Comparison between the Hamiltonian Monte Carlo method and the Metropolis–Hastings method for coseismic fault model estimation

A rapid source fault estimation and quantitative assessment of the uncertainty of the estimated model can elucidate the occurrence mechanism of earthquakes and inform disaster damage mitigation. The Bayesian statistical method that addresses the posterior distribution of unknowns using the Markov ch...

Full description

Saved in:
Bibliographic Details
Published inEarth, planets, and space Vol. 74; no. 1; pp. 1 - 16
Main Authors Yamada, Taisuke, Ohno, Keitaro, Ohta, Yusaku
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 06.06.2022
Springer
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1880-5981
1343-8832
1880-5981
DOI10.1186/s40623-022-01645-y

Cover

Abstract A rapid source fault estimation and quantitative assessment of the uncertainty of the estimated model can elucidate the occurrence mechanism of earthquakes and inform disaster damage mitigation. The Bayesian statistical method that addresses the posterior distribution of unknowns using the Markov chain Monte Carlo (MCMC) method is significant for uncertainty assessment. The Metropolis–Hastings method, especially the Random walk Metropolis–Hastings (RWMH), has many applications, including coseismic fault estimation. However, RWMH exhibits a trade-off between the transition distance and the acceptance ratio of parameter transition candidates and requires a long mixing time, particularly in solving high-dimensional problems. This necessitates a more efficient Bayesian method. In this study, we developed a fault estimation algorithm using the Hamiltonian Monte Carlo (HMC) method, which is considered more efficient than the other MCMC method, but its applicability has not been sufficiently validated to estimate the coseismic fault for the first time. HMC can conduct sampling more intelligently with the gradient information of the posterior distribution. We applied our algorithm to the 2016 Kumamoto earthquake (M JMA 7.3), and its sampling converged in 2 × 10 4 samples, including 1 × 10 3 burn-in samples. The estimated models satisfactorily accounted for the input data; the variance reduction was approximately 88%, and the estimated fault parameters and event magnitude were consistent with those reported in previous studies. HMC could acquire similar results using only 2% of the RWMH chains. Moreover, the power spectral density (PSD) of each model parameter's Markov chain showed this method exhibited a low correlation with the subsequent sample and a long transition distance between samples. These results indicate HMC has advantages in terms of chain length than RWMH, expecting a more efficient estimation for a high-dimensional problem that requires a long mixing time or a problem using nonlinear Green’s function, which has a large computational cost. Graphical Abstract
AbstractList A rapid source fault estimation and quantitative assessment of the uncertainty of the estimated model can elucidate the occurrence mechanism of earthquakes and inform disaster damage mitigation. The Bayesian statistical method that addresses the posterior distribution of unknowns using the Markov chain Monte Carlo (MCMC) method is significant for uncertainty assessment. The Metropolis–Hastings method, especially the Random walk Metropolis–Hastings (RWMH), has many applications, including coseismic fault estimation. However, RWMH exhibits a trade-off between the transition distance and the acceptance ratio of parameter transition candidates and requires a long mixing time, particularly in solving high-dimensional problems. This necessitates a more efficient Bayesian method. In this study, we developed a fault estimation algorithm using the Hamiltonian Monte Carlo (HMC) method, which is considered more efficient than the other MCMC method, but its applicability has not been sufficiently validated to estimate the coseismic fault for the first time. HMC can conduct sampling more intelligently with the gradient information of the posterior distribution. We applied our algorithm to the 2016 Kumamoto earthquake (M JMA 7.3), and its sampling converged in 2 × 10 4 samples, including 1 × 10 3 burn-in samples. The estimated models satisfactorily accounted for the input data; the variance reduction was approximately 88%, and the estimated fault parameters and event magnitude were consistent with those reported in previous studies. HMC could acquire similar results using only 2% of the RWMH chains. Moreover, the power spectral density (PSD) of each model parameter's Markov chain showed this method exhibited a low correlation with the subsequent sample and a long transition distance between samples. These results indicate HMC has advantages in terms of chain length than RWMH, expecting a more efficient estimation for a high-dimensional problem that requires a long mixing time or a problem using nonlinear Green’s function, which has a large computational cost. Graphical Abstract
Abstract A rapid source fault estimation and quantitative assessment of the uncertainty of the estimated model can elucidate the occurrence mechanism of earthquakes and inform disaster damage mitigation. The Bayesian statistical method that addresses the posterior distribution of unknowns using the Markov chain Monte Carlo (MCMC) method is significant for uncertainty assessment. The Metropolis–Hastings method, especially the Random walk Metropolis–Hastings (RWMH), has many applications, including coseismic fault estimation. However, RWMH exhibits a trade-off between the transition distance and the acceptance ratio of parameter transition candidates and requires a long mixing time, particularly in solving high-dimensional problems. This necessitates a more efficient Bayesian method. In this study, we developed a fault estimation algorithm using the Hamiltonian Monte Carlo (HMC) method, which is considered more efficient than the other MCMC method, but its applicability has not been sufficiently validated to estimate the coseismic fault for the first time. HMC can conduct sampling more intelligently with the gradient information of the posterior distribution. We applied our algorithm to the 2016 Kumamoto earthquake (MJMA 7.3), and its sampling converged in 2 × 104 samples, including 1 × 103 burn-in samples. The estimated models satisfactorily accounted for the input data; the variance reduction was approximately 88%, and the estimated fault parameters and event magnitude were consistent with those reported in previous studies. HMC could acquire similar results using only 2% of the RWMH chains. Moreover, the power spectral density (PSD) of each model parameter's Markov chain showed this method exhibited a low correlation with the subsequent sample and a long transition distance between samples. These results indicate HMC has advantages in terms of chain length than RWMH, expecting a more efficient estimation for a high-dimensional problem that requires a long mixing time or a problem using nonlinear Green’s function, which has a large computational cost. Graphical Abstract
A rapid source fault estimation and quantitative assessment of the uncertainty of the estimated model can elucidate the occurrence mechanism of earthquakes and inform disaster damage mitigation. The Bayesian statistical method that addresses the posterior distribution of unknowns using the Markov chain Monte Carlo (MCMC) method is significant for uncertainty assessment. The Metropolis-Hastings method, especially the Random walk Metropolis-Hastings (RWMH), has many applications, including coseismic fault estimation. However, RWMH exhibits a trade-off between the transition distance and the acceptance ratio of parameter transition candidates and requires a long mixing time, particularly in solving high-dimensional problems. This necessitates a more efficient Bayesian method. In this study, we developed a fault estimation algorithm using the Hamiltonian Monte Carlo (HMC) method, which is considered more efficient than the other MCMC method, but its applicability has not been sufficiently validated to estimate the coseismic fault for the first time. HMC can conduct sampling more intelligently with the gradient information of the posterior distribution. We applied our algorithm to the 2016 Kumamoto earthquake (M.sub.JMA 7.3), and its sampling converged in 2 x 10.sup.4 samples, including 1 x 10.sup.3 burn-in samples. The estimated models satisfactorily accounted for the input data; the variance reduction was approximately 88%, and the estimated fault parameters and event magnitude were consistent with those reported in previous studies. HMC could acquire similar results using only 2% of the RWMH chains. Moreover, the power spectral density (PSD) of each model parameter's Markov chain showed this method exhibited a low correlation with the subsequent sample and a long transition distance between samples. These results indicate HMC has advantages in terms of chain length than RWMH, expecting a more efficient estimation for a high-dimensional problem that requires a long mixing time or a problem using nonlinear Green's function, which has a large computational cost. Graphical
A rapid source fault estimation and quantitative assessment of the uncertainty of the estimated model can elucidate the occurrence mechanism of earthquakes and inform disaster damage mitigation. The Bayesian statistical method that addresses the posterior distribution of unknowns using the Markov chain Monte Carlo (MCMC) method is significant for uncertainty assessment. The Metropolis-Hastings method, especially the Random walk Metropolis-Hastings (RWMH), has many applications, including coseismic fault estimation. However, RWMH exhibits a trade-off between the transition distance and the acceptance ratio of parameter transition candidates and requires a long mixing time, particularly in solving high-dimensional problems. This necessitates a more efficient Bayesian method. In this study, we developed a fault estimation algorithm using the Hamiltonian Monte Carlo (HMC) method, which is considered more efficient than the other MCMC method, but its applicability has not been sufficiently validated to estimate the coseismic fault for the first time. HMC can conduct sampling more intelligently with the gradient information of the posterior distribution. We applied our algorithm to the 2016 Kumamoto earthquake (M.sub.JMA 7.3), and its sampling converged in 2 x 10.sup.4 samples, including 1 x 10.sup.3 burn-in samples. The estimated models satisfactorily accounted for the input data; the variance reduction was approximately 88%, and the estimated fault parameters and event magnitude were consistent with those reported in previous studies. HMC could acquire similar results using only 2% of the RWMH chains. Moreover, the power spectral density (PSD) of each model parameter's Markov chain showed this method exhibited a low correlation with the subsequent sample and a long transition distance between samples. These results indicate HMC has advantages in terms of chain length than RWMH, expecting a more efficient estimation for a high-dimensional problem that requires a long mixing time or a problem using nonlinear Green's function, which has a large computational cost.
A rapid source fault estimation and quantitative assessment of the uncertainty of the estimated model can elucidate the occurrence mechanism of earthquakes and inform disaster damage mitigation. The Bayesian statistical method that addresses the posterior distribution of unknowns using the Markov chain Monte Carlo (MCMC) method is significant for uncertainty assessment. The Metropolis–Hastings method, especially the Random walk Metropolis–Hastings (RWMH), has many applications, including coseismic fault estimation. However, RWMH exhibits a trade-off between the transition distance and the acceptance ratio of parameter transition candidates and requires a long mixing time, particularly in solving high-dimensional problems. This necessitates a more efficient Bayesian method. In this study, we developed a fault estimation algorithm using the Hamiltonian Monte Carlo (HMC) method, which is considered more efficient than the other MCMC method, but its applicability has not been sufficiently validated to estimate the coseismic fault for the first time. HMC can conduct sampling more intelligently with the gradient information of the posterior distribution. We applied our algorithm to the 2016 Kumamoto earthquake (MJMA 7.3), and its sampling converged in 2 × 104 samples, including 1 × 103 burn-in samples. The estimated models satisfactorily accounted for the input data; the variance reduction was approximately 88%, and the estimated fault parameters and event magnitude were consistent with those reported in previous studies. HMC could acquire similar results using only 2% of the RWMH chains. Moreover, the power spectral density (PSD) of each model parameter's Markov chain showed this method exhibited a low correlation with the subsequent sample and a long transition distance between samples. These results indicate HMC has advantages in terms of chain length than RWMH, expecting a more efficient estimation for a high-dimensional problem that requires a long mixing time or a problem using nonlinear Green’s function, which has a large computational cost.
ArticleNumber 86
Audience Academic
Author Ohno, Keitaro
Ohta, Yusaku
Yamada, Taisuke
Author_xml – sequence: 1
  givenname: Taisuke
  orcidid: 0000-0002-0534-5396
  surname: Yamada
  fullname: Yamada, Taisuke
  email: taisuke.yamada.r3@dc.tohoku.ac.jp
  organization: Research Center for Prediction of Earthquakes and Volcanic Eruptions, Graduate School of Science, Tohoku University
– sequence: 2
  givenname: Keitaro
  orcidid: 0000-0002-2001-1626
  surname: Ohno
  fullname: Ohno, Keitaro
  organization: Geospatial Information Authority of Japan
– sequence: 3
  givenname: Yusaku
  orcidid: 0000-0003-4818-477X
  surname: Ohta
  fullname: Ohta, Yusaku
  organization: Research Center for Prediction of Earthquakes and Volcanic Eruptions, Graduate School of Science, Tohoku University, Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, International Research Institute of Disaster Science, Tohoku University
BookMark eNqNkctuEzEUhkeoSLSFF2BliRWLaX0fZ1lFQCK1QuKytk5sT-poxg62o5IVvANvyJPUzZRLWVTIi2Mdff-5_SfNUYjBNc1Lgs8IUfI8cywpazGlLSaSi3b_pDkmSuFWzBQ5-uv_rDnJeYMxw1yy4-bbPI5bSD7HgFau3DgXULl2aAGjH0oMHgK6iqE4NIc0RDS6ch0tgmAP2JUrKW7j4PPP7z8WkIsP6_wL6mNCJmbn8-gN6mE3FDRG6wbkKjhC8TE8b572MGT34j6eNp_fvvk0X7SX798t5xeXrRGiK62lwnExq8EabiSWq77j0nIgilJBHaaEW2MMtitliXXCVILgXhkBnWSMnTbLqa6NsNHbVNunvY7g9SER01pDKt4MTjM5U5SzzjDVc2IMWEO57TjwXqzYytVabKq1C1vY38Aw_C5IsL7zQ09-6OqHPvih91X1alJtU_yyqxfQm7hLoS6tqewY5bRTvFJnE7WGOooPfSwJTH3W1SNW03tf8xcdlkR0desqeP1AYO7M-lrWsMtZLz9-eMiqiTUp5pxcr40vBxtqEz88Pj39R_pfK98fKlc4rF36s_IjqlvJwt-3
CitedBy_id crossref_primary_10_1016_j_energy_2023_129906
crossref_primary_10_1186_s40623_024_02068_7
crossref_primary_10_1016_j_acags_2025_100234
crossref_primary_10_3390_s23187903
crossref_primary_10_1080_03610918_2024_2330709
crossref_primary_10_1186_s40623_025_02154_4
crossref_primary_10_5817_OEJV2024_0259
crossref_primary_10_1016_j_ecolmodel_2024_110922
crossref_primary_10_1186_s40645_023_00593_9
crossref_primary_10_1016_j_apenergy_2024_123583
crossref_primary_10_1111_1365_2478_70016
Cites_doi 10.1002/2013JB010622
10.1016/0370-2693(87)91197-X
10.1111/j.1365-246X.2007.03713.x
10.1093/gji/ggu280
10.1029/2001JB000588
10.1186/BF03352878
10.21203/rs.3.rs-923956/v1
10.1121/1.4757639
10.1029/2019JB018428
10.1029/2011JB008940
10.1029/2020JB021107
10.1111/1467-9868.00123
10.1093/gji/ggaa397
10.1111/j.2041-210X.2011.00131.x
10.1029/2000RG000089
10.1103/PhysRevLett.57.2607
10.1029/2017JB015316
10.1002/2017JB015249
10.1063/1.1699114
10.1093/gji/ggt517
10.1093/gji/ggt342
10.1007/s11227-018-2363-0
10.1186/s40623-016-0564-4
10.1186/s40623-016-0519-9
10.20965/jdr.2018.p0453
10.1029/2020JB020441
10.1785/BSSA0820021018
10.1093/gji/ggab033
10.1093/gji/ggy496
10.1029/2018GL080741
10.1785/0120070194
10.1137/1.9780898717921
10.1029/2019JB018703
10.1007/s10107-007-0149-x
10.1111/j.1365-246X.2010.04564.x
10.1002/2016JB013485
10.1186/s40623-021-01425-0
10.1093/biomet/57.1.97
10.1029/2011JB008750
ContentType Journal Article
Copyright The Author(s) 2022
COPYRIGHT 2022 Springer
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ISR
7TG
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
H8D
HCIFZ
KL.
L7M
P5Z
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ADTOC
UNPAY
DOA
DOI 10.1186/s40623-022-01645-y
DatabaseName Springer Nature Open Access Journals
CrossRef
Gale In Context: Science
Meteorological & Geoastrophysical Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList


CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerLink Journals Open Access
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Astronomy & Astrophysics
Physics
EISSN 1880-5981
EndPage 16
ExternalDocumentID oai_doaj_org_article_36982437c38f41ccadc24d74a4f5b3be
10.1186/s40623-022-01645-y
A706157021
10_1186_s40623_022_01645_y
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GrantInformation_xml – fundername: Japan Science and Technology Agency
  grantid: JPMJFR202P
  funderid: http://dx.doi.org/10.13039/501100002241
– fundername: Ministry of Education, Culture, Sports, Science and Technology
  grantid: THK_12
  funderid: http://dx.doi.org/10.13039/501100001700
– fundername: Japan Society for the Promotion of Science London
  grantid: 21H05001
  funderid: http://dx.doi.org/10.13039/501100000646
GroupedDBID -A0
-~X
0R~
3K4
4.4
5GY
5VS
7.U
8FE
8FG
8FH
AAFWJ
AAJSJ
AAKKN
ABEEZ
ACACY
ACGFS
ACULB
ADBBV
ADINQ
AEUYN
AFGXO
AFKRA
AHBYD
AHYZX
AIDUJ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
C24
C6C
CCPQU
E3Z
EBLON
EBS
EJD
FRP
GROUPED_DOAJ
HCIFZ
IAO
IGS
ISR
ITC
JSH
KQ8
LK5
M7R
M~E
OK1
P62
PCBAR
PIMPY
PROAC
RSV
SC5
SJN
SOJ
TR2
~02
AASML
AAYXX
AFPKN
CITATION
PUEGO
7TG
8FD
ABUWG
AZQEC
DWQXO
H8D
KL.
L7M
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ADTOC
AHSBF
AI.
JSF
RJT
RZJ
TKC
UNPAY
VH1
VOH
ID FETCH-LOGICAL-c557t-d25e459d25dc4c606bf746d4a182252e0214dccc0db8d1de5c6bf10f8c5a76333
IEDL.DBID DOA
ISSN 1880-5981
1343-8832
IngestDate Tue Oct 14 19:04:49 EDT 2025
Wed Oct 01 16:14:23 EDT 2025
Wed Oct 08 14:21:29 EDT 2025
Mon Oct 20 17:10:14 EDT 2025
Thu Oct 16 16:27:36 EDT 2025
Thu Apr 24 22:51:25 EDT 2025
Wed Oct 01 02:48:46 EDT 2025
Fri Feb 21 02:49:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Global navigation satellite system
Hamiltonian Monte Carlo
Bayesian inversion
Real-time GEONET analysis system for rapid deformation
Markov chain Monte Carlo
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c557t-d25e459d25dc4c606bf746d4a182252e0214dccc0db8d1de5c6bf10f8c5a76333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4818-477X
0000-0002-0534-5396
0000-0002-2001-1626
OpenAccessLink https://doaj.org/article/36982437c38f41ccadc24d74a4f5b3be
PQID 2673242784
PQPubID 2034776
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_36982437c38f41ccadc24d74a4f5b3be
unpaywall_primary_10_1186_s40623_022_01645_y
proquest_journals_2673242784
gale_infotracacademiconefile_A706157021
gale_incontextgauss_ISR_A706157021
crossref_citationtrail_10_1186_s40623_022_01645_y
crossref_primary_10_1186_s40623_022_01645_y
springer_journals_10_1186_s40623_022_01645_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-06
PublicationDateYYYYMMDD 2022-06-06
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-06
  day: 06
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Earth, planets, and space
PublicationTitleAbbrev Earth Planets Space
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References Ohno, Ohta, Kawamoto, Abe, Hino, Koshimura, Musa, Kobayashi (CR33) 2021; 73
Ohta, Ohzono, Miura, Iinuma, Tachibana, Takatsuka, Miyao, Sato, Umino (CR35) 2008; 60
Tanaka, Ohta, Miyazaki (CR44) 2019; 46
Dosso, Holland, Sambridge (CR5) 2012; 132
Hallo, Gallovič (CR19) 2020; 125
Minson, Murray, Langbein, Gomberg (CR28) 2014; 119
Amey, Hooper, Walters (CR2) 2018; 123
Asano, Iwata (CR3) 2016; 68
Dettmer, Benavente, Cummins, Sambridge (CR4) 2014; 199
CR18
Gelman (CR15) 1996
Roberts, Rosenthal (CR40) 1998; 60
Tarantola (CR45) 2005
Duane, Kennedy, Pendleton, Roweth (CR6) 1987; 195
Okada (CR38) 1992; 82
Fukuda, Johnson (CR13) 2010; 181
Agata, Kasahara, Yagi (CR1) 2021; 225
Ohno, Ohta, Hino, Koshimura, Musa, Abe, Kobayashi (CR34) 2022; 74
Geyer (CR17) 2011
Hoffman, Gelman (CR21) 2014; 15
Mai, Beroza (CR26) 2002; 107
Yarai, Kobayashi, Morishita, Fujiwara, Hiyama, Kawamoto, Ueshiba, Miura, Miyahara (CR46) 2016; 128
Fukuda, Johnson (CR12) 2008; 98
Ohta, Inoue, Koshimura, Kawamoto, Hino (CR37) 2018; 13
Musa, Watanabe, Matsuoka, Hokari, Inoue, Murashima, Ohta, Hino, Koshimura, Kobayashi (CR30) 2018; 74
Ohta, Kobayashi, Tsushima, Miura, Hino, Takasu, Fujimoto, Iinuma, Tachibana, Demachi, Sato, Ohzono, Umino (CR36) 2012; 117
Gebraad, Boehm, Fichtner (CR14) 2020; 125
Nesterov (CR32) 2009; 120
Fichtner, Simutė (CR9) 2018; 123
Fukahata, Wright (CR11) 2008; 173
Kawamoto, Hiyama, Ohta, Nishimura (CR23) 2016; 68
Hastings (CR20) 1970; 57
Link, Eaton (CR25) 2012; 3
Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (CR27) 1953; 21
Neal (CR31) 2011
Ringer, Whitehead, Krometis, Harris, Glatt-Holtz, Giddens, Ashcraft, Carver, Robertson, Harward, Fullwood, Lightheart, Hilton, Avery, Kesler, Morrise, Klein (CR39) 2021; 126
Sambridge, Mosegaard (CR42) 2002; 40
Duputel, Agram, Simons, Minson, Beck (CR7) 2014; 197
Dutta, Jónsson, Vasyura-Bathke (CR8) 2021; 126
Kawamoto, Ohta, Hiyama, Todoriki, Nishimura, Furuya, Sato, Yahagi, Miyagawa (CR24) 2017; 122
Swendsen, Wang (CR43) 1986; 57
Ito, Gunawan, Kimata, Tabei, Simons, Meilano, Agustan, Ohta, Nurdin, Sugiyanto (CR22) 2012; 117
Sambridge (CR41) 2013; 196
Muir, Tkalčić (CR29) 2020; 223
Gelman, Carlin, Stern, Dunson, Vehtari, Rubin (CR16) 2021
Fichtner, Zunino, Gebraad (CR10) 2019; 216
WA Link (1645_CR25) 2012; 3
JB Muir (1645_CR29) 2020; 223
SE Dosso (1645_CR5) 2012; 132
J Fukuda (1645_CR12) 2008; 98
J Fukuda (1645_CR13) 2010; 181
K Ohno (1645_CR34) 2022; 74
A Fichtner (1645_CR10) 2019; 216
PM Mai (1645_CR26) 2002; 107
Y Nesterov (1645_CR32) 2009; 120
Z Duputel (1645_CR7) 2014; 197
Y Fukahata (1645_CR11) 2008; 173
L Gebraad (1645_CR14) 2020; 125
M Hallo (1645_CR19) 2020; 125
S Duane (1645_CR6) 1987; 195
A Tarantola (1645_CR45) 2005
A Fichtner (1645_CR9) 2018; 123
A Musa (1645_CR30) 2018; 74
H Yarai (1645_CR46) 2016; 128
CJ Geyer (1645_CR17) 2011
A Gelman (1645_CR16) 2021
SE Minson (1645_CR28) 2014; 119
K Asano (1645_CR3) 2016; 68
T Ito (1645_CR22) 2012; 117
M Sambridge (1645_CR42) 2002; 40
K Ohno (1645_CR33) 2021; 73
Y Tanaka (1645_CR44) 2019; 46
A Gelman (1645_CR15) 1996
S Kawamoto (1645_CR23) 2016; 68
1645_CR18
W Hastings (1645_CR20) 1970; 57
RM Neal (1645_CR31) 2011
N Metropolis (1645_CR27) 1953; 21
J Dettmer (1645_CR4) 2014; 199
H Ringer (1645_CR39) 2021; 126
Y Ohta (1645_CR35) 2008; 60
R Dutta (1645_CR8) 2021; 126
Y Ohta (1645_CR36) 2012; 117
MD Hoffman (1645_CR21) 2014; 15
M Sambridge (1645_CR41) 2013; 196
GO Roberts (1645_CR40) 1998; 60
Y Ohta (1645_CR37) 2018; 13
Y Okada (1645_CR38) 1992; 82
R Agata (1645_CR1) 2021; 225
R Amey (1645_CR2) 2018; 123
RH Swendsen (1645_CR43) 1986; 57
S Kawamoto (1645_CR24) 2017; 122
References_xml – volume: 119
  start-page: 3201
  year: 2014
  end-page: 3231
  ident: CR28
  article-title: Real-time inversions for finite fault slip models and rupture geometry based on high-rate GPS data
  publication-title: J Geophys Res Solid Earth
  doi: 10.1002/2013JB010622
– ident: CR18
– volume: 195
  start-page: 216
  year: 1987
  end-page: 222
  ident: CR6
  article-title: Hybrid Monte Carlo
  publication-title: Phys Lett B
  doi: 10.1016/0370-2693(87)91197-X
– year: 2011
  ident: CR17
  article-title: Introduction to Markov chain Monte Carlo
  publication-title: Handbook of Markov chain Monte Carlo
– volume: 173
  start-page: 353
  year: 2008
  end-page: 364
  ident: CR11
  article-title: A non-linear geodetic data inversion using ABIC for slip distribution on a fault with an unknown dip angle
  publication-title: Geophys J Int
  doi: 10.1111/j.1365-246X.2007.03713.x
– volume: 199
  start-page: 735
  year: 2014
  end-page: 751
  ident: CR4
  article-title: Trans-dimensional finite-fault inversion
  publication-title: Geophys J Int
  doi: 10.1093/gji/ggu280
– volume: 107
  start-page: ESE10-1
  year: 2002
  end-page: ESE10-2
  ident: CR26
  article-title: A spatial random field model to characterize complexity in earthquake slip
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2001JB000588
– volume: 60
  start-page: 1197
  year: 2008
  end-page: 1201
  ident: CR35
  article-title: Coseismic fault model of the 2008 Iwate-Miyagi Nairiku earthquake deduced by a dense GPS network
  publication-title: Earth Planets Space
  doi: 10.1186/BF03352878
– volume: 74
  start-page: 24
  year: 2022
  ident: CR34
  article-title: Rapid and quantitative uncertainty estimation of coseismic slip distribution for large interplate earthquakes using real-time GNSS data and its application to tsunami inundation prediction
  publication-title: Earth Planets Space
  doi: 10.21203/rs.3.rs-923956/v1
– volume: 132
  start-page: 3030
  year: 2012
  end-page: 3040
  ident: CR5
  article-title: Parallel tempering for strongly nonlinear geoacoustic inversion
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.4757639
– volume: 125
  start-page: 1
  year: 2020
  end-page: 18
  ident: CR14
  article-title: Bayesian elastic full-waveform inversion using Hamiltonian Monte Carlo
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2019JB018428
– volume: 128
  start-page: 169
  year: 2016
  end-page: 176
  ident: CR46
  article-title: Source fault models of the 2016 Kumamoto earthquake inverted from crustal deformation
  publication-title: Bull Geospat Inf Auth Jpn
– volume: 117
  start-page: B06409
  year: 2012
  ident: CR22
  article-title: Isolating along-strike variations in the depth extent of shallow creep and fault locking on the northern Great Sumatran fault
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2011JB008940
– volume: 126
  start-page: 1
  year: 2021
  end-page: 23
  ident: CR39
  article-title: Methodological reconstruction of historical seismic events from anecdotal accounts of destructive tsunamis: a case study for the great 1852 Banda arc mega-thrust earthquake and tsunami
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2020JB021107
– year: 1996
  ident: CR15
  article-title: Inference and monitoring convergence
  publication-title: Markov chain Monte Carlo in practice
– volume: 60
  start-page: 255
  year: 1998
  end-page: 268
  ident: CR40
  article-title: Optimal scaling of discrete approximations to Langevin diffusions
  publication-title: J R Stat Soc Ser B Methodol
  doi: 10.1111/1467-9868.00123
– volume: 223
  start-page: 1630
  year: 2020
  end-page: 1643
  ident: CR29
  article-title: Probabilistic lowermost mantle P-wave tomography from hierarchical Hamiltonian Monte Carlo and model parametrization cross-validation
  publication-title: Geophys J Int
  doi: 10.1093/gji/ggaa397
– volume: 3
  start-page: 112
  year: 2012
  end-page: 115
  ident: CR25
  article-title: On thinning of chains in MCMC
  publication-title: Methods Ecol Evol
  doi: 10.1111/j.2041-210X.2011.00131.x
– volume: 40
  start-page: 3-1
  year: 2002
  end-page: 3-29
  ident: CR42
  article-title: Monte Carlo methods in geophysical inverse problems
  publication-title: Rev Geophys
  doi: 10.1029/2000RG000089
– volume: 57
  start-page: 2607
  year: 1986
  end-page: 2609
  ident: CR43
  article-title: Replica Monte Carlo simulation of spin-glasses
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.57.2607
– volume: 123
  start-page: 6052
  year: 2018
  end-page: 6071
  ident: CR2
  article-title: Bayesian method for incorporating self-similarity into earthquake slip inversions
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2017JB015316
– volume: 123
  start-page: 2984
  year: 2018
  end-page: 2999
  ident: CR9
  article-title: Hamiltonian Monte Carlo inversion of seismic sources in complex media
  publication-title: J Geophys Res Solid Earth
  doi: 10.1002/2017JB015249
– volume: 21
  start-page: 1087
  year: 1953
  end-page: 1092
  ident: CR27
  article-title: Equation of state calculations by fast computing machines
  publication-title: J Chem Phys
  doi: 10.1063/1.1699114
– year: 2021
  ident: CR16
  publication-title: Bayesian data analysis third edition (with errors fixed as of 15 February 2021)
– volume: 197
  start-page: 464
  year: 2014
  end-page: 482
  ident: CR7
  article-title: Accounting for prediction uncertainty when inferring subsurface fault slip
  publication-title: Geophys J Int
  doi: 10.1093/gji/ggt517
– volume: 15
  start-page: 1593
  year: 2014
  end-page: 1623
  ident: CR21
  article-title: The no-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo
  publication-title: J Mach Learn Res
– volume: 196
  start-page: 357
  year: 2013
  end-page: 374
  ident: CR41
  article-title: A parallel tempering algorithm for probabilistic sampling and multimodal optimization
  publication-title: Geophys J Int
  doi: 10.1093/gji/ggt342
– volume: 74
  start-page: 3093
  year: 2018
  end-page: 3113
  ident: CR30
  article-title: Real-time tsunami inundation forecast system for tsunami disaster prevention and mitigation
  publication-title: J Supercomput
  doi: 10.1007/s11227-018-2363-0
– volume: 68
  start-page: 190
  year: 2016
  ident: CR23
  article-title: First result from the GEONET real-time analysis system (REGARD): the case of the 2016 Kumamoto earthquakes
  publication-title: Earth Planets Space
  doi: 10.1186/s40623-016-0564-4
– volume: 68
  start-page: 1
  year: 2016
  end-page: 11
  ident: CR3
  article-title: Source rupture processes of the foreshock and mainshock in the 2016 Kumamoto earthquake sequence estimated from the kinematic waveform inversion of strong motion data
  publication-title: Earth Planets Space
  doi: 10.1186/s40623-016-0519-9
– volume: 13
  start-page: 453
  year: 2018
  end-page: 459
  ident: CR37
  article-title: Role of real-time GNSS in near-field tsunami forecasting
  publication-title: J Disaster Res
  doi: 10.20965/jdr.2018.p0453
– volume: 126
  start-page: 1
  year: 2021
  end-page: 28
  ident: CR8
  article-title: Simultaneous Bayesian estimation of non-planar fault geometry and spatially-variable slip
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2020JB020441
– volume: 82
  start-page: 1018
  year: 1992
  end-page: 1040
  ident: CR38
  article-title: Internal deformation due to shear and tensile faults in a half-space
  publication-title: Bull Seismol Soc Am
  doi: 10.1785/BSSA0820021018
– volume: 225
  start-page: 1392
  year: 2021
  end-page: 1411
  ident: CR1
  article-title: A Bayesian inference framework for fault slip distributions based on ensemble modelling of the uncertainty of underground structure: with a focus on uncertain fault dip
  publication-title: Geophys J Int
  doi: 10.1093/gji/ggab033
– volume: 216
  start-page: 1344
  year: 2019
  end-page: 1363
  ident: CR10
  article-title: Hamiltonian Monte Carlo solution of tomographic inverse problems
  publication-title: Geophys J Int
  doi: 10.1093/gji/ggy496
– volume: 46
  start-page: 1367
  year: 2019
  end-page: 1374
  ident: CR44
  article-title: Real-time coseismic slip estimation via the GNSS carrier phase to fault slip approach: a case study of the 2016 Kumamoto earthquake
  publication-title: Geophys Res Lett
  doi: 10.1029/2018GL080741
– volume: 98
  start-page: 1128
  year: 2008
  end-page: 1146
  ident: CR12
  article-title: A fully Bayesian inversion for spatial distribution of fault slip with objective smoothing
  publication-title: Bull Seismol Soc Am
  doi: 10.1785/0120070194
– year: 2011
  ident: CR31
  article-title: MCMC using Hamiltonian dynamics
  publication-title: Handbook of Markov chain Monte Carlo
– year: 2005
  ident: CR45
  publication-title: Inverse problem theory and methods for model parameter estimation
  doi: 10.1137/1.9780898717921
– volume: 125
  start-page: 1
  year: 2020
  end-page: 32
  ident: CR19
  article-title: Bayesian self-adapting fault slip inversion with green’s functions uncertainty and application on the 2016 Mw7.1 Kumamoto earthquake
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2019JB018703
– volume: 120
  start-page: 221
  year: 2009
  end-page: 259
  ident: CR32
  article-title: Primal-dual subgradient methods for convex problems
  publication-title: Math Program
  doi: 10.1007/s10107-007-0149-x
– volume: 181
  start-page: 1441
  year: 2010
  end-page: 1458
  ident: CR13
  article-title: Mixed linear-non-linear inversion of crustal deformation data: Bayesian inference of model, weighting and regularization parameters
  publication-title: Geophys J Int
  doi: 10.1111/j.1365-246X.2010.04564.x
– volume: 122
  start-page: 1324
  year: 2017
  end-page: 1349
  ident: CR24
  article-title: REGARD: a new GNSS-based real-time finite fault modeling system for GEONET
  publication-title: J Geophys Res Solid Earth
  doi: 10.1002/2016JB013485
– volume: 73
  start-page: 127
  year: 2021
  ident: CR33
  article-title: Real-time automatic uncertainty estimation of coseismic single rectangular fault model using GNSS data
  publication-title: Earth Planets Space
  doi: 10.1186/s40623-021-01425-0
– volume: 57
  start-page: 97
  year: 1970
  end-page: 109
  ident: CR20
  article-title: Monte Carlo sampling methods using Markov chains and their applications
  publication-title: Biometrika
  doi: 10.1093/biomet/57.1.97
– volume: 117
  start-page: 1
  year: 2012
  end-page: 16
  ident: CR36
  article-title: Quasi real-time fault model estimation for near-field tsunami forecasting based on RTK-GPS analysis: application to the 2011 Tohoku-Oki earthquake (Mw 9.0)
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2011JB008750
– volume: 132
  start-page: 3030
  year: 2012
  ident: 1645_CR5
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.4757639
– volume: 125
  start-page: 1
  year: 2020
  ident: 1645_CR14
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2019JB018428
– volume: 126
  start-page: 1
  year: 2021
  ident: 1645_CR8
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2020JB020441
– volume-title: Bayesian data analysis third edition (with errors fixed as of 15 February 2021)
  year: 2021
  ident: 1645_CR16
– volume: 120
  start-page: 221
  year: 2009
  ident: 1645_CR32
  publication-title: Math Program
  doi: 10.1007/s10107-007-0149-x
– volume: 123
  start-page: 2984
  year: 2018
  ident: 1645_CR9
  publication-title: J Geophys Res Solid Earth
  doi: 10.1002/2017JB015249
– volume: 60
  start-page: 255
  year: 1998
  ident: 1645_CR40
  publication-title: J R Stat Soc Ser B Methodol
  doi: 10.1111/1467-9868.00123
– volume-title: Markov chain Monte Carlo in practice
  year: 1996
  ident: 1645_CR15
– volume-title: Handbook of Markov chain Monte Carlo
  year: 2011
  ident: 1645_CR17
– volume: 82
  start-page: 1018
  year: 1992
  ident: 1645_CR38
  publication-title: Bull Seismol Soc Am
  doi: 10.1785/BSSA0820021018
– volume: 181
  start-page: 1441
  year: 2010
  ident: 1645_CR13
  publication-title: Geophys J Int
  doi: 10.1111/j.1365-246X.2010.04564.x
– volume: 68
  start-page: 190
  year: 2016
  ident: 1645_CR23
  publication-title: Earth Planets Space
  doi: 10.1186/s40623-016-0564-4
– volume: 3
  start-page: 112
  year: 2012
  ident: 1645_CR25
  publication-title: Methods Ecol Evol
  doi: 10.1111/j.2041-210X.2011.00131.x
– volume: 60
  start-page: 1197
  year: 2008
  ident: 1645_CR35
  publication-title: Earth Planets Space
  doi: 10.1186/BF03352878
– volume: 173
  start-page: 353
  year: 2008
  ident: 1645_CR11
  publication-title: Geophys J Int
  doi: 10.1111/j.1365-246X.2007.03713.x
– volume: 15
  start-page: 1593
  year: 2014
  ident: 1645_CR21
  publication-title: J Mach Learn Res
– volume: 223
  start-page: 1630
  year: 2020
  ident: 1645_CR29
  publication-title: Geophys J Int
  doi: 10.1093/gji/ggaa397
– volume: 40
  start-page: 3-1
  year: 2002
  ident: 1645_CR42
  publication-title: Rev Geophys
  doi: 10.1029/2000RG000089
– volume: 13
  start-page: 453
  year: 2018
  ident: 1645_CR37
  publication-title: J Disaster Res
  doi: 10.20965/jdr.2018.p0453
– volume: 68
  start-page: 1
  year: 2016
  ident: 1645_CR3
  publication-title: Earth Planets Space
  doi: 10.1186/s40623-016-0519-9
– volume: 196
  start-page: 357
  year: 2013
  ident: 1645_CR41
  publication-title: Geophys J Int
  doi: 10.1093/gji/ggt342
– volume: 57
  start-page: 2607
  year: 1986
  ident: 1645_CR43
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.57.2607
– volume: 197
  start-page: 464
  year: 2014
  ident: 1645_CR7
  publication-title: Geophys J Int
  doi: 10.1093/gji/ggt517
– volume: 74
  start-page: 3093
  year: 2018
  ident: 1645_CR30
  publication-title: J Supercomput
  doi: 10.1007/s11227-018-2363-0
– volume: 57
  start-page: 97
  year: 1970
  ident: 1645_CR20
  publication-title: Biometrika
  doi: 10.1093/biomet/57.1.97
– volume: 128
  start-page: 169
  year: 2016
  ident: 1645_CR46
  publication-title: Bull Geospat Inf Auth Jpn
– ident: 1645_CR18
– volume: 122
  start-page: 1324
  year: 2017
  ident: 1645_CR24
  publication-title: J Geophys Res Solid Earth
  doi: 10.1002/2016JB013485
– volume: 21
  start-page: 1087
  year: 1953
  ident: 1645_CR27
  publication-title: J Chem Phys
  doi: 10.1063/1.1699114
– volume: 216
  start-page: 1344
  year: 2019
  ident: 1645_CR10
  publication-title: Geophys J Int
  doi: 10.1093/gji/ggy496
– volume: 117
  start-page: B06409
  year: 2012
  ident: 1645_CR22
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2011JB008940
– volume: 123
  start-page: 6052
  year: 2018
  ident: 1645_CR2
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2017JB015316
– volume: 199
  start-page: 735
  year: 2014
  ident: 1645_CR4
  publication-title: Geophys J Int
  doi: 10.1093/gji/ggu280
– volume: 117
  start-page: 1
  year: 2012
  ident: 1645_CR36
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2011JB008750
– volume: 46
  start-page: 1367
  year: 2019
  ident: 1645_CR44
  publication-title: Geophys Res Lett
  doi: 10.1029/2018GL080741
– volume-title: Handbook of Markov chain Monte Carlo
  year: 2011
  ident: 1645_CR31
– volume: 195
  start-page: 216
  year: 1987
  ident: 1645_CR6
  publication-title: Phys Lett B
  doi: 10.1016/0370-2693(87)91197-X
– volume: 225
  start-page: 1392
  year: 2021
  ident: 1645_CR1
  publication-title: Geophys J Int
  doi: 10.1093/gji/ggab033
– volume: 125
  start-page: 1
  year: 2020
  ident: 1645_CR19
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2019JB018703
– volume-title: Inverse problem theory and methods for model parameter estimation
  year: 2005
  ident: 1645_CR45
  doi: 10.1137/1.9780898717921
– volume: 74
  start-page: 24
  year: 2022
  ident: 1645_CR34
  publication-title: Earth Planets Space
  doi: 10.21203/rs.3.rs-923956/v1
– volume: 119
  start-page: 3201
  year: 2014
  ident: 1645_CR28
  publication-title: J Geophys Res Solid Earth
  doi: 10.1002/2013JB010622
– volume: 98
  start-page: 1128
  year: 2008
  ident: 1645_CR12
  publication-title: Bull Seismol Soc Am
  doi: 10.1785/0120070194
– volume: 126
  start-page: 1
  year: 2021
  ident: 1645_CR39
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2020JB021107
– volume: 107
  start-page: ESE10-1
  year: 2002
  ident: 1645_CR26
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2001JB000588
– volume: 73
  start-page: 127
  year: 2021
  ident: 1645_CR33
  publication-title: Earth Planets Space
  doi: 10.1186/s40623-021-01425-0
SSID ssj0030463
Score 2.4196856
Snippet A rapid source fault estimation and quantitative assessment of the uncertainty of the estimated model can elucidate the occurrence mechanism of earthquakes and...
Abstract A rapid source fault estimation and quantitative assessment of the uncertainty of the estimated model can elucidate the occurrence mechanism of...
SourceID doaj
unpaywall
proquest
gale
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 6. Geodesy
Algorithms
Bayesian analysis
Bayesian inversion
Burn-in
Comparative analysis
Earth and Environmental Science
Earth Sciences
Earthquake damage
Earthquakes
Fault lines
Faults (Geology)
Geology
Geophysics/Geodesy
Global navigation satellite system
Green's function
Green's functions
Hamiltonian Monte Carlo
Markov analysis
Markov chain Monte Carlo
Markov chains
Mathematical models
Modelling
Monte Carlo method
Monte Carlo simulation
Parameters
Power spectral density
Random walk
Real-time GEONET analysis system for rapid deformation
Recent Advances in Scientific Application of GNSS Array Data
Sampling
Seismic activity
Statistical methods
Uncertainty
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fa9swED-6lLH1YWzdSt11Q4yxPaym_iP5z8MYaWjJBgmlW6FvQpbkEnDtLHYYedq-w77hPsl0sp22DMLAxCI5E6w7nU7S3e8H8FaqUEutctf3JXWpJXL3aGY-BE194avMVqVNptH4kn65YldbMO1rYTCtsveJ1lGrSuIe-XEQxTj3xwn9NP_uImsUnq72FBqio1ZQHy3E2APYDhAZawDbJ6fT84veN1t8rL50JomOazOdBXiOiekJEWXu6t70ZFH8__XVdw5Nd-DRspyL1Q9RFHfmpbOn8KQLKMmwtYBnsKXLXdgf1rjFXd2syDti2-0ORr0LD8_b1nP4OVpzEJIuXYuYcJCMcc_DhITGcMgEwavISCyKirRk00SUyopNdGMZFmb1n1-_x6LG_Om6FzKhMMFU-Fl9M5MkF8uiIZZ0hyCqR1su-QIuz06_jcZux8fgSsbixlUB05Sl5qYklWblk-UxjRQVZo0SsEAj_JqSUnoqS5SvNJNGwvfyRDJh3FgY7sGgrEq9DySKUu1lLEe0GIRsy2IZ5l5GtZJp4KWhA36vBi47sHLkzCi4XbQkEW9Vx43quFUdXznwYf3MvIXq2Ch9gtpdSyLMtv2iWlzzbtTyMEoTRGyUYZJT3xi7kgFVMRU0Z1mYaQfeoG1wBNIoMVPnWizrmn_-esGHMQaLsekTB953Qnll3kGKrvDB9ARib92TPOxtjHeupOa3hu_AUW93tz9vesOjtW3-R4ccbP7zl_A4sOMkMtchDJrFUr8y8ViTve4G2V_zljP8
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Open Access Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fi9QwEA96IuqD6Klc9ZQgog9esX-StH1cF89VWBH14N5CmqTHQq89Nl2kT_od_IZ-EmfSdr1DORSWbmmnhWYmk0ky8_sR8kyb1GprqjCONQuZJ3KPWAkHxYpYxab0VWnLD2JxxN4f8-OxKMxN2e7TlqT31L5b5-KVg6EnwT1HTCUQjIf9VXIN4o8ECRvmWOMw-F-PgTWVx_z1uQtDkEfq_9Mfn9sYvUVubJoz1X9VdX1u7Dm8Q26PQSOdDVq-S67YZpfszRwuY7enPX1O_fmwSuF2yfW3nq-3h7OPw7V75Nt8yzhIx-QsCsEfXeAKBwSAYCZ0iVBVdK7WdUsHammqGuPFlrbzfAor9_P7j4VymC3tJiEIfCkmvq_c6UrTSm3qjnqKHYoYHkNx5H1ydPjmy3wRjuwLoeY860KTcMt4AX9GMw3znLLKmDBMwYwk4YlFsDWjtY5MmZvYWK5BIo6qXHMFTitNH5Cdpm3sHqFCFDYqeYXYMAjQVmY6raKSWaNBfUUakHhSiNQjNDkyZNTST1FyIQclSlCi9EqUfUBebp85G4A5LpV-jXreSiKotr_Qrk_k2EdlKooc8Rl1mlcsBtM2OmEmY4pVvExLG5CnaCUSYTMazMs5URvn5LvPn-Qsw9AwgzYJyItRqGrhG7QayxygJRBp64Lk_mRtcnQcTiYiwxA3y1lADiYL_H37si882FrpPzTIw_97-yNyM_E9SMBvn-x06419DNFYVz7xne8XnwstmQ
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLagEwIeuAzQCgNZCMEDS5eL7SSPpWIqSJ0moNJ4snzLqMjSqk6Fygv8B_4hvwQfJykboAkkpCix0tNKPj3HPrbP-T6EniidGGV0EUSRIgHxRO4hke4mSB6JSEtflTY5ZOMpeX1Mj9vKOus3dZf1h2ABiZ61DZxTKTPoTiiBT6opcwAaBbPcX-ii8fqM7Vs3M8VwJAmZBozQYH0ZbTHqAvQe2poeHg3f-6UXSYIs87RlAEQW0DyLulKaP_7IuenKo_r_PnafOUS9jq6uqoVYfxJleWaeOriJ6q6HTXrKx8GqlgP1-Rfwx_-sglvoRhvX4mFjiLfRJVNto52hhZ32-ekaP8W-3Wyk2G105ahp3UFfRhsqRNxmjWEXleIxbL24yNTZL54AhhYeiWU5xw3nNRaV9mITU3uih5n9_vXbWFhI47adkIvIMWTkz-zpTOFCrMoae-4fDOAiTdXmXTQ9ePluNA5aWohAUZrWgY6pITR3D62IcgswWaSEaSLcUimmsQEUOK2UCrXMdKQNVU4iCotMUeFG0yS5h3rVvDI7CDOWm1DSAkBrADlOpiopQkmMVnkc5kkfRd2_z1WLmQ7UHSX3a6eM8Ubn3Omce53zdR8933xn0SCGXCj9AoxqIwlo3_7FfHnC28GDJyzPADhSJVlBIudzWsVEp0SQgspEmj56DCbJAc-jgoShE7Gylr96-4YPU4hZU6eTPnrWChVz1wcl2voLpwmAADsnuduZNm9HNMtjlkLsnWakj_Y6c_z58UU93Nu4xF8o5P6_iT9A12Jv8Mxdu6hXL1fmoQsTa_modfsfIhdhxw
  priority: 102
  providerName: Unpaywall
Title Comparison between the Hamiltonian Monte Carlo method and the Metropolis–Hastings method for coseismic fault model estimation
URI https://link.springer.com/article/10.1186/s40623-022-01645-y
https://www.proquest.com/docview/2673242784
https://earth-planets-space.springeropen.com/counter/pdf/10.1186/s40623-022-01645-y
https://doaj.org/article/36982437c38f41ccadc24d74a4f5b3be
UnpaywallVersion publishedVersion
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1880-5981
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0030463
  issn: 1343-8832
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1880-5981
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0030463
  issn: 1343-8832
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1880-5981
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0030463
  issn: 1343-8832
  databaseCode: 8FG
  dateStart: 20100201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1880-5981
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0030463
  issn: 1343-8832
  databaseCode: AAJSJ
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals Open Access
  customDbUrl:
  eissn: 1880-5981
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0030463
  issn: 1343-8832
  databaseCode: C6C
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Open Access Journals
  customDbUrl:
  eissn: 1880-5981
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0030463
  issn: 1343-8832
  databaseCode: C24
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELdgCAEPCAbTOkZlIQQPLFr-2E7y2EUrBalVNag0nizHdlClLp2WVFOf4DvwDfkk3DlJ6YQ0eECKnH8XJb47n8_O-XeEvNYmstqawgsCzTzmErn7LIdCsTRQgcndqrTxRIxm7OM5P99K9YUxYQ08cMO440ikCYLm6SgpWADvMzpkJmaKFTyPcovW10_SbjDV2GCHg9UtkUnEcQXdVoj_KzEMQTDurW90Qw6t_0-bvPVz9BF5sCov1fpaLRZb_c_wCXncOo500HzwU3LHlrtkf1DhVPbyYk3fUHfczFRUu-T-tDl6Rr5lm1yDtA3LouD20RHObYDrBwpCxwhSRTN1tVjSJqk0VaVxZGNbu0wK8-rn9x8jVWGcdNURgctLMeR9Xl3MNS3UalFTl1yHInpHsyzyOZkNTz9nI6_Nu-BpzuPaMyG3jKewM5ppGOHkRcyEYQrGIiEPLcKsGa21b_LEBMZyDRSBXySaKzBXUbRHdsplafcJFSK1fs4LRIVBaLYc5Fj4ObNGp6GfRj0SdGKQugUlx9wYC-kGJ4mQjegkiE460cl1j7zbPHPZQHLcSn2C0t1QIpy2uwBKJlslk39Tsh55hbohETCjxIicr2pVVfLDpzM5iNEpjIEnPfK2JSqWUAet2gUOwAnE2LpBedjpmGxNRiVDEaNzGyesR446vft9-7YaHm108x8YcvA_GPKCPAxdaxKwHZKd-mplX4J3Vud9cjcZvu-Teyenk-kZnGUhw1JkfddE4c5sMh18-QWOvjxE
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELaqVqhwQFBADRSwED8Huur-2PtzqFAaWiW0iarSSr0Zr-2tIqW7IU5U5QTvwPvwMDwJHq83bYUUcakUJatkVtF6Zjxje-b7EHorZKSEkoUXBIJ4xBK5-yQ3b5xkAQ9kbrvS-oO4e0a-nNPzFfS76YWBsspmTrQTtawE7JHvhHECsT9Jyafxdw9Yo-B0taHQ4I5aQe5aiDHX2HGo5ldmCad3e5-Nvt-F4cH-aafrOZYBT1CaTD0ZUkVoZj6kIMLk83mRkFgSbjLvkIYKQMWkEMKXeSoDqagwEoFfpIJy45ywIWpCwBqJSGYWf2t7-4PjkyYWWDyuplUnjXe0CZ8hnJtCOURMqDe_FQ4ta8C_seHGIe0DtD4rx3x-xUejG3Hw4BF66BJY3K4t7jFaUeUG2mxr2FKvLuf4PbbX9Y6J3kD3juurJ-hHZ8F5iF15GDbpJ-7CHotJQY2h4j6AZeEOn4wqXJNbY15KK9ZXU8voMNR_fv7qcg312roRMqk3htL7ob4cClzw2WiKLckPBhSRuj3zKTq7E808Q6tlVapNhOM4U35OC0CnAYi4PBFR4edESZGFfha1UNCogQkHjg4cHSNmF0lpzGrVMaM6ZlXH5i30cXHPuIYGWSq9B9pdSAKst_2imlwwN0uwKM5SQIgUUVqQwDiXFCGRCeGkoHmUqxZ6A7bBALijhMqgCz7TmvW-nrB2AslpYsakhT44oaIyzyC4a7QwIwFYX7cktxobY27q0uza0Vpou7G765-XPeH2wjb_Y0CeL__z12i9e9o_Yke9weELdD-0PhOb1xZanU5m6qXJBaf5K-dwGH27ax__C97icWA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrXj0gKCAGiiwQjwO1Iofu34cEAopIaGkqqCVelvWu-sqUmqHOFGVE_wH_g0_h1_CzNpOWyFFXCpFjhWPFXnn6dmZbwh5oXRglNGZ43mKOcwOcndZCgfJEk96OrVdacODsH_MPp3wkzXyu-mFwbLKxiZaQ60LhTnyth9G6PujmLWzuizicK_3bvLdwQlSuNPajNOoRGTfLM7h9a18O9gDXr_0_d6Ho27fqScMOIrzaOZonxvGE_jSiimI5dMsYqFmEqJun_sGAcW0UsrVaaw9bbgCCs_NYsUlKCYmQ8H8b0SI4o5d6r2PjRewSFxNk04ctktwnD7umGIhRMi4s7jiCO28gH-9wqXt2U1ya55P5OJcjseXPGDvLrlTh660U8naPbJm8i2y3SkxmV6cLegras-rXEm5RW4cVmf3yY_uctohrQvDKASetI_ZFQg-QUTpEGGyaFdOxwWtxlpTmWtLNjQzO8thVP75-asvS6zULhsiCLopFt2PyrORopmcj2fUjvehiB9SNWY-IMfXwpeHZD0vcrNNaBgmxk15hrg0CA6XRirI3JQZrRLfTYIW8Ro2CFXDouN0jrGwr0dxKCrWCWCdsKwTixZ5s7xnUoGCrKR-j9xdUiKgt_2hmJ6K2j6IIExixIZUQZwxD9RKK5_piEmW8TRITYs8R9kQCNmRo_CfynlZisHXL6ITYVgawZq0yOuaKCvgGZSsWyxgJRDl6wrlTiNjojZapbhQsRbZbeTu4vKqJ9xdyuZ_LMij1X_-jNwEzRafBwf7j8lt36pMCJ8dsj6bzs0TCAJn6VOrbZR8u271_gvEZW76
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLagEwIeuAzQCgNZCMEDS5eL7SSPpWIqSJ0moNJ4snzLqMjSqk6Fygv8B_4hvwQfJykboAkkpCix0tNKPj3HPrbP-T6EniidGGV0EUSRIgHxRO4hke4mSB6JSEtflTY5ZOMpeX1Mj9vKOus3dZf1h2ABiZ61DZxTKTPoTiiBT6opcwAaBbPcX-ii8fqM7Vs3M8VwJAmZBozQYH0ZbTHqAvQe2poeHg3f-6UXSYIs87RlAEQW0DyLulKaP_7IuenKo_r_PnafOUS9jq6uqoVYfxJleWaeOriJ6q6HTXrKx8GqlgP1-Rfwx_-sglvoRhvX4mFjiLfRJVNto52hhZ32-ekaP8W-3Wyk2G105ahp3UFfRhsqRNxmjWEXleIxbL24yNTZL54AhhYeiWU5xw3nNRaV9mITU3uih5n9_vXbWFhI47adkIvIMWTkz-zpTOFCrMoae-4fDOAiTdXmXTQ9ePluNA5aWohAUZrWgY6pITR3D62IcgswWaSEaSLcUimmsQEUOK2UCrXMdKQNVU4iCotMUeFG0yS5h3rVvDI7CDOWm1DSAkBrADlOpiopQkmMVnkc5kkfRd2_z1WLmQ7UHSX3a6eM8Ubn3Omce53zdR8933xn0SCGXCj9AoxqIwlo3_7FfHnC28GDJyzPADhSJVlBIudzWsVEp0SQgspEmj56DCbJAc-jgoShE7Gylr96-4YPU4hZU6eTPnrWChVz1wcl2voLpwmAADsnuduZNm9HNMtjlkLsnWakj_Y6c_z58UU93Nu4xF8o5P6_iT9A12Jv8Mxdu6hXL1fmoQsTa_modfsfIhdhxw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+between+the+Hamiltonian+Monte+Carlo+method+and+the+Metropolis-Hastings+method+for+coseismic+fault+model+estimation&rft.jtitle=Earth%2C+planets%2C+and+space&rft.au=Yamada%2C+Taisuke&rft.au=Ohno%2C+Keitaro&rft.au=Ohta%2C+Yusaku&rft.date=2022-06-06&rft.pub=Springer&rft.issn=1343-8832&rft.volume=74&rft.issue=1&rft_id=info:doi/10.1186%2Fs40623-022-01645-y&rft.externalDocID=A706157021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1880-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1880-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1880-5981&client=summon