Plasma inflammatory biomarkers for Huntington’s disease patients and mouse model
•Increased plasma IL-6, MMP-9, VEGF, and TGF-β1 in HD patients.•Decreased IL-18 plasma levels in HD patients.•Plasma IL-6 reversely correlates with independence scale and functional capacity.•Alterations of the inflammatory markers were found in R6/2 mice at different ages.•These inflammatory marker...
Saved in:
Published in | Brain, behavior, and immunity Vol. 44; pp. 121 - 127 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.02.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0889-1591 1090-2139 1090-2139 |
DOI | 10.1016/j.bbi.2014.09.011 |
Cover
Abstract | •Increased plasma IL-6, MMP-9, VEGF, and TGF-β1 in HD patients.•Decreased IL-18 plasma levels in HD patients.•Plasma IL-6 reversely correlates with independence scale and functional capacity.•Alterations of the inflammatory markers were found in R6/2 mice at different ages.•These inflammatory markers may serve as the potential biomarkers for HD.
Huntington’s disease (HD), caused by expanded CAG repeats encoding a polyglutamine tract in the huntingtin (HTT) protein, presents with a predominant degeneration of neurons in the striatum and cortex. Lines of evidence have observed neuroinflammation, particularly microglial activation, is involved in the pathogenesis of HD. Given that HTT is also expressed in peripheral inflammatory cells, it is possible that inflammatory changes detected in peripheral plasma may be biologically relevant and parallel the neuroinflammatory process of HD patients. By examining the expression levels of 13 microglia-derived inflammatory markers in the plasma of 5 PreHD carriers, 15 HD patients and 16 healthy controls, we found plasma levels of IL-6, MMP-9, VEGF and TGF-β1 were significantly increased in HD patients when compared with the controls, while plasma level of IL-18 were significantly reduced in HD patients compared with controls. Plasma level of IL-6 was reversely correlated with the UHDRS independence scale and functional capacity. To understand the temporal correlation between these inflammatory markers and HD progression, their levels were further tested in plasma from R6/2 mouse HD model at different ages. In rotarod test, R6/2 HD mice started to manifest HD phenotype at 7.5weeks of age. Higher plasma VEGF levels of R6/2 mice than those of age-matched wild-type (WT) littermates were noted from 7 (presymptomatic stage) to 13weeks of age (late symptomatic stage). The plasma IL-6 levels of R6/2 mice were higher than those of the WT littermates from 9 (early symptomatic stage) to 13weeks of age. R6/2 mice demonstrated higher MMP-9 and TGF-β1 levels than their WT littermates from 11 (middle symptomatic stage) to 13weeks of age. In contrast, the plasma IL-18 level was lower than those in WT littermates since 11weeks of age. These altered expressions of inflammatory markers may serve as the potential biomarkers for HD onset and progression. Specific inhibition/activation of these inflammatory markers may be the targets of HD drug development. |
---|---|
AbstractList | Huntington's disease (HD), caused by expanded CAG repeats encoding a polyglutamine tract in the huntingtin (HTT) protein, presents with a predominant degeneration of neurons in the striatum and cortex. Lines of evidence have observed neuroinflammation, particularly microglial activation, is involved in the pathogenesis of HD. Given that HTT is also expressed in peripheral inflammatory cells, it is possible that inflammatory changes detected in peripheral plasma may be biologically relevant and parallel the neuroinflammatory process of HD patients. By examining the expression levels of 13 microglia-derived inflammatory markers in the plasma of 5 PreHD carriers, 15 HD patients and 16 healthy controls, we found plasma levels of IL-6, MMP-9, VEGF and TGF-β1 were significantly increased in HD patients when compared with the controls, while plasma level of IL-18 were significantly reduced in HD patients compared with controls. Plasma level of IL-6 was reversely correlated with the UHDRS independence scale and functional capacity. To understand the temporal correlation between these inflammatory markers and HD progression, their levels were further tested in plasma from R6/2 mouse HD model at different ages. In rotarod test, R6/2 HD mice started to manifest HD phenotype at 7.5 weeks of age. Higher plasma VEGF levels of R6/2 mice than those of age-matched wild-type (WT) littermates were noted from 7 (presymptomatic stage) to 13 weeks of age (late symptomatic stage). The plasma IL-6 levels of R6/2 mice were higher than those of the WT littermates from 9 (early symptomatic stage) to 13 weeks of age. R6/2 mice demonstrated higher MMP-9 and TGF-β1 levels than their WT littermates from 11 (middle symptomatic stage) to 13 weeks of age. In contrast, the plasma IL-18 level was lower than those in WT littermates since 11 weeks of age. These altered expressions of inflammatory markers may serve as the potential biomarkers for HD onset and progression. Specific inhibition/activation of these inflammatory markers may be the targets of HD drug development.Huntington's disease (HD), caused by expanded CAG repeats encoding a polyglutamine tract in the huntingtin (HTT) protein, presents with a predominant degeneration of neurons in the striatum and cortex. Lines of evidence have observed neuroinflammation, particularly microglial activation, is involved in the pathogenesis of HD. Given that HTT is also expressed in peripheral inflammatory cells, it is possible that inflammatory changes detected in peripheral plasma may be biologically relevant and parallel the neuroinflammatory process of HD patients. By examining the expression levels of 13 microglia-derived inflammatory markers in the plasma of 5 PreHD carriers, 15 HD patients and 16 healthy controls, we found plasma levels of IL-6, MMP-9, VEGF and TGF-β1 were significantly increased in HD patients when compared with the controls, while plasma level of IL-18 were significantly reduced in HD patients compared with controls. Plasma level of IL-6 was reversely correlated with the UHDRS independence scale and functional capacity. To understand the temporal correlation between these inflammatory markers and HD progression, their levels were further tested in plasma from R6/2 mouse HD model at different ages. In rotarod test, R6/2 HD mice started to manifest HD phenotype at 7.5 weeks of age. Higher plasma VEGF levels of R6/2 mice than those of age-matched wild-type (WT) littermates were noted from 7 (presymptomatic stage) to 13 weeks of age (late symptomatic stage). The plasma IL-6 levels of R6/2 mice were higher than those of the WT littermates from 9 (early symptomatic stage) to 13 weeks of age. R6/2 mice demonstrated higher MMP-9 and TGF-β1 levels than their WT littermates from 11 (middle symptomatic stage) to 13 weeks of age. In contrast, the plasma IL-18 level was lower than those in WT littermates since 11 weeks of age. These altered expressions of inflammatory markers may serve as the potential biomarkers for HD onset and progression. Specific inhibition/activation of these inflammatory markers may be the targets of HD drug development. Highlights • Increased plasma IL-6, MMP-9, VEGF, and TGF-β1 in HD patients. • Decreased IL-18 plasma levels in HD patients. • Plasma IL-6 reversely correlates with independence scale and functional capacity. • Alterations of the inflammatory markers were found in R6/2 mice at different ages. • These inflammatory markers may serve as the potential biomarkers for HD. •Increased plasma IL-6, MMP-9, VEGF, and TGF-β1 in HD patients.•Decreased IL-18 plasma levels in HD patients.•Plasma IL-6 reversely correlates with independence scale and functional capacity.•Alterations of the inflammatory markers were found in R6/2 mice at different ages.•These inflammatory markers may serve as the potential biomarkers for HD. Huntington’s disease (HD), caused by expanded CAG repeats encoding a polyglutamine tract in the huntingtin (HTT) protein, presents with a predominant degeneration of neurons in the striatum and cortex. Lines of evidence have observed neuroinflammation, particularly microglial activation, is involved in the pathogenesis of HD. Given that HTT is also expressed in peripheral inflammatory cells, it is possible that inflammatory changes detected in peripheral plasma may be biologically relevant and parallel the neuroinflammatory process of HD patients. By examining the expression levels of 13 microglia-derived inflammatory markers in the plasma of 5 PreHD carriers, 15 HD patients and 16 healthy controls, we found plasma levels of IL-6, MMP-9, VEGF and TGF-β1 were significantly increased in HD patients when compared with the controls, while plasma level of IL-18 were significantly reduced in HD patients compared with controls. Plasma level of IL-6 was reversely correlated with the UHDRS independence scale and functional capacity. To understand the temporal correlation between these inflammatory markers and HD progression, their levels were further tested in plasma from R6/2 mouse HD model at different ages. In rotarod test, R6/2 HD mice started to manifest HD phenotype at 7.5weeks of age. Higher plasma VEGF levels of R6/2 mice than those of age-matched wild-type (WT) littermates were noted from 7 (presymptomatic stage) to 13weeks of age (late symptomatic stage). The plasma IL-6 levels of R6/2 mice were higher than those of the WT littermates from 9 (early symptomatic stage) to 13weeks of age. R6/2 mice demonstrated higher MMP-9 and TGF-β1 levels than their WT littermates from 11 (middle symptomatic stage) to 13weeks of age. In contrast, the plasma IL-18 level was lower than those in WT littermates since 11weeks of age. These altered expressions of inflammatory markers may serve as the potential biomarkers for HD onset and progression. Specific inhibition/activation of these inflammatory markers may be the targets of HD drug development. Huntington's disease (HD), caused by expanded CAG repeats encoding a polyglutamine tract in the huntingtin (HTT) protein, presents with a predominant degeneration of neurons in the striatum and cortex. Lines of evidence have observed neuroinflammation, particularly microglial activation, is involved in the pathogenesis of HD. Given that HTT is also expressed in peripheral inflammatory cells, it is possible that inflammatory changes detected in peripheral plasma may be biologically relevant and parallel the neuroinflammatory process of HD patients. By examining the expression levels of 13 microglia-derived inflammatory markers in the plasma of 5 PreHD carriers, 15 HD patients and 16 healthy controls, we found plasma levels of IL-6, MMP-9, VEGF and TGF-β1 were significantly increased in HD patients when compared with the controls, while plasma level of IL-18 were significantly reduced in HD patients compared with controls. Plasma level of IL-6 was reversely correlated with the UHDRS independence scale and functional capacity. To understand the temporal correlation between these inflammatory markers and HD progression, their levels were further tested in plasma from R6/2 mouse HD model at different ages. In rotarod test, R6/2 HD mice started to manifest HD phenotype at 7.5 weeks of age. Higher plasma VEGF levels of R6/2 mice than those of age-matched wild-type (WT) littermates were noted from 7 (presymptomatic stage) to 13 weeks of age (late symptomatic stage). The plasma IL-6 levels of R6/2 mice were higher than those of the WT littermates from 9 (early symptomatic stage) to 13 weeks of age. R6/2 mice demonstrated higher MMP-9 and TGF-β1 levels than their WT littermates from 11 (middle symptomatic stage) to 13 weeks of age. In contrast, the plasma IL-18 level was lower than those in WT littermates since 11 weeks of age. These altered expressions of inflammatory markers may serve as the potential biomarkers for HD onset and progression. Specific inhibition/activation of these inflammatory markers may be the targets of HD drug development. Huntington's disease (HD), caused by expanded CAG repeats encoding a polyglutamine tract in the huntingtin (HTT) protein, presents with a predominant degeneration of neurons in the striatum and cortex. Lines of evidence have observed neuroinflammation, particularly microglial activation, is involved in the pathogenesis of HD. Given that HTT is also expressed in peripheral inflammatory cells, it is possible that inflammatory changes detected in peripheral plasma may be biologically relevant and parallel the neuroinflammatory process of HD patients. By examining the expression levels of 13 microglia-derived inflammatory markers in the plasma of 5 PreHD carriers, 15 HD patients and 16 healthy controls, we found plasma levels of IL-6, MMP-9, VEGF and TGF- beta 1 were significantly increased in HD patients when compared with the controls, while plasma level of IL-18 were significantly reduced in HD patients compared with controls. Plasma level of IL-6 was reversely correlated with the UHDRS independence scale and functional capacity. To understand the temporal correlation between these inflammatory markers and HD progression, their levels were further tested in plasma from R6/2 mouse HD model at different ages. In rotarod test, R6/2 HD mice started to manifest HD phenotype at 7.5weeks of age. Higher plasma VEGF levels of R6/2 mice than those of age-matched wild-type (WT) littermates were noted from 7 (presymptomatic stage) to 13weeks of age (late symptomatic stage). The plasma IL-6 levels of R6/2 mice were higher than those of the WT littermates from 9 (early symptomatic stage) to 13weeks of age. R6/2 mice demonstrated higher MMP-9 and TGF- beta 1 levels than their WT littermates from 11 (middle symptomatic stage) to 13weeks of age. In contrast, the plasma IL-18 level was lower than those in WT littermates since 11weeks of age. These altered expressions of inflammatory markers may serve as the potential biomarkers for HD onset and progression. Specific inhibition/activation of these inflammatory markers may be the targets of HD drug development. |
Author | Chen, Yi-Chun Chang, Kuo-Hsuan Wu, Yih-Ru Chen, Chiung-Mei |
Author_xml | – sequence: 1 givenname: Kuo-Hsuan surname: Chang fullname: Chang, Kuo-Hsuan – sequence: 2 givenname: Yih-Ru surname: Wu fullname: Wu, Yih-Ru – sequence: 3 givenname: Yi-Chun surname: Chen fullname: Chen, Yi-Chun – sequence: 4 givenname: Chiung-Mei surname: Chen fullname: Chen, Chiung-Mei email: cmchen@adm.cgmh.org.tw |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25266150$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks-K1TAUh4OMOHdGH8CNdOmmNadN0gRBkEEdYUDxzzqkyankTptck1a4O1_D1_NJzOWOLgYcXQXC952E3--ckZMQAxLyGGgDFMSzbTMMvmkpsIaqhgLcIxugitYtdOqEbKiUqgau4JSc5byllPIO5ANy2vJWCOB0Qz68n0yeTeXDOJl5NktM-2rwcTbpGlOuxpiqyzUsPnxZYvj5_UeunM9oMlY7s3gMS65McNUc13I1R4fTQ3J_NFPGRzfnOfn8-tWni8v66t2btxcvr2rLeb_UBpzsRiWpUyO4nhnoOmS9E6NU1PSGW8WUQgZty_g4SBiERC4BhrYVlPfdOXl6nLtL8euKedGzzxanyQQsv9EgOBNSKSn-A-2U6nspu4I-uUHXYUand8mXLPb6d2QFgCNgU8w54fgHAaoPteitLrXoQy2aKl1qKU5_y7F-KfHFsCTjpzvN50cTS5LfPCadbUndovMJ7aJd9HfaL27ZdvLBWzNd4x7zNq4plIo06Nxqqj8eFuawL8AoZYKxMkD9fcA_Hv8FhbjOaw |
CitedBy_id | crossref_primary_10_1016_j_jneuroim_2020_577380 crossref_primary_10_1039_D3FO00156C crossref_primary_10_3390_cells11030546 crossref_primary_10_1021_acs_jproteome_1c00138 crossref_primary_10_1007_s10048_025_00801_2 crossref_primary_10_1016_j_ejphar_2022_175316 crossref_primary_10_3390_brainsci8090177 crossref_primary_10_1093_abbs_gmx124 crossref_primary_10_1016_j_jneuroim_2016_02_012 crossref_primary_10_1007_s00018_019_03178_2 crossref_primary_10_1007_s10072_021_05835_6 crossref_primary_10_3390_biom13050743 crossref_primary_10_3390_brainsci12101389 crossref_primary_10_1016_j_it_2015_04_007 crossref_primary_10_1111_febs_17102 crossref_primary_10_15252_emmm_201505413 crossref_primary_10_1016_j_jneuroim_2023_578243 crossref_primary_10_3390_ijms18112480 crossref_primary_10_3233_JHD_170273 crossref_primary_10_1038_s41419_020_02754_w crossref_primary_10_1016_j_mcn_2019_02_004 crossref_primary_10_3389_fnagi_2017_00193 crossref_primary_10_1016_j_neuron_2016_03_016 crossref_primary_10_1093_brain_awz363 crossref_primary_10_1007_s12035_017_0383_z crossref_primary_10_3390_ijms22031413 crossref_primary_10_1186_s12974_021_02147_6 crossref_primary_10_1016_j_bbih_2023_100635 crossref_primary_10_3389_fncel_2020_00163 crossref_primary_10_1021_acschemneuro_6b00042 crossref_primary_10_1016_j_heliyon_2018_e00508 crossref_primary_10_1186_s12964_021_00799_8 crossref_primary_10_1007_s13311_021_01089_4 crossref_primary_10_1016_j_molimm_2025_02_003 crossref_primary_10_3389_fphar_2021_643254 crossref_primary_10_1016_j_cellsig_2016_12_005 crossref_primary_10_1186_s13024_020_00379_3 crossref_primary_10_1177_03946320221123164 crossref_primary_10_3389_fnmol_2019_00258 crossref_primary_10_1038_s41598_018_27985_y crossref_primary_10_3390_ijms23063223 crossref_primary_10_3390_ijms21176363 crossref_primary_10_1016_j_brainres_2018_06_009 crossref_primary_10_1007_s12035_023_03307_w crossref_primary_10_1111_jnc_13415 crossref_primary_10_1186_s40035_024_00459_0 crossref_primary_10_1038_s41598_020_74042_8 crossref_primary_10_3233_JHD_150181 crossref_primary_10_1016_j_ijbiomac_2024_135967 crossref_primary_10_3233_JHD_200395 crossref_primary_10_1038_s41598_023_46852_z crossref_primary_10_3389_fpsyt_2015_00116 crossref_primary_10_3389_fncel_2021_705348 crossref_primary_10_1007_s11064_023_04085_6 crossref_primary_10_3390_biomedicines10051206 crossref_primary_10_1007_s10565_023_09820_x crossref_primary_10_1016_j_phrs_2024_107443 crossref_primary_10_21926_obm_geriatr_2302234 crossref_primary_10_3389_fimmu_2022_1088124 crossref_primary_10_1007_s13311_021_01023_8 crossref_primary_10_1038_s41421_024_00666_z crossref_primary_10_1016_j_neuint_2020_104841 crossref_primary_10_1021_acs_nanolett_0c02343 crossref_primary_10_1038_s41401_020_00558_4 crossref_primary_10_1093_hmg_ddy202 crossref_primary_10_1155_2015_620581 crossref_primary_10_1007_s12640_020_00233_w crossref_primary_10_1016_j_ejmech_2018_01_037 crossref_primary_10_3389_fnins_2020_00073 crossref_primary_10_3390_ijms22041561 crossref_primary_10_3389_fneur_2017_00011 crossref_primary_10_3390_biology14020129 crossref_primary_10_1016_j_bj_2019_01_008 crossref_primary_10_3390_cells14010042 crossref_primary_10_1016_j_coph_2015_09_008 crossref_primary_10_3389_fncel_2020_00250 crossref_primary_10_1007_s11011_021_00807_3 crossref_primary_10_1016_j_nbd_2015_08_011 crossref_primary_10_1016_j_neubiorev_2019_04_002 crossref_primary_10_1007_s10354_022_00941_2 crossref_primary_10_1007_s13311_023_01357_5 crossref_primary_10_1016_j_biopha_2022_113664 crossref_primary_10_1212_NXI_0000000000000287 crossref_primary_10_1016_j_psychres_2022_115005 crossref_primary_10_3390_cells13060469 crossref_primary_10_1016_j_tibtech_2017_11_004 crossref_primary_10_1016_j_molimm_2022_09_002 crossref_primary_10_3390_jcm10133001 crossref_primary_10_3390_ijms22010019 crossref_primary_10_3390_ijms252111658 crossref_primary_10_1016_j_bbi_2016_07_004 crossref_primary_10_1016_j_nbd_2020_104963 crossref_primary_10_1002_acn3_52016 crossref_primary_10_3390_ijms21072431 crossref_primary_10_1186_s12974_022_02419_9 crossref_primary_10_2174_1381612825666190722114248 crossref_primary_10_1016_j_brainres_2017_08_013 crossref_primary_10_1017_cts_2022_372 crossref_primary_10_1111_acel_14302 crossref_primary_10_3233_JHD_160213 crossref_primary_10_1016_j_neuropharm_2016_01_011 crossref_primary_10_1016_j_bbih_2022_100482 crossref_primary_10_1080_13543784_2024_2348738 crossref_primary_10_1016_j_jprot_2018_06_017 crossref_primary_10_3390_molecules23123167 crossref_primary_10_1007_s00415_023_11572_x |
Cites_doi | 10.1016/j.ejphar.2012.10.026 10.1006/scdb.2001.0290 10.1212/WNL.51.6.1576 10.1016/j.pneurobio.2007.03.004 10.1136/jnnp.55.11.1018 10.1016/j.brainresbull.2006.10.029 10.4049/jimmunol.161.11.6368 10.1093/brain/awn212 10.1021/pr0700753 10.1523/JNEUROSCI.2675-04.2004 10.1038/mt.2013.108 10.1016/j.bbrc.2007.05.093 10.1083/jcb.200508072 10.1371/currents.RRN1231 10.1212/01.wnl.0000222734.56412.17 10.1006/exnr.1996.0200 10.1002/jnr.21072 10.1016/j.nbd.2011.09.003 10.1172/JCI64565 10.1016/j.neurobiolaging.2007.06.006 10.1038/13518 10.1093/hmg/ddt036 10.1196/annals.1427.018 10.4049/jimmunol.162.9.5041 10.1093/brain/awh489 10.1093/brain/122.9.1667 10.1152/jappl.1999.86.1.260 10.1016/S0896-6273(03)00766-9 10.1006/cyto.2002.2005 10.1002/ajmg.b.30223 10.1186/gb-2005-6-3-210 10.1006/exer.2001.1054 10.1152/japplphysiol.00318.2002 10.1007/s00702-010-0430-7 10.1016/j.expneurol.2013.08.019 10.1038/nrg1690 10.1097/WNR.0b013e32832e34ee 10.1161/01.STR.0000046764.57344.31 10.1002/mds.870110204 10.1016/S0092-8674(00)81369-0 10.1084/jem.20080178 10.1073/pnas.1104836108 10.1126/science.1073634 10.1016/S1097-2765(00)80154-9 10.1371/currents.RRN1205 10.1177/1073858405280639 10.1016/j.neuroscience.2013.11.038 10.1371/journal.pone.0046492 10.1016/j.neurobiolaging.2011.08.011 10.1602/neurorx.2.3.447 10.1007/s10072-006-0562-6 10.1016/j.bbrc.2004.02.143 10.1016/0092-8674(93)90585-E 10.1016/j.neuron.2010.06.021 10.1111/j.1582-4934.2010.01011.x 10.1111/j.1749-6632.2009.05133.x 10.1196/annals.1427.008 10.1093/jnen/60.2.161 10.1523/JNEUROSCI.4008-12.2012 10.1038/mt.2013.132 10.1007/s12035-009-8097-5 10.1097/00004647-200208000-00008 10.1016/j.bbrc.2008.12.181 10.1038/nature04753 10.1523/JNEUROSCI.1563-05.2005 10.3233/JHD-130050 10.1016/j.schres.2013.10.011 10.1097/01.wnr.0000127073.66692.8f 10.2174/156720506779025297 10.1093/hmg/ddu151 10.1016/S0021-9258(18)98977-5 10.1016/j.imlet.2007.09.002 10.1093/brain/awl027 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Inc. Elsevier Inc. Copyright © 2014 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier Inc. – notice: Elsevier Inc. – notice: Copyright © 2014 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QG 7T5 7TK H94 |
DOI | 10.1016/j.bbi.2014.09.011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Animal Behavior Abstracts Immunology Abstracts Neurosciences Abstracts AIDS and Cancer Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts Neurosciences Abstracts Animal Behavior Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1090-2139 |
EndPage | 127 |
ExternalDocumentID | 25266150 10_1016_j_bbi_2014_09_011 S0889159114004644 1_s2_0_S0889159114004644 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ 9JM 9JO AAAJQ AADFP AAEDT AAEDW AAGJA AAGUQ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXLA AAXUO AAYWO ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABOYX ABWVN ABXDB ACDAQ ACGFO ACGFS ACRLP ACRPL ACVFH ACXNI ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CJTIS COF CS3 DM4 DU5 EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMG HMQ HVGLF HZ~ IHE J1W KOM L7B LG5 LUGTX LZ5 M2U M41 MO0 MOBAO N9A O-L O9- OAUVE OH0 OKEIE OU- OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SES SEW SIN SNS SPCBC SSB SSN SSY SSZ T5K TN5 UAP UNMZH UPT WUQ XPP XSW Z5R ZGI ZMT ~G- ~S- AACTN AFCTW AFKWA AJOXV AMFUW RIG SSI AADPK AAIAV ABYKQ AFYLN AJBFU EFLBG AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7QG 7T5 7TK H94 |
ID | FETCH-LOGICAL-c557t-a1d83f980d9f1d74a133e47d6f890a7a5c9499e412245fb81b68e5811b2260573 |
IEDL.DBID | AIKHN |
ISSN | 0889-1591 1090-2139 |
IngestDate | Fri Sep 05 11:47:05 EDT 2025 Fri Sep 05 06:32:47 EDT 2025 Thu Apr 03 07:09:57 EDT 2025 Tue Jul 01 04:10:15 EDT 2025 Thu Apr 24 23:10:07 EDT 2025 Fri Feb 23 02:27:21 EST 2024 Sun Feb 23 10:19:12 EST 2025 Tue Aug 26 16:32:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biomarker Huntington’s disease Inflammation |
Language | English |
License | Copyright © 2014 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c557t-a1d83f980d9f1d74a133e47d6f890a7a5c9499e412245fb81b68e5811b2260573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25266150 |
PQID | 1639977883 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1654689986 proquest_miscellaneous_1639977883 pubmed_primary_25266150 crossref_primary_10_1016_j_bbi_2014_09_011 crossref_citationtrail_10_1016_j_bbi_2014_09_011 elsevier_sciencedirect_doi_10_1016_j_bbi_2014_09_011 elsevier_clinicalkeyesjournals_1_s2_0_S0889159114004644 elsevier_clinicalkey_doi_10_1016_j_bbi_2014_09_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-01 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Brain, behavior, and immunity |
PublicationTitleAlternate | Brain Behav Immun |
PublicationYear | 2015 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Krakora, Mulcrone (b0165) 2013; 21 Yatsiv, Morganti-Kossmann (b0360) 2002; 22 Motta, Imbesi (b0235) 2007; 114 Yue, Hariri (b0365) 2014; 258 Huntington Study Group (b0100) 1996; 11 Maglione, Giallonardo (b0210) 2005; 139B Wild, Magnusson (b0350) 2011; 3 Chang, Chen (b0050) 2012; 7 Lin, Hsu (b0200) 2013; 250 Pavese, Gerhard (b0250) 2006; 66 Rahman, Ekman (b0260) 2013; 698 Cha (b0045) 2007; 83 Deckel, Cohen (b0075) 1998; 51 Gu, Cui (b0105) 2005; 25 Morton, Morton (b0225) 2013; 2 Franciosi, Ryu (b0090) 2012; 45 Damsker, Hansen (b0065) 2010; 1183 Ojala, Alafuzoff (b0245) 2009; 30 Sawa, Wiegand (b0280) 1999; 5 Pichiule, LaManna (b0255) 2002; 93 Bouchard, Truong (b0020) 2012; 32 Chen, Wu (b0055) 2007; 359 Hsiao, Chen (b0135) 2013; 22 Lee, Ueda (b0175) 2006; 84 MacDonald, Ambrose (b0205) 1993; 72 Kim, Lee (b0160) 2012; 33 Leoni, Mariotti (b0185) 2008; 131 Stack, Matson (b0300) 2008; 1147 Li, Popovic (b0195) 2005; 2 Tai, Pavese (b0305) 2007; 72 Valera, Diaz-Hernandez (b0325) 2005; 11 Khoshnan, Ko (b0155) 2004; 24 Warner-Schmidt, Vanover (b0340) 2011; 108 Hsiao, Chern (b0140) 2010; 41 Bjorkqvist, Wild (b0015) 2008; 205 Hornebeck, Lafuma (b0125) 1991; 185 Hoshino, Tsutsui (b0130) 1999; 162 Salo, Lyons (b0270) 1991; 266 Hasselbalch, Oberg (b0120) 1992; 55 Hsiao, Chiu (b0145) 2014; 23 Carmeliet, Storkebaum (b0035) 2002; 13 Moscovitch-Lopatin, Weiss (b0230) 2010; 2 Nagata, Sawa (b0240) 2004; 15 Di Prospero, Fischbeck (b0080) 2005; 6 Kuo, Benhayon (b0170) 1999; 86 Weiss, Trager (b0345) 2012; 122 Wang, Tsirka (b0335) 2005; 128 Harris, Codori (b0115) 1999; 122 Underwood, Broadhurst (b0320) 2006; 129 Giorgini, Muchowski (b0095) 2005; 6 Wildbaum, Youssef (b0355) 1998; 161 Moller (b0220) 2010; 117 Browne (b0030) 2008; 1147 Castellanos, Leira (b0040) 2003; 34 Gu, Kaul (b0110) 2002; 297 Battaglia, Cannella (b0005) 2011; 15 Ilzecka, Stelmasiak (b0150) 2002; 20 Bettelli, Carrier (b0010) 2006; 441 Rota, Bellone (b0265) 2006; 27 Dang, Yang (b0070) 2004; 316 Vawter, Dillon-Carter (b0330) 1996; 142 Sapp, Kegel (b0275) 2001; 60 Li, Lokeshwar (b0190) 2001; 73 Brionne, Tesseur (b0025) 2003; 40 Miller, Holcomb (b9000) 2010; 67 Tourjman, Kouassi (b0315) 2013; 151 Springer, Chen (b0295) 1998; 2 Mangiarini, Sathasivam (b0215) 1996; 87 Shin, Fang (b0285) 2005; 171 Tesseur, Wyss-Coray (b0310) 2006; 3 Dalrymple, Wild (b0060) 2007; 6 Silvestroni, Faull (b0290) 2009; 20 Ellison, Trabalza (b0085) 2013; 21 Lee, Kim (b0180) 2009; 380 Dalrymple (10.1016/j.bbi.2014.09.011_b0060) 2007; 6 Hsiao (10.1016/j.bbi.2014.09.011_b0140) 2010; 41 Pichiule (10.1016/j.bbi.2014.09.011_b0255) 2002; 93 Bjorkqvist (10.1016/j.bbi.2014.09.011_b0015) 2008; 205 Ojala (10.1016/j.bbi.2014.09.011_b0245) 2009; 30 Brionne (10.1016/j.bbi.2014.09.011_b0025) 2003; 40 Li (10.1016/j.bbi.2014.09.011_b0190) 2001; 73 Vawter (10.1016/j.bbi.2014.09.011_b0330) 1996; 142 Giorgini (10.1016/j.bbi.2014.09.011_b0095) 2005; 6 Pavese (10.1016/j.bbi.2014.09.011_b0250) 2006; 66 Tesseur (10.1016/j.bbi.2014.09.011_b0310) 2006; 3 Khoshnan (10.1016/j.bbi.2014.09.011_b0155) 2004; 24 Carmeliet (10.1016/j.bbi.2014.09.011_b0035) 2002; 13 Castellanos (10.1016/j.bbi.2014.09.011_b0040) 2003; 34 Kuo (10.1016/j.bbi.2014.09.011_b0170) 1999; 86 Kim (10.1016/j.bbi.2014.09.011_b0160) 2012; 33 Hoshino (10.1016/j.bbi.2014.09.011_b0130) 1999; 162 Yatsiv (10.1016/j.bbi.2014.09.011_b0360) 2002; 22 Cha (10.1016/j.bbi.2014.09.011_b0045) 2007; 83 Ellison (10.1016/j.bbi.2014.09.011_b0085) 2013; 21 MacDonald (10.1016/j.bbi.2014.09.011_b0205) 1993; 72 Lee (10.1016/j.bbi.2014.09.011_b0175) 2006; 84 Sapp (10.1016/j.bbi.2014.09.011_b0275) 2001; 60 Deckel (10.1016/j.bbi.2014.09.011_b0075) 1998; 51 Weiss (10.1016/j.bbi.2014.09.011_b0345) 2012; 122 Yue (10.1016/j.bbi.2014.09.011_b0365) 2014; 258 Hsiao (10.1016/j.bbi.2014.09.011_b0145) 2014; 23 Dang (10.1016/j.bbi.2014.09.011_b0070) 2004; 316 Hornebeck (10.1016/j.bbi.2014.09.011_b0125) 1991; 185 Rota (10.1016/j.bbi.2014.09.011_b0265) 2006; 27 Motta (10.1016/j.bbi.2014.09.011_b0235) 2007; 114 Maglione (10.1016/j.bbi.2014.09.011_b0210) 2005; 139B Di Prospero (10.1016/j.bbi.2014.09.011_b0080) 2005; 6 Sawa (10.1016/j.bbi.2014.09.011_b0280) 1999; 5 Ilzecka (10.1016/j.bbi.2014.09.011_b0150) 2002; 20 Moscovitch-Lopatin (10.1016/j.bbi.2014.09.011_b0230) 2010; 2 Wild (10.1016/j.bbi.2014.09.011_b0350) 2011; 3 Franciosi (10.1016/j.bbi.2014.09.011_b0090) 2012; 45 Warner-Schmidt (10.1016/j.bbi.2014.09.011_b0340) 2011; 108 Lin (10.1016/j.bbi.2014.09.011_b0200) 2013; 250 Hasselbalch (10.1016/j.bbi.2014.09.011_b0120) 1992; 55 Hsiao (10.1016/j.bbi.2014.09.011_b0135) 2013; 22 Rahman (10.1016/j.bbi.2014.09.011_b0260) 2013; 698 Miller (10.1016/j.bbi.2014.09.011_b9000) 2010; 67 Nagata (10.1016/j.bbi.2014.09.011_b0240) 2004; 15 Salo (10.1016/j.bbi.2014.09.011_b0270) 1991; 266 Li (10.1016/j.bbi.2014.09.011_b0195) 2005; 2 Tourjman (10.1016/j.bbi.2014.09.011_b0315) 2013; 151 Stack (10.1016/j.bbi.2014.09.011_b0300) 2008; 1147 Lee (10.1016/j.bbi.2014.09.011_b0180) 2009; 380 Mangiarini (10.1016/j.bbi.2014.09.011_b0215) 1996; 87 Underwood (10.1016/j.bbi.2014.09.011_b0320) 2006; 129 Wildbaum (10.1016/j.bbi.2014.09.011_b0355) 1998; 161 Damsker (10.1016/j.bbi.2014.09.011_b0065) 2010; 1183 Gu (10.1016/j.bbi.2014.09.011_b0105) 2005; 25 Wang (10.1016/j.bbi.2014.09.011_b0335) 2005; 128 Bouchard (10.1016/j.bbi.2014.09.011_b0020) 2012; 32 Chen (10.1016/j.bbi.2014.09.011_b0055) 2007; 359 Krakora (10.1016/j.bbi.2014.09.011_b0165) 2013; 21 Huntington Study Group (10.1016/j.bbi.2014.09.011_b0100) 1996; 11 Gu (10.1016/j.bbi.2014.09.011_b0110) 2002; 297 Leoni (10.1016/j.bbi.2014.09.011_b0185) 2008; 131 Bettelli (10.1016/j.bbi.2014.09.011_b0010) 2006; 441 Shin (10.1016/j.bbi.2014.09.011_b0285) 2005; 171 Moller (10.1016/j.bbi.2014.09.011_b0220) 2010; 117 Valera (10.1016/j.bbi.2014.09.011_b0325) 2005; 11 Chang (10.1016/j.bbi.2014.09.011_b0050) 2012; 7 Tai (10.1016/j.bbi.2014.09.011_b0305) 2007; 72 Battaglia (10.1016/j.bbi.2014.09.011_b0005) 2011; 15 Silvestroni (10.1016/j.bbi.2014.09.011_b0290) 2009; 20 Springer (10.1016/j.bbi.2014.09.011_b0295) 1998; 2 Morton (10.1016/j.bbi.2014.09.011_b0225) 2013; 2 Browne (10.1016/j.bbi.2014.09.011_b0030) 2008; 1147 Harris (10.1016/j.bbi.2014.09.011_b0115) 1999; 122 |
References_xml | – volume: 15 start-page: 555 year: 2011 end-page: 571 ident: b0005 article-title: Early defect of transforming growth factor beta1 formation in Huntington’s disease publication-title: J. Cell. Mol. Med. – volume: 108 start-page: 9262 year: 2011 end-page: 9267 ident: b0340 article-title: Antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) are attenuated by antiinflammatory drugs in mice and humans publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 34 start-page: 40 year: 2003 end-page: 46 ident: b0040 article-title: Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke publication-title: Stroke – volume: 83 start-page: 228 year: 2007 end-page: 248 ident: b0045 article-title: Transcriptional signatures in Huntington’s disease publication-title: Prog. Neurobiol. – volume: 22 start-page: 1826 year: 2013 end-page: 1842 ident: b0135 article-title: A critical role of astrocyte-mediated nuclear factor-kappaB-dependent inflammation in Huntington’s disease publication-title: Hum. Mol. Genet. – volume: 60 start-page: 161 year: 2001 end-page: 172 ident: b0275 article-title: Early and progressive accumulation of reactive microglia in the Huntington disease brain publication-title: J. Neuropathol. Exp. Neurol. – volume: 40 start-page: 1133 year: 2003 end-page: 1145 ident: b0025 article-title: Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain publication-title: Neuron – volume: 13 start-page: 39 year: 2002 end-page: 53 ident: b0035 article-title: Vascular and neuronal effects of VEGF in the nervous system: implications for neurological disorders publication-title: Semin. Cell Dev. Biol. – volume: 171 start-page: 1001 year: 2005 end-page: 1012 ident: b0285 article-title: Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity publication-title: J. Cell Biol. – volume: 359 start-page: 335 year: 2007 end-page: 340 ident: b0055 article-title: Increased oxidative damage and mitochondrial abnormalities in the peripheral blood of Huntington’s disease patients publication-title: Biochem. Biophys. Res. Commun. – volume: 3 start-page: 505 year: 2006 end-page: 513 ident: b0310 article-title: A role for TGF-beta signaling in neurodegeneration: evidence from genetically engineered models publication-title: Curr. Alzheimer Res. – volume: 2 start-page: 447 year: 2005 end-page: 464 ident: b0195 article-title: The use of the R6 transgenic mouse models of publication-title: NeuroRx – volume: 151 start-page: 43 year: 2013 end-page: 47 ident: b0315 article-title: Antipsychotics’ effects on blood levels of cytokines in schizophrenia: a meta-analysis publication-title: Schizophr. Res. – volume: 316 start-page: 937 year: 2004 end-page: 942 ident: b0070 article-title: Matrix metalloproteinases and TGFbeta1 modulate oral tumor cell matrix publication-title: Biochem. Biophys. Res. Commun. – volume: 380 start-page: 17 year: 2009 end-page: 21 ident: b0180 article-title: PPARgamma agonist pioglitazone reduces matrix metalloproteinase-9 activity and neuronal damage after focal cerebral ischemia publication-title: Biochem. Biophys. Res. Commun. – volume: 117 start-page: 1001 year: 2010 end-page: 1008 ident: b0220 article-title: Neuroinflammation in Huntington’s disease publication-title: J. Neural Transm. – volume: 21 start-page: 1602 year: 2013 end-page: 1610 ident: b0165 article-title: Synergistic effects of GDNF and VEGF on lifespan and disease progression in a familial ALS rat model publication-title: Mol. Ther. – volume: 23 start-page: 4328 year: 2014 end-page: 4344 ident: b0145 article-title: Inhibition of soluble tumor necrosis factor is therapeutic in Huntington’s disease publication-title: Hum. Mol. Genet. – volume: 1183 start-page: 211 year: 2010 end-page: 221 ident: b0065 article-title: Th1 and Th17 cells: adversaries and collaborators publication-title: Ann. N. Y. Acad. Sci. – volume: 258 start-page: 385 year: 2014 end-page: 400 ident: b0365 article-title: Comparative study of the neurotrophic effects elicited by VEGF-B and GDNF in preclinical in vivo models of Parkinson’s disease publication-title: Neuroscience – volume: 698 start-page: 345 year: 2013 end-page: 353 ident: b0260 article-title: Late onset vascular dysfunction in the R6/1 model of Huntington’s disease publication-title: Eur. J. Pharmacol. – volume: 24 start-page: 7999 year: 2004 end-page: 8008 ident: b0155 article-title: Activation of the IkappaB kinase complex and nuclear factor-kappaB contributes to mutant Huntingtin neurotoxicity publication-title: J. Neurosci. – volume: 30 start-page: 198 year: 2009 end-page: 209 ident: b0245 article-title: Expression of interleukin-18 is increased in the brains of Alzheimer’s disease patients publication-title: Neurobiol. Aging – volume: 6 start-page: 210 year: 2005 ident: b0095 article-title: Connecting the dots in Huntington’s disease with protein interaction networks publication-title: Genome Biol. – volume: 250 start-page: 20 year: 2013 end-page: 30 ident: b0200 article-title: Neurovascular abnormalities in humans and mice with Huntington’s disease publication-title: Exp. Neurol. – volume: 93 start-page: 1131 year: 2002 end-page: 1139 ident: b0255 article-title: Angiopoietin-2 and rat brain capillary remodeling during adaptation and deadaptation to prolonged mild hypoxia publication-title: J. Appl. Physiol. – volume: 3 start-page: RRN1231 year: 2011 ident: b0350 article-title: Abnormal peripheral chemokine profile in Huntington’s disease publication-title: PLoS Curr. – volume: 441 start-page: 235 year: 2006 end-page: 238 ident: b0010 article-title: Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells publication-title: Nature – volume: 66 start-page: 1638 year: 2006 end-page: 1643 ident: b0250 article-title: Microglial activation correlates with severity in Huntington disease: a clinical and PET study publication-title: Neurology – volume: 6 start-page: 756 year: 2005 end-page: 765 ident: b0080 article-title: Therapeutics development for triplet repeat expansion diseases publication-title: Nat. Rev. Genet. – volume: 142 start-page: 313 year: 1996 end-page: 322 ident: b0330 article-title: TGFbeta1 and TGFbeta2 concentrations are elevated in Parkinson’s disease in ventricular cerebrospinal fluid publication-title: Exp. Neurol. – volume: 205 start-page: 1869 year: 2008 end-page: 1877 ident: b0015 article-title: A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease publication-title: J. Exp. Med. – volume: 41 start-page: 248 year: 2010 end-page: 255 ident: b0140 article-title: Targeting glial cells to elucidate the pathogenesis of Huntington’s disease publication-title: Mol. Neurobiol. – volume: 2 start-page: 549 year: 1998 end-page: 558 ident: b0295 article-title: VEGF gene delivery to muscle: potential role for vasculogenesis in adults publication-title: Mol. Cell – volume: 11 start-page: 136 year: 1996 end-page: 142 ident: b0100 article-title: Unified Huntington’s Disease Rating Scale: reliability and consistency publication-title: Mov. Disord. – volume: 114 start-page: 46 year: 2007 end-page: 51 ident: b0235 article-title: Altered plasma cytokine levels in Alzheimer’s disease: correlation with the disease progression publication-title: Immunol. Lett. – volume: 2 start-page: 3 year: 2013 end-page: 19 ident: b0225 article-title: Large genetic animal models of Huntington’s disease publication-title: J Huntington’s Dis. – volume: 20 start-page: 1098 year: 2009 end-page: 1103 ident: b0290 article-title: Distinct neuroinflammatory profile in post-mortem human Huntington’s disease publication-title: Neuroreport – volume: 84 start-page: 1856 year: 2006 end-page: 1861 ident: b0175 article-title: Ectopic expression of phospho-Smad2 in Alzheimer’s disease: uncoupling of the transforming growth factor-beta pathway? publication-title: J. Neurosci. Res. – volume: 161 start-page: 6368 year: 1998 end-page: 6374 ident: b0355 article-title: Neutralizing antibodies to IFN-gamma-inducing factor prevent experimental autoimmune encephalomyelitis publication-title: J. Immunol. – volume: 20 start-page: 239 year: 2002 end-page: 243 ident: b0150 article-title: Transforming growth factor-Beta 1 (tgf-Beta 1) in patients with amyotrophic lateral sclerosis publication-title: Cytokine – volume: 67 start-page: 199 year: 2010 end-page: 212 ident: b9000 article-title: Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington's disease publication-title: Neuron – volume: 2 start-page: RRN1205 year: 2010 ident: b0230 article-title: Optimization of an HTRF assay for the detection of soluble mutant Huntingtin in human buffy coats: a potential biomarker in blood for Huntington disease publication-title: PLoS Curr. – volume: 128 start-page: 1622 year: 2005 end-page: 1633 ident: b0335 article-title: Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage publication-title: Brain – volume: 15 start-page: 1325 year: 2004 end-page: 1328 ident: b0240 article-title: Autophagosome-like vacuole formation in Huntington’s disease lymphoblasts publication-title: Neuroreport – volume: 87 start-page: 493 year: 1996 end-page: 506 ident: b0215 article-title: Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice publication-title: Cell – volume: 51 start-page: 1576 year: 1998 end-page: 1583 ident: b0075 article-title: Cerebral blood flow velocity decreases during cognitive stimulation in Huntington’s disease publication-title: Neurology – volume: 5 start-page: 1194 year: 1999 end-page: 1198 ident: b0280 article-title: Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization publication-title: Nat. Med. – volume: 1147 start-page: 79 year: 2008 end-page: 92 ident: b0300 article-title: Evidence of oxidant damage in Huntington’s disease: translational strategies using antioxidants publication-title: Ann. N. Y. Acad. Sci. – volume: 55 start-page: 1018 year: 1992 end-page: 1023 ident: b0120 article-title: Reduced regional cerebral blood flow in Huntington’s disease studied by SPECT publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 73 start-page: 449 year: 2001 end-page: 459 ident: b0190 article-title: Regulation of MMP-9 production by human corneal epithelial cells publication-title: Exp. Eye Res. – volume: 139B start-page: 101 year: 2005 end-page: 105 ident: b0210 article-title: Adenosine A2A receptor dysfunction correlates with age at onset anticipation in blood platelets of subjects with Huntington’s disease publication-title: Am. J. Med. Genet. B Neuropsychiatric Genet. – volume: 72 start-page: 148 year: 2007 end-page: 151 ident: b0305 article-title: Imaging microglial activation in Huntington’s disease publication-title: Brain Res. Bull. – volume: 185 start-page: 127 year: 1991 end-page: 134 ident: b0125 article-title: Matrix metalloproteinase (MMP) publication-title: C. R. Seances Soc. Biol. Fil. – volume: 11 start-page: 583 year: 2005 end-page: 594 ident: b0325 article-title: The ubiquitin – proteasome system in Huntington’s disease publication-title: Neuroscientist – volume: 27 start-page: 33 year: 2006 end-page: 39 ident: b0265 article-title: Increased intrathecal TGF-beta1, but not IL-12, IFN-gamma and IL-10 levels in Alzheimer’s disease patients publication-title: Neurol. Sci. – volume: 22 start-page: 971 year: 2002 end-page: 978 ident: b0360 article-title: Elevated intracranial IL-18 in humans and mice after traumatic brain injury and evidence of neuroprotective effects of IL-18-binding protein after experimental closed head injury publication-title: J. Cereb. Blood Flow. Metab. – volume: 131 start-page: 2851 year: 2008 end-page: 2859 ident: b0185 article-title: Plasma 24S-hydroxycholesterol and caudate MRI in pre-manifest and early Huntington’s disease publication-title: Brain – volume: 6 start-page: 2833 year: 2007 end-page: 2840 ident: b0060 article-title: Proteomic profiling of plasma in Huntington’s disease reveals neuroinflammatory activation and biomarker candidates publication-title: J. Proteome Res. – volume: 7 start-page: e46492 year: 2012 ident: b0050 article-title: Downregulation of genes involved in metabolism and oxidative stress in the peripheral leukocytes of Huntington’s disease patients publication-title: PLoS One – volume: 122 start-page: 3731 year: 2012 end-page: 3736 ident: b0345 article-title: Mutant Huntingtin fragmentation in immune cells tracks Huntington’s disease progression publication-title: J. Clin. Invest. – volume: 21 start-page: 1862 year: 2013 end-page: 1875 ident: b0085 article-title: Dose-dependent neuroprotection of VEGF(1)(6)(5) in Huntington’s disease striatum publication-title: Mol. Ther. – volume: 129 start-page: 877 year: 2006 end-page: 886 ident: b0320 article-title: Huntington disease patients and transgenic mice have similar pro-catabolic serum metabolite profiles publication-title: Brain – volume: 32 start-page: 18259 year: 2012 end-page: 18268 ident: b0020 article-title: Cannabinoid receptor 2 signaling in peripheral immune cells modulates disease onset and severity in mouse models of Huntington’s disease publication-title: J. Neurosci. – volume: 33 start-page: 2145 year: 2012 end-page: 2159 ident: b0160 article-title: Microglia-inhibiting activity of Parkinson’s disease drug amantadine publication-title: Neurobiol. Aging – volume: 45 start-page: 438 year: 2012 end-page: 449 ident: b0090 article-title: Age-dependent neurovascular abnormalities and altered microglial morphology in the YAC128 mouse model of Huntington disease publication-title: Neurobiol. Dis. – volume: 1147 start-page: 358 year: 2008 end-page: 382 ident: b0030 article-title: Mitochondria and Huntington’s disease pathogenesis: insight from genetic and chemical models publication-title: Ann. N. Y. Acad. Sci. – volume: 72 start-page: 971 year: 1993 end-page: 983 ident: b0205 article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes publication-title: Cell – volume: 86 start-page: 260 year: 1999 end-page: 264 ident: b0170 article-title: Prolonged hypoxia increases vascular endothelial growth factor mRNA and protein in adult mouse brain publication-title: J. Appl. Physiol. – volume: 122 start-page: 1667 year: 1999 end-page: 1678 ident: b0115 article-title: Reduced basal ganglia blood flow and volume in pre-symptomatic, gene-tested persons at-risk for Huntington’s disease publication-title: Brain – volume: 266 start-page: 11436 year: 1991 end-page: 11441 ident: b0270 article-title: Transforming growth factor-beta 1 up-regulates type IV collagenase expression in cultured human keratinocytes publication-title: J. Biol. Chem. – volume: 162 start-page: 5041 year: 1999 end-page: 5044 ident: b0130 article-title: Cutting edge: generation of IL-18 receptor-deficient mice. evidence for IL-1 receptor-related protein as an essential IL-18 binding receptor publication-title: J. Immunol. – volume: 25 start-page: 6401 year: 2005 end-page: 6408 ident: b0105 article-title: A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia publication-title: J. Neurosci. – volume: 297 start-page: 1186 year: 2002 end-page: 1190 ident: b0110 article-title: S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death publication-title: Science – volume: 698 start-page: 345 year: 2013 ident: 10.1016/j.bbi.2014.09.011_b0260 article-title: Late onset vascular dysfunction in the R6/1 model of Huntington’s disease publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2012.10.026 – volume: 13 start-page: 39 year: 2002 ident: 10.1016/j.bbi.2014.09.011_b0035 article-title: Vascular and neuronal effects of VEGF in the nervous system: implications for neurological disorders publication-title: Semin. Cell Dev. Biol. doi: 10.1006/scdb.2001.0290 – volume: 51 start-page: 1576 year: 1998 ident: 10.1016/j.bbi.2014.09.011_b0075 article-title: Cerebral blood flow velocity decreases during cognitive stimulation in Huntington’s disease publication-title: Neurology doi: 10.1212/WNL.51.6.1576 – volume: 83 start-page: 228 year: 2007 ident: 10.1016/j.bbi.2014.09.011_b0045 article-title: Transcriptional signatures in Huntington’s disease publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2007.03.004 – volume: 55 start-page: 1018 year: 1992 ident: 10.1016/j.bbi.2014.09.011_b0120 article-title: Reduced regional cerebral blood flow in Huntington’s disease studied by SPECT publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.55.11.1018 – volume: 72 start-page: 148 year: 2007 ident: 10.1016/j.bbi.2014.09.011_b0305 article-title: Imaging microglial activation in Huntington’s disease publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2006.10.029 – volume: 161 start-page: 6368 year: 1998 ident: 10.1016/j.bbi.2014.09.011_b0355 article-title: Neutralizing antibodies to IFN-gamma-inducing factor prevent experimental autoimmune encephalomyelitis publication-title: J. Immunol. doi: 10.4049/jimmunol.161.11.6368 – volume: 131 start-page: 2851 year: 2008 ident: 10.1016/j.bbi.2014.09.011_b0185 article-title: Plasma 24S-hydroxycholesterol and caudate MRI in pre-manifest and early Huntington’s disease publication-title: Brain doi: 10.1093/brain/awn212 – volume: 6 start-page: 2833 year: 2007 ident: 10.1016/j.bbi.2014.09.011_b0060 article-title: Proteomic profiling of plasma in Huntington’s disease reveals neuroinflammatory activation and biomarker candidates publication-title: J. Proteome Res. doi: 10.1021/pr0700753 – volume: 24 start-page: 7999 year: 2004 ident: 10.1016/j.bbi.2014.09.011_b0155 article-title: Activation of the IkappaB kinase complex and nuclear factor-kappaB contributes to mutant Huntingtin neurotoxicity publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2675-04.2004 – volume: 21 start-page: 1602 year: 2013 ident: 10.1016/j.bbi.2014.09.011_b0165 article-title: Synergistic effects of GDNF and VEGF on lifespan and disease progression in a familial ALS rat model publication-title: Mol. Ther. doi: 10.1038/mt.2013.108 – volume: 359 start-page: 335 year: 2007 ident: 10.1016/j.bbi.2014.09.011_b0055 article-title: Increased oxidative damage and mitochondrial abnormalities in the peripheral blood of Huntington’s disease patients publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2007.05.093 – volume: 171 start-page: 1001 year: 2005 ident: 10.1016/j.bbi.2014.09.011_b0285 article-title: Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity publication-title: J. Cell Biol. doi: 10.1083/jcb.200508072 – volume: 3 start-page: RRN1231 year: 2011 ident: 10.1016/j.bbi.2014.09.011_b0350 article-title: Abnormal peripheral chemokine profile in Huntington’s disease publication-title: PLoS Curr. doi: 10.1371/currents.RRN1231 – volume: 66 start-page: 1638 year: 2006 ident: 10.1016/j.bbi.2014.09.011_b0250 article-title: Microglial activation correlates with severity in Huntington disease: a clinical and PET study publication-title: Neurology doi: 10.1212/01.wnl.0000222734.56412.17 – volume: 142 start-page: 313 year: 1996 ident: 10.1016/j.bbi.2014.09.011_b0330 article-title: TGFbeta1 and TGFbeta2 concentrations are elevated in Parkinson’s disease in ventricular cerebrospinal fluid publication-title: Exp. Neurol. doi: 10.1006/exnr.1996.0200 – volume: 84 start-page: 1856 year: 2006 ident: 10.1016/j.bbi.2014.09.011_b0175 article-title: Ectopic expression of phospho-Smad2 in Alzheimer’s disease: uncoupling of the transforming growth factor-beta pathway? publication-title: J. Neurosci. Res. doi: 10.1002/jnr.21072 – volume: 45 start-page: 438 year: 2012 ident: 10.1016/j.bbi.2014.09.011_b0090 article-title: Age-dependent neurovascular abnormalities and altered microglial morphology in the YAC128 mouse model of Huntington disease publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2011.09.003 – volume: 122 start-page: 3731 year: 2012 ident: 10.1016/j.bbi.2014.09.011_b0345 article-title: Mutant Huntingtin fragmentation in immune cells tracks Huntington’s disease progression publication-title: J. Clin. Invest. doi: 10.1172/JCI64565 – volume: 30 start-page: 198 year: 2009 ident: 10.1016/j.bbi.2014.09.011_b0245 article-title: Expression of interleukin-18 is increased in the brains of Alzheimer’s disease patients publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2007.06.006 – volume: 5 start-page: 1194 year: 1999 ident: 10.1016/j.bbi.2014.09.011_b0280 article-title: Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization publication-title: Nat. Med. doi: 10.1038/13518 – volume: 22 start-page: 1826 year: 2013 ident: 10.1016/j.bbi.2014.09.011_b0135 article-title: A critical role of astrocyte-mediated nuclear factor-kappaB-dependent inflammation in Huntington’s disease publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddt036 – volume: 1147 start-page: 358 year: 2008 ident: 10.1016/j.bbi.2014.09.011_b0030 article-title: Mitochondria and Huntington’s disease pathogenesis: insight from genetic and chemical models publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1427.018 – volume: 162 start-page: 5041 year: 1999 ident: 10.1016/j.bbi.2014.09.011_b0130 article-title: Cutting edge: generation of IL-18 receptor-deficient mice. evidence for IL-1 receptor-related protein as an essential IL-18 binding receptor publication-title: J. Immunol. doi: 10.4049/jimmunol.162.9.5041 – volume: 128 start-page: 1622 year: 2005 ident: 10.1016/j.bbi.2014.09.011_b0335 article-title: Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage publication-title: Brain doi: 10.1093/brain/awh489 – volume: 122 start-page: 1667 year: 1999 ident: 10.1016/j.bbi.2014.09.011_b0115 article-title: Reduced basal ganglia blood flow and volume in pre-symptomatic, gene-tested persons at-risk for Huntington’s disease publication-title: Brain doi: 10.1093/brain/122.9.1667 – volume: 86 start-page: 260 year: 1999 ident: 10.1016/j.bbi.2014.09.011_b0170 article-title: Prolonged hypoxia increases vascular endothelial growth factor mRNA and protein in adult mouse brain publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1999.86.1.260 – volume: 40 start-page: 1133 year: 2003 ident: 10.1016/j.bbi.2014.09.011_b0025 article-title: Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain publication-title: Neuron doi: 10.1016/S0896-6273(03)00766-9 – volume: 20 start-page: 239 year: 2002 ident: 10.1016/j.bbi.2014.09.011_b0150 article-title: Transforming growth factor-Beta 1 (tgf-Beta 1) in patients with amyotrophic lateral sclerosis publication-title: Cytokine doi: 10.1006/cyto.2002.2005 – volume: 139B start-page: 101 year: 2005 ident: 10.1016/j.bbi.2014.09.011_b0210 article-title: Adenosine A2A receptor dysfunction correlates with age at onset anticipation in blood platelets of subjects with Huntington’s disease publication-title: Am. J. Med. Genet. B Neuropsychiatric Genet. doi: 10.1002/ajmg.b.30223 – volume: 6 start-page: 210 year: 2005 ident: 10.1016/j.bbi.2014.09.011_b0095 article-title: Connecting the dots in Huntington’s disease with protein interaction networks publication-title: Genome Biol. doi: 10.1186/gb-2005-6-3-210 – volume: 73 start-page: 449 year: 2001 ident: 10.1016/j.bbi.2014.09.011_b0190 article-title: Regulation of MMP-9 production by human corneal epithelial cells publication-title: Exp. Eye Res. doi: 10.1006/exer.2001.1054 – volume: 93 start-page: 1131 year: 2002 ident: 10.1016/j.bbi.2014.09.011_b0255 article-title: Angiopoietin-2 and rat brain capillary remodeling during adaptation and deadaptation to prolonged mild hypoxia publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00318.2002 – volume: 117 start-page: 1001 year: 2010 ident: 10.1016/j.bbi.2014.09.011_b0220 article-title: Neuroinflammation in Huntington’s disease publication-title: J. Neural Transm. doi: 10.1007/s00702-010-0430-7 – volume: 250 start-page: 20 year: 2013 ident: 10.1016/j.bbi.2014.09.011_b0200 article-title: Neurovascular abnormalities in humans and mice with Huntington’s disease publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2013.08.019 – volume: 6 start-page: 756 year: 2005 ident: 10.1016/j.bbi.2014.09.011_b0080 article-title: Therapeutics development for triplet repeat expansion diseases publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1690 – volume: 20 start-page: 1098 year: 2009 ident: 10.1016/j.bbi.2014.09.011_b0290 article-title: Distinct neuroinflammatory profile in post-mortem human Huntington’s disease publication-title: Neuroreport doi: 10.1097/WNR.0b013e32832e34ee – volume: 34 start-page: 40 year: 2003 ident: 10.1016/j.bbi.2014.09.011_b0040 article-title: Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke publication-title: Stroke doi: 10.1161/01.STR.0000046764.57344.31 – volume: 11 start-page: 136 year: 1996 ident: 10.1016/j.bbi.2014.09.011_b0100 article-title: Unified Huntington’s Disease Rating Scale: reliability and consistency publication-title: Mov. Disord. doi: 10.1002/mds.870110204 – volume: 87 start-page: 493 year: 1996 ident: 10.1016/j.bbi.2014.09.011_b0215 article-title: Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice publication-title: Cell doi: 10.1016/S0092-8674(00)81369-0 – volume: 185 start-page: 127 year: 1991 ident: 10.1016/j.bbi.2014.09.011_b0125 article-title: Matrix metalloproteinase (MMP) publication-title: C. R. Seances Soc. Biol. Fil. – volume: 205 start-page: 1869 year: 2008 ident: 10.1016/j.bbi.2014.09.011_b0015 article-title: A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease publication-title: J. Exp. Med. doi: 10.1084/jem.20080178 – volume: 108 start-page: 9262 year: 2011 ident: 10.1016/j.bbi.2014.09.011_b0340 article-title: Antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) are attenuated by antiinflammatory drugs in mice and humans publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1104836108 – volume: 297 start-page: 1186 year: 2002 ident: 10.1016/j.bbi.2014.09.011_b0110 article-title: S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death publication-title: Science doi: 10.1126/science.1073634 – volume: 2 start-page: 549 year: 1998 ident: 10.1016/j.bbi.2014.09.011_b0295 article-title: VEGF gene delivery to muscle: potential role for vasculogenesis in adults publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80154-9 – volume: 2 start-page: RRN1205 year: 2010 ident: 10.1016/j.bbi.2014.09.011_b0230 article-title: Optimization of an HTRF assay for the detection of soluble mutant Huntingtin in human buffy coats: a potential biomarker in blood for Huntington disease publication-title: PLoS Curr. doi: 10.1371/currents.RRN1205 – volume: 11 start-page: 583 year: 2005 ident: 10.1016/j.bbi.2014.09.011_b0325 article-title: The ubiquitin – proteasome system in Huntington’s disease publication-title: Neuroscientist doi: 10.1177/1073858405280639 – volume: 258 start-page: 385 year: 2014 ident: 10.1016/j.bbi.2014.09.011_b0365 article-title: Comparative study of the neurotrophic effects elicited by VEGF-B and GDNF in preclinical in vivo models of Parkinson’s disease publication-title: Neuroscience doi: 10.1016/j.neuroscience.2013.11.038 – volume: 7 start-page: e46492 year: 2012 ident: 10.1016/j.bbi.2014.09.011_b0050 article-title: Downregulation of genes involved in metabolism and oxidative stress in the peripheral leukocytes of Huntington’s disease patients publication-title: PLoS One doi: 10.1371/journal.pone.0046492 – volume: 33 start-page: 2145 year: 2012 ident: 10.1016/j.bbi.2014.09.011_b0160 article-title: Microglia-inhibiting activity of Parkinson’s disease drug amantadine publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2011.08.011 – volume: 2 start-page: 447 year: 2005 ident: 10.1016/j.bbi.2014.09.011_b0195 article-title: The use of the R6 transgenic mouse models ofHuntington’s disease in attempts to develop novel therapeutic strategies publication-title: NeuroRx doi: 10.1602/neurorx.2.3.447 – volume: 27 start-page: 33 year: 2006 ident: 10.1016/j.bbi.2014.09.011_b0265 article-title: Increased intrathecal TGF-beta1, but not IL-12, IFN-gamma and IL-10 levels in Alzheimer’s disease patients publication-title: Neurol. Sci. doi: 10.1007/s10072-006-0562-6 – volume: 316 start-page: 937 year: 2004 ident: 10.1016/j.bbi.2014.09.011_b0070 article-title: Matrix metalloproteinases and TGFbeta1 modulate oral tumor cell matrix publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2004.02.143 – volume: 72 start-page: 971 year: 1993 ident: 10.1016/j.bbi.2014.09.011_b0205 article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes publication-title: Cell doi: 10.1016/0092-8674(93)90585-E – volume: 67 start-page: 199 year: 2010 ident: 10.1016/j.bbi.2014.09.011_b9000 article-title: Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington's disease publication-title: Neuron doi: 10.1016/j.neuron.2010.06.021 – volume: 15 start-page: 555 year: 2011 ident: 10.1016/j.bbi.2014.09.011_b0005 article-title: Early defect of transforming growth factor beta1 formation in Huntington’s disease publication-title: J. Cell. Mol. Med. doi: 10.1111/j.1582-4934.2010.01011.x – volume: 1183 start-page: 211 year: 2010 ident: 10.1016/j.bbi.2014.09.011_b0065 article-title: Th1 and Th17 cells: adversaries and collaborators publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2009.05133.x – volume: 1147 start-page: 79 year: 2008 ident: 10.1016/j.bbi.2014.09.011_b0300 article-title: Evidence of oxidant damage in Huntington’s disease: translational strategies using antioxidants publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1427.008 – volume: 60 start-page: 161 year: 2001 ident: 10.1016/j.bbi.2014.09.011_b0275 article-title: Early and progressive accumulation of reactive microglia in the Huntington disease brain publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1093/jnen/60.2.161 – volume: 32 start-page: 18259 year: 2012 ident: 10.1016/j.bbi.2014.09.011_b0020 article-title: Cannabinoid receptor 2 signaling in peripheral immune cells modulates disease onset and severity in mouse models of Huntington’s disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4008-12.2012 – volume: 21 start-page: 1862 year: 2013 ident: 10.1016/j.bbi.2014.09.011_b0085 article-title: Dose-dependent neuroprotection of VEGF(1)(6)(5) in Huntington’s disease striatum publication-title: Mol. Ther. doi: 10.1038/mt.2013.132 – volume: 41 start-page: 248 year: 2010 ident: 10.1016/j.bbi.2014.09.011_b0140 article-title: Targeting glial cells to elucidate the pathogenesis of Huntington’s disease publication-title: Mol. Neurobiol. doi: 10.1007/s12035-009-8097-5 – volume: 22 start-page: 971 year: 2002 ident: 10.1016/j.bbi.2014.09.011_b0360 article-title: Elevated intracranial IL-18 in humans and mice after traumatic brain injury and evidence of neuroprotective effects of IL-18-binding protein after experimental closed head injury publication-title: J. Cereb. Blood Flow. Metab. doi: 10.1097/00004647-200208000-00008 – volume: 380 start-page: 17 year: 2009 ident: 10.1016/j.bbi.2014.09.011_b0180 article-title: PPARgamma agonist pioglitazone reduces matrix metalloproteinase-9 activity and neuronal damage after focal cerebral ischemia publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2008.12.181 – volume: 441 start-page: 235 year: 2006 ident: 10.1016/j.bbi.2014.09.011_b0010 article-title: Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells publication-title: Nature doi: 10.1038/nature04753 – volume: 25 start-page: 6401 year: 2005 ident: 10.1016/j.bbi.2014.09.011_b0105 article-title: A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1563-05.2005 – volume: 2 start-page: 3 year: 2013 ident: 10.1016/j.bbi.2014.09.011_b0225 article-title: Large genetic animal models of Huntington’s disease publication-title: J Huntington’s Dis. doi: 10.3233/JHD-130050 – volume: 151 start-page: 43 year: 2013 ident: 10.1016/j.bbi.2014.09.011_b0315 article-title: Antipsychotics’ effects on blood levels of cytokines in schizophrenia: a meta-analysis publication-title: Schizophr. Res. doi: 10.1016/j.schres.2013.10.011 – volume: 15 start-page: 1325 year: 2004 ident: 10.1016/j.bbi.2014.09.011_b0240 article-title: Autophagosome-like vacuole formation in Huntington’s disease lymphoblasts publication-title: Neuroreport doi: 10.1097/01.wnr.0000127073.66692.8f – volume: 3 start-page: 505 year: 2006 ident: 10.1016/j.bbi.2014.09.011_b0310 article-title: A role for TGF-beta signaling in neurodegeneration: evidence from genetically engineered models publication-title: Curr. Alzheimer Res. doi: 10.2174/156720506779025297 – volume: 23 start-page: 4328 year: 2014 ident: 10.1016/j.bbi.2014.09.011_b0145 article-title: Inhibition of soluble tumor necrosis factor is therapeutic in Huntington’s disease publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddu151 – volume: 266 start-page: 11436 year: 1991 ident: 10.1016/j.bbi.2014.09.011_b0270 article-title: Transforming growth factor-beta 1 up-regulates type IV collagenase expression in cultured human keratinocytes publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)98977-5 – volume: 114 start-page: 46 year: 2007 ident: 10.1016/j.bbi.2014.09.011_b0235 article-title: Altered plasma cytokine levels in Alzheimer’s disease: correlation with the disease progression publication-title: Immunol. Lett. doi: 10.1016/j.imlet.2007.09.002 – volume: 129 start-page: 877 year: 2006 ident: 10.1016/j.bbi.2014.09.011_b0320 article-title: Huntington disease patients and transgenic mice have similar pro-catabolic serum metabolite profiles publication-title: Brain doi: 10.1093/brain/awl027 |
SSID | ssj0005318 |
Score | 2.4711092 |
Snippet | •Increased plasma IL-6, MMP-9, VEGF, and TGF-β1 in HD patients.•Decreased IL-18 plasma levels in HD patients.•Plasma IL-6 reversely correlates with... Highlights • Increased plasma IL-6, MMP-9, VEGF, and TGF-β1 in HD patients. • Decreased IL-18 plasma levels in HD patients. • Plasma IL-6 reversely correlates... Huntington's disease (HD), caused by expanded CAG repeats encoding a polyglutamine tract in the huntingtin (HTT) protein, presents with a predominant... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 121 |
SubjectTerms | Adult Age Factors Allergy and Immunology Animals Biomarker Biomarkers - blood Disease Models, Animal Female Humans Huntington Disease - blood Huntington Disease - complications Huntington Disease - diagnosis Huntington’s disease Inflammation Inflammation - blood Inflammation - complications Interleukin-18 - blood Interleukin-6 - blood Male Matrix Metalloproteinase 9 - blood Mice Microglia - metabolism Middle Aged Motor Activity Psychiatry Transforming Growth Factor beta1 - blood Vascular Endothelial Growth Factor A - blood |
Title | Plasma inflammatory biomarkers for Huntington’s disease patients and mouse model |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0889159114004644 https://www.clinicalkey.es/playcontent/1-s2.0-S0889159114004644 https://dx.doi.org/10.1016/j.bbi.2014.09.011 https://www.ncbi.nlm.nih.gov/pubmed/25266150 https://www.proquest.com/docview/1639977883 https://www.proquest.com/docview/1654689986 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD60WxBfpLZetuoygvggxM0kc8vjsljWWynVQt-GZGcCK24szfrQl9K_4d_rL_GcyWRFtCv4loQcEs6cyzdzvjkD8AJTDHoNUXEwPyei9jKpaiWTNM9FnRe1wsBMbIsjNTsV787k2RZM-70wRKuMsb-L6SFaxyfjqM3x-WIx_kQEHUzGCOhDfU5sw06G2d4MYGfy9v3s6BfTo1vmC4QeEuiLm4HmVVULInh13U45vy093QY_Qxo63IV7ET-ySfeL92HLN3uwP2lw7ry8ZC9ZYHSGpfI9uPMxFs734eQYUfKyZGhPaALLUFpntPWe2DkXLUPoymbdqREIBm-uf7Qslm5Y7LzasrJxjBYKPAvH5zyA08M3n6ezJB6nkMyl1Kuk5M7kdWFSV9TcaVHi9NQL7VRtirTUpZxToxovqNYm6wrxrDJeGs6rjCY9On8Ig-Zb4x8D8yoXqZuXhBaF877gVaW4cS7XusTrIaS9Fu089hqnIy--2p5U9sWi4i0p3qaFRcUP4dVa5LxrtLHp5awfGtvvIMWYZzENbBLSfxPybfTa1nLbZja1f1jWEMRa8jfj_NcHn_dWY9FpqRJTNh7HyXLChVobk296RwpFs2E1hEedya0Vk0nCVTI9-L8fewJ38U525POnMFhdfPfPEFutqhFsv77iI_Sg6cmH41H0pJ_2KSLn |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDbS5lDbpY5s-VCg9FMxaaz3s4xISnCZZSptAbkJeybCh64Z4c-itf6N_r78kM7K8paTZQm_G9mAzGs180nyaAXiHIQZnDVFxMD4novYyqWolkzTLRJ0VtULHTGyLqSrPxMdzeb4Be_1ZGKJVRt_f-fTgreOdUdTm6HI-H30hgg4GYwT0IT8n7sGmoKbWA9icHB6V099Mj26bLxB6SKBPbgaaV1XNieDVVTvl_K7wdBf8DGHo4BE8jPiRTbpffAwbvtmGnUmDa-fFd_aeBUZn2CrfhvsnMXG-A58_IUpeWIb2hCawCKl1RkfviZ1z1TKErqzsukYgGPz142fLYuqGxcqrLbONY7RR4Flon_MEzg72T_fKJLZTSGZS6mViucuzushTV9TcaWFxeeqFdqrOi9RqK2dUqMYLyrXJukI8q3Ivc86rMS16dPYUBs23xj8H5lUmUjezhBaF877gVaV47lymtcXrIaS9Fs0s1hqnlhdfTU8quzCoeEOKN2lhUPFD-LASuewKbax7edwPjelPkKLPMxgG1gnpvwn5Ns7a1nDTjk1qblnWEMRK8g_j_NcH3_ZWY3DSUibGNh7HyXDChVrnebbuHSkUrYbVEJ51JrdSzFgSrpLpi__7sTfwoDw9OTbHh9OjXdjCJ7Ijor-EwfLq2r9CnLWsXsd5dAOzPCM4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasma+inflammatory+biomarkers+for+Huntington%E2%80%99s+disease+patients+and+mouse+model&rft.jtitle=Brain%2C+behavior%2C+and+immunity&rft.au=Chang%2C+Kuo-Hsuan&rft.au=Wu%2C+Yih-Ru&rft.au=Chen%2C+Yi-Chun&rft.au=Chen%2C+Chiung-Mei&rft.date=2015-02-01&rft.issn=0889-1591&rft.volume=44&rft.spage=121&rft.epage=127&rft_id=info:doi/10.1016%2Fj.bbi.2014.09.011&rft.externalDBID=ECK1-s2.0-S0889159114004644&rft.externalDocID=1_s2_0_S0889159114004644 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F08891591%2FS0889159114X00103%2Fcov150h.gif |