Comparison between the Hamiltonian Monte Carlo method and the Metropolis–Hastings method for coseismic fault model estimation
A rapid source fault estimation and quantitative assessment of the uncertainty of the estimated model can elucidate the occurrence mechanism of earthquakes and inform disaster damage mitigation. The Bayesian statistical method that addresses the posterior distribution of unknowns using the Markov ch...
Saved in:
| Published in | Earth, planets, and space Vol. 74; no. 1; pp. 1 - 16 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
06.06.2022
Springer Springer Nature B.V SpringerOpen |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1880-5981 1343-8832 1880-5981 |
| DOI | 10.1186/s40623-022-01645-y |
Cover
| Abstract | A rapid source fault estimation and quantitative assessment of the uncertainty of the estimated model can elucidate the occurrence mechanism of earthquakes and inform disaster damage mitigation. The Bayesian statistical method that addresses the posterior distribution of unknowns using the Markov chain Monte Carlo (MCMC) method is significant for uncertainty assessment. The Metropolis–Hastings method, especially the Random walk Metropolis–Hastings (RWMH), has many applications, including coseismic fault estimation. However, RWMH exhibits a trade-off between the transition distance and the acceptance ratio of parameter transition candidates and requires a long mixing time, particularly in solving high-dimensional problems. This necessitates a more efficient Bayesian method. In this study, we developed a fault estimation algorithm using the Hamiltonian Monte Carlo (HMC) method, which is considered more efficient than the other MCMC method, but its applicability has not been sufficiently validated to estimate the coseismic fault for the first time. HMC can conduct sampling more intelligently with the gradient information of the posterior distribution. We applied our algorithm to the 2016 Kumamoto earthquake (M
JMA
7.3), and its sampling converged in 2 × 10
4
samples, including 1 × 10
3
burn-in samples. The estimated models satisfactorily accounted for the input data; the variance reduction was approximately 88%, and the estimated fault parameters and event magnitude were consistent with those reported in previous studies. HMC could acquire similar results using only 2% of the RWMH chains. Moreover, the power spectral density (PSD) of each model parameter's Markov chain showed this method exhibited a low correlation with the subsequent sample and a long transition distance between samples. These results indicate HMC has advantages in terms of chain length than RWMH, expecting a more efficient estimation for a high-dimensional problem that requires a long mixing time or a problem using nonlinear Green’s function, which has a large computational cost.
Graphical Abstract |
|---|---|
| AbstractList | A rapid source fault estimation and quantitative assessment of the uncertainty of the estimated model can elucidate the occurrence mechanism of earthquakes and inform disaster damage mitigation. The Bayesian statistical method that addresses the posterior distribution of unknowns using the Markov chain Monte Carlo (MCMC) method is significant for uncertainty assessment. The Metropolis–Hastings method, especially the Random walk Metropolis–Hastings (RWMH), has many applications, including coseismic fault estimation. However, RWMH exhibits a trade-off between the transition distance and the acceptance ratio of parameter transition candidates and requires a long mixing time, particularly in solving high-dimensional problems. This necessitates a more efficient Bayesian method. In this study, we developed a fault estimation algorithm using the Hamiltonian Monte Carlo (HMC) method, which is considered more efficient than the other MCMC method, but its applicability has not been sufficiently validated to estimate the coseismic fault for the first time. HMC can conduct sampling more intelligently with the gradient information of the posterior distribution. We applied our algorithm to the 2016 Kumamoto earthquake (M
JMA
7.3), and its sampling converged in 2 × 10
4
samples, including 1 × 10
3
burn-in samples. The estimated models satisfactorily accounted for the input data; the variance reduction was approximately 88%, and the estimated fault parameters and event magnitude were consistent with those reported in previous studies. HMC could acquire similar results using only 2% of the RWMH chains. Moreover, the power spectral density (PSD) of each model parameter's Markov chain showed this method exhibited a low correlation with the subsequent sample and a long transition distance between samples. These results indicate HMC has advantages in terms of chain length than RWMH, expecting a more efficient estimation for a high-dimensional problem that requires a long mixing time or a problem using nonlinear Green’s function, which has a large computational cost.
Graphical Abstract Abstract A rapid source fault estimation and quantitative assessment of the uncertainty of the estimated model can elucidate the occurrence mechanism of earthquakes and inform disaster damage mitigation. The Bayesian statistical method that addresses the posterior distribution of unknowns using the Markov chain Monte Carlo (MCMC) method is significant for uncertainty assessment. The Metropolis–Hastings method, especially the Random walk Metropolis–Hastings (RWMH), has many applications, including coseismic fault estimation. However, RWMH exhibits a trade-off between the transition distance and the acceptance ratio of parameter transition candidates and requires a long mixing time, particularly in solving high-dimensional problems. This necessitates a more efficient Bayesian method. In this study, we developed a fault estimation algorithm using the Hamiltonian Monte Carlo (HMC) method, which is considered more efficient than the other MCMC method, but its applicability has not been sufficiently validated to estimate the coseismic fault for the first time. HMC can conduct sampling more intelligently with the gradient information of the posterior distribution. We applied our algorithm to the 2016 Kumamoto earthquake (MJMA 7.3), and its sampling converged in 2 × 104 samples, including 1 × 103 burn-in samples. The estimated models satisfactorily accounted for the input data; the variance reduction was approximately 88%, and the estimated fault parameters and event magnitude were consistent with those reported in previous studies. HMC could acquire similar results using only 2% of the RWMH chains. Moreover, the power spectral density (PSD) of each model parameter's Markov chain showed this method exhibited a low correlation with the subsequent sample and a long transition distance between samples. These results indicate HMC has advantages in terms of chain length than RWMH, expecting a more efficient estimation for a high-dimensional problem that requires a long mixing time or a problem using nonlinear Green’s function, which has a large computational cost. Graphical Abstract A rapid source fault estimation and quantitative assessment of the uncertainty of the estimated model can elucidate the occurrence mechanism of earthquakes and inform disaster damage mitigation. The Bayesian statistical method that addresses the posterior distribution of unknowns using the Markov chain Monte Carlo (MCMC) method is significant for uncertainty assessment. The Metropolis-Hastings method, especially the Random walk Metropolis-Hastings (RWMH), has many applications, including coseismic fault estimation. However, RWMH exhibits a trade-off between the transition distance and the acceptance ratio of parameter transition candidates and requires a long mixing time, particularly in solving high-dimensional problems. This necessitates a more efficient Bayesian method. In this study, we developed a fault estimation algorithm using the Hamiltonian Monte Carlo (HMC) method, which is considered more efficient than the other MCMC method, but its applicability has not been sufficiently validated to estimate the coseismic fault for the first time. HMC can conduct sampling more intelligently with the gradient information of the posterior distribution. We applied our algorithm to the 2016 Kumamoto earthquake (M.sub.JMA 7.3), and its sampling converged in 2 x 10.sup.4 samples, including 1 x 10.sup.3 burn-in samples. The estimated models satisfactorily accounted for the input data; the variance reduction was approximately 88%, and the estimated fault parameters and event magnitude were consistent with those reported in previous studies. HMC could acquire similar results using only 2% of the RWMH chains. Moreover, the power spectral density (PSD) of each model parameter's Markov chain showed this method exhibited a low correlation with the subsequent sample and a long transition distance between samples. These results indicate HMC has advantages in terms of chain length than RWMH, expecting a more efficient estimation for a high-dimensional problem that requires a long mixing time or a problem using nonlinear Green's function, which has a large computational cost. Graphical A rapid source fault estimation and quantitative assessment of the uncertainty of the estimated model can elucidate the occurrence mechanism of earthquakes and inform disaster damage mitigation. The Bayesian statistical method that addresses the posterior distribution of unknowns using the Markov chain Monte Carlo (MCMC) method is significant for uncertainty assessment. The Metropolis-Hastings method, especially the Random walk Metropolis-Hastings (RWMH), has many applications, including coseismic fault estimation. However, RWMH exhibits a trade-off between the transition distance and the acceptance ratio of parameter transition candidates and requires a long mixing time, particularly in solving high-dimensional problems. This necessitates a more efficient Bayesian method. In this study, we developed a fault estimation algorithm using the Hamiltonian Monte Carlo (HMC) method, which is considered more efficient than the other MCMC method, but its applicability has not been sufficiently validated to estimate the coseismic fault for the first time. HMC can conduct sampling more intelligently with the gradient information of the posterior distribution. We applied our algorithm to the 2016 Kumamoto earthquake (M.sub.JMA 7.3), and its sampling converged in 2 x 10.sup.4 samples, including 1 x 10.sup.3 burn-in samples. The estimated models satisfactorily accounted for the input data; the variance reduction was approximately 88%, and the estimated fault parameters and event magnitude were consistent with those reported in previous studies. HMC could acquire similar results using only 2% of the RWMH chains. Moreover, the power spectral density (PSD) of each model parameter's Markov chain showed this method exhibited a low correlation with the subsequent sample and a long transition distance between samples. These results indicate HMC has advantages in terms of chain length than RWMH, expecting a more efficient estimation for a high-dimensional problem that requires a long mixing time or a problem using nonlinear Green's function, which has a large computational cost. A rapid source fault estimation and quantitative assessment of the uncertainty of the estimated model can elucidate the occurrence mechanism of earthquakes and inform disaster damage mitigation. The Bayesian statistical method that addresses the posterior distribution of unknowns using the Markov chain Monte Carlo (MCMC) method is significant for uncertainty assessment. The Metropolis–Hastings method, especially the Random walk Metropolis–Hastings (RWMH), has many applications, including coseismic fault estimation. However, RWMH exhibits a trade-off between the transition distance and the acceptance ratio of parameter transition candidates and requires a long mixing time, particularly in solving high-dimensional problems. This necessitates a more efficient Bayesian method. In this study, we developed a fault estimation algorithm using the Hamiltonian Monte Carlo (HMC) method, which is considered more efficient than the other MCMC method, but its applicability has not been sufficiently validated to estimate the coseismic fault for the first time. HMC can conduct sampling more intelligently with the gradient information of the posterior distribution. We applied our algorithm to the 2016 Kumamoto earthquake (MJMA 7.3), and its sampling converged in 2 × 104 samples, including 1 × 103 burn-in samples. The estimated models satisfactorily accounted for the input data; the variance reduction was approximately 88%, and the estimated fault parameters and event magnitude were consistent with those reported in previous studies. HMC could acquire similar results using only 2% of the RWMH chains. Moreover, the power spectral density (PSD) of each model parameter's Markov chain showed this method exhibited a low correlation with the subsequent sample and a long transition distance between samples. These results indicate HMC has advantages in terms of chain length than RWMH, expecting a more efficient estimation for a high-dimensional problem that requires a long mixing time or a problem using nonlinear Green’s function, which has a large computational cost. |
| ArticleNumber | 86 |
| Audience | Academic |
| Author | Ohno, Keitaro Ohta, Yusaku Yamada, Taisuke |
| Author_xml | – sequence: 1 givenname: Taisuke orcidid: 0000-0002-0534-5396 surname: Yamada fullname: Yamada, Taisuke email: taisuke.yamada.r3@dc.tohoku.ac.jp organization: Research Center for Prediction of Earthquakes and Volcanic Eruptions, Graduate School of Science, Tohoku University – sequence: 2 givenname: Keitaro orcidid: 0000-0002-2001-1626 surname: Ohno fullname: Ohno, Keitaro organization: Geospatial Information Authority of Japan – sequence: 3 givenname: Yusaku orcidid: 0000-0003-4818-477X surname: Ohta fullname: Ohta, Yusaku organization: Research Center for Prediction of Earthquakes and Volcanic Eruptions, Graduate School of Science, Tohoku University, Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, International Research Institute of Disaster Science, Tohoku University |
| BookMark | eNqNkctuEzEUhkeoSLSFF2BliRWLaX0fZ1lFQCK1QuKytk5sT-poxg62o5IVvANvyJPUzZRLWVTIi2Mdff-5_SfNUYjBNc1Lgs8IUfI8cywpazGlLSaSi3b_pDkmSuFWzBQ5-uv_rDnJeYMxw1yy4-bbPI5bSD7HgFau3DgXULl2aAGjH0oMHgK6iqE4NIc0RDS6ch0tgmAP2JUrKW7j4PPP7z8WkIsP6_wL6mNCJmbn8-gN6mE3FDRG6wbkKjhC8TE8b572MGT34j6eNp_fvvk0X7SX798t5xeXrRGiK62lwnExq8EabiSWq77j0nIgilJBHaaEW2MMtitliXXCVILgXhkBnWSMnTbLqa6NsNHbVNunvY7g9SER01pDKt4MTjM5U5SzzjDVc2IMWEO57TjwXqzYytVabKq1C1vY38Aw_C5IsL7zQ09-6OqHPvih91X1alJtU_yyqxfQm7hLoS6tqewY5bRTvFJnE7WGOooPfSwJTH3W1SNW03tf8xcdlkR0desqeP1AYO7M-lrWsMtZLz9-eMiqiTUp5pxcr40vBxtqEz88Pj39R_pfK98fKlc4rF36s_IjqlvJwt-3 |
| CitedBy_id | crossref_primary_10_1016_j_energy_2023_129906 crossref_primary_10_1186_s40623_024_02068_7 crossref_primary_10_1016_j_acags_2025_100234 crossref_primary_10_3390_s23187903 crossref_primary_10_1080_03610918_2024_2330709 crossref_primary_10_1186_s40623_025_02154_4 crossref_primary_10_5817_OEJV2024_0259 crossref_primary_10_1016_j_ecolmodel_2024_110922 crossref_primary_10_1186_s40645_023_00593_9 crossref_primary_10_1016_j_apenergy_2024_123583 crossref_primary_10_1111_1365_2478_70016 |
| Cites_doi | 10.1002/2013JB010622 10.1016/0370-2693(87)91197-X 10.1111/j.1365-246X.2007.03713.x 10.1093/gji/ggu280 10.1029/2001JB000588 10.1186/BF03352878 10.21203/rs.3.rs-923956/v1 10.1121/1.4757639 10.1029/2019JB018428 10.1029/2011JB008940 10.1029/2020JB021107 10.1111/1467-9868.00123 10.1093/gji/ggaa397 10.1111/j.2041-210X.2011.00131.x 10.1029/2000RG000089 10.1103/PhysRevLett.57.2607 10.1029/2017JB015316 10.1002/2017JB015249 10.1063/1.1699114 10.1093/gji/ggt517 10.1093/gji/ggt342 10.1007/s11227-018-2363-0 10.1186/s40623-016-0564-4 10.1186/s40623-016-0519-9 10.20965/jdr.2018.p0453 10.1029/2020JB020441 10.1785/BSSA0820021018 10.1093/gji/ggab033 10.1093/gji/ggy496 10.1029/2018GL080741 10.1785/0120070194 10.1137/1.9780898717921 10.1029/2019JB018703 10.1007/s10107-007-0149-x 10.1111/j.1365-246X.2010.04564.x 10.1002/2016JB013485 10.1186/s40623-021-01425-0 10.1093/biomet/57.1.97 10.1029/2011JB008750 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 COPYRIGHT 2022 Springer The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: COPYRIGHT 2022 Springer – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION ISR 7TG 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO H8D HCIFZ KL. L7M P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI ADTOC UNPAY DOA |
| DOI | 10.1186/s40623-022-01645-y |
| DatabaseName | Springer Nature Open Access Journals CrossRef Gale In Context: Science Meteorological & Geoastrophysical Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Korea Aerospace Database SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: SpringerLink Journals Open Access url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Astronomy & Astrophysics Physics |
| EISSN | 1880-5981 |
| EndPage | 16 |
| ExternalDocumentID | oai_doaj_org_article_36982437c38f41ccadc24d74a4f5b3be 10.1186/s40623-022-01645-y A706157021 10_1186_s40623_022_01645_y |
| GeographicLocations | Japan |
| GeographicLocations_xml | – name: Japan |
| GrantInformation_xml | – fundername: Japan Science and Technology Agency grantid: JPMJFR202P funderid: http://dx.doi.org/10.13039/501100002241 – fundername: Ministry of Education, Culture, Sports, Science and Technology grantid: THK_12 funderid: http://dx.doi.org/10.13039/501100001700 – fundername: Japan Society for the Promotion of Science London grantid: 21H05001 funderid: http://dx.doi.org/10.13039/501100000646 |
| GroupedDBID | -A0 -~X 0R~ 3K4 4.4 5GY 5VS 7.U 8FE 8FG 8FH AAFWJ AAJSJ AAKKN ABEEZ ACACY ACGFS ACULB ADBBV ADINQ AEUYN AFGXO AFKRA AHBYD AHYZX AIDUJ ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF BCNDV BENPR BGLVJ BHPHI BKSAR C24 C6C CCPQU E3Z EBLON EBS EJD FRP GROUPED_DOAJ HCIFZ IAO IGS ISR ITC JSH KQ8 LK5 M7R M~E OK1 P62 PCBAR PIMPY PROAC RSV SC5 SJN SOJ TR2 ~02 AASML AAYXX AFPKN CITATION PUEGO 7TG 8FD ABUWG AZQEC DWQXO H8D KL. L7M PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI ADTOC AHSBF AI. JSF RJT RZJ TKC UNPAY VH1 VOH |
| ID | FETCH-LOGICAL-c557t-d25e459d25dc4c606bf746d4a182252e0214dccc0db8d1de5c6bf10f8c5a76333 |
| IEDL.DBID | DOA |
| ISSN | 1880-5981 1343-8832 |
| IngestDate | Tue Oct 14 19:04:49 EDT 2025 Wed Oct 01 16:14:23 EDT 2025 Wed Oct 08 14:21:29 EDT 2025 Mon Oct 20 17:10:14 EDT 2025 Thu Oct 16 16:27:36 EDT 2025 Thu Apr 24 22:51:25 EDT 2025 Wed Oct 01 02:48:46 EDT 2025 Fri Feb 21 02:49:02 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Global navigation satellite system Hamiltonian Monte Carlo Bayesian inversion Real-time GEONET analysis system for rapid deformation Markov chain Monte Carlo |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c557t-d25e459d25dc4c606bf746d4a182252e0214dccc0db8d1de5c6bf10f8c5a76333 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4818-477X 0000-0002-0534-5396 0000-0002-2001-1626 |
| OpenAccessLink | https://doaj.org/article/36982437c38f41ccadc24d74a4f5b3be |
| PQID | 2673242784 |
| PQPubID | 2034776 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_36982437c38f41ccadc24d74a4f5b3be unpaywall_primary_10_1186_s40623_022_01645_y proquest_journals_2673242784 gale_infotracacademiconefile_A706157021 gale_incontextgauss_ISR_A706157021 crossref_citationtrail_10_1186_s40623_022_01645_y crossref_primary_10_1186_s40623_022_01645_y springer_journals_10_1186_s40623_022_01645_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-06 |
| PublicationDateYYYYMMDD | 2022-06-06 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Earth, planets, and space |
| PublicationTitleAbbrev | Earth Planets Space |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
| References | Ohno, Ohta, Kawamoto, Abe, Hino, Koshimura, Musa, Kobayashi (CR33) 2021; 73 Ohta, Ohzono, Miura, Iinuma, Tachibana, Takatsuka, Miyao, Sato, Umino (CR35) 2008; 60 Tanaka, Ohta, Miyazaki (CR44) 2019; 46 Dosso, Holland, Sambridge (CR5) 2012; 132 Hallo, Gallovič (CR19) 2020; 125 Minson, Murray, Langbein, Gomberg (CR28) 2014; 119 Amey, Hooper, Walters (CR2) 2018; 123 Asano, Iwata (CR3) 2016; 68 Dettmer, Benavente, Cummins, Sambridge (CR4) 2014; 199 CR18 Gelman (CR15) 1996 Roberts, Rosenthal (CR40) 1998; 60 Tarantola (CR45) 2005 Duane, Kennedy, Pendleton, Roweth (CR6) 1987; 195 Okada (CR38) 1992; 82 Fukuda, Johnson (CR13) 2010; 181 Agata, Kasahara, Yagi (CR1) 2021; 225 Ohno, Ohta, Hino, Koshimura, Musa, Abe, Kobayashi (CR34) 2022; 74 Geyer (CR17) 2011 Hoffman, Gelman (CR21) 2014; 15 Mai, Beroza (CR26) 2002; 107 Yarai, Kobayashi, Morishita, Fujiwara, Hiyama, Kawamoto, Ueshiba, Miura, Miyahara (CR46) 2016; 128 Fukuda, Johnson (CR12) 2008; 98 Ohta, Inoue, Koshimura, Kawamoto, Hino (CR37) 2018; 13 Musa, Watanabe, Matsuoka, Hokari, Inoue, Murashima, Ohta, Hino, Koshimura, Kobayashi (CR30) 2018; 74 Ohta, Kobayashi, Tsushima, Miura, Hino, Takasu, Fujimoto, Iinuma, Tachibana, Demachi, Sato, Ohzono, Umino (CR36) 2012; 117 Gebraad, Boehm, Fichtner (CR14) 2020; 125 Nesterov (CR32) 2009; 120 Fichtner, Simutė (CR9) 2018; 123 Fukahata, Wright (CR11) 2008; 173 Kawamoto, Hiyama, Ohta, Nishimura (CR23) 2016; 68 Hastings (CR20) 1970; 57 Link, Eaton (CR25) 2012; 3 Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (CR27) 1953; 21 Neal (CR31) 2011 Ringer, Whitehead, Krometis, Harris, Glatt-Holtz, Giddens, Ashcraft, Carver, Robertson, Harward, Fullwood, Lightheart, Hilton, Avery, Kesler, Morrise, Klein (CR39) 2021; 126 Sambridge, Mosegaard (CR42) 2002; 40 Duputel, Agram, Simons, Minson, Beck (CR7) 2014; 197 Dutta, Jónsson, Vasyura-Bathke (CR8) 2021; 126 Kawamoto, Ohta, Hiyama, Todoriki, Nishimura, Furuya, Sato, Yahagi, Miyagawa (CR24) 2017; 122 Swendsen, Wang (CR43) 1986; 57 Ito, Gunawan, Kimata, Tabei, Simons, Meilano, Agustan, Ohta, Nurdin, Sugiyanto (CR22) 2012; 117 Sambridge (CR41) 2013; 196 Muir, Tkalčić (CR29) 2020; 223 Gelman, Carlin, Stern, Dunson, Vehtari, Rubin (CR16) 2021 Fichtner, Zunino, Gebraad (CR10) 2019; 216 WA Link (1645_CR25) 2012; 3 JB Muir (1645_CR29) 2020; 223 SE Dosso (1645_CR5) 2012; 132 J Fukuda (1645_CR12) 2008; 98 J Fukuda (1645_CR13) 2010; 181 K Ohno (1645_CR34) 2022; 74 A Fichtner (1645_CR10) 2019; 216 PM Mai (1645_CR26) 2002; 107 Y Nesterov (1645_CR32) 2009; 120 Z Duputel (1645_CR7) 2014; 197 Y Fukahata (1645_CR11) 2008; 173 L Gebraad (1645_CR14) 2020; 125 M Hallo (1645_CR19) 2020; 125 S Duane (1645_CR6) 1987; 195 A Tarantola (1645_CR45) 2005 A Fichtner (1645_CR9) 2018; 123 A Musa (1645_CR30) 2018; 74 H Yarai (1645_CR46) 2016; 128 CJ Geyer (1645_CR17) 2011 A Gelman (1645_CR16) 2021 SE Minson (1645_CR28) 2014; 119 K Asano (1645_CR3) 2016; 68 T Ito (1645_CR22) 2012; 117 M Sambridge (1645_CR42) 2002; 40 K Ohno (1645_CR33) 2021; 73 Y Tanaka (1645_CR44) 2019; 46 A Gelman (1645_CR15) 1996 S Kawamoto (1645_CR23) 2016; 68 1645_CR18 W Hastings (1645_CR20) 1970; 57 RM Neal (1645_CR31) 2011 N Metropolis (1645_CR27) 1953; 21 J Dettmer (1645_CR4) 2014; 199 H Ringer (1645_CR39) 2021; 126 Y Ohta (1645_CR35) 2008; 60 R Dutta (1645_CR8) 2021; 126 Y Ohta (1645_CR36) 2012; 117 MD Hoffman (1645_CR21) 2014; 15 M Sambridge (1645_CR41) 2013; 196 GO Roberts (1645_CR40) 1998; 60 Y Ohta (1645_CR37) 2018; 13 Y Okada (1645_CR38) 1992; 82 R Agata (1645_CR1) 2021; 225 R Amey (1645_CR2) 2018; 123 RH Swendsen (1645_CR43) 1986; 57 S Kawamoto (1645_CR24) 2017; 122 |
| References_xml | – volume: 119 start-page: 3201 year: 2014 end-page: 3231 ident: CR28 article-title: Real-time inversions for finite fault slip models and rupture geometry based on high-rate GPS data publication-title: J Geophys Res Solid Earth doi: 10.1002/2013JB010622 – ident: CR18 – volume: 195 start-page: 216 year: 1987 end-page: 222 ident: CR6 article-title: Hybrid Monte Carlo publication-title: Phys Lett B doi: 10.1016/0370-2693(87)91197-X – year: 2011 ident: CR17 article-title: Introduction to Markov chain Monte Carlo publication-title: Handbook of Markov chain Monte Carlo – volume: 173 start-page: 353 year: 2008 end-page: 364 ident: CR11 article-title: A non-linear geodetic data inversion using ABIC for slip distribution on a fault with an unknown dip angle publication-title: Geophys J Int doi: 10.1111/j.1365-246X.2007.03713.x – volume: 199 start-page: 735 year: 2014 end-page: 751 ident: CR4 article-title: Trans-dimensional finite-fault inversion publication-title: Geophys J Int doi: 10.1093/gji/ggu280 – volume: 107 start-page: ESE10-1 year: 2002 end-page: ESE10-2 ident: CR26 article-title: A spatial random field model to characterize complexity in earthquake slip publication-title: J Geophys Res Solid Earth doi: 10.1029/2001JB000588 – volume: 60 start-page: 1197 year: 2008 end-page: 1201 ident: CR35 article-title: Coseismic fault model of the 2008 Iwate-Miyagi Nairiku earthquake deduced by a dense GPS network publication-title: Earth Planets Space doi: 10.1186/BF03352878 – volume: 74 start-page: 24 year: 2022 ident: CR34 article-title: Rapid and quantitative uncertainty estimation of coseismic slip distribution for large interplate earthquakes using real-time GNSS data and its application to tsunami inundation prediction publication-title: Earth Planets Space doi: 10.21203/rs.3.rs-923956/v1 – volume: 132 start-page: 3030 year: 2012 end-page: 3040 ident: CR5 article-title: Parallel tempering for strongly nonlinear geoacoustic inversion publication-title: J Acoust Soc Am doi: 10.1121/1.4757639 – volume: 125 start-page: 1 year: 2020 end-page: 18 ident: CR14 article-title: Bayesian elastic full-waveform inversion using Hamiltonian Monte Carlo publication-title: J Geophys Res Solid Earth doi: 10.1029/2019JB018428 – volume: 128 start-page: 169 year: 2016 end-page: 176 ident: CR46 article-title: Source fault models of the 2016 Kumamoto earthquake inverted from crustal deformation publication-title: Bull Geospat Inf Auth Jpn – volume: 117 start-page: B06409 year: 2012 ident: CR22 article-title: Isolating along-strike variations in the depth extent of shallow creep and fault locking on the northern Great Sumatran fault publication-title: J Geophys Res Solid Earth doi: 10.1029/2011JB008940 – volume: 126 start-page: 1 year: 2021 end-page: 23 ident: CR39 article-title: Methodological reconstruction of historical seismic events from anecdotal accounts of destructive tsunamis: a case study for the great 1852 Banda arc mega-thrust earthquake and tsunami publication-title: J Geophys Res Solid Earth doi: 10.1029/2020JB021107 – year: 1996 ident: CR15 article-title: Inference and monitoring convergence publication-title: Markov chain Monte Carlo in practice – volume: 60 start-page: 255 year: 1998 end-page: 268 ident: CR40 article-title: Optimal scaling of discrete approximations to Langevin diffusions publication-title: J R Stat Soc Ser B Methodol doi: 10.1111/1467-9868.00123 – volume: 223 start-page: 1630 year: 2020 end-page: 1643 ident: CR29 article-title: Probabilistic lowermost mantle P-wave tomography from hierarchical Hamiltonian Monte Carlo and model parametrization cross-validation publication-title: Geophys J Int doi: 10.1093/gji/ggaa397 – volume: 3 start-page: 112 year: 2012 end-page: 115 ident: CR25 article-title: On thinning of chains in MCMC publication-title: Methods Ecol Evol doi: 10.1111/j.2041-210X.2011.00131.x – volume: 40 start-page: 3-1 year: 2002 end-page: 3-29 ident: CR42 article-title: Monte Carlo methods in geophysical inverse problems publication-title: Rev Geophys doi: 10.1029/2000RG000089 – volume: 57 start-page: 2607 year: 1986 end-page: 2609 ident: CR43 article-title: Replica Monte Carlo simulation of spin-glasses publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.57.2607 – volume: 123 start-page: 6052 year: 2018 end-page: 6071 ident: CR2 article-title: Bayesian method for incorporating self-similarity into earthquake slip inversions publication-title: J Geophys Res Solid Earth doi: 10.1029/2017JB015316 – volume: 123 start-page: 2984 year: 2018 end-page: 2999 ident: CR9 article-title: Hamiltonian Monte Carlo inversion of seismic sources in complex media publication-title: J Geophys Res Solid Earth doi: 10.1002/2017JB015249 – volume: 21 start-page: 1087 year: 1953 end-page: 1092 ident: CR27 article-title: Equation of state calculations by fast computing machines publication-title: J Chem Phys doi: 10.1063/1.1699114 – year: 2021 ident: CR16 publication-title: Bayesian data analysis third edition (with errors fixed as of 15 February 2021) – volume: 197 start-page: 464 year: 2014 end-page: 482 ident: CR7 article-title: Accounting for prediction uncertainty when inferring subsurface fault slip publication-title: Geophys J Int doi: 10.1093/gji/ggt517 – volume: 15 start-page: 1593 year: 2014 end-page: 1623 ident: CR21 article-title: The no-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo publication-title: J Mach Learn Res – volume: 196 start-page: 357 year: 2013 end-page: 374 ident: CR41 article-title: A parallel tempering algorithm for probabilistic sampling and multimodal optimization publication-title: Geophys J Int doi: 10.1093/gji/ggt342 – volume: 74 start-page: 3093 year: 2018 end-page: 3113 ident: CR30 article-title: Real-time tsunami inundation forecast system for tsunami disaster prevention and mitigation publication-title: J Supercomput doi: 10.1007/s11227-018-2363-0 – volume: 68 start-page: 190 year: 2016 ident: CR23 article-title: First result from the GEONET real-time analysis system (REGARD): the case of the 2016 Kumamoto earthquakes publication-title: Earth Planets Space doi: 10.1186/s40623-016-0564-4 – volume: 68 start-page: 1 year: 2016 end-page: 11 ident: CR3 article-title: Source rupture processes of the foreshock and mainshock in the 2016 Kumamoto earthquake sequence estimated from the kinematic waveform inversion of strong motion data publication-title: Earth Planets Space doi: 10.1186/s40623-016-0519-9 – volume: 13 start-page: 453 year: 2018 end-page: 459 ident: CR37 article-title: Role of real-time GNSS in near-field tsunami forecasting publication-title: J Disaster Res doi: 10.20965/jdr.2018.p0453 – volume: 126 start-page: 1 year: 2021 end-page: 28 ident: CR8 article-title: Simultaneous Bayesian estimation of non-planar fault geometry and spatially-variable slip publication-title: J Geophys Res Solid Earth doi: 10.1029/2020JB020441 – volume: 82 start-page: 1018 year: 1992 end-page: 1040 ident: CR38 article-title: Internal deformation due to shear and tensile faults in a half-space publication-title: Bull Seismol Soc Am doi: 10.1785/BSSA0820021018 – volume: 225 start-page: 1392 year: 2021 end-page: 1411 ident: CR1 article-title: A Bayesian inference framework for fault slip distributions based on ensemble modelling of the uncertainty of underground structure: with a focus on uncertain fault dip publication-title: Geophys J Int doi: 10.1093/gji/ggab033 – volume: 216 start-page: 1344 year: 2019 end-page: 1363 ident: CR10 article-title: Hamiltonian Monte Carlo solution of tomographic inverse problems publication-title: Geophys J Int doi: 10.1093/gji/ggy496 – volume: 46 start-page: 1367 year: 2019 end-page: 1374 ident: CR44 article-title: Real-time coseismic slip estimation via the GNSS carrier phase to fault slip approach: a case study of the 2016 Kumamoto earthquake publication-title: Geophys Res Lett doi: 10.1029/2018GL080741 – volume: 98 start-page: 1128 year: 2008 end-page: 1146 ident: CR12 article-title: A fully Bayesian inversion for spatial distribution of fault slip with objective smoothing publication-title: Bull Seismol Soc Am doi: 10.1785/0120070194 – year: 2011 ident: CR31 article-title: MCMC using Hamiltonian dynamics publication-title: Handbook of Markov chain Monte Carlo – year: 2005 ident: CR45 publication-title: Inverse problem theory and methods for model parameter estimation doi: 10.1137/1.9780898717921 – volume: 125 start-page: 1 year: 2020 end-page: 32 ident: CR19 article-title: Bayesian self-adapting fault slip inversion with green’s functions uncertainty and application on the 2016 Mw7.1 Kumamoto earthquake publication-title: J Geophys Res Solid Earth doi: 10.1029/2019JB018703 – volume: 120 start-page: 221 year: 2009 end-page: 259 ident: CR32 article-title: Primal-dual subgradient methods for convex problems publication-title: Math Program doi: 10.1007/s10107-007-0149-x – volume: 181 start-page: 1441 year: 2010 end-page: 1458 ident: CR13 article-title: Mixed linear-non-linear inversion of crustal deformation data: Bayesian inference of model, weighting and regularization parameters publication-title: Geophys J Int doi: 10.1111/j.1365-246X.2010.04564.x – volume: 122 start-page: 1324 year: 2017 end-page: 1349 ident: CR24 article-title: REGARD: a new GNSS-based real-time finite fault modeling system for GEONET publication-title: J Geophys Res Solid Earth doi: 10.1002/2016JB013485 – volume: 73 start-page: 127 year: 2021 ident: CR33 article-title: Real-time automatic uncertainty estimation of coseismic single rectangular fault model using GNSS data publication-title: Earth Planets Space doi: 10.1186/s40623-021-01425-0 – volume: 57 start-page: 97 year: 1970 end-page: 109 ident: CR20 article-title: Monte Carlo sampling methods using Markov chains and their applications publication-title: Biometrika doi: 10.1093/biomet/57.1.97 – volume: 117 start-page: 1 year: 2012 end-page: 16 ident: CR36 article-title: Quasi real-time fault model estimation for near-field tsunami forecasting based on RTK-GPS analysis: application to the 2011 Tohoku-Oki earthquake (Mw 9.0) publication-title: J Geophys Res Solid Earth doi: 10.1029/2011JB008750 – volume: 132 start-page: 3030 year: 2012 ident: 1645_CR5 publication-title: J Acoust Soc Am doi: 10.1121/1.4757639 – volume: 125 start-page: 1 year: 2020 ident: 1645_CR14 publication-title: J Geophys Res Solid Earth doi: 10.1029/2019JB018428 – volume: 126 start-page: 1 year: 2021 ident: 1645_CR8 publication-title: J Geophys Res Solid Earth doi: 10.1029/2020JB020441 – volume-title: Bayesian data analysis third edition (with errors fixed as of 15 February 2021) year: 2021 ident: 1645_CR16 – volume: 120 start-page: 221 year: 2009 ident: 1645_CR32 publication-title: Math Program doi: 10.1007/s10107-007-0149-x – volume: 123 start-page: 2984 year: 2018 ident: 1645_CR9 publication-title: J Geophys Res Solid Earth doi: 10.1002/2017JB015249 – volume: 60 start-page: 255 year: 1998 ident: 1645_CR40 publication-title: J R Stat Soc Ser B Methodol doi: 10.1111/1467-9868.00123 – volume-title: Markov chain Monte Carlo in practice year: 1996 ident: 1645_CR15 – volume-title: Handbook of Markov chain Monte Carlo year: 2011 ident: 1645_CR17 – volume: 82 start-page: 1018 year: 1992 ident: 1645_CR38 publication-title: Bull Seismol Soc Am doi: 10.1785/BSSA0820021018 – volume: 181 start-page: 1441 year: 2010 ident: 1645_CR13 publication-title: Geophys J Int doi: 10.1111/j.1365-246X.2010.04564.x – volume: 68 start-page: 190 year: 2016 ident: 1645_CR23 publication-title: Earth Planets Space doi: 10.1186/s40623-016-0564-4 – volume: 3 start-page: 112 year: 2012 ident: 1645_CR25 publication-title: Methods Ecol Evol doi: 10.1111/j.2041-210X.2011.00131.x – volume: 60 start-page: 1197 year: 2008 ident: 1645_CR35 publication-title: Earth Planets Space doi: 10.1186/BF03352878 – volume: 173 start-page: 353 year: 2008 ident: 1645_CR11 publication-title: Geophys J Int doi: 10.1111/j.1365-246X.2007.03713.x – volume: 15 start-page: 1593 year: 2014 ident: 1645_CR21 publication-title: J Mach Learn Res – volume: 223 start-page: 1630 year: 2020 ident: 1645_CR29 publication-title: Geophys J Int doi: 10.1093/gji/ggaa397 – volume: 40 start-page: 3-1 year: 2002 ident: 1645_CR42 publication-title: Rev Geophys doi: 10.1029/2000RG000089 – volume: 13 start-page: 453 year: 2018 ident: 1645_CR37 publication-title: J Disaster Res doi: 10.20965/jdr.2018.p0453 – volume: 68 start-page: 1 year: 2016 ident: 1645_CR3 publication-title: Earth Planets Space doi: 10.1186/s40623-016-0519-9 – volume: 196 start-page: 357 year: 2013 ident: 1645_CR41 publication-title: Geophys J Int doi: 10.1093/gji/ggt342 – volume: 57 start-page: 2607 year: 1986 ident: 1645_CR43 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.57.2607 – volume: 197 start-page: 464 year: 2014 ident: 1645_CR7 publication-title: Geophys J Int doi: 10.1093/gji/ggt517 – volume: 74 start-page: 3093 year: 2018 ident: 1645_CR30 publication-title: J Supercomput doi: 10.1007/s11227-018-2363-0 – volume: 57 start-page: 97 year: 1970 ident: 1645_CR20 publication-title: Biometrika doi: 10.1093/biomet/57.1.97 – volume: 128 start-page: 169 year: 2016 ident: 1645_CR46 publication-title: Bull Geospat Inf Auth Jpn – ident: 1645_CR18 – volume: 122 start-page: 1324 year: 2017 ident: 1645_CR24 publication-title: J Geophys Res Solid Earth doi: 10.1002/2016JB013485 – volume: 21 start-page: 1087 year: 1953 ident: 1645_CR27 publication-title: J Chem Phys doi: 10.1063/1.1699114 – volume: 216 start-page: 1344 year: 2019 ident: 1645_CR10 publication-title: Geophys J Int doi: 10.1093/gji/ggy496 – volume: 117 start-page: B06409 year: 2012 ident: 1645_CR22 publication-title: J Geophys Res Solid Earth doi: 10.1029/2011JB008940 – volume: 123 start-page: 6052 year: 2018 ident: 1645_CR2 publication-title: J Geophys Res Solid Earth doi: 10.1029/2017JB015316 – volume: 199 start-page: 735 year: 2014 ident: 1645_CR4 publication-title: Geophys J Int doi: 10.1093/gji/ggu280 – volume: 117 start-page: 1 year: 2012 ident: 1645_CR36 publication-title: J Geophys Res Solid Earth doi: 10.1029/2011JB008750 – volume: 46 start-page: 1367 year: 2019 ident: 1645_CR44 publication-title: Geophys Res Lett doi: 10.1029/2018GL080741 – volume-title: Handbook of Markov chain Monte Carlo year: 2011 ident: 1645_CR31 – volume: 195 start-page: 216 year: 1987 ident: 1645_CR6 publication-title: Phys Lett B doi: 10.1016/0370-2693(87)91197-X – volume: 225 start-page: 1392 year: 2021 ident: 1645_CR1 publication-title: Geophys J Int doi: 10.1093/gji/ggab033 – volume: 125 start-page: 1 year: 2020 ident: 1645_CR19 publication-title: J Geophys Res Solid Earth doi: 10.1029/2019JB018703 – volume-title: Inverse problem theory and methods for model parameter estimation year: 2005 ident: 1645_CR45 doi: 10.1137/1.9780898717921 – volume: 74 start-page: 24 year: 2022 ident: 1645_CR34 publication-title: Earth Planets Space doi: 10.21203/rs.3.rs-923956/v1 – volume: 119 start-page: 3201 year: 2014 ident: 1645_CR28 publication-title: J Geophys Res Solid Earth doi: 10.1002/2013JB010622 – volume: 98 start-page: 1128 year: 2008 ident: 1645_CR12 publication-title: Bull Seismol Soc Am doi: 10.1785/0120070194 – volume: 126 start-page: 1 year: 2021 ident: 1645_CR39 publication-title: J Geophys Res Solid Earth doi: 10.1029/2020JB021107 – volume: 107 start-page: ESE10-1 year: 2002 ident: 1645_CR26 publication-title: J Geophys Res Solid Earth doi: 10.1029/2001JB000588 – volume: 73 start-page: 127 year: 2021 ident: 1645_CR33 publication-title: Earth Planets Space doi: 10.1186/s40623-021-01425-0 |
| SSID | ssj0030463 |
| Score | 2.4196856 |
| Snippet | A rapid source fault estimation and quantitative assessment of the uncertainty of the estimated model can elucidate the occurrence mechanism of earthquakes and... Abstract A rapid source fault estimation and quantitative assessment of the uncertainty of the estimated model can elucidate the occurrence mechanism of... |
| SourceID | doaj unpaywall proquest gale crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | 6. Geodesy Algorithms Bayesian analysis Bayesian inversion Burn-in Comparative analysis Earth and Environmental Science Earth Sciences Earthquake damage Earthquakes Fault lines Faults (Geology) Geology Geophysics/Geodesy Global navigation satellite system Green's function Green's functions Hamiltonian Monte Carlo Markov analysis Markov chain Monte Carlo Markov chains Mathematical models Modelling Monte Carlo method Monte Carlo simulation Parameters Power spectral density Random walk Real-time GEONET analysis system for rapid deformation Recent Advances in Scientific Application of GNSS Array Data Sampling Seismic activity Statistical methods Uncertainty |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fa9swED-6lLH1YWzdSt11Q4yxPaym_iP5z8MYaWjJBgmlW6FvQpbkEnDtLHYYedq-w77hPsl0sp22DMLAxCI5E6w7nU7S3e8H8FaqUEutctf3JXWpJXL3aGY-BE194avMVqVNptH4kn65YldbMO1rYTCtsveJ1lGrSuIe-XEQxTj3xwn9NP_uImsUnq72FBqio1ZQHy3E2APYDhAZawDbJ6fT84veN1t8rL50JomOazOdBXiOiekJEWXu6t70ZFH8__XVdw5Nd-DRspyL1Q9RFHfmpbOn8KQLKMmwtYBnsKXLXdgf1rjFXd2syDti2-0ORr0LD8_b1nP4OVpzEJIuXYuYcJCMcc_DhITGcMgEwavISCyKirRk00SUyopNdGMZFmb1n1-_x6LG_Om6FzKhMMFU-Fl9M5MkF8uiIZZ0hyCqR1su-QIuz06_jcZux8fgSsbixlUB05Sl5qYklWblk-UxjRQVZo0SsEAj_JqSUnoqS5SvNJNGwvfyRDJh3FgY7sGgrEq9DySKUu1lLEe0GIRsy2IZ5l5GtZJp4KWhA36vBi47sHLkzCi4XbQkEW9Vx43quFUdXznwYf3MvIXq2Ch9gtpdSyLMtv2iWlzzbtTyMEoTRGyUYZJT3xi7kgFVMRU0Z1mYaQfeoG1wBNIoMVPnWizrmn_-esGHMQaLsekTB953Qnll3kGKrvDB9ARib92TPOxtjHeupOa3hu_AUW93tz9vesOjtW3-R4ccbP7zl_A4sOMkMtchDJrFUr8y8ViTve4G2V_zljP8 priority: 102 providerName: ProQuest – databaseName: SpringerLink Open Access Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fi9QwEA96IuqD6Klc9ZQgog9esX-StH1cF89VWBH14N5CmqTHQq89Nl2kT_od_IZ-EmfSdr1DORSWbmmnhWYmk0ky8_sR8kyb1GprqjCONQuZJ3KPWAkHxYpYxab0VWnLD2JxxN4f8-OxKMxN2e7TlqT31L5b5-KVg6EnwT1HTCUQjIf9VXIN4o8ECRvmWOMw-F-PgTWVx_z1uQtDkEfq_9Mfn9sYvUVubJoz1X9VdX1u7Dm8Q26PQSOdDVq-S67YZpfszRwuY7enPX1O_fmwSuF2yfW3nq-3h7OPw7V75Nt8yzhIx-QsCsEfXeAKBwSAYCZ0iVBVdK7WdUsHammqGuPFlrbzfAor9_P7j4VymC3tJiEIfCkmvq_c6UrTSm3qjnqKHYoYHkNx5H1ydPjmy3wRjuwLoeY860KTcMt4AX9GMw3znLLKmDBMwYwk4YlFsDWjtY5MmZvYWK5BIo6qXHMFTitNH5Cdpm3sHqFCFDYqeYXYMAjQVmY6raKSWaNBfUUakHhSiNQjNDkyZNTST1FyIQclSlCi9EqUfUBebp85G4A5LpV-jXreSiKotr_Qrk_k2EdlKooc8Rl1mlcsBtM2OmEmY4pVvExLG5CnaCUSYTMazMs5URvn5LvPn-Qsw9AwgzYJyItRqGrhG7QayxygJRBp64Lk_mRtcnQcTiYiwxA3y1lADiYL_H37si882FrpPzTIw_97-yNyM_E9SMBvn-x06419DNFYVz7xne8XnwstmQ priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLagEwIeuAzQCgNZCMEDS5eL7SSPpWIqSJ0moNJ4snzLqMjSqk6Fygv8B_4hvwQfJykboAkkpCix0tNKPj3HPrbP-T6EniidGGV0EUSRIgHxRO4hke4mSB6JSEtflTY5ZOMpeX1Mj9vKOus3dZf1h2ABiZ61DZxTKTPoTiiBT6opcwAaBbPcX-ii8fqM7Vs3M8VwJAmZBozQYH0ZbTHqAvQe2poeHg3f-6UXSYIs87RlAEQW0DyLulKaP_7IuenKo_r_PnafOUS9jq6uqoVYfxJleWaeOriJ6q6HTXrKx8GqlgP1-Rfwx_-sglvoRhvX4mFjiLfRJVNto52hhZ32-ekaP8W-3Wyk2G105ahp3UFfRhsqRNxmjWEXleIxbL24yNTZL54AhhYeiWU5xw3nNRaV9mITU3uih5n9_vXbWFhI47adkIvIMWTkz-zpTOFCrMoae-4fDOAiTdXmXTQ9ePluNA5aWohAUZrWgY6pITR3D62IcgswWaSEaSLcUimmsQEUOK2UCrXMdKQNVU4iCotMUeFG0yS5h3rVvDI7CDOWm1DSAkBrADlOpiopQkmMVnkc5kkfRd2_z1WLmQ7UHSX3a6eM8Ubn3Omce53zdR8933xn0SCGXCj9AoxqIwlo3_7FfHnC28GDJyzPADhSJVlBIudzWsVEp0SQgspEmj56DCbJAc-jgoShE7Gylr96-4YPU4hZU6eTPnrWChVz1wcl2voLpwmAADsnuduZNm9HNMtjlkLsnWakj_Y6c_z58UU93Nu4xF8o5P6_iT9A12Jv8Mxdu6hXL1fmoQsTa_modfsfIhdhxw priority: 102 providerName: Unpaywall |
| Title | Comparison between the Hamiltonian Monte Carlo method and the Metropolis–Hastings method for coseismic fault model estimation |
| URI | https://link.springer.com/article/10.1186/s40623-022-01645-y https://www.proquest.com/docview/2673242784 https://earth-planets-space.springeropen.com/counter/pdf/10.1186/s40623-022-01645-y https://doaj.org/article/36982437c38f41ccadc24d74a4f5b3be |
| UnpaywallVersion | publishedVersion |
| Volume | 74 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1880-5981 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0030463 issn: 1343-8832 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1880-5981 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0030463 issn: 1343-8832 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1880-5981 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0030463 issn: 1343-8832 databaseCode: 8FG dateStart: 20100201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1880-5981 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0030463 issn: 1343-8832 databaseCode: AAJSJ dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals Open Access customDbUrl: eissn: 1880-5981 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0030463 issn: 1343-8832 databaseCode: C6C dateStart: 19980101 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Open Access Journals customDbUrl: eissn: 1880-5981 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0030463 issn: 1343-8832 databaseCode: C24 dateStart: 19980101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELdgCAEPCAbTOkZlIQQPLFr-2E7y2EUrBalVNag0nizHdlClLp2WVFOf4DvwDfkk3DlJ6YQ0eECKnH8XJb47n8_O-XeEvNYmstqawgsCzTzmErn7LIdCsTRQgcndqrTxRIxm7OM5P99K9YUxYQ08cMO440ikCYLm6SgpWADvMzpkJmaKFTyPcovW10_SbjDV2GCHg9UtkUnEcQXdVoj_KzEMQTDurW90Qw6t_0-bvPVz9BF5sCov1fpaLRZb_c_wCXncOo500HzwU3LHlrtkf1DhVPbyYk3fUHfczFRUu-T-tDl6Rr5lm1yDtA3LouD20RHObYDrBwpCxwhSRTN1tVjSJqk0VaVxZGNbu0wK8-rn9x8jVWGcdNURgctLMeR9Xl3MNS3UalFTl1yHInpHsyzyOZkNTz9nI6_Nu-BpzuPaMyG3jKewM5ppGOHkRcyEYQrGIiEPLcKsGa21b_LEBMZyDRSBXySaKzBXUbRHdsplafcJFSK1fs4LRIVBaLYc5Fj4ObNGp6GfRj0SdGKQugUlx9wYC-kGJ4mQjegkiE460cl1j7zbPHPZQHLcSn2C0t1QIpy2uwBKJlslk39Tsh55hbohETCjxIicr2pVVfLDpzM5iNEpjIEnPfK2JSqWUAet2gUOwAnE2LpBedjpmGxNRiVDEaNzGyesR446vft9-7YaHm108x8YcvA_GPKCPAxdaxKwHZKd-mplX4J3Vud9cjcZvu-Teyenk-kZnGUhw1JkfddE4c5sMh18-QWOvjxE |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELaqVqhwQFBADRSwED8Huur-2PtzqFAaWiW0iarSSr0Zr-2tIqW7IU5U5QTvwPvwMDwJHq83bYUUcakUJatkVtF6Zjxje-b7EHorZKSEkoUXBIJ4xBK5-yQ3b5xkAQ9kbrvS-oO4e0a-nNPzFfS76YWBsspmTrQTtawE7JHvhHECsT9Jyafxdw9Yo-B0taHQ4I5aQe5aiDHX2HGo5ldmCad3e5-Nvt-F4cH-aafrOZYBT1CaTD0ZUkVoZj6kIMLk83mRkFgSbjLvkIYKQMWkEMKXeSoDqagwEoFfpIJy45ywIWpCwBqJSGYWf2t7-4PjkyYWWDyuplUnjXe0CZ8hnJtCOURMqDe_FQ4ta8C_seHGIe0DtD4rx3x-xUejG3Hw4BF66BJY3K4t7jFaUeUG2mxr2FKvLuf4PbbX9Y6J3kD3juurJ-hHZ8F5iF15GDbpJ-7CHotJQY2h4j6AZeEOn4wqXJNbY15KK9ZXU8voMNR_fv7qcg312roRMqk3htL7ob4cClzw2WiKLckPBhSRuj3zKTq7E808Q6tlVapNhOM4U35OC0CnAYi4PBFR4edESZGFfha1UNCogQkHjg4cHSNmF0lpzGrVMaM6ZlXH5i30cXHPuIYGWSq9B9pdSAKst_2imlwwN0uwKM5SQIgUUVqQwDiXFCGRCeGkoHmUqxZ6A7bBALijhMqgCz7TmvW-nrB2AslpYsakhT44oaIyzyC4a7QwIwFYX7cktxobY27q0uza0Vpou7G765-XPeH2wjb_Y0CeL__z12i9e9o_Yke9weELdD-0PhOb1xZanU5m6qXJBaf5K-dwGH27ax__C97icWA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrXj0gKCAGiiwQjwO1Iofu34cEAopIaGkqqCVelvWu-sqUmqHOFGVE_wH_g0_h1_CzNpOWyFFXCpFjhWPFXnn6dmZbwh5oXRglNGZ43mKOcwOcndZCgfJEk96OrVdacODsH_MPp3wkzXyu-mFwbLKxiZaQ60LhTnyth9G6PujmLWzuizicK_3bvLdwQlSuNPajNOoRGTfLM7h9a18O9gDXr_0_d6Ho27fqScMOIrzaOZonxvGE_jSiimI5dMsYqFmEqJun_sGAcW0UsrVaaw9bbgCCs_NYsUlKCYmQ8H8b0SI4o5d6r2PjRewSFxNk04ctktwnD7umGIhRMi4s7jiCO28gH-9wqXt2U1ya55P5OJcjseXPGDvLrlTh660U8naPbJm8i2y3SkxmV6cLegras-rXEm5RW4cVmf3yY_uctohrQvDKASetI_ZFQg-QUTpEGGyaFdOxwWtxlpTmWtLNjQzO8thVP75-asvS6zULhsiCLopFt2PyrORopmcj2fUjvehiB9SNWY-IMfXwpeHZD0vcrNNaBgmxk15hrg0CA6XRirI3JQZrRLfTYIW8Ro2CFXDouN0jrGwr0dxKCrWCWCdsKwTixZ5s7xnUoGCrKR-j9xdUiKgt_2hmJ6K2j6IIExixIZUQZwxD9RKK5_piEmW8TRITYs8R9kQCNmRo_CfynlZisHXL6ITYVgawZq0yOuaKCvgGZSsWyxgJRDl6wrlTiNjojZapbhQsRbZbeTu4vKqJ9xdyuZ_LMij1X_-jNwEzRafBwf7j8lt36pMCJ8dsj6bzs0TCAJn6VOrbZR8u271_gvEZW76 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLagEwIeuAzQCgNZCMEDS5eL7SSPpWIqSJ0moNJ4snzLqMjSqk6Fygv8B_4hvwQfJykboAkkpCix0tNKPj3HPrbP-T6EniidGGV0EUSRIgHxRO4hke4mSB6JSEtflTY5ZOMpeX1Mj9vKOus3dZf1h2ABiZ61DZxTKTPoTiiBT6opcwAaBbPcX-ii8fqM7Vs3M8VwJAmZBozQYH0ZbTHqAvQe2poeHg3f-6UXSYIs87RlAEQW0DyLulKaP_7IuenKo_r_PnafOUS9jq6uqoVYfxJleWaeOriJ6q6HTXrKx8GqlgP1-Rfwx_-sglvoRhvX4mFjiLfRJVNto52hhZ32-ekaP8W-3Wyk2G105ahp3UFfRhsqRNxmjWEXleIxbL24yNTZL54AhhYeiWU5xw3nNRaV9mITU3uih5n9_vXbWFhI47adkIvIMWTkz-zpTOFCrMoae-4fDOAiTdXmXTQ9ePluNA5aWohAUZrWgY6pITR3D62IcgswWaSEaSLcUimmsQEUOK2UCrXMdKQNVU4iCotMUeFG0yS5h3rVvDI7CDOWm1DSAkBrADlOpiopQkmMVnkc5kkfRd2_z1WLmQ7UHSX3a6eM8Ubn3Omce53zdR8933xn0SCGXCj9AoxqIwlo3_7FfHnC28GDJyzPADhSJVlBIudzWsVEp0SQgspEmj56DCbJAc-jgoShE7Gylr96-4YPU4hZU6eTPnrWChVz1wcl2voLpwmAADsnuduZNm9HNMtjlkLsnWakj_Y6c_z58UU93Nu4xF8o5P6_iT9A12Jv8Mxdu6hXL1fmoQsTa_modfsfIhdhxw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+between+the+Hamiltonian+Monte+Carlo+method+and+the+Metropolis-Hastings+method+for+coseismic+fault+model+estimation&rft.jtitle=Earth%2C+planets%2C+and+space&rft.au=Yamada%2C+Taisuke&rft.au=Ohno%2C+Keitaro&rft.au=Ohta%2C+Yusaku&rft.date=2022-06-06&rft.pub=Springer&rft.issn=1343-8832&rft.volume=74&rft.issue=1&rft_id=info:doi/10.1186%2Fs40623-022-01645-y&rft.externalDocID=A706157021 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1880-5981&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1880-5981&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1880-5981&client=summon |