Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals Conserved Myeloid Populations across Individuals and Species
Tumor-infiltrating myeloid cells (TIMs) comprise monocytes, macrophages, dendritic cells, and neutrophils, and have emerged as key regulators of cancer growth. These cells can diversify into a spectrum of states, which might promote or limit tumor outgrowth but remain poorly understood. Here, we use...
Saved in:
Published in | Immunity (Cambridge, Mass.) Vol. 50; no. 5; pp. 1317 - 1334.e10 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
21.05.2019
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1074-7613 1097-4180 1097-4180 |
DOI | 10.1016/j.immuni.2019.03.009 |
Cover
Abstract | Tumor-infiltrating myeloid cells (TIMs) comprise monocytes, macrophages, dendritic cells, and neutrophils, and have emerged as key regulators of cancer growth. These cells can diversify into a spectrum of states, which might promote or limit tumor outgrowth but remain poorly understood. Here, we used single-cell RNA sequencing (scRNA-seq) to map TIMs in non-small-cell lung cancer patients. We uncovered 25 TIM states, most of which were reproducibly found across patients. To facilitate translational research of these populations, we also profiled TIMs in mice. In comparing TIMs across species, we identified a near-complete congruence of population structures among dendritic cells and monocytes; conserved neutrophil subsets; and species differences among macrophages. By contrast, myeloid cell population structures in patients’ blood showed limited overlap with those of TIMs. This study determines the lung TIM landscape and sets the stage for future investigations into the potential of TIMs as immunotherapy targets.
[Display omitted]
•Human dendritic cell and monocyte subsets show one-to-one equivalence in mouse•Neutrophils exhibit tumor-associated phenotypes that are conserved across species•Myeloid subsets in patient blood only partially overlap with those in their tumors•Unique markers define myeloid cell subsets and associate with clinical prognosis
Tumor-infiltrating myeloid cells (TIMs) have emerged as key cancer regulators and potential next-generation immunotherapy targets, yet they remain incompletely understood. Using scRNA-seq, Zilionis et al. map the TIM landscape in human and murine lung tumors and systematically compare cell states, revealing conserved myeloid populations across individuals and species. |
---|---|
AbstractList | Tumor-infiltrating myeloid cells (TIMs) comprise monocytes, macrophages, dendritic cells, and neutrophils, and have emerged as key regulators of cancer growth. These cells can diversify into a spectrum of states, which might promote or limit tumor outgrowth but remain poorly understood. Here, we used single-cell RNA sequencing (scRNA-seq) to map TIMs in non-small-cell lung cancer patients. We uncovered 25 TIM states, most of which were reproducibly found across patients. To facilitate translational research of these populations, we also profiled TIMs in mice. In comparing TIMs across species, we identified a near-complete congruence of population structures among dendritic cells and monocytes; conserved neutrophil subsets; and species differences among macrophages. By contrast, myeloid cell population structures in patients' blood showed limited overlap with those of TIMs. This study determines the lung TIM landscape and sets the stage for future investigations into the potential of TIMs as immunotherapy targets.Tumor-infiltrating myeloid cells (TIMs) comprise monocytes, macrophages, dendritic cells, and neutrophils, and have emerged as key regulators of cancer growth. These cells can diversify into a spectrum of states, which might promote or limit tumor outgrowth but remain poorly understood. Here, we used single-cell RNA sequencing (scRNA-seq) to map TIMs in non-small-cell lung cancer patients. We uncovered 25 TIM states, most of which were reproducibly found across patients. To facilitate translational research of these populations, we also profiled TIMs in mice. In comparing TIMs across species, we identified a near-complete congruence of population structures among dendritic cells and monocytes; conserved neutrophil subsets; and species differences among macrophages. By contrast, myeloid cell population structures in patients' blood showed limited overlap with those of TIMs. This study determines the lung TIM landscape and sets the stage for future investigations into the potential of TIMs as immunotherapy targets. Tumor-infiltrating myeloid cells (TIMs) comprise monocytes, macrophages, dendritic cells and neutrophils, and have emerged as key regulators of cancer growth. These cells can diversify into a spectrum of states, which may promote or limit tumor outgrowth, but remain poorly understood. Here, we used single-cell RNA sequencing to map TIMs in non-small cell lung cancer patients. We uncovered 25 TIM states, most of which were reproducibly found across patients. To facilitate translational research of these populations, we also profiled TIMs in mice. In comparing TIMs across species, we identified a near-complete congruence of population structures among dendritic cells and monocytes; conserved neutrophil subsets; and species differences among macrophages. By contrast, myeloid cell population structures in patients’ blood showed limited overlap with those of TIMs. This study determines the lung TIM landscape and sets the stage for future investigations into the potential of TIMs as immunotherapy targets. Tumor-infiltrating myeloid cells (TIM) have emerged as key cancer regulators and potential next-generation immunotherapy targets, yet they remain incompletely understood. Using single cell RNA-seq, Zilionis et al. map the TIM landscape in human and murine lung tumors and systematically compare cell states, revealing conserved myeloid populations across individuals and species. SummaryTumor-infiltrating myeloid cells (TIMs) comprise monocytes, macrophages, dendritic cells, and neutrophils, and have emerged as key regulators of cancer growth. These cells can diversify into a spectrum of states, which might promote or limit tumor outgrowth but remain poorly understood. Here, we used single-cell RNA sequencing (scRNA-seq) to map TIMs in non-small-cell lung cancer patients. We uncovered 25 TIM states, most of which were reproducibly found across patients. To facilitate translational research of these populations, we also profiled TIMs in mice. In comparing TIMs across species, we identified a near-complete congruence of population structures among dendritic cells and monocytes; conserved neutrophil subsets; and species differences among macrophages. By contrast, myeloid cell population structures in patients’ blood showed limited overlap with those of TIMs. This study determines the lung TIM landscape and sets the stage for future investigations into the potential of TIMs as immunotherapy targets. Tumor-infiltrating myeloid cells (TIMs) comprise monocytes, macrophages, dendritic cells, and neutrophils, and have emerged as key regulators of cancer growth. These cells can diversify into a spectrum of states, which might promote or limit tumor outgrowth but remain poorly understood. Here, we used single-cell RNA sequencing (scRNA-seq) to map TIMs in non-small-cell lung cancer patients. We uncovered 25 TIM states, most of which were reproducibly found across patients. To facilitate translational research of these populations, we also profiled TIMs in mice. In comparing TIMs across species, we identified a near-complete congruence of population structures among dendritic cells and monocytes; conserved neutrophil subsets; and species differences among macrophages. By contrast, myeloid cell population structures in patients' blood showed limited overlap with those of TIMs. This study determines the lung TIM landscape and sets the stage for future investigations into the potential of TIMs as immunotherapy targets. Tumor-infiltrating myeloid cells (TIMs) comprise monocytes, macrophages, dendritic cells, and neutrophils, and have emerged as key regulators of cancer growth. These cells can diversify into a spectrum of states, which might promote or limit tumor outgrowth but remain poorly understood. Here, we used single-cell RNA sequencing (scRNA-seq) to map TIMs in non-small-cell lung cancer patients. We uncovered 25 TIM states, most of which were reproducibly found across patients. To facilitate translational research of these populations, we also profiled TIMs in mice. In comparing TIMs across species, we identified a near-complete congruence of population structures among dendritic cells and monocytes; conserved neutrophil subsets; and species differences among macrophages. By contrast, myeloid cell population structures in patients’ blood showed limited overlap with those of TIMs. This study determines the lung TIM landscape and sets the stage for future investigations into the potential of TIMs as immunotherapy targets. [Display omitted] •Human dendritic cell and monocyte subsets show one-to-one equivalence in mouse•Neutrophils exhibit tumor-associated phenotypes that are conserved across species•Myeloid subsets in patient blood only partially overlap with those in their tumors•Unique markers define myeloid cell subsets and associate with clinical prognosis Tumor-infiltrating myeloid cells (TIMs) have emerged as key cancer regulators and potential next-generation immunotherapy targets, yet they remain incompletely understood. Using scRNA-seq, Zilionis et al. map the TIM landscape in human and murine lung tumors and systematically compare cell states, revealing conserved myeloid populations across individuals and species. |
Author | Levantini, Elena Kerwin, Clara M. Savova, Virginia Saatcioglu, Hatice D. Choi, Sun Krishnan, Indira Richards, William G. Bueno, Raphael Engblom, Camilla Zemmour, David Tenen, Daniel G. Zilionis, Rapolas Maroni, Giorgia Pfirschke, Christina Pittet, Mikael J. Meyerovitz, Claire V. De Rienzo, Assunta Klein, Allon M. |
AuthorAffiliation | 2 Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania 4 Graduate Program in Immunology, Harvard Medical School, Boston, MA, USA 5 Precision Immunology, Immunology and Inflammation Therapeutic Area, Sanofi, US 8 Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA 12 Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore 3 Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA 7 Pediatric Surgical Research Laboratories, Massachusetts General Hospital and Department of Surgery, Harvard Medical School, Boston, MA 9 Beth Israel Deaconess Medical Center, Boston, MA, USA 11 Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA 10 Institute of Biomedical Technologies, National Research Council (CNR), Pisa, Italy 1 Department of System |
AuthorAffiliation_xml | – name: 9 Beth Israel Deaconess Medical Center, Boston, MA, USA – name: 4 Graduate Program in Immunology, Harvard Medical School, Boston, MA, USA – name: 11 Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA – name: 5 Precision Immunology, Immunology and Inflammation Therapeutic Area, Sanofi, US – name: 6 Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA – name: 8 Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA – name: 10 Institute of Biomedical Technologies, National Research Council (CNR), Pisa, Italy – name: 12 Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore – name: 1 Department of Systems Biology, Harvard Medical School, Boston, MA, USA – name: 2 Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania – name: 3 Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA – name: 7 Pediatric Surgical Research Laboratories, Massachusetts General Hospital and Department of Surgery, Harvard Medical School, Boston, MA |
Author_xml | – sequence: 1 givenname: Rapolas surname: Zilionis fullname: Zilionis, Rapolas organization: Department of Systems Biology, Harvard Medical School, Boston, MA, USA – sequence: 2 givenname: Camilla surname: Engblom fullname: Engblom, Camilla organization: Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA – sequence: 3 givenname: Christina surname: Pfirschke fullname: Pfirschke, Christina organization: Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA – sequence: 4 givenname: Virginia surname: Savova fullname: Savova, Virginia email: virginia.savova@sanofi.com organization: Department of Systems Biology, Harvard Medical School, Boston, MA, USA – sequence: 5 givenname: David surname: Zemmour fullname: Zemmour, David organization: Graduate Program in Immunology, Harvard Medical School, Boston, MA, USA – sequence: 6 givenname: Hatice D. surname: Saatcioglu fullname: Saatcioglu, Hatice D. organization: Pediatric Surgical Research Laboratories, Massachusetts General Hospital and Department of Surgery, Harvard Medical School, Boston, MA, USA – sequence: 7 givenname: Indira surname: Krishnan fullname: Krishnan, Indira organization: Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA – sequence: 8 givenname: Giorgia surname: Maroni fullname: Maroni, Giorgia organization: Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA – sequence: 9 givenname: Claire V. surname: Meyerovitz fullname: Meyerovitz, Claire V. organization: Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA – sequence: 10 givenname: Clara M. surname: Kerwin fullname: Kerwin, Clara M. organization: Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA – sequence: 11 givenname: Sun surname: Choi fullname: Choi, Sun organization: Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA – sequence: 12 givenname: William G. surname: Richards fullname: Richards, William G. organization: Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA – sequence: 13 givenname: Assunta surname: De Rienzo fullname: De Rienzo, Assunta organization: Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA – sequence: 14 givenname: Daniel G. surname: Tenen fullname: Tenen, Daniel G. organization: Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA – sequence: 15 givenname: Raphael surname: Bueno fullname: Bueno, Raphael organization: Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA – sequence: 16 givenname: Elena surname: Levantini fullname: Levantini, Elena organization: Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA – sequence: 17 givenname: Mikael J. surname: Pittet fullname: Pittet, Mikael J. email: mpittet@mgh.harvard.edu organization: Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA – sequence: 18 givenname: Allon M. surname: Klein fullname: Klein, Allon M. email: allon_klein@hms.harvard.edu organization: Department of Systems Biology, Harvard Medical School, Boston, MA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30979687$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1v1DAUjFAR_YB_gJAlLlwSnvPhxByQUAS00iIQLWfLa78sXiV2sJNIvfHTcbpbBD3AyZbfzOh5Zs6TE-ssJslzChkFyl7vMzMMszVZDpRnUGQA_FFyRoHXaUkbOFnvdZnWjBanyXkIewBaVhyeJKdFBHHW1GfJz2tjdz2mLfY9ufHSBuXNOLnBqEBcRy7nQVoirSaf3ByQbGa7I620Cn0gX3FB2QfSOhvQLxhBt9g7o8kXN869nEwcEKm8C4FcWW0Wo-eVsOpdj6gMhqfJ4y4-4bPjeZF8-_D-pr1MN58_XrXvNqmqqnpKsWsq3Wmmmi4vtkzqqpSg9baqUWvoOsWo0koynmvFGNWMQlODZKWCXMmCFRfJ24PuOG8H1Art5GUvRm8G6W-Fk0b8PbHmu9i5RTCWA5Q8Crw6Cnj3Y8YwicEEFW2TFqM1Is-BsxhFlUfoywfQvZu9jd-LqLypmoLzJqJe_LnR71Xuw4mANwfAnYEeO6HMdGdqXND0goJYmyD24tAEsTZBQCFiEyK5fEC-1_8P7WgTxiwWg16EmFKMWxuPahLamX8L_AJOVdMg |
CitedBy_id | crossref_primary_10_1038_s41467_025_57361_0 crossref_primary_10_1016_j_celrep_2020_107873 crossref_primary_10_1038_s41467_021_26271_2 crossref_primary_10_1002_path_6015 crossref_primary_10_1038_s41467_021_22973_9 crossref_primary_10_1158_1535_7163_MCT_22_0130 crossref_primary_10_3390_cells9020291 crossref_primary_10_4049_jimmunol_2200154 crossref_primary_10_1080_15569543_2023_2204334 crossref_primary_10_1186_s13046_024_03255_w crossref_primary_10_1038_s41467_022_28020_5 crossref_primary_10_1016_j_immuni_2024_08_014 crossref_primary_10_3389_fonc_2025_1514281 crossref_primary_10_1016_j_pccm_2022_11_001 crossref_primary_10_1016_j_trecan_2019_07_006 crossref_primary_10_1158_2767_9764_CRC_22_0373 crossref_primary_10_1016_j_it_2022_12_004 crossref_primary_10_1556_650_2021_32176 crossref_primary_10_1016_j_mtadv_2022_100216 crossref_primary_10_1016_j_tcb_2024_09_001 crossref_primary_10_3389_fimmu_2020_593300 crossref_primary_10_3389_fimmu_2024_1404209 crossref_primary_10_1002_smtd_202402058 crossref_primary_10_1016_j_it_2022_04_008 crossref_primary_10_1038_s41467_021_27018_9 crossref_primary_10_1186_s12885_025_13525_1 crossref_primary_10_2174_1570159X20666220706115957 crossref_primary_10_3389_fimmu_2021_802080 crossref_primary_10_3389_fimmu_2020_01842 crossref_primary_10_1038_s41586_025_08633_8 crossref_primary_10_3390_cells11172630 crossref_primary_10_1002_mog2_47 crossref_primary_10_1136_jitc_2023_007441 crossref_primary_10_1016_j_isci_2024_110529 crossref_primary_10_3389_fimmu_2023_1264774 crossref_primary_10_3389_fimmu_2022_1041010 crossref_primary_10_1093_nar_gkac922 crossref_primary_10_3389_fimmu_2024_1405748 crossref_primary_10_1084_jem_20191847 crossref_primary_10_3390_biomedicines10112709 crossref_primary_10_1038_s41467_020_16904_3 crossref_primary_10_1002_ctm2_1155 crossref_primary_10_1126_sciadv_abl8247 crossref_primary_10_3390_biomedicines9050505 crossref_primary_10_1093_abbs_gmaa032 crossref_primary_10_1038_s41586_022_05443_0 crossref_primary_10_3389_fimmu_2022_791158 crossref_primary_10_1038_s42003_023_04928_6 crossref_primary_10_7554_eLife_53839 crossref_primary_10_1186_s12967_024_05123_9 crossref_primary_10_1186_s40164_024_00521_7 crossref_primary_10_17709_2410_1893_2023_10_4_1 crossref_primary_10_1007_s10911_023_09553_x crossref_primary_10_3389_fimmu_2023_1261257 crossref_primary_10_1038_s41467_022_31596_7 crossref_primary_10_3390_ijms25074049 crossref_primary_10_1038_s41590_022_01311_1 crossref_primary_10_1016_j_metop_2025_100347 crossref_primary_10_1002_eji_202350616 crossref_primary_10_1038_s41577_021_00571_6 crossref_primary_10_3390_cancers13236131 crossref_primary_10_1016_j_immuni_2022_04_004 crossref_primary_10_1158_2326_6066_CIR_20_1026 crossref_primary_10_1002_gcc_22944 crossref_primary_10_3389_fimmu_2023_1196731 crossref_primary_10_3389_fimmu_2023_1161869 crossref_primary_10_1007_s00262_021_02916_5 crossref_primary_10_3389_fgene_2024_1431684 crossref_primary_10_1016_j_xcrm_2022_100848 crossref_primary_10_1038_s41586_022_05672_3 crossref_primary_10_1186_s12943_024_01936_w crossref_primary_10_1016_j_kint_2022_08_026 crossref_primary_10_1158_2326_6066_CIR_22_0439 crossref_primary_10_1038_s41467_022_28407_4 crossref_primary_10_1126_sciadv_abo7621 crossref_primary_10_3390_genes15030298 crossref_primary_10_3389_fimmu_2023_1268939 crossref_primary_10_1080_2162402X_2022_2059876 crossref_primary_10_1126_scitranslmed_abm9043 crossref_primary_10_1002_anie_201915153 crossref_primary_10_3390_cells11050805 crossref_primary_10_1038_s41598_024_82903_9 crossref_primary_10_1126_sciadv_adh1653 crossref_primary_10_1158_2767_9764_CRC_23_0399 crossref_primary_10_2174_1389202921999201020203249 crossref_primary_10_1080_2162402X_2020_1790125 crossref_primary_10_1038_s41467_022_33052_y crossref_primary_10_1016_j_intimp_2024_113634 crossref_primary_10_1038_s41577_024_01079_5 crossref_primary_10_1038_s12276_020_0422_0 crossref_primary_10_3390_ijms22073493 crossref_primary_10_1002_ctd2_70003 crossref_primary_10_3390_genes15070961 crossref_primary_10_1093_nar_gkae1312 crossref_primary_10_3390_cancers14030833 crossref_primary_10_1126_sciimmunol_aav3942 crossref_primary_10_1164_rccm_202406_1168ST crossref_primary_10_1152_physrev_00036_2021 crossref_primary_10_1016_j_celrep_2023_111991 crossref_primary_10_1021_acs_analchem_9b05047 crossref_primary_10_1158_2159_8290_CD_24_0421 crossref_primary_10_1002_ctm2_1340 crossref_primary_10_1016_j_medj_2023_04_008 crossref_primary_10_1016_j_drudis_2021_02_017 crossref_primary_10_3389_fimmu_2023_1182553 crossref_primary_10_1084_jem_20201574 crossref_primary_10_3389_fimmu_2023_1287656 crossref_primary_10_1038_s41385_021_00480_w crossref_primary_10_1016_j_immuni_2022_03_007 crossref_primary_10_1002_adbi_202300159 crossref_primary_10_1002_biot_202400329 crossref_primary_10_1111_febs_16022 crossref_primary_10_1038_s41586_021_03234_7 crossref_primary_10_1186_s13045_023_01473_x crossref_primary_10_1080_2162402X_2022_2026583 crossref_primary_10_21105_joss_05603 crossref_primary_10_1038_s41698_021_00248_2 crossref_primary_10_1016_j_it_2020_10_002 crossref_primary_10_1186_s40364_021_00336_2 crossref_primary_10_3390_cells12151981 crossref_primary_10_1007_s11306_022_01934_3 crossref_primary_10_1126_sciimmunol_abb5439 crossref_primary_10_1002_cac2_70021 crossref_primary_10_1038_s41571_022_00620_6 crossref_primary_10_1038_s43018_022_00490_y crossref_primary_10_1016_j_oraloncology_2022_106013 crossref_primary_10_1038_s41577_019_0260_2 crossref_primary_10_3389_fimmu_2023_1148061 crossref_primary_10_3390_ijms25116160 crossref_primary_10_1038_s41598_025_93916_3 crossref_primary_10_1016_j_ccell_2024_06_014 crossref_primary_10_1038_s42003_021_01897_6 crossref_primary_10_1158_2159_8290_CD_21_0369 crossref_primary_10_1038_s41551_020_0524_y crossref_primary_10_1016_j_cell_2021_12_004 crossref_primary_10_1042_BSR20202711 crossref_primary_10_1016_j_heliyon_2023_e20164 crossref_primary_10_1126_sciimmunol_abi8800 crossref_primary_10_1016_j_cell_2021_08_004 crossref_primary_10_1038_s41467_020_20139_7 crossref_primary_10_1038_s41423_021_00753_1 crossref_primary_10_1016_j_cell_2024_02_005 crossref_primary_10_1084_jem_20200264 crossref_primary_10_1111_brv_12975 crossref_primary_10_1016_j_ccell_2021_08_011 crossref_primary_10_1016_j_ccell_2022_10_008 crossref_primary_10_3389_fimmu_2022_868813 crossref_primary_10_1136_jitc_2021_003571 crossref_primary_10_1038_s41598_020_58939_y crossref_primary_10_1016_j_heliyon_2024_e37092 crossref_primary_10_1016_j_immuni_2022_02_006 crossref_primary_10_3389_fimmu_2022_900155 crossref_primary_10_1002_ijc_34711 crossref_primary_10_1016_j_celrep_2021_109955 crossref_primary_10_1126_sciimmunol_adc9081 crossref_primary_10_1186_s13046_021_02022_5 crossref_primary_10_1016_j_compbiomed_2023_106933 crossref_primary_10_1158_2326_6066_CIR_21_1075 crossref_primary_10_1038_s41467_020_19973_6 crossref_primary_10_3390_cells11203289 crossref_primary_10_7554_eLife_67396 crossref_primary_10_3389_fonc_2020_00349 crossref_primary_10_3389_fimmu_2020_00339 crossref_primary_10_1038_s41577_019_0271_z crossref_primary_10_1172_JCI169653 crossref_primary_10_3390_cancers14225506 crossref_primary_10_1016_j_compbiomed_2022_106409 crossref_primary_10_3390_cancers14163972 crossref_primary_10_1002_ctm2_1786 crossref_primary_10_1016_j_canlet_2024_216610 crossref_primary_10_1097_PPO_0000000000000486 crossref_primary_10_1016_j_ymthe_2021_03_003 crossref_primary_10_3390_cancers14081976 crossref_primary_10_1016_j_ccell_2022_10_024 crossref_primary_10_3390_cancers16010059 crossref_primary_10_1038_s41568_020_0281_y crossref_primary_10_1016_j_immuni_2019_12_010 crossref_primary_10_1016_j_xcrm_2023_101386 crossref_primary_10_1016_j_xcrm_2023_101380 crossref_primary_10_1172_jci_insight_139237 crossref_primary_10_3389_fimmu_2020_02103 crossref_primary_10_3389_fonc_2022_897968 crossref_primary_10_1016_j_immuni_2021_09_005 crossref_primary_10_1016_j_cell_2021_07_015 crossref_primary_10_1007_s12672_023_00784_2 crossref_primary_10_1016_j_isci_2022_104962 crossref_primary_10_1016_j_cell_2019_10_003 crossref_primary_10_1016_j_immuni_2019_06_025 crossref_primary_10_1186_s13073_023_01164_9 crossref_primary_10_3390_nano14201669 crossref_primary_10_1186_s10020_024_00970_0 crossref_primary_10_1158_0008_5472_CAN_21_1230 crossref_primary_10_1002_jgm_3690 crossref_primary_10_1186_s13619_024_00195_w crossref_primary_10_1016_j_bbcan_2024_189231 crossref_primary_10_1158_2767_9764_CRC_23_0319 crossref_primary_10_3389_fimmu_2020_585048 crossref_primary_10_1158_1078_0432_CCR_21_3145 crossref_primary_10_3390_cancers12071860 crossref_primary_10_1038_s41590_020_0661_1 crossref_primary_10_1111_sji_12889 crossref_primary_10_1158_2159_8290_CD_21_0316 crossref_primary_10_1186_s13059_022_02677_z crossref_primary_10_1136_jitc_2021_003771 crossref_primary_10_1016_j_gde_2020_12_003 crossref_primary_10_3389_fimmu_2019_01786 crossref_primary_10_1158_0008_5472_CAN_21_3896 crossref_primary_10_3389_fcimb_2022_940906 crossref_primary_10_1038_s41598_020_80512_w crossref_primary_10_1093_brain_awab203 crossref_primary_10_1038_s41467_020_20019_0 crossref_primary_10_1111_imm_13154 crossref_primary_10_1016_j_isci_2023_107273 crossref_primary_10_1126_sciadv_adn2136 crossref_primary_10_1038_s41597_023_02074_6 crossref_primary_10_1096_fj_202000181R crossref_primary_10_1038_s41467_021_21043_4 crossref_primary_10_1038_s41388_021_01734_4 crossref_primary_10_1002_cam4_70387 crossref_primary_10_1038_s43018_022_00500_z crossref_primary_10_1182_bloodadvances_2021005047 crossref_primary_10_3390_ijms21113930 crossref_primary_10_1038_s41591_019_0566_4 crossref_primary_10_1002_advs_202309026 crossref_primary_10_1038_s41467_021_21361_7 crossref_primary_10_1053_j_gastro_2022_11_029 crossref_primary_10_1007_s00262_023_03573_6 crossref_primary_10_1016_j_canlet_2023_216408 crossref_primary_10_1021_acs_analchem_0c03059 crossref_primary_10_1136_gutjnl_2021_326070 crossref_primary_10_1146_annurev_immunol_110519_071134 crossref_primary_10_1126_sciimmunol_abm9409 crossref_primary_10_1002_advs_202205442 crossref_primary_10_1016_j_celrep_2020_108164 crossref_primary_10_1590_0001_3765202420231212 crossref_primary_10_1016_j_bbamcr_2023_119493 crossref_primary_10_1055_s_0040_1721799 crossref_primary_10_1038_s41392_023_01542_0 crossref_primary_10_1002_cti2_1252 crossref_primary_10_1093_bioinformatics_btac141 crossref_primary_10_4049_jimmunol_2300674 crossref_primary_10_3390_cancers14030680 crossref_primary_10_1016_j_it_2020_12_001 crossref_primary_10_1053_j_gastro_2023_05_036 crossref_primary_10_1093_nargab_lqaf023 crossref_primary_10_1126_sciimmunol_adf2223 crossref_primary_10_1016_j_trecan_2021_01_007 crossref_primary_10_1016_j_esmoop_2021_100101 crossref_primary_10_1159_000530319 crossref_primary_10_2174_0113892029300608240531111743 crossref_primary_10_1016_j_bcp_2020_113963 crossref_primary_10_1016_j_ccell_2025_02_024 crossref_primary_10_3389_fonc_2021_800235 crossref_primary_10_1016_j_immuni_2020_05_014 crossref_primary_10_3389_fimmu_2019_02035 crossref_primary_10_1161_CIRCRESAHA_121_319153 crossref_primary_10_1186_s12935_024_03532_w crossref_primary_10_1038_s42003_024_06111_x crossref_primary_10_1146_annurev_pathmechdis_012418_013058 crossref_primary_10_1158_2326_6066_CIR_21_0265 crossref_primary_10_1186_s12885_021_08992_1 crossref_primary_10_1038_s44161_022_00028_6 crossref_primary_10_3389_fonc_2022_1022716 crossref_primary_10_1146_annurev_pathmechdis_051222_015009 crossref_primary_10_1016_j_bbcan_2021_188632 crossref_primary_10_3389_fimmu_2023_1256453 crossref_primary_10_1016_j_cytogfr_2024_07_005 crossref_primary_10_1016_j_immuni_2024_05_006 crossref_primary_10_1186_s13073_023_01256_6 crossref_primary_10_1016_j_ccell_2021_10_009 crossref_primary_10_3389_fimmu_2022_961601 crossref_primary_10_1016_j_celrep_2023_113560 crossref_primary_10_1038_s41571_023_00846_y crossref_primary_10_1016_j_smim_2021_101481 crossref_primary_10_1038_s42003_024_07154_w crossref_primary_10_1186_s12864_020_07358_4 crossref_primary_10_1016_j_cell_2021_09_019 crossref_primary_10_3389_fimmu_2021_756722 crossref_primary_10_1016_j_smim_2023_101848 crossref_primary_10_1002_path_5403 crossref_primary_10_1158_1078_0432_CCR_23_0219 crossref_primary_10_3389_fimmu_2022_908023 crossref_primary_10_1161_ATVBAHA_123_318974 crossref_primary_10_1126_sciimmunol_abi7083 crossref_primary_10_1038_s41568_023_00637_8 crossref_primary_10_1038_s41590_023_01645_4 crossref_primary_10_1016_j_imbio_2024_152836 crossref_primary_10_1038_s41420_024_01970_z crossref_primary_10_1186_s12967_024_05307_3 crossref_primary_10_3389_fimmu_2023_1139391 crossref_primary_10_3389_fphar_2022_1095757 crossref_primary_10_1016_j_ccell_2019_05_007 crossref_primary_10_1016_j_scib_2024_11_012 crossref_primary_10_1172_JCI180893 crossref_primary_10_1097_MOH_0000000000000716 crossref_primary_10_1136_jitc_2024_010547 crossref_primary_10_1016_j_healun_2022_05_005 crossref_primary_10_1038_s41467_021_21789_x crossref_primary_10_3389_fimmu_2024_1397469 crossref_primary_10_1016_j_ebiom_2023_104555 crossref_primary_10_1126_sciimmunol_adg7995 crossref_primary_10_1007_s00262_025_03950_3 crossref_primary_10_1172_jci_insight_184545 crossref_primary_10_1038_s41423_024_01216_z crossref_primary_10_1007_s00262_022_03173_w crossref_primary_10_3390_cells10010145 crossref_primary_10_1111_cas_15701 crossref_primary_10_1021_acsnano_1c09762 crossref_primary_10_1002_ctm2_422 crossref_primary_10_1186_s12864_024_11036_0 crossref_primary_10_1002_hed_27774 crossref_primary_10_1111_imr_13175 crossref_primary_10_1111_imr_13176 crossref_primary_10_3389_fimmu_2022_994319 crossref_primary_10_1111_imr_13177 crossref_primary_10_1016_j_cell_2021_11_017 crossref_primary_10_3389_fgene_2022_1012164 crossref_primary_10_3390_cancers14143424 crossref_primary_10_1136_jitc_2022_004533 crossref_primary_10_3390_cells10092406 crossref_primary_10_1080_2162402X_2024_2432726 crossref_primary_10_1038_s41467_023_37515_8 crossref_primary_10_1038_s41467_024_54874_y crossref_primary_10_3390_ijms21155497 crossref_primary_10_1016_j_coph_2022_102191 crossref_primary_10_1158_0008_5472_CAN_24_0830 crossref_primary_10_3390_ijms24032020 crossref_primary_10_3389_fimmu_2020_01070 crossref_primary_10_1016_j_actbio_2021_03_038 crossref_primary_10_1172_JCI157649 crossref_primary_10_1038_s41413_022_00237_6 crossref_primary_10_1016_j_cellimm_2022_104579 crossref_primary_10_1016_j_cell_2021_09_014 crossref_primary_10_1084_jem_20240045 crossref_primary_10_2147_JIR_S506807 crossref_primary_10_3389_fimmu_2023_1190034 crossref_primary_10_1183_16000617_0060_2020 crossref_primary_10_3389_fgene_2021_756235 crossref_primary_10_1111_imcb_12787 crossref_primary_10_1111_jcmm_17493 crossref_primary_10_1039_D0CB00022A crossref_primary_10_1016_j_xcrm_2022_100522 crossref_primary_10_1093_bioadv_vbae134 crossref_primary_10_1002_advs_202101501 crossref_primary_10_3389_fimmu_2022_883758 crossref_primary_10_1096_fj_202400240R crossref_primary_10_1016_j_drup_2023_101041 crossref_primary_10_1172_jci_insight_136678 crossref_primary_10_3390_cells12060839 crossref_primary_10_1172_JCI148036 crossref_primary_10_5483_BMBRep_2021_54_1_224 crossref_primary_10_1016_j_trecan_2019_05_001 crossref_primary_10_1126_sciadv_aax9856 crossref_primary_10_3390_cells11213521 crossref_primary_10_1016_j_cell_2020_03_048 crossref_primary_10_1136_jitc_2019_000473 crossref_primary_10_1016_j_csbj_2023_08_029 crossref_primary_10_1016_j_jaci_2022_12_004 crossref_primary_10_1080_08820139_2022_2109486 crossref_primary_10_1016_j_isci_2022_104492 crossref_primary_10_1007_s00018_023_04923_4 crossref_primary_10_1016_j_ccell_2024_09_011 crossref_primary_10_1002_eji_202249923 crossref_primary_10_3390_cells12131673 crossref_primary_10_1038_s41467_024_44787_1 crossref_primary_10_1158_1078_0432_CCR_24_1690 crossref_primary_10_1016_j_ejim_2024_02_020 crossref_primary_10_1038_s41590_022_01267_2 crossref_primary_10_1158_0008_5472_CAN_22_1890 crossref_primary_10_1038_s41568_022_00547_1 crossref_primary_10_1371_journal_pbio_3000859 crossref_primary_10_1126_scitranslmed_abd1616 crossref_primary_10_7555_JBR_36_20220007 crossref_primary_10_1038_s41590_024_02029_y crossref_primary_10_1136_jitc_2023_006896 crossref_primary_10_1126_scitranslmed_adk3160 crossref_primary_10_1016_j_tranon_2022_101568 crossref_primary_10_1016_j_cell_2024_06_012 crossref_primary_10_1038_s41590_023_01505_1 crossref_primary_10_2147_OTT_S295102 crossref_primary_10_1111_his_14463 crossref_primary_10_1016_j_ccell_2020_02_008 crossref_primary_10_1016_j_xcrm_2022_100779 crossref_primary_10_1093_bioinformatics_btae198 crossref_primary_10_1016_j_celrep_2022_111769 crossref_primary_10_1093_jleuko_qiae189 crossref_primary_10_1016_j_bbcan_2022_188762 crossref_primary_10_1186_s40164_023_00469_0 crossref_primary_10_1021_jacs_3c03477 crossref_primary_10_1016_j_it_2022_01_006 crossref_primary_10_1038_s41573_022_00520_5 crossref_primary_10_1038_s41591_021_01576_3 crossref_primary_10_1038_s41591_023_02371_y crossref_primary_10_1038_s43018_024_00756_7 crossref_primary_10_3389_fimmu_2023_1238454 crossref_primary_10_1038_s41467_022_32052_2 crossref_primary_10_1038_s41698_024_00608_8 crossref_primary_10_1038_s41467_021_22801_0 crossref_primary_10_1111_imr_12944 crossref_primary_10_3390_cancers13030433 crossref_primary_10_3390_cells12060885 crossref_primary_10_1016_j_immuni_2021_10_020 crossref_primary_10_3389_fcell_2020_613116 crossref_primary_10_3389_fimmu_2023_1224045 crossref_primary_10_1038_s41467_021_21312_2 crossref_primary_10_2139_ssrn_3950749 crossref_primary_10_1038_s41590_022_01189_z crossref_primary_10_1016_j_bbcan_2025_189291 crossref_primary_10_1016_j_molcel_2021_08_004 crossref_primary_10_1186_s13045_022_01335_y crossref_primary_10_1093_bib_bbad341 crossref_primary_10_1080_14728222_2024_2374743 crossref_primary_10_1038_s41556_024_01546_0 crossref_primary_10_1002_mco2_658 crossref_primary_10_1186_s13045_024_01629_3 crossref_primary_10_1158_1078_0432_CCR_21_0792 crossref_primary_10_3390_cancers13112584 crossref_primary_10_1186_s13073_022_01050_w crossref_primary_10_1038_s41568_023_00635_w crossref_primary_10_3389_fddsv_2024_1495208 crossref_primary_10_1016_j_chembiol_2019_12_007 crossref_primary_10_1016_j_jid_2022_12_009 crossref_primary_10_1084_jem_20220011 crossref_primary_10_3389_fimmu_2023_1180402 crossref_primary_10_1038_s41698_023_00455_z crossref_primary_10_1038_s43018_024_00830_0 crossref_primary_10_3389_fimmu_2024_1458035 crossref_primary_10_1016_j_cpt_2025_02_004 crossref_primary_10_1146_annurev_cancerbio_061521_085949 crossref_primary_10_1007_s10555_020_09931_5 crossref_primary_10_1002_1873_3468_15009 crossref_primary_10_1016_j_jaci_2023_08_010 crossref_primary_10_1038_s41467_024_46735_5 crossref_primary_10_1093_bioinformatics_btab711 crossref_primary_10_1038_s41467_023_41792_8 crossref_primary_10_3389_fimmu_2024_1498942 crossref_primary_10_1016_j_devcel_2024_10_010 crossref_primary_10_1002_cac2_12613 crossref_primary_10_3389_fimmu_2023_1214255 crossref_primary_10_1080_2162402X_2024_2384674 crossref_primary_10_1016_j_oraloncology_2024_107078 crossref_primary_10_3390_biology11060929 crossref_primary_10_1002_1873_3468_15017 crossref_primary_10_1016_j_it_2023_10_006 crossref_primary_10_1016_j_it_2023_10_009 crossref_primary_10_1038_s41586_022_05680_3 crossref_primary_10_1038_s41419_023_05983_x crossref_primary_10_1158_0008_5472_CAN_20_0069 crossref_primary_10_1016_j_it_2021_10_007 crossref_primary_10_1016_j_smim_2020_101408 crossref_primary_10_1016_j_ccell_2023_02_005 crossref_primary_10_3389_fonc_2023_1136803 crossref_primary_10_1016_j_drup_2024_101175 crossref_primary_10_1016_j_ccell_2023_02_009 crossref_primary_10_1002_JLB_1MIR0420_076R crossref_primary_10_1038_s41590_021_00920_6 crossref_primary_10_1111_cas_15698 crossref_primary_10_1172_jci_insight_168792 crossref_primary_10_1158_1078_0432_CCR_21_1694 crossref_primary_10_1016_j_smim_2020_101410 crossref_primary_10_1172_JCI178079 crossref_primary_10_1016_j_bbcan_2025_189264 crossref_primary_10_1038_s41598_021_93807_3 crossref_primary_10_1038_s41573_023_00688_4 crossref_primary_10_3389_fimmu_2022_931630 crossref_primary_10_1126_sciadv_aaz6105 crossref_primary_10_1038_s41422_023_00909_w crossref_primary_10_1016_j_mucimm_2024_11_009 crossref_primary_10_1038_s41590_022_01312_0 crossref_primary_10_1080_14712598_2024_2357714 crossref_primary_10_1002_jcp_30139 crossref_primary_10_1007_s41999_024_01032_8 crossref_primary_10_1016_j_immuni_2021_03_010 crossref_primary_10_1038_s41586_022_05400_x crossref_primary_10_1126_sciadv_aaz8521 crossref_primary_10_3389_fimmu_2021_734188 crossref_primary_10_1158_2767_9764_CRC_22_0017 crossref_primary_10_1038_s41590_020_0736_z crossref_primary_10_1016_j_gpb_2023_06_003 crossref_primary_10_1016_j_ccell_2020_04_015 crossref_primary_10_3390_cancers14071681 crossref_primary_10_3390_cells12172147 crossref_primary_10_1038_s41590_019_0568_x crossref_primary_10_1038_s41467_021_27599_5 crossref_primary_10_1016_j_celrep_2024_115023 crossref_primary_10_1158_0008_5472_CAN_21_3181 crossref_primary_10_1038_s41467_023_38134_z crossref_primary_10_1136_jitc_2020_002242 crossref_primary_10_1038_s41467_022_34872_8 crossref_primary_10_3390_cancers13081850 crossref_primary_10_1002_cncy_22305 crossref_primary_10_1126_science_abi8175 crossref_primary_10_1007_s12032_023_02226_z crossref_primary_10_1016_j_gendis_2021_12_012 crossref_primary_10_1177_0271678X211000137 crossref_primary_10_1038_s41467_023_36062_6 crossref_primary_10_1186_s13045_021_01105_2 crossref_primary_10_1016_j_xcrm_2024_101556 crossref_primary_10_1136_jitc_2019_000417 crossref_primary_10_1515_mr_2021_0014 crossref_primary_10_1016_j_isci_2024_111513 crossref_primary_10_1016_j_cbpa_2022_102117 crossref_primary_10_3390_cells10061323 crossref_primary_10_1016_j_it_2021_10_012 crossref_primary_10_1016_j_copbio_2023_102984 crossref_primary_10_1126_sciadv_adk8805 crossref_primary_10_1038_s41467_023_35832_6 crossref_primary_10_3389_fimmu_2021_689019 crossref_primary_10_1038_s41423_023_01061_6 crossref_primary_10_1016_j_it_2023_05_006 crossref_primary_10_3390_cancers15143691 crossref_primary_10_1016_j_isci_2020_100993 crossref_primary_10_1038_s41467_022_34271_z crossref_primary_10_1002_cam4_70622 crossref_primary_10_1038_s42003_020_01463_6 crossref_primary_10_3389_fgene_2020_548719 crossref_primary_10_1016_j_ccell_2020_11_005 crossref_primary_10_3389_fimmu_2020_01779 crossref_primary_10_3389_fimmu_2022_938075 crossref_primary_10_1038_s44321_023_00013_x crossref_primary_10_1002_JLB_5MR0321_170R crossref_primary_10_1016_j_biopha_2023_115954 crossref_primary_10_1038_s41568_024_00761_z crossref_primary_10_15252_embj_2022110757 crossref_primary_10_3389_fgene_2024_1417415 crossref_primary_10_3390_cells10082012 crossref_primary_10_3892_br_2024_1751 crossref_primary_10_1038_s41392_022_00990_4 crossref_primary_10_1146_annurev_immunol_090419_020340 crossref_primary_10_4049_jimmunol_2100867 crossref_primary_10_1007_s10911_021_09486_3 crossref_primary_10_1038_s41590_023_01495_0 crossref_primary_10_1080_2162402X_2021_1876597 crossref_primary_10_3390_biom14121496 crossref_primary_10_1172_JCI137585 crossref_primary_10_3389_fimmu_2021_786429 crossref_primary_10_3390_biomedicines10020431 crossref_primary_10_1016_j_csbj_2023_12_021 crossref_primary_10_3390_cells8121647 crossref_primary_10_3389_fimmu_2025_1501603 crossref_primary_10_1016_j_ccell_2020_05_001 crossref_primary_10_1371_journal_pone_0238509 crossref_primary_10_1093_neuonc_noab135 crossref_primary_10_1038_s41586_021_03651_8 crossref_primary_10_1210_endrev_bnab004 crossref_primary_10_1038_s41467_021_21865_2 crossref_primary_10_1038_s41698_022_00262_y crossref_primary_10_1158_2159_8290_CD_22_0244 crossref_primary_10_1002_imt2_233 crossref_primary_10_3389_fimmu_2020_01513 crossref_primary_10_1016_j_jare_2024_10_008 crossref_primary_10_1038_s41577_020_00413_x crossref_primary_10_1093_bib_bbab588 crossref_primary_10_1038_s41590_024_02006_5 crossref_primary_10_3390_cells11193028 crossref_primary_10_1126_sciadv_abd9738 crossref_primary_10_1016_j_ccell_2023_02_016 crossref_primary_10_1016_j_cell_2023_03_007 crossref_primary_10_3389_fimmu_2023_1194642 crossref_primary_10_1016_j_celrep_2021_110171 crossref_primary_10_1038_s41467_022_34175_y crossref_primary_10_1073_pnas_2322356121 crossref_primary_10_1038_s41467_023_37674_8 crossref_primary_10_1038_s41588_023_01355_5 crossref_primary_10_1186_s12974_024_03294_2 crossref_primary_10_1093_bib_bbad512 crossref_primary_10_1126_sciimmunol_aaz1974 crossref_primary_10_1016_j_isci_2023_108094 crossref_primary_10_1038_s41590_020_00836_7 crossref_primary_10_1093_cei_uxac026 crossref_primary_10_1016_j_jare_2024_10_012 crossref_primary_10_1016_j_cell_2022_06_007 crossref_primary_10_3389_fcell_2021_686544 crossref_primary_10_3390_antiox13040477 crossref_primary_10_1016_j_imlet_2025_106970 crossref_primary_10_1038_s43018_022_00338_5 crossref_primary_10_1128_spectrum_05121_22 crossref_primary_10_1158_1078_0432_CCR_20_4717 crossref_primary_10_1038_s41586_024_07121_9 crossref_primary_10_1016_j_ccell_2023_12_005 crossref_primary_10_1038_s43587_023_00420_2 crossref_primary_10_1073_pnas_2110887118 crossref_primary_10_1002_ange_201915153 crossref_primary_10_1080_2162402X_2022_2085432 crossref_primary_10_1016_j_ccell_2020_06_012 crossref_primary_10_1158_0008_5472_CAN_20_2870 crossref_primary_10_1158_2159_8290_CD_21_0003 crossref_primary_10_1007_s13402_023_00816_7 crossref_primary_10_1038_s41467_024_51873_x crossref_primary_10_1097_BS9_0000000000000013 crossref_primary_10_3389_fimmu_2022_900284 crossref_primary_10_1080_14728222_2021_1954162 crossref_primary_10_1111_imr_13301 crossref_primary_10_1136_jitc_2023_008254 crossref_primary_10_1172_JCI170501 crossref_primary_10_2139_ssrn_4151505 crossref_primary_10_1038_s41587_020_00801_7 crossref_primary_10_1158_1535_7163_MCT_24_0311 crossref_primary_10_1038_s43018_023_00695_9 crossref_primary_10_18632_aging_202288 crossref_primary_10_1038_s41467_021_26940_2 crossref_primary_10_1111_bph_17352 crossref_primary_10_1016_j_cell_2020_10_003 crossref_primary_10_1242_dmm_047340 crossref_primary_10_20517_cdr_2024_24 crossref_primary_10_1038_s41467_022_35615_5 crossref_primary_10_7554_eLife_46349 crossref_primary_10_1038_s41571_024_00926_7 crossref_primary_10_1038_s41408_019_0246_0 crossref_primary_10_1038_s41590_024_02065_8 crossref_primary_10_1136_jitc_2024_008983 crossref_primary_10_1038_s41467_022_29366_6 crossref_primary_10_3390_cancers14163846 crossref_primary_10_1016_j_chest_2024_02_013 crossref_primary_10_3389_fonc_2021_759894 crossref_primary_10_1038_s41423_020_00613_4 crossref_primary_10_1002_mco2_152 crossref_primary_10_1136_jitc_2021_003464 crossref_primary_10_3389_fimmu_2022_885267 crossref_primary_10_1002_advs_202401287 crossref_primary_10_1002_ctm2_1429 crossref_primary_10_1038_s41419_024_07020_x crossref_primary_10_1126_scitranslmed_adk9145 crossref_primary_10_1038_s41467_024_54791_0 crossref_primary_10_1016_j_trecan_2022_02_006 crossref_primary_10_1002_ggn2_202200002 crossref_primary_10_1016_j_jbc_2023_104827 crossref_primary_10_1038_s41577_024_01091_9 crossref_primary_10_1093_bib_bbac625 crossref_primary_10_1002_ijc_33991 crossref_primary_10_1038_s41568_021_00347_z crossref_primary_10_1093_genetics_iyae167 crossref_primary_10_3389_fimmu_2023_1288027 crossref_primary_10_1038_s41467_022_33758_z crossref_primary_10_1084_jem_20202345 crossref_primary_10_3389_fimmu_2022_878740 crossref_primary_10_1016_j_scib_2025_02_043 crossref_primary_10_3390_cancers13174302 crossref_primary_10_1016_j_ymthe_2025_02_002 crossref_primary_10_1038_s41467_021_23330_6 crossref_primary_10_1038_s41388_023_02738_y crossref_primary_10_1016_j_cell_2023_02_032 crossref_primary_10_1055_s_0043_1777704 crossref_primary_10_1128_JVI_00876_19 crossref_primary_10_1136_jitc_2023_007117 crossref_primary_10_1084_jem_20190457 crossref_primary_10_1016_j_jaci_2021_09_031 crossref_primary_10_1038_s41467_023_38426_4 crossref_primary_10_3389_fimmu_2019_01642 crossref_primary_10_1097_BOR_0000000000000887 crossref_primary_10_1186_s13045_020_01005_x crossref_primary_10_1172_jci_insight_161042 crossref_primary_10_3390_cells12192404 crossref_primary_10_1016_j_gep_2024_119375 crossref_primary_10_1016_j_isci_2024_110854 crossref_primary_10_1016_j_devcel_2022_06_017 crossref_primary_10_1016_j_trecan_2022_10_006 crossref_primary_10_1038_s41467_019_13368_y crossref_primary_10_1182_blood_2020007145 crossref_primary_10_1038_s43018_023_00599_8 crossref_primary_10_3390_cancers13235972 crossref_primary_10_1016_j_immuni_2020_07_006 crossref_primary_10_3389_fcell_2021_767897 crossref_primary_10_1016_j_immuni_2023_03_007 crossref_primary_10_1158_0008_5472_CAN_23_1698 crossref_primary_10_1021_acsnano_3c08034 crossref_primary_10_1038_s41591_019_0750_6 crossref_primary_10_1093_bioinformatics_btad449 crossref_primary_10_5227_skincancer_38_155 crossref_primary_10_4049_jimmunol_2300459 crossref_primary_10_1038_s41467_021_27322_4 crossref_primary_10_1136_jitc_2020_002045 crossref_primary_10_3389_fonc_2020_593085 crossref_primary_10_3389_fgene_2022_858808 crossref_primary_10_1007_s13258_023_01456_9 crossref_primary_10_1016_j_ccell_2021_01_011 crossref_primary_10_1016_j_celrep_2021_108948 crossref_primary_10_1038_s41571_024_00859_1 crossref_primary_10_1016_j_immuni_2020_07_017 crossref_primary_10_3389_fimmu_2021_715234 crossref_primary_10_3389_fonc_2022_817548 crossref_primary_10_1016_j_coi_2023_102345 crossref_primary_10_1016_j_xcrm_2023_101054 crossref_primary_10_1016_j_intimp_2024_112253 crossref_primary_10_1016_j_celrep_2020_108633 crossref_primary_10_26508_lsa_202201458 crossref_primary_10_1186_s13045_021_01156_5 crossref_primary_10_1136_jitc_2022_004807 crossref_primary_10_1158_1078_0432_CCR_19_1868 crossref_primary_10_1038_s43018_024_00731_2 crossref_primary_10_1126_science_ade2292 crossref_primary_10_3389_fimmu_2022_733800 crossref_primary_10_1007_s00432_024_05777_4 crossref_primary_10_3389_fimmu_2024_1325090 crossref_primary_10_3389_fonc_2022_892510 crossref_primary_10_3389_fimmu_2025_1527592 crossref_primary_10_3390_cancers11081082 crossref_primary_10_1136_jitc_2024_011308 crossref_primary_10_1002_adbi_201900307 crossref_primary_10_1093_bfgp_elad011 crossref_primary_10_3389_fgene_2022_867880 crossref_primary_10_1016_j_immuni_2024_12_009 crossref_primary_10_3390_cancers13153772 crossref_primary_10_1016_j_immuni_2020_12_003 crossref_primary_10_1126_sciimmunol_abj5761 crossref_primary_10_1016_j_cell_2020_09_058 crossref_primary_10_26508_lsa_202302332 crossref_primary_10_1038_s41467_024_49885_8 crossref_primary_10_1002_cti2_1108 crossref_primary_10_3389_fonc_2021_596798 crossref_primary_10_3389_fimmu_2019_02155 crossref_primary_10_1002_sctm_21_0264 crossref_primary_10_1017_erm_2022_8 crossref_primary_10_3389_fimmu_2020_571085 crossref_primary_10_1038_s41467_024_48700_8 crossref_primary_10_1002_pdi3_61 crossref_primary_10_1002_mco2_325 crossref_primary_10_3389_fonc_2020_01399 crossref_primary_10_1172_jci_insight_158183 crossref_primary_10_3390_cancers13092184 crossref_primary_10_1136_jitc_2022_005545 crossref_primary_10_1136_jitc_2022_004698 crossref_primary_10_1186_s40779_019_0222_9 crossref_primary_10_7554_eLife_52176 crossref_primary_10_3389_fimmu_2022_993771 crossref_primary_10_3389_fimmu_2022_882718 crossref_primary_10_1016_j_labinv_2023_100176 crossref_primary_10_1016_j_immuni_2021_07_007 crossref_primary_10_1186_s12935_024_03335_z crossref_primary_10_1038_s41418_021_00866_0 crossref_primary_10_1093_jleuko_qiae222 crossref_primary_10_1128_mbio_02764_22 crossref_primary_10_1002_med_21876 crossref_primary_10_3389_fimmu_2022_1026954 crossref_primary_10_1111_cas_15800 crossref_primary_10_1038_s41467_022_35710_7 crossref_primary_10_1084_jem_20220509 crossref_primary_10_4110_in_2021_21_e31 crossref_primary_10_1016_j_ebiom_2022_104371 crossref_primary_10_1038_s41423_023_00990_6 crossref_primary_10_3390_life12050678 crossref_primary_10_3389_fphar_2021_676399 crossref_primary_10_4049_jimmunol_2400234 crossref_primary_10_1158_1078_0432_CCR_23_3616 crossref_primary_10_3389_fimmu_2021_723908 crossref_primary_10_3390_ijms232214466 crossref_primary_10_4049_jimmunol_1901046 crossref_primary_10_1016_j_cell_2023_08_043 crossref_primary_10_1002_advs_202400370 crossref_primary_10_1172_JCI162088 crossref_primary_10_1158_2326_6066_CIR_21_0326 crossref_primary_10_31083_j_fbl2908293 crossref_primary_10_1038_s41598_022_06500_4 crossref_primary_10_1097_MD_0000000000039300 crossref_primary_10_3389_fimmu_2023_1164448 crossref_primary_10_1158_0008_5472_CAN_22_3140 crossref_primary_10_1126_sciadv_adl1710 crossref_primary_10_1016_j_celrep_2024_114868 crossref_primary_10_1093_intimm_dxab027 crossref_primary_10_3390_vaccines8020208 crossref_primary_10_3389_fimmu_2022_1003419 crossref_primary_10_3389_fimmu_2022_1022136 crossref_primary_10_2147_LCTT_S430967 crossref_primary_10_1016_j_coi_2020_08_003 crossref_primary_10_1002_adma_202208782 crossref_primary_10_1002_eji_202149632 crossref_primary_10_1101_cshperspect_a041324 crossref_primary_10_1038_s41569_019_0326_7 crossref_primary_10_3389_fimmu_2022_1056144 crossref_primary_10_3390_cancers17030342 crossref_primary_10_1002_jev2_12390 crossref_primary_10_3389_fcell_2022_803947 crossref_primary_10_1002_wsbm_1458 crossref_primary_10_1016_j_lfs_2024_122896 crossref_primary_10_3390_cells10010018 crossref_primary_10_1097_JCMA_0000000000000535 crossref_primary_10_1016_j_celrep_2020_108472 crossref_primary_10_1186_s12967_024_05722_6 crossref_primary_10_1093_bioinformatics_btae028 crossref_primary_10_1158_2326_6066_CIR_23_1075 crossref_primary_10_1126_science_adf6493 crossref_primary_10_1038_s41573_020_0077_5 crossref_primary_10_1016_j_ccell_2023_06_008 crossref_primary_10_1371_journal_pgen_1011301 crossref_primary_10_1038_s41586_023_06803_0 crossref_primary_10_4046_trd_2023_0190 crossref_primary_10_1158_0008_5472_CAN_22_0094 crossref_primary_10_1093_bib_bbac180 crossref_primary_10_1016_j_lfs_2022_120466 crossref_primary_10_3389_fimmu_2020_00924 crossref_primary_10_1038_s12276_023_01028_7 crossref_primary_10_1038_s41586_024_08257_4 crossref_primary_10_1038_s41467_020_18207_z crossref_primary_10_3390_cancers16122211 crossref_primary_10_1016_j_ccell_2021_04_004 crossref_primary_10_1016_j_immuni_2023_08_014 crossref_primary_10_1016_j_celrep_2022_110769 crossref_primary_10_1016_j_ebiom_2023_104452 crossref_primary_10_1158_1541_7786_MCR_20_0622 crossref_primary_10_1038_s41423_022_00936_4 crossref_primary_10_1038_s41568_022_00546_2 crossref_primary_10_3390_cancers14174278 crossref_primary_10_3389_fimmu_2021_711329 crossref_primary_10_1093_bib_bbae112 crossref_primary_10_1002_mco2_70063 crossref_primary_10_1016_j_jhep_2024_08_008 crossref_primary_10_1016_j_smim_2021_101538 crossref_primary_10_1158_2326_6066_CIR_23_0642 crossref_primary_10_1038_s41590_023_01504_2 crossref_primary_10_1136_jitc_2020_001204 crossref_primary_10_1016_j_resinv_2024_07_013 crossref_primary_10_7554_eLife_63003 crossref_primary_10_1016_j_smim_2021_101546 crossref_primary_10_1038_s42003_025_07515_z crossref_primary_10_1016_j_ebiom_2020_102686 crossref_primary_10_3389_fimmu_2023_1194745 crossref_primary_10_3389_fimmu_2024_1287459 crossref_primary_10_1093_jleuko_qiae042 crossref_primary_10_1093_bib_bbad294 crossref_primary_10_3389_fimmu_2021_697840 crossref_primary_10_3389_fphar_2023_1113182 crossref_primary_10_1038_s41590_022_01153_x crossref_primary_10_1126_sciimmunol_adq8843 crossref_primary_10_3389_fimmu_2023_1285540 crossref_primary_10_1038_s41591_021_01579_0 crossref_primary_10_3390_cancers14030510 crossref_primary_10_1016_j_smim_2021_101506 crossref_primary_10_3390_cells11101720 crossref_primary_10_1186_s12915_020_00947_5 crossref_primary_10_1038_s42003_024_06478_x crossref_primary_10_3389_fimmu_2019_01907 crossref_primary_10_1038_s41586_021_03626_9 crossref_primary_10_1016_j_trecan_2024_01_010 crossref_primary_10_1038_s43018_024_00855_5 crossref_primary_10_1002_ctm2_70009 crossref_primary_10_1158_2767_9764_CRC_22_0513 crossref_primary_10_1007_s11864_024_01256_7 crossref_primary_10_3389_fimmu_2022_941976 crossref_primary_10_1007_s13402_025_01051_y crossref_primary_10_1093_bib_bbad042 crossref_primary_10_3389_fimmu_2021_827611 crossref_primary_10_3390_cancers12113342 crossref_primary_10_1016_j_xcrm_2022_100657 crossref_primary_10_1038_s43018_023_00612_0 crossref_primary_10_1016_j_cell_2021_01_010 crossref_primary_10_1016_j_gpb_2021_01_007 crossref_primary_10_1186_s13046_020_01781_x crossref_primary_10_3390_ijms232113258 crossref_primary_10_1038_s41577_022_00675_7 crossref_primary_10_1016_j_csbj_2021_10_027 crossref_primary_10_1002_eji_202048881 crossref_primary_10_1038_s41556_023_01208_7 crossref_primary_10_3390_cancers14164037 crossref_primary_10_1016_j_eng_2022_11_006 crossref_primary_10_3389_fgene_2020_00942 crossref_primary_10_1016_j_stem_2021_04_002 crossref_primary_10_1038_s41467_022_29516_w crossref_primary_10_1126_sciimmunol_adf4726 crossref_primary_10_1172_jci_insight_167042 crossref_primary_10_1158_2767_9764_CRC_22_0334 crossref_primary_10_1136_jitc_2023_006714 crossref_primary_10_1038_s41467_021_26214_x crossref_primary_10_1093_bib_bbab039 crossref_primary_10_4049_immunohorizons_2200079 crossref_primary_10_1016_j_celrep_2022_110977 crossref_primary_10_1136_jitc_2022_005560 crossref_primary_10_3389_fimmu_2021_787116 crossref_primary_10_1152_ajpcell_00652_2023 crossref_primary_10_3389_fcell_2021_797984 crossref_primary_10_1186_s12859_022_04861_1 crossref_primary_10_1016_j_cmet_2023_07_001 crossref_primary_10_1172_JCI143759 crossref_primary_10_1016_j_omtn_2024_102315 crossref_primary_10_1002_ctm2_1199 crossref_primary_10_1016_j_bcp_2019_113672 crossref_primary_10_1016_j_cell_2022_10_006 crossref_primary_10_1158_2159_8290_CD_23_0299 crossref_primary_10_1016_j_it_2020_08_008 crossref_primary_10_1038_s41588_022_01134_8 crossref_primary_10_1016_j_immuni_2023_07_019 crossref_primary_10_1016_j_xgen_2022_100211 crossref_primary_10_1038_s41593_020_00789_y crossref_primary_10_1038_s41556_019_0378_2 crossref_primary_10_1155_2022_8655343 crossref_primary_10_1016_j_jconrel_2024_05_006 crossref_primary_10_3389_fimmu_2020_00938 crossref_primary_10_1084_jem_20210562 crossref_primary_10_1084_jem_20210564 crossref_primary_10_1186_s40164_023_00459_2 crossref_primary_10_1161_CIRCRESAHA_120_317200 crossref_primary_10_1007_s11427_020_1853_4 crossref_primary_10_1080_07853890_2024_2418338 crossref_primary_10_3390_cells10092364 crossref_primary_10_1002_eji_202149487 crossref_primary_10_1007_s40259_024_00700_2 crossref_primary_10_3390_cells10040960 crossref_primary_10_1038_s41591_019_0736_4 crossref_primary_10_1172_JCI174249 crossref_primary_10_1172_jci_insight_148510 |
Cites_doi | 10.1016/j.immuni.2018.09.024 10.1109/TSMC.1979.4310076 10.1182/blood-2009-07-235028 10.1007/s13238-018-0505-z 10.1038/nmeth.3337 10.1126/science.aah4573 10.1126/science.aaa8172 10.1016/j.immuni.2017.04.018 10.1038/nm.3909 10.1038/ni.2419 10.1016/j.ccell.2016.06.003 10.1136/jmedgenet-2015-103690 10.1038/nprot.2016.154 10.1016/j.jaci.2017.12.988 10.1016/j.cellimm.2014.08.006 10.1038/s41577-018-0088-1 10.1038/nri3671 10.1016/j.cell.2015.04.044 10.1038/s41590-018-0051-0 10.1093/bioinformatics/btx792 10.1038/ni1008-1091 10.3109/08820139.2012.680634 10.1126/science.aar5780 10.1016/j.immuni.2015.11.024 10.1126/science.1247651 10.1007/s10875-017-0434-2 10.1016/j.immuni.2016.07.019 10.1172/JCI77053 10.1111/j.1600-065X.2011.01067.x 10.1038/nature08118 10.1371/journal.pone.0082241 10.1016/j.jmoldx.2011.08.002 10.1016/j.ccell.2014.09.007 10.1038/nrc.2016.52 10.1016/j.immuni.2016.08.015 10.1126/science.aar4362 10.1126/science.aag3009 10.1126/science.aal5081 10.1038/s41591-018-0014-x 10.1038/nrc.2016.54 10.1038/nrclinonc.2016.217 10.1182/blood-2013-02-484188 10.1038/ncomms14049 10.1038/ni.3324 10.1006/cgip.1994.1037 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. 2019. Elsevier Inc. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. – notice: 2019. Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1016/j.immuni.2019.03.009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Nursing and Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Nursing & Allied Health Premium Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1097-4180 |
EndPage | 1334.e10 |
ExternalDocumentID | PMC6620049 30979687 10_1016_j_immuni_2019_03_009 S1074761319301268 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Singapore |
GeographicLocations_xml | – name: Singapore |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R35 CA197697 – fundername: NCI NIH HHS grantid: R33 CA212697 – fundername: NHLBI NIH HHS grantid: P01 HL131477 – fundername: NIAID NIH HHS grantid: R01 AI084880 – fundername: NCI NIH HHS grantid: R01 CA218579 – fundername: NCI NIH HHS grantid: P50 CA086355 – fundername: NCI NIH HHS grantid: R01 CA206890 |
GroupedDBID | --- --K -DZ 0R~ 0SF 1RT 1~5 2WC 4.4 457 4G. 53G 5GY 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDT AAEDW AAFTH AAIAV AAKRW AALRI AAVLU AAXUO ABMAC ABOCM ABVKL ACGFO ACGFS ACIWK ACPRK ADBBV ADEZE ADFRT ADVLN AEFWE AENEX AEXQZ AFKRA AFRAH AFTJW AGGSO AGKMS AHMBA AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BPHCQ BVXVI C45 CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HCIFZ IH2 IHE IXB J1W JIG LK8 LX5 M2O M3Z M41 M7P N9A O-L O9- OK1 OVD P2P PQQKQ PROAC RCE RIG ROL RPZ SCP SES SSZ TEORI TR2 .55 .GJ 29I 5VS AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABJNI ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AGCQF AGHFR AGQPQ AHHHB AIGII AKBMS AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ OHT OZT R2- UHS X7M Y6R ZGI CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K EFKBS FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c557t-ef85dfd6c8f23b6ad54a0ddb57edd0ffc61cdca692dc661d610870a64c02ca363 |
IEDL.DBID | IXB |
ISSN | 1074-7613 1097-4180 |
IngestDate | Thu Aug 21 13:40:47 EDT 2025 Sat Sep 27 21:27:20 EDT 2025 Fri Jul 25 10:39:58 EDT 2025 Thu Apr 03 07:01:47 EDT 2025 Thu Apr 24 23:11:01 EDT 2025 Tue Jul 01 01:58:41 EDT 2025 Tue Jul 16 04:31:01 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | macrophage heterogeneity tumor immunology myeloid cells neutrophil heterogeneity dendritic cell heterogeneity mouse-human comparison tumor microenvironment single-cell analysis |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c557t-ef85dfd6c8f23b6ad54a0ddb57edd0ffc61cdca692dc661d610870a64c02ca363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Lead Contact: Allon M. Klein RZ, CE, CP, VS, MJP and AMK initiated the study, performed the analyses, prepared the figures and wrote the manuscript. CE and CP carried out mouse experiments and prepared mouse samples. RZ and VS carried out scRNA-Seq experiments and computational analyses. DZ developed the Bayesian classifier and assisted in data analysis. HDS performed RNA in situ hybridization and immunohistochemical analysis on patient tumor sections. CVM, CMK, SC, WGR, ADR, IK, GM, EL, DGT, and RB obtained and prepared human patient samples, specifically: CVM, CMK and SC consented patients, maintained IRB approval, obtained blood, gathered clinical data and provided the specimens; WGR, ADR helped in the design of sample collection, provided infrastructure and quality assurance; RB supervised human sample collection and processing, initiated the collaboration, reviewed the work and provided clinical context. IK and GM processed patient samples; EL and DGT initiated the collaboration and coordinated patient sample experiments. AMK and MJP supervised the study. These authors contributed equally Author contributions |
OpenAccessLink | http://www.cell.com/article/S1074761319301268/pdf |
PMID | 30979687 |
PQID | 2228583998 |
PQPubID | 2031079 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6620049 proquest_miscellaneous_2209601952 proquest_journals_2228583998 pubmed_primary_30979687 crossref_citationtrail_10_1016_j_immuni_2019_03_009 crossref_primary_10_1016_j_immuni_2019_03_009 elsevier_sciencedirect_doi_10_1016_j_immuni_2019_03_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-21 |
PublicationDateYYYYMMDD | 2019-05-21 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Immunity (Cambridge, Mass.) |
PublicationTitleAlternate | Immunity |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Wagner, Weinreb, Collins, Briggs, Megason, Klein (bib40) 2018; 360 Zemmour, Zilionis, Kiner, Klein, Mathis, Benoist (bib45) 2018; 19 Gautier, Shay, Miller, Greter, Jakubzick, Ivanov, Helft, Chow, Elpek, Gordonov (bib14) 2012; 13 Bogaert, Dullaers, Lambrecht, Vermaelen, De Baere, Haerynck (bib3) 2016; 53 Coffelt, Wellenstein, de Visser (bib7) 2016; 16 Klein, Mazutis, Akartuna, Tallapragada, Veres, Li, Peshkin, Weitz, Kirschner (bib25) 2015; 161 Binnewies, Roberts, Kersten, Chan, Fearon, Merad, Coussens, Gabrilovich, Ostrand-Rosenberg, Hedrick (bib2) 2018; 24 See, Dutertre, Chen, Günther, McGovern, Irac, Gunawan, Beyer, Händler, Duan (bib36) 2017; 356 Zheng, Terry, Belgrader, Ryvkin, Bent, Wilson, Ziraldo, Wheeler, McDermott, Zhu (bib46) 2017; 8 Győrffy, Surowiak, Budczies, Lánczky (bib20) 2013; 8 Roberts, Broz, Binnewies, Headley, Nelson, Wolf, Kaisho, Bogunovic, Bhardwaj, Krummel (bib33) 2016; 30 Ardouin, Luche, Chelbi, Carpentier, Shawket, Montanana Sanchis, Santa Maria, Grenot, Alexandre, Grégoire (bib1) 2016; 45 Dutertre, Wang, Ginhoux (bib8) 2014; 291 Gentles, Newman, Liu, Bratman, Feng, Kim, Nair, Xu, Khuong, Hoang (bib15) 2015; 21 Guffroy, Mourot-Cottet, Gérard, Gies, Lagresle, Pouliet, Nitschké, Hanein, Bienvenu, Chanet (bib18) 2017; 37 Otsu (bib29) 1979; 9 Sharma, Allison (bib38) 2015; 348 Zanoni, Ostuni, Capuano, Collini, Caccia, Ronchi, Rocchetti, Mingozzi, Foti, Chirico (bib44) 2009; 460 Briggs, Weinreb, Wagner, Megason, Peshkin, Kirschner, Klein (bib4) 2018; 360 Wolock, Lopez, Klein (bib43) 2018 Newman, Liu, Green, Gentles, Feng, Xu, Hoang, Diehn, Alizadeh (bib28) 2015; 12 Eisenbarth (bib9) 2019; 19 Mildner, Schonheit, Giladi, David, Lara-Astiaso, Lorenzo-Vivas, Paul, Chappell-Maor, Priller, Leutz (bib27) 2017; 46 Zilionis, Nainys, Veres, Savova, Zemmour, Klein, Mazutis (bib47) 2017; 12 Rickert, Jellusova, Miletic (bib32) 2011; 244 Engblom, Pfirschke, Pittet (bib10) 2016; 16 Eruslanov, Bhojnagarwala, Quatromoni, Stephen, Ranganathan, Deshpande, Akimova, Vachani, Litzky, Hancock (bib12) 2014; 124 Guilliams, Dutertre, Scott, McGovern, Sichien, Chakarov, Van Gassen, Chen, Poidinger, De Prijck (bib19) 2016; 45 Broz, Binnewies, Boldajipour, Nelson, Pollack, Erle, Barczak, Rosenblum, Daud, Barber (bib5) 2014; 26 Weinreb, Wolock, Klein (bib42) 2018; 34 Garris, Arlauckas, Kohler, Trefny, Garren, Piot, Engblom, Pfirschke, Siwicki, Gungabeesoon (bib13) 2018; 49 Wang, Flanagan, Su, Wang, Bui, Nielson, Wu, Vo, Ma, Luo (bib41) 2012; 14 Heng, Painter (bib21) 2008; 9 Hou, Zhu, Tian, Sun, Wang, Zhang, Zhao (bib22) 2018; 9 Ingersoll, Spanbroek, Lottaz, Gautier, Frankenberger, Hoffmann, Lang, Haniffa, Collin, Tacke (bib23) 2010; 115 Raber, Ochoa, Rodríguez (bib31) 2012; 41 Calzetti, Tamassia, Micheletti, Finotti, Bianchetto-Aguilera, Cassatella (bib6) 2018; 141 Schmidl, Renner, Peter, Eder, Lassmann, Balwierz, Itoh, Nagao-Sato, Kawaji, Carninci (bib35) 2014; 123 Ruifrok, Johnston (bib34) 2001; 23 Engblom, Pfirschke, Zilionis, Da Silva Martins, Bos, Courties, Rickelt, Severe, Baryawno, Faget (bib11) 2017; 358 Villani, Satija, Reynolds, Sarkizova, Shekhar, Fletcher, Griesbeck, Butler, Zheng, Lazo (bib39) 2017; 356 Jaitin, Kenigsberg, Keren-Shaul, Elefant, Paul, Zaretsky, Mildner, Cohen, Jung, Tanay, Amit (bib24) 2014; 343 Shanbhag (bib37) 1994; 56 Ginhoux, Schultze, Murray, Ochando, Biswas (bib17) 2016; 17 Mantovani, Marchesi, Malesci, Laghi, Allavena (bib26) 2017; 14 Pfirschke, Engblom, Rickelt, Cortez-Retamozo, Garris, Pucci, Yamazaki, Poirier-Colame, Newton, Redouane (bib30) 2016; 44 Ginhoux, Jung (bib16) 2014; 14 Wang (10.1016/j.immuni.2019.03.009_bib41) 2012; 14 Dutertre (10.1016/j.immuni.2019.03.009_bib8) 2014; 291 Ingersoll (10.1016/j.immuni.2019.03.009_bib23) 2010; 115 Calzetti (10.1016/j.immuni.2019.03.009_bib6) 2018; 141 Eruslanov (10.1016/j.immuni.2019.03.009_bib12) 2014; 124 Zilionis (10.1016/j.immuni.2019.03.009_bib47) 2017; 12 Guffroy (10.1016/j.immuni.2019.03.009_bib18) 2017; 37 Hou (10.1016/j.immuni.2019.03.009_bib22) 2018; 9 See (10.1016/j.immuni.2019.03.009_bib36) 2017; 356 Ginhoux (10.1016/j.immuni.2019.03.009_bib16) 2014; 14 Gautier (10.1016/j.immuni.2019.03.009_bib14) 2012; 13 Engblom (10.1016/j.immuni.2019.03.009_bib11) 2017; 358 Otsu (10.1016/j.immuni.2019.03.009_bib29) 1979; 9 Binnewies (10.1016/j.immuni.2019.03.009_bib2) 2018; 24 Eisenbarth (10.1016/j.immuni.2019.03.009_bib9) 2019; 19 Weinreb (10.1016/j.immuni.2019.03.009_bib42) 2018; 34 Zemmour (10.1016/j.immuni.2019.03.009_bib45) 2018; 19 Ginhoux (10.1016/j.immuni.2019.03.009_bib17) 2016; 17 Shanbhag (10.1016/j.immuni.2019.03.009_bib37) 1994; 56 Guilliams (10.1016/j.immuni.2019.03.009_bib19) 2016; 45 Zheng (10.1016/j.immuni.2019.03.009_bib46) 2017; 8 Roberts (10.1016/j.immuni.2019.03.009_bib33) 2016; 30 Coffelt (10.1016/j.immuni.2019.03.009_bib7) 2016; 16 Wolock (10.1016/j.immuni.2019.03.009_bib43) 2018 Sharma (10.1016/j.immuni.2019.03.009_bib38) 2015; 348 Jaitin (10.1016/j.immuni.2019.03.009_bib24) 2014; 343 Wagner (10.1016/j.immuni.2019.03.009_bib40) 2018; 360 Heng (10.1016/j.immuni.2019.03.009_bib21) 2008; 9 Zanoni (10.1016/j.immuni.2019.03.009_bib44) 2009; 460 Pfirschke (10.1016/j.immuni.2019.03.009_bib30) 2016; 44 Győrffy (10.1016/j.immuni.2019.03.009_bib20) 2013; 8 Rickert (10.1016/j.immuni.2019.03.009_bib32) 2011; 244 Broz (10.1016/j.immuni.2019.03.009_bib5) 2014; 26 Garris (10.1016/j.immuni.2019.03.009_bib13) 2018; 49 Raber (10.1016/j.immuni.2019.03.009_bib31) 2012; 41 Klein (10.1016/j.immuni.2019.03.009_bib25) 2015; 161 Villani (10.1016/j.immuni.2019.03.009_bib39) 2017; 356 Briggs (10.1016/j.immuni.2019.03.009_bib4) 2018; 360 Ruifrok (10.1016/j.immuni.2019.03.009_bib34) 2001; 23 Mantovani (10.1016/j.immuni.2019.03.009_bib26) 2017; 14 Bogaert (10.1016/j.immuni.2019.03.009_bib3) 2016; 53 Mildner (10.1016/j.immuni.2019.03.009_bib27) 2017; 46 Schmidl (10.1016/j.immuni.2019.03.009_bib35) 2014; 123 Engblom (10.1016/j.immuni.2019.03.009_bib10) 2016; 16 Newman (10.1016/j.immuni.2019.03.009_bib28) 2015; 12 Gentles (10.1016/j.immuni.2019.03.009_bib15) 2015; 21 Ardouin (10.1016/j.immuni.2019.03.009_bib1) 2016; 45 |
References_xml | – volume: 141 start-page: 2276 year: 2018 end-page: 2279.e3 ident: bib6 article-title: Human dendritic cell subset 4 (DC4) correlates to a subset of CD14 publication-title: J. Allergy Clin. Immunol. – volume: 8 start-page: 14049 year: 2017 ident: bib46 article-title: Massively parallel digital transcriptional profiling of single cells publication-title: Nat. Commun. – volume: 45 start-page: 305 year: 2016 end-page: 318 ident: bib1 article-title: Broad and largely concordant molecular changes characterize tolerogenic and immunogenic dendritic cell maturation in thymus and periphery publication-title: Immunity – volume: 41 start-page: 614 year: 2012 end-page: 634 ident: bib31 article-title: Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives publication-title: Immunol. Invest. – volume: 360 start-page: eaar5780 year: 2018 ident: bib4 article-title: The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution publication-title: Science – volume: 16 start-page: 431 year: 2016 end-page: 446 ident: bib7 article-title: Neutrophils in cancer: neutral no more publication-title: Nat. Rev. Cancer – volume: 9 start-page: 1091 year: 2008 end-page: 1094 ident: bib21 article-title: The Immunological Genome Project: networks of gene expression in immune cells publication-title: Nat. Immunol. – volume: 13 start-page: 1118 year: 2012 end-page: 1128 ident: bib14 article-title: Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages publication-title: Nat. Immunol. – volume: 343 start-page: 776 year: 2014 end-page: 779 ident: bib24 article-title: Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types publication-title: Science – volume: 24 start-page: 541 year: 2018 end-page: 550 ident: bib2 article-title: Understanding the tumor immune microenvironment (TIME) for effective therapy publication-title: Nat. Med. – volume: 356 start-page: 356 year: 2017 ident: bib36 article-title: Mapping the human DC lineage through the integration of high-dimensional techniques publication-title: Science – volume: 123 start-page: e90 year: 2014 end-page: e99 ident: bib35 article-title: Transcription and enhancer profiling in human monocyte subsets publication-title: Blood – volume: 12 start-page: 453 year: 2015 end-page: 457 ident: bib28 article-title: Robust enumeration of cell subsets from tissue expression profiles publication-title: Nat. Methods – volume: 9 start-page: 62 year: 1979 end-page: 66 ident: bib29 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man Cybern. – volume: 16 start-page: 447 year: 2016 end-page: 462 ident: bib10 article-title: The role of myeloid cells in cancer therapies publication-title: Nat. Rev. Cancer – volume: 12 start-page: 44 year: 2017 end-page: 73 ident: bib47 article-title: Single-cell barcoding and sequencing using droplet microfluidics publication-title: Nat. Protoc. – volume: 291 start-page: 3 year: 2014 end-page: 10 ident: bib8 article-title: Aligning bona fide dendritic cell populations across species publication-title: Cell. Immunol. – volume: 53 start-page: 575 year: 2016 end-page: 590 ident: bib3 article-title: Genes associated with common variable immunodeficiency: one diagnosis to rule them all? publication-title: J. Med. Genet. – volume: 17 start-page: 34 year: 2016 end-page: 40 ident: bib17 article-title: New insights into the multidimensional concept of macrophage ontogeny, activation and function publication-title: Nat. Immunol. – volume: 45 start-page: 669 year: 2016 end-page: 684 ident: bib19 article-title: Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species publication-title: Immunity – volume: 8 start-page: e82241 year: 2013 ident: bib20 article-title: Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer publication-title: PLoS ONE – volume: 37 start-page: 715 year: 2017 end-page: 726 ident: bib18 article-title: Neutropenia in patients with common variable immunodeficiency: a rare event associated with severe outcome publication-title: J. Clin. Immunol. – volume: 348 start-page: 56 year: 2015 end-page: 61 ident: bib38 article-title: The future of immune checkpoint therapy publication-title: Science – volume: 30 start-page: 324 year: 2016 end-page: 336 ident: bib33 article-title: Critical Role for CD103 publication-title: Cancer Cell – volume: 124 start-page: 5466 year: 2014 end-page: 5480 ident: bib12 article-title: Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer publication-title: J. Clin. Invest. – volume: 19 start-page: 291 year: 2018 end-page: 301 ident: bib45 article-title: Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR publication-title: Nat. Immunol. – volume: 14 start-page: 399 year: 2017 end-page: 416 ident: bib26 article-title: Tumour-associated macrophages as treatment targets in oncology publication-title: Nat. Rev. Clin. Oncol. – volume: 49 start-page: 1148 year: 2018 end-page: 1161.e7 ident: bib13 article-title: Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12 publication-title: Immunity – volume: 26 start-page: 638 year: 2014 end-page: 652 ident: bib5 article-title: Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity publication-title: Cancer Cell – volume: 21 start-page: 938 year: 2015 end-page: 945 ident: bib15 article-title: The prognostic landscape of genes and infiltrating immune cells across human cancers publication-title: Nat. Med. – volume: 46 start-page: 849 year: 2017 end-page: 862 ident: bib27 article-title: Genomic Characterization of Murine Monocytes Reveals C/EBPbeta Transcription Factor Dependence of Ly6C− Cells publication-title: Immunity – volume: 14 start-page: 22 year: 2012 end-page: 29 ident: bib41 article-title: RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues publication-title: J. Mol. Diagn. – volume: 44 start-page: 343 year: 2016 end-page: 354 ident: bib30 article-title: Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy publication-title: Immunity – volume: 56 start-page: 414 year: 1994 end-page: 419 ident: bib37 article-title: Utilization of information measure as a means of image thresholding publication-title: CVGIP Graph. Models Image Process. – year: 2018 ident: bib43 article-title: Scrublet: computational identification of cell doublets in single-cell transcriptomic data publication-title: bioRxiv – volume: 14 start-page: 392 year: 2014 end-page: 404 ident: bib16 article-title: Monocytes and macrophages: developmental pathways and tissue homeostasis publication-title: Nat. Rev. Immunol. – volume: 19 start-page: 89 year: 2019 end-page: 103 ident: bib9 article-title: Dendritic cell subsets in T cell programming: location dictates function publication-title: Nat. Rev. Immunol. – volume: 23 start-page: 291 year: 2001 end-page: 299 ident: bib34 article-title: Quantification of histochemical staining by color deconvolution publication-title: Anal. Quant. Cytol. Histol. – volume: 244 start-page: 115 year: 2011 end-page: 133 ident: bib32 article-title: Signaling by the tumor necrosis factor receptor superfamily in B-cell biology and disease publication-title: Immunol. Rev. – volume: 161 start-page: 1187 year: 2015 end-page: 1201 ident: bib25 article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells publication-title: Cell – volume: 9 start-page: 1027 year: 2018 end-page: 1038 ident: bib22 article-title: IL-23-induced macrophage polarization and its pathological roles in mice with imiquimod-induced psoriasis publication-title: Protein Cell – volume: 360 start-page: 981 year: 2018 end-page: 987 ident: bib40 article-title: Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo publication-title: Science – volume: 358 start-page: eaal5081 year: 2017 ident: bib11 article-title: Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF publication-title: Science – volume: 460 start-page: 264 year: 2009 end-page: 268 ident: bib44 article-title: CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation publication-title: Nature – volume: 115 start-page: e10 year: 2010 end-page: e19 ident: bib23 article-title: Comparison of gene expression profiles between human and mouse monocyte subsets publication-title: Blood – volume: 34 start-page: 1246 year: 2018 end-page: 1248 ident: bib42 article-title: SPRING: a kinetic interface for visualizing high dimensional single-cell expression data publication-title: Bioinformatics – volume: 356 start-page: 356 year: 2017 ident: bib39 article-title: Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors publication-title: Science – volume: 49 start-page: 1148 year: 2018 ident: 10.1016/j.immuni.2019.03.009_bib13 article-title: Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12 publication-title: Immunity doi: 10.1016/j.immuni.2018.09.024 – volume: 9 start-page: 62 year: 1979 ident: 10.1016/j.immuni.2019.03.009_bib29 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1979.4310076 – volume: 115 start-page: e10 year: 2010 ident: 10.1016/j.immuni.2019.03.009_bib23 article-title: Comparison of gene expression profiles between human and mouse monocyte subsets publication-title: Blood doi: 10.1182/blood-2009-07-235028 – volume: 9 start-page: 1027 year: 2018 ident: 10.1016/j.immuni.2019.03.009_bib22 article-title: IL-23-induced macrophage polarization and its pathological roles in mice with imiquimod-induced psoriasis publication-title: Protein Cell doi: 10.1007/s13238-018-0505-z – volume: 12 start-page: 453 year: 2015 ident: 10.1016/j.immuni.2019.03.009_bib28 article-title: Robust enumeration of cell subsets from tissue expression profiles publication-title: Nat. Methods doi: 10.1038/nmeth.3337 – volume: 356 start-page: 356 year: 2017 ident: 10.1016/j.immuni.2019.03.009_bib39 article-title: Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors publication-title: Science doi: 10.1126/science.aah4573 – volume: 348 start-page: 56 year: 2015 ident: 10.1016/j.immuni.2019.03.009_bib38 article-title: The future of immune checkpoint therapy publication-title: Science doi: 10.1126/science.aaa8172 – volume: 46 start-page: 849 year: 2017 ident: 10.1016/j.immuni.2019.03.009_bib27 article-title: Genomic Characterization of Murine Monocytes Reveals C/EBPbeta Transcription Factor Dependence of Ly6C− Cells publication-title: Immunity doi: 10.1016/j.immuni.2017.04.018 – volume: 21 start-page: 938 year: 2015 ident: 10.1016/j.immuni.2019.03.009_bib15 article-title: The prognostic landscape of genes and infiltrating immune cells across human cancers publication-title: Nat. Med. doi: 10.1038/nm.3909 – volume: 13 start-page: 1118 year: 2012 ident: 10.1016/j.immuni.2019.03.009_bib14 article-title: Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages publication-title: Nat. Immunol. doi: 10.1038/ni.2419 – volume: 30 start-page: 324 year: 2016 ident: 10.1016/j.immuni.2019.03.009_bib33 article-title: Critical Role for CD103+/CD141+ dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.06.003 – volume: 53 start-page: 575 year: 2016 ident: 10.1016/j.immuni.2019.03.009_bib3 article-title: Genes associated with common variable immunodeficiency: one diagnosis to rule them all? publication-title: J. Med. Genet. doi: 10.1136/jmedgenet-2015-103690 – volume: 12 start-page: 44 year: 2017 ident: 10.1016/j.immuni.2019.03.009_bib47 article-title: Single-cell barcoding and sequencing using droplet microfluidics publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.154 – volume: 141 start-page: 2276 year: 2018 ident: 10.1016/j.immuni.2019.03.009_bib6 article-title: Human dendritic cell subset 4 (DC4) correlates to a subset of CD14dim/-CD16++ monocytes publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2017.12.988 – volume: 291 start-page: 3 year: 2014 ident: 10.1016/j.immuni.2019.03.009_bib8 article-title: Aligning bona fide dendritic cell populations across species publication-title: Cell. Immunol. doi: 10.1016/j.cellimm.2014.08.006 – volume: 19 start-page: 89 year: 2019 ident: 10.1016/j.immuni.2019.03.009_bib9 article-title: Dendritic cell subsets in T cell programming: location dictates function publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-018-0088-1 – volume: 14 start-page: 392 year: 2014 ident: 10.1016/j.immuni.2019.03.009_bib16 article-title: Monocytes and macrophages: developmental pathways and tissue homeostasis publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3671 – volume: 161 start-page: 1187 year: 2015 ident: 10.1016/j.immuni.2019.03.009_bib25 article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2015.04.044 – volume: 19 start-page: 291 year: 2018 ident: 10.1016/j.immuni.2019.03.009_bib45 article-title: Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR publication-title: Nat. Immunol. doi: 10.1038/s41590-018-0051-0 – volume: 34 start-page: 1246 year: 2018 ident: 10.1016/j.immuni.2019.03.009_bib42 article-title: SPRING: a kinetic interface for visualizing high dimensional single-cell expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx792 – volume: 9 start-page: 1091 year: 2008 ident: 10.1016/j.immuni.2019.03.009_bib21 article-title: The Immunological Genome Project: networks of gene expression in immune cells publication-title: Nat. Immunol. doi: 10.1038/ni1008-1091 – volume: 41 start-page: 614 year: 2012 ident: 10.1016/j.immuni.2019.03.009_bib31 article-title: Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives publication-title: Immunol. Invest. doi: 10.3109/08820139.2012.680634 – volume: 360 start-page: eaar5780 year: 2018 ident: 10.1016/j.immuni.2019.03.009_bib4 article-title: The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution publication-title: Science doi: 10.1126/science.aar5780 – volume: 44 start-page: 343 year: 2016 ident: 10.1016/j.immuni.2019.03.009_bib30 article-title: Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy publication-title: Immunity doi: 10.1016/j.immuni.2015.11.024 – volume: 343 start-page: 776 year: 2014 ident: 10.1016/j.immuni.2019.03.009_bib24 article-title: Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types publication-title: Science doi: 10.1126/science.1247651 – volume: 37 start-page: 715 year: 2017 ident: 10.1016/j.immuni.2019.03.009_bib18 article-title: Neutropenia in patients with common variable immunodeficiency: a rare event associated with severe outcome publication-title: J. Clin. Immunol. doi: 10.1007/s10875-017-0434-2 – volume: 45 start-page: 305 year: 2016 ident: 10.1016/j.immuni.2019.03.009_bib1 article-title: Broad and largely concordant molecular changes characterize tolerogenic and immunogenic dendritic cell maturation in thymus and periphery publication-title: Immunity doi: 10.1016/j.immuni.2016.07.019 – volume: 124 start-page: 5466 year: 2014 ident: 10.1016/j.immuni.2019.03.009_bib12 article-title: Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer publication-title: J. Clin. Invest. doi: 10.1172/JCI77053 – volume: 244 start-page: 115 year: 2011 ident: 10.1016/j.immuni.2019.03.009_bib32 article-title: Signaling by the tumor necrosis factor receptor superfamily in B-cell biology and disease publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2011.01067.x – volume: 460 start-page: 264 year: 2009 ident: 10.1016/j.immuni.2019.03.009_bib44 article-title: CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation publication-title: Nature doi: 10.1038/nature08118 – year: 2018 ident: 10.1016/j.immuni.2019.03.009_bib43 article-title: Scrublet: computational identification of cell doublets in single-cell transcriptomic data publication-title: bioRxiv – volume: 8 start-page: e82241 year: 2013 ident: 10.1016/j.immuni.2019.03.009_bib20 article-title: Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer publication-title: PLoS ONE doi: 10.1371/journal.pone.0082241 – volume: 14 start-page: 22 year: 2012 ident: 10.1016/j.immuni.2019.03.009_bib41 article-title: RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues publication-title: J. Mol. Diagn. doi: 10.1016/j.jmoldx.2011.08.002 – volume: 23 start-page: 291 year: 2001 ident: 10.1016/j.immuni.2019.03.009_bib34 article-title: Quantification of histochemical staining by color deconvolution publication-title: Anal. Quant. Cytol. Histol. – volume: 26 start-page: 638 year: 2014 ident: 10.1016/j.immuni.2019.03.009_bib5 article-title: Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity publication-title: Cancer Cell doi: 10.1016/j.ccell.2014.09.007 – volume: 16 start-page: 431 year: 2016 ident: 10.1016/j.immuni.2019.03.009_bib7 article-title: Neutrophils in cancer: neutral no more publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2016.52 – volume: 45 start-page: 669 year: 2016 ident: 10.1016/j.immuni.2019.03.009_bib19 article-title: Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species publication-title: Immunity doi: 10.1016/j.immuni.2016.08.015 – volume: 360 start-page: 981 year: 2018 ident: 10.1016/j.immuni.2019.03.009_bib40 article-title: Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo publication-title: Science doi: 10.1126/science.aar4362 – volume: 356 start-page: 356 year: 2017 ident: 10.1016/j.immuni.2019.03.009_bib36 article-title: Mapping the human DC lineage through the integration of high-dimensional techniques publication-title: Science doi: 10.1126/science.aag3009 – volume: 358 start-page: eaal5081 year: 2017 ident: 10.1016/j.immuni.2019.03.009_bib11 article-title: Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils publication-title: Science doi: 10.1126/science.aal5081 – volume: 24 start-page: 541 year: 2018 ident: 10.1016/j.immuni.2019.03.009_bib2 article-title: Understanding the tumor immune microenvironment (TIME) for effective therapy publication-title: Nat. Med. doi: 10.1038/s41591-018-0014-x – volume: 16 start-page: 447 year: 2016 ident: 10.1016/j.immuni.2019.03.009_bib10 article-title: The role of myeloid cells in cancer therapies publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2016.54 – volume: 14 start-page: 399 year: 2017 ident: 10.1016/j.immuni.2019.03.009_bib26 article-title: Tumour-associated macrophages as treatment targets in oncology publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2016.217 – volume: 123 start-page: e90 year: 2014 ident: 10.1016/j.immuni.2019.03.009_bib35 article-title: Transcription and enhancer profiling in human monocyte subsets publication-title: Blood doi: 10.1182/blood-2013-02-484188 – volume: 8 start-page: 14049 year: 2017 ident: 10.1016/j.immuni.2019.03.009_bib46 article-title: Massively parallel digital transcriptional profiling of single cells publication-title: Nat. Commun. doi: 10.1038/ncomms14049 – volume: 17 start-page: 34 year: 2016 ident: 10.1016/j.immuni.2019.03.009_bib17 article-title: New insights into the multidimensional concept of macrophage ontogeny, activation and function publication-title: Nat. Immunol. doi: 10.1038/ni.3324 – volume: 56 start-page: 414 year: 1994 ident: 10.1016/j.immuni.2019.03.009_bib37 article-title: Utilization of information measure as a means of image thresholding publication-title: CVGIP Graph. Models Image Process. doi: 10.1006/cgip.1994.1037 |
SSID | ssj0014590 |
Score | 2.7205846 |
Snippet | Tumor-infiltrating myeloid cells (TIMs) comprise monocytes, macrophages, dendritic cells, and neutrophils, and have emerged as key regulators of cancer growth.... SummaryTumor-infiltrating myeloid cells (TIMs) comprise monocytes, macrophages, dendritic cells, and neutrophils, and have emerged as key regulators of cancer... Tumor-infiltrating myeloid cells (TIMs) comprise monocytes, macrophages, dendritic cells and neutrophils, and have emerged as key regulators of cancer growth.... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1317 |
SubjectTerms | Animals Base Sequence Carcinoma, Non-Small-Cell Lung - immunology Carcinoma, Non-Small-Cell Lung - pathology Cell Line, Tumor Collaboration dendritic cell heterogeneity Dendritic cells Dendritic Cells - immunology Dendritic structure Experiments Gene expression Gene Expression Profiling Gene sequencing Grants Granulocytes Histology Humans Immunotherapy Laboratory animals Leukocytes (neutrophilic) Lung - immunology Lung - pathology Lung cancer Lung Neoplasms - immunology Lung Neoplasms - pathology macrophage heterogeneity Macrophages Macrophages - immunology Male Mice Mice, Inbred C57BL Monocytes Monocytes - immunology mouse-human comparison Myeloid cells neutrophil heterogeneity Neutrophils Neutrophils - immunology Patients Populations Regulators Ribonucleic acid RNA Sequence Analysis, RNA single-cell analysis Species Studies tumor immunology tumor microenvironment Tumors |
Title | Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals Conserved Myeloid Populations across Individuals and Species |
URI | https://dx.doi.org/10.1016/j.immuni.2019.03.009 https://www.ncbi.nlm.nih.gov/pubmed/30979687 https://www.proquest.com/docview/2228583998 https://www.proquest.com/docview/2209601952 https://pubmed.ncbi.nlm.nih.gov/PMC6620049 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB-OA8UX0fNrz1Mi-Fq2X0maR108TnFFPA_2LaRJipXSPa57wr35pzuTpsVV5MC3fkxL2vlM8psZgNc1WkXuPE5yZFYnOP8qk9pLlXBPwTTG0JWlpYH1J3F2UX7Y8M0BrKZcGIJVRts_2vRgreOVZfyby8u2XZ4TlBAn4ShDKKS5oIRfyiqlJL7N23knoeQqnXGHSD2lzwWMVxtyMAjgFUudqn-5p7_Dzz9RlL-5pdMHcD_Gk-zNOOSHcOD7I7gzdpi8OYK767h3_gh-nqOX6nyy8l3HgosKBoOykge2bVhYzmemd2y9vR48-4hmgK1IKK4G9sX_wIhyYNTfkzCSSHTju23r2Oe5A9jATPgo9n5O8hrC-0KPez88hovTd19XZ0nsv5BYzuUu8U3FXeOErZq8qIVxvDSpczWX3rm0aazIrLNGqNxZdPMOIzHUfiNKm-bWFKJ4Aof9tvfPgDWSl6jgUlkMGerMVN6WeFjguwtXOrWAYvrt2sbi5NQjo9MTCu27HpmliVk6LTQyawHJ_NTlWJzjFno5cVTvCZlG_3HLkyeTAOio5IOmxTOOAaaqFvBqvo3qSXsupvfILKShOWKmeL6Ap6O8zEMtUiWVqCQOa0-SZgIq_b1_p2-_hRLgQpB1U8f__UHP4R6dEQ4iz07gcHd17V9geLWrXwb9-QW4bCZd |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIigXBOXRhQJG4hptXnbiI6yodmG3QrSV9mY5tiOComzVbJF646cz4zzEglAlblE8iZzM67M9D4B3BVpFbh0ucrKoCHD9lQaFy2TAHYFpxNC5oa2B1amYX6Sf1ny9B7MhF4bCKnvb39l0b637O9P-b04vq2p6RqGEuAhHGUIhjUV-B-4iGghJtBfrD-NRQsplOAYeIvmQP-eDvCqfhEERXn2tU_kv__Q3_vwzjPI3v3TyCB72gJK97-b8GPZccwj3uhaTN4dwf9Ufnj-Bn2fopmoXzFxdM--jvMWgtOSWbUrm9_OZbixbba5bx5ZoB9iMpOKqZV_dD4SULaMGnxQkiUQ3rt5Uln0ZW4C1TPuPYosxy6v17_NN7l37FC5OPp7P5kHfgCEwnGfbwJU5t6UVJi_jpBDa8lSH1hY8c9aGZWlEZKzRQsbWoJ-3CMVQ_bVITRgbnYjkGew3m8YdASsznqKGZ9IgZiginTuT4mWC705sauUEkuG3K9NXJ6cmGbUawtC-q45ZipilwkQhsyYQjE9ddtU5bqHPBo6qHSlT6EBuefJ4EADVa3mraPeMI8KU-QTejsOon3ToohuHzEIaWiRGkscTeN7JyzjVJJSZFHmG09qRpJGAan_vjjTVN18DXAgyb_LFf3_QGziYn6-Wark4_fwSHtAIBUXE0THsb6-u3SvEWtvitdelX4YNKYA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-Cell+Transcriptomics+of+Human+and+Mouse+Lung+Cancers+Reveals+Conserved+Myeloid+Populations+across+Individuals+and+Species&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Zilionis%2C+Rapolas&rft.au=Engblom%2C+Camilla&rft.au=Pfirschke%2C+Christina&rft.au=Savova%2C+Virginia&rft.date=2019-05-21&rft.pub=Elsevier+Inc&rft.issn=1074-7613&rft.eissn=1097-4180&rft.volume=50&rft.issue=5&rft.spage=1317&rft.epage=1334.e10&rft_id=info:doi/10.1016%2Fj.immuni.2019.03.009&rft.externalDocID=S1074761319301268 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon |