Plasma inflammatory biomarkers for Huntington’s disease patients and mouse model

•Increased plasma IL-6, MMP-9, VEGF, and TGF-β1 in HD patients.•Decreased IL-18 plasma levels in HD patients.•Plasma IL-6 reversely correlates with independence scale and functional capacity.•Alterations of the inflammatory markers were found in R6/2 mice at different ages.•These inflammatory marker...

Full description

Saved in:
Bibliographic Details
Published inBrain, behavior, and immunity Vol. 44; pp. 121 - 127
Main Authors Chang, Kuo-Hsuan, Wu, Yih-Ru, Chen, Yi-Chun, Chen, Chiung-Mei
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.02.2015
Subjects
Online AccessGet full text
ISSN0889-1591
1090-2139
1090-2139
DOI10.1016/j.bbi.2014.09.011

Cover

Abstract •Increased plasma IL-6, MMP-9, VEGF, and TGF-β1 in HD patients.•Decreased IL-18 plasma levels in HD patients.•Plasma IL-6 reversely correlates with independence scale and functional capacity.•Alterations of the inflammatory markers were found in R6/2 mice at different ages.•These inflammatory markers may serve as the potential biomarkers for HD. Huntington’s disease (HD), caused by expanded CAG repeats encoding a polyglutamine tract in the huntingtin (HTT) protein, presents with a predominant degeneration of neurons in the striatum and cortex. Lines of evidence have observed neuroinflammation, particularly microglial activation, is involved in the pathogenesis of HD. Given that HTT is also expressed in peripheral inflammatory cells, it is possible that inflammatory changes detected in peripheral plasma may be biologically relevant and parallel the neuroinflammatory process of HD patients. By examining the expression levels of 13 microglia-derived inflammatory markers in the plasma of 5 PreHD carriers, 15 HD patients and 16 healthy controls, we found plasma levels of IL-6, MMP-9, VEGF and TGF-β1 were significantly increased in HD patients when compared with the controls, while plasma level of IL-18 were significantly reduced in HD patients compared with controls. Plasma level of IL-6 was reversely correlated with the UHDRS independence scale and functional capacity. To understand the temporal correlation between these inflammatory markers and HD progression, their levels were further tested in plasma from R6/2 mouse HD model at different ages. In rotarod test, R6/2 HD mice started to manifest HD phenotype at 7.5weeks of age. Higher plasma VEGF levels of R6/2 mice than those of age-matched wild-type (WT) littermates were noted from 7 (presymptomatic stage) to 13weeks of age (late symptomatic stage). The plasma IL-6 levels of R6/2 mice were higher than those of the WT littermates from 9 (early symptomatic stage) to 13weeks of age. R6/2 mice demonstrated higher MMP-9 and TGF-β1 levels than their WT littermates from 11 (middle symptomatic stage) to 13weeks of age. In contrast, the plasma IL-18 level was lower than those in WT littermates since 11weeks of age. These altered expressions of inflammatory markers may serve as the potential biomarkers for HD onset and progression. Specific inhibition/activation of these inflammatory markers may be the targets of HD drug development.
AbstractList Huntington's disease (HD), caused by expanded CAG repeats encoding a polyglutamine tract in the huntingtin (HTT) protein, presents with a predominant degeneration of neurons in the striatum and cortex. Lines of evidence have observed neuroinflammation, particularly microglial activation, is involved in the pathogenesis of HD. Given that HTT is also expressed in peripheral inflammatory cells, it is possible that inflammatory changes detected in peripheral plasma may be biologically relevant and parallel the neuroinflammatory process of HD patients. By examining the expression levels of 13 microglia-derived inflammatory markers in the plasma of 5 PreHD carriers, 15 HD patients and 16 healthy controls, we found plasma levels of IL-6, MMP-9, VEGF and TGF-β1 were significantly increased in HD patients when compared with the controls, while plasma level of IL-18 were significantly reduced in HD patients compared with controls. Plasma level of IL-6 was reversely correlated with the UHDRS independence scale and functional capacity. To understand the temporal correlation between these inflammatory markers and HD progression, their levels were further tested in plasma from R6/2 mouse HD model at different ages. In rotarod test, R6/2 HD mice started to manifest HD phenotype at 7.5 weeks of age. Higher plasma VEGF levels of R6/2 mice than those of age-matched wild-type (WT) littermates were noted from 7 (presymptomatic stage) to 13 weeks of age (late symptomatic stage). The plasma IL-6 levels of R6/2 mice were higher than those of the WT littermates from 9 (early symptomatic stage) to 13 weeks of age. R6/2 mice demonstrated higher MMP-9 and TGF-β1 levels than their WT littermates from 11 (middle symptomatic stage) to 13 weeks of age. In contrast, the plasma IL-18 level was lower than those in WT littermates since 11 weeks of age. These altered expressions of inflammatory markers may serve as the potential biomarkers for HD onset and progression. Specific inhibition/activation of these inflammatory markers may be the targets of HD drug development.Huntington's disease (HD), caused by expanded CAG repeats encoding a polyglutamine tract in the huntingtin (HTT) protein, presents with a predominant degeneration of neurons in the striatum and cortex. Lines of evidence have observed neuroinflammation, particularly microglial activation, is involved in the pathogenesis of HD. Given that HTT is also expressed in peripheral inflammatory cells, it is possible that inflammatory changes detected in peripheral plasma may be biologically relevant and parallel the neuroinflammatory process of HD patients. By examining the expression levels of 13 microglia-derived inflammatory markers in the plasma of 5 PreHD carriers, 15 HD patients and 16 healthy controls, we found plasma levels of IL-6, MMP-9, VEGF and TGF-β1 were significantly increased in HD patients when compared with the controls, while plasma level of IL-18 were significantly reduced in HD patients compared with controls. Plasma level of IL-6 was reversely correlated with the UHDRS independence scale and functional capacity. To understand the temporal correlation between these inflammatory markers and HD progression, their levels were further tested in plasma from R6/2 mouse HD model at different ages. In rotarod test, R6/2 HD mice started to manifest HD phenotype at 7.5 weeks of age. Higher plasma VEGF levels of R6/2 mice than those of age-matched wild-type (WT) littermates were noted from 7 (presymptomatic stage) to 13 weeks of age (late symptomatic stage). The plasma IL-6 levels of R6/2 mice were higher than those of the WT littermates from 9 (early symptomatic stage) to 13 weeks of age. R6/2 mice demonstrated higher MMP-9 and TGF-β1 levels than their WT littermates from 11 (middle symptomatic stage) to 13 weeks of age. In contrast, the plasma IL-18 level was lower than those in WT littermates since 11 weeks of age. These altered expressions of inflammatory markers may serve as the potential biomarkers for HD onset and progression. Specific inhibition/activation of these inflammatory markers may be the targets of HD drug development.
Highlights • Increased plasma IL-6, MMP-9, VEGF, and TGF-β1 in HD patients. • Decreased IL-18 plasma levels in HD patients. • Plasma IL-6 reversely correlates with independence scale and functional capacity. • Alterations of the inflammatory markers were found in R6/2 mice at different ages. • These inflammatory markers may serve as the potential biomarkers for HD.
•Increased plasma IL-6, MMP-9, VEGF, and TGF-β1 in HD patients.•Decreased IL-18 plasma levels in HD patients.•Plasma IL-6 reversely correlates with independence scale and functional capacity.•Alterations of the inflammatory markers were found in R6/2 mice at different ages.•These inflammatory markers may serve as the potential biomarkers for HD. Huntington’s disease (HD), caused by expanded CAG repeats encoding a polyglutamine tract in the huntingtin (HTT) protein, presents with a predominant degeneration of neurons in the striatum and cortex. Lines of evidence have observed neuroinflammation, particularly microglial activation, is involved in the pathogenesis of HD. Given that HTT is also expressed in peripheral inflammatory cells, it is possible that inflammatory changes detected in peripheral plasma may be biologically relevant and parallel the neuroinflammatory process of HD patients. By examining the expression levels of 13 microglia-derived inflammatory markers in the plasma of 5 PreHD carriers, 15 HD patients and 16 healthy controls, we found plasma levels of IL-6, MMP-9, VEGF and TGF-β1 were significantly increased in HD patients when compared with the controls, while plasma level of IL-18 were significantly reduced in HD patients compared with controls. Plasma level of IL-6 was reversely correlated with the UHDRS independence scale and functional capacity. To understand the temporal correlation between these inflammatory markers and HD progression, their levels were further tested in plasma from R6/2 mouse HD model at different ages. In rotarod test, R6/2 HD mice started to manifest HD phenotype at 7.5weeks of age. Higher plasma VEGF levels of R6/2 mice than those of age-matched wild-type (WT) littermates were noted from 7 (presymptomatic stage) to 13weeks of age (late symptomatic stage). The plasma IL-6 levels of R6/2 mice were higher than those of the WT littermates from 9 (early symptomatic stage) to 13weeks of age. R6/2 mice demonstrated higher MMP-9 and TGF-β1 levels than their WT littermates from 11 (middle symptomatic stage) to 13weeks of age. In contrast, the plasma IL-18 level was lower than those in WT littermates since 11weeks of age. These altered expressions of inflammatory markers may serve as the potential biomarkers for HD onset and progression. Specific inhibition/activation of these inflammatory markers may be the targets of HD drug development.
Huntington's disease (HD), caused by expanded CAG repeats encoding a polyglutamine tract in the huntingtin (HTT) protein, presents with a predominant degeneration of neurons in the striatum and cortex. Lines of evidence have observed neuroinflammation, particularly microglial activation, is involved in the pathogenesis of HD. Given that HTT is also expressed in peripheral inflammatory cells, it is possible that inflammatory changes detected in peripheral plasma may be biologically relevant and parallel the neuroinflammatory process of HD patients. By examining the expression levels of 13 microglia-derived inflammatory markers in the plasma of 5 PreHD carriers, 15 HD patients and 16 healthy controls, we found plasma levels of IL-6, MMP-9, VEGF and TGF-β1 were significantly increased in HD patients when compared with the controls, while plasma level of IL-18 were significantly reduced in HD patients compared with controls. Plasma level of IL-6 was reversely correlated with the UHDRS independence scale and functional capacity. To understand the temporal correlation between these inflammatory markers and HD progression, their levels were further tested in plasma from R6/2 mouse HD model at different ages. In rotarod test, R6/2 HD mice started to manifest HD phenotype at 7.5 weeks of age. Higher plasma VEGF levels of R6/2 mice than those of age-matched wild-type (WT) littermates were noted from 7 (presymptomatic stage) to 13 weeks of age (late symptomatic stage). The plasma IL-6 levels of R6/2 mice were higher than those of the WT littermates from 9 (early symptomatic stage) to 13 weeks of age. R6/2 mice demonstrated higher MMP-9 and TGF-β1 levels than their WT littermates from 11 (middle symptomatic stage) to 13 weeks of age. In contrast, the plasma IL-18 level was lower than those in WT littermates since 11 weeks of age. These altered expressions of inflammatory markers may serve as the potential biomarkers for HD onset and progression. Specific inhibition/activation of these inflammatory markers may be the targets of HD drug development.
Huntington's disease (HD), caused by expanded CAG repeats encoding a polyglutamine tract in the huntingtin (HTT) protein, presents with a predominant degeneration of neurons in the striatum and cortex. Lines of evidence have observed neuroinflammation, particularly microglial activation, is involved in the pathogenesis of HD. Given that HTT is also expressed in peripheral inflammatory cells, it is possible that inflammatory changes detected in peripheral plasma may be biologically relevant and parallel the neuroinflammatory process of HD patients. By examining the expression levels of 13 microglia-derived inflammatory markers in the plasma of 5 PreHD carriers, 15 HD patients and 16 healthy controls, we found plasma levels of IL-6, MMP-9, VEGF and TGF- beta 1 were significantly increased in HD patients when compared with the controls, while plasma level of IL-18 were significantly reduced in HD patients compared with controls. Plasma level of IL-6 was reversely correlated with the UHDRS independence scale and functional capacity. To understand the temporal correlation between these inflammatory markers and HD progression, their levels were further tested in plasma from R6/2 mouse HD model at different ages. In rotarod test, R6/2 HD mice started to manifest HD phenotype at 7.5weeks of age. Higher plasma VEGF levels of R6/2 mice than those of age-matched wild-type (WT) littermates were noted from 7 (presymptomatic stage) to 13weeks of age (late symptomatic stage). The plasma IL-6 levels of R6/2 mice were higher than those of the WT littermates from 9 (early symptomatic stage) to 13weeks of age. R6/2 mice demonstrated higher MMP-9 and TGF- beta 1 levels than their WT littermates from 11 (middle symptomatic stage) to 13weeks of age. In contrast, the plasma IL-18 level was lower than those in WT littermates since 11weeks of age. These altered expressions of inflammatory markers may serve as the potential biomarkers for HD onset and progression. Specific inhibition/activation of these inflammatory markers may be the targets of HD drug development.
Author Chen, Yi-Chun
Chang, Kuo-Hsuan
Wu, Yih-Ru
Chen, Chiung-Mei
Author_xml – sequence: 1
  givenname: Kuo-Hsuan
  surname: Chang
  fullname: Chang, Kuo-Hsuan
– sequence: 2
  givenname: Yih-Ru
  surname: Wu
  fullname: Wu, Yih-Ru
– sequence: 3
  givenname: Yi-Chun
  surname: Chen
  fullname: Chen, Yi-Chun
– sequence: 4
  givenname: Chiung-Mei
  surname: Chen
  fullname: Chen, Chiung-Mei
  email: cmchen@adm.cgmh.org.tw
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25266150$$D View this record in MEDLINE/PubMed
BookMark eNqNks-K1TAUh4OMOHdGH8CNdOmmNadN0gRBkEEdYUDxzzqkyankTptck1a4O1_D1_NJzOWOLgYcXQXC952E3--ckZMQAxLyGGgDFMSzbTMMvmkpsIaqhgLcIxugitYtdOqEbKiUqgau4JSc5byllPIO5ANy2vJWCOB0Qz68n0yeTeXDOJl5NktM-2rwcTbpGlOuxpiqyzUsPnxZYvj5_UeunM9oMlY7s3gMS65McNUc13I1R4fTQ3J_NFPGRzfnOfn8-tWni8v66t2btxcvr2rLeb_UBpzsRiWpUyO4nhnoOmS9E6NU1PSGW8WUQgZty_g4SBiERC4BhrYVlPfdOXl6nLtL8euKedGzzxanyQQsv9EgOBNSKSn-A-2U6nspu4I-uUHXYUand8mXLPb6d2QFgCNgU8w54fgHAaoPteitLrXoQy2aKl1qKU5_y7F-KfHFsCTjpzvN50cTS5LfPCadbUndovMJ7aJd9HfaL27ZdvLBWzNd4x7zNq4plIo06Nxqqj8eFuawL8AoZYKxMkD9fcA_Hv8FhbjOaw
CitedBy_id crossref_primary_10_1016_j_jneuroim_2020_577380
crossref_primary_10_1039_D3FO00156C
crossref_primary_10_3390_cells11030546
crossref_primary_10_1021_acs_jproteome_1c00138
crossref_primary_10_1007_s10048_025_00801_2
crossref_primary_10_1016_j_ejphar_2022_175316
crossref_primary_10_3390_brainsci8090177
crossref_primary_10_1093_abbs_gmx124
crossref_primary_10_1016_j_jneuroim_2016_02_012
crossref_primary_10_1007_s00018_019_03178_2
crossref_primary_10_1007_s10072_021_05835_6
crossref_primary_10_3390_biom13050743
crossref_primary_10_3390_brainsci12101389
crossref_primary_10_1016_j_it_2015_04_007
crossref_primary_10_1111_febs_17102
crossref_primary_10_15252_emmm_201505413
crossref_primary_10_1016_j_jneuroim_2023_578243
crossref_primary_10_3390_ijms18112480
crossref_primary_10_3233_JHD_170273
crossref_primary_10_1038_s41419_020_02754_w
crossref_primary_10_1016_j_mcn_2019_02_004
crossref_primary_10_3389_fnagi_2017_00193
crossref_primary_10_1016_j_neuron_2016_03_016
crossref_primary_10_1093_brain_awz363
crossref_primary_10_1007_s12035_017_0383_z
crossref_primary_10_3390_ijms22031413
crossref_primary_10_1186_s12974_021_02147_6
crossref_primary_10_1016_j_bbih_2023_100635
crossref_primary_10_3389_fncel_2020_00163
crossref_primary_10_1021_acschemneuro_6b00042
crossref_primary_10_1016_j_heliyon_2018_e00508
crossref_primary_10_1186_s12964_021_00799_8
crossref_primary_10_1007_s13311_021_01089_4
crossref_primary_10_1016_j_molimm_2025_02_003
crossref_primary_10_3389_fphar_2021_643254
crossref_primary_10_1016_j_cellsig_2016_12_005
crossref_primary_10_1186_s13024_020_00379_3
crossref_primary_10_1177_03946320221123164
crossref_primary_10_3389_fnmol_2019_00258
crossref_primary_10_1038_s41598_018_27985_y
crossref_primary_10_3390_ijms23063223
crossref_primary_10_3390_ijms21176363
crossref_primary_10_1016_j_brainres_2018_06_009
crossref_primary_10_1007_s12035_023_03307_w
crossref_primary_10_1111_jnc_13415
crossref_primary_10_1186_s40035_024_00459_0
crossref_primary_10_1038_s41598_020_74042_8
crossref_primary_10_3233_JHD_150181
crossref_primary_10_1016_j_ijbiomac_2024_135967
crossref_primary_10_3233_JHD_200395
crossref_primary_10_1038_s41598_023_46852_z
crossref_primary_10_3389_fpsyt_2015_00116
crossref_primary_10_3389_fncel_2021_705348
crossref_primary_10_1007_s11064_023_04085_6
crossref_primary_10_3390_biomedicines10051206
crossref_primary_10_1007_s10565_023_09820_x
crossref_primary_10_1016_j_phrs_2024_107443
crossref_primary_10_21926_obm_geriatr_2302234
crossref_primary_10_3389_fimmu_2022_1088124
crossref_primary_10_1007_s13311_021_01023_8
crossref_primary_10_1038_s41421_024_00666_z
crossref_primary_10_1016_j_neuint_2020_104841
crossref_primary_10_1021_acs_nanolett_0c02343
crossref_primary_10_1038_s41401_020_00558_4
crossref_primary_10_1093_hmg_ddy202
crossref_primary_10_1155_2015_620581
crossref_primary_10_1007_s12640_020_00233_w
crossref_primary_10_1016_j_ejmech_2018_01_037
crossref_primary_10_3389_fnins_2020_00073
crossref_primary_10_3390_ijms22041561
crossref_primary_10_3389_fneur_2017_00011
crossref_primary_10_3390_biology14020129
crossref_primary_10_1016_j_bj_2019_01_008
crossref_primary_10_3390_cells14010042
crossref_primary_10_1016_j_coph_2015_09_008
crossref_primary_10_3389_fncel_2020_00250
crossref_primary_10_1007_s11011_021_00807_3
crossref_primary_10_1016_j_nbd_2015_08_011
crossref_primary_10_1016_j_neubiorev_2019_04_002
crossref_primary_10_1007_s10354_022_00941_2
crossref_primary_10_1007_s13311_023_01357_5
crossref_primary_10_1016_j_biopha_2022_113664
crossref_primary_10_1212_NXI_0000000000000287
crossref_primary_10_1016_j_psychres_2022_115005
crossref_primary_10_3390_cells13060469
crossref_primary_10_1016_j_tibtech_2017_11_004
crossref_primary_10_1016_j_molimm_2022_09_002
crossref_primary_10_3390_jcm10133001
crossref_primary_10_3390_ijms22010019
crossref_primary_10_3390_ijms252111658
crossref_primary_10_1016_j_bbi_2016_07_004
crossref_primary_10_1016_j_nbd_2020_104963
crossref_primary_10_1002_acn3_52016
crossref_primary_10_3390_ijms21072431
crossref_primary_10_1186_s12974_022_02419_9
crossref_primary_10_2174_1381612825666190722114248
crossref_primary_10_1016_j_brainres_2017_08_013
crossref_primary_10_1017_cts_2022_372
crossref_primary_10_1111_acel_14302
crossref_primary_10_3233_JHD_160213
crossref_primary_10_1016_j_neuropharm_2016_01_011
crossref_primary_10_1016_j_bbih_2022_100482
crossref_primary_10_1080_13543784_2024_2348738
crossref_primary_10_1016_j_jprot_2018_06_017
crossref_primary_10_3390_molecules23123167
crossref_primary_10_1007_s00415_023_11572_x
Cites_doi 10.1016/j.ejphar.2012.10.026
10.1006/scdb.2001.0290
10.1212/WNL.51.6.1576
10.1016/j.pneurobio.2007.03.004
10.1136/jnnp.55.11.1018
10.1016/j.brainresbull.2006.10.029
10.4049/jimmunol.161.11.6368
10.1093/brain/awn212
10.1021/pr0700753
10.1523/JNEUROSCI.2675-04.2004
10.1038/mt.2013.108
10.1016/j.bbrc.2007.05.093
10.1083/jcb.200508072
10.1371/currents.RRN1231
10.1212/01.wnl.0000222734.56412.17
10.1006/exnr.1996.0200
10.1002/jnr.21072
10.1016/j.nbd.2011.09.003
10.1172/JCI64565
10.1016/j.neurobiolaging.2007.06.006
10.1038/13518
10.1093/hmg/ddt036
10.1196/annals.1427.018
10.4049/jimmunol.162.9.5041
10.1093/brain/awh489
10.1093/brain/122.9.1667
10.1152/jappl.1999.86.1.260
10.1016/S0896-6273(03)00766-9
10.1006/cyto.2002.2005
10.1002/ajmg.b.30223
10.1186/gb-2005-6-3-210
10.1006/exer.2001.1054
10.1152/japplphysiol.00318.2002
10.1007/s00702-010-0430-7
10.1016/j.expneurol.2013.08.019
10.1038/nrg1690
10.1097/WNR.0b013e32832e34ee
10.1161/01.STR.0000046764.57344.31
10.1002/mds.870110204
10.1016/S0092-8674(00)81369-0
10.1084/jem.20080178
10.1073/pnas.1104836108
10.1126/science.1073634
10.1016/S1097-2765(00)80154-9
10.1371/currents.RRN1205
10.1177/1073858405280639
10.1016/j.neuroscience.2013.11.038
10.1371/journal.pone.0046492
10.1016/j.neurobiolaging.2011.08.011
10.1602/neurorx.2.3.447
10.1007/s10072-006-0562-6
10.1016/j.bbrc.2004.02.143
10.1016/0092-8674(93)90585-E
10.1016/j.neuron.2010.06.021
10.1111/j.1582-4934.2010.01011.x
10.1111/j.1749-6632.2009.05133.x
10.1196/annals.1427.008
10.1093/jnen/60.2.161
10.1523/JNEUROSCI.4008-12.2012
10.1038/mt.2013.132
10.1007/s12035-009-8097-5
10.1097/00004647-200208000-00008
10.1016/j.bbrc.2008.12.181
10.1038/nature04753
10.1523/JNEUROSCI.1563-05.2005
10.3233/JHD-130050
10.1016/j.schres.2013.10.011
10.1097/01.wnr.0000127073.66692.8f
10.2174/156720506779025297
10.1093/hmg/ddu151
10.1016/S0021-9258(18)98977-5
10.1016/j.imlet.2007.09.002
10.1093/brain/awl027
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Elsevier Inc.
Copyright © 2014 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: Elsevier Inc.
– notice: Copyright © 2014 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QG
7T5
7TK
H94
DOI 10.1016/j.bbi.2014.09.011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Animal Behavior Abstracts
Immunology Abstracts
Neurosciences Abstracts
AIDS and Cancer Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Immunology Abstracts
Neurosciences Abstracts
Animal Behavior Abstracts
DatabaseTitleList MEDLINE - Academic


MEDLINE
AIDS and Cancer Research Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1090-2139
EndPage 127
ExternalDocumentID 25266150
10_1016_j_bbi_2014_09_011
S0889159114004644
1_s2_0_S0889159114004644
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
9JM
9JO
AAAJQ
AADFP
AAEDT
AAEDW
AAGJA
AAGUQ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABOYX
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACRPL
ACVFH
ACXNI
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
CJTIS
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMG
HMQ
HVGLF
HZ~
IHE
J1W
KOM
L7B
LG5
LUGTX
LZ5
M2U
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OH0
OKEIE
OU-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SIN
SNS
SPCBC
SSB
SSN
SSY
SSZ
T5K
TN5
UAP
UNMZH
UPT
WUQ
XPP
XSW
Z5R
ZGI
ZMT
~G-
~S-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
SSI
AADPK
AAIAV
ABYKQ
AFYLN
AJBFU
EFLBG
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QG
7T5
7TK
H94
ID FETCH-LOGICAL-c557t-a1d83f980d9f1d74a133e47d6f890a7a5c9499e412245fb81b68e5811b2260573
IEDL.DBID AIKHN
ISSN 0889-1591
1090-2139
IngestDate Fri Sep 05 11:47:05 EDT 2025
Fri Sep 05 06:32:47 EDT 2025
Thu Apr 03 07:09:57 EDT 2025
Tue Jul 01 04:10:15 EDT 2025
Thu Apr 24 23:10:07 EDT 2025
Fri Feb 23 02:27:21 EST 2024
Sun Feb 23 10:19:12 EST 2025
Tue Aug 26 16:32:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Biomarker
Huntington’s disease
Inflammation
Language English
License Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c557t-a1d83f980d9f1d74a133e47d6f890a7a5c9499e412245fb81b68e5811b2260573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25266150
PQID 1639977883
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1654689986
proquest_miscellaneous_1639977883
pubmed_primary_25266150
crossref_primary_10_1016_j_bbi_2014_09_011
crossref_citationtrail_10_1016_j_bbi_2014_09_011
elsevier_sciencedirect_doi_10_1016_j_bbi_2014_09_011
elsevier_clinicalkeyesjournals_1_s2_0_S0889159114004644
elsevier_clinicalkey_doi_10_1016_j_bbi_2014_09_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Brain, behavior, and immunity
PublicationTitleAlternate Brain Behav Immun
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Krakora, Mulcrone (b0165) 2013; 21
Yatsiv, Morganti-Kossmann (b0360) 2002; 22
Motta, Imbesi (b0235) 2007; 114
Yue, Hariri (b0365) 2014; 258
Huntington Study Group (b0100) 1996; 11
Maglione, Giallonardo (b0210) 2005; 139B
Wild, Magnusson (b0350) 2011; 3
Chang, Chen (b0050) 2012; 7
Lin, Hsu (b0200) 2013; 250
Pavese, Gerhard (b0250) 2006; 66
Rahman, Ekman (b0260) 2013; 698
Cha (b0045) 2007; 83
Deckel, Cohen (b0075) 1998; 51
Gu, Cui (b0105) 2005; 25
Morton, Morton (b0225) 2013; 2
Franciosi, Ryu (b0090) 2012; 45
Damsker, Hansen (b0065) 2010; 1183
Ojala, Alafuzoff (b0245) 2009; 30
Sawa, Wiegand (b0280) 1999; 5
Pichiule, LaManna (b0255) 2002; 93
Bouchard, Truong (b0020) 2012; 32
Chen, Wu (b0055) 2007; 359
Hsiao, Chen (b0135) 2013; 22
Lee, Ueda (b0175) 2006; 84
MacDonald, Ambrose (b0205) 1993; 72
Kim, Lee (b0160) 2012; 33
Leoni, Mariotti (b0185) 2008; 131
Stack, Matson (b0300) 2008; 1147
Li, Popovic (b0195) 2005; 2
Tai, Pavese (b0305) 2007; 72
Valera, Diaz-Hernandez (b0325) 2005; 11
Khoshnan, Ko (b0155) 2004; 24
Warner-Schmidt, Vanover (b0340) 2011; 108
Hsiao, Chern (b0140) 2010; 41
Bjorkqvist, Wild (b0015) 2008; 205
Hornebeck, Lafuma (b0125) 1991; 185
Hoshino, Tsutsui (b0130) 1999; 162
Salo, Lyons (b0270) 1991; 266
Hasselbalch, Oberg (b0120) 1992; 55
Hsiao, Chiu (b0145) 2014; 23
Carmeliet, Storkebaum (b0035) 2002; 13
Moscovitch-Lopatin, Weiss (b0230) 2010; 2
Nagata, Sawa (b0240) 2004; 15
Di Prospero, Fischbeck (b0080) 2005; 6
Kuo, Benhayon (b0170) 1999; 86
Weiss, Trager (b0345) 2012; 122
Wang, Tsirka (b0335) 2005; 128
Harris, Codori (b0115) 1999; 122
Underwood, Broadhurst (b0320) 2006; 129
Giorgini, Muchowski (b0095) 2005; 6
Wildbaum, Youssef (b0355) 1998; 161
Moller (b0220) 2010; 117
Browne (b0030) 2008; 1147
Castellanos, Leira (b0040) 2003; 34
Gu, Kaul (b0110) 2002; 297
Battaglia, Cannella (b0005) 2011; 15
Ilzecka, Stelmasiak (b0150) 2002; 20
Bettelli, Carrier (b0010) 2006; 441
Rota, Bellone (b0265) 2006; 27
Dang, Yang (b0070) 2004; 316
Vawter, Dillon-Carter (b0330) 1996; 142
Sapp, Kegel (b0275) 2001; 60
Li, Lokeshwar (b0190) 2001; 73
Brionne, Tesseur (b0025) 2003; 40
Miller, Holcomb (b9000) 2010; 67
Tourjman, Kouassi (b0315) 2013; 151
Springer, Chen (b0295) 1998; 2
Mangiarini, Sathasivam (b0215) 1996; 87
Shin, Fang (b0285) 2005; 171
Tesseur, Wyss-Coray (b0310) 2006; 3
Dalrymple, Wild (b0060) 2007; 6
Silvestroni, Faull (b0290) 2009; 20
Ellison, Trabalza (b0085) 2013; 21
Lee, Kim (b0180) 2009; 380
Dalrymple (10.1016/j.bbi.2014.09.011_b0060) 2007; 6
Hsiao (10.1016/j.bbi.2014.09.011_b0140) 2010; 41
Pichiule (10.1016/j.bbi.2014.09.011_b0255) 2002; 93
Bjorkqvist (10.1016/j.bbi.2014.09.011_b0015) 2008; 205
Ojala (10.1016/j.bbi.2014.09.011_b0245) 2009; 30
Brionne (10.1016/j.bbi.2014.09.011_b0025) 2003; 40
Li (10.1016/j.bbi.2014.09.011_b0190) 2001; 73
Vawter (10.1016/j.bbi.2014.09.011_b0330) 1996; 142
Giorgini (10.1016/j.bbi.2014.09.011_b0095) 2005; 6
Pavese (10.1016/j.bbi.2014.09.011_b0250) 2006; 66
Tesseur (10.1016/j.bbi.2014.09.011_b0310) 2006; 3
Khoshnan (10.1016/j.bbi.2014.09.011_b0155) 2004; 24
Carmeliet (10.1016/j.bbi.2014.09.011_b0035) 2002; 13
Castellanos (10.1016/j.bbi.2014.09.011_b0040) 2003; 34
Kuo (10.1016/j.bbi.2014.09.011_b0170) 1999; 86
Kim (10.1016/j.bbi.2014.09.011_b0160) 2012; 33
Hoshino (10.1016/j.bbi.2014.09.011_b0130) 1999; 162
Yatsiv (10.1016/j.bbi.2014.09.011_b0360) 2002; 22
Cha (10.1016/j.bbi.2014.09.011_b0045) 2007; 83
Ellison (10.1016/j.bbi.2014.09.011_b0085) 2013; 21
MacDonald (10.1016/j.bbi.2014.09.011_b0205) 1993; 72
Lee (10.1016/j.bbi.2014.09.011_b0175) 2006; 84
Sapp (10.1016/j.bbi.2014.09.011_b0275) 2001; 60
Deckel (10.1016/j.bbi.2014.09.011_b0075) 1998; 51
Weiss (10.1016/j.bbi.2014.09.011_b0345) 2012; 122
Yue (10.1016/j.bbi.2014.09.011_b0365) 2014; 258
Hsiao (10.1016/j.bbi.2014.09.011_b0145) 2014; 23
Dang (10.1016/j.bbi.2014.09.011_b0070) 2004; 316
Hornebeck (10.1016/j.bbi.2014.09.011_b0125) 1991; 185
Rota (10.1016/j.bbi.2014.09.011_b0265) 2006; 27
Motta (10.1016/j.bbi.2014.09.011_b0235) 2007; 114
Maglione (10.1016/j.bbi.2014.09.011_b0210) 2005; 139B
Di Prospero (10.1016/j.bbi.2014.09.011_b0080) 2005; 6
Sawa (10.1016/j.bbi.2014.09.011_b0280) 1999; 5
Ilzecka (10.1016/j.bbi.2014.09.011_b0150) 2002; 20
Moscovitch-Lopatin (10.1016/j.bbi.2014.09.011_b0230) 2010; 2
Wild (10.1016/j.bbi.2014.09.011_b0350) 2011; 3
Franciosi (10.1016/j.bbi.2014.09.011_b0090) 2012; 45
Warner-Schmidt (10.1016/j.bbi.2014.09.011_b0340) 2011; 108
Lin (10.1016/j.bbi.2014.09.011_b0200) 2013; 250
Hasselbalch (10.1016/j.bbi.2014.09.011_b0120) 1992; 55
Hsiao (10.1016/j.bbi.2014.09.011_b0135) 2013; 22
Rahman (10.1016/j.bbi.2014.09.011_b0260) 2013; 698
Miller (10.1016/j.bbi.2014.09.011_b9000) 2010; 67
Nagata (10.1016/j.bbi.2014.09.011_b0240) 2004; 15
Salo (10.1016/j.bbi.2014.09.011_b0270) 1991; 266
Li (10.1016/j.bbi.2014.09.011_b0195) 2005; 2
Tourjman (10.1016/j.bbi.2014.09.011_b0315) 2013; 151
Stack (10.1016/j.bbi.2014.09.011_b0300) 2008; 1147
Lee (10.1016/j.bbi.2014.09.011_b0180) 2009; 380
Mangiarini (10.1016/j.bbi.2014.09.011_b0215) 1996; 87
Underwood (10.1016/j.bbi.2014.09.011_b0320) 2006; 129
Wildbaum (10.1016/j.bbi.2014.09.011_b0355) 1998; 161
Damsker (10.1016/j.bbi.2014.09.011_b0065) 2010; 1183
Gu (10.1016/j.bbi.2014.09.011_b0105) 2005; 25
Wang (10.1016/j.bbi.2014.09.011_b0335) 2005; 128
Bouchard (10.1016/j.bbi.2014.09.011_b0020) 2012; 32
Chen (10.1016/j.bbi.2014.09.011_b0055) 2007; 359
Krakora (10.1016/j.bbi.2014.09.011_b0165) 2013; 21
Huntington Study Group (10.1016/j.bbi.2014.09.011_b0100) 1996; 11
Gu (10.1016/j.bbi.2014.09.011_b0110) 2002; 297
Leoni (10.1016/j.bbi.2014.09.011_b0185) 2008; 131
Bettelli (10.1016/j.bbi.2014.09.011_b0010) 2006; 441
Shin (10.1016/j.bbi.2014.09.011_b0285) 2005; 171
Moller (10.1016/j.bbi.2014.09.011_b0220) 2010; 117
Valera (10.1016/j.bbi.2014.09.011_b0325) 2005; 11
Chang (10.1016/j.bbi.2014.09.011_b0050) 2012; 7
Tai (10.1016/j.bbi.2014.09.011_b0305) 2007; 72
Battaglia (10.1016/j.bbi.2014.09.011_b0005) 2011; 15
Silvestroni (10.1016/j.bbi.2014.09.011_b0290) 2009; 20
Springer (10.1016/j.bbi.2014.09.011_b0295) 1998; 2
Morton (10.1016/j.bbi.2014.09.011_b0225) 2013; 2
Browne (10.1016/j.bbi.2014.09.011_b0030) 2008; 1147
Harris (10.1016/j.bbi.2014.09.011_b0115) 1999; 122
References_xml – volume: 15
  start-page: 555
  year: 2011
  end-page: 571
  ident: b0005
  article-title: Early defect of transforming growth factor beta1 formation in Huntington’s disease
  publication-title: J. Cell. Mol. Med.
– volume: 108
  start-page: 9262
  year: 2011
  end-page: 9267
  ident: b0340
  article-title: Antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) are attenuated by antiinflammatory drugs in mice and humans
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 34
  start-page: 40
  year: 2003
  end-page: 46
  ident: b0040
  article-title: Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke
  publication-title: Stroke
– volume: 83
  start-page: 228
  year: 2007
  end-page: 248
  ident: b0045
  article-title: Transcriptional signatures in Huntington’s disease
  publication-title: Prog. Neurobiol.
– volume: 22
  start-page: 1826
  year: 2013
  end-page: 1842
  ident: b0135
  article-title: A critical role of astrocyte-mediated nuclear factor-kappaB-dependent inflammation in Huntington’s disease
  publication-title: Hum. Mol. Genet.
– volume: 60
  start-page: 161
  year: 2001
  end-page: 172
  ident: b0275
  article-title: Early and progressive accumulation of reactive microglia in the Huntington disease brain
  publication-title: J. Neuropathol. Exp. Neurol.
– volume: 40
  start-page: 1133
  year: 2003
  end-page: 1145
  ident: b0025
  article-title: Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain
  publication-title: Neuron
– volume: 13
  start-page: 39
  year: 2002
  end-page: 53
  ident: b0035
  article-title: Vascular and neuronal effects of VEGF in the nervous system: implications for neurological disorders
  publication-title: Semin. Cell Dev. Biol.
– volume: 171
  start-page: 1001
  year: 2005
  end-page: 1012
  ident: b0285
  article-title: Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity
  publication-title: J. Cell Biol.
– volume: 359
  start-page: 335
  year: 2007
  end-page: 340
  ident: b0055
  article-title: Increased oxidative damage and mitochondrial abnormalities in the peripheral blood of Huntington’s disease patients
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 3
  start-page: 505
  year: 2006
  end-page: 513
  ident: b0310
  article-title: A role for TGF-beta signaling in neurodegeneration: evidence from genetically engineered models
  publication-title: Curr. Alzheimer Res.
– volume: 2
  start-page: 447
  year: 2005
  end-page: 464
  ident: b0195
  article-title: The use of the R6 transgenic mouse models of
  publication-title: NeuroRx
– volume: 151
  start-page: 43
  year: 2013
  end-page: 47
  ident: b0315
  article-title: Antipsychotics’ effects on blood levels of cytokines in schizophrenia: a meta-analysis
  publication-title: Schizophr. Res.
– volume: 316
  start-page: 937
  year: 2004
  end-page: 942
  ident: b0070
  article-title: Matrix metalloproteinases and TGFbeta1 modulate oral tumor cell matrix
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 380
  start-page: 17
  year: 2009
  end-page: 21
  ident: b0180
  article-title: PPARgamma agonist pioglitazone reduces matrix metalloproteinase-9 activity and neuronal damage after focal cerebral ischemia
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 117
  start-page: 1001
  year: 2010
  end-page: 1008
  ident: b0220
  article-title: Neuroinflammation in Huntington’s disease
  publication-title: J. Neural Transm.
– volume: 21
  start-page: 1602
  year: 2013
  end-page: 1610
  ident: b0165
  article-title: Synergistic effects of GDNF and VEGF on lifespan and disease progression in a familial ALS rat model
  publication-title: Mol. Ther.
– volume: 23
  start-page: 4328
  year: 2014
  end-page: 4344
  ident: b0145
  article-title: Inhibition of soluble tumor necrosis factor is therapeutic in Huntington’s disease
  publication-title: Hum. Mol. Genet.
– volume: 1183
  start-page: 211
  year: 2010
  end-page: 221
  ident: b0065
  article-title: Th1 and Th17 cells: adversaries and collaborators
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 258
  start-page: 385
  year: 2014
  end-page: 400
  ident: b0365
  article-title: Comparative study of the neurotrophic effects elicited by VEGF-B and GDNF in preclinical in vivo models of Parkinson’s disease
  publication-title: Neuroscience
– volume: 698
  start-page: 345
  year: 2013
  end-page: 353
  ident: b0260
  article-title: Late onset vascular dysfunction in the R6/1 model of Huntington’s disease
  publication-title: Eur. J. Pharmacol.
– volume: 24
  start-page: 7999
  year: 2004
  end-page: 8008
  ident: b0155
  article-title: Activation of the IkappaB kinase complex and nuclear factor-kappaB contributes to mutant Huntingtin neurotoxicity
  publication-title: J. Neurosci.
– volume: 30
  start-page: 198
  year: 2009
  end-page: 209
  ident: b0245
  article-title: Expression of interleukin-18 is increased in the brains of Alzheimer’s disease patients
  publication-title: Neurobiol. Aging
– volume: 6
  start-page: 210
  year: 2005
  ident: b0095
  article-title: Connecting the dots in Huntington’s disease with protein interaction networks
  publication-title: Genome Biol.
– volume: 250
  start-page: 20
  year: 2013
  end-page: 30
  ident: b0200
  article-title: Neurovascular abnormalities in humans and mice with Huntington’s disease
  publication-title: Exp. Neurol.
– volume: 93
  start-page: 1131
  year: 2002
  end-page: 1139
  ident: b0255
  article-title: Angiopoietin-2 and rat brain capillary remodeling during adaptation and deadaptation to prolonged mild hypoxia
  publication-title: J. Appl. Physiol.
– volume: 3
  start-page: RRN1231
  year: 2011
  ident: b0350
  article-title: Abnormal peripheral chemokine profile in Huntington’s disease
  publication-title: PLoS Curr.
– volume: 441
  start-page: 235
  year: 2006
  end-page: 238
  ident: b0010
  article-title: Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells
  publication-title: Nature
– volume: 66
  start-page: 1638
  year: 2006
  end-page: 1643
  ident: b0250
  article-title: Microglial activation correlates with severity in Huntington disease: a clinical and PET study
  publication-title: Neurology
– volume: 6
  start-page: 756
  year: 2005
  end-page: 765
  ident: b0080
  article-title: Therapeutics development for triplet repeat expansion diseases
  publication-title: Nat. Rev. Genet.
– volume: 142
  start-page: 313
  year: 1996
  end-page: 322
  ident: b0330
  article-title: TGFbeta1 and TGFbeta2 concentrations are elevated in Parkinson’s disease in ventricular cerebrospinal fluid
  publication-title: Exp. Neurol.
– volume: 205
  start-page: 1869
  year: 2008
  end-page: 1877
  ident: b0015
  article-title: A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease
  publication-title: J. Exp. Med.
– volume: 41
  start-page: 248
  year: 2010
  end-page: 255
  ident: b0140
  article-title: Targeting glial cells to elucidate the pathogenesis of Huntington’s disease
  publication-title: Mol. Neurobiol.
– volume: 2
  start-page: 549
  year: 1998
  end-page: 558
  ident: b0295
  article-title: VEGF gene delivery to muscle: potential role for vasculogenesis in adults
  publication-title: Mol. Cell
– volume: 11
  start-page: 136
  year: 1996
  end-page: 142
  ident: b0100
  article-title: Unified Huntington’s Disease Rating Scale: reliability and consistency
  publication-title: Mov. Disord.
– volume: 114
  start-page: 46
  year: 2007
  end-page: 51
  ident: b0235
  article-title: Altered plasma cytokine levels in Alzheimer’s disease: correlation with the disease progression
  publication-title: Immunol. Lett.
– volume: 2
  start-page: 3
  year: 2013
  end-page: 19
  ident: b0225
  article-title: Large genetic animal models of Huntington’s disease
  publication-title: J Huntington’s Dis.
– volume: 20
  start-page: 1098
  year: 2009
  end-page: 1103
  ident: b0290
  article-title: Distinct neuroinflammatory profile in post-mortem human Huntington’s disease
  publication-title: Neuroreport
– volume: 84
  start-page: 1856
  year: 2006
  end-page: 1861
  ident: b0175
  article-title: Ectopic expression of phospho-Smad2 in Alzheimer’s disease: uncoupling of the transforming growth factor-beta pathway?
  publication-title: J. Neurosci. Res.
– volume: 161
  start-page: 6368
  year: 1998
  end-page: 6374
  ident: b0355
  article-title: Neutralizing antibodies to IFN-gamma-inducing factor prevent experimental autoimmune encephalomyelitis
  publication-title: J. Immunol.
– volume: 20
  start-page: 239
  year: 2002
  end-page: 243
  ident: b0150
  article-title: Transforming growth factor-Beta 1 (tgf-Beta 1) in patients with amyotrophic lateral sclerosis
  publication-title: Cytokine
– volume: 67
  start-page: 199
  year: 2010
  end-page: 212
  ident: b9000
  article-title: Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington's disease
  publication-title: Neuron
– volume: 2
  start-page: RRN1205
  year: 2010
  ident: b0230
  article-title: Optimization of an HTRF assay for the detection of soluble mutant Huntingtin in human buffy coats: a potential biomarker in blood for Huntington disease
  publication-title: PLoS Curr.
– volume: 128
  start-page: 1622
  year: 2005
  end-page: 1633
  ident: b0335
  article-title: Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage
  publication-title: Brain
– volume: 15
  start-page: 1325
  year: 2004
  end-page: 1328
  ident: b0240
  article-title: Autophagosome-like vacuole formation in Huntington’s disease lymphoblasts
  publication-title: Neuroreport
– volume: 87
  start-page: 493
  year: 1996
  end-page: 506
  ident: b0215
  article-title: Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice
  publication-title: Cell
– volume: 51
  start-page: 1576
  year: 1998
  end-page: 1583
  ident: b0075
  article-title: Cerebral blood flow velocity decreases during cognitive stimulation in Huntington’s disease
  publication-title: Neurology
– volume: 5
  start-page: 1194
  year: 1999
  end-page: 1198
  ident: b0280
  article-title: Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization
  publication-title: Nat. Med.
– volume: 1147
  start-page: 79
  year: 2008
  end-page: 92
  ident: b0300
  article-title: Evidence of oxidant damage in Huntington’s disease: translational strategies using antioxidants
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 55
  start-page: 1018
  year: 1992
  end-page: 1023
  ident: b0120
  article-title: Reduced regional cerebral blood flow in Huntington’s disease studied by SPECT
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 73
  start-page: 449
  year: 2001
  end-page: 459
  ident: b0190
  article-title: Regulation of MMP-9 production by human corneal epithelial cells
  publication-title: Exp. Eye Res.
– volume: 139B
  start-page: 101
  year: 2005
  end-page: 105
  ident: b0210
  article-title: Adenosine A2A receptor dysfunction correlates with age at onset anticipation in blood platelets of subjects with Huntington’s disease
  publication-title: Am. J. Med. Genet. B Neuropsychiatric Genet.
– volume: 72
  start-page: 148
  year: 2007
  end-page: 151
  ident: b0305
  article-title: Imaging microglial activation in Huntington’s disease
  publication-title: Brain Res. Bull.
– volume: 185
  start-page: 127
  year: 1991
  end-page: 134
  ident: b0125
  article-title: Matrix metalloproteinase (MMP)
  publication-title: C. R. Seances Soc. Biol. Fil.
– volume: 11
  start-page: 583
  year: 2005
  end-page: 594
  ident: b0325
  article-title: The ubiquitin – proteasome system in Huntington’s disease
  publication-title: Neuroscientist
– volume: 27
  start-page: 33
  year: 2006
  end-page: 39
  ident: b0265
  article-title: Increased intrathecal TGF-beta1, but not IL-12, IFN-gamma and IL-10 levels in Alzheimer’s disease patients
  publication-title: Neurol. Sci.
– volume: 22
  start-page: 971
  year: 2002
  end-page: 978
  ident: b0360
  article-title: Elevated intracranial IL-18 in humans and mice after traumatic brain injury and evidence of neuroprotective effects of IL-18-binding protein after experimental closed head injury
  publication-title: J. Cereb. Blood Flow. Metab.
– volume: 131
  start-page: 2851
  year: 2008
  end-page: 2859
  ident: b0185
  article-title: Plasma 24S-hydroxycholesterol and caudate MRI in pre-manifest and early Huntington’s disease
  publication-title: Brain
– volume: 6
  start-page: 2833
  year: 2007
  end-page: 2840
  ident: b0060
  article-title: Proteomic profiling of plasma in Huntington’s disease reveals neuroinflammatory activation and biomarker candidates
  publication-title: J. Proteome Res.
– volume: 7
  start-page: e46492
  year: 2012
  ident: b0050
  article-title: Downregulation of genes involved in metabolism and oxidative stress in the peripheral leukocytes of Huntington’s disease patients
  publication-title: PLoS One
– volume: 122
  start-page: 3731
  year: 2012
  end-page: 3736
  ident: b0345
  article-title: Mutant Huntingtin fragmentation in immune cells tracks Huntington’s disease progression
  publication-title: J. Clin. Invest.
– volume: 21
  start-page: 1862
  year: 2013
  end-page: 1875
  ident: b0085
  article-title: Dose-dependent neuroprotection of VEGF(1)(6)(5) in Huntington’s disease striatum
  publication-title: Mol. Ther.
– volume: 129
  start-page: 877
  year: 2006
  end-page: 886
  ident: b0320
  article-title: Huntington disease patients and transgenic mice have similar pro-catabolic serum metabolite profiles
  publication-title: Brain
– volume: 32
  start-page: 18259
  year: 2012
  end-page: 18268
  ident: b0020
  article-title: Cannabinoid receptor 2 signaling in peripheral immune cells modulates disease onset and severity in mouse models of Huntington’s disease
  publication-title: J. Neurosci.
– volume: 33
  start-page: 2145
  year: 2012
  end-page: 2159
  ident: b0160
  article-title: Microglia-inhibiting activity of Parkinson’s disease drug amantadine
  publication-title: Neurobiol. Aging
– volume: 45
  start-page: 438
  year: 2012
  end-page: 449
  ident: b0090
  article-title: Age-dependent neurovascular abnormalities and altered microglial morphology in the YAC128 mouse model of Huntington disease
  publication-title: Neurobiol. Dis.
– volume: 1147
  start-page: 358
  year: 2008
  end-page: 382
  ident: b0030
  article-title: Mitochondria and Huntington’s disease pathogenesis: insight from genetic and chemical models
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 72
  start-page: 971
  year: 1993
  end-page: 983
  ident: b0205
  article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes
  publication-title: Cell
– volume: 86
  start-page: 260
  year: 1999
  end-page: 264
  ident: b0170
  article-title: Prolonged hypoxia increases vascular endothelial growth factor mRNA and protein in adult mouse brain
  publication-title: J. Appl. Physiol.
– volume: 122
  start-page: 1667
  year: 1999
  end-page: 1678
  ident: b0115
  article-title: Reduced basal ganglia blood flow and volume in pre-symptomatic, gene-tested persons at-risk for Huntington’s disease
  publication-title: Brain
– volume: 266
  start-page: 11436
  year: 1991
  end-page: 11441
  ident: b0270
  article-title: Transforming growth factor-beta 1 up-regulates type IV collagenase expression in cultured human keratinocytes
  publication-title: J. Biol. Chem.
– volume: 162
  start-page: 5041
  year: 1999
  end-page: 5044
  ident: b0130
  article-title: Cutting edge: generation of IL-18 receptor-deficient mice. evidence for IL-1 receptor-related protein as an essential IL-18 binding receptor
  publication-title: J. Immunol.
– volume: 25
  start-page: 6401
  year: 2005
  end-page: 6408
  ident: b0105
  article-title: A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia
  publication-title: J. Neurosci.
– volume: 297
  start-page: 1186
  year: 2002
  end-page: 1190
  ident: b0110
  article-title: S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death
  publication-title: Science
– volume: 698
  start-page: 345
  year: 2013
  ident: 10.1016/j.bbi.2014.09.011_b0260
  article-title: Late onset vascular dysfunction in the R6/1 model of Huntington’s disease
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2012.10.026
– volume: 13
  start-page: 39
  year: 2002
  ident: 10.1016/j.bbi.2014.09.011_b0035
  article-title: Vascular and neuronal effects of VEGF in the nervous system: implications for neurological disorders
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1006/scdb.2001.0290
– volume: 51
  start-page: 1576
  year: 1998
  ident: 10.1016/j.bbi.2014.09.011_b0075
  article-title: Cerebral blood flow velocity decreases during cognitive stimulation in Huntington’s disease
  publication-title: Neurology
  doi: 10.1212/WNL.51.6.1576
– volume: 83
  start-page: 228
  year: 2007
  ident: 10.1016/j.bbi.2014.09.011_b0045
  article-title: Transcriptional signatures in Huntington’s disease
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2007.03.004
– volume: 55
  start-page: 1018
  year: 1992
  ident: 10.1016/j.bbi.2014.09.011_b0120
  article-title: Reduced regional cerebral blood flow in Huntington’s disease studied by SPECT
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.55.11.1018
– volume: 72
  start-page: 148
  year: 2007
  ident: 10.1016/j.bbi.2014.09.011_b0305
  article-title: Imaging microglial activation in Huntington’s disease
  publication-title: Brain Res. Bull.
  doi: 10.1016/j.brainresbull.2006.10.029
– volume: 161
  start-page: 6368
  year: 1998
  ident: 10.1016/j.bbi.2014.09.011_b0355
  article-title: Neutralizing antibodies to IFN-gamma-inducing factor prevent experimental autoimmune encephalomyelitis
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.161.11.6368
– volume: 131
  start-page: 2851
  year: 2008
  ident: 10.1016/j.bbi.2014.09.011_b0185
  article-title: Plasma 24S-hydroxycholesterol and caudate MRI in pre-manifest and early Huntington’s disease
  publication-title: Brain
  doi: 10.1093/brain/awn212
– volume: 6
  start-page: 2833
  year: 2007
  ident: 10.1016/j.bbi.2014.09.011_b0060
  article-title: Proteomic profiling of plasma in Huntington’s disease reveals neuroinflammatory activation and biomarker candidates
  publication-title: J. Proteome Res.
  doi: 10.1021/pr0700753
– volume: 24
  start-page: 7999
  year: 2004
  ident: 10.1016/j.bbi.2014.09.011_b0155
  article-title: Activation of the IkappaB kinase complex and nuclear factor-kappaB contributes to mutant Huntingtin neurotoxicity
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2675-04.2004
– volume: 21
  start-page: 1602
  year: 2013
  ident: 10.1016/j.bbi.2014.09.011_b0165
  article-title: Synergistic effects of GDNF and VEGF on lifespan and disease progression in a familial ALS rat model
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2013.108
– volume: 359
  start-page: 335
  year: 2007
  ident: 10.1016/j.bbi.2014.09.011_b0055
  article-title: Increased oxidative damage and mitochondrial abnormalities in the peripheral blood of Huntington’s disease patients
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2007.05.093
– volume: 171
  start-page: 1001
  year: 2005
  ident: 10.1016/j.bbi.2014.09.011_b0285
  article-title: Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200508072
– volume: 3
  start-page: RRN1231
  year: 2011
  ident: 10.1016/j.bbi.2014.09.011_b0350
  article-title: Abnormal peripheral chemokine profile in Huntington’s disease
  publication-title: PLoS Curr.
  doi: 10.1371/currents.RRN1231
– volume: 66
  start-page: 1638
  year: 2006
  ident: 10.1016/j.bbi.2014.09.011_b0250
  article-title: Microglial activation correlates with severity in Huntington disease: a clinical and PET study
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000222734.56412.17
– volume: 142
  start-page: 313
  year: 1996
  ident: 10.1016/j.bbi.2014.09.011_b0330
  article-title: TGFbeta1 and TGFbeta2 concentrations are elevated in Parkinson’s disease in ventricular cerebrospinal fluid
  publication-title: Exp. Neurol.
  doi: 10.1006/exnr.1996.0200
– volume: 84
  start-page: 1856
  year: 2006
  ident: 10.1016/j.bbi.2014.09.011_b0175
  article-title: Ectopic expression of phospho-Smad2 in Alzheimer’s disease: uncoupling of the transforming growth factor-beta pathway?
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.21072
– volume: 45
  start-page: 438
  year: 2012
  ident: 10.1016/j.bbi.2014.09.011_b0090
  article-title: Age-dependent neurovascular abnormalities and altered microglial morphology in the YAC128 mouse model of Huntington disease
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2011.09.003
– volume: 122
  start-page: 3731
  year: 2012
  ident: 10.1016/j.bbi.2014.09.011_b0345
  article-title: Mutant Huntingtin fragmentation in immune cells tracks Huntington’s disease progression
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI64565
– volume: 30
  start-page: 198
  year: 2009
  ident: 10.1016/j.bbi.2014.09.011_b0245
  article-title: Expression of interleukin-18 is increased in the brains of Alzheimer’s disease patients
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2007.06.006
– volume: 5
  start-page: 1194
  year: 1999
  ident: 10.1016/j.bbi.2014.09.011_b0280
  article-title: Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization
  publication-title: Nat. Med.
  doi: 10.1038/13518
– volume: 22
  start-page: 1826
  year: 2013
  ident: 10.1016/j.bbi.2014.09.011_b0135
  article-title: A critical role of astrocyte-mediated nuclear factor-kappaB-dependent inflammation in Huntington’s disease
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddt036
– volume: 1147
  start-page: 358
  year: 2008
  ident: 10.1016/j.bbi.2014.09.011_b0030
  article-title: Mitochondria and Huntington’s disease pathogenesis: insight from genetic and chemical models
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1427.018
– volume: 162
  start-page: 5041
  year: 1999
  ident: 10.1016/j.bbi.2014.09.011_b0130
  article-title: Cutting edge: generation of IL-18 receptor-deficient mice. evidence for IL-1 receptor-related protein as an essential IL-18 binding receptor
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.162.9.5041
– volume: 128
  start-page: 1622
  year: 2005
  ident: 10.1016/j.bbi.2014.09.011_b0335
  article-title: Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage
  publication-title: Brain
  doi: 10.1093/brain/awh489
– volume: 122
  start-page: 1667
  year: 1999
  ident: 10.1016/j.bbi.2014.09.011_b0115
  article-title: Reduced basal ganglia blood flow and volume in pre-symptomatic, gene-tested persons at-risk for Huntington’s disease
  publication-title: Brain
  doi: 10.1093/brain/122.9.1667
– volume: 86
  start-page: 260
  year: 1999
  ident: 10.1016/j.bbi.2014.09.011_b0170
  article-title: Prolonged hypoxia increases vascular endothelial growth factor mRNA and protein in adult mouse brain
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1999.86.1.260
– volume: 40
  start-page: 1133
  year: 2003
  ident: 10.1016/j.bbi.2014.09.011_b0025
  article-title: Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain
  publication-title: Neuron
  doi: 10.1016/S0896-6273(03)00766-9
– volume: 20
  start-page: 239
  year: 2002
  ident: 10.1016/j.bbi.2014.09.011_b0150
  article-title: Transforming growth factor-Beta 1 (tgf-Beta 1) in patients with amyotrophic lateral sclerosis
  publication-title: Cytokine
  doi: 10.1006/cyto.2002.2005
– volume: 139B
  start-page: 101
  year: 2005
  ident: 10.1016/j.bbi.2014.09.011_b0210
  article-title: Adenosine A2A receptor dysfunction correlates with age at onset anticipation in blood platelets of subjects with Huntington’s disease
  publication-title: Am. J. Med. Genet. B Neuropsychiatric Genet.
  doi: 10.1002/ajmg.b.30223
– volume: 6
  start-page: 210
  year: 2005
  ident: 10.1016/j.bbi.2014.09.011_b0095
  article-title: Connecting the dots in Huntington’s disease with protein interaction networks
  publication-title: Genome Biol.
  doi: 10.1186/gb-2005-6-3-210
– volume: 73
  start-page: 449
  year: 2001
  ident: 10.1016/j.bbi.2014.09.011_b0190
  article-title: Regulation of MMP-9 production by human corneal epithelial cells
  publication-title: Exp. Eye Res.
  doi: 10.1006/exer.2001.1054
– volume: 93
  start-page: 1131
  year: 2002
  ident: 10.1016/j.bbi.2014.09.011_b0255
  article-title: Angiopoietin-2 and rat brain capillary remodeling during adaptation and deadaptation to prolonged mild hypoxia
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00318.2002
– volume: 117
  start-page: 1001
  year: 2010
  ident: 10.1016/j.bbi.2014.09.011_b0220
  article-title: Neuroinflammation in Huntington’s disease
  publication-title: J. Neural Transm.
  doi: 10.1007/s00702-010-0430-7
– volume: 250
  start-page: 20
  year: 2013
  ident: 10.1016/j.bbi.2014.09.011_b0200
  article-title: Neurovascular abnormalities in humans and mice with Huntington’s disease
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2013.08.019
– volume: 6
  start-page: 756
  year: 2005
  ident: 10.1016/j.bbi.2014.09.011_b0080
  article-title: Therapeutics development for triplet repeat expansion diseases
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1690
– volume: 20
  start-page: 1098
  year: 2009
  ident: 10.1016/j.bbi.2014.09.011_b0290
  article-title: Distinct neuroinflammatory profile in post-mortem human Huntington’s disease
  publication-title: Neuroreport
  doi: 10.1097/WNR.0b013e32832e34ee
– volume: 34
  start-page: 40
  year: 2003
  ident: 10.1016/j.bbi.2014.09.011_b0040
  article-title: Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke
  publication-title: Stroke
  doi: 10.1161/01.STR.0000046764.57344.31
– volume: 11
  start-page: 136
  year: 1996
  ident: 10.1016/j.bbi.2014.09.011_b0100
  article-title: Unified Huntington’s Disease Rating Scale: reliability and consistency
  publication-title: Mov. Disord.
  doi: 10.1002/mds.870110204
– volume: 87
  start-page: 493
  year: 1996
  ident: 10.1016/j.bbi.2014.09.011_b0215
  article-title: Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81369-0
– volume: 185
  start-page: 127
  year: 1991
  ident: 10.1016/j.bbi.2014.09.011_b0125
  article-title: Matrix metalloproteinase (MMP)
  publication-title: C. R. Seances Soc. Biol. Fil.
– volume: 205
  start-page: 1869
  year: 2008
  ident: 10.1016/j.bbi.2014.09.011_b0015
  article-title: A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20080178
– volume: 108
  start-page: 9262
  year: 2011
  ident: 10.1016/j.bbi.2014.09.011_b0340
  article-title: Antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) are attenuated by antiinflammatory drugs in mice and humans
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1104836108
– volume: 297
  start-page: 1186
  year: 2002
  ident: 10.1016/j.bbi.2014.09.011_b0110
  article-title: S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death
  publication-title: Science
  doi: 10.1126/science.1073634
– volume: 2
  start-page: 549
  year: 1998
  ident: 10.1016/j.bbi.2014.09.011_b0295
  article-title: VEGF gene delivery to muscle: potential role for vasculogenesis in adults
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80154-9
– volume: 2
  start-page: RRN1205
  year: 2010
  ident: 10.1016/j.bbi.2014.09.011_b0230
  article-title: Optimization of an HTRF assay for the detection of soluble mutant Huntingtin in human buffy coats: a potential biomarker in blood for Huntington disease
  publication-title: PLoS Curr.
  doi: 10.1371/currents.RRN1205
– volume: 11
  start-page: 583
  year: 2005
  ident: 10.1016/j.bbi.2014.09.011_b0325
  article-title: The ubiquitin – proteasome system in Huntington’s disease
  publication-title: Neuroscientist
  doi: 10.1177/1073858405280639
– volume: 258
  start-page: 385
  year: 2014
  ident: 10.1016/j.bbi.2014.09.011_b0365
  article-title: Comparative study of the neurotrophic effects elicited by VEGF-B and GDNF in preclinical in vivo models of Parkinson’s disease
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2013.11.038
– volume: 7
  start-page: e46492
  year: 2012
  ident: 10.1016/j.bbi.2014.09.011_b0050
  article-title: Downregulation of genes involved in metabolism and oxidative stress in the peripheral leukocytes of Huntington’s disease patients
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0046492
– volume: 33
  start-page: 2145
  year: 2012
  ident: 10.1016/j.bbi.2014.09.011_b0160
  article-title: Microglia-inhibiting activity of Parkinson’s disease drug amantadine
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2011.08.011
– volume: 2
  start-page: 447
  year: 2005
  ident: 10.1016/j.bbi.2014.09.011_b0195
  article-title: The use of the R6 transgenic mouse models ofHuntington’s disease in attempts to develop novel therapeutic strategies
  publication-title: NeuroRx
  doi: 10.1602/neurorx.2.3.447
– volume: 27
  start-page: 33
  year: 2006
  ident: 10.1016/j.bbi.2014.09.011_b0265
  article-title: Increased intrathecal TGF-beta1, but not IL-12, IFN-gamma and IL-10 levels in Alzheimer’s disease patients
  publication-title: Neurol. Sci.
  doi: 10.1007/s10072-006-0562-6
– volume: 316
  start-page: 937
  year: 2004
  ident: 10.1016/j.bbi.2014.09.011_b0070
  article-title: Matrix metalloproteinases and TGFbeta1 modulate oral tumor cell matrix
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2004.02.143
– volume: 72
  start-page: 971
  year: 1993
  ident: 10.1016/j.bbi.2014.09.011_b0205
  article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90585-E
– volume: 67
  start-page: 199
  year: 2010
  ident: 10.1016/j.bbi.2014.09.011_b9000
  article-title: Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington's disease
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.06.021
– volume: 15
  start-page: 555
  year: 2011
  ident: 10.1016/j.bbi.2014.09.011_b0005
  article-title: Early defect of transforming growth factor beta1 formation in Huntington’s disease
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/j.1582-4934.2010.01011.x
– volume: 1183
  start-page: 211
  year: 2010
  ident: 10.1016/j.bbi.2014.09.011_b0065
  article-title: Th1 and Th17 cells: adversaries and collaborators
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2009.05133.x
– volume: 1147
  start-page: 79
  year: 2008
  ident: 10.1016/j.bbi.2014.09.011_b0300
  article-title: Evidence of oxidant damage in Huntington’s disease: translational strategies using antioxidants
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1427.008
– volume: 60
  start-page: 161
  year: 2001
  ident: 10.1016/j.bbi.2014.09.011_b0275
  article-title: Early and progressive accumulation of reactive microglia in the Huntington disease brain
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1093/jnen/60.2.161
– volume: 32
  start-page: 18259
  year: 2012
  ident: 10.1016/j.bbi.2014.09.011_b0020
  article-title: Cannabinoid receptor 2 signaling in peripheral immune cells modulates disease onset and severity in mouse models of Huntington’s disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4008-12.2012
– volume: 21
  start-page: 1862
  year: 2013
  ident: 10.1016/j.bbi.2014.09.011_b0085
  article-title: Dose-dependent neuroprotection of VEGF(1)(6)(5) in Huntington’s disease striatum
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2013.132
– volume: 41
  start-page: 248
  year: 2010
  ident: 10.1016/j.bbi.2014.09.011_b0140
  article-title: Targeting glial cells to elucidate the pathogenesis of Huntington’s disease
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-009-8097-5
– volume: 22
  start-page: 971
  year: 2002
  ident: 10.1016/j.bbi.2014.09.011_b0360
  article-title: Elevated intracranial IL-18 in humans and mice after traumatic brain injury and evidence of neuroprotective effects of IL-18-binding protein after experimental closed head injury
  publication-title: J. Cereb. Blood Flow. Metab.
  doi: 10.1097/00004647-200208000-00008
– volume: 380
  start-page: 17
  year: 2009
  ident: 10.1016/j.bbi.2014.09.011_b0180
  article-title: PPARgamma agonist pioglitazone reduces matrix metalloproteinase-9 activity and neuronal damage after focal cerebral ischemia
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2008.12.181
– volume: 441
  start-page: 235
  year: 2006
  ident: 10.1016/j.bbi.2014.09.011_b0010
  article-title: Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells
  publication-title: Nature
  doi: 10.1038/nature04753
– volume: 25
  start-page: 6401
  year: 2005
  ident: 10.1016/j.bbi.2014.09.011_b0105
  article-title: A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1563-05.2005
– volume: 2
  start-page: 3
  year: 2013
  ident: 10.1016/j.bbi.2014.09.011_b0225
  article-title: Large genetic animal models of Huntington’s disease
  publication-title: J Huntington’s Dis.
  doi: 10.3233/JHD-130050
– volume: 151
  start-page: 43
  year: 2013
  ident: 10.1016/j.bbi.2014.09.011_b0315
  article-title: Antipsychotics’ effects on blood levels of cytokines in schizophrenia: a meta-analysis
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2013.10.011
– volume: 15
  start-page: 1325
  year: 2004
  ident: 10.1016/j.bbi.2014.09.011_b0240
  article-title: Autophagosome-like vacuole formation in Huntington’s disease lymphoblasts
  publication-title: Neuroreport
  doi: 10.1097/01.wnr.0000127073.66692.8f
– volume: 3
  start-page: 505
  year: 2006
  ident: 10.1016/j.bbi.2014.09.011_b0310
  article-title: A role for TGF-beta signaling in neurodegeneration: evidence from genetically engineered models
  publication-title: Curr. Alzheimer Res.
  doi: 10.2174/156720506779025297
– volume: 23
  start-page: 4328
  year: 2014
  ident: 10.1016/j.bbi.2014.09.011_b0145
  article-title: Inhibition of soluble tumor necrosis factor is therapeutic in Huntington’s disease
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddu151
– volume: 266
  start-page: 11436
  year: 1991
  ident: 10.1016/j.bbi.2014.09.011_b0270
  article-title: Transforming growth factor-beta 1 up-regulates type IV collagenase expression in cultured human keratinocytes
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)98977-5
– volume: 114
  start-page: 46
  year: 2007
  ident: 10.1016/j.bbi.2014.09.011_b0235
  article-title: Altered plasma cytokine levels in Alzheimer’s disease: correlation with the disease progression
  publication-title: Immunol. Lett.
  doi: 10.1016/j.imlet.2007.09.002
– volume: 129
  start-page: 877
  year: 2006
  ident: 10.1016/j.bbi.2014.09.011_b0320
  article-title: Huntington disease patients and transgenic mice have similar pro-catabolic serum metabolite profiles
  publication-title: Brain
  doi: 10.1093/brain/awl027
SSID ssj0005318
Score 2.4711092
Snippet •Increased plasma IL-6, MMP-9, VEGF, and TGF-β1 in HD patients.•Decreased IL-18 plasma levels in HD patients.•Plasma IL-6 reversely correlates with...
Highlights • Increased plasma IL-6, MMP-9, VEGF, and TGF-β1 in HD patients. • Decreased IL-18 plasma levels in HD patients. • Plasma IL-6 reversely correlates...
Huntington's disease (HD), caused by expanded CAG repeats encoding a polyglutamine tract in the huntingtin (HTT) protein, presents with a predominant...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 121
SubjectTerms Adult
Age Factors
Allergy and Immunology
Animals
Biomarker
Biomarkers - blood
Disease Models, Animal
Female
Humans
Huntington Disease - blood
Huntington Disease - complications
Huntington Disease - diagnosis
Huntington’s disease
Inflammation
Inflammation - blood
Inflammation - complications
Interleukin-18 - blood
Interleukin-6 - blood
Male
Matrix Metalloproteinase 9 - blood
Mice
Microglia - metabolism
Middle Aged
Motor Activity
Psychiatry
Transforming Growth Factor beta1 - blood
Vascular Endothelial Growth Factor A - blood
Title Plasma inflammatory biomarkers for Huntington’s disease patients and mouse model
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0889159114004644
https://www.clinicalkey.es/playcontent/1-s2.0-S0889159114004644
https://dx.doi.org/10.1016/j.bbi.2014.09.011
https://www.ncbi.nlm.nih.gov/pubmed/25266150
https://www.proquest.com/docview/1639977883
https://www.proquest.com/docview/1654689986
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD60WxBfpLZetuoygvggxM0kc8vjsljWWynVQt-GZGcCK24szfrQl9K_4d_rL_GcyWRFtCv4loQcEs6cyzdzvjkD8AJTDHoNUXEwPyei9jKpaiWTNM9FnRe1wsBMbIsjNTsV787k2RZM-70wRKuMsb-L6SFaxyfjqM3x-WIx_kQEHUzGCOhDfU5sw06G2d4MYGfy9v3s6BfTo1vmC4QeEuiLm4HmVVULInh13U45vy093QY_Qxo63IV7ET-ySfeL92HLN3uwP2lw7ry8ZC9ZYHSGpfI9uPMxFs734eQYUfKyZGhPaALLUFpntPWe2DkXLUPoymbdqREIBm-uf7Qslm5Y7LzasrJxjBYKPAvH5zyA08M3n6ezJB6nkMyl1Kuk5M7kdWFSV9TcaVHi9NQL7VRtirTUpZxToxovqNYm6wrxrDJeGs6rjCY9On8Ig-Zb4x8D8yoXqZuXhBaF877gVaW4cS7XusTrIaS9Fu089hqnIy--2p5U9sWi4i0p3qaFRcUP4dVa5LxrtLHp5awfGtvvIMWYZzENbBLSfxPybfTa1nLbZja1f1jWEMRa8jfj_NcHn_dWY9FpqRJTNh7HyXLChVobk296RwpFs2E1hEedya0Vk0nCVTI9-L8fewJ38U525POnMFhdfPfPEFutqhFsv77iI_Sg6cmH41H0pJ_2KSLn
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDbS5lDbpY5s-VCg9FMxaaz3s4xISnCZZSptAbkJeybCh64Z4c-itf6N_r78kM7K8paTZQm_G9mAzGs180nyaAXiHIQZnDVFxMD4novYyqWolkzTLRJ0VtULHTGyLqSrPxMdzeb4Be_1ZGKJVRt_f-fTgreOdUdTm6HI-H30hgg4GYwT0IT8n7sGmoKbWA9icHB6V099Mj26bLxB6SKBPbgaaV1XNieDVVTvl_K7wdBf8DGHo4BE8jPiRTbpffAwbvtmGnUmDa-fFd_aeBUZn2CrfhvsnMXG-A58_IUpeWIb2hCawCKl1RkfviZ1z1TKErqzsukYgGPz142fLYuqGxcqrLbONY7RR4Flon_MEzg72T_fKJLZTSGZS6mViucuzushTV9TcaWFxeeqFdqrOi9RqK2dUqMYLyrXJukI8q3Ivc86rMS16dPYUBs23xj8H5lUmUjezhBaF877gVaV47lymtcXrIaS9Fs0s1hqnlhdfTU8quzCoeEOKN2lhUPFD-LASuewKbax7edwPjelPkKLPMxgG1gnpvwn5Ns7a1nDTjk1qblnWEMRK8g_j_NcH3_ZWY3DSUibGNh7HyXDChVrnebbuHSkUrYbVEJ51JrdSzFgSrpLpi__7sTfwoDw9OTbHh9OjXdjCJ7Ijor-EwfLq2r9CnLWsXsd5dAOzPCM4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasma+inflammatory+biomarkers+for+Huntington%E2%80%99s+disease+patients+and+mouse+model&rft.jtitle=Brain%2C+behavior%2C+and+immunity&rft.au=Chang%2C+Kuo-Hsuan&rft.au=Wu%2C+Yih-Ru&rft.au=Chen%2C+Yi-Chun&rft.au=Chen%2C+Chiung-Mei&rft.date=2015-02-01&rft.issn=0889-1591&rft.volume=44&rft.spage=121&rft.epage=127&rft_id=info:doi/10.1016%2Fj.bbi.2014.09.011&rft.externalDBID=ECK1-s2.0-S0889159114004644&rft.externalDocID=1_s2_0_S0889159114004644
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F08891591%2FS0889159114X00103%2Fcov150h.gif