Task-free MRI predicts individual differences in brain activity during task performance

When asked to perform the same task, different individuals exhibit markedly different patterns of brain activity. This variability is often attributed to volatile factors, such as task strategy or compliance. We propose that individual differences in brain responses are, to a large degree, inherent...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 352; no. 6282; pp. 216 - 220
Main Authors Tavor, I., Jones, O. Parker, Mars, R. B., Smith, S. M., Behrens, T. E., Jbabdi, S.
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 08.04.2016
The American Association for the Advancement of Science
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.aad8127

Cover

Abstract When asked to perform the same task, different individuals exhibit markedly different patterns of brain activity. This variability is often attributed to volatile factors, such as task strategy or compliance. We propose that individual differences in brain responses are, to a large degree, inherent to the brain and can be predicted from task-independent measurements collected at rest. Using a large set of task conditions, spanning several behavioral domains, we train a simple model that relates task-independent measurements to task activity and evaluate the model by predicting task activation maps for unseen subjects using magnetic resonance imaging. Our model can accurately predict individual differences in brain activity and highlights a coupling between brain connectivity and function that can be captured at the level of individual subjects.
AbstractList We all differ in how we perceive, think, and act. What drives individual differences in evoked brain activity? Tavor et al. applied computational models to functional magnetic resonance imaging (fMRI) data from the Human Connectome Project. Brain activity in the "resting" state when subjects were not performing any explicit task predicted differences in fMRI activation across a range of cognitive paradigms. This suggests that individual differences in many cognitive tasks are a stable trait marker. Resting-state functional connectivity thus already contains the repertoire that is then expressed during task-based fMRI. Science, this issue p. 216 When asked to perform the same task, different individuals exhibit markedly different patterns of brain activity. This variability is often attributed to volatile factors, such as task strategy or compliance. We propose that individual differences in brain responses are, to a large degree, inherent to the brain and can be predicted from task-independent measurements collected at rest. Using a large set of task conditions, spanning several behavioral domains, we train a simple model that relates task-independent measurements to task activity and evaluate the model by predicting task activation maps for unseen subjects using magnetic resonance imaging. Our model can accurately predict individual differences in brain activity and highlights a coupling between brain connectivity and function that can be captured at the level of individual subjects.
When asked to perform the same task, different individuals exhibit markedly different patterns of brain activity. This variability is often attributed to volatile factors such as task strategy or compliance. We propose that individual differences in brain responses are, to a large degree, inherent to the brain, and can be predicted from task-independent measurements collected at rest. Using a large set of task conditions, spanning several behavioral domains, we train a simple model that relates task-independent measurements to task activity and evaluate the model by predicting task activation maps for unseen subjects. Our model can accurately predict individual differences in brain activity highlighting a coupling between brain connectivity and function that can be captured at the level of individual subjects.
We all differ in how we perceive, think, and act. What drives individual differences in evoked brain activity? Tavor et al. applied computational models to functional magnetic resonance imaging (fMRI) data from the Human Connectome Project. Brain activity in the “resting” state when subjects were not performing any explicit task predicted differences in fMRI activation across a range of cognitive paradigms. This suggests that individual differences in many cognitive tasks are a stable trait marker. Resting-state functional connectivity thus already contains the repertoire that is then expressed during task-based fMRI. Science , this issue p. 216 Brain activation when performing activities can largely be understood from its distinctive anatomy and connectivity. When asked to perform the same task, different individuals exhibit markedly different patterns of brain activity. This variability is often attributed to volatile factors, such as task strategy or compliance. We propose that individual differences in brain responses are, to a large degree, inherent to the brain and can be predicted from task-independent measurements collected at rest. Using a large set of task conditions, spanning several behavioral domains, we train a simple model that relates task-independent measurements to task activity and evaluate the model by predicting task activation maps for unseen subjects using magnetic resonance imaging. Our model can accurately predict individual differences in brain activity and highlights a coupling between brain connectivity and function that can be captured at the level of individual subjects.
When asked to perform the same task, different individuals exhibit markedly different patterns of brain activity. This variability is often attributed to volatile factors, such as task strategy or compliance. We propose that individual differences in brain responses are, to a large degree, inherent to the brain and can be predicted from task-independent measurements collected at rest. Using a large set of task conditions, spanning several behavioral domains, we train a simple model that relates task-independent measurements to task activity and evaluate the model by predicting task activation maps for unseen subjects using magnetic resonance imaging. Our model can accurately predict individual differences in brain activity and highlights a coupling between brain connectivity and function that can be captured at the level of individual subjects.When asked to perform the same task, different individuals exhibit markedly different patterns of brain activity. This variability is often attributed to volatile factors, such as task strategy or compliance. We propose that individual differences in brain responses are, to a large degree, inherent to the brain and can be predicted from task-independent measurements collected at rest. Using a large set of task conditions, spanning several behavioral domains, we train a simple model that relates task-independent measurements to task activity and evaluate the model by predicting task activation maps for unseen subjects using magnetic resonance imaging. Our model can accurately predict individual differences in brain activity and highlights a coupling between brain connectivity and function that can be captured at the level of individual subjects.
When asked to perform the same task, different individuals exhibit markedly different patterns of brain activity. This variability is often attributed to volatile factors, such as task strategy or compliance. We propose that individual differences in brain responses are, to a large degree, inherent to the brain and can be predicted from task-independent measurements collected at rest. Using a large set of task conditions, spanning several behavioral domains, we train a simple model that relates task-independent measurements to task activity and evaluate the model by predicting task activation maps for unseen subjects using magnetic resonance imaging. Our model can accurately predict individual differences in brain activity and highlights a coupling between brain connectivity and function that can be captured at the level of individual subjects.
Author Mars, R. B.
Behrens, T. E.
Jones, O. Parker
Smith, S. M.
Tavor, I.
Jbabdi, S.
AuthorAffiliation 3 Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands
1 Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, UK
4 Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N 3BG, UK
2 Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, 52621, Israel
AuthorAffiliation_xml – name: 2 Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, 52621, Israel
– name: 3 Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands
– name: 4 Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N 3BG, UK
– name: 1 Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, UK
Author_xml – sequence: 1
  givenname: I.
  surname: Tavor
  fullname: Tavor, I.
– sequence: 2
  givenname: O. Parker
  surname: Jones
  fullname: Jones, O. Parker
– sequence: 3
  givenname: R. B.
  surname: Mars
  fullname: Mars, R. B.
– sequence: 4
  givenname: S. M.
  surname: Smith
  fullname: Smith, S. M.
– sequence: 5
  givenname: T. E.
  surname: Behrens
  fullname: Behrens, T. E.
– sequence: 6
  givenname: S.
  surname: Jbabdi
  fullname: Jbabdi, S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27124457$$D View this record in MEDLINE/PubMed
BookMark eNp1kctrFTEUxoNU7O3VtStlwI2bafOaZGYjSPFRqAhScRnO5FFznZtck0yh_70Z7q2tBTcJ5Py-73wn5wQdhRgsQi8JPiWEirOsvQ3angKYnlD5BK0IHrp2oJgdoRXGTLQ9lt0xOsl5g3GtDewZOqaSUM47uUI_riD_al2ytvny7aLZJWu8Lrnxwfgbb2aYGuOds2lpszw3Y4J6gi61Xm4bMycfrptSbZqdTS6mLVT0OXrqYMr2xeFeo-8fP1ydf24vv366OH9_2equk6U12Gknu1FC7ygdheXQ904zKkfgDDPsem4Fk8KBJswx1jtLwAgjsJNYD2yN3u19d_O4tUbbUBJMapf8FtKtiuDVv5Xgf6rreKMEw4OsHdbo7cEgxd-zzUVtfdZ2miDYOGdFZN9JJhhZ0DeP0E2cU6jjVUoOXNJO0kq9fpjob5S7P69Atwd0ijkn65T2BYqPS0A_KYLVslt12K067Lbqzh7p7qz_r3i1V2xyiek-CZecU0zZH9QTtPQ
CODEN SCIEAS
CitedBy_id crossref_primary_10_1038_s41598_022_20866_5
crossref_primary_10_17116_neiro20228604125
crossref_primary_10_1162_imag_a_00408
crossref_primary_10_1002_hbm_26764
crossref_primary_10_1016_j_intell_2017_04_008
crossref_primary_10_1002_hbm_24222
crossref_primary_10_1016_j_pscychresns_2018_06_004
crossref_primary_10_1016_j_jneumeth_2017_09_006
crossref_primary_10_1093_sleep_zsz033
crossref_primary_10_1016_j_neuroimage_2021_118836
crossref_primary_10_1080_23273798_2020_1828946
crossref_primary_10_1093_cercor_bhab526
crossref_primary_10_1142_S0129065720500616
crossref_primary_10_1002_hbm_24699
crossref_primary_10_12677_AP_2017_73042
crossref_primary_10_1002_hup_2627
crossref_primary_10_1016_j_cobeha_2021_05_003
crossref_primary_10_1016_j_bandl_2020_104893
crossref_primary_10_1016_j_cobeha_2021_05_002
crossref_primary_10_1016_j_neuroimage_2016_08_032
crossref_primary_10_1016_j_cobeha_2021_05_004
crossref_primary_10_1016_j_neuroimage_2023_120360
crossref_primary_10_1038_s41598_022_08510_8
crossref_primary_10_3389_fnbeh_2020_617402
crossref_primary_10_1002_hbm_25662
crossref_primary_10_1038_s41598_019_42090_4
crossref_primary_10_1016_j_nicl_2021_102558
crossref_primary_10_1371_journal_pbio_3002732
crossref_primary_10_7554_eLife_66917
crossref_primary_10_1016_j_media_2024_103297
crossref_primary_10_1016_j_dcn_2024_101355
crossref_primary_10_1016_j_pneurobio_2022_102230
crossref_primary_10_1016_j_neuroimage_2020_117694
crossref_primary_10_1002_hbm_25534
crossref_primary_10_1002_hbm_24328
crossref_primary_10_1002_hbm_24329
crossref_primary_10_1007_s00429_023_02708_w
crossref_primary_10_1016_j_neuroimage_2017_11_043
crossref_primary_10_1038_s41598_022_20309_1
crossref_primary_10_1177_1073858419860115
crossref_primary_10_3389_fnins_2019_00685
crossref_primary_10_3389_fnins_2022_909999
crossref_primary_10_1016_j_neuroimage_2020_117328
crossref_primary_10_1038_s41467_023_44087_0
crossref_primary_10_1016_j_neuroimage_2018_12_001
crossref_primary_10_1162_jocn_a_02116
crossref_primary_10_1016_j_colsurfb_2019_110452
crossref_primary_10_1016_j_neuroimage_2017_12_089
crossref_primary_10_1177_1545968320981953
crossref_primary_10_1016_j_neuroimage_2020_116593
crossref_primary_10_1523_JNEUROSCI_1713_20_2021
crossref_primary_10_1017_S0033291722002665
crossref_primary_10_1177_10738584221130974
crossref_primary_10_7554_eLife_40765
crossref_primary_10_1016_j_neuroimage_2021_117847
crossref_primary_10_1073_pnas_1615269114
crossref_primary_10_3389_fnins_2020_569657
crossref_primary_10_1016_j_neuroimage_2020_117317
crossref_primary_10_1038_nature18933
crossref_primary_10_1093_cercor_bhaa349
crossref_primary_10_1016_j_ddmod_2017_05_001
crossref_primary_10_1016_j_schres_2024_04_009
crossref_primary_10_1002_hbm_25436
crossref_primary_10_1016_j_brs_2021_05_013
crossref_primary_10_1093_cercor_bhaa221
crossref_primary_10_1089_brain_2017_0572
crossref_primary_10_1073_pnas_1902932116
crossref_primary_10_1371_journal_pone_0182759
crossref_primary_10_1109_ACCESS_2019_2894694
crossref_primary_10_2967_jnumed_118_212795
crossref_primary_10_1016_j_neuroimage_2021_117823
crossref_primary_10_1177_1073858416667716
crossref_primary_10_3389_fpsyg_2018_02778
crossref_primary_10_1002_pbc_27470
crossref_primary_10_1073_pnas_2320251121
crossref_primary_10_1073_pnas_1815321116
crossref_primary_10_1016_j_nicl_2018_06_026
crossref_primary_10_1016_j_neuroimage_2017_12_067
crossref_primary_10_1002_hbm_23687
crossref_primary_10_1523_JNEUROSCI_0856_23_2024
crossref_primary_10_1007_s00221_017_5011_7
crossref_primary_10_1016_j_psychres_2020_112938
crossref_primary_10_1016_j_neuroimage_2022_119279
crossref_primary_10_1016_j_neuroimage_2018_03_015
crossref_primary_10_1523_ENEURO_0101_20_2020
crossref_primary_10_1016_j_neuroimage_2019_06_063
crossref_primary_10_1016_j_neuroscience_2021_12_008
crossref_primary_10_1371_journal_pone_0319746
crossref_primary_10_1038_s41467_024_52371_w
crossref_primary_10_1002_hbm_23675
crossref_primary_10_1016_j_dcn_2024_101439
crossref_primary_10_1002_hbm_23439
crossref_primary_10_1016_j_neuroimage_2022_119391
crossref_primary_10_1038_s41467_020_19630_y
crossref_primary_10_1152_jn_00753_2019
crossref_primary_10_1016_j_neuroimage_2023_120213
crossref_primary_10_1016_j_neuroimage_2018_03_049
crossref_primary_10_1109_TNSE_2021_3102667
crossref_primary_10_1088_2632_072X_ac266c
crossref_primary_10_1016_j_neubiorev_2023_105080
crossref_primary_10_1098_rstb_2015_0361
crossref_primary_10_1007_s00429_022_02603_w
crossref_primary_10_1111_biom_13420
crossref_primary_10_1016_j_jneumeth_2019_108359
crossref_primary_10_3390_brainsci13010008
crossref_primary_10_3389_fpsyg_2023_1224911
crossref_primary_10_1016_j_neuron_2024_12_008
crossref_primary_10_1016_j_media_2022_102507
crossref_primary_10_1038_s41598_021_88773_9
crossref_primary_10_1016_j_intell_2021_101545
crossref_primary_10_1016_j_jneumeth_2019_108343
crossref_primary_10_1016_j_neuroimage_2018_03_032
crossref_primary_10_1016_j_pnpbp_2024_111199
crossref_primary_10_3390_s24123894
crossref_primary_10_1016_j_neuroimage_2018_04_077
crossref_primary_10_1016_j_neuroimage_2017_12_031
crossref_primary_10_1016_j_neuroimage_2019_01_068
crossref_primary_10_1002_hbm_23699
crossref_primary_10_1002_hbm_25878
crossref_primary_10_1016_j_neuroimage_2019_01_069
crossref_primary_10_1093_cercor_bhx175
crossref_primary_10_1016_j_neuroscience_2017_01_042
crossref_primary_10_1016_j_bbr_2020_112678
crossref_primary_10_3390_e24020270
crossref_primary_10_1016_j_biopsych_2021_02_002
crossref_primary_10_3724_SP_J_1042_2018_01186
crossref_primary_10_1093_cercor_bhx179
crossref_primary_10_1038_s41598_017_09250_w
crossref_primary_10_1371_journal_pone_0207385
crossref_primary_10_1016_j_plrev_2025_02_001
crossref_primary_10_1016_j_tins_2022_03_011
crossref_primary_10_1016_j_intell_2017_10_002
crossref_primary_10_1038_s42003_021_02395_5
crossref_primary_10_1002_hbm_25822
crossref_primary_10_1016_j_neuroimage_2021_118795
crossref_primary_10_1371_journal_pone_0162018
crossref_primary_10_1016_j_bbr_2017_06_039
crossref_primary_10_1016_j_dcn_2017_11_011
crossref_primary_10_1177_10738584221081752
crossref_primary_10_1038_s41467_020_18823_9
crossref_primary_10_1111_jon_13136
crossref_primary_10_1038_s41467_024_54322_x
crossref_primary_10_1155_2024_7402894
crossref_primary_10_1016_j_neuroimage_2017_07_019
crossref_primary_10_1126_science_abq2591
crossref_primary_10_1016_j_neuroimage_2016_10_005
crossref_primary_10_1002_hbm_24841
crossref_primary_10_1016_j_neuroimage_2021_118683
crossref_primary_10_1016_j_nicl_2017_09_025
crossref_primary_10_1093_cercor_bhab143
crossref_primary_10_1111_ejn_15936
crossref_primary_10_1007_s41543_018_0014_0
crossref_primary_10_1097_WNR_0000000000001444
crossref_primary_10_1016_j_neuroimage_2017_01_075
crossref_primary_10_5114_hpr_2020_94720
crossref_primary_10_1007_s00429_021_02382_w
crossref_primary_10_1152_jn_00619_2018
crossref_primary_10_1016_j_neuroimage_2020_117167
crossref_primary_10_1371_journal_pone_0258992
crossref_primary_10_1016_j_neuroimage_2021_118533
crossref_primary_10_1038_s41583_022_00570_z
crossref_primary_10_1016_j_neurobiolaging_2024_11_010
crossref_primary_10_1093_cercor_bhac234
crossref_primary_10_1093_cercor_bhab024
crossref_primary_10_1038_s41593_020_00726_z
crossref_primary_10_1007_s11427_019_9556_4
crossref_primary_10_1016_j_ijpsycho_2018_03_014
crossref_primary_10_1093_cercor_bhaa063
crossref_primary_10_1002_hbm_24873
crossref_primary_10_1016_j_bpsgos_2024_100370
crossref_primary_10_1016_j_neuroimage_2018_01_003
crossref_primary_10_1016_j_neuroimage_2018_09_042
crossref_primary_10_3389_fnsys_2018_00068
crossref_primary_10_1016_j_neuroimage_2017_01_060
crossref_primary_10_3389_fninf_2019_00032
crossref_primary_10_1016_j_neuroimage_2021_118301
crossref_primary_10_1016_j_neuroimage_2021_118543
crossref_primary_10_1002_hbm_24866
crossref_primary_10_1089_brain_2016_0452
crossref_primary_10_1111_mbe_12168
crossref_primary_10_1016_j_cortex_2017_12_017
crossref_primary_10_1016_j_neuroimage_2019_116036
crossref_primary_10_1016_j_dcn_2021_100969
crossref_primary_10_1016_j_neuroimage_2018_08_007
crossref_primary_10_1016_j_tics_2022_11_005
crossref_primary_10_1038_srep32573
crossref_primary_10_1371_journal_pone_0213861
crossref_primary_10_1038_s41380_024_02647_w
crossref_primary_10_7554_eLife_20178
crossref_primary_10_1073_pnas_1606309113
crossref_primary_10_1016_j_neuroimage_2020_117029
crossref_primary_10_1002_hbm_24937
crossref_primary_10_1162_jocn_a_01405
crossref_primary_10_1016_j_neuroimage_2020_117024
crossref_primary_10_1080_23273798_2016_1242759
crossref_primary_10_1371_journal_pcbi_1012870
crossref_primary_10_3389_fnhum_2019_00289
crossref_primary_10_1093_cercor_bhac414
crossref_primary_10_1038_s41398_020_01088_7
crossref_primary_10_1093_cercor_bhaa115
crossref_primary_10_1177_0963721417698800
crossref_primary_10_1016_j_neuroimage_2021_117781
crossref_primary_10_1007_s00429_018_1786_y
crossref_primary_10_1038_s42003_021_02483_6
crossref_primary_10_3390_brainsci13050705
crossref_primary_10_1038_nn_4361
crossref_primary_10_12677_AP_2021_111021
crossref_primary_10_1016_j_tics_2020_01_001
crossref_primary_10_1016_j_cortex_2016_11_017
crossref_primary_10_3389_fnagi_2017_00152
crossref_primary_10_1002_hbm_24807
crossref_primary_10_3389_fnagi_2017_00264
crossref_primary_10_1016_j_neuroimage_2018_02_067
crossref_primary_10_1016_j_neuroimage_2020_117131
crossref_primary_10_1176_appi_ajp_2018_17091020
crossref_primary_10_1016_j_neuron_2017_02_003
crossref_primary_10_1038_s41398_021_01284_z
crossref_primary_10_1002_hbm_24924
crossref_primary_10_1093_cercor_bhaa242
crossref_primary_10_1016_j_neuroimage_2020_117491
crossref_primary_10_1016_j_neuropsychologia_2024_108815
crossref_primary_10_1038_s42003_020_01610_z
crossref_primary_10_1093_cercor_bhaa366
crossref_primary_10_1017_S0033291720002391
crossref_primary_10_1016_j_brainres_2024_149265
crossref_primary_10_1016_j_nicl_2016_12_028
crossref_primary_10_1080_23273798_2016_1265658
crossref_primary_10_1016_j_neuroimage_2021_118849
crossref_primary_10_1016_j_neurobiolaging_2020_08_008
crossref_primary_10_3389_fnagi_2018_00362
crossref_primary_10_1038_s41467_021_22960_0
crossref_primary_10_1016_j_jmp_2016_06_008
crossref_primary_10_1002_hbm_24716
crossref_primary_10_1093_cercor_bhab101
crossref_primary_10_1002_hbm_23745
crossref_primary_10_1016_j_celrep_2022_111287
crossref_primary_10_3389_fnhum_2018_00090
crossref_primary_10_1016_j_psychres_2024_116040
crossref_primary_10_7554_eLife_81511
crossref_primary_10_1016_j_neuroimage_2022_118920
crossref_primary_10_1016_j_nicl_2019_101952
crossref_primary_10_3389_fpsyt_2023_999934
crossref_primary_10_1016_j_neuroscience_2023_08_017
crossref_primary_10_1093_cercor_bhy077
crossref_primary_10_3389_fnhum_2020_571070
crossref_primary_10_1038_s41467_018_04921_2
crossref_primary_10_1038_s41598_017_15865_w
crossref_primary_10_1038_s41598_022_19477_x
crossref_primary_10_1002_hbm_24821
crossref_primary_10_1016_j_neuroimage_2021_117893
crossref_primary_10_3389_fnhum_2019_00199
crossref_primary_10_1016_j_neuroimage_2020_117232
crossref_primary_10_1016_j_tics_2018_08_009
crossref_primary_10_1093_cercor_bhad537
crossref_primary_10_1002_hbm_23978
crossref_primary_10_1038_s41467_019_11353_z
crossref_primary_10_1055_s_0036_1597573
crossref_primary_10_3389_fncom_2021_590019
crossref_primary_10_1093_cercor_bhac295
crossref_primary_10_1016_j_cortex_2016_12_002
crossref_primary_10_1093_cercor_bhac293
crossref_primary_10_1162_netn_a_00049
crossref_primary_10_1007_s00429_023_02711_1
crossref_primary_10_1016_j_jad_2025_01_019
crossref_primary_10_1016_j_neuron_2016_07_031
crossref_primary_10_1111_psyp_13194
crossref_primary_10_1192_bjp_208_6_599
crossref_primary_10_1007_s11065_017_9365_1
crossref_primary_10_1162_netn_a_00160
crossref_primary_10_1016_j_nic_2017_06_002
crossref_primary_10_1038_s41598_023_36812_y
crossref_primary_10_1016_j_nic_2017_06_005
crossref_primary_10_1016_j_neuroimage_2021_118031
crossref_primary_10_3390_app14062343
crossref_primary_10_1109_TMI_2024_3392946
crossref_primary_10_1007_s00429_023_02723_x
crossref_primary_10_1016_j_neuroimage_2019_116366
crossref_primary_10_1088_1741_2552_ab6d0b
crossref_primary_10_1002_alz_70061
crossref_primary_10_1162_netn_a_00158
crossref_primary_10_1523_ENEURO_0512_19_2019
crossref_primary_10_1109_TNNLS_2021_3106299
crossref_primary_10_1002_hbm_26074
crossref_primary_10_1038_s41467_023_38972_x
crossref_primary_10_1016_j_brs_2021_02_005
crossref_primary_10_1523_JNEUROSCI_1786_20_2020
crossref_primary_10_1016_j_ntt_2024_107338
crossref_primary_10_59324_ejtas_2025_3_2__26
crossref_primary_10_1038_srep41414
crossref_primary_10_1254_fpj_153_210
crossref_primary_10_1093_cercor_bhw227
crossref_primary_10_3389_fnhum_2017_00232
crossref_primary_10_1038_s41467_022_35197_2
crossref_primary_10_1093_scan_nsy067
crossref_primary_10_1016_j_cortex_2020_05_006
crossref_primary_10_1093_cercor_bhae007
crossref_primary_10_1016_j_clinph_2017_06_246
crossref_primary_10_1016_j_neunet_2024_106786
crossref_primary_10_1016_j_neuroimage_2019_116363
crossref_primary_10_1038_s41467_019_11113_z
crossref_primary_10_3389_fnint_2020_00003
crossref_primary_10_1093_scan_nsz021
crossref_primary_10_3390_jcm11195838
crossref_primary_10_1038_nn_4354
crossref_primary_10_1016_j_neuron_2018_03_035
crossref_primary_10_1007_s11682_019_00239_9
crossref_primary_10_1016_j_cobeha_2021_02_023
crossref_primary_10_1016_j_neubiorev_2020_04_011
crossref_primary_10_1016_j_neuron_2025_02_009
crossref_primary_10_1523_JNEUROSCI_1601_22_2023
crossref_primary_10_1177_26331055221119443
crossref_primary_10_3389_fnimg_2022_834883
crossref_primary_10_1016_j_neulet_2020_134954
crossref_primary_10_1073_pnas_1900872116
crossref_primary_10_1007_s00406_018_0889_z
crossref_primary_10_1016_j_neuroimage_2019_116370
crossref_primary_10_1016_j_neuroimage_2021_118252
crossref_primary_10_1080_23273798_2016_1251600
crossref_primary_10_1162_jocn_a_01945
crossref_primary_10_3389_fnagi_2020_00002
crossref_primary_10_1016_j_neuroimage_2019_116374
crossref_primary_10_1007_s00429_021_02249_0
crossref_primary_10_1016_j_cub_2017_08_075
crossref_primary_10_1162_netn_a_00136
crossref_primary_10_1016_j_mri_2019_05_031
crossref_primary_10_1002_dys_1798
crossref_primary_10_1016_j_neuroimage_2022_119418
crossref_primary_10_1089_brain_2018_0632
crossref_primary_10_1007_s10072_021_05062_z
crossref_primary_10_3389_fnins_2018_00469
crossref_primary_10_1080_10400419_2019_1602461
crossref_primary_10_3389_fnagi_2021_758137
crossref_primary_10_1016_j_neuroimage_2021_118027
crossref_primary_10_1093_cercor_bhx217
crossref_primary_10_1016_j_neuron_2020_01_029
crossref_primary_10_1016_j_neuropsychologia_2022_108317
crossref_primary_10_1016_j_bbr_2017_08_003
crossref_primary_10_1002_hbm_26044
crossref_primary_10_1038_s41593_018_0263_5
crossref_primary_10_1016_j_neuroimage_2017_07_042
crossref_primary_10_1089_brain_2018_0587
crossref_primary_10_1093_brain_awy093
crossref_primary_10_1038_nn_4406
crossref_primary_10_1016_j_neuroimage_2018_09_059
crossref_primary_10_1111_ejn_15670
crossref_primary_10_2139_ssrn_3193411
crossref_primary_10_3389_fnhum_2022_875201
crossref_primary_10_1371_journal_pcbi_1005031
crossref_primary_10_1038_s41598_017_11109_z
crossref_primary_10_7554_eLife_96944
crossref_primary_10_1152_jn_00174_2019
crossref_primary_10_1007_s00330_021_07825_w
crossref_primary_10_1007_s00429_017_1578_9
crossref_primary_10_1016_j_neulet_2022_136513
crossref_primary_10_1093_cercor_bhad351
crossref_primary_10_1093_cercor_bhz301
crossref_primary_10_1007_s00429_023_02622_1
crossref_primary_10_1002_hbm_25189
crossref_primary_10_1016_j_cortex_2018_07_010
crossref_primary_10_1016_j_neucom_2020_04_161
crossref_primary_10_1162_netn_a_00072
crossref_primary_10_1016_j_bandl_2019_104727
crossref_primary_10_1093_brain_awac387
crossref_primary_10_1002_jnr_25282
crossref_primary_10_1007_s00429_022_02467_0
crossref_primary_10_1038_s41598_024_62098_9
crossref_primary_10_1093_cercor_bhy123
crossref_primary_10_1093_cercor_bhad486
crossref_primary_10_3389_fnins_2021_660187
crossref_primary_10_1016_j_psyneuen_2018_11_036
crossref_primary_10_1038_s42003_024_06969_x
crossref_primary_10_1016_j_tics_2022_07_003
crossref_primary_10_1093_cercor_bhy242
crossref_primary_10_1007_s11682_017_9689_8
crossref_primary_10_1371_journal_pcbi_1005178
crossref_primary_10_3390_tomography9040100
crossref_primary_10_1016_j_neuropsychologia_2023_108708
crossref_primary_10_1016_j_neuroimage_2021_118693
crossref_primary_10_1038_sdata_2017_17
crossref_primary_10_1109_TNSRE_2018_2790359
crossref_primary_10_1007_s00429_017_1469_0
crossref_primary_10_1016_j_jpsychires_2020_03_013
crossref_primary_10_3389_fnhum_2019_00340
crossref_primary_10_1038_s41598_022_18543_8
crossref_primary_10_1016_j_neuroscience_2019_10_017
crossref_primary_10_1016_j_neuroimage_2017_05_004
crossref_primary_10_1016_j_drugalcdep_2021_109010
crossref_primary_10_1038_s41598_020_80346_6
crossref_primary_10_1016_j_brainres_2019_03_023
crossref_primary_10_1152_jn_00630_2019
crossref_primary_10_1016_j_neuroimage_2018_10_062
crossref_primary_10_1016_j_neuron_2023_05_029
crossref_primary_10_1016_j_bbr_2016_12_017
crossref_primary_10_7554_eLife_96944_4
crossref_primary_10_1523_JNEUROSCI_0217_18_2018
crossref_primary_10_1016_j_biopsycho_2018_03_005
crossref_primary_10_1007_s10548_019_00719_7
crossref_primary_10_1038_s41598_021_91853_5
crossref_primary_10_1038_s41598_019_42067_3
crossref_primary_10_1016_j_neuroimage_2020_116535
crossref_primary_10_1007_s00221_019_05595_y
crossref_primary_10_1016_j_neuroimage_2019_07_008
crossref_primary_10_1093_sleep_zsy108
crossref_primary_10_7554_eLife_32992
crossref_primary_10_1162_imag_a_00486
crossref_primary_10_1016_j_neubiorev_2023_105259
crossref_primary_10_1371_journal_pbio_2007032
crossref_primary_10_1002_hbm_25264
crossref_primary_10_1016_j_neuroimage_2022_119595
crossref_primary_10_1016_j_neuroimage_2022_119476
crossref_primary_10_1109_JBHI_2021_3139701
crossref_primary_10_1016_j_intell_2022_101665
crossref_primary_10_1016_j_neuroimage_2022_119359
crossref_primary_10_1016_j_isci_2023_106845
crossref_primary_10_1016_j_neuron_2017_07_011
crossref_primary_10_3758_s13415_021_00870_4
crossref_primary_10_1038_s41593_019_0436_x
crossref_primary_10_1016_j_media_2022_102366
crossref_primary_10_1162_imag_a_00015
crossref_primary_10_1007_s12264_022_00918_6
crossref_primary_10_1002_sim_10155
crossref_primary_10_1093_ijnp_pyx059
crossref_primary_10_1002_hbm_25178
crossref_primary_10_1016_j_neuroimage_2017_05_056
crossref_primary_10_1038_s41390_024_03240_1
crossref_primary_10_1186_s12868_020_00603_2
crossref_primary_10_1093_texcom_tgaa075
crossref_primary_10_3390_biomedicines11061647
crossref_primary_10_1109_MSP_2022_3155951
crossref_primary_10_1038_s41562_022_01371_1
crossref_primary_10_1249_MSS_0000000000002963
crossref_primary_10_1007_s00429_020_02205_4
crossref_primary_10_1109_TBME_2019_2958333
crossref_primary_10_1124_pharmrev_121_000508
crossref_primary_10_1002_hbm_24074
crossref_primary_10_1002_brb3_893
crossref_primary_10_1016_j_neuroimage_2023_120300
crossref_primary_10_1026_0033_3042_a000598
crossref_primary_10_1002_hbm_26498
crossref_primary_10_1109_TNSRE_2020_3007324
crossref_primary_10_1007_s12021_023_09630_w
crossref_primary_10_1093_pnasnexus_pgad276
crossref_primary_10_3389_fnhum_2020_00237
crossref_primary_10_1016_j_neuroimage_2018_07_051
crossref_primary_10_1073_pnas_2005238117
crossref_primary_10_1016_j_neuroimage_2020_117706
crossref_primary_10_1080_15622975_2018_1441547
crossref_primary_10_1007_s40471_019_00222_4
crossref_primary_10_1152_jn_00108_2023
crossref_primary_10_1038_s41598_018_25089_1
crossref_primary_10_3389_fneur_2017_00346
crossref_primary_10_1016_j_pscychresns_2022_111545
crossref_primary_10_1109_ACCESS_2019_2907040
crossref_primary_10_3389_fnins_2018_00064
crossref_primary_10_1016_j_neuroimage_2023_120413
crossref_primary_10_1093_scan_nsw145
crossref_primary_10_1016_j_appet_2019_104480
crossref_primary_10_1038_s41467_017_01000_w
crossref_primary_10_3389_fncom_2022_883660
crossref_primary_10_1073_pnas_1911240117
crossref_primary_10_1016_j_neuroimage_2020_116604
crossref_primary_10_1002_rrq_361
crossref_primary_10_3389_fnins_2020_596109
crossref_primary_10_1016_j_heares_2023_108696
crossref_primary_10_1111_ejn_15393
crossref_primary_10_1038_s41386_021_01065_8
crossref_primary_10_1002_hbm_25469
crossref_primary_10_1038_s41398_023_02642_9
crossref_primary_10_3389_fneur_2019_01242
crossref_primary_10_1162_imag_a_00440
crossref_primary_10_1016_j_schres_2024_03_036
crossref_primary_10_1038_s42003_024_06890_3
crossref_primary_10_1038_s41398_020_01103_x
crossref_primary_10_1016_j_neuroimage_2020_116722
crossref_primary_10_1002_hbm_24247
crossref_primary_10_1002_hbm_26667
crossref_primary_10_1016_j_biopsych_2022_09_024
crossref_primary_10_1016_j_media_2022_102681
crossref_primary_10_1038_s41598_021_82681_8
crossref_primary_10_1038_s42003_023_05262_7
crossref_primary_10_1016_j_neuroimage_2022_119100
crossref_primary_10_1016_j_media_2023_102756
crossref_primary_10_1016_j_neuroimage_2022_119589
crossref_primary_10_1093_cercor_bhw347
crossref_primary_10_1016_j_tics_2018_03_003
crossref_primary_10_1002_hbm_24281
crossref_primary_10_1016_j_cortex_2024_04_006
crossref_primary_10_1016_j_imed_2022_06_002
crossref_primary_10_3389_fnbeh_2023_927389
crossref_primary_10_1016_j_neuroimage_2018_11_006
crossref_primary_10_1016_j_nic_2019_09_003
crossref_primary_10_1126_sciadv_ade6049
crossref_primary_10_1016_j_pnpbp_2018_08_031
crossref_primary_10_1007_s11920_022_01385_6
crossref_primary_10_1038_s42003_020_01472_5
crossref_primary_10_1016_j_neuroimage_2017_10_037
crossref_primary_10_1523_JNEUROSCI_2406_16_2017
crossref_primary_10_1080_23273798_2016_1227858
crossref_primary_10_1016_j_neuroimage_2020_116818
crossref_primary_10_1002_hbm_26691
crossref_primary_10_1038_s41598_023_38946_5
crossref_primary_10_1109_TCDS_2020_3031604
crossref_primary_10_3389_fnins_2018_00149
crossref_primary_10_1016_j_biopsych_2019_10_026
crossref_primary_10_1016_j_smhl_2022_100336
crossref_primary_10_1093_schbul_sbab086
crossref_primary_10_1002_aur_2865
crossref_primary_10_1016_j_neubiorev_2020_07_006
crossref_primary_10_1016_j_neuroimage_2017_04_052
Cites_doi 10.1016/j.neuroimage.2013.05.033
10.1016/j.neuron.2014.05.014
10.1038/nn.3001
10.1038/nn2024
10.1093/cercor/bhm225
10.1152/jn.00338.2011
10.1073/pnas.0804546105
10.1523/JNEUROSCI.2180-11.2011
10.1073/pnas.1418198112
10.1016/S1361-8415(01)00036-6
10.1016/j.neuroimage.2014.03.034
10.1038/nn.4135
10.1073/pnas.0811879106
10.1126/science.1134239
10.1126/science.1116251
10.1016/j.neuroimage.2013.05.012
10.1523/JNEUROSCI.17-08-02859.1997
10.1109/TMI.2003.822821
10.1016/B978-0-12-396460-1.00016-0
10.1016/j.neuroimage.2013.05.057
10.1109/72.761722
10.1016/j.neuroimage.2014.05.069
10.1016/j.neuroimage.2013.05.039
10.1073/pnas.0905267106
10.1089/brain.2011.0008
10.1016/j.neuroimage.2013.05.041
10.1002/mrm.22361
10.1016/j.neuroimage.2014.07.051
10.1093/brain/123.1.74
10.1093/cercor/bhu303
10.1523/JNEUROSCI.3002-07.2007
10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
10.1098/rstb.2005.1640
10.1038/nrn3000
10.1152/jn.00499.2012
10.1146/annurev.physiol.66.082602.092845
10.1016/j.neuroimage.2013.04.127
10.1016/j.neuroimage.2013.11.046
10.1038/nrn893
ContentType Journal Article
Copyright Copyright © 2016 American Association for the Advancement of Science
Copyright © 2016, American Association for the Advancement of Science.
Copyright © 2016, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2016 American Association for the Advancement of Science
– notice: Copyright © 2016, American Association for the Advancement of Science.
– notice: Copyright © 2016, American Association for the Advancement of Science
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
DOI 10.1126/science.aad8127
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 220
ExternalDocumentID PMC6309730
4014748961
27124457
10_1126_science_aad8127
24744202
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: U54 MH091657
– fundername: Wellcome Trust
– fundername: NIMH NIH HHS
  grantid: 1U54MH091657
– fundername: Wellcome Trust
  grantid: WT104765MA
– fundername: Wellcome Trust
  grantid: 098369/Z/12/Z
– fundername: Medical Research Council
  grantid: MR/L009013/1
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADULT
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c557t-d0fcf75b7a8f22b6e4a88fc327ba43030f84e6376fac13f338fe1ad6d60f70c93
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 18:16:05 EDT 2025
Thu Sep 04 17:25:08 EDT 2025
Fri Jul 25 09:51:28 EDT 2025
Mon Jul 21 05:51:52 EDT 2025
Thu Apr 24 23:12:13 EDT 2025
Tue Jul 01 00:37:15 EDT 2025
Thu Jul 03 22:16:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6282
Language English
License http://www.sciencemag.org/about/science-licenses-journal-article-reuse
Copyright © 2016, American Association for the Advancement of Science.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c557t-d0fcf75b7a8f22b6e4a88fc327ba43030f84e6376fac13f338fe1ad6d60f70c93
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6309730
PMID 27124457
PQID 1779472572
PQPubID 1256
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6309730
proquest_miscellaneous_1785736310
proquest_journals_1779472572
pubmed_primary_27124457
crossref_citationtrail_10_1126_science_aad8127
crossref_primary_10_1126_science_aad8127
jstor_primary_24744202
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-08
PublicationDateYYYYMMDD 2016-04-08
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2016
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
Andrews T. J. (e_1_3_2_16_2) 1997; 17
References_xml – ident: e_1_3_2_14_2
  doi: 10.1016/j.neuroimage.2013.05.033
– ident: e_1_3_2_19_2
  doi: 10.1016/j.neuron.2014.05.014
– ident: e_1_3_2_23_2
  doi: 10.1038/nn.3001
– ident: e_1_3_2_4_2
  doi: 10.1038/nn2024
– ident: e_1_3_2_15_2
  doi: 10.1093/cercor/bhm225
– ident: e_1_3_2_11_2
  doi: 10.1152/jn.00338.2011
– ident: e_1_3_2_7_2
  doi: 10.1073/pnas.0804546105
– ident: e_1_3_2_38_2
  doi: 10.1523/JNEUROSCI.2180-11.2011
– ident: e_1_3_2_39_2
  doi: 10.1073/pnas.1418198112
– ident: e_1_3_2_2_2
  doi: 10.1016/S1361-8415(01)00036-6
– ident: e_1_3_2_32_2
  doi: 10.1016/j.neuroimage.2014.03.034
– ident: e_1_3_2_26_2
  doi: 10.1038/nn.4135
– ident: e_1_3_2_36_2
  doi: 10.1073/pnas.0811879106
– ident: e_1_3_2_6_2
  doi: 10.1126/science.1134239
– ident: e_1_3_2_18_2
  doi: 10.1126/science.1116251
– ident: e_1_3_2_30_2
  doi: 10.1016/j.neuroimage.2013.05.012
– volume: 17
  start-page: 2859
  year: 1997
  ident: e_1_3_2_16_2
  article-title: Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.17-08-02859.1997
– ident: e_1_3_2_37_2
  doi: 10.1109/TMI.2003.822821
– ident: e_1_3_2_40_2
  doi: 10.1016/B978-0-12-396460-1.00016-0
– ident: e_1_3_2_29_2
  doi: 10.1016/j.neuroimage.2013.05.057
– ident: e_1_3_2_35_2
  doi: 10.1109/72.761722
– ident: e_1_3_2_20_2
  doi: 10.1016/j.neuroimage.2014.05.069
– ident: e_1_3_2_28_2
  doi: 10.1016/j.neuroimage.2013.05.039
– ident: e_1_3_2_12_2
  doi: 10.1073/pnas.0905267106
– ident: e_1_3_2_22_2
  doi: 10.1089/brain.2011.0008
– ident: e_1_3_2_13_2
  doi: 10.1016/j.neuroimage.2013.05.041
– ident: e_1_3_2_31_2
  doi: 10.1002/mrm.22361
– ident: e_1_3_2_34_2
  doi: 10.1016/j.neuroimage.2014.07.051
– ident: e_1_3_2_17_2
  doi: 10.1093/brain/123.1.74
– ident: e_1_3_2_24_2
  doi: 10.1093/cercor/bhu303
– ident: e_1_3_2_5_2
  doi: 10.1523/JNEUROSCI.3002-07.2007
– ident: e_1_3_2_25_2
  doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
– ident: e_1_3_2_9_2
  doi: 10.1098/rstb.2005.1640
– ident: e_1_3_2_8_2
  doi: 10.1038/nrn3000
– ident: e_1_3_2_3_2
  doi: 10.1152/jn.00499.2012
– ident: e_1_3_2_21_2
  doi: 10.1146/annurev.physiol.66.082602.092845
– ident: e_1_3_2_27_2
  doi: 10.1016/j.neuroimage.2013.04.127
– ident: e_1_3_2_33_2
  doi: 10.1016/j.neuroimage.2013.11.046
– ident: e_1_3_2_10_2
  doi: 10.1038/nrn893
SSID ssj0009593
Score 2.6538403
Snippet When asked to perform the same task, different individuals exhibit markedly different patterns of brain activity. This variability is often attributed to...
We all differ in how we perceive, think, and act. What drives individual differences in evoked brain activity? Tavor et al. applied computational models to...
We all differ in how we perceive, think, and act. What drives individual differences in evoked brain activity? Tavor et al. applied computational models to...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 216
SubjectTerms Brain
Brain - physiology
Brain Mapping - methods
Humans
Individual Differences
Individuality
Language
Magnetic Resonance Imaging - methods
NMR
Nuclear magnetic resonance
Task Performance and Analysis
Title Task-free MRI predicts individual differences in brain activity during task performance
URI https://www.jstor.org/stable/24744202
https://www.ncbi.nlm.nih.gov/pubmed/27124457
https://www.proquest.com/docview/1779472572
https://www.proquest.com/docview/1785736310
https://pubmed.ncbi.nlm.nih.gov/PMC6309730
Volume 352
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqTki8IDYYFAYyEg9DVarEju3ssWNUHR8DbZ3YW-QktqhABbUpEvyR_E2cY8dxUYcYL1EUOx_K_Xw-n-9-h9DzivJCCBFHjGkdpYkmkczSItJlwVimiSq1SXB-d8anl-nrK3bV6_0KopbWdTEqf27NK_kfqcI1kKvJkr2BZP1D4QKcg3zhCBKG47_JWK4-R3qpYGien5p0_2puYjPmXZJVW__Exl0NC1MQouHPaEpGuBzFGh5j-IvbDILQYG3HPhiifnMnEKmPUhzbWII2tMDdFvgZZvK79Qx4N-37YZNyvRw29QI617gt2nbe1YP23p8L57t1XoqEN8EtmcfVrEuTuclXhprbESfbecsq69jUmSQxDbU5ZSSALSe2tJFXz3z7tBEUulQjKSswe0Q3Q7ZRAdPxRf7hZJK_PT17s9naGASwVE0NmY9Zje8QIRLWRzvj45PjybU00I5sKkjjat--YSfZUNlti6A_Y3kD42h2F91xqxo8thDdRT212EO3bJ3TH3to1_3oFT50NOcv7qGPHr0Y0Itb9OIOvThAL1zGDXpxi15s0YsNenGA3vvocvJq9nIauTIfUcmYqKMq1qUWrBASdAMpuEpllumSElHIFCysWGep4jARalkmVFOaaZXIilc81iIuj-g-6i8AqA8RTgqdKbBCVSUM9UQpNc9Saba6iam0cDRAo_an5qXjwDelWL7kzVqY8NxJIXdSGKBDf8M3S_9yfdf9Rkq-HwEwpCQmA3TQii13ymOVJwImQgHzJTQ_882g2s1-nVyor2vTJ2OCcliADdADK-Xu4cIY5gzeKjbk7zsY2vjNlsX8U0Mfz6mh6Iof_f2zHqPb3Tg-QP16uVZPwP6ui6cO1L8BxdfiYQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Task-free+MRI+predicts+individual+differences+in+brain+activity+during+task+performance&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Tavor%2C+I&rft.au=O+Parker+Jones&rft.au=Mars%2C+R+B&rft.au=Smith%2C+S+M&rft.date=2016-04-08&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=352&rft.issue=6282&rft.spage=216&rft_id=info:doi/10.1126%2Fscience.aad8127&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4014748961
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon