Task-free MRI predicts individual differences in brain activity during task performance
When asked to perform the same task, different individuals exhibit markedly different patterns of brain activity. This variability is often attributed to volatile factors, such as task strategy or compliance. We propose that individual differences in brain responses are, to a large degree, inherent...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 352; no. 6282; pp. 216 - 220 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
08.04.2016
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.aad8127 |
Cover
Abstract | When asked to perform the same task, different individuals exhibit markedly different patterns of brain activity. This variability is often attributed to volatile factors, such as task strategy or compliance. We propose that individual differences in brain responses are, to a large degree, inherent to the brain and can be predicted from task-independent measurements collected at rest. Using a large set of task conditions, spanning several behavioral domains, we train a simple model that relates task-independent measurements to task activity and evaluate the model by predicting task activation maps for unseen subjects using magnetic resonance imaging. Our model can accurately predict individual differences in brain activity and highlights a coupling between brain connectivity and function that can be captured at the level of individual subjects. |
---|---|
AbstractList | We all differ in how we perceive, think, and act. What drives individual differences in evoked brain activity? Tavor et al. applied computational models to functional magnetic resonance imaging (fMRI) data from the Human Connectome Project. Brain activity in the "resting" state when subjects were not performing any explicit task predicted differences in fMRI activation across a range of cognitive paradigms. This suggests that individual differences in many cognitive tasks are a stable trait marker. Resting-state functional connectivity thus already contains the repertoire that is then expressed during task-based fMRI. Science, this issue p. 216 When asked to perform the same task, different individuals exhibit markedly different patterns of brain activity. This variability is often attributed to volatile factors, such as task strategy or compliance. We propose that individual differences in brain responses are, to a large degree, inherent to the brain and can be predicted from task-independent measurements collected at rest. Using a large set of task conditions, spanning several behavioral domains, we train a simple model that relates task-independent measurements to task activity and evaluate the model by predicting task activation maps for unseen subjects using magnetic resonance imaging. Our model can accurately predict individual differences in brain activity and highlights a coupling between brain connectivity and function that can be captured at the level of individual subjects. When asked to perform the same task, different individuals exhibit markedly different patterns of brain activity. This variability is often attributed to volatile factors such as task strategy or compliance. We propose that individual differences in brain responses are, to a large degree, inherent to the brain, and can be predicted from task-independent measurements collected at rest. Using a large set of task conditions, spanning several behavioral domains, we train a simple model that relates task-independent measurements to task activity and evaluate the model by predicting task activation maps for unseen subjects. Our model can accurately predict individual differences in brain activity highlighting a coupling between brain connectivity and function that can be captured at the level of individual subjects. We all differ in how we perceive, think, and act. What drives individual differences in evoked brain activity? Tavor et al. applied computational models to functional magnetic resonance imaging (fMRI) data from the Human Connectome Project. Brain activity in the “resting” state when subjects were not performing any explicit task predicted differences in fMRI activation across a range of cognitive paradigms. This suggests that individual differences in many cognitive tasks are a stable trait marker. Resting-state functional connectivity thus already contains the repertoire that is then expressed during task-based fMRI. Science , this issue p. 216 Brain activation when performing activities can largely be understood from its distinctive anatomy and connectivity. When asked to perform the same task, different individuals exhibit markedly different patterns of brain activity. This variability is often attributed to volatile factors, such as task strategy or compliance. We propose that individual differences in brain responses are, to a large degree, inherent to the brain and can be predicted from task-independent measurements collected at rest. Using a large set of task conditions, spanning several behavioral domains, we train a simple model that relates task-independent measurements to task activity and evaluate the model by predicting task activation maps for unseen subjects using magnetic resonance imaging. Our model can accurately predict individual differences in brain activity and highlights a coupling between brain connectivity and function that can be captured at the level of individual subjects. When asked to perform the same task, different individuals exhibit markedly different patterns of brain activity. This variability is often attributed to volatile factors, such as task strategy or compliance. We propose that individual differences in brain responses are, to a large degree, inherent to the brain and can be predicted from task-independent measurements collected at rest. Using a large set of task conditions, spanning several behavioral domains, we train a simple model that relates task-independent measurements to task activity and evaluate the model by predicting task activation maps for unseen subjects using magnetic resonance imaging. Our model can accurately predict individual differences in brain activity and highlights a coupling between brain connectivity and function that can be captured at the level of individual subjects.When asked to perform the same task, different individuals exhibit markedly different patterns of brain activity. This variability is often attributed to volatile factors, such as task strategy or compliance. We propose that individual differences in brain responses are, to a large degree, inherent to the brain and can be predicted from task-independent measurements collected at rest. Using a large set of task conditions, spanning several behavioral domains, we train a simple model that relates task-independent measurements to task activity and evaluate the model by predicting task activation maps for unseen subjects using magnetic resonance imaging. Our model can accurately predict individual differences in brain activity and highlights a coupling between brain connectivity and function that can be captured at the level of individual subjects. When asked to perform the same task, different individuals exhibit markedly different patterns of brain activity. This variability is often attributed to volatile factors, such as task strategy or compliance. We propose that individual differences in brain responses are, to a large degree, inherent to the brain and can be predicted from task-independent measurements collected at rest. Using a large set of task conditions, spanning several behavioral domains, we train a simple model that relates task-independent measurements to task activity and evaluate the model by predicting task activation maps for unseen subjects using magnetic resonance imaging. Our model can accurately predict individual differences in brain activity and highlights a coupling between brain connectivity and function that can be captured at the level of individual subjects. |
Author | Mars, R. B. Behrens, T. E. Jones, O. Parker Smith, S. M. Tavor, I. Jbabdi, S. |
AuthorAffiliation | 3 Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands 1 Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, UK 4 Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N 3BG, UK 2 Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, 52621, Israel |
AuthorAffiliation_xml | – name: 2 Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, 52621, Israel – name: 3 Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands – name: 4 Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N 3BG, UK – name: 1 Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, UK |
Author_xml | – sequence: 1 givenname: I. surname: Tavor fullname: Tavor, I. – sequence: 2 givenname: O. Parker surname: Jones fullname: Jones, O. Parker – sequence: 3 givenname: R. B. surname: Mars fullname: Mars, R. B. – sequence: 4 givenname: S. M. surname: Smith fullname: Smith, S. M. – sequence: 5 givenname: T. E. surname: Behrens fullname: Behrens, T. E. – sequence: 6 givenname: S. surname: Jbabdi fullname: Jbabdi, S. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27124457$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctrFTEUxoNU7O3VtStlwI2bafOaZGYjSPFRqAhScRnO5FFznZtck0yh_70Z7q2tBTcJ5Py-73wn5wQdhRgsQi8JPiWEirOsvQ3angKYnlD5BK0IHrp2oJgdoRXGTLQ9lt0xOsl5g3GtDewZOqaSUM47uUI_riD_al2ytvny7aLZJWu8Lrnxwfgbb2aYGuOds2lpszw3Y4J6gi61Xm4bMycfrptSbZqdTS6mLVT0OXrqYMr2xeFeo-8fP1ydf24vv366OH9_2equk6U12Gknu1FC7ygdheXQ904zKkfgDDPsem4Fk8KBJswx1jtLwAgjsJNYD2yN3u19d_O4tUbbUBJMapf8FtKtiuDVv5Xgf6rreKMEw4OsHdbo7cEgxd-zzUVtfdZ2miDYOGdFZN9JJhhZ0DeP0E2cU6jjVUoOXNJO0kq9fpjob5S7P69Atwd0ijkn65T2BYqPS0A_KYLVslt12K067Lbqzh7p7qz_r3i1V2xyiek-CZecU0zZH9QTtPQ |
CODEN | SCIEAS |
CitedBy_id | crossref_primary_10_1038_s41598_022_20866_5 crossref_primary_10_17116_neiro20228604125 crossref_primary_10_1162_imag_a_00408 crossref_primary_10_1002_hbm_26764 crossref_primary_10_1016_j_intell_2017_04_008 crossref_primary_10_1002_hbm_24222 crossref_primary_10_1016_j_pscychresns_2018_06_004 crossref_primary_10_1016_j_jneumeth_2017_09_006 crossref_primary_10_1093_sleep_zsz033 crossref_primary_10_1016_j_neuroimage_2021_118836 crossref_primary_10_1080_23273798_2020_1828946 crossref_primary_10_1093_cercor_bhab526 crossref_primary_10_1142_S0129065720500616 crossref_primary_10_1002_hbm_24699 crossref_primary_10_12677_AP_2017_73042 crossref_primary_10_1002_hup_2627 crossref_primary_10_1016_j_cobeha_2021_05_003 crossref_primary_10_1016_j_bandl_2020_104893 crossref_primary_10_1016_j_cobeha_2021_05_002 crossref_primary_10_1016_j_neuroimage_2016_08_032 crossref_primary_10_1016_j_cobeha_2021_05_004 crossref_primary_10_1016_j_neuroimage_2023_120360 crossref_primary_10_1038_s41598_022_08510_8 crossref_primary_10_3389_fnbeh_2020_617402 crossref_primary_10_1002_hbm_25662 crossref_primary_10_1038_s41598_019_42090_4 crossref_primary_10_1016_j_nicl_2021_102558 crossref_primary_10_1371_journal_pbio_3002732 crossref_primary_10_7554_eLife_66917 crossref_primary_10_1016_j_media_2024_103297 crossref_primary_10_1016_j_dcn_2024_101355 crossref_primary_10_1016_j_pneurobio_2022_102230 crossref_primary_10_1016_j_neuroimage_2020_117694 crossref_primary_10_1002_hbm_25534 crossref_primary_10_1002_hbm_24328 crossref_primary_10_1002_hbm_24329 crossref_primary_10_1007_s00429_023_02708_w crossref_primary_10_1016_j_neuroimage_2017_11_043 crossref_primary_10_1038_s41598_022_20309_1 crossref_primary_10_1177_1073858419860115 crossref_primary_10_3389_fnins_2019_00685 crossref_primary_10_3389_fnins_2022_909999 crossref_primary_10_1016_j_neuroimage_2020_117328 crossref_primary_10_1038_s41467_023_44087_0 crossref_primary_10_1016_j_neuroimage_2018_12_001 crossref_primary_10_1162_jocn_a_02116 crossref_primary_10_1016_j_colsurfb_2019_110452 crossref_primary_10_1016_j_neuroimage_2017_12_089 crossref_primary_10_1177_1545968320981953 crossref_primary_10_1016_j_neuroimage_2020_116593 crossref_primary_10_1523_JNEUROSCI_1713_20_2021 crossref_primary_10_1017_S0033291722002665 crossref_primary_10_1177_10738584221130974 crossref_primary_10_7554_eLife_40765 crossref_primary_10_1016_j_neuroimage_2021_117847 crossref_primary_10_1073_pnas_1615269114 crossref_primary_10_3389_fnins_2020_569657 crossref_primary_10_1016_j_neuroimage_2020_117317 crossref_primary_10_1038_nature18933 crossref_primary_10_1093_cercor_bhaa349 crossref_primary_10_1016_j_ddmod_2017_05_001 crossref_primary_10_1016_j_schres_2024_04_009 crossref_primary_10_1002_hbm_25436 crossref_primary_10_1016_j_brs_2021_05_013 crossref_primary_10_1093_cercor_bhaa221 crossref_primary_10_1089_brain_2017_0572 crossref_primary_10_1073_pnas_1902932116 crossref_primary_10_1371_journal_pone_0182759 crossref_primary_10_1109_ACCESS_2019_2894694 crossref_primary_10_2967_jnumed_118_212795 crossref_primary_10_1016_j_neuroimage_2021_117823 crossref_primary_10_1177_1073858416667716 crossref_primary_10_3389_fpsyg_2018_02778 crossref_primary_10_1002_pbc_27470 crossref_primary_10_1073_pnas_2320251121 crossref_primary_10_1073_pnas_1815321116 crossref_primary_10_1016_j_nicl_2018_06_026 crossref_primary_10_1016_j_neuroimage_2017_12_067 crossref_primary_10_1002_hbm_23687 crossref_primary_10_1523_JNEUROSCI_0856_23_2024 crossref_primary_10_1007_s00221_017_5011_7 crossref_primary_10_1016_j_psychres_2020_112938 crossref_primary_10_1016_j_neuroimage_2022_119279 crossref_primary_10_1016_j_neuroimage_2018_03_015 crossref_primary_10_1523_ENEURO_0101_20_2020 crossref_primary_10_1016_j_neuroimage_2019_06_063 crossref_primary_10_1016_j_neuroscience_2021_12_008 crossref_primary_10_1371_journal_pone_0319746 crossref_primary_10_1038_s41467_024_52371_w crossref_primary_10_1002_hbm_23675 crossref_primary_10_1016_j_dcn_2024_101439 crossref_primary_10_1002_hbm_23439 crossref_primary_10_1016_j_neuroimage_2022_119391 crossref_primary_10_1038_s41467_020_19630_y crossref_primary_10_1152_jn_00753_2019 crossref_primary_10_1016_j_neuroimage_2023_120213 crossref_primary_10_1016_j_neuroimage_2018_03_049 crossref_primary_10_1109_TNSE_2021_3102667 crossref_primary_10_1088_2632_072X_ac266c crossref_primary_10_1016_j_neubiorev_2023_105080 crossref_primary_10_1098_rstb_2015_0361 crossref_primary_10_1007_s00429_022_02603_w crossref_primary_10_1111_biom_13420 crossref_primary_10_1016_j_jneumeth_2019_108359 crossref_primary_10_3390_brainsci13010008 crossref_primary_10_3389_fpsyg_2023_1224911 crossref_primary_10_1016_j_neuron_2024_12_008 crossref_primary_10_1016_j_media_2022_102507 crossref_primary_10_1038_s41598_021_88773_9 crossref_primary_10_1016_j_intell_2021_101545 crossref_primary_10_1016_j_jneumeth_2019_108343 crossref_primary_10_1016_j_neuroimage_2018_03_032 crossref_primary_10_1016_j_pnpbp_2024_111199 crossref_primary_10_3390_s24123894 crossref_primary_10_1016_j_neuroimage_2018_04_077 crossref_primary_10_1016_j_neuroimage_2017_12_031 crossref_primary_10_1016_j_neuroimage_2019_01_068 crossref_primary_10_1002_hbm_23699 crossref_primary_10_1002_hbm_25878 crossref_primary_10_1016_j_neuroimage_2019_01_069 crossref_primary_10_1093_cercor_bhx175 crossref_primary_10_1016_j_neuroscience_2017_01_042 crossref_primary_10_1016_j_bbr_2020_112678 crossref_primary_10_3390_e24020270 crossref_primary_10_1016_j_biopsych_2021_02_002 crossref_primary_10_3724_SP_J_1042_2018_01186 crossref_primary_10_1093_cercor_bhx179 crossref_primary_10_1038_s41598_017_09250_w crossref_primary_10_1371_journal_pone_0207385 crossref_primary_10_1016_j_plrev_2025_02_001 crossref_primary_10_1016_j_tins_2022_03_011 crossref_primary_10_1016_j_intell_2017_10_002 crossref_primary_10_1038_s42003_021_02395_5 crossref_primary_10_1002_hbm_25822 crossref_primary_10_1016_j_neuroimage_2021_118795 crossref_primary_10_1371_journal_pone_0162018 crossref_primary_10_1016_j_bbr_2017_06_039 crossref_primary_10_1016_j_dcn_2017_11_011 crossref_primary_10_1177_10738584221081752 crossref_primary_10_1038_s41467_020_18823_9 crossref_primary_10_1111_jon_13136 crossref_primary_10_1038_s41467_024_54322_x crossref_primary_10_1155_2024_7402894 crossref_primary_10_1016_j_neuroimage_2017_07_019 crossref_primary_10_1126_science_abq2591 crossref_primary_10_1016_j_neuroimage_2016_10_005 crossref_primary_10_1002_hbm_24841 crossref_primary_10_1016_j_neuroimage_2021_118683 crossref_primary_10_1016_j_nicl_2017_09_025 crossref_primary_10_1093_cercor_bhab143 crossref_primary_10_1111_ejn_15936 crossref_primary_10_1007_s41543_018_0014_0 crossref_primary_10_1097_WNR_0000000000001444 crossref_primary_10_1016_j_neuroimage_2017_01_075 crossref_primary_10_5114_hpr_2020_94720 crossref_primary_10_1007_s00429_021_02382_w crossref_primary_10_1152_jn_00619_2018 crossref_primary_10_1016_j_neuroimage_2020_117167 crossref_primary_10_1371_journal_pone_0258992 crossref_primary_10_1016_j_neuroimage_2021_118533 crossref_primary_10_1038_s41583_022_00570_z crossref_primary_10_1016_j_neurobiolaging_2024_11_010 crossref_primary_10_1093_cercor_bhac234 crossref_primary_10_1093_cercor_bhab024 crossref_primary_10_1038_s41593_020_00726_z crossref_primary_10_1007_s11427_019_9556_4 crossref_primary_10_1016_j_ijpsycho_2018_03_014 crossref_primary_10_1093_cercor_bhaa063 crossref_primary_10_1002_hbm_24873 crossref_primary_10_1016_j_bpsgos_2024_100370 crossref_primary_10_1016_j_neuroimage_2018_01_003 crossref_primary_10_1016_j_neuroimage_2018_09_042 crossref_primary_10_3389_fnsys_2018_00068 crossref_primary_10_1016_j_neuroimage_2017_01_060 crossref_primary_10_3389_fninf_2019_00032 crossref_primary_10_1016_j_neuroimage_2021_118301 crossref_primary_10_1016_j_neuroimage_2021_118543 crossref_primary_10_1002_hbm_24866 crossref_primary_10_1089_brain_2016_0452 crossref_primary_10_1111_mbe_12168 crossref_primary_10_1016_j_cortex_2017_12_017 crossref_primary_10_1016_j_neuroimage_2019_116036 crossref_primary_10_1016_j_dcn_2021_100969 crossref_primary_10_1016_j_neuroimage_2018_08_007 crossref_primary_10_1016_j_tics_2022_11_005 crossref_primary_10_1038_srep32573 crossref_primary_10_1371_journal_pone_0213861 crossref_primary_10_1038_s41380_024_02647_w crossref_primary_10_7554_eLife_20178 crossref_primary_10_1073_pnas_1606309113 crossref_primary_10_1016_j_neuroimage_2020_117029 crossref_primary_10_1002_hbm_24937 crossref_primary_10_1162_jocn_a_01405 crossref_primary_10_1016_j_neuroimage_2020_117024 crossref_primary_10_1080_23273798_2016_1242759 crossref_primary_10_1371_journal_pcbi_1012870 crossref_primary_10_3389_fnhum_2019_00289 crossref_primary_10_1093_cercor_bhac414 crossref_primary_10_1038_s41398_020_01088_7 crossref_primary_10_1093_cercor_bhaa115 crossref_primary_10_1177_0963721417698800 crossref_primary_10_1016_j_neuroimage_2021_117781 crossref_primary_10_1007_s00429_018_1786_y crossref_primary_10_1038_s42003_021_02483_6 crossref_primary_10_3390_brainsci13050705 crossref_primary_10_1038_nn_4361 crossref_primary_10_12677_AP_2021_111021 crossref_primary_10_1016_j_tics_2020_01_001 crossref_primary_10_1016_j_cortex_2016_11_017 crossref_primary_10_3389_fnagi_2017_00152 crossref_primary_10_1002_hbm_24807 crossref_primary_10_3389_fnagi_2017_00264 crossref_primary_10_1016_j_neuroimage_2018_02_067 crossref_primary_10_1016_j_neuroimage_2020_117131 crossref_primary_10_1176_appi_ajp_2018_17091020 crossref_primary_10_1016_j_neuron_2017_02_003 crossref_primary_10_1038_s41398_021_01284_z crossref_primary_10_1002_hbm_24924 crossref_primary_10_1093_cercor_bhaa242 crossref_primary_10_1016_j_neuroimage_2020_117491 crossref_primary_10_1016_j_neuropsychologia_2024_108815 crossref_primary_10_1038_s42003_020_01610_z crossref_primary_10_1093_cercor_bhaa366 crossref_primary_10_1017_S0033291720002391 crossref_primary_10_1016_j_brainres_2024_149265 crossref_primary_10_1016_j_nicl_2016_12_028 crossref_primary_10_1080_23273798_2016_1265658 crossref_primary_10_1016_j_neuroimage_2021_118849 crossref_primary_10_1016_j_neurobiolaging_2020_08_008 crossref_primary_10_3389_fnagi_2018_00362 crossref_primary_10_1038_s41467_021_22960_0 crossref_primary_10_1016_j_jmp_2016_06_008 crossref_primary_10_1002_hbm_24716 crossref_primary_10_1093_cercor_bhab101 crossref_primary_10_1002_hbm_23745 crossref_primary_10_1016_j_celrep_2022_111287 crossref_primary_10_3389_fnhum_2018_00090 crossref_primary_10_1016_j_psychres_2024_116040 crossref_primary_10_7554_eLife_81511 crossref_primary_10_1016_j_neuroimage_2022_118920 crossref_primary_10_1016_j_nicl_2019_101952 crossref_primary_10_3389_fpsyt_2023_999934 crossref_primary_10_1016_j_neuroscience_2023_08_017 crossref_primary_10_1093_cercor_bhy077 crossref_primary_10_3389_fnhum_2020_571070 crossref_primary_10_1038_s41467_018_04921_2 crossref_primary_10_1038_s41598_017_15865_w crossref_primary_10_1038_s41598_022_19477_x crossref_primary_10_1002_hbm_24821 crossref_primary_10_1016_j_neuroimage_2021_117893 crossref_primary_10_3389_fnhum_2019_00199 crossref_primary_10_1016_j_neuroimage_2020_117232 crossref_primary_10_1016_j_tics_2018_08_009 crossref_primary_10_1093_cercor_bhad537 crossref_primary_10_1002_hbm_23978 crossref_primary_10_1038_s41467_019_11353_z crossref_primary_10_1055_s_0036_1597573 crossref_primary_10_3389_fncom_2021_590019 crossref_primary_10_1093_cercor_bhac295 crossref_primary_10_1016_j_cortex_2016_12_002 crossref_primary_10_1093_cercor_bhac293 crossref_primary_10_1162_netn_a_00049 crossref_primary_10_1007_s00429_023_02711_1 crossref_primary_10_1016_j_jad_2025_01_019 crossref_primary_10_1016_j_neuron_2016_07_031 crossref_primary_10_1111_psyp_13194 crossref_primary_10_1192_bjp_208_6_599 crossref_primary_10_1007_s11065_017_9365_1 crossref_primary_10_1162_netn_a_00160 crossref_primary_10_1016_j_nic_2017_06_002 crossref_primary_10_1038_s41598_023_36812_y crossref_primary_10_1016_j_nic_2017_06_005 crossref_primary_10_1016_j_neuroimage_2021_118031 crossref_primary_10_3390_app14062343 crossref_primary_10_1109_TMI_2024_3392946 crossref_primary_10_1007_s00429_023_02723_x crossref_primary_10_1016_j_neuroimage_2019_116366 crossref_primary_10_1088_1741_2552_ab6d0b crossref_primary_10_1002_alz_70061 crossref_primary_10_1162_netn_a_00158 crossref_primary_10_1523_ENEURO_0512_19_2019 crossref_primary_10_1109_TNNLS_2021_3106299 crossref_primary_10_1002_hbm_26074 crossref_primary_10_1038_s41467_023_38972_x crossref_primary_10_1016_j_brs_2021_02_005 crossref_primary_10_1523_JNEUROSCI_1786_20_2020 crossref_primary_10_1016_j_ntt_2024_107338 crossref_primary_10_59324_ejtas_2025_3_2__26 crossref_primary_10_1038_srep41414 crossref_primary_10_1254_fpj_153_210 crossref_primary_10_1093_cercor_bhw227 crossref_primary_10_3389_fnhum_2017_00232 crossref_primary_10_1038_s41467_022_35197_2 crossref_primary_10_1093_scan_nsy067 crossref_primary_10_1016_j_cortex_2020_05_006 crossref_primary_10_1093_cercor_bhae007 crossref_primary_10_1016_j_clinph_2017_06_246 crossref_primary_10_1016_j_neunet_2024_106786 crossref_primary_10_1016_j_neuroimage_2019_116363 crossref_primary_10_1038_s41467_019_11113_z crossref_primary_10_3389_fnint_2020_00003 crossref_primary_10_1093_scan_nsz021 crossref_primary_10_3390_jcm11195838 crossref_primary_10_1038_nn_4354 crossref_primary_10_1016_j_neuron_2018_03_035 crossref_primary_10_1007_s11682_019_00239_9 crossref_primary_10_1016_j_cobeha_2021_02_023 crossref_primary_10_1016_j_neubiorev_2020_04_011 crossref_primary_10_1016_j_neuron_2025_02_009 crossref_primary_10_1523_JNEUROSCI_1601_22_2023 crossref_primary_10_1177_26331055221119443 crossref_primary_10_3389_fnimg_2022_834883 crossref_primary_10_1016_j_neulet_2020_134954 crossref_primary_10_1073_pnas_1900872116 crossref_primary_10_1007_s00406_018_0889_z crossref_primary_10_1016_j_neuroimage_2019_116370 crossref_primary_10_1016_j_neuroimage_2021_118252 crossref_primary_10_1080_23273798_2016_1251600 crossref_primary_10_1162_jocn_a_01945 crossref_primary_10_3389_fnagi_2020_00002 crossref_primary_10_1016_j_neuroimage_2019_116374 crossref_primary_10_1007_s00429_021_02249_0 crossref_primary_10_1016_j_cub_2017_08_075 crossref_primary_10_1162_netn_a_00136 crossref_primary_10_1016_j_mri_2019_05_031 crossref_primary_10_1002_dys_1798 crossref_primary_10_1016_j_neuroimage_2022_119418 crossref_primary_10_1089_brain_2018_0632 crossref_primary_10_1007_s10072_021_05062_z crossref_primary_10_3389_fnins_2018_00469 crossref_primary_10_1080_10400419_2019_1602461 crossref_primary_10_3389_fnagi_2021_758137 crossref_primary_10_1016_j_neuroimage_2021_118027 crossref_primary_10_1093_cercor_bhx217 crossref_primary_10_1016_j_neuron_2020_01_029 crossref_primary_10_1016_j_neuropsychologia_2022_108317 crossref_primary_10_1016_j_bbr_2017_08_003 crossref_primary_10_1002_hbm_26044 crossref_primary_10_1038_s41593_018_0263_5 crossref_primary_10_1016_j_neuroimage_2017_07_042 crossref_primary_10_1089_brain_2018_0587 crossref_primary_10_1093_brain_awy093 crossref_primary_10_1038_nn_4406 crossref_primary_10_1016_j_neuroimage_2018_09_059 crossref_primary_10_1111_ejn_15670 crossref_primary_10_2139_ssrn_3193411 crossref_primary_10_3389_fnhum_2022_875201 crossref_primary_10_1371_journal_pcbi_1005031 crossref_primary_10_1038_s41598_017_11109_z crossref_primary_10_7554_eLife_96944 crossref_primary_10_1152_jn_00174_2019 crossref_primary_10_1007_s00330_021_07825_w crossref_primary_10_1007_s00429_017_1578_9 crossref_primary_10_1016_j_neulet_2022_136513 crossref_primary_10_1093_cercor_bhad351 crossref_primary_10_1093_cercor_bhz301 crossref_primary_10_1007_s00429_023_02622_1 crossref_primary_10_1002_hbm_25189 crossref_primary_10_1016_j_cortex_2018_07_010 crossref_primary_10_1016_j_neucom_2020_04_161 crossref_primary_10_1162_netn_a_00072 crossref_primary_10_1016_j_bandl_2019_104727 crossref_primary_10_1093_brain_awac387 crossref_primary_10_1002_jnr_25282 crossref_primary_10_1007_s00429_022_02467_0 crossref_primary_10_1038_s41598_024_62098_9 crossref_primary_10_1093_cercor_bhy123 crossref_primary_10_1093_cercor_bhad486 crossref_primary_10_3389_fnins_2021_660187 crossref_primary_10_1016_j_psyneuen_2018_11_036 crossref_primary_10_1038_s42003_024_06969_x crossref_primary_10_1016_j_tics_2022_07_003 crossref_primary_10_1093_cercor_bhy242 crossref_primary_10_1007_s11682_017_9689_8 crossref_primary_10_1371_journal_pcbi_1005178 crossref_primary_10_3390_tomography9040100 crossref_primary_10_1016_j_neuropsychologia_2023_108708 crossref_primary_10_1016_j_neuroimage_2021_118693 crossref_primary_10_1038_sdata_2017_17 crossref_primary_10_1109_TNSRE_2018_2790359 crossref_primary_10_1007_s00429_017_1469_0 crossref_primary_10_1016_j_jpsychires_2020_03_013 crossref_primary_10_3389_fnhum_2019_00340 crossref_primary_10_1038_s41598_022_18543_8 crossref_primary_10_1016_j_neuroscience_2019_10_017 crossref_primary_10_1016_j_neuroimage_2017_05_004 crossref_primary_10_1016_j_drugalcdep_2021_109010 crossref_primary_10_1038_s41598_020_80346_6 crossref_primary_10_1016_j_brainres_2019_03_023 crossref_primary_10_1152_jn_00630_2019 crossref_primary_10_1016_j_neuroimage_2018_10_062 crossref_primary_10_1016_j_neuron_2023_05_029 crossref_primary_10_1016_j_bbr_2016_12_017 crossref_primary_10_7554_eLife_96944_4 crossref_primary_10_1523_JNEUROSCI_0217_18_2018 crossref_primary_10_1016_j_biopsycho_2018_03_005 crossref_primary_10_1007_s10548_019_00719_7 crossref_primary_10_1038_s41598_021_91853_5 crossref_primary_10_1038_s41598_019_42067_3 crossref_primary_10_1016_j_neuroimage_2020_116535 crossref_primary_10_1007_s00221_019_05595_y crossref_primary_10_1016_j_neuroimage_2019_07_008 crossref_primary_10_1093_sleep_zsy108 crossref_primary_10_7554_eLife_32992 crossref_primary_10_1162_imag_a_00486 crossref_primary_10_1016_j_neubiorev_2023_105259 crossref_primary_10_1371_journal_pbio_2007032 crossref_primary_10_1002_hbm_25264 crossref_primary_10_1016_j_neuroimage_2022_119595 crossref_primary_10_1016_j_neuroimage_2022_119476 crossref_primary_10_1109_JBHI_2021_3139701 crossref_primary_10_1016_j_intell_2022_101665 crossref_primary_10_1016_j_neuroimage_2022_119359 crossref_primary_10_1016_j_isci_2023_106845 crossref_primary_10_1016_j_neuron_2017_07_011 crossref_primary_10_3758_s13415_021_00870_4 crossref_primary_10_1038_s41593_019_0436_x crossref_primary_10_1016_j_media_2022_102366 crossref_primary_10_1162_imag_a_00015 crossref_primary_10_1007_s12264_022_00918_6 crossref_primary_10_1002_sim_10155 crossref_primary_10_1093_ijnp_pyx059 crossref_primary_10_1002_hbm_25178 crossref_primary_10_1016_j_neuroimage_2017_05_056 crossref_primary_10_1038_s41390_024_03240_1 crossref_primary_10_1186_s12868_020_00603_2 crossref_primary_10_1093_texcom_tgaa075 crossref_primary_10_3390_biomedicines11061647 crossref_primary_10_1109_MSP_2022_3155951 crossref_primary_10_1038_s41562_022_01371_1 crossref_primary_10_1249_MSS_0000000000002963 crossref_primary_10_1007_s00429_020_02205_4 crossref_primary_10_1109_TBME_2019_2958333 crossref_primary_10_1124_pharmrev_121_000508 crossref_primary_10_1002_hbm_24074 crossref_primary_10_1002_brb3_893 crossref_primary_10_1016_j_neuroimage_2023_120300 crossref_primary_10_1026_0033_3042_a000598 crossref_primary_10_1002_hbm_26498 crossref_primary_10_1109_TNSRE_2020_3007324 crossref_primary_10_1007_s12021_023_09630_w crossref_primary_10_1093_pnasnexus_pgad276 crossref_primary_10_3389_fnhum_2020_00237 crossref_primary_10_1016_j_neuroimage_2018_07_051 crossref_primary_10_1073_pnas_2005238117 crossref_primary_10_1016_j_neuroimage_2020_117706 crossref_primary_10_1080_15622975_2018_1441547 crossref_primary_10_1007_s40471_019_00222_4 crossref_primary_10_1152_jn_00108_2023 crossref_primary_10_1038_s41598_018_25089_1 crossref_primary_10_3389_fneur_2017_00346 crossref_primary_10_1016_j_pscychresns_2022_111545 crossref_primary_10_1109_ACCESS_2019_2907040 crossref_primary_10_3389_fnins_2018_00064 crossref_primary_10_1016_j_neuroimage_2023_120413 crossref_primary_10_1093_scan_nsw145 crossref_primary_10_1016_j_appet_2019_104480 crossref_primary_10_1038_s41467_017_01000_w crossref_primary_10_3389_fncom_2022_883660 crossref_primary_10_1073_pnas_1911240117 crossref_primary_10_1016_j_neuroimage_2020_116604 crossref_primary_10_1002_rrq_361 crossref_primary_10_3389_fnins_2020_596109 crossref_primary_10_1016_j_heares_2023_108696 crossref_primary_10_1111_ejn_15393 crossref_primary_10_1038_s41386_021_01065_8 crossref_primary_10_1002_hbm_25469 crossref_primary_10_1038_s41398_023_02642_9 crossref_primary_10_3389_fneur_2019_01242 crossref_primary_10_1162_imag_a_00440 crossref_primary_10_1016_j_schres_2024_03_036 crossref_primary_10_1038_s42003_024_06890_3 crossref_primary_10_1038_s41398_020_01103_x crossref_primary_10_1016_j_neuroimage_2020_116722 crossref_primary_10_1002_hbm_24247 crossref_primary_10_1002_hbm_26667 crossref_primary_10_1016_j_biopsych_2022_09_024 crossref_primary_10_1016_j_media_2022_102681 crossref_primary_10_1038_s41598_021_82681_8 crossref_primary_10_1038_s42003_023_05262_7 crossref_primary_10_1016_j_neuroimage_2022_119100 crossref_primary_10_1016_j_media_2023_102756 crossref_primary_10_1016_j_neuroimage_2022_119589 crossref_primary_10_1093_cercor_bhw347 crossref_primary_10_1016_j_tics_2018_03_003 crossref_primary_10_1002_hbm_24281 crossref_primary_10_1016_j_cortex_2024_04_006 crossref_primary_10_1016_j_imed_2022_06_002 crossref_primary_10_3389_fnbeh_2023_927389 crossref_primary_10_1016_j_neuroimage_2018_11_006 crossref_primary_10_1016_j_nic_2019_09_003 crossref_primary_10_1126_sciadv_ade6049 crossref_primary_10_1016_j_pnpbp_2018_08_031 crossref_primary_10_1007_s11920_022_01385_6 crossref_primary_10_1038_s42003_020_01472_5 crossref_primary_10_1016_j_neuroimage_2017_10_037 crossref_primary_10_1523_JNEUROSCI_2406_16_2017 crossref_primary_10_1080_23273798_2016_1227858 crossref_primary_10_1016_j_neuroimage_2020_116818 crossref_primary_10_1002_hbm_26691 crossref_primary_10_1038_s41598_023_38946_5 crossref_primary_10_1109_TCDS_2020_3031604 crossref_primary_10_3389_fnins_2018_00149 crossref_primary_10_1016_j_biopsych_2019_10_026 crossref_primary_10_1016_j_smhl_2022_100336 crossref_primary_10_1093_schbul_sbab086 crossref_primary_10_1002_aur_2865 crossref_primary_10_1016_j_neubiorev_2020_07_006 crossref_primary_10_1016_j_neuroimage_2017_04_052 |
Cites_doi | 10.1016/j.neuroimage.2013.05.033 10.1016/j.neuron.2014.05.014 10.1038/nn.3001 10.1038/nn2024 10.1093/cercor/bhm225 10.1152/jn.00338.2011 10.1073/pnas.0804546105 10.1523/JNEUROSCI.2180-11.2011 10.1073/pnas.1418198112 10.1016/S1361-8415(01)00036-6 10.1016/j.neuroimage.2014.03.034 10.1038/nn.4135 10.1073/pnas.0811879106 10.1126/science.1134239 10.1126/science.1116251 10.1016/j.neuroimage.2013.05.012 10.1523/JNEUROSCI.17-08-02859.1997 10.1109/TMI.2003.822821 10.1016/B978-0-12-396460-1.00016-0 10.1016/j.neuroimage.2013.05.057 10.1109/72.761722 10.1016/j.neuroimage.2014.05.069 10.1016/j.neuroimage.2013.05.039 10.1073/pnas.0905267106 10.1089/brain.2011.0008 10.1016/j.neuroimage.2013.05.041 10.1002/mrm.22361 10.1016/j.neuroimage.2014.07.051 10.1093/brain/123.1.74 10.1093/cercor/bhu303 10.1523/JNEUROSCI.3002-07.2007 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O 10.1098/rstb.2005.1640 10.1038/nrn3000 10.1152/jn.00499.2012 10.1146/annurev.physiol.66.082602.092845 10.1016/j.neuroimage.2013.04.127 10.1016/j.neuroimage.2013.11.046 10.1038/nrn893 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Association for the Advancement of Science Copyright © 2016, American Association for the Advancement of Science. Copyright © 2016, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2016 American Association for the Advancement of Science – notice: Copyright © 2016, American Association for the Advancement of Science. – notice: Copyright © 2016, American Association for the Advancement of Science |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
DOI | 10.1126/science.aad8127 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 220 |
ExternalDocumentID | PMC6309730 4014748961 27124457 10_1126_science_aad8127 24744202 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: U54 MH091657 – fundername: Wellcome Trust – fundername: NIMH NIH HHS grantid: 1U54MH091657 – fundername: Wellcome Trust grantid: WT104765MA – fundername: Wellcome Trust grantid: 098369/Z/12/Z – fundername: Medical Research Council grantid: MR/L009013/1 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYJJ ABBHK ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADQXQ ADUKH ADULT ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ASPBG AVWKF BKF BLC C45 C51 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ AAYXX ABCQX CITATION K-O CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c557t-d0fcf75b7a8f22b6e4a88fc327ba43030f84e6376fac13f338fe1ad6d60f70c93 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Aug 21 18:16:05 EDT 2025 Thu Sep 04 17:25:08 EDT 2025 Fri Jul 25 09:51:28 EDT 2025 Mon Jul 21 05:51:52 EDT 2025 Thu Apr 24 23:12:13 EDT 2025 Tue Jul 01 00:37:15 EDT 2025 Thu Jul 03 22:16:47 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6282 |
Language | English |
License | http://www.sciencemag.org/about/science-licenses-journal-article-reuse Copyright © 2016, American Association for the Advancement of Science. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c557t-d0fcf75b7a8f22b6e4a88fc327ba43030f84e6376fac13f338fe1ad6d60f70c93 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6309730 |
PMID | 27124457 |
PQID | 1779472572 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6309730 proquest_miscellaneous_1785736310 proquest_journals_1779472572 pubmed_primary_27124457 crossref_citationtrail_10_1126_science_aad8127 crossref_primary_10_1126_science_aad8127 jstor_primary_24744202 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-08 |
PublicationDateYYYYMMDD | 2016-04-08 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2016 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 Andrews T. J. (e_1_3_2_16_2) 1997; 17 |
References_xml | – ident: e_1_3_2_14_2 doi: 10.1016/j.neuroimage.2013.05.033 – ident: e_1_3_2_19_2 doi: 10.1016/j.neuron.2014.05.014 – ident: e_1_3_2_23_2 doi: 10.1038/nn.3001 – ident: e_1_3_2_4_2 doi: 10.1038/nn2024 – ident: e_1_3_2_15_2 doi: 10.1093/cercor/bhm225 – ident: e_1_3_2_11_2 doi: 10.1152/jn.00338.2011 – ident: e_1_3_2_7_2 doi: 10.1073/pnas.0804546105 – ident: e_1_3_2_38_2 doi: 10.1523/JNEUROSCI.2180-11.2011 – ident: e_1_3_2_39_2 doi: 10.1073/pnas.1418198112 – ident: e_1_3_2_2_2 doi: 10.1016/S1361-8415(01)00036-6 – ident: e_1_3_2_32_2 doi: 10.1016/j.neuroimage.2014.03.034 – ident: e_1_3_2_26_2 doi: 10.1038/nn.4135 – ident: e_1_3_2_36_2 doi: 10.1073/pnas.0811879106 – ident: e_1_3_2_6_2 doi: 10.1126/science.1134239 – ident: e_1_3_2_18_2 doi: 10.1126/science.1116251 – ident: e_1_3_2_30_2 doi: 10.1016/j.neuroimage.2013.05.012 – volume: 17 start-page: 2859 year: 1997 ident: e_1_3_2_16_2 article-title: Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.17-08-02859.1997 – ident: e_1_3_2_37_2 doi: 10.1109/TMI.2003.822821 – ident: e_1_3_2_40_2 doi: 10.1016/B978-0-12-396460-1.00016-0 – ident: e_1_3_2_29_2 doi: 10.1016/j.neuroimage.2013.05.057 – ident: e_1_3_2_35_2 doi: 10.1109/72.761722 – ident: e_1_3_2_20_2 doi: 10.1016/j.neuroimage.2014.05.069 – ident: e_1_3_2_28_2 doi: 10.1016/j.neuroimage.2013.05.039 – ident: e_1_3_2_12_2 doi: 10.1073/pnas.0905267106 – ident: e_1_3_2_22_2 doi: 10.1089/brain.2011.0008 – ident: e_1_3_2_13_2 doi: 10.1016/j.neuroimage.2013.05.041 – ident: e_1_3_2_31_2 doi: 10.1002/mrm.22361 – ident: e_1_3_2_34_2 doi: 10.1016/j.neuroimage.2014.07.051 – ident: e_1_3_2_17_2 doi: 10.1093/brain/123.1.74 – ident: e_1_3_2_24_2 doi: 10.1093/cercor/bhu303 – ident: e_1_3_2_5_2 doi: 10.1523/JNEUROSCI.3002-07.2007 – ident: e_1_3_2_25_2 doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O – ident: e_1_3_2_9_2 doi: 10.1098/rstb.2005.1640 – ident: e_1_3_2_8_2 doi: 10.1038/nrn3000 – ident: e_1_3_2_3_2 doi: 10.1152/jn.00499.2012 – ident: e_1_3_2_21_2 doi: 10.1146/annurev.physiol.66.082602.092845 – ident: e_1_3_2_27_2 doi: 10.1016/j.neuroimage.2013.04.127 – ident: e_1_3_2_33_2 doi: 10.1016/j.neuroimage.2013.11.046 – ident: e_1_3_2_10_2 doi: 10.1038/nrn893 |
SSID | ssj0009593 |
Score | 2.6538403 |
Snippet | When asked to perform the same task, different individuals exhibit markedly different patterns of brain activity. This variability is often attributed to... We all differ in how we perceive, think, and act. What drives individual differences in evoked brain activity? Tavor et al. applied computational models to... We all differ in how we perceive, think, and act. What drives individual differences in evoked brain activity? Tavor et al. applied computational models to... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 216 |
SubjectTerms | Brain Brain - physiology Brain Mapping - methods Humans Individual Differences Individuality Language Magnetic Resonance Imaging - methods NMR Nuclear magnetic resonance Task Performance and Analysis |
Title | Task-free MRI predicts individual differences in brain activity during task performance |
URI | https://www.jstor.org/stable/24744202 https://www.ncbi.nlm.nih.gov/pubmed/27124457 https://www.proquest.com/docview/1779472572 https://www.proquest.com/docview/1785736310 https://pubmed.ncbi.nlm.nih.gov/PMC6309730 |
Volume | 352 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqTki8IDYYFAYyEg9DVarEju3ssWNUHR8DbZ3YW-QktqhABbUpEvyR_E2cY8dxUYcYL1EUOx_K_Xw-n-9-h9DzivJCCBFHjGkdpYkmkczSItJlwVimiSq1SXB-d8anl-nrK3bV6_0KopbWdTEqf27NK_kfqcI1kKvJkr2BZP1D4QKcg3zhCBKG47_JWK4-R3qpYGien5p0_2puYjPmXZJVW__Exl0NC1MQouHPaEpGuBzFGh5j-IvbDILQYG3HPhiifnMnEKmPUhzbWII2tMDdFvgZZvK79Qx4N-37YZNyvRw29QI617gt2nbe1YP23p8L57t1XoqEN8EtmcfVrEuTuclXhprbESfbecsq69jUmSQxDbU5ZSSALSe2tJFXz3z7tBEUulQjKSswe0Q3Q7ZRAdPxRf7hZJK_PT17s9naGASwVE0NmY9Zje8QIRLWRzvj45PjybU00I5sKkjjat--YSfZUNlti6A_Y3kD42h2F91xqxo8thDdRT212EO3bJ3TH3to1_3oFT50NOcv7qGPHr0Y0Itb9OIOvThAL1zGDXpxi15s0YsNenGA3vvocvJq9nIauTIfUcmYqKMq1qUWrBASdAMpuEpllumSElHIFCysWGep4jARalkmVFOaaZXIilc81iIuj-g-6i8AqA8RTgqdKbBCVSUM9UQpNc9Saba6iam0cDRAo_an5qXjwDelWL7kzVqY8NxJIXdSGKBDf8M3S_9yfdf9Rkq-HwEwpCQmA3TQii13ymOVJwImQgHzJTQ_882g2s1-nVyor2vTJ2OCcliADdADK-Xu4cIY5gzeKjbk7zsY2vjNlsX8U0Mfz6mh6Iof_f2zHqPb3Tg-QP16uVZPwP6ui6cO1L8BxdfiYQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Task-free+MRI+predicts+individual+differences+in+brain+activity+during+task+performance&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Tavor%2C+I&rft.au=O+Parker+Jones&rft.au=Mars%2C+R+B&rft.au=Smith%2C+S+M&rft.date=2016-04-08&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=352&rft.issue=6282&rft.spage=216&rft_id=info:doi/10.1126%2Fscience.aad8127&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4014748961 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |