QUBIC: a qualitative biclustering algorithm for analyses of gene expression data
Biclustering extends the traditional clustering techniques by attempting to find (all) subgroups of genes with similar expression patterns under to-be-identified subsets of experimental conditions when applied to gene expression data. Still the real power of this clustering strategy is yet to be ful...
        Saved in:
      
    
          | Published in | Nucleic acids research Vol. 37; no. 15; p. e101 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          Oxford University Press
    
        01.08.2009
     Oxford Publishing Limited (England)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0305-1048 1362-4962 1362-4954 1362-4962  | 
| DOI | 10.1093/nar/gkp491 | 
Cover
| Abstract | Biclustering extends the traditional clustering techniques by attempting to find (all) subgroups of genes with similar expression patterns under to-be-identified subsets of experimental conditions when applied to gene expression data. Still the real power of this clustering strategy is yet to be fully realized due to the lack of effective and efficient algorithms for reliably solving the general biclustering problem. We report a QUalitative BIClustering algorithm (QUBIC) that can solve the biclustering problem in a more general form, compared to existing algorithms, through employing a combination of qualitative (or semi-quantitative) measures of gene expression data and a combinatorial optimization technique. One key unique feature of the QUBIC algorithm is that it can identify all statistically significant biclusters including biclusters with the so-called 'scaling patterns', a problem considered to be rather challenging; another key unique feature is that the algorithm solves such general biclustering problems very efficiently, capable of solving biclustering problems with tens of thousands of genes under up to thousands of conditions in a few minutes of the CPU time on a desktop computer. We have demonstrated a considerably improved biclustering performance by our algorithm compared to the existing algorithms on various benchmark sets and data sets of our own. QUBIC was written in ANSI C and tested using GCC (version 4.1.2) on Linux. Its source code is available at: http://csbl.bmb.uga.edu/~maqin/bicluster. A server version of QUBIC is also available upon request. | 
    
|---|---|
| AbstractList | Biclustering extends the traditional clustering techniques by attempting to find (all) subgroups of genes with similar expression patterns under to-be-identified subsets of experimental conditions when applied to gene expression data. Still the real power of this clustering strategy is yet to be fully realized due to the lack of effective and efficient algorithms for reliably solving the general biclustering problem. We report a QUalitative BIClustering algorithm (QUBIC) that can solve the biclustering problem in a more general form, compared to existing algorithms, through employing a combination of qualitative (or semi-quantitative) measures of gene expression data and a combinatorial optimization technique. One key unique feature of the QUBIC algorithm is that it can identify all statistically significant biclusters including biclusters with the so-called 'scaling patterns', a problem considered to be rather challenging; another key unique feature is that the algorithm solves such general biclustering problems very efficiently, capable of solving biclustering problems with tens of thousands of genes under up to thousands of conditions in a few minutes of the CPU time on a desktop computer. We have demonstrated a considerably improved biclustering performance by our algorithm compared to the existing algorithms on various benchmark sets and data sets of our own. QUBIC was written in ANSI C and tested using GCC (version 4.1.2) on Linux. Its source code is available at: http://csbl.bmb.uga.edu/~maqin/bicluster. A server version of QUBIC is also available upon request. Biclustering extends the traditional clustering techniques by attempting to find (all) subgroups of genes with similar expression patterns under to-be-identified subsets of experimental conditions when applied to gene expression data. Still the real power of this clustering strategy is yet to be fully realized due to the lack of effective and efficient algorithms for reliably solving the general biclustering problem. We report a QUalitative BIClustering algorithm (QUBIC) that can solve the biclustering problem in a more general form, compared to existing algorithms, through employing a combination of qualitative (or semi-quantitative) measures of gene expression data and a combinatorial optimization technique. One key unique feature of the QUBIC algorithm is that it can identify all statistically significant biclusters including biclusters with the so-called 'scaling patterns', a problem considered to be rather challenging; another key unique feature is that the algorithm solves such general biclustering problems very efficiently, capable of solving biclustering problems with tens of thousands of genes under up to thousands of conditions in a few minutes of the CPU time on a desktop computer. We have demonstrated a considerably improved biclustering performance by our algorithm compared to the existing algorithms on various benchmark sets and data sets of our own. QUBIC was written in ANSI C and tested using GCC (version 4.1.2) on Linux. Its source code is available at: http://csbl.bmb.uga.edu/ similar to maqin/bicluster. A server version of QUBIC is also available upon request. Biclustering extends the traditional clustering techniques by attempting to find (all) subgroups of genes with similar expression patterns under to-be-identified subsets of experimental conditions when applied to gene expression data. Still the real power of this clustering strategy is yet to be fully realized due to the lack of effective and efficient algorithms for reliably solving the general biclustering problem. We report a QUalitative BIClustering algorithm (QUBIC) that can solve the biclustering problem in a more general form, compared to existing algorithms, through employing a combination of qualitative (or semi-quantitative) measures of gene expression data and a combinatorial optimization technique. One key unique feature of the QUBIC algorithm is that it can identify all statistically significant biclusters including biclusters with the so-called ‘scaling patterns’, a problem considered to be rather challenging; another key unique feature is that the algorithm solves such general biclustering problems very efficiently, capable of solving biclustering problems with tens of thousands of genes under up to thousands of conditions in a few minutes of the CPU time on a desktop computer. We have demonstrated a considerably improved biclustering performance by our algorithm compared to the existing algorithms on various benchmark sets and data sets of our own. QUBIC was written in ANSI C and tested using GCC (version 4.1.2) on Linux. Its source code is available at: http://csbl.bmb.uga.edu/∼maqin/bicluster. A server version of QUBIC is also available upon request. Biclustering extends the traditional clustering techniques by attempting to find (all) subgroups of genes with similar expression patterns under to-be-identified subsets of experimental conditions when applied to gene expression data. Still the real power of this clustering strategy is yet to be fully realized due to the lack of effective and efficient algorithms for reliably solving the general biclustering problem. We report a QUalitative BIClustering algorithm (QUBIC) that can solve the biclustering problem in a more general form, compared to existing algorithms, through employing a combination of qualitative (or semi-quantitative) measures of gene expression data and a combinatorial optimization technique. One key unique feature of the QUBIC algorithm is that it can identify all statistically significant biclusters including biclusters with the so-called 'scaling patterns', a problem considered to be rather challenging; another key unique feature is that the algorithm solves such general biclustering problems very efficiently, capable of solving biclustering problems with tens of thousands of genes under up to thousands of conditions in a few minutes of the CPU time on a desktop computer. We have demonstrated a considerably improved biclustering performance by our algorithm compared to the existing algorithms on various benchmark sets and data sets of our own. QUBIC was written in ANSI C and tested using GCC (version 4.1.2) on Linux. Its source code is available at: http://csbl.bmb.uga.edu/ approximately maqin/bicluster. A server version of QUBIC is also available upon request.Biclustering extends the traditional clustering techniques by attempting to find (all) subgroups of genes with similar expression patterns under to-be-identified subsets of experimental conditions when applied to gene expression data. Still the real power of this clustering strategy is yet to be fully realized due to the lack of effective and efficient algorithms for reliably solving the general biclustering problem. We report a QUalitative BIClustering algorithm (QUBIC) that can solve the biclustering problem in a more general form, compared to existing algorithms, through employing a combination of qualitative (or semi-quantitative) measures of gene expression data and a combinatorial optimization technique. One key unique feature of the QUBIC algorithm is that it can identify all statistically significant biclusters including biclusters with the so-called 'scaling patterns', a problem considered to be rather challenging; another key unique feature is that the algorithm solves such general biclustering problems very efficiently, capable of solving biclustering problems with tens of thousands of genes under up to thousands of conditions in a few minutes of the CPU time on a desktop computer. We have demonstrated a considerably improved biclustering performance by our algorithm compared to the existing algorithms on various benchmark sets and data sets of our own. QUBIC was written in ANSI C and tested using GCC (version 4.1.2) on Linux. Its source code is available at: http://csbl.bmb.uga.edu/ approximately maqin/bicluster. A server version of QUBIC is also available upon request. Biclustering extends the traditional clustering techniques by attempting to find (all) subgroups of genes with similar expression patterns under to-be-identified subsets of experimental conditions when applied to gene expression data. Still the real power of this clustering strategy is yet to be fully realized due to the lack of effective and efficient algorithms for reliably solving the general biclustering problem. We report a QUalitative BIClustering algorithm (QUBIC) that can solve the biclustering problem in a more general form, compared to existing algorithms, through employing a combination of qualitative (or semi-quantitative) measures of gene expression data and a combinatorial optimization technique. One key unique feature of the QUBIC algorithm is that it can identify all statistically significant biclusters including biclusters with the so-called 'scaling patterns', a problem considered to be rather challenging; another key unique feature is that the algorithm solves such general biclustering problems very efficiently, capable of solving biclustering problems with tens of thousands of genes under up to thousands of conditions in a few minutes of the CPU time on a desktop computer. We have demonstrated a considerably improved biclustering performance by our algorithm compared to the existing algorithms on various benchmark sets and data sets of our own. QUBIC was written in ANSI C and tested using GCC (version 4.1.2) on Linux. Its source code is available at: http://csbl.bmb.uga.edu/ approximately maqin/bicluster. A server version of QUBIC is also available upon request.  | 
    
| Author | Xu, Ying Paterson, Andrew H. Tang, Haibao Li, Guojun Ma, Qin  | 
    
| AuthorAffiliation | 1 Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA, 2 School of Mathematics, Shandong University, Jinan 250100, China, 3 Department of Plant Biology, University of Georgia, USA and 4 College of Computer Science and Technology, Jilin University, Changchun, China | 
    
| AuthorAffiliation_xml | – name: 1 Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA, 2 School of Mathematics, Shandong University, Jinan 250100, China, 3 Department of Plant Biology, University of Georgia, USA and 4 College of Computer Science and Technology, Jilin University, Changchun, China | 
    
| Author_xml | – sequence: 1 fullname: Li, Guojun – sequence: 2 fullname: Ma, Qin – sequence: 3 fullname: Tang, Haibao – sequence: 4 fullname: Paterson, Andrew H – sequence: 5 fullname: Xu, Ying  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19509312$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqF0ktv1DAQB_AIFdFt4cIHgKgSHEChfubBAYmu6ENaiecixMWaTSap26yd2knpfnu8zYpChdqTJfs3Y_k_3om2jDUYRU8peUNJwfcNuP3mvBMFfRBNKE9ZIoqUbUUTwolMKBH5drTj_RkhVFApHkXbtJChkLJJ9Onz_OBk-jaG-GKAVvfQ60uMF7psB9-j06aJoW2s0_3pMq6ti8FAu_LoY1vHDRqM8apz6L22Jq6gh8fRwxpaj0826240P_zwbXqczD4enUzfz5JSyqxPIMtLVlYVL3JZk5qTTAguGMtk2EQuaqASclKRelFJIZFWC-SYlogVIrCS70avx76D6WD1C9pWdU4vwa0UJWqdiwq5qDGXoN-NuhsWS6xKNL2DmwoLWv17YvSpauylYhmn-XWDl5sGzl4M6Hu11L7EtgWDdvAqzVLKWbj1PihSngpZZPdCRvIwypwFuHcLntnBhTGsDUllxqQM6NnfD7zJYjPpAF6NoHTWe4f13XGRW7i8_hp2HY5u_1_yYiyxQ3d362R0Ovyvqz8S3HnIkGdSHf_4qb6LGStIeqC-BP989DVYBY3TXs2_MkI5ocHLIuW_AeVV8Zs | 
    
| CODEN | NARHAD | 
    
| CitedBy_id | crossref_primary_10_1093_bioinformatics_btz414 crossref_primary_10_1016_j_neunet_2011_03_020 crossref_primary_10_1093_bib_bbae369 crossref_primary_10_1186_1748_7188_6_18 crossref_primary_10_1016_j_asoc_2024_112182 crossref_primary_10_1186_s12859_016_1356_3 crossref_primary_10_3389_fgene_2022_996941 crossref_primary_10_1007_s11042_019_7656_7 crossref_primary_10_1093_bib_bbaf050 crossref_primary_10_3390_plants13233410 crossref_primary_10_1093_nar_gku201 crossref_primary_10_1093_bioinformatics_btx199 crossref_primary_10_1371_journal_pone_0068886 crossref_primary_10_1093_bioinformatics_btaa630 crossref_primary_10_1109_TCBB_2023_3283801 crossref_primary_10_1109_ACCESS_2019_2911125 crossref_primary_10_1109_TCBB_2020_2980816 crossref_primary_10_1145_3617590 crossref_primary_10_1089_cmb_2019_0003 crossref_primary_10_1093_nar_gkt1013 crossref_primary_10_1007_s10115_018_1181_2 crossref_primary_10_1093_bib_bbx088 crossref_primary_10_3390_risks5020024 crossref_primary_10_1093_nargab_lqad009 crossref_primary_10_1155_2014_870406 crossref_primary_10_1186_1756_0381_5_8 crossref_primary_10_1007_s11390_013_1364_y crossref_primary_10_1371_journal_pone_0139591 crossref_primary_10_1371_journal_pcbi_1002228 crossref_primary_10_1371_journal_pcbi_1006792 crossref_primary_10_1016_j_heliyon_2024_e34736 crossref_primary_10_1016_j_compbiomed_2023_107458 crossref_primary_10_1089_cmb_2012_0032 crossref_primary_10_1111_nph_13898 crossref_primary_10_1186_s12859_019_3289_0 crossref_primary_10_1007_s10618_022_00834_3 crossref_primary_10_1093_abbs_gmz080 crossref_primary_10_1093_bioinformatics_btab108 crossref_primary_10_1145_2533712 crossref_primary_10_1186_s12859_022_04733_8 crossref_primary_10_1016_j_ymeth_2019_05_010 crossref_primary_10_1007_s10479_016_2261_x crossref_primary_10_1016_j_cor_2012_03_008 crossref_primary_10_1093_bioinformatics_btq227 crossref_primary_10_1038_srep35270 crossref_primary_10_1371_journal_pone_0041854 crossref_primary_10_1016_j_jtbi_2012_10_012 crossref_primary_10_1016_j_bspc_2022_104182 crossref_primary_10_18632_oncotarget_7012 crossref_primary_10_1371_journal_pone_0082890 crossref_primary_10_1093_bib_bbx051 crossref_primary_10_1371_journal_pcbi_1004791 crossref_primary_10_1016_j_cmpb_2015_02_010 crossref_primary_10_4137_CIN_S38000 crossref_primary_10_1038_s41598_017_13470_5 crossref_primary_10_1128_mSystems_00413_19 crossref_primary_10_1038_srep23466 crossref_primary_10_1109_TCBB_2015_2443805 crossref_primary_10_1007_s40484_014_0032_8 crossref_primary_10_1016_j_neunet_2022_12_010 crossref_primary_10_3389_fpls_2022_860791 crossref_primary_10_1093_bioinformatics_btz977 crossref_primary_10_1093_bioinformatics_bty401 crossref_primary_10_3390_math12111659 crossref_primary_10_1016_j_compbiolchem_2024_108090 crossref_primary_10_1016_j_genrep_2020_100894 crossref_primary_10_1186_1471_2229_12_138 crossref_primary_10_1109_RBME_2010_2083647 crossref_primary_10_1093_bioinformatics_btz692 crossref_primary_10_1093_nar_gkq960 crossref_primary_10_1093_nar_gkz139 crossref_primary_10_1093_nar_gkz655 crossref_primary_10_1371_journal_pone_0315533 crossref_primary_10_1002_sim_8536 crossref_primary_10_3390_sym15111977 crossref_primary_10_3389_fmicb_2023_1092143 crossref_primary_10_1016_j_xpro_2024_103317 crossref_primary_10_1093_nar_gkx590 crossref_primary_10_1093_bib_bby014 crossref_primary_10_1093_bib_bbs032 crossref_primary_10_1007_s42979_022_01624_w crossref_primary_10_1109_TKDE_2011_180 crossref_primary_10_4137_CIN_S13777 crossref_primary_10_3389_fpls_2022_864927 crossref_primary_10_1177_09622802221122427 crossref_primary_10_1093_bioinformatics_btw452 crossref_primary_10_1186_1471_2164_14_144 crossref_primary_10_1109_TEVC_2018_2884521 crossref_primary_10_3390_genes13111982 crossref_primary_10_1093_gigascience_giz064 crossref_primary_10_1371_journal_pone_0117135 crossref_primary_10_1111_pbi_13000 crossref_primary_10_1007_s41109_019_0180_x crossref_primary_10_1371_journal_pone_0032660 crossref_primary_10_1016_j_compbiolchem_2023_108009 crossref_primary_10_1016_j_asoc_2019_105688 crossref_primary_10_1097_MD_0000000000033647 crossref_primary_10_1016_j_eswa_2014_02_029 crossref_primary_10_1093_bib_bbae342 crossref_primary_10_1016_j_genrep_2022_101563 crossref_primary_10_1016_j_elerap_2019_100857 crossref_primary_10_1093_bioinformatics_btaa1038 crossref_primary_10_1186_gb_2010_11_9_r96 crossref_primary_10_1016_j_cmpb_2013_07_025 crossref_primary_10_1016_j_eswa_2018_06_001 crossref_primary_10_1186_1471_2105_12_497 crossref_primary_10_1515_bams_2015_0033 crossref_primary_10_1016_j_ymeth_2018_02_004 crossref_primary_10_1007_s12038_021_00171_5 crossref_primary_10_1016_j_mbs_2019_02_007 crossref_primary_10_1016_j_patcog_2021_107984 crossref_primary_10_1016_j_patrec_2012_05_001 crossref_primary_10_3389_fpls_2017_00780 crossref_primary_10_1016_j_asoc_2019_105614 crossref_primary_10_1186_s12859_023_05534_3 crossref_primary_10_1007_s12652_021_03036_9 crossref_primary_10_1016_j_jbi_2015_06_028 crossref_primary_10_1371_journal_pone_0116979 crossref_primary_10_1038_srep23030 crossref_primary_10_1186_s13040_018_0165_9 crossref_primary_10_1016_j_jlr_2021_100104 crossref_primary_10_1093_bioinformatics_btw635 crossref_primary_10_1016_j_mbs_2016_08_012 crossref_primary_10_1109_TCBB_2018_2820695 crossref_primary_10_1016_j_asoc_2015_06_019 crossref_primary_10_1007_s13042_023_01949_9 crossref_primary_10_1186_1748_7188_8_4 crossref_primary_10_1142_S1793830912500231 crossref_primary_10_1016_j_csbj_2023_03_028 crossref_primary_10_1142_S021972002050002X crossref_primary_10_1007_s13721_019_0211_7 crossref_primary_10_1093_nar_gkt261 crossref_primary_10_1093_nar_gkae480 crossref_primary_10_1093_bib_bbx090 crossref_primary_10_1016_j_genrep_2018_06_002 crossref_primary_10_1093_insilicoplants_diaa002 crossref_primary_10_3389_fpls_2016_00444 crossref_primary_10_1002_sam_11581 crossref_primary_10_1007_s42979_020_00411_9 crossref_primary_10_1186_s12859_023_05587_4 crossref_primary_10_1186_s12859_014_0355_5  | 
    
| Cites_doi | 10.1091/mbc.11.12.4241 10.1142/S0219720006002065 10.1093/bioinformatics/btl560 10.1186/1471-2105-8-250 10.1093/nar/gki108 10.1186/1471-2105-7-280 10.1089/10665270360688075 10.1093/bioinformatics/18.suppl_1.S136 10.1002/0470857897.ch8 10.1073/pnas.95.25.14863 10.1109/TCBB.2004.2 10.1093/bioinformatics/bti641 10.1038/75556 10.1093/bioinformatics/btl099 10.1186/1471-2105-6-232 10.1093/bioinformatics/btl060 10.1073/pnas.210134797 10.1093/bioinformatics/bth166 10.1093/nar/gkh894 10.1093/bioinformatics/18.3.413 10.1080/01621459.1963.10500855 10.1109/TITB.2006.872073 10.1038/ng765 10.1101/gr.648603 10.1126/science.286.5439.531 10.1186/gb-2003-4-5-r34 10.1080/01621459.1972.10481214 10.1186/1471-2164-9-S2-S20 10.1142/S021972000600217X 10.1186/1471-2105-7-78 10.1093/nar/gkm815 10.1093/bioinformatics/btg114  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2009 The Author(s) 2009 2009 The Author(s)  | 
    
| Copyright_xml | – notice: 2009 The Author(s) 2009 – notice: 2009 The Author(s)  | 
    
| DBID | FBQ BSCLL TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7SS 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7S9 L.6 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1093/nar/gkp491 | 
    
| DatabaseName | AGRIS Istex Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic  | 
    
| DatabaseTitleList | Genetics Abstracts MEDLINE - Academic Virology and AIDS Abstracts AGRICOLA MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Anatomy & Physiology Chemistry  | 
    
| EISSN | 1362-4962 | 
    
| EndPage | e101 | 
    
| ExternalDocumentID | 10.1093/nar/gkp491 PMC2731891 1855986531 19509312 10_1093_nar_gkp491 ark_67375_HXZ_V4L2906B_R US201301673596  | 
    
| Genre | Research Support, U.S. Gov't, Non-P.H.S Evaluation Studies Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- -DZ -~X .55 .GJ .I3 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 6.Y 70E 85S A8Z AAFWJ AAMVS AAOGV AAPPN AAPXW AAUQX AAVAP AAWDT AAYJJ ABPTD ABQLI ABQTQ ABSAR ABSMQ ACFRR ACGFO ACGFS ACIPB ACIWK ACNCT ACPQN ACPRK ACUTJ ADBBV ADHZD AEGXH AEKPW AENEX AENZO AEQTP AFFNX AFPKN AFRAH AFULF AFYAG AGKRT AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD AOIJS AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ BTTYL C1A CAG CIDKT COF CS3 CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS EJD ELUNK EMOBN ESTFP F20 F5P FBQ FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KC5 KQ8 KSI M49 MBTAY MVM M~E NTWIH NU- OAWHX OBC OBS OEB OES OJQWA OJZSN OVD O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROX ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XFK XSB XSW YSK ZA5 ZKX ZXP ~91 ~D7 ~KM 0R~ AAHBH ABEJV ABGNP ABIME ABNGD ABPIB ABXVV ABZEO ACUKT ACVCV ACZBC AEHUL AFSHK AGMDO AGQPQ AMNDL APJGH BSCLL OVT ACMRT AAYXX CITATION ADIXU CGR CUY CVF ECM EIF NPM PKN 7QL 7QO 7QP 7QR 7SS 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7S9 L.6 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c557t-a78c2cdd3985f0f30744342275cdde34fa15a80d0fbd545e1dbe3e6ceedeea2c3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0305-1048 1362-4962 1362-4954  | 
    
| IngestDate | Sun Oct 26 04:15:35 EDT 2025 Tue Sep 30 16:37:44 EDT 2025 Thu Oct 02 08:10:32 EDT 2025 Thu Oct 02 12:10:48 EDT 2025 Mon Sep 08 06:36:38 EDT 2025 Mon Oct 06 17:56:32 EDT 2025 Wed Feb 19 01:47:19 EST 2025 Wed Oct 01 02:24:27 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Wed Aug 28 03:25:06 EDT 2024 Sat Sep 20 11:01:27 EDT 2025 Wed Dec 27 19:14:37 EST 2023  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 15 | 
    
| Language | English | 
    
| License | http://creativecommons.org/licenses/by-nc/2.0/uk This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. other-oa  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c557t-a78c2cdd3985f0f30744342275cdde34fa15a80d0fbd545e1dbe3e6ceedeea2c3 | 
    
| Notes | ArticleID:gkp491 ark:/67375/HXZ-V4L2906B-R istex:FBDDCF7254638126E1BA09AB2D569FAF08990143 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-1 ObjectType-Feature-3  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/nar/article-pdf/37/15/e101/16753222/gkp491.pdf | 
    
| PMID | 19509312 | 
    
| PQID | 200657255 | 
    
| PQPubID | 36121 | 
    
| ParticipantIDs | unpaywall_primary_10_1093_nar_gkp491 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2731891 proquest_miscellaneous_67613209 proquest_miscellaneous_46364597 proquest_miscellaneous_20836282 proquest_journals_200657255 pubmed_primary_19509312 crossref_primary_10_1093_nar_gkp491 crossref_citationtrail_10_1093_nar_gkp491 oup_primary_10_1093_nar_gkp491 istex_primary_ark_67375_HXZ_V4L2906B_R fao_agris_US201301673596  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2009-08-01 | 
    
| PublicationDateYYYYMMDD | 2009-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2009 text: 2009-08-01 day: 01  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England – name: Oxford  | 
    
| PublicationTitle | Nucleic acids research | 
    
| PublicationTitleAlternate | Nucleic Acids Res | 
    
| PublicationYear | 2009 | 
    
| Publisher | Oxford University Press Oxford Publishing Limited (England)  | 
    
| Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England)  | 
    
| References | Kluger ( key 20170510120623_B34) 2003; 13 Eisen ( key 20170510120623_B3) 1998; 95 Kung ( key 20170510120623_B16) 2006; 4 Bryan ( key 20170510120623_B9) 2008; 9 Castillo-Davis ( key 20170510120623_B31) 2003; 19 Golub ( key 20170510120623_B36) 1999; 286 Barkow ( key 20170510120623_B25) 2006; 22 Ben-dor ( key 20170510120623_B12) 2003; 10 Faith ( key 20170510120623_B27) 2008; 36 Keseler ( key 20170510120623_B30) 2005; 33 Ruepp ( key 20170510120623_B33) 2004; 32 Bryan ( key 20170510120623_B10) 2006; 10 Huttenhower ( key 20170510120623_B21) 2007; 8 Ashburner ( key 20170510120623_B28) 2000; 25 Xu ( key 20170510120623_B4) 2002; 18 Bryan ( key 20170510120623_B19) 2006; 10 Getz ( key 20170510120623_B7) 2000; 97 Kanehisa ( key 20170510120623_B29) 2002; 247 Madeira ( key 20170510120623_B23) 2004; 1 Shamir ( key 20170510120623_B26) 2005; 6 Ihmels ( key 20170510120623_B20) 2004; 20 Tanay ( key 20170510120623_B14) 2002; 18 Yeung ( key 20170510120623_B1) 2003; 4 Prelic ( key 20170510120623_B13) 2006; 22 Gasch ( key 20170510120623_B32) 2000; 11 Liu ( key 20170510120623_B22) 2007; 23 Murali ( key 20170510120623_B24) 2003; 8 Cheng ( key 20170510120623_B8) 2000; 8 McLachlan ( key 20170510120623_B2) 2002; 18 Hartigan ( key 20170510120623_B6) 1972; 67 Armstrong ( key 20170510120623_B35) 2002; 30 Reiss ( key 20170510120623_B11) 2006; 7 Aguilar-Ruiz ( key 20170510120623_B15) 2005; 21 Carmona-Saez ( key 20170510120623_B18) 2006; 7 Morgan ( key 20170510120623_B5) 1963; 58 Li ( key 20170510120623_B17) 2006; 4 16176576 - BMC Bioinformatics. 2005;6:232 16819784 - J Bioinform Comput Biol. 2006 Apr;4(2):275-98 12016051 - Bioinformatics. 2002 Apr;18(4):536-45 17090578 - Bioinformatics. 2007 Jan 1;23(1):50-6 11934740 - Bioinformatics. 2002 Mar;18(3):413-22 15044247 - Bioinformatics. 2004 Sep 1;20(13):1993-2003 16871720 - IEEE Trans Inf Technol Biomed. 2006 Jul;10(3):519-25 15486203 - Nucleic Acids Res. 2004;32(18):5539-45 10977070 - Proc Int Conf Intell Syst Mol Biol. 2000;8:93-103 9843981 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8 15608210 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D334-7 12671006 - Genome Res. 2003 Apr;13(4):703-16 16551664 - Bioinformatics. 2006 May 15;22(10):1282-3 16500941 - Bioinformatics. 2006 May 1;22(9):1122-9 12603019 - Pac Symp Biocomput. 2003;:77-88 17048406 - IEEE/ACM Trans Comput Biol Bioinform. 2004 Jan-Mar;1(1):24-45 11035779 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12079-84 12169541 - Bioinformatics. 2002;18 Suppl 1:S136-44 17626636 - BMC Bioinformatics. 2007;8:250 16749936 - BMC Bioinformatics. 2006;7:280 11731795 - Nat Genet. 2002 Jan;30(1):41-7 16144809 - Bioinformatics. 2005 Oct 15;21(20):3840-5 17007074 - J Bioinform Comput Biol. 2006 Aug;4(4):911-33 12724301 - Bioinformatics. 2003 May 1;19(7):891-2 17932051 - Nucleic Acids Res. 2008 Jan;36(Database issue):D866-70 10802651 - Nat Genet. 2000 May;25(1):25-9 12935334 - J Comput Biol. 2003;10(3-4):373-84 11102521 - Mol Biol Cell. 2000 Dec;11(12):4241-57 16503973 - BMC Bioinformatics. 2006;7:78 10521349 - Science. 1999 Oct 15;286(5439):531-7 12539951 - Novartis Found Symp. 2002;247:91-101; discussion 101-3, 119-28, 244-52 12734014 - Genome Biol. 2003;4(5):R34 18831786 - BMC Genomics. 2008;9 Suppl 2:S20  | 
    
| References_xml | – volume: 11 start-page: 4241 year: 2000 ident: key 20170510120623_B32 article-title: Genomic expression programs in the response of yeast cells to environmental changes publication-title: Mol. Biol. Cell doi: 10.1091/mbc.11.12.4241 – volume: 4 start-page: 275 year: 2006 ident: key 20170510120623_B16 article-title: Symmetric and asymmetric multi-modality biclustering analysis for microarray data matrix publication-title: J. Bioinform. Comput. Biol. doi: 10.1142/S0219720006002065 – volume: 23 start-page: 50 year: 2007 ident: key 20170510120623_B22 article-title: Computing the maximum similarity bi-clusters of gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl560 – volume: 18 start-page: 536 year: 2002 ident: key 20170510120623_B4 publication-title: Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees. – volume: 8 start-page: 250 year: 2007 ident: key 20170510120623_B21 article-title: Nearest Neighbor Networks: clustering expression data based on gene neighborhoods publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-250 – volume: 33 start-page: D334 year: 2005 ident: key 20170510120623_B30 article-title: EcoCyc: a comprehensive database resource for Escherichia coli publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki108 – volume: 7 start-page: 280 year: 2006 ident: key 20170510120623_B11 article-title: Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-280 – volume: 10 start-page: 373 year: 2003 ident: key 20170510120623_B12 article-title: Discovering local structure in gene expression data: the order-preserving submatrix problem publication-title: J. Comput. Biol. doi: 10.1089/10665270360688075 – volume: 18 start-page: S136 year: 2002 ident: key 20170510120623_B14 article-title: Discovering statistically significant biclusters in gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.suppl_1.S136 – volume: 247 start-page: 91 year: 2002 ident: key 20170510120623_B29 article-title: The KEGG database publication-title: Novartis Found. Symp. doi: 10.1002/0470857897.ch8 – volume: 95 start-page: 14863 year: 1998 ident: key 20170510120623_B3 article-title: Cluster analysis and display of genome-wide expression patterns publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.95.25.14863 – volume: 1 start-page: 24 year: 2004 ident: key 20170510120623_B23 article-title: Biclustering algorithms for biological data analysis: a survey publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2004.2 – volume: 21 start-page: 3840 year: 2005 ident: key 20170510120623_B15 article-title: Shifting and scaling patterns from gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti641 – volume: 25 start-page: 25 year: 2000 ident: key 20170510120623_B28 article-title: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium publication-title: Nat Genet. doi: 10.1038/75556 – volume: 22 start-page: 1282 year: 2006 ident: key 20170510120623_B25 article-title: BicAT: a biclustering analysis toolbox publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl099 – volume: 6 start-page: 232 year: 2005 ident: key 20170510120623_B26 article-title: EXPANDER—an integrative program suite for microarray data analysis publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-232 – volume: 22 start-page: 1122 year: 2006 ident: key 20170510120623_B13 article-title: A systematic comparison and evaluation of biclustering methods for gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl060 – volume: 97 start-page: 12079 year: 2000 ident: key 20170510120623_B7 article-title: Coupled two-way clustering analysis of gene microarray data publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.210134797 – volume: 20 start-page: 1993 year: 2004 ident: key 20170510120623_B20 article-title: Defining transcription modules using large-scale gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth166 – volume: 32 start-page: 5539 year: 2004 ident: key 20170510120623_B33 article-title: The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh894 – volume: 18 start-page: 413 year: 2002 ident: key 20170510120623_B2 article-title: A mixture model-based approach to the clustering of microarray expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.3.413 – volume: 58 start-page: 415 year: 1963 ident: key 20170510120623_B5 article-title: Problems in the analysis of survey data, and proposal publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1963.10500855 – volume: 10 start-page: 519 year: 2006 ident: key 20170510120623_B10 article-title: Application of simulated annealing to the biclustering of gene expression data publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2006.872073 – volume: 30 start-page: 41 year: 2002 ident: key 20170510120623_B35 article-title: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia publication-title: Nat. Genet. doi: 10.1038/ng765 – volume: 10 start-page: 519 year: 2006 ident: key 20170510120623_B19 article-title: Application of simulated annealing to the biclustering of gene expression data publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2006.872073 – volume: 13 start-page: 703 year: 2003 ident: key 20170510120623_B34 article-title: Spectral biclustering of microarray data: coclustering genes and conditions publication-title: Genome Res. doi: 10.1101/gr.648603 – volume: 8 start-page: 93 year: 2000 ident: key 20170510120623_B8 article-title: Biclustering of expression data publication-title: Proc. Int. Conf. Intell. Syst. Mol. Biol. – volume: 286 start-page: 531 year: 1999 ident: key 20170510120623_B36 article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring publication-title: Science doi: 10.1126/science.286.5439.531 – volume: 4 start-page: R34 year: 2003 ident: key 20170510120623_B1 article-title: Clustering gene-expression data with repeated measurements publication-title: Genome Biol. doi: 10.1186/gb-2003-4-5-r34 – volume: 67 start-page: 123 year: 1972 ident: key 20170510120623_B6 article-title: Diret clustering of a data matrix publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1972.10481214 – volume: 9 start-page: S20 year: 2008 ident: key 20170510120623_B9 article-title: Extending bicluster analysis to annotate unclassified ORFs and predict novel functional modules using expression data publication-title: BMC Genomics doi: 10.1186/1471-2164-9-S2-S20 – volume: 4 start-page: 911 year: 2006 ident: key 20170510120623_B17 article-title: A general framework for biclustering gene expression data publication-title: J. Bioinform. Comput. Biol. doi: 10.1142/S021972000600217X – volume: 7 start-page: 78 year: 2006 ident: key 20170510120623_B18 article-title: Biclustering of gene expression data by non-smooth non-negative matrix factorization publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-78 – volume: 8 start-page: 77 year: 2003 ident: key 20170510120623_B24 article-title: Extracting conserved gene expression motifs from gene expression data publication-title: Pac. Symp. Biocomput. – volume: 36 start-page: D866 year: 2008 ident: key 20170510120623_B27 article-title: Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm815 – volume: 19 start-page: 891 year: 2003 ident: key 20170510120623_B31 article-title: GeneMerge—post-genomic analysis, data mining, and hypothesis testing publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg114 – reference: 17007074 - J Bioinform Comput Biol. 2006 Aug;4(4):911-33 – reference: 16871720 - IEEE Trans Inf Technol Biomed. 2006 Jul;10(3):519-25 – reference: 16500941 - Bioinformatics. 2006 May 1;22(9):1122-9 – reference: 15486203 - Nucleic Acids Res. 2004;32(18):5539-45 – reference: 16819784 - J Bioinform Comput Biol. 2006 Apr;4(2):275-98 – reference: 17932051 - Nucleic Acids Res. 2008 Jan;36(Database issue):D866-70 – reference: 11934740 - Bioinformatics. 2002 Mar;18(3):413-22 – reference: 16144809 - Bioinformatics. 2005 Oct 15;21(20):3840-5 – reference: 10977070 - Proc Int Conf Intell Syst Mol Biol. 2000;8:93-103 – reference: 18831786 - BMC Genomics. 2008;9 Suppl 2:S20 – reference: 16176576 - BMC Bioinformatics. 2005;6:232 – reference: 11731795 - Nat Genet. 2002 Jan;30(1):41-7 – reference: 12016051 - Bioinformatics. 2002 Apr;18(4):536-45 – reference: 17626636 - BMC Bioinformatics. 2007;8:250 – reference: 17090578 - Bioinformatics. 2007 Jan 1;23(1):50-6 – reference: 12169541 - Bioinformatics. 2002;18 Suppl 1:S136-44 – reference: 12603019 - Pac Symp Biocomput. 2003;:77-88 – reference: 16749936 - BMC Bioinformatics. 2006;7:280 – reference: 12671006 - Genome Res. 2003 Apr;13(4):703-16 – reference: 12935334 - J Comput Biol. 2003;10(3-4):373-84 – reference: 17048406 - IEEE/ACM Trans Comput Biol Bioinform. 2004 Jan-Mar;1(1):24-45 – reference: 16551664 - Bioinformatics. 2006 May 15;22(10):1282-3 – reference: 10802651 - Nat Genet. 2000 May;25(1):25-9 – reference: 15608210 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D334-7 – reference: 12539951 - Novartis Found Symp. 2002;247:91-101; discussion 101-3, 119-28, 244-52 – reference: 9843981 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8 – reference: 10521349 - Science. 1999 Oct 15;286(5439):531-7 – reference: 12724301 - Bioinformatics. 2003 May 1;19(7):891-2 – reference: 16503973 - BMC Bioinformatics. 2006;7:78 – reference: 12734014 - Genome Biol. 2003;4(5):R34 – reference: 11035779 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12079-84 – reference: 11102521 - Mol Biol Cell. 2000 Dec;11(12):4241-57 – reference: 15044247 - Bioinformatics. 2004 Sep 1;20(13):1993-2003  | 
    
| SSID | ssj0014154 | 
    
| Score | 2.4426253 | 
    
| Snippet | Biclustering extends the traditional clustering techniques by attempting to find (all) subgroups of genes with similar expression patterns under... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref oup istex fao  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | e101 | 
    
| SubjectTerms | Algorithms Cluster Analysis Computational Biology computer software computers data collection gene expression Gene Expression Profiling - methods genes Methods Online Neoplasms - classification Neoplasms - genetics nucleic acids Oligonucleotide Array Sequence Analysis  | 
    
| Title | QUBIC: a qualitative biclustering algorithm for analyses of gene expression data | 
    
| URI | https://api.istex.fr/ark:/67375/HXZ-V4L2906B-R/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/19509312 https://www.proquest.com/docview/200657255 https://www.proquest.com/docview/20836282 https://www.proquest.com/docview/46364597 https://www.proquest.com/docview/67613209 https://pubmed.ncbi.nlm.nih.gov/PMC2731891 https://academic.oup.com/nar/article-pdf/37/15/e101/16753222/gkp491.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 37 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014154 issn: 1362-4962 databaseCode: HH5 dateStart: 19960101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014154 issn: 1362-4962 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014154 issn: 1362-4962 databaseCode: KQ8 dateStart: 19740101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1362-4962 dateEnd: 20301231 omitProxy: true ssIdentifier: ssj0014154 issn: 1362-4962 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014154 issn: 1362-4962 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014154 issn: 1362-4962 databaseCode: A8Z dateStart: 19960101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014154 issn: 1362-4962 databaseCode: DIK dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014154 issn: 1362-4962 databaseCode: GX1 dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014154 issn: 1362-4962 databaseCode: RPM dateStart: 19740101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVASL databaseName: Oxford Journals Free Titles 2012-2013 - NESLI2 customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014154 issn: 1362-4962 databaseCode: 70E dateStart: 0 isFulltext: true titleUrlDefault: https://academic.oup.com/journals providerName: Oxford University Press – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014154 issn: 1362-4962 databaseCode: TOX dateStart: 19960101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9t3cN4YbABC4NiiWkSD2ma2IkT3rqKURCMASvqeInsxG6ndmnVtdrGX885H9062MQDL1GUXJz6fPXd5e5-B7DLJOpgLaXtcpXaLEq0LX0R4hnlVEpNuWvqnT8fBp0u-9jzeyvwvqqFEWVWeKMqacjE1CmZaE9S7VDuuL6jUJIcF41dEyhw-sMJi3DLSfUqrAU-GuU1WOseHrVOihiCwdrM-2i5eY1Q5LPr88CrQEsjmr-sGGxJTa1qMUbj1fD98lYh3A179M-0yvV5NhFXF2I0uqGzDjZgUM22SFUZNuYz2Uh-3QKC_A_seAQPS7uWtIqHHsOKyjZhq5WhT392RfZInmmaf8LfhPV21WVuC46-dvc_tN8SQYryzhyHnEgcZG4gHFCxEjHqj6ens8EZQQObiBxFRZ2TsSYo_IqoyzKXNyMm3fUJdA_eHbc7dtnlwU58n89swcPES9KURqGvmxr3HMYo8zzu40VFmRYuCk8zbWqZormn3FQqqgKj3JUSXkKfQi0bZ2obCLqqMhABjhEylvI0NMhA6EA2uaYCPU8L3lSLGiclBLrpxDGKi1A8jZG9ccE-C14vaCcF8MdfqbZRNmLRxx057n73TBwY14GiDFqwlwvM4mkxHZosOu7Hnd7P-Af7ZJD29-NvFtRxde99yU4lbHG5w5yb9qGBz9EhtODV4i6unYn3iEyN54YkRBkPvbspDFocQ5fyboqAB6bIPrLgWSHc178zQluTujg6XxL7BYEBLl--k50OcgBzNJnd0Mxrd_EHuWf6z_-NbAceFJE-k5z5Amqz6Vy9RINxJuv5hxY8Hn_p1cuN4TcfMWiP | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB616aFceLRATaGsRFWJg-PYu-u1uaURJSCoyiOo5WLt2rtJldSJ0kS0_Hpm_UibQisO3Kx4vM7OTuaRmfkGYJcptMFGKdcXOnNZnBpXcRnhFRVUKUOFb_udPx2G3R77cMyPV-Bd3Qsjq6rwZt3SkMupVzHRnWTGo8LzuadRkjwfnV2bKPD6wwmLUeVkZhXWQo5OeQPWeodH7ZMyh2CxNos5Wn7RIxRzdnUdBjVoaUyLl5WLLZmpVSPH6Lxavl_caIS75o_-WVa5Ps8n8vKnHI2u2ayDBzCod1uWqgyb85lqpr9uAEH-B3Y8hPuVX0va5UOPYEXnG7DZzjGmP7ske6SoNC3-wt-A9U49ZW4Tjj739t933hBJyvbOAoecKFxkbiEc0LASOeqPp6ezwRlBB5vIAkVFn5OxISj8muiLqpY3J7bc9TH0Dt5-63TdasqDm3IuZq4UURqkWUbjiJuWQZ3DGGVBIDh-qCkz0kfhaWUtozJ097SfKU11aI271jJI6RNo5ONcbwHBUFWFMsQ1IsYykUUWGQgDyJYwVGLk6cDr-lCTtIJAt5M4RkmZiqcJsjcp2efAqwXtpAT--CvVFspGIvuokZPe18DmgfEcKMqgA3uFwCyeltOhraITPOke_0i-s48WaX8_-eLADp7unS_ZroUtqTTMuR0fGnKBAaEDLxd38exsvkfmejy3JBHKeBTcTmHR4hiGlLdThCK0TfaxA09L4b76njH6mtTH1cWS2C8ILHD58p38dFAAmKPL7Ed2X7uLH8gd23_2b2TbcK_M9NnizOfQmE3n-gU6jDO1UymD30nbZn4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QUBIC%3A+a+qualitative+biclustering+algorithm+for+analyses+of+gene+expression+data&rft.jtitle=Nucleic+acids+research&rft.au=Li%2C+Guojun&rft.au=Ma%2C+Qin&rft.au=Tang%2C+Haibao&rft.au=Paterson%2C+Andrew+H&rft.date=2009-08-01&rft.issn=0305-1048&rft.volume=37&rft.issue=15+p.e101-e101&rft_id=info:doi/10.1093%2Fnar%2Fgkp491&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |