Using deep reinforcement learning to reveal how the brain encodes abstract state-space representations in high-dimensional environments

Humans possess an exceptional aptitude to efficiently make decisions from high-dimensional sensory observations. However, it is unknown how the brain compactly represents the current state of the environment to guide this process. The deep Q-network (DQN) achieves this by capturing highly nonlinear...

Full description

Saved in:
Bibliographic Details
Published inNeuron (Cambridge, Mass.) Vol. 109; no. 4; pp. 724 - 738.e7
Main Authors Cross, Logan, Cockburn, Jeff, Yue, Yisong, O’Doherty, John P.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 17.02.2021
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0896-6273
1097-4199
1097-4199
DOI10.1016/j.neuron.2020.11.021

Cover

Abstract Humans possess an exceptional aptitude to efficiently make decisions from high-dimensional sensory observations. However, it is unknown how the brain compactly represents the current state of the environment to guide this process. The deep Q-network (DQN) achieves this by capturing highly nonlinear mappings from multivariate inputs to the values of potential actions. We deployed DQN as a model of brain activity and behavior in participants playing three Atari video games during fMRI. Hidden layers of DQN exhibited a striking resemblance to voxel activity in a distributed sensorimotor network, extending throughout the dorsal visual pathway into posterior parietal cortex. Neural state-space representations emerged from nonlinear transformations of the pixel space bridging perception to action and reward. These transformations reshape axes to reflect relevant high-level features and strip away information about task-irrelevant sensory features. Our findings shed light on the neural encoding of task representations for decision-making in real-world situations. •Naturalistic decision-making tasks modeled by a deep Q-network (DQN)•Task representations encoded in dorsal visual pathway and posterior parietal cortex•Computational principles common to both DQN and human brain are characterized Cross et al. scanned humans playing Atari games and utilized a deep reinforcement learning algorithm as a model for how humans can map high-dimensional sensory inputs in actions. Representations in the intermediate layers of the algorithm were used to predict behavior and neural activity throughout a sensorimotor pathway.
AbstractList Humans possess an exceptional aptitude to efficiently make decisions from high-dimensional sensory observations. However, it is unknown how the brain compactly represents the current state of the environment to guide this process. The Deep Q-Network (DQN) achieves this by capturing highly nonlinear mappings from multivariate inputs to the values of potential actions. We deployed DQN as a model of brain activity and behavior in participants playing three Atari video games during fMRI. Hidden layers of DQN exhibited a striking resemblance to voxel activity in a distributed sensorimotor network, extending throughout the dorsal visual pathway into posterior parietal cortex. Neural state-space representations emerged from nonlinear transformations of the pixel space bridging perception to action and reward. These transformations reshape axes to reflect relevant high-level features and strip away information about task irrelevant sensory features. Our findings shed light on the neural encoding of task representations for decision-making in real-world situations. Cross et al. scanned humans playing Atari games and utilized a deep reinforcement learning algorithm as a model for how humans can map high-dimensional sensory inputs in actions. Representations in the intermediate layers of the algorithm were used to predict behavior and neural activity throughout a sensorimotor pathway.
Humans possess an exceptional aptitude to efficiently make decisions from high-dimensional sensory observations. However, it is unknown how the brain compactly represents the current state of the environment to guide this process. The deep Q-network (DQN) achieves this by capturing highly nonlinear mappings from multivariate inputs to the values of potential actions. We deployed DQN as a model of brain activity and behavior in participants playing three Atari video games during fMRI. Hidden layers of DQN exhibited a striking resemblance to voxel activity in a distributed sensorimotor network, extending throughout the dorsal visual pathway into posterior parietal cortex. Neural state-space representations emerged from nonlinear transformations of the pixel space bridging perception to action and reward. These transformations reshape axes to reflect relevant high-level features and strip away information about task-irrelevant sensory features. Our findings shed light on the neural encoding of task representations for decision-making in real-world situations. •Naturalistic decision-making tasks modeled by a deep Q-network (DQN)•Task representations encoded in dorsal visual pathway and posterior parietal cortex•Computational principles common to both DQN and human brain are characterized Cross et al. scanned humans playing Atari games and utilized a deep reinforcement learning algorithm as a model for how humans can map high-dimensional sensory inputs in actions. Representations in the intermediate layers of the algorithm were used to predict behavior and neural activity throughout a sensorimotor pathway.
Humans possess an exceptional aptitude to efficiently make decisions from high-dimensional sensory observations. However, it is unknown how the brain compactly represents the current state of the environment to guide this process. The deep Q-network (DQN) achieves this by capturing highly nonlinear mappings from multivariate inputs to the values of potential actions. We deployed DQN as a model of brain activity and behavior in participants playing three Atari video games during fMRI. Hidden layers of DQN exhibited a striking resemblance to voxel activity in a distributed sensorimotor network, extending throughout the dorsal visual pathway into posterior parietal cortex. Neural state-space representations emerged from nonlinear transformations of the pixel space bridging perception to action and reward. These transformations reshape axes to reflect relevant high-level features and strip away information about task-irrelevant sensory features. Our findings shed light on the neural encoding of task representations for decision-making in real-world situations.Humans possess an exceptional aptitude to efficiently make decisions from high-dimensional sensory observations. However, it is unknown how the brain compactly represents the current state of the environment to guide this process. The deep Q-network (DQN) achieves this by capturing highly nonlinear mappings from multivariate inputs to the values of potential actions. We deployed DQN as a model of brain activity and behavior in participants playing three Atari video games during fMRI. Hidden layers of DQN exhibited a striking resemblance to voxel activity in a distributed sensorimotor network, extending throughout the dorsal visual pathway into posterior parietal cortex. Neural state-space representations emerged from nonlinear transformations of the pixel space bridging perception to action and reward. These transformations reshape axes to reflect relevant high-level features and strip away information about task-irrelevant sensory features. Our findings shed light on the neural encoding of task representations for decision-making in real-world situations.
SummaryHumans possess an exceptional aptitude to efficiently make decisions from high-dimensional sensory observations. However, it is unknown how the brain compactly represents the current state of the environment to guide this process. The deep Q-network (DQN) achieves this by capturing highly nonlinear mappings from multivariate inputs to the values of potential actions. We deployed DQN as a model of brain activity and behavior in participants playing three Atari video games during fMRI. Hidden layers of DQN exhibited a striking resemblance to voxel activity in a distributed sensorimotor network, extending throughout the dorsal visual pathway into posterior parietal cortex. Neural state-space representations emerged from nonlinear transformations of the pixel space bridging perception to action and reward. These transformations reshape axes to reflect relevant high-level features and strip away information about task-irrelevant sensory features. Our findings shed light on the neural encoding of task representations for decision-making in real-world situations.
Humans possess an exceptional aptitude to efficiently make decisions from high-dimensional sensory observations. However, it is unknown how the brain compactly represents the current state of the environment to guide this process. The deep Q-network (DQN) achieves this by capturing highly nonlinear mappings from multivariate inputs to the values of potential actions. We deployed DQN as a model of brain activity and behavior in participants playing three Atari video games during fMRI. Hidden layers of DQN exhibited a striking resemblance to voxel activity in a distributed sensorimotor network, extending throughout the dorsal visual pathway into posterior parietal cortex. Neural state-space representations emerged from nonlinear transformations of the pixel space bridging perception to action and reward. These transformations reshape axes to reflect relevant high-level features and strip away information about task-irrelevant sensory features. Our findings shed light on the neural encoding of task representations for decision-making in real-world situations.
Author Yue, Yisong
Cockburn, Jeff
O’Doherty, John P.
Cross, Logan
AuthorAffiliation 2 Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
4 Lead Contact
3 Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA
1 Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, USA
AuthorAffiliation_xml – name: 3 Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA
– name: 1 Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, USA
– name: 4 Lead Contact
– name: 2 Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
Author_xml – sequence: 1
  givenname: Logan
  surname: Cross
  fullname: Cross, Logan
  email: lcross@caltech.edu
  organization: Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 2
  givenname: Jeff
  surname: Cockburn
  fullname: Cockburn, Jeff
  organization: Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 3
  givenname: Yisong
  orcidid: 0000-0001-9127-1989
  surname: Yue
  fullname: Yue, Yisong
  organization: Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 4
  givenname: John P.
  surname: O’Doherty
  fullname: O’Doherty, John P.
  organization: Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33326755$$D View this record in MEDLINE/PubMed
BookMark eNqVUs1u1DAQtlAR3RbeAKFIXLhksZ04jjkgoQooUiUu9Gw5zmTXq6wdbGerPgGvzYQtBXoAcbElfz8z843PyIkPHgh5zuiaUda83q09zDH4Naccn9iacvaIrBhVsqyZUidkRVvVlA2X1Sk5S2lHKauFYk_IaVVVvJFCrMi36-T8pugBpiKC80OIFvbgczGCiX7BckDkAGYstuGmyFsoumicL8Db0EMqTJdyNDYXKZsMZZqMBVRMERL6mOyCTwXyt26zLXuH5gmf0A78weEAS7X0lDwezJjg2d19Tq4_vP9ycVleff746eLdVWmFkLmUohsYgKotw6PjjVVdxS1YMTS2avpW0AbB2rS1kJZXtJU9BzUYDs3QYxLnRBx9Zz-Z2xszjnqKbm_irWZUL8HqnT4Gq5dgNWMag0Xd26Numrs99BZ7juaXNhin_0S82-pNOGjZKslrgQav7gxi-DpDynrvkoVxNB7CnDSvJa5Lih-1Xj6g7sIcMbGFpaholGwrZL34vaP7Vn7uFglvjgQbQ0oRBm3dcR3YoBv_NW_9QPx_MQHu8OAg6mQdfhToXQSbdR_c3w2-A5xq5_Q
CitedBy_id crossref_primary_10_1002_hbm_26189
crossref_primary_10_1680_jsmic_22_00027
crossref_primary_10_1038_s41386_021_01108_0
crossref_primary_10_1177_09567976241228503
crossref_primary_10_1155_2021_2033806
crossref_primary_10_1016_j_cell_2024_02_036
crossref_primary_10_1038_s41598_023_40807_0
crossref_primary_10_1073_pnas_2413449122
crossref_primary_10_1038_s42256_022_00599_w
crossref_primary_10_1155_2022_6567431
crossref_primary_10_1002_hbm_26573
crossref_primary_10_1016_j_tins_2024_10_005
crossref_primary_10_1371_journal_pone_0290158
crossref_primary_10_1016_j_neunet_2024_107054
crossref_primary_10_1016_j_oceaneng_2024_118193
crossref_primary_10_1038_s41583_023_00705_w
crossref_primary_10_5334_cpsy_93
crossref_primary_10_1038_s41593_022_01211_5
crossref_primary_10_1038_s41386_021_01126_y
crossref_primary_10_1038_s41598_021_97966_1
crossref_primary_10_1126_sciadv_abn0984
crossref_primary_10_1016_j_neuron_2021_01_021
crossref_primary_10_1016_j_neuron_2023_01_023
crossref_primary_10_1038_s41562_024_01878_9
crossref_primary_10_3389_fninf_2023_1134405
crossref_primary_10_1142_S0219467825500202
Cites_doi 10.1126/science.1094285
10.1016/j.cobeha.2016.04.005
10.1093/cercor/bhx268
10.1073/pnas.0901077106
10.1016/j.neuron.2018.10.002
10.1016/j.neunet.2018.07.006
10.1016/j.cell.2017.05.011
10.1038/nature06713
10.1152/jn.1998.80.1.1
10.1371/journal.pcbi.1003915
10.1073/pnas.1403112111
10.1038/nature14236
10.1038/s41593-019-0470-8
10.1126/science.275.5306.1593
10.1038/s41593-018-0147-8
10.1146/annurev.neuro.25.112701.142922
10.1146/annurev-neuro-062012-170325
10.1016/j.tics.2007.06.010
10.1038/s41586-019-1924-6
10.1016/j.tics.2005.02.009
10.1146/annurev.neuro.29.051605.113038
10.1016/j.neuron.2009.12.009
10.1038/nature03689
10.1038/381607a0
10.1007/s12021-008-9041-y
10.1073/pnas.1905544116
10.1016/j.pneurobio.2019.101717
10.1016/j.neuroimage.2017.07.018
10.1002/hbm.23289
10.1038/nn.3413
10.1016/j.tics.2019.02.006
10.1016/j.neuroimage.2016.10.001
10.1038/nn.4244
10.1016/j.neuroimage.2004.07.051
10.1523/JNEUROSCI.5023-14.2015
10.1016/j.neuron.2018.01.044
10.1016/j.neuron.2009.08.028
10.1196/annals.1390.022
10.1016/j.neuron.2020.06.014
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
2020. Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
– notice: 2020. Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.neuron.2020.11.021
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Nursing & Allied Health Premium
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4199
EndPage 738.e7
ExternalDocumentID oai:pubmedcentral.nih.gov:7897245
PMC7897245
33326755
10_1016_j_neuron_2020_11_021
S0896627320308990
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: R01 DA040011
– fundername: NIMH NIH HHS
  grantid: P50 MH094258
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1RT
1~5
26-
2WC
4.4
457
4G.
53G
5RE
62-
7-5
8C1
8FE
8FH
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AHHHB
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BKEYQ
BKNYI
BPHCQ
BVXVI
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M2M
M2O
M3Z
M41
N9A
O-L
O9-
OK1
P2P
P6G
PQQKQ
PROAC
RCE
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
WQ6
ZA5
.55
.GJ
29N
3O-
5VS
AAEDT
AAFWJ
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EFKBS
EJD
FGOYB
G-2
HZ~
ITC
MVM
OZT
R2-
X7M
ZGI
ZKB
AGCQF
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c557t-75bf1ee94c1e94b26c9b32cec5f6c36d850694c4a8457c23087d2e9fa2e6fd273
IEDL.DBID IXB
ISSN 0896-6273
1097-4199
IngestDate Sun Oct 26 03:26:45 EDT 2025
Tue Sep 30 16:31:11 EDT 2025
Sun Sep 28 07:59:06 EDT 2025
Tue Oct 07 06:33:22 EDT 2025
Mon Jul 21 06:01:47 EDT 2025
Thu Oct 16 04:33:25 EDT 2025
Thu Apr 24 22:53:10 EDT 2025
Fri Feb 23 02:48:58 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords fMRI
deep reinforcement learning
computational neuroscience
decision-making
naturalistic task
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c557t-75bf1ee94c1e94b26c9b32cec5f6c36d850694c4a8457c23087d2e9fa2e6fd273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author Contributions
L.C., J.C., and J.P.O designed the project. L.C. and J.C. developed experimental protocol and collected data. L.C. performed the analyses and wrote the draft of the manuscript. L.C., J.C., Y.Y., and J.P.O. discussed analyses and edited the manuscript. J.P.O acquired funding.
ORCID 0000-0001-9127-1989
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7897245
PMID 33326755
PQID 2490569783
PQPubID 2031076
ParticipantIDs unpaywall_primary_10_1016_j_neuron_2020_11_021
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7897245
proquest_miscellaneous_2470897521
proquest_journals_2490569783
pubmed_primary_33326755
crossref_citationtrail_10_1016_j_neuron_2020_11_021
crossref_primary_10_1016_j_neuron_2020_11_021
elsevier_sciencedirect_doi_10_1016_j_neuron_2020_11_021
PublicationCentury 2000
PublicationDate 2021-02-17
PublicationDateYYYYMMDD 2021-02-17
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Springenberg, Dosovitskiy, Brox, Riedmiller (bib49) 2015
Wen, Shi, Zhang, Lu, Cao, Liu (bib59) 2018; 28
Zhang, McAllister, Calandra, Gal, Levine (bib64) 2020
Ha, Schmidhuber (bib18) 2018
Srinivas, Laskin, Abbeel (bib50) 2020
Kriegeskorte, Mur, Bandettini (bib32) 2008; 2
Seeliger, Fritsche, Güçlü, Schoenmakers, Schoffelen, Bosch, van Gerven (bib46) 2018; 180
Wunderlich, Rangel, O’Doherty (bib60) 2009; 106
Penny, Friston, Ashburner, Kiebel, Nichols (bib43) 2011
Lake, Ullman, Tenenbaum, Gershman (bib33) 2016
Jaderberg, Mnih, Czarnecki, Schaul, Leibo, Silver, Kavukcuoglu (bib26) 2016
Bellemare, Naddaf, Veness, Bowling (bib7) 2013; 47
Summerfield, Luyckx, Sheahan (bib52) 2020; 184
Avants, Tustison, Song (bib5) 2009; 2009
Andersen, Cui (bib4) 2009; 63
Hayhoe, Ballard (bib21) 2005; 9
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (bib36) 2015; 518
Gollisch, Meister (bib16) 2010; 65
Schultz (bib44) 1998; 80
Sutton, Barto (bib53) 2018
Andersen, Buneo (bib3) 2002; 25
Gold, Shadlen (bib15) 2007; 30
Zeiler, Fergus (bib63) 2013
Haxby, Connolly, Guntupalli (bib20) 2014; 37
Niv, Langdon (bib39) 2016; 11
Wang, Kurth-Nelson, Kumaran, Tirumala, Soyer, Leibo, Hassabis, Botvinick (bib56) 2018; 21
Behrens, Muller, Whittington, Mark, Baram, Stachenfeld, Kurth-Nelson (bib6) 2018; 100
DiCarlo, Cox (bib12) 2007; 11
Kietzmann, Spoerer, Sörensen, Cichy, Hauk, Kriegeskorte (bib30) 2019; 116
Kingma, Welling (bib31) 2014
Watkins, Dayan (bib57) 1992; 8
Higgins, Amos, Pfau, Racaniere, Matthey, Rezende, Lerchner (bib22) 2018
Hanke, Halchenko, Sederberg, Hanson, Haxby, Pollmann (bib19) 2009; 7
Lesort, Díaz-Rodríguez, Goudou, Filliat (bib35) 2018; 108
Yamins, DiCarlo (bib61) 2016; 19
Chang, Tsao (bib10) 2017; 169
Shwartz-Ziv, Tishby (bib47) 2017
van den Oord, Li, Vinyals (bib55) 2019
Olshausen, Field (bib42) 1996; 381
Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, De Luca, Drobnjak, Flitney (bib48) 2004; 23
Freedman, Ibos (bib14) 2018; 97
Kay, Naselaris, Prenger, Gallant (bib28) 2008; 452
Anand, Racah, Ozair, Bengio, Côté, Hjelm (bib2) 2019
Güçlü, van Gerven (bib17) 2015; 35
Botvinick, Ritter, Wang, Kurth-Nelson, Blundell, Hassabis (bib8) 2019; 23
Iigaya, Yi, Wahle, Tanwisuth, O’Doherty (bib25) 2020
Higgins, Pal, Rusu, Matthey, Burgess, Pritzel, Botvinick, Blundell, Lerchner (bib23) 2018; 70
Mohamed, Rezende (bib37) 2015
Achille, Soatto (bib1) 2018
Dabney, Kurth-Nelson, Uchida, Starkweather, Hassabis, Munos, Botvinick (bib11) 2020; 577
Hosoya, Baccus, Meister (bib24) 2005; 436
Eickenberg, Gramfort, Varoquaux, Thirion (bib13) 2017; 152
Lenc, Vedaldi (bib34) 2015
Botvinick, Wang, Dabney, Miller, Kurth-Nelson (bib9) 2020; 107
Niv (bib38) 2019; 22
Tyszka, Pauli (bib54) 2016; 37
Schultz, Dayan, Montague (bib45) 1997; 275
Kaiser, Babaeizadeh, Milos, Osinski, Campbell, Czechowski, Erhan, Finn, Kozakowski, Levine (bib27) 2020
Khaligh-Razavi, Kriegeskorte (bib29) 2014; 10
Watter, Springenberg, Boedecker, Riedmiller (bib58) 2015
O’Doherty, Dayan, Schultz, Deichmann, Friston, Dolan (bib40) 2004; 304
Yamins, Hong, Cadieu, Solomon, Seibert, DiCarlo (bib62) 2014; 111
O’Doherty, Hampton, Kim (bib41) 2007; 1104
Steinberg, Keiflin, Boivin, Witten, Deisseroth, Janak (bib51) 2013; 16
Dabney (10.1016/j.neuron.2020.11.021_bib11) 2020; 577
Hayhoe (10.1016/j.neuron.2020.11.021_bib21) 2005; 9
Tyszka (10.1016/j.neuron.2020.11.021_bib54) 2016; 37
Hosoya (10.1016/j.neuron.2020.11.021_bib24) 2005; 436
Lenc (10.1016/j.neuron.2020.11.021_bib34) 2015
Niv (10.1016/j.neuron.2020.11.021_bib38) 2019; 22
Chang (10.1016/j.neuron.2020.11.021_bib10) 2017; 169
Yamins (10.1016/j.neuron.2020.11.021_bib61) 2016; 19
Botvinick (10.1016/j.neuron.2020.11.021_bib8) 2019; 23
Andersen (10.1016/j.neuron.2020.11.021_bib4) 2009; 63
Kaiser (10.1016/j.neuron.2020.11.021_bib27) 2020
Srinivas (10.1016/j.neuron.2020.11.021_bib50) 2020
Higgins (10.1016/j.neuron.2020.11.021_bib22) 2018
Shwartz-Ziv (10.1016/j.neuron.2020.11.021_bib47) 2017
Güçlü (10.1016/j.neuron.2020.11.021_bib17) 2015; 35
Bellemare (10.1016/j.neuron.2020.11.021_bib7) 2013; 47
Avants (10.1016/j.neuron.2020.11.021_bib5) 2009; 2009
Watkins (10.1016/j.neuron.2020.11.021_bib57) 1992; 8
Kingma (10.1016/j.neuron.2020.11.021_bib31) 2014
Seeliger (10.1016/j.neuron.2020.11.021_bib46) 2018; 180
Khaligh-Razavi (10.1016/j.neuron.2020.11.021_bib29) 2014; 10
Ha (10.1016/j.neuron.2020.11.021_bib18) 2018
Botvinick (10.1016/j.neuron.2020.11.021_bib9) 2020; 107
Wen (10.1016/j.neuron.2020.11.021_bib59) 2018; 28
Schultz (10.1016/j.neuron.2020.11.021_bib45) 1997; 275
Wang (10.1016/j.neuron.2020.11.021_bib56) 2018; 21
Lake (10.1016/j.neuron.2020.11.021_bib33) 2016
Mohamed (10.1016/j.neuron.2020.11.021_bib37) 2015
Zhang (10.1016/j.neuron.2020.11.021_bib64) 2020
Higgins (10.1016/j.neuron.2020.11.021_bib23) 2018; 70
O’Doherty (10.1016/j.neuron.2020.11.021_bib40) 2004; 304
Freedman (10.1016/j.neuron.2020.11.021_bib14) 2018; 97
Behrens (10.1016/j.neuron.2020.11.021_bib6) 2018; 100
Springenberg (10.1016/j.neuron.2020.11.021_bib49) 2015
Achille (10.1016/j.neuron.2020.11.021_bib1) 2018
Kietzmann (10.1016/j.neuron.2020.11.021_bib30) 2019; 116
Zeiler (10.1016/j.neuron.2020.11.021_bib63) 2013
Smith (10.1016/j.neuron.2020.11.021_bib48) 2004; 23
Anand (10.1016/j.neuron.2020.11.021_bib2) 2019
Kay (10.1016/j.neuron.2020.11.021_bib28) 2008; 452
Kriegeskorte (10.1016/j.neuron.2020.11.021_bib32) 2008; 2
Mnih (10.1016/j.neuron.2020.11.021_bib36) 2015; 518
Sutton (10.1016/j.neuron.2020.11.021_bib53) 2018
Iigaya (10.1016/j.neuron.2020.11.021_bib25) 2020
Jaderberg (10.1016/j.neuron.2020.11.021_bib26) 2016
van den Oord (10.1016/j.neuron.2020.11.021_bib55) 2019
Andersen (10.1016/j.neuron.2020.11.021_bib3) 2002; 25
Schultz (10.1016/j.neuron.2020.11.021_bib44) 1998; 80
DiCarlo (10.1016/j.neuron.2020.11.021_bib12) 2007; 11
Gold (10.1016/j.neuron.2020.11.021_bib15) 2007; 30
Wunderlich (10.1016/j.neuron.2020.11.021_bib60) 2009; 106
Hanke (10.1016/j.neuron.2020.11.021_bib19) 2009; 7
O’Doherty (10.1016/j.neuron.2020.11.021_bib41) 2007; 1104
Eickenberg (10.1016/j.neuron.2020.11.021_bib13) 2017; 152
Yamins (10.1016/j.neuron.2020.11.021_bib62) 2014; 111
Steinberg (10.1016/j.neuron.2020.11.021_bib51) 2013; 16
Lesort (10.1016/j.neuron.2020.11.021_bib35) 2018; 108
Olshausen (10.1016/j.neuron.2020.11.021_bib42) 1996; 381
Haxby (10.1016/j.neuron.2020.11.021_bib20) 2014; 37
Gollisch (10.1016/j.neuron.2020.11.021_bib16) 2010; 65
Summerfield (10.1016/j.neuron.2020.11.021_bib52) 2020; 184
Niv (10.1016/j.neuron.2020.11.021_bib39) 2016; 11
Watter (10.1016/j.neuron.2020.11.021_bib58) 2015
Penny (10.1016/j.neuron.2020.11.021_bib43) 2011
33600753 - Neuron. 2021 Feb 17;109(4):568-570
References_xml – volume: 452
  start-page: 352
  year: 2008
  end-page: 355
  ident: bib28
  article-title: Identifying natural images from human brain activity
  publication-title: Nature
– year: 2016
  ident: bib26
  article-title: Reinforcement learning with unsupervised auxiliary tasks
  publication-title: arXiv
– volume: 2009
  start-page: 681
  year: 2009
  ident: bib5
  article-title: Advanced Normalization Tools: V1.0
  publication-title: Insight J.
– volume: 304
  start-page: 452
  year: 2004
  end-page: 454
  ident: bib40
  article-title: Dissociable roles of ventral and dorsal striatum in instrumental conditioning
  publication-title: Science
– volume: 10
  start-page: e1003915
  year: 2014
  ident: bib29
  article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation
  publication-title: PLoS Comput. Biol.
– volume: 152
  start-page: 184
  year: 2017
  end-page: 194
  ident: bib13
  article-title: Seeing it all: convolutional network layers map the function of the human visual system
  publication-title: Neuroimage
– volume: 275
  start-page: 1593
  year: 1997
  end-page: 1599
  ident: bib45
  article-title: A neural substrate of prediction and reward
  publication-title: Science
– year: 2019
  ident: bib55
  article-title: Representation learning with contrastive predictive coding
  publication-title: arXiv
– volume: 23
  start-page: 408
  year: 2019
  end-page: 422
  ident: bib8
  article-title: Reinforcement learning, fast and slow
  publication-title: Trends Cogn. Sci.
– volume: 11
  start-page: 333
  year: 2007
  end-page: 341
  ident: bib12
  article-title: Untangling invariant object recognition
  publication-title: Trends Cogn. Sci.
– year: 2016
  ident: bib33
  article-title: Building machines that learn and think like people
  publication-title: arXiv
– volume: 37
  start-page: 3979
  year: 2016
  end-page: 3998
  ident: bib54
  article-title: In vivo delineation of subdivisions of the human amygdaloid complex in a high-resolution group template
  publication-title: Hum. Brain Mapp.
– volume: 19
  start-page: 356
  year: 2016
  end-page: 365
  ident: bib61
  article-title: Using goal-driven deep learning models to understand sensory cortex
  publication-title: Nat. Neurosci.
– volume: 47
  start-page: 253
  year: 2013
  end-page: 279
  ident: bib7
  article-title: The arcade learning environment: an evaluation platform for general agents
  publication-title: J. Artif. Intell. Res.
– year: 2020
  ident: bib25
  article-title: Aesthetic preference for art emerges from a weighted integration over hierarchically structured visual features in the brain
  publication-title: bioRxiv
– volume: 180
  start-page: 253
  year: 2018
  end-page: 266
  ident: bib46
  article-title: Convolutional neural network-based encoding and decoding of visual object recognition in space and time
  publication-title: NeuroImage
– volume: 23
  start-page: S208
  year: 2004
  end-page: S219
  ident: bib48
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
– volume: 25
  start-page: 189
  year: 2002
  end-page: 220
  ident: bib3
  article-title: Intentional maps in posterior parietal cortex
  publication-title: Annu. Rev. Neurosci.
– volume: 65
  start-page: 150
  year: 2010
  end-page: 164
  ident: bib16
  article-title: Eye smarter than scientists believed: neural computations in circuits of the retina
  publication-title: Neuron
– volume: 16
  start-page: 966
  year: 2013
  end-page: 973
  ident: bib51
  article-title: A causal link between prediction errors, dopamine neurons and learning
  publication-title: Nat. Neurosci.
– volume: 22
  start-page: 1544
  year: 2019
  end-page: 1553
  ident: bib38
  article-title: Learning task-state representations
  publication-title: Nat. Neurosci.
– volume: 8
  start-page: 279
  year: 1992
  end-page: 292
  ident: bib57
  article-title: Q-learning
  publication-title: Mach. Learn.
– volume: 7
  start-page: 37
  year: 2009
  end-page: 53
  ident: bib19
  article-title: PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data
  publication-title: Neuroinformatics
– volume: 100
  start-page: 490
  year: 2018
  end-page: 509
  ident: bib6
  article-title: What is a cognitive map? Organizing knowledge for flexible behavior
  publication-title: Neuron
– year: 2020
  ident: bib64
  article-title: Learning invariant representations for reinforcement learning without reconstruction
  publication-title: arXiv
– year: 2018
  ident: bib53
  article-title: Reinforcement Learning: An Introduction
– volume: 106
  start-page: 17199
  year: 2009
  end-page: 17204
  ident: bib60
  article-title: Neural computations underlying action-based decision making in the human brain
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 80
  start-page: 1
  year: 1998
  end-page: 27
  ident: bib44
  article-title: Predictive reward signal of dopamine neurons
  publication-title: J. Neurophysiol.
– volume: 184
  start-page: 101717
  year: 2020
  ident: bib52
  article-title: Structure learning and the posterior parietal cortex
  publication-title: Prog. Neurobiol.
– year: 2015
  ident: bib49
  article-title: Striving for simplicity: the all convolutional net
  publication-title: arXiv
– volume: 28
  start-page: 4136
  year: 2018
  end-page: 4160
  ident: bib59
  article-title: Neural encoding and decoding with deep learning for dynamic natural vision
  publication-title: Cereb. Cortex
– volume: 9
  start-page: 188
  year: 2005
  end-page: 194
  ident: bib21
  article-title: Eye movements in natural behavior
  publication-title: Trends Cogn. Sci.
– year: 2015
  ident: bib58
  article-title: Embed to control: a locally linear latent dynamics model for control from raw images
  publication-title: arXiv
– volume: 30
  start-page: 535
  year: 2007
  end-page: 574
  ident: bib15
  article-title: The neural basis of decision making
  publication-title: Annu. Rev. Neurosci.
– volume: 518
  start-page: 529
  year: 2015
  end-page: 533
  ident: bib36
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– volume: 577
  start-page: 671
  year: 2020
  end-page: 675
  ident: bib11
  article-title: A distributional code for value in dopamine-based reinforcement learning
  publication-title: Nature
– start-page: 8769
  year: 2019
  end-page: 8782
  ident: bib2
  article-title: Unsupervised state representation learning in Atari
  publication-title: Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019)
– start-page: 991
  year: 2015
  end-page: 999
  ident: bib34
  article-title: Understanding image representations by measuring their equivariance and equivalence
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2014
  ident: bib31
  article-title: Auto-encoding variational Bayes
  publication-title: arXiv
– year: 2020
  ident: bib27
  article-title: Model-based reinforcement learning for Atari
  publication-title: arXiv
– volume: 70
  start-page: 1480
  year: 2018
  end-page: 1490
  ident: bib23
  article-title: DARLA: improving zero-shot transfer in reinforcement learning
  publication-title: Proceedings of the 34th International Conference on Machine Learning
– volume: 63
  start-page: 568
  year: 2009
  end-page: 583
  ident: bib4
  article-title: Intention, action planning, and decision making in parietal-frontal circuits
  publication-title: Neuron
– year: 2018
  ident: bib1
  article-title: Emergence of invariance and disentanglement in deep representations
  publication-title: arXiv
– volume: 35
  start-page: 10005
  year: 2015
  end-page: 10014
  ident: bib17
  article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream
  publication-title: J. Neurosci.
– volume: 11
  start-page: 67
  year: 2016
  end-page: 73
  ident: bib39
  article-title: Reinforcement learning with Marr
  publication-title: Curr. Opin. Behav.
– volume: 97
  start-page: 1219
  year: 2018
  end-page: 1234
  ident: bib14
  article-title: An integrative framework for sensory, motor, and cognitive functions of the posterior parietal cortex
  publication-title: Neuron
– year: 2017
  ident: bib47
  article-title: Opening the black box of deep neural networks via information
  publication-title: arXiv
– volume: 111
  start-page: 8619
  year: 2014
  end-page: 8624
  ident: bib62
  article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 1104
  start-page: 35
  year: 2007
  end-page: 53
  ident: bib41
  article-title: Model-based fMRI and its application to reward learning and decision making
  publication-title: Ann. N Y Acad. Sci.
– year: 2020
  ident: bib50
  article-title: CURL: contrastive unsupervised representations for reinforcement learning
  publication-title: arXiv
– volume: 2
  start-page: 4
  year: 2008
  ident: bib32
  article-title: Representational similarity analysis: connecting the branches of systems neuroscience
  publication-title: Front. Syst. Neurosci.
– year: 2018
  ident: bib18
  article-title: World models
  publication-title: arXiv
– volume: 381
  start-page: 607
  year: 1996
  end-page: 609
  ident: bib42
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
– year: 2013
  ident: bib63
  article-title: Visualizing and understanding convolutional networks
  publication-title: arXiv
– year: 2018
  ident: bib22
  article-title: Towards a definition of disentangled representations
  publication-title: arXiv
– volume: 116
  start-page: 21854
  year: 2019
  end-page: 21863
  ident: bib30
  article-title: Recurrence is required to capture the representational dynamics of the human visual system
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2011
  ident: bib43
  article-title: Statistical Parametric Mapping: The Analysis of Functional Brain Images
– volume: 37
  start-page: 435
  year: 2014
  end-page: 456
  ident: bib20
  article-title: Decoding neural representational spaces using multivariate pattern analysis
  publication-title: Annu. Rev. Neurosci.
– volume: 436
  start-page: 71
  year: 2005
  end-page: 77
  ident: bib24
  article-title: Dynamic predictive coding by the retina
  publication-title: Nature
– volume: 21
  start-page: 860
  year: 2018
  end-page: 868
  ident: bib56
  article-title: Prefrontal cortex as a meta-reinforcement learning system
  publication-title: Nat. Neurosci.
– volume: 108
  start-page: 379
  year: 2018
  end-page: 392
  ident: bib35
  article-title: State representation learning for control: An overview
  publication-title: Neural Netw.
– year: 2015
  ident: bib37
  article-title: Variational information maximisation for intrinsically motivated reinforcement learning
  publication-title: arXiv
– volume: 107
  start-page: 603
  year: 2020
  end-page: 616
  ident: bib9
  article-title: Deep reinforcement learning and its neuroscientific implications
  publication-title: Neuron
– volume: 169
  start-page: 1013
  year: 2017
  end-page: 1028.e14
  ident: bib10
  article-title: The code for facial identity in the primate brain
  publication-title: Cell
– volume: 304
  start-page: 452
  year: 2004
  ident: 10.1016/j.neuron.2020.11.021_bib40
  article-title: Dissociable roles of ventral and dorsal striatum in instrumental conditioning
  publication-title: Science
  doi: 10.1126/science.1094285
– year: 2020
  ident: 10.1016/j.neuron.2020.11.021_bib25
  article-title: Aesthetic preference for art emerges from a weighted integration over hierarchically structured visual features in the brain
  publication-title: bioRxiv
– volume: 11
  start-page: 67
  year: 2016
  ident: 10.1016/j.neuron.2020.11.021_bib39
  article-title: Reinforcement learning with Marr
  publication-title: Curr. Opin. Behav.
  doi: 10.1016/j.cobeha.2016.04.005
– year: 2018
  ident: 10.1016/j.neuron.2020.11.021_bib18
  article-title: World models
  publication-title: arXiv
– year: 2016
  ident: 10.1016/j.neuron.2020.11.021_bib26
  article-title: Reinforcement learning with unsupervised auxiliary tasks
  publication-title: arXiv
– year: 2020
  ident: 10.1016/j.neuron.2020.11.021_bib27
  article-title: Model-based reinforcement learning for Atari
  publication-title: arXiv
– volume: 28
  start-page: 4136
  year: 2018
  ident: 10.1016/j.neuron.2020.11.021_bib59
  article-title: Neural encoding and decoding with deep learning for dynamic natural vision
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhx268
– volume: 106
  start-page: 17199
  year: 2009
  ident: 10.1016/j.neuron.2020.11.021_bib60
  article-title: Neural computations underlying action-based decision making in the human brain
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0901077106
– year: 2018
  ident: 10.1016/j.neuron.2020.11.021_bib1
  article-title: Emergence of invariance and disentanglement in deep representations
  publication-title: arXiv
– year: 2018
  ident: 10.1016/j.neuron.2020.11.021_bib22
  article-title: Towards a definition of disentangled representations
  publication-title: arXiv
– volume: 70
  start-page: 1480
  year: 2018
  ident: 10.1016/j.neuron.2020.11.021_bib23
  article-title: DARLA: improving zero-shot transfer in reinforcement learning
  publication-title: Proceedings of the 34th International Conference on Machine Learning
– year: 2014
  ident: 10.1016/j.neuron.2020.11.021_bib31
  article-title: Auto-encoding variational Bayes
  publication-title: arXiv
– volume: 100
  start-page: 490
  year: 2018
  ident: 10.1016/j.neuron.2020.11.021_bib6
  article-title: What is a cognitive map? Organizing knowledge for flexible behavior
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.10.002
– volume: 108
  start-page: 379
  year: 2018
  ident: 10.1016/j.neuron.2020.11.021_bib35
  article-title: State representation learning for control: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.07.006
– year: 2015
  ident: 10.1016/j.neuron.2020.11.021_bib37
  article-title: Variational information maximisation for intrinsically motivated reinforcement learning
  publication-title: arXiv
– volume: 169
  start-page: 1013
  year: 2017
  ident: 10.1016/j.neuron.2020.11.021_bib10
  article-title: The code for facial identity in the primate brain
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.011
– volume: 452
  start-page: 352
  year: 2008
  ident: 10.1016/j.neuron.2020.11.021_bib28
  article-title: Identifying natural images from human brain activity
  publication-title: Nature
  doi: 10.1038/nature06713
– year: 2016
  ident: 10.1016/j.neuron.2020.11.021_bib33
  article-title: Building machines that learn and think like people
  publication-title: arXiv
– volume: 2
  start-page: 4
  year: 2008
  ident: 10.1016/j.neuron.2020.11.021_bib32
  article-title: Representational similarity analysis: connecting the branches of systems neuroscience
  publication-title: Front. Syst. Neurosci.
– volume: 80
  start-page: 1
  year: 1998
  ident: 10.1016/j.neuron.2020.11.021_bib44
  article-title: Predictive reward signal of dopamine neurons
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1998.80.1.1
– volume: 10
  start-page: e1003915
  year: 2014
  ident: 10.1016/j.neuron.2020.11.021_bib29
  article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003915
– year: 2020
  ident: 10.1016/j.neuron.2020.11.021_bib50
  article-title: CURL: contrastive unsupervised representations for reinforcement learning
  publication-title: arXiv
– volume: 111
  start-page: 8619
  year: 2014
  ident: 10.1016/j.neuron.2020.11.021_bib62
  article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1403112111
– volume: 518
  start-page: 529
  year: 2015
  ident: 10.1016/j.neuron.2020.11.021_bib36
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 22
  start-page: 1544
  year: 2019
  ident: 10.1016/j.neuron.2020.11.021_bib38
  article-title: Learning task-state representations
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0470-8
– volume: 275
  start-page: 1593
  year: 1997
  ident: 10.1016/j.neuron.2020.11.021_bib45
  article-title: A neural substrate of prediction and reward
  publication-title: Science
  doi: 10.1126/science.275.5306.1593
– volume: 21
  start-page: 860
  year: 2018
  ident: 10.1016/j.neuron.2020.11.021_bib56
  article-title: Prefrontal cortex as a meta-reinforcement learning system
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-018-0147-8
– volume: 25
  start-page: 189
  year: 2002
  ident: 10.1016/j.neuron.2020.11.021_bib3
  article-title: Intentional maps in posterior parietal cortex
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.25.112701.142922
– volume: 37
  start-page: 435
  year: 2014
  ident: 10.1016/j.neuron.2020.11.021_bib20
  article-title: Decoding neural representational spaces using multivariate pattern analysis
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-062012-170325
– volume: 11
  start-page: 333
  year: 2007
  ident: 10.1016/j.neuron.2020.11.021_bib12
  article-title: Untangling invariant object recognition
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2007.06.010
– volume: 577
  start-page: 671
  year: 2020
  ident: 10.1016/j.neuron.2020.11.021_bib11
  article-title: A distributional code for value in dopamine-based reinforcement learning
  publication-title: Nature
  doi: 10.1038/s41586-019-1924-6
– volume: 9
  start-page: 188
  year: 2005
  ident: 10.1016/j.neuron.2020.11.021_bib21
  article-title: Eye movements in natural behavior
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2005.02.009
– start-page: 991
  year: 2015
  ident: 10.1016/j.neuron.2020.11.021_bib34
  article-title: Understanding image representations by measuring their equivariance and equivalence
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2017
  ident: 10.1016/j.neuron.2020.11.021_bib47
  article-title: Opening the black box of deep neural networks via information
  publication-title: arXiv
– volume: 30
  start-page: 535
  year: 2007
  ident: 10.1016/j.neuron.2020.11.021_bib15
  article-title: The neural basis of decision making
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.29.051605.113038
– year: 2020
  ident: 10.1016/j.neuron.2020.11.021_bib64
  article-title: Learning invariant representations for reinforcement learning without reconstruction
  publication-title: arXiv
– volume: 65
  start-page: 150
  year: 2010
  ident: 10.1016/j.neuron.2020.11.021_bib16
  article-title: Eye smarter than scientists believed: neural computations in circuits of the retina
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.12.009
– volume: 436
  start-page: 71
  year: 2005
  ident: 10.1016/j.neuron.2020.11.021_bib24
  article-title: Dynamic predictive coding by the retina
  publication-title: Nature
  doi: 10.1038/nature03689
– volume: 47
  start-page: 253
  year: 2013
  ident: 10.1016/j.neuron.2020.11.021_bib7
  article-title: The arcade learning environment: an evaluation platform for general agents
  publication-title: J. Artif. Intell. Res.
– volume: 381
  start-page: 607
  year: 1996
  ident: 10.1016/j.neuron.2020.11.021_bib42
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
  doi: 10.1038/381607a0
– volume: 7
  start-page: 37
  year: 2009
  ident: 10.1016/j.neuron.2020.11.021_bib19
  article-title: PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-008-9041-y
– volume: 116
  start-page: 21854
  year: 2019
  ident: 10.1016/j.neuron.2020.11.021_bib30
  article-title: Recurrence is required to capture the representational dynamics of the human visual system
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1905544116
– volume: 184
  start-page: 101717
  year: 2020
  ident: 10.1016/j.neuron.2020.11.021_bib52
  article-title: Structure learning and the posterior parietal cortex
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2019.101717
– year: 2015
  ident: 10.1016/j.neuron.2020.11.021_bib58
  article-title: Embed to control: a locally linear latent dynamics model for control from raw images
  publication-title: arXiv
– year: 2011
  ident: 10.1016/j.neuron.2020.11.021_bib43
– year: 2015
  ident: 10.1016/j.neuron.2020.11.021_bib49
  article-title: Striving for simplicity: the all convolutional net
  publication-title: arXiv
– year: 2013
  ident: 10.1016/j.neuron.2020.11.021_bib63
  article-title: Visualizing and understanding convolutional networks
  publication-title: arXiv
– volume: 8
  start-page: 279
  year: 1992
  ident: 10.1016/j.neuron.2020.11.021_bib57
  article-title: Q-learning
  publication-title: Mach. Learn.
– volume: 180
  start-page: 253
  year: 2018
  ident: 10.1016/j.neuron.2020.11.021_bib46
  article-title: Convolutional neural network-based encoding and decoding of visual object recognition in space and time
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.07.018
– year: 2019
  ident: 10.1016/j.neuron.2020.11.021_bib55
  article-title: Representation learning with contrastive predictive coding
  publication-title: arXiv
– volume: 37
  start-page: 3979
  year: 2016
  ident: 10.1016/j.neuron.2020.11.021_bib54
  article-title: In vivo delineation of subdivisions of the human amygdaloid complex in a high-resolution group template
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23289
– volume: 16
  start-page: 966
  year: 2013
  ident: 10.1016/j.neuron.2020.11.021_bib51
  article-title: A causal link between prediction errors, dopamine neurons and learning
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3413
– volume: 23
  start-page: 408
  year: 2019
  ident: 10.1016/j.neuron.2020.11.021_bib8
  article-title: Reinforcement learning, fast and slow
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2019.02.006
– volume: 152
  start-page: 184
  year: 2017
  ident: 10.1016/j.neuron.2020.11.021_bib13
  article-title: Seeing it all: convolutional network layers map the function of the human visual system
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.10.001
– volume: 19
  start-page: 356
  year: 2016
  ident: 10.1016/j.neuron.2020.11.021_bib61
  article-title: Using goal-driven deep learning models to understand sensory cortex
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4244
– year: 2018
  ident: 10.1016/j.neuron.2020.11.021_bib53
– volume: 23
  start-page: S208
  issue: Suppl 1
  year: 2004
  ident: 10.1016/j.neuron.2020.11.021_bib48
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.051
– volume: 2009
  start-page: 681
  year: 2009
  ident: 10.1016/j.neuron.2020.11.021_bib5
  article-title: Advanced Normalization Tools: V1.0
  publication-title: Insight J.
– volume: 35
  start-page: 10005
  year: 2015
  ident: 10.1016/j.neuron.2020.11.021_bib17
  article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5023-14.2015
– volume: 97
  start-page: 1219
  year: 2018
  ident: 10.1016/j.neuron.2020.11.021_bib14
  article-title: An integrative framework for sensory, motor, and cognitive functions of the posterior parietal cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.01.044
– volume: 63
  start-page: 568
  year: 2009
  ident: 10.1016/j.neuron.2020.11.021_bib4
  article-title: Intention, action planning, and decision making in parietal-frontal circuits
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.08.028
– volume: 1104
  start-page: 35
  year: 2007
  ident: 10.1016/j.neuron.2020.11.021_bib41
  article-title: Model-based fMRI and its application to reward learning and decision making
  publication-title: Ann. N Y Acad. Sci.
  doi: 10.1196/annals.1390.022
– start-page: 8769
  year: 2019
  ident: 10.1016/j.neuron.2020.11.021_bib2
  article-title: Unsupervised state representation learning in Atari
  publication-title: Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019)
– volume: 107
  start-page: 603
  year: 2020
  ident: 10.1016/j.neuron.2020.11.021_bib9
  article-title: Deep reinforcement learning and its neuroscientific implications
  publication-title: Neuron
  doi: 10.1016/j.neuron.2020.06.014
– reference: 33600753 - Neuron. 2021 Feb 17;109(4):568-570
SSID ssj0014591
Score 2.540549
Snippet Humans possess an exceptional aptitude to efficiently make decisions from high-dimensional sensory observations. However, it is unknown how the brain compactly...
SummaryHumans possess an exceptional aptitude to efficiently make decisions from high-dimensional sensory observations. However, it is unknown how the brain...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 724
SubjectTerms Adult
Brain
Brain - diagnostic imaging
Brain - physiology
Brain mapping
computational neuroscience
Computer & video games
Cortex (parietal)
Decision making
Deep Learning
deep reinforcement learning
Female
fMRI
Functional magnetic resonance imaging
Humans
Magnetic Resonance Imaging - methods
Male
Mental task performance
naturalistic task
Neural coding
Neural networks
Psychomotor Performance - physiology
Reinforcement
Reinforcement, Psychology
Sensorimotor system
Somatosensory cortex
Video Games
Young Adult
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFL0qUyHY8Gh5DBRkJMTOaeP4kSxHiKpCokKIkcoqih2HFmYyo05G1fAD_Db3Og-1VKh0k43tKI8T-_jm3HMB3qrUpbaUKSc3OY781vIirRTXVvq0sIUoHcU7Ph3ro6n8eKJOtiDuc2GCaN_Zs6iezaP67DRoK5dzt9_rxPZNmhkh1R3Y1grp9wi2p8efJ98CW8w018K0ovrM0B_OrE-XC5qu4BFJrqeC5oroQMT_Wo6u083rqsl763pZbC6K2ezSknT4EL70N9MqUX5G68ZG7tdfPo-3uttH8KAjqGzSNj2GLV_vwO6kxs35fMPesSAZDbH4HbjbVrLc7MLvID1gpfdLdu6DG6sLgUfWlaX4zpoFI7soPPfp4oIh72SWylMwctIs_YoVlqIurmEhx4njTOc8C56bfX5UvWLYnwyWeUlFCVpDEXY5V-8JTA8_fH1_xLsaD9wpZRpulK1i7zPpYjxYoV1mE-G8U5V2iS7JUA8bZZFKZZwg_8JS-KwqhNdVie_6KYzqRe2fA_MmloKSCmwZSy9NqiuvfCUsTTJZkowh6V917joDdKrDMct7pduPvAVITgDBvVGOABkDH0YtWwOQG_qbHkV5R2JacpLjGnXDyL0edHk3kaxy3B0jRaX43BjeDM04BdB_naL2izX1MQh9o-gUz1qMDpeaJMjPjVJ4WVfQO3Qge_GrLYjDYDPeQW8M0YDz_3oCL2474CXcF6QUojI7Zg9Gzfnav0Kq19jX3cf9B0nGWGQ
  priority: 102
  providerName: Unpaywall
Title Using deep reinforcement learning to reveal how the brain encodes abstract state-space representations in high-dimensional environments
URI https://dx.doi.org/10.1016/j.neuron.2020.11.021
https://www.ncbi.nlm.nih.gov/pubmed/33326755
https://www.proquest.com/docview/2490569783
https://www.proquest.com/docview/2470897521
https://pubmed.ncbi.nlm.nih.gov/PMC7897245
https://www.ncbi.nlm.nih.gov/pmc/articles/7897245
UnpaywallVersion submittedVersion
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1097-4199
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014591
  issn: 0896-6273
  databaseCode: KQ8
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVESC
  databaseName: Elsevier Free Content
  customDbUrl:
  eissn: 1097-4199
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0014591
  issn: 0896-6273
  databaseCode: IXB
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1097-4199
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0014591
  issn: 0896-6273
  databaseCode: DIK
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1097-4199
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014591
  issn: 0896-6273
  databaseCode: AKRWK
  dateStart: 19880301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-lIvpStPXjaj0iiG_pdbPJZvfxLJZWsQh6cD4tm2TWnpx7R2-Pcn-B_7Yz2Q96FKn4sg-bSQiZyWQymfkNY2916lLrVSoITU6gfWtFkZZaJFZBWthCekf-js-XyflEfZzq6Q477XJhKKyy1f2NTg_auv0zaldztJzNRl9P0ozQy2NJkCuoVFEPxyql8g0X0_f9S4LSTdU8JBZE3aXPhRivgBlJKKiSdMfxiYz-djzdNT_vRlE-WlfLYnNTzOe3jqizJ2yvtS35uJn-U7YD1T47GFd4r_614e94iPYMbvR99rApQrk5YL9D1AD3AEt-DQFI1QWfIW8rSvzg9YIT0hOOfbW44WgyckuVJTiBYHpY8cKSw8TVPKQnCVRSDniAy-xSm6oVR3rCRhae6gk0WCD8dprdMzY5-_Dt9Fy05RmE09rUwmhbRgCZchF-rExcZmPpwOkycXHiCQsPG1WRKm2cJOhBLyErCwlJ6ZEVz9lutajgJeNgIiUpH8D6SIEyaVKChlJa0g9ZHA9Y3HEldy12OZXQmOddkNrPvOFlTrzEa02OvBww0fdaNtgd99CbjuH5lgzmeLzc0_Ook4-81QGrHC-2aF2Sa23A3vTNuHvpSaaoYLEmGoOSaTQN8aIRp36qcYymtdEap7UlaD0BIYNvt1Szq4AQbnBMqbDncS-S_7QCh_-9Aq_YY0nRPlQqxxyx3fp6Da_RXKvtEC8qF5-GYVcO2YPJ5Zfx9z9YeEXN
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEWovCFoeWwoYCXFzt3HsODmWimqBthdaaW9W7EzaRUt21c2q2l_A32bGeairChVxySEeW5ZnPB6PZ75h7KNOfeoKlQpCkxNo3zqRp6UWiVOQ5i6XhSd_x9l5MrpU38Z6vMGOu1wYCqtsdX-j04O2bv8M29UczieT4Y_DNCP08lgS5Aoq1UfssdJonVAW3_hz_5SgdFM2D6kFkXf5cyHIK4BGEgyqJOVxcCijv51P9-3P-2GUW8tqnq9u8-n0zhl18ow9bY1LftTM_znbgGqH7R5VeLH-teKfeAj3DH70HfakqUK52mW_Q9gALwDm_AYCkqoPTkPelpS44vWME9QTjn09u-VoM3JHpSU4oWAWsOC5I4-Jr3nITxKopTzwgJfZ5TZVC470BI4sCioo0ICB8Lt5di_Y5cmXi-ORaOszCK-1qYXRrowAMuUj_DiZ-MzF0oPXZeLjpCAwPGxUeaq08ZKwBwsJWZlLSMoCWfGSbVazCl4zDiZSkhICXBEpUCZNStBQSkcKIovjAYs7rljfgpdTDY2p7aLUftqGl5Z4ifcai7wcMNH3mjfgHQ_Qm47hdk0ILZ4vD_Tc7-TDtkpgYfFmi-Yl-dYG7EPfjNuX3mTyCmZLojEomUbTEK8aceqnGsdoWxutcVprgtYTEDT4eks1uQ4Q4QbHlAp7HvQi-U8rsPffK_CebY0uzk7t6dfz72_YtqTQH6qbY_bZZn2zhLdou9XuXdibfwDhlUZK
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFL0qUyHY8Gh5DBRkJMTOaeP4kSxHiKpCokKIkcoqih2HFmYyo05G1fAD_Db3Og-1VKh0k43tKI8T-_jm3HMB3qrUpbaUKSc3OY781vIirRTXVvq0sIUoHcU7Ph3ro6n8eKJOtiDuc2GCaN_Zs6iezaP67DRoK5dzt9_rxPZNmhkh1R3Y1grp9wi2p8efJ98CW8w018K0ovrM0B_OrE-XC5qu4BFJrqeC5oroQMT_Wo6u083rqsl763pZbC6K2ezSknT4EL70N9MqUX5G68ZG7tdfPo-3uttH8KAjqGzSNj2GLV_vwO6kxs35fMPesSAZDbH4HbjbVrLc7MLvID1gpfdLdu6DG6sLgUfWlaX4zpoFI7soPPfp4oIh72SWylMwctIs_YoVlqIurmEhx4njTOc8C56bfX5UvWLYnwyWeUlFCVpDEXY5V-8JTA8_fH1_xLsaD9wpZRpulK1i7zPpYjxYoV1mE-G8U5V2iS7JUA8bZZFKZZwg_8JS-KwqhNdVie_6KYzqRe2fA_MmloKSCmwZSy9NqiuvfCUsTTJZkowh6V917joDdKrDMct7pduPvAVITgDBvVGOABkDH0YtWwOQG_qbHkV5R2JacpLjGnXDyL0edHk3kaxy3B0jRaX43BjeDM04BdB_naL2izX1MQh9o-gUz1qMDpeaJMjPjVJ4WVfQO3Qge_GrLYjDYDPeQW8M0YDz_3oCL2474CXcF6QUojI7Zg9Gzfnav0Kq19jX3cf9B0nGWGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+deep+reinforcement+learning+to+reveal+how+the+brain+encodes+abstract+state-space+representations+in+high-dimensional+environments&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Cross%2C+Logan&rft.au=Cockburn%2C+Jeff&rft.au=Yue%2C+Yisong&rft.au=O%27Doherty%2C+John+P&rft.date=2021-02-17&rft.eissn=1097-4199&rft.volume=109&rft.issue=4&rft.spage=724&rft_id=info:doi/10.1016%2Fj.neuron.2020.11.021&rft_id=info%3Apmid%2F33326755&rft.externalDocID=33326755
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon