QUBIC: a qualitative biclustering algorithm for analyses of gene expression data

Biclustering extends the traditional clustering techniques by attempting to find (all) subgroups of genes with similar expression patterns under to-be-identified subsets of experimental conditions when applied to gene expression data. Still the real power of this clustering strategy is yet to be ful...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 37; no. 15; p. e101
Main Authors Li, Guojun, Ma, Qin, Tang, Haibao, Paterson, Andrew H, Xu, Ying
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.08.2009
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN0305-1048
1362-4962
1362-4954
1362-4962
DOI10.1093/nar/gkp491

Cover

Abstract Biclustering extends the traditional clustering techniques by attempting to find (all) subgroups of genes with similar expression patterns under to-be-identified subsets of experimental conditions when applied to gene expression data. Still the real power of this clustering strategy is yet to be fully realized due to the lack of effective and efficient algorithms for reliably solving the general biclustering problem. We report a QUalitative BIClustering algorithm (QUBIC) that can solve the biclustering problem in a more general form, compared to existing algorithms, through employing a combination of qualitative (or semi-quantitative) measures of gene expression data and a combinatorial optimization technique. One key unique feature of the QUBIC algorithm is that it can identify all statistically significant biclusters including biclusters with the so-called 'scaling patterns', a problem considered to be rather challenging; another key unique feature is that the algorithm solves such general biclustering problems very efficiently, capable of solving biclustering problems with tens of thousands of genes under up to thousands of conditions in a few minutes of the CPU time on a desktop computer. We have demonstrated a considerably improved biclustering performance by our algorithm compared to the existing algorithms on various benchmark sets and data sets of our own. QUBIC was written in ANSI C and tested using GCC (version 4.1.2) on Linux. Its source code is available at: http://csbl.bmb.uga.edu/~maqin/bicluster. A server version of QUBIC is also available upon request.
AbstractList Biclustering extends the traditional clustering techniques by attempting to find (all) subgroups of genes with similar expression patterns under to-be-identified subsets of experimental conditions when applied to gene expression data. Still the real power of this clustering strategy is yet to be fully realized due to the lack of effective and efficient algorithms for reliably solving the general biclustering problem. We report a QUalitative BIClustering algorithm (QUBIC) that can solve the biclustering problem in a more general form, compared to existing algorithms, through employing a combination of qualitative (or semi-quantitative) measures of gene expression data and a combinatorial optimization technique. One key unique feature of the QUBIC algorithm is that it can identify all statistically significant biclusters including biclusters with the so-called 'scaling patterns', a problem considered to be rather challenging; another key unique feature is that the algorithm solves such general biclustering problems very efficiently, capable of solving biclustering problems with tens of thousands of genes under up to thousands of conditions in a few minutes of the CPU time on a desktop computer. We have demonstrated a considerably improved biclustering performance by our algorithm compared to the existing algorithms on various benchmark sets and data sets of our own. QUBIC was written in ANSI C and tested using GCC (version 4.1.2) on Linux. Its source code is available at: http://csbl.bmb.uga.edu/~maqin/bicluster. A server version of QUBIC is also available upon request.
Biclustering extends the traditional clustering techniques by attempting to find (all) subgroups of genes with similar expression patterns under to-be-identified subsets of experimental conditions when applied to gene expression data. Still the real power of this clustering strategy is yet to be fully realized due to the lack of effective and efficient algorithms for reliably solving the general biclustering problem. We report a QUalitative BIClustering algorithm (QUBIC) that can solve the biclustering problem in a more general form, compared to existing algorithms, through employing a combination of qualitative (or semi-quantitative) measures of gene expression data and a combinatorial optimization technique. One key unique feature of the QUBIC algorithm is that it can identify all statistically significant biclusters including biclusters with the so-called 'scaling patterns', a problem considered to be rather challenging; another key unique feature is that the algorithm solves such general biclustering problems very efficiently, capable of solving biclustering problems with tens of thousands of genes under up to thousands of conditions in a few minutes of the CPU time on a desktop computer. We have demonstrated a considerably improved biclustering performance by our algorithm compared to the existing algorithms on various benchmark sets and data sets of our own. QUBIC was written in ANSI C and tested using GCC (version 4.1.2) on Linux. Its source code is available at: http://csbl.bmb.uga.edu/ similar to maqin/bicluster. A server version of QUBIC is also available upon request.
Biclustering extends the traditional clustering techniques by attempting to find (all) subgroups of genes with similar expression patterns under to-be-identified subsets of experimental conditions when applied to gene expression data. Still the real power of this clustering strategy is yet to be fully realized due to the lack of effective and efficient algorithms for reliably solving the general biclustering problem. We report a QUalitative BIClustering algorithm (QUBIC) that can solve the biclustering problem in a more general form, compared to existing algorithms, through employing a combination of qualitative (or semi-quantitative) measures of gene expression data and a combinatorial optimization technique. One key unique feature of the QUBIC algorithm is that it can identify all statistically significant biclusters including biclusters with the so-called ‘scaling patterns’, a problem considered to be rather challenging; another key unique feature is that the algorithm solves such general biclustering problems very efficiently, capable of solving biclustering problems with tens of thousands of genes under up to thousands of conditions in a few minutes of the CPU time on a desktop computer. We have demonstrated a considerably improved biclustering performance by our algorithm compared to the existing algorithms on various benchmark sets and data sets of our own. QUBIC was written in ANSI C and tested using GCC (version 4.1.2) on Linux. Its source code is available at: http://csbl.bmb.uga.edu/∼maqin/bicluster. A server version of QUBIC is also available upon request.
Biclustering extends the traditional clustering techniques by attempting to find (all) subgroups of genes with similar expression patterns under to-be-identified subsets of experimental conditions when applied to gene expression data. Still the real power of this clustering strategy is yet to be fully realized due to the lack of effective and efficient algorithms for reliably solving the general biclustering problem. We report a QUalitative BIClustering algorithm (QUBIC) that can solve the biclustering problem in a more general form, compared to existing algorithms, through employing a combination of qualitative (or semi-quantitative) measures of gene expression data and a combinatorial optimization technique. One key unique feature of the QUBIC algorithm is that it can identify all statistically significant biclusters including biclusters with the so-called 'scaling patterns', a problem considered to be rather challenging; another key unique feature is that the algorithm solves such general biclustering problems very efficiently, capable of solving biclustering problems with tens of thousands of genes under up to thousands of conditions in a few minutes of the CPU time on a desktop computer. We have demonstrated a considerably improved biclustering performance by our algorithm compared to the existing algorithms on various benchmark sets and data sets of our own. QUBIC was written in ANSI C and tested using GCC (version 4.1.2) on Linux. Its source code is available at: http://csbl.bmb.uga.edu/ approximately maqin/bicluster. A server version of QUBIC is also available upon request.Biclustering extends the traditional clustering techniques by attempting to find (all) subgroups of genes with similar expression patterns under to-be-identified subsets of experimental conditions when applied to gene expression data. Still the real power of this clustering strategy is yet to be fully realized due to the lack of effective and efficient algorithms for reliably solving the general biclustering problem. We report a QUalitative BIClustering algorithm (QUBIC) that can solve the biclustering problem in a more general form, compared to existing algorithms, through employing a combination of qualitative (or semi-quantitative) measures of gene expression data and a combinatorial optimization technique. One key unique feature of the QUBIC algorithm is that it can identify all statistically significant biclusters including biclusters with the so-called 'scaling patterns', a problem considered to be rather challenging; another key unique feature is that the algorithm solves such general biclustering problems very efficiently, capable of solving biclustering problems with tens of thousands of genes under up to thousands of conditions in a few minutes of the CPU time on a desktop computer. We have demonstrated a considerably improved biclustering performance by our algorithm compared to the existing algorithms on various benchmark sets and data sets of our own. QUBIC was written in ANSI C and tested using GCC (version 4.1.2) on Linux. Its source code is available at: http://csbl.bmb.uga.edu/ approximately maqin/bicluster. A server version of QUBIC is also available upon request.
Biclustering extends the traditional clustering techniques by attempting to find (all) subgroups of genes with similar expression patterns under to-be-identified subsets of experimental conditions when applied to gene expression data. Still the real power of this clustering strategy is yet to be fully realized due to the lack of effective and efficient algorithms for reliably solving the general biclustering problem. We report a QUalitative BIClustering algorithm (QUBIC) that can solve the biclustering problem in a more general form, compared to existing algorithms, through employing a combination of qualitative (or semi-quantitative) measures of gene expression data and a combinatorial optimization technique. One key unique feature of the QUBIC algorithm is that it can identify all statistically significant biclusters including biclusters with the so-called 'scaling patterns', a problem considered to be rather challenging; another key unique feature is that the algorithm solves such general biclustering problems very efficiently, capable of solving biclustering problems with tens of thousands of genes under up to thousands of conditions in a few minutes of the CPU time on a desktop computer. We have demonstrated a considerably improved biclustering performance by our algorithm compared to the existing algorithms on various benchmark sets and data sets of our own. QUBIC was written in ANSI C and tested using GCC (version 4.1.2) on Linux. Its source code is available at: http://csbl.bmb.uga.edu/ approximately maqin/bicluster. A server version of QUBIC is also available upon request.
Author Xu, Ying
Paterson, Andrew H.
Tang, Haibao
Li, Guojun
Ma, Qin
AuthorAffiliation 1 Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA, 2 School of Mathematics, Shandong University, Jinan 250100, China, 3 Department of Plant Biology, University of Georgia, USA and 4 College of Computer Science and Technology, Jilin University, Changchun, China
AuthorAffiliation_xml – name: 1 Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA, 2 School of Mathematics, Shandong University, Jinan 250100, China, 3 Department of Plant Biology, University of Georgia, USA and 4 College of Computer Science and Technology, Jilin University, Changchun, China
Author_xml – sequence: 1
  fullname: Li, Guojun
– sequence: 2
  fullname: Ma, Qin
– sequence: 3
  fullname: Tang, Haibao
– sequence: 4
  fullname: Paterson, Andrew H
– sequence: 5
  fullname: Xu, Ying
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19509312$$D View this record in MEDLINE/PubMed
BookMark eNqF0ktv1DAQB_AIFdFt4cIHgKgSHEChfubBAYmu6ENaiecixMWaTSap26yd2knpfnu8zYpChdqTJfs3Y_k_3om2jDUYRU8peUNJwfcNuP3mvBMFfRBNKE9ZIoqUbUUTwolMKBH5drTj_RkhVFApHkXbtJChkLJJ9Onz_OBk-jaG-GKAVvfQ60uMF7psB9-j06aJoW2s0_3pMq6ti8FAu_LoY1vHDRqM8apz6L22Jq6gh8fRwxpaj0826240P_zwbXqczD4enUzfz5JSyqxPIMtLVlYVL3JZk5qTTAguGMtk2EQuaqASclKRelFJIZFWC-SYlogVIrCS70avx76D6WD1C9pWdU4vwa0UJWqdiwq5qDGXoN-NuhsWS6xKNL2DmwoLWv17YvSpauylYhmn-XWDl5sGzl4M6Hu11L7EtgWDdvAqzVLKWbj1PihSngpZZPdCRvIwypwFuHcLntnBhTGsDUllxqQM6NnfD7zJYjPpAF6NoHTWe4f13XGRW7i8_hp2HY5u_1_yYiyxQ3d362R0Ovyvqz8S3HnIkGdSHf_4qb6LGStIeqC-BP989DVYBY3TXs2_MkI5ocHLIuW_AeVV8Zs
CODEN NARHAD
CitedBy_id crossref_primary_10_1093_bioinformatics_btz414
crossref_primary_10_1016_j_neunet_2011_03_020
crossref_primary_10_1093_bib_bbae369
crossref_primary_10_1186_1748_7188_6_18
crossref_primary_10_1016_j_asoc_2024_112182
crossref_primary_10_1186_s12859_016_1356_3
crossref_primary_10_3389_fgene_2022_996941
crossref_primary_10_1007_s11042_019_7656_7
crossref_primary_10_1093_bib_bbaf050
crossref_primary_10_3390_plants13233410
crossref_primary_10_1093_nar_gku201
crossref_primary_10_1093_bioinformatics_btx199
crossref_primary_10_1371_journal_pone_0068886
crossref_primary_10_1093_bioinformatics_btaa630
crossref_primary_10_1109_TCBB_2023_3283801
crossref_primary_10_1109_ACCESS_2019_2911125
crossref_primary_10_1109_TCBB_2020_2980816
crossref_primary_10_1145_3617590
crossref_primary_10_1089_cmb_2019_0003
crossref_primary_10_1093_nar_gkt1013
crossref_primary_10_1007_s10115_018_1181_2
crossref_primary_10_1093_bib_bbx088
crossref_primary_10_3390_risks5020024
crossref_primary_10_1093_nargab_lqad009
crossref_primary_10_1155_2014_870406
crossref_primary_10_1186_1756_0381_5_8
crossref_primary_10_1007_s11390_013_1364_y
crossref_primary_10_1371_journal_pone_0139591
crossref_primary_10_1371_journal_pcbi_1002228
crossref_primary_10_1371_journal_pcbi_1006792
crossref_primary_10_1016_j_heliyon_2024_e34736
crossref_primary_10_1016_j_compbiomed_2023_107458
crossref_primary_10_1089_cmb_2012_0032
crossref_primary_10_1111_nph_13898
crossref_primary_10_1186_s12859_019_3289_0
crossref_primary_10_1007_s10618_022_00834_3
crossref_primary_10_1093_abbs_gmz080
crossref_primary_10_1093_bioinformatics_btab108
crossref_primary_10_1145_2533712
crossref_primary_10_1186_s12859_022_04733_8
crossref_primary_10_1016_j_ymeth_2019_05_010
crossref_primary_10_1007_s10479_016_2261_x
crossref_primary_10_1016_j_cor_2012_03_008
crossref_primary_10_1093_bioinformatics_btq227
crossref_primary_10_1038_srep35270
crossref_primary_10_1371_journal_pone_0041854
crossref_primary_10_1016_j_jtbi_2012_10_012
crossref_primary_10_1016_j_bspc_2022_104182
crossref_primary_10_18632_oncotarget_7012
crossref_primary_10_1371_journal_pone_0082890
crossref_primary_10_1093_bib_bbx051
crossref_primary_10_1371_journal_pcbi_1004791
crossref_primary_10_1016_j_cmpb_2015_02_010
crossref_primary_10_4137_CIN_S38000
crossref_primary_10_1038_s41598_017_13470_5
crossref_primary_10_1128_mSystems_00413_19
crossref_primary_10_1038_srep23466
crossref_primary_10_1109_TCBB_2015_2443805
crossref_primary_10_1007_s40484_014_0032_8
crossref_primary_10_1016_j_neunet_2022_12_010
crossref_primary_10_3389_fpls_2022_860791
crossref_primary_10_1093_bioinformatics_btz977
crossref_primary_10_1093_bioinformatics_bty401
crossref_primary_10_3390_math12111659
crossref_primary_10_1016_j_compbiolchem_2024_108090
crossref_primary_10_1016_j_genrep_2020_100894
crossref_primary_10_1186_1471_2229_12_138
crossref_primary_10_1109_RBME_2010_2083647
crossref_primary_10_1093_bioinformatics_btz692
crossref_primary_10_1093_nar_gkq960
crossref_primary_10_1093_nar_gkz139
crossref_primary_10_1093_nar_gkz655
crossref_primary_10_1371_journal_pone_0315533
crossref_primary_10_1002_sim_8536
crossref_primary_10_3390_sym15111977
crossref_primary_10_3389_fmicb_2023_1092143
crossref_primary_10_1016_j_xpro_2024_103317
crossref_primary_10_1093_nar_gkx590
crossref_primary_10_1093_bib_bby014
crossref_primary_10_1093_bib_bbs032
crossref_primary_10_1007_s42979_022_01624_w
crossref_primary_10_1109_TKDE_2011_180
crossref_primary_10_4137_CIN_S13777
crossref_primary_10_3389_fpls_2022_864927
crossref_primary_10_1177_09622802221122427
crossref_primary_10_1093_bioinformatics_btw452
crossref_primary_10_1186_1471_2164_14_144
crossref_primary_10_1109_TEVC_2018_2884521
crossref_primary_10_3390_genes13111982
crossref_primary_10_1093_gigascience_giz064
crossref_primary_10_1371_journal_pone_0117135
crossref_primary_10_1111_pbi_13000
crossref_primary_10_1007_s41109_019_0180_x
crossref_primary_10_1371_journal_pone_0032660
crossref_primary_10_1016_j_compbiolchem_2023_108009
crossref_primary_10_1016_j_asoc_2019_105688
crossref_primary_10_1097_MD_0000000000033647
crossref_primary_10_1016_j_eswa_2014_02_029
crossref_primary_10_1093_bib_bbae342
crossref_primary_10_1016_j_genrep_2022_101563
crossref_primary_10_1016_j_elerap_2019_100857
crossref_primary_10_1093_bioinformatics_btaa1038
crossref_primary_10_1186_gb_2010_11_9_r96
crossref_primary_10_1016_j_cmpb_2013_07_025
crossref_primary_10_1016_j_eswa_2018_06_001
crossref_primary_10_1186_1471_2105_12_497
crossref_primary_10_1515_bams_2015_0033
crossref_primary_10_1016_j_ymeth_2018_02_004
crossref_primary_10_1007_s12038_021_00171_5
crossref_primary_10_1016_j_mbs_2019_02_007
crossref_primary_10_1016_j_patcog_2021_107984
crossref_primary_10_1016_j_patrec_2012_05_001
crossref_primary_10_3389_fpls_2017_00780
crossref_primary_10_1016_j_asoc_2019_105614
crossref_primary_10_1186_s12859_023_05534_3
crossref_primary_10_1007_s12652_021_03036_9
crossref_primary_10_1016_j_jbi_2015_06_028
crossref_primary_10_1371_journal_pone_0116979
crossref_primary_10_1038_srep23030
crossref_primary_10_1186_s13040_018_0165_9
crossref_primary_10_1016_j_jlr_2021_100104
crossref_primary_10_1093_bioinformatics_btw635
crossref_primary_10_1016_j_mbs_2016_08_012
crossref_primary_10_1109_TCBB_2018_2820695
crossref_primary_10_1016_j_asoc_2015_06_019
crossref_primary_10_1007_s13042_023_01949_9
crossref_primary_10_1186_1748_7188_8_4
crossref_primary_10_1142_S1793830912500231
crossref_primary_10_1016_j_csbj_2023_03_028
crossref_primary_10_1142_S021972002050002X
crossref_primary_10_1007_s13721_019_0211_7
crossref_primary_10_1093_nar_gkt261
crossref_primary_10_1093_nar_gkae480
crossref_primary_10_1093_bib_bbx090
crossref_primary_10_1016_j_genrep_2018_06_002
crossref_primary_10_1093_insilicoplants_diaa002
crossref_primary_10_3389_fpls_2016_00444
crossref_primary_10_1002_sam_11581
crossref_primary_10_1007_s42979_020_00411_9
crossref_primary_10_1186_s12859_023_05587_4
crossref_primary_10_1186_s12859_014_0355_5
Cites_doi 10.1091/mbc.11.12.4241
10.1142/S0219720006002065
10.1093/bioinformatics/btl560
10.1186/1471-2105-8-250
10.1093/nar/gki108
10.1186/1471-2105-7-280
10.1089/10665270360688075
10.1093/bioinformatics/18.suppl_1.S136
10.1002/0470857897.ch8
10.1073/pnas.95.25.14863
10.1109/TCBB.2004.2
10.1093/bioinformatics/bti641
10.1038/75556
10.1093/bioinformatics/btl099
10.1186/1471-2105-6-232
10.1093/bioinformatics/btl060
10.1073/pnas.210134797
10.1093/bioinformatics/bth166
10.1093/nar/gkh894
10.1093/bioinformatics/18.3.413
10.1080/01621459.1963.10500855
10.1109/TITB.2006.872073
10.1038/ng765
10.1101/gr.648603
10.1126/science.286.5439.531
10.1186/gb-2003-4-5-r34
10.1080/01621459.1972.10481214
10.1186/1471-2164-9-S2-S20
10.1142/S021972000600217X
10.1186/1471-2105-7-78
10.1093/nar/gkm815
10.1093/bioinformatics/btg114
ContentType Journal Article
Copyright 2009 The Author(s) 2009
2009 The Author(s)
Copyright_xml – notice: 2009 The Author(s) 2009
– notice: 2009 The Author(s)
DBID FBQ
BSCLL
TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7SS
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7S9
L.6
7X8
5PM
ADTOC
UNPAY
DOI 10.1093/nar/gkp491
DatabaseName AGRIS
Istex
Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
Genetics Abstracts

MEDLINE - Academic


Virology and AIDS Abstracts
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage e101
ExternalDocumentID 10.1093/nar/gkp491
PMC2731891
1855986531
19509312
10_1093_nar_gkp491
ark_67375_HXZ_V4L2906B_R
US201301673596
Genre Research Support, U.S. Gov't, Non-P.H.S
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
.GJ
.I3
123
18M
1TH
29N
2WC
3O-
4.4
482
53G
5VS
5WA
6.Y
70E
85S
A8Z
AAFWJ
AAMVS
AAOGV
AAPPN
AAPXW
AAUQX
AAVAP
AAWDT
AAYJJ
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACNCT
ACPQN
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AEKPW
AENEX
AENZO
AEQTP
AFFNX
AFPKN
AFRAH
AFULF
AFYAG
AGKRT
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
AOIJS
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BAWUL
BAYMD
BCNDV
BEYMZ
BTTYL
C1A
CAG
CIDKT
COF
CS3
CXTWN
CZ4
D0S
DFGAJ
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
ELUNK
EMOBN
ESTFP
F20
F5P
FBQ
FEDTE
GROUPED_DOAJ
GX1
H13
HH5
HVGLF
HYE
HZ~
H~9
IH2
KAQDR
KC5
KQ8
KSI
M49
MBTAY
MVM
M~E
NTWIH
NU-
OAWHX
OBC
OBS
OEB
OES
OJQWA
OJZSN
OVD
O~Y
P2P
PB-
PEELM
PQQKQ
QBD
R44
RD5
RNI
RNS
ROL
ROX
ROZ
RPM
RXO
RZF
RZO
SJN
SV3
TCN
TEORI
TN5
TOX
TR2
UHB
WG7
WOQ
X7H
X7M
XFK
XSB
XSW
YSK
ZA5
ZKX
ZXP
~91
~D7
~KM
0R~
AAHBH
ABEJV
ABGNP
ABIME
ABNGD
ABPIB
ABXVV
ABZEO
ACUKT
ACVCV
ACZBC
AEHUL
AFSHK
AGMDO
AGQPQ
AMNDL
APJGH
BSCLL
OVT
ACMRT
AAYXX
CITATION
ADIXU
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QL
7QO
7QP
7QR
7SS
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7S9
L.6
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c557t-a78c2cdd3985f0f30744342275cdde34fa15a80d0fbd545e1dbe3e6ceedeea2c3
IEDL.DBID UNPAY
ISSN 0305-1048
1362-4962
1362-4954
IngestDate Sun Oct 26 04:15:35 EDT 2025
Tue Sep 30 16:37:44 EDT 2025
Thu Oct 02 08:10:32 EDT 2025
Thu Oct 02 12:10:48 EDT 2025
Mon Sep 08 06:36:38 EDT 2025
Mon Oct 06 17:56:32 EDT 2025
Wed Feb 19 01:47:19 EST 2025
Wed Oct 01 02:24:27 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Wed Aug 28 03:25:06 EDT 2024
Sat Sep 20 11:01:27 EDT 2025
Wed Dec 27 19:14:37 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License http://creativecommons.org/licenses/by-nc/2.0/uk
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c557t-a78c2cdd3985f0f30744342275cdde34fa15a80d0fbd545e1dbe3e6ceedeea2c3
Notes ArticleID:gkp491
ark:/67375/HXZ-V4L2906B-R
istex:FBDDCF7254638126E1BA09AB2D569FAF08990143
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-1
ObjectType-Feature-3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/nar/article-pdf/37/15/e101/16753222/gkp491.pdf
PMID 19509312
PQID 200657255
PQPubID 36121
ParticipantIDs unpaywall_primary_10_1093_nar_gkp491
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2731891
proquest_miscellaneous_67613209
proquest_miscellaneous_46364597
proquest_miscellaneous_20836282
proquest_journals_200657255
pubmed_primary_19509312
crossref_primary_10_1093_nar_gkp491
crossref_citationtrail_10_1093_nar_gkp491
oup_primary_10_1093_nar_gkp491
istex_primary_ark_67375_HXZ_V4L2906B_R
fao_agris_US201301673596
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-08-01
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-08-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2009
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Kluger ( key 20170510120623_B34) 2003; 13
Eisen ( key 20170510120623_B3) 1998; 95
Kung ( key 20170510120623_B16) 2006; 4
Bryan ( key 20170510120623_B9) 2008; 9
Castillo-Davis ( key 20170510120623_B31) 2003; 19
Golub ( key 20170510120623_B36) 1999; 286
Barkow ( key 20170510120623_B25) 2006; 22
Ben-dor ( key 20170510120623_B12) 2003; 10
Faith ( key 20170510120623_B27) 2008; 36
Keseler ( key 20170510120623_B30) 2005; 33
Ruepp ( key 20170510120623_B33) 2004; 32
Bryan ( key 20170510120623_B10) 2006; 10
Huttenhower ( key 20170510120623_B21) 2007; 8
Ashburner ( key 20170510120623_B28) 2000; 25
Xu ( key 20170510120623_B4) 2002; 18
Bryan ( key 20170510120623_B19) 2006; 10
Getz ( key 20170510120623_B7) 2000; 97
Kanehisa ( key 20170510120623_B29) 2002; 247
Madeira ( key 20170510120623_B23) 2004; 1
Shamir ( key 20170510120623_B26) 2005; 6
Ihmels ( key 20170510120623_B20) 2004; 20
Tanay ( key 20170510120623_B14) 2002; 18
Yeung ( key 20170510120623_B1) 2003; 4
Prelic ( key 20170510120623_B13) 2006; 22
Gasch ( key 20170510120623_B32) 2000; 11
Liu ( key 20170510120623_B22) 2007; 23
Murali ( key 20170510120623_B24) 2003; 8
Cheng ( key 20170510120623_B8) 2000; 8
McLachlan ( key 20170510120623_B2) 2002; 18
Hartigan ( key 20170510120623_B6) 1972; 67
Armstrong ( key 20170510120623_B35) 2002; 30
Reiss ( key 20170510120623_B11) 2006; 7
Aguilar-Ruiz ( key 20170510120623_B15) 2005; 21
Carmona-Saez ( key 20170510120623_B18) 2006; 7
Morgan ( key 20170510120623_B5) 1963; 58
Li ( key 20170510120623_B17) 2006; 4
16176576 - BMC Bioinformatics. 2005;6:232
16819784 - J Bioinform Comput Biol. 2006 Apr;4(2):275-98
12016051 - Bioinformatics. 2002 Apr;18(4):536-45
17090578 - Bioinformatics. 2007 Jan 1;23(1):50-6
11934740 - Bioinformatics. 2002 Mar;18(3):413-22
15044247 - Bioinformatics. 2004 Sep 1;20(13):1993-2003
16871720 - IEEE Trans Inf Technol Biomed. 2006 Jul;10(3):519-25
15486203 - Nucleic Acids Res. 2004;32(18):5539-45
10977070 - Proc Int Conf Intell Syst Mol Biol. 2000;8:93-103
9843981 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8
15608210 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D334-7
12671006 - Genome Res. 2003 Apr;13(4):703-16
16551664 - Bioinformatics. 2006 May 15;22(10):1282-3
16500941 - Bioinformatics. 2006 May 1;22(9):1122-9
12603019 - Pac Symp Biocomput. 2003;:77-88
17048406 - IEEE/ACM Trans Comput Biol Bioinform. 2004 Jan-Mar;1(1):24-45
11035779 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12079-84
12169541 - Bioinformatics. 2002;18 Suppl 1:S136-44
17626636 - BMC Bioinformatics. 2007;8:250
16749936 - BMC Bioinformatics. 2006;7:280
11731795 - Nat Genet. 2002 Jan;30(1):41-7
16144809 - Bioinformatics. 2005 Oct 15;21(20):3840-5
17007074 - J Bioinform Comput Biol. 2006 Aug;4(4):911-33
12724301 - Bioinformatics. 2003 May 1;19(7):891-2
17932051 - Nucleic Acids Res. 2008 Jan;36(Database issue):D866-70
10802651 - Nat Genet. 2000 May;25(1):25-9
12935334 - J Comput Biol. 2003;10(3-4):373-84
11102521 - Mol Biol Cell. 2000 Dec;11(12):4241-57
16503973 - BMC Bioinformatics. 2006;7:78
10521349 - Science. 1999 Oct 15;286(5439):531-7
12539951 - Novartis Found Symp. 2002;247:91-101; discussion 101-3, 119-28, 244-52
12734014 - Genome Biol. 2003;4(5):R34
18831786 - BMC Genomics. 2008;9 Suppl 2:S20
References_xml – volume: 11
  start-page: 4241
  year: 2000
  ident: key 20170510120623_B32
  article-title: Genomic expression programs in the response of yeast cells to environmental changes
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.11.12.4241
– volume: 4
  start-page: 275
  year: 2006
  ident: key 20170510120623_B16
  article-title: Symmetric and asymmetric multi-modality biclustering analysis for microarray data matrix
  publication-title: J. Bioinform. Comput. Biol.
  doi: 10.1142/S0219720006002065
– volume: 23
  start-page: 50
  year: 2007
  ident: key 20170510120623_B22
  article-title: Computing the maximum similarity bi-clusters of gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl560
– volume: 18
  start-page: 536
  year: 2002
  ident: key 20170510120623_B4
  publication-title: Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees.
– volume: 8
  start-page: 250
  year: 2007
  ident: key 20170510120623_B21
  article-title: Nearest Neighbor Networks: clustering expression data based on gene neighborhoods
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-250
– volume: 33
  start-page: D334
  year: 2005
  ident: key 20170510120623_B30
  article-title: EcoCyc: a comprehensive database resource for Escherichia coli
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki108
– volume: 7
  start-page: 280
  year: 2006
  ident: key 20170510120623_B11
  article-title: Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-280
– volume: 10
  start-page: 373
  year: 2003
  ident: key 20170510120623_B12
  article-title: Discovering local structure in gene expression data: the order-preserving submatrix problem
  publication-title: J. Comput. Biol.
  doi: 10.1089/10665270360688075
– volume: 18
  start-page: S136
  year: 2002
  ident: key 20170510120623_B14
  article-title: Discovering statistically significant biclusters in gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.suppl_1.S136
– volume: 247
  start-page: 91
  year: 2002
  ident: key 20170510120623_B29
  article-title: The KEGG database
  publication-title: Novartis Found. Symp.
  doi: 10.1002/0470857897.ch8
– volume: 95
  start-page: 14863
  year: 1998
  ident: key 20170510120623_B3
  article-title: Cluster analysis and display of genome-wide expression patterns
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.95.25.14863
– volume: 1
  start-page: 24
  year: 2004
  ident: key 20170510120623_B23
  article-title: Biclustering algorithms for biological data analysis: a survey
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2004.2
– volume: 21
  start-page: 3840
  year: 2005
  ident: key 20170510120623_B15
  article-title: Shifting and scaling patterns from gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti641
– volume: 25
  start-page: 25
  year: 2000
  ident: key 20170510120623_B28
  article-title: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium
  publication-title: Nat Genet.
  doi: 10.1038/75556
– volume: 22
  start-page: 1282
  year: 2006
  ident: key 20170510120623_B25
  article-title: BicAT: a biclustering analysis toolbox
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl099
– volume: 6
  start-page: 232
  year: 2005
  ident: key 20170510120623_B26
  article-title: EXPANDER—an integrative program suite for microarray data analysis
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-232
– volume: 22
  start-page: 1122
  year: 2006
  ident: key 20170510120623_B13
  article-title: A systematic comparison and evaluation of biclustering methods for gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl060
– volume: 97
  start-page: 12079
  year: 2000
  ident: key 20170510120623_B7
  article-title: Coupled two-way clustering analysis of gene microarray data
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.210134797
– volume: 20
  start-page: 1993
  year: 2004
  ident: key 20170510120623_B20
  article-title: Defining transcription modules using large-scale gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth166
– volume: 32
  start-page: 5539
  year: 2004
  ident: key 20170510120623_B33
  article-title: The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh894
– volume: 18
  start-page: 413
  year: 2002
  ident: key 20170510120623_B2
  article-title: A mixture model-based approach to the clustering of microarray expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.3.413
– volume: 58
  start-page: 415
  year: 1963
  ident: key 20170510120623_B5
  article-title: Problems in the analysis of survey data, and proposal
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1963.10500855
– volume: 10
  start-page: 519
  year: 2006
  ident: key 20170510120623_B10
  article-title: Application of simulated annealing to the biclustering of gene expression data
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2006.872073
– volume: 30
  start-page: 41
  year: 2002
  ident: key 20170510120623_B35
  article-title: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
  publication-title: Nat. Genet.
  doi: 10.1038/ng765
– volume: 10
  start-page: 519
  year: 2006
  ident: key 20170510120623_B19
  article-title: Application of simulated annealing to the biclustering of gene expression data
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2006.872073
– volume: 13
  start-page: 703
  year: 2003
  ident: key 20170510120623_B34
  article-title: Spectral biclustering of microarray data: coclustering genes and conditions
  publication-title: Genome Res.
  doi: 10.1101/gr.648603
– volume: 8
  start-page: 93
  year: 2000
  ident: key 20170510120623_B8
  article-title: Biclustering of expression data
  publication-title: Proc. Int. Conf. Intell. Syst. Mol. Biol.
– volume: 286
  start-page: 531
  year: 1999
  ident: key 20170510120623_B36
  article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
  publication-title: Science
  doi: 10.1126/science.286.5439.531
– volume: 4
  start-page: R34
  year: 2003
  ident: key 20170510120623_B1
  article-title: Clustering gene-expression data with repeated measurements
  publication-title: Genome Biol.
  doi: 10.1186/gb-2003-4-5-r34
– volume: 67
  start-page: 123
  year: 1972
  ident: key 20170510120623_B6
  article-title: Diret clustering of a data matrix
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1972.10481214
– volume: 9
  start-page: S20
  year: 2008
  ident: key 20170510120623_B9
  article-title: Extending bicluster analysis to annotate unclassified ORFs and predict novel functional modules using expression data
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-9-S2-S20
– volume: 4
  start-page: 911
  year: 2006
  ident: key 20170510120623_B17
  article-title: A general framework for biclustering gene expression data
  publication-title: J. Bioinform. Comput. Biol.
  doi: 10.1142/S021972000600217X
– volume: 7
  start-page: 78
  year: 2006
  ident: key 20170510120623_B18
  article-title: Biclustering of gene expression data by non-smooth non-negative matrix factorization
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-78
– volume: 8
  start-page: 77
  year: 2003
  ident: key 20170510120623_B24
  article-title: Extracting conserved gene expression motifs from gene expression data
  publication-title: Pac. Symp. Biocomput.
– volume: 36
  start-page: D866
  year: 2008
  ident: key 20170510120623_B27
  article-title: Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm815
– volume: 19
  start-page: 891
  year: 2003
  ident: key 20170510120623_B31
  article-title: GeneMerge—post-genomic analysis, data mining, and hypothesis testing
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg114
– reference: 17007074 - J Bioinform Comput Biol. 2006 Aug;4(4):911-33
– reference: 16871720 - IEEE Trans Inf Technol Biomed. 2006 Jul;10(3):519-25
– reference: 16500941 - Bioinformatics. 2006 May 1;22(9):1122-9
– reference: 15486203 - Nucleic Acids Res. 2004;32(18):5539-45
– reference: 16819784 - J Bioinform Comput Biol. 2006 Apr;4(2):275-98
– reference: 17932051 - Nucleic Acids Res. 2008 Jan;36(Database issue):D866-70
– reference: 11934740 - Bioinformatics. 2002 Mar;18(3):413-22
– reference: 16144809 - Bioinformatics. 2005 Oct 15;21(20):3840-5
– reference: 10977070 - Proc Int Conf Intell Syst Mol Biol. 2000;8:93-103
– reference: 18831786 - BMC Genomics. 2008;9 Suppl 2:S20
– reference: 16176576 - BMC Bioinformatics. 2005;6:232
– reference: 11731795 - Nat Genet. 2002 Jan;30(1):41-7
– reference: 12016051 - Bioinformatics. 2002 Apr;18(4):536-45
– reference: 17626636 - BMC Bioinformatics. 2007;8:250
– reference: 17090578 - Bioinformatics. 2007 Jan 1;23(1):50-6
– reference: 12169541 - Bioinformatics. 2002;18 Suppl 1:S136-44
– reference: 12603019 - Pac Symp Biocomput. 2003;:77-88
– reference: 16749936 - BMC Bioinformatics. 2006;7:280
– reference: 12671006 - Genome Res. 2003 Apr;13(4):703-16
– reference: 12935334 - J Comput Biol. 2003;10(3-4):373-84
– reference: 17048406 - IEEE/ACM Trans Comput Biol Bioinform. 2004 Jan-Mar;1(1):24-45
– reference: 16551664 - Bioinformatics. 2006 May 15;22(10):1282-3
– reference: 10802651 - Nat Genet. 2000 May;25(1):25-9
– reference: 15608210 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D334-7
– reference: 12539951 - Novartis Found Symp. 2002;247:91-101; discussion 101-3, 119-28, 244-52
– reference: 9843981 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8
– reference: 10521349 - Science. 1999 Oct 15;286(5439):531-7
– reference: 12724301 - Bioinformatics. 2003 May 1;19(7):891-2
– reference: 16503973 - BMC Bioinformatics. 2006;7:78
– reference: 12734014 - Genome Biol. 2003;4(5):R34
– reference: 11035779 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12079-84
– reference: 11102521 - Mol Biol Cell. 2000 Dec;11(12):4241-57
– reference: 15044247 - Bioinformatics. 2004 Sep 1;20(13):1993-2003
SSID ssj0014154
Score 2.4426253
Snippet Biclustering extends the traditional clustering techniques by attempting to find (all) subgroups of genes with similar expression patterns under...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
oup
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e101
SubjectTerms Algorithms
Cluster Analysis
Computational Biology
computer software
computers
data collection
gene expression
Gene Expression Profiling - methods
genes
Methods Online
Neoplasms - classification
Neoplasms - genetics
nucleic acids
Oligonucleotide Array Sequence Analysis
Title QUBIC: a qualitative biclustering algorithm for analyses of gene expression data
URI https://api.istex.fr/ark:/67375/HXZ-V4L2906B-R/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/19509312
https://www.proquest.com/docview/200657255
https://www.proquest.com/docview/20836282
https://www.proquest.com/docview/46364597
https://www.proquest.com/docview/67613209
https://pubmed.ncbi.nlm.nih.gov/PMC2731891
https://academic.oup.com/nar/article-pdf/37/15/e101/16753222/gkp491.pdf
UnpaywallVersion publishedVersion
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014154
  issn: 1362-4962
  databaseCode: HH5
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014154
  issn: 1362-4962
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014154
  issn: 1362-4962
  databaseCode: KQ8
  dateStart: 19740101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 20301231
  omitProxy: true
  ssIdentifier: ssj0014154
  issn: 1362-4962
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014154
  issn: 1362-4962
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014154
  issn: 1362-4962
  databaseCode: A8Z
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014154
  issn: 1362-4962
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014154
  issn: 1362-4962
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014154
  issn: 1362-4962
  databaseCode: RPM
  dateStart: 19740101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVASL
  databaseName: Oxford Journals Free Titles 2012-2013 - NESLI2
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014154
  issn: 1362-4962
  databaseCode: 70E
  dateStart: 0
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014154
  issn: 1362-4962
  databaseCode: TOX
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9t3cN4YbABC4NiiWkSD2ma2IkT3rqKURCMASvqeInsxG6ndmnVtdrGX885H9062MQDL1GUXJz6fPXd5e5-B7DLJOpgLaXtcpXaLEq0LX0R4hnlVEpNuWvqnT8fBp0u-9jzeyvwvqqFEWVWeKMqacjE1CmZaE9S7VDuuL6jUJIcF41dEyhw-sMJi3DLSfUqrAU-GuU1WOseHrVOihiCwdrM-2i5eY1Q5LPr88CrQEsjmr-sGGxJTa1qMUbj1fD98lYh3A179M-0yvV5NhFXF2I0uqGzDjZgUM22SFUZNuYz2Uh-3QKC_A_seAQPS7uWtIqHHsOKyjZhq5WhT392RfZInmmaf8LfhPV21WVuC46-dvc_tN8SQYryzhyHnEgcZG4gHFCxEjHqj6ens8EZQQObiBxFRZ2TsSYo_IqoyzKXNyMm3fUJdA_eHbc7dtnlwU58n89swcPES9KURqGvmxr3HMYo8zzu40VFmRYuCk8zbWqZormn3FQqqgKj3JUSXkKfQi0bZ2obCLqqMhABjhEylvI0NMhA6EA2uaYCPU8L3lSLGiclBLrpxDGKi1A8jZG9ccE-C14vaCcF8MdfqbZRNmLRxx057n73TBwY14GiDFqwlwvM4mkxHZosOu7Hnd7P-Af7ZJD29-NvFtRxde99yU4lbHG5w5yb9qGBz9EhtODV4i6unYn3iEyN54YkRBkPvbspDFocQ5fyboqAB6bIPrLgWSHc178zQluTujg6XxL7BYEBLl--k50OcgBzNJnd0Mxrd_EHuWf6z_-NbAceFJE-k5z5Amqz6Vy9RINxJuv5hxY8Hn_p1cuN4TcfMWiP
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB616aFceLRATaGsRFWJg-PYu-u1uaURJSCoyiOo5WLt2rtJldSJ0kS0_Hpm_UibQisO3Kx4vM7OTuaRmfkGYJcptMFGKdcXOnNZnBpXcRnhFRVUKUOFb_udPx2G3R77cMyPV-Bd3Qsjq6rwZt3SkMupVzHRnWTGo8LzuadRkjwfnV2bKPD6wwmLUeVkZhXWQo5OeQPWeodH7ZMyh2CxNos5Wn7RIxRzdnUdBjVoaUyLl5WLLZmpVSPH6Lxavl_caIS75o_-WVa5Ps8n8vKnHI2u2ayDBzCod1uWqgyb85lqpr9uAEH-B3Y8hPuVX0va5UOPYEXnG7DZzjGmP7ske6SoNC3-wt-A9U49ZW4Tjj739t933hBJyvbOAoecKFxkbiEc0LASOeqPp6ezwRlBB5vIAkVFn5OxISj8muiLqpY3J7bc9TH0Dt5-63TdasqDm3IuZq4UURqkWUbjiJuWQZ3DGGVBIDh-qCkz0kfhaWUtozJ097SfKU11aI271jJI6RNo5ONcbwHBUFWFMsQ1IsYykUUWGQgDyJYwVGLk6cDr-lCTtIJAt5M4RkmZiqcJsjcp2efAqwXtpAT--CvVFspGIvuokZPe18DmgfEcKMqgA3uFwCyeltOhraITPOke_0i-s48WaX8_-eLADp7unS_ZroUtqTTMuR0fGnKBAaEDLxd38exsvkfmejy3JBHKeBTcTmHR4hiGlLdThCK0TfaxA09L4b76njH6mtTH1cWS2C8ILHD58p38dFAAmKPL7Ed2X7uLH8gd23_2b2TbcK_M9NnizOfQmE3n-gU6jDO1UymD30nbZn4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QUBIC%3A+a+qualitative+biclustering+algorithm+for+analyses+of+gene+expression+data&rft.jtitle=Nucleic+acids+research&rft.au=Li%2C+Guojun&rft.au=Ma%2C+Qin&rft.au=Tang%2C+Haibao&rft.au=Paterson%2C+Andrew+H&rft.date=2009-08-01&rft.issn=0305-1048&rft.volume=37&rft.issue=15+p.e101-e101&rft_id=info:doi/10.1093%2Fnar%2Fgkp491&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon