 8
  start-page: 14049
  year: 2017
  ident: bib46
  article-title: Massively parallel digital transcriptional profiling of single cells
  publication-title: Nat. Commun.
– volume: 45
  start-page: 305
  year: 2016
  end-page: 318
  ident: bib1
  article-title: Broad and largely concordant molecular changes characterize tolerogenic and immunogenic dendritic cell maturation in thymus and periphery
  publication-title: Immunity
– volume: 41
  start-page: 614
  year: 2012
  end-page: 634
  ident: bib31
  article-title: Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives
  publication-title: Immunol. Invest.
– volume: 360
  start-page: eaar5780
  year: 2018
  ident: bib4
  article-title: The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution
  publication-title: Science
– volume: 16
  start-page: 431
  year: 2016
  end-page: 446
  ident: bib7
  article-title: Neutrophils in cancer: neutral no more
  publication-title: Nat. Rev. Cancer
– volume: 9
  start-page: 1091
  year: 2008
  end-page: 1094
  ident: bib21
  article-title: The Immunological Genome Project: networks of gene expression in immune cells
  publication-title: Nat. Immunol.
– volume: 13
  start-page: 1118
  year: 2012
  end-page: 1128
  ident: bib14
  article-title: Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages
  publication-title: Nat. Immunol.
– volume: 343
  start-page: 776
  year: 2014
  end-page: 779
  ident: bib24
  article-title: Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types
  publication-title: Science
– volume: 24
  start-page: 541
  year: 2018
  end-page: 550
  ident: bib2
  article-title: Understanding the tumor immune microenvironment (TIME) for effective therapy
  publication-title: Nat. Med.
– volume: 356
  start-page: 356
  year: 2017
  ident: bib36
  article-title: Mapping the human DC lineage through the integration of high-dimensional techniques
  publication-title: Science
– volume: 123
  start-page: e90
  year: 2014
  end-page: e99
  ident: bib35
  article-title: Transcription and enhancer profiling in human monocyte subsets
  publication-title: Blood
– volume: 12
  start-page: 453
  year: 2015
  end-page: 457
  ident: bib28
  article-title: Robust enumeration of cell subsets from tissue expression profiles
  publication-title: Nat. Methods
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: bib29
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 16
  start-page: 447
  year: 2016
  end-page: 462
  ident: bib10
  article-title: The role of myeloid cells in cancer therapies
  publication-title: Nat. Rev. Cancer
– volume: 12
  start-page: 44
  year: 2017
  end-page: 73
  ident: bib47
  article-title: Single-cell barcoding and sequencing using droplet microfluidics
  publication-title: Nat. Protoc.
– volume: 291
  start-page: 3
  year: 2014
  end-page: 10
  ident: bib8
  article-title: Aligning bona fide dendritic cell populations across species
  publication-title: Cell. Immunol.
– volume: 53
  start-page: 575
  year: 2016
  end-page: 590
  ident: bib3
  article-title: Genes associated with common variable immunodeficiency: one diagnosis to rule them all?
  publication-title: J. Med. Genet.
– volume: 17
  start-page: 34
  year: 2016
  end-page: 40
  ident: bib17
  article-title: New insights into the multidimensional concept of macrophage ontogeny, activation and function
  publication-title: Nat. Immunol.
– volume: 45
  start-page: 669
  year: 2016
  end-page: 684
  ident: bib19
  article-title: Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species
  publication-title: Immunity
– volume: 8
  start-page: e82241
  year: 2013
  ident: bib20
  article-title: Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer
  publication-title: PLoS ONE
– volume: 37
  start-page: 715
  year: 2017
  end-page: 726
  ident: bib18
  article-title: Neutropenia in patients with common variable immunodeficiency: a rare event associated with severe outcome
  publication-title: J. Clin. Immunol.
– volume: 348
  start-page: 56
  year: 2015
  end-page: 61
  ident: bib38
  article-title: The future of immune checkpoint therapy
  publication-title: Science
– volume: 30
  start-page: 324
  year: 2016
  end-page: 336
  ident: bib33
  article-title: Critical Role for CD103
  publication-title: Cancer Cell
– volume: 124
  start-page: 5466
  year: 2014
  end-page: 5480
  ident: bib12
  article-title: Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer
  publication-title: J. Clin. Invest.
– volume: 19
  start-page: 291
  year: 2018
  end-page: 301
  ident: bib45
  article-title: Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR
  publication-title: Nat. Immunol.
– volume: 14
  start-page: 399
  year: 2017
  end-page: 416
  ident: bib26
  article-title: Tumour-associated macrophages as treatment targets in oncology
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 49
  start-page: 1148
  year: 2018
  end-page: 1161.e7
  ident: bib13
  article-title: Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12
  publication-title: Immunity
– volume: 26
  start-page: 638
  year: 2014
  end-page: 652
  ident: bib5
  article-title: Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity
  publication-title: Cancer Cell
– volume: 21
  start-page: 938
  year: 2015
  end-page: 945
  ident: bib15
  article-title: The prognostic landscape of genes and infiltrating immune cells across human cancers
  publication-title: Nat. Med.
– volume: 46
  start-page: 849
  year: 2017
  end-page: 862
  ident: bib27
  article-title: Genomic Characterization of Murine Monocytes Reveals C/EBPbeta Transcription Factor Dependence of Ly6C− Cells
  publication-title: Immunity
– volume: 14
  start-page: 22
  year: 2012
  end-page: 29
  ident: bib41
  article-title: RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues
  publication-title: J. Mol. Diagn.
– volume: 44
  start-page: 343
  year: 2016
  end-page: 354
  ident: bib30
  article-title: Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy
  publication-title: Immunity
– volume: 56
  start-page: 414
  year: 1994
  end-page: 419
  ident: bib37
  article-title: Utilization of information measure as a means of image thresholding
  publication-title: CVGIP Graph. Models Image Process.
– year: 2018
  ident: bib43
  article-title: Scrublet: computational identification of cell doublets in single-cell transcriptomic data
  publication-title: bioRxiv
– volume: 14
  start-page: 392
  year: 2014
  end-page: 404
  ident: bib16
  article-title: Monocytes and macrophages: developmental pathways and tissue homeostasis
  publication-title: Nat. Rev. Immunol.
– volume: 19
  start-page: 89
  year: 2019
  end-page: 103
  ident: bib9
  article-title: Dendritic cell subsets in T cell programming: location dictates function
  publication-title: Nat. Rev. Immunol.
– volume: 23
  start-page: 291
  year: 2001
  end-page: 299
  ident: bib34
  article-title: Quantification of histochemical staining by color deconvolution
  publication-title: Anal. Quant. Cytol. Histol.
– volume: 244
  start-page: 115
  year: 2011
  end-page: 133
  ident: bib32
  article-title: Signaling by the tumor necrosis factor receptor superfamily in B-cell biology and disease
  publication-title: Immunol. Rev.
– volume: 161
  start-page: 1187
  year: 2015
  end-page: 1201
  ident: bib25
  article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
  publication-title: Cell
– volume: 9
  start-page: 1027
  year: 2018
  end-page: 1038
  ident: bib22
  article-title: IL-23-induced macrophage polarization and its pathological roles in mice with imiquimod-induced psoriasis
  publication-title: Protein Cell
– volume: 360
  start-page: 981
  year: 2018
  end-page: 987
  ident: bib40
  article-title: Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo
  publication-title: Science
– volume: 358
  start-page: eaal5081
  year: 2017
  ident: bib11
  article-title: Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF
  publication-title: Science
– volume: 460
  start-page: 264
  year: 2009
  end-page: 268
  ident: bib44
  article-title: CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation
  publication-title: Nature
– volume: 115
  start-page: e10
  year: 2010
  end-page: e19
  ident: bib23
  article-title: Comparison of gene expression profiles between human and mouse monocyte subsets
  publication-title: Blood
– volume: 34
  start-page: 1246
  year: 2018
  end-page: 1248
  ident: bib42
  article-title: SPRING: a kinetic interface for visualizing high dimensional single-cell expression data
  publication-title: Bioinformatics
– volume: 356
  start-page: 356
  year: 2017
  ident: bib39
  article-title: Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
  publication-title: Science
– volume: 49
  start-page: 1148
  year: 2018
  ident: 10.1016/j.immuni.2019.03.009_bib13
  article-title: Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.09.024
– volume: 9
  start-page: 62
  year: 1979
  ident: 10.1016/j.immuni.2019.03.009_bib29
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1979.4310076
– volume: 115
  start-page: e10
  year: 2010
  ident: 10.1016/j.immuni.2019.03.009_bib23
  article-title: Comparison of gene expression profiles between human and mouse monocyte subsets
  publication-title: Blood
  doi: 10.1182/blood-2009-07-235028
– volume: 9
  start-page: 1027
  year: 2018
  ident: 10.1016/j.immuni.2019.03.009_bib22
  article-title: IL-23-induced macrophage polarization and its pathological roles in mice with imiquimod-induced psoriasis
  publication-title: Protein Cell
  doi: 10.1007/s13238-018-0505-z
– volume: 12
  start-page: 453
  year: 2015
  ident: 10.1016/j.immuni.2019.03.009_bib28
  article-title: Robust enumeration of cell subsets from tissue expression profiles
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3337
– volume: 356
  start-page: 356
  year: 2017
  ident: 10.1016/j.immuni.2019.03.009_bib39
  article-title: Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
  publication-title: Science
  doi: 10.1126/science.aah4573
– volume: 348
  start-page: 56
  year: 2015
  ident: 10.1016/j.immuni.2019.03.009_bib38
  article-title: The future of immune checkpoint therapy
  publication-title: Science
  doi: 10.1126/science.aaa8172
– volume: 46
  start-page: 849
  year: 2017
  ident: 10.1016/j.immuni.2019.03.009_bib27
  article-title: Genomic Characterization of Murine Monocytes Reveals C/EBPbeta Transcription Factor Dependence of Ly6C− Cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.04.018
– volume: 21
  start-page: 938
  year: 2015
  ident: 10.1016/j.immuni.2019.03.009_bib15
  article-title: The prognostic landscape of genes and infiltrating immune cells across human cancers
  publication-title: Nat. Med.
  doi: 10.1038/nm.3909
– volume: 13
  start-page: 1118
  year: 2012
  ident: 10.1016/j.immuni.2019.03.009_bib14
  article-title: Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2419
– volume: 30
  start-page: 324
  year: 2016
  ident: 10.1016/j.immuni.2019.03.009_bib33
  article-title: Critical Role for CD103+/CD141+ dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.06.003
– volume: 53
  start-page: 575
  year: 2016
  ident: 10.1016/j.immuni.2019.03.009_bib3
  article-title: Genes associated with common variable immunodeficiency: one diagnosis to rule them all?
  publication-title: J. Med. Genet.
  doi: 10.1136/jmedgenet-2015-103690
– volume: 12
  start-page: 44
  year: 2017
  ident: 10.1016/j.immuni.2019.03.009_bib47
  article-title: Single-cell barcoding and sequencing using droplet microfluidics
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.154
– volume: 141
  start-page: 2276
  year: 2018
  ident: 10.1016/j.immuni.2019.03.009_bib6
  article-title: Human dendritic cell subset 4 (DC4) correlates to a subset of CD14dim/-CD16++ monocytes
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2017.12.988
– volume: 291
  start-page: 3
  year: 2014
  ident: 10.1016/j.immuni.2019.03.009_bib8
  article-title: Aligning bona fide dendritic cell populations across species
  publication-title: Cell. Immunol.
  doi: 10.1016/j.cellimm.2014.08.006
– volume: 19
  start-page: 89
  year: 2019
  ident: 10.1016/j.immuni.2019.03.009_bib9
  article-title: Dendritic cell subsets in T cell programming: location dictates function
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-018-0088-1
– volume: 14
  start-page: 392
  year: 2014
  ident: 10.1016/j.immuni.2019.03.009_bib16
  article-title: Monocytes and macrophages: developmental pathways and tissue homeostasis
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3671
– volume: 161
  start-page: 1187
  year: 2015
  ident: 10.1016/j.immuni.2019.03.009_bib25
  article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.044
– volume: 19
  start-page: 291
  year: 2018
  ident: 10.1016/j.immuni.2019.03.009_bib45
  article-title: Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-018-0051-0
– volume: 34
  start-page: 1246
  year: 2018
  ident: 10.1016/j.immuni.2019.03.009_bib42
  article-title: SPRING: a kinetic interface for visualizing high dimensional single-cell expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx792
– volume: 9
  start-page: 1091
  year: 2008
  ident: 10.1016/j.immuni.2019.03.009_bib21
  article-title: The Immunological Genome Project: networks of gene expression in immune cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1008-1091
– volume: 41
  start-page: 614
  year: 2012
  ident: 10.1016/j.immuni.2019.03.009_bib31
  article-title: Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives
  publication-title: Immunol. Invest.
  doi: 10.3109/08820139.2012.680634
– volume: 360
  start-page: eaar5780
  year: 2018
  ident: 10.1016/j.immuni.2019.03.009_bib4
  article-title: The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution
  publication-title: Science
  doi: 10.1126/science.aar5780
– volume: 44
  start-page: 343
  year: 2016
  ident: 10.1016/j.immuni.2019.03.009_bib30
  article-title: Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.11.024
– volume: 343
  start-page: 776
  year: 2014
  ident: 10.1016/j.immuni.2019.03.009_bib24
  article-title: Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types
  publication-title: Science
  doi: 10.1126/science.1247651
– volume: 37
  start-page: 715
  year: 2017
  ident: 10.1016/j.immuni.2019.03.009_bib18
  article-title: Neutropenia in patients with common variable immunodeficiency: a rare event associated with severe outcome
  publication-title: J. Clin. Immunol.
  doi: 10.1007/s10875-017-0434-2
– volume: 45
  start-page: 305
  year: 2016
  ident: 10.1016/j.immuni.2019.03.009_bib1
  article-title: Broad and largely concordant molecular changes characterize tolerogenic and immunogenic dendritic cell maturation in thymus and periphery
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.07.019
– volume: 124
  start-page: 5466
  year: 2014
  ident: 10.1016/j.immuni.2019.03.009_bib12
  article-title: Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI77053
– volume: 244
  start-page: 115
  year: 2011
  ident: 10.1016/j.immuni.2019.03.009_bib32
  article-title: Signaling by the tumor necrosis factor receptor superfamily in B-cell biology and disease
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2011.01067.x
– volume: 460
  start-page: 264
  year: 2009
  ident: 10.1016/j.immuni.2019.03.009_bib44
  article-title: CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation
  publication-title: Nature
  doi: 10.1038/nature08118
– year: 2018
  ident: 10.1016/j.immuni.2019.03.009_bib43
  article-title: Scrublet: computational identification of cell doublets in single-cell transcriptomic data
  publication-title: bioRxiv
– volume: 8
  start-page: e82241
  year: 2013
  ident: 10.1016/j.immuni.2019.03.009_bib20
  article-title: Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0082241
– volume: 14
  start-page: 22
  year: 2012
  ident: 10.1016/j.immuni.2019.03.009_bib41
  article-title: RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues
  publication-title: J. Mol. Diagn.
  doi: 10.1016/j.jmoldx.2011.08.002
– volume: 23
  start-page: 291
  year: 2001
  ident: 10.1016/j.immuni.2019.03.009_bib34
  article-title: Quantification of histochemical staining by color deconvolution
  publication-title: Anal. Quant. Cytol. Histol.
– volume: 26
  start-page: 638
  year: 2014
  ident: 10.1016/j.immuni.2019.03.009_bib5
  article-title: Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2014.09.007
– volume: 16
  start-page: 431
  year: 2016
  ident: 10.1016/j.immuni.2019.03.009_bib7
  article-title: Neutrophils in cancer: neutral no more
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2016.52
– volume: 45
  start-page: 669
  year: 2016
  ident: 10.1016/j.immuni.2019.03.009_bib19
  article-title: Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.08.015
– volume: 360
  start-page: 981
  year: 2018
  ident: 10.1016/j.immuni.2019.03.009_bib40
  article-title: Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo
  publication-title: Science
  doi: 10.1126/science.aar4362
– volume: 356
  start-page: 356
  year: 2017
  ident: 10.1016/j.immuni.2019.03.009_bib36
  article-title: Mapping the human DC lineage through the integration of high-dimensional techniques
  publication-title: Science
  doi: 10.1126/science.aag3009
– volume: 358
  start-page: eaal5081
  year: 2017
  ident: 10.1016/j.immuni.2019.03.009_bib11
  article-title: Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils
  publication-title: Science
  doi: 10.1126/science.aal5081
– volume: 24
  start-page: 541
  year: 2018
  ident: 10.1016/j.immuni.2019.03.009_bib2
  article-title: Understanding the tumor immune microenvironment (TIME) for effective therapy
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0014-x
– volume: 16
  start-page: 447
  year: 2016
  ident: 10.1016/j.immuni.2019.03.009_bib10
  article-title: The role of myeloid cells in cancer therapies
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2016.54
– volume: 14
  start-page: 399
  year: 2017
  ident: 10.1016/j.immuni.2019.03.009_bib26
  article-title: Tumour-associated macrophages as treatment targets in oncology
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2016.217
– volume: 123
  start-page: e90
  year: 2014
  ident: 10.1016/j.immuni.2019.03.009_bib35
  article-title: Transcription and enhancer profiling in human monocyte subsets
  publication-title: Blood
  doi: 10.1182/blood-2013-02-484188
– volume: 8
  start-page: 14049
  year: 2017
  ident: 10.1016/j.immuni.2019.03.009_bib46
  article-title: Massively parallel digital transcriptional profiling of single cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14049
– volume: 17
  start-page: 34
  year: 2016
  ident: 10.1016/j.immuni.2019.03.009_bib17
  article-title: New insights into the multidimensional concept of macrophage ontogeny, activation and function
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3324
– volume: 56
  start-page: 414
  year: 1994
  ident: 10.1016/j.immuni.2019.03.009_bib37
  article-title: Utilization of information measure as a means of image thresholding
  publication-title: CVGIP Graph. Models Image Process.
  doi: 10.1006/cgip.1994.1037
SSID ssj0014590
Score 2.7205846
Snippet Tumor-infiltrating myeloid cells (TIMs) comprise monocytes, macrophages, dendritic cells, and neutrophils, and have emerged as key regulators of cancer growth....
SummaryTumor-infiltrating myeloid cells (TIMs) comprise monocytes, macrophages, dendritic cells, and neutrophils, and have emerged as key regulators of cancer...
Tumor-infiltrating myeloid cells (TIMs) comprise monocytes, macrophages, dendritic cells and neutrophils, and have emerged as key regulators of cancer growth....
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1317
SubjectTerms Animals
Base Sequence
Carcinoma, Non-Small-Cell Lung - immunology
Carcinoma, Non-Small-Cell Lung - pathology
Cell Line, Tumor
Collaboration
dendritic cell heterogeneity
Dendritic cells
Dendritic Cells - immunology
Dendritic structure
Experiments
Gene expression
Gene Expression Profiling
Gene sequencing
Grants
Granulocytes
Histology
Humans
Immunotherapy
Laboratory animals
Leukocytes (neutrophilic)
Lung - immunology
Lung - pathology
Lung cancer
Lung Neoplasms - immunology
Lung Neoplasms - pathology
macrophage heterogeneity
Macrophages
Macrophages - immunology
Male
Mice
Mice, Inbred C57BL
Monocytes
Monocytes - immunology
mouse-human comparison
Myeloid cells
neutrophil heterogeneity
Neutrophils
Neutrophils - immunology
Patients
Populations
Regulators
Ribonucleic acid
RNA
Sequence Analysis, RNA
single-cell analysis
Species
Studies
tumor immunology
tumor microenvironment
Tumors
Title Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals Conserved Myeloid Populations across Individuals and Species
URI https://dx.doi.org/10.1016/j.immuni.2019.03.009
https://www.ncbi.nlm.nih.gov/pubmed/30979687
https://www.proquest.com/docview/2228583998
https://www.proquest.com/docview/2209601952
https://pubmed.ncbi.nlm.nih.gov/PMC6620049
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB-OA8UX0fNrz1Mi-Fq2X0maR108TnFFPA_2LaRJipXSPa57wr35pzuTpsVV5MC3fkxL2vlM8psZgNc1WkXuPE5yZFYnOP8qk9pLlXBPwTTG0JWlpYH1J3F2UX7Y8M0BrKZcGIJVRts_2vRgreOVZfyby8u2XZ4TlBAn4ShDKKS5oIRfyiqlJL7N23knoeQqnXGHSD2lzwWMVxtyMAjgFUudqn-5p7_Dzz9RlL-5pdMHcD_Gk-zNOOSHcOD7I7gzdpi8OYK767h3_gh-nqOX6nyy8l3HgosKBoOykge2bVhYzmemd2y9vR48-4hmgK1IKK4G9sX_wIhyYNTfkzCSSHTju23r2Oe5A9jATPgo9n5O8hrC-0KPez88hovTd19XZ0nsv5BYzuUu8U3FXeOErZq8qIVxvDSpczWX3rm0aazIrLNGqNxZdPMOIzHUfiNKm-bWFKJ4Aof9tvfPgDWSl6jgUlkMGerMVN6WeFjguwtXOrWAYvrt2sbi5NQjo9MTCu27HpmliVk6LTQyawHJ_NTlWJzjFno5cVTvCZlG_3HLkyeTAOio5IOmxTOOAaaqFvBqvo3qSXsupvfILKShOWKmeL6Ap6O8zEMtUiWVqCQOa0-SZgIq_b1_p2-_hRLgQpB1U8f__UHP4R6dEQ4iz07gcHd17V9geLWrXwb9-QW4bCZd
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIigXBOXRhQJG4hptXnbiI6yodmG3QrSV9mY5tiOComzVbJF646cz4zzEglAlblE8iZzM67M9D4B3BVpFbh0ucrKoCHD9lQaFy2TAHYFpxNC5oa2B1amYX6Sf1ny9B7MhF4bCKnvb39l0b637O9P-b04vq2p6RqGEuAhHGUIhjUV-B-4iGghJtBfrD-NRQsplOAYeIvmQP-eDvCqfhEERXn2tU_kv__Q3_vwzjPI3v3TyCB72gJK97-b8GPZccwj3uhaTN4dwf9Ufnj-Bn2fopmoXzFxdM--jvMWgtOSWbUrm9_OZbixbba5bx5ZoB9iMpOKqZV_dD4SULaMGnxQkiUQ3rt5Uln0ZW4C1TPuPYosxy6v17_NN7l37FC5OPp7P5kHfgCEwnGfbwJU5t6UVJi_jpBDa8lSH1hY8c9aGZWlEZKzRQsbWoJ-3CMVQ_bVITRgbnYjkGew3m8YdASsznqKGZ9IgZiginTuT4mWC705sauUEkuG3K9NXJ6cmGbUawtC-q45ZipilwkQhsyYQjE9ddtU5bqHPBo6qHSlT6EBuefJ4EADVa3mraPeMI8KU-QTejsOon3ToohuHzEIaWiRGkscTeN7JyzjVJJSZFHmG09qRpJGAan_vjjTVN18DXAgyb_LFf3_QGziYn6-Wark4_fwSHtAIBUXE0THsb6-u3SvEWtvitdelX4YNKYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-Cell+Transcriptomics+of+Human+and+Mouse+Lung+Cancers+Reveals+Conserved+Myeloid+Populations+across+Individuals+and+Species&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Zilionis%2C+Rapolas&rft.au=Engblom%2C+Camilla&rft.au=Pfirschke%2C+Christina&rft.au=Savova%2C+Virginia&rft.date=2019-05-21&rft.pub=Elsevier+Inc&rft.issn=1074-7613&rft.eissn=1097-4180&rft.volume=50&rft.issue=5&rft.spage=1317&rft.epage=1334.e10&rft_id=info:doi/10.1016%2Fj.immuni.2019.03.009&rft.externalDocID=S1074761319301268
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon