Using deep reinforcement learning to reveal how the brain encodes abstract state-space representations in high-dimensional environments
Humans possess an exceptional aptitude to efficiently make decisions from high-dimensional sensory observations. However, it is unknown how the brain compactly represents the current state of the environment to guide this process. The deep Q-network (DQN) achieves this by capturing highly nonlinear...
Saved in:
| Published in | Neuron (Cambridge, Mass.) Vol. 109; no. 4; pp. 724 - 738.e7 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
17.02.2021
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0896-6273 1097-4199 1097-4199 |
| DOI | 10.1016/j.neuron.2020.11.021 |
Cover
| Abstract | Humans possess an exceptional aptitude to efficiently make decisions from high-dimensional sensory observations. However, it is unknown how the brain compactly represents the current state of the environment to guide this process. The deep Q-network (DQN) achieves this by capturing highly nonlinear mappings from multivariate inputs to the values of potential actions. We deployed DQN as a model of brain activity and behavior in participants playing three Atari video games during fMRI. Hidden layers of DQN exhibited a striking resemblance to voxel activity in a distributed sensorimotor network, extending throughout the dorsal visual pathway into posterior parietal cortex. Neural state-space representations emerged from nonlinear transformations of the pixel space bridging perception to action and reward. These transformations reshape axes to reflect relevant high-level features and strip away information about task-irrelevant sensory features. Our findings shed light on the neural encoding of task representations for decision-making in real-world situations.
•Naturalistic decision-making tasks modeled by a deep Q-network (DQN)•Task representations encoded in dorsal visual pathway and posterior parietal cortex•Computational principles common to both DQN and human brain are characterized
Cross et al. scanned humans playing Atari games and utilized a deep reinforcement learning algorithm as a model for how humans can map high-dimensional sensory inputs in actions. Representations in the intermediate layers of the algorithm were used to predict behavior and neural activity throughout a sensorimotor pathway. |
|---|---|
| AbstractList | Humans possess an exceptional aptitude to efficiently make decisions from high-dimensional sensory observations. However, it is unknown how the brain compactly represents the current state of the environment to guide this process. The Deep Q-Network (DQN) achieves this by capturing highly nonlinear mappings from multivariate inputs to the values of potential actions. We deployed DQN as a model of brain activity and behavior in participants playing three Atari video games during fMRI. Hidden layers of DQN exhibited a striking resemblance to voxel activity in a distributed sensorimotor network, extending throughout the dorsal visual pathway into posterior parietal cortex. Neural state-space representations emerged from nonlinear transformations of the pixel space bridging perception to action and reward. These transformations reshape axes to reflect relevant high-level features and strip away information about task irrelevant sensory features. Our findings shed light on the neural encoding of task representations for decision-making in real-world situations. Cross et al. scanned humans playing Atari games and utilized a deep reinforcement learning algorithm as a model for how humans can map high-dimensional sensory inputs in actions. Representations in the intermediate layers of the algorithm were used to predict behavior and neural activity throughout a sensorimotor pathway. Humans possess an exceptional aptitude to efficiently make decisions from high-dimensional sensory observations. However, it is unknown how the brain compactly represents the current state of the environment to guide this process. The deep Q-network (DQN) achieves this by capturing highly nonlinear mappings from multivariate inputs to the values of potential actions. We deployed DQN as a model of brain activity and behavior in participants playing three Atari video games during fMRI. Hidden layers of DQN exhibited a striking resemblance to voxel activity in a distributed sensorimotor network, extending throughout the dorsal visual pathway into posterior parietal cortex. Neural state-space representations emerged from nonlinear transformations of the pixel space bridging perception to action and reward. These transformations reshape axes to reflect relevant high-level features and strip away information about task-irrelevant sensory features. Our findings shed light on the neural encoding of task representations for decision-making in real-world situations. •Naturalistic decision-making tasks modeled by a deep Q-network (DQN)•Task representations encoded in dorsal visual pathway and posterior parietal cortex•Computational principles common to both DQN and human brain are characterized Cross et al. scanned humans playing Atari games and utilized a deep reinforcement learning algorithm as a model for how humans can map high-dimensional sensory inputs in actions. Representations in the intermediate layers of the algorithm were used to predict behavior and neural activity throughout a sensorimotor pathway. Humans possess an exceptional aptitude to efficiently make decisions from high-dimensional sensory observations. However, it is unknown how the brain compactly represents the current state of the environment to guide this process. The deep Q-network (DQN) achieves this by capturing highly nonlinear mappings from multivariate inputs to the values of potential actions. We deployed DQN as a model of brain activity and behavior in participants playing three Atari video games during fMRI. Hidden layers of DQN exhibited a striking resemblance to voxel activity in a distributed sensorimotor network, extending throughout the dorsal visual pathway into posterior parietal cortex. Neural state-space representations emerged from nonlinear transformations of the pixel space bridging perception to action and reward. These transformations reshape axes to reflect relevant high-level features and strip away information about task-irrelevant sensory features. Our findings shed light on the neural encoding of task representations for decision-making in real-world situations.Humans possess an exceptional aptitude to efficiently make decisions from high-dimensional sensory observations. However, it is unknown how the brain compactly represents the current state of the environment to guide this process. The deep Q-network (DQN) achieves this by capturing highly nonlinear mappings from multivariate inputs to the values of potential actions. We deployed DQN as a model of brain activity and behavior in participants playing three Atari video games during fMRI. Hidden layers of DQN exhibited a striking resemblance to voxel activity in a distributed sensorimotor network, extending throughout the dorsal visual pathway into posterior parietal cortex. Neural state-space representations emerged from nonlinear transformations of the pixel space bridging perception to action and reward. These transformations reshape axes to reflect relevant high-level features and strip away information about task-irrelevant sensory features. Our findings shed light on the neural encoding of task representations for decision-making in real-world situations. SummaryHumans possess an exceptional aptitude to efficiently make decisions from high-dimensional sensory observations. However, it is unknown how the brain compactly represents the current state of the environment to guide this process. The deep Q-network (DQN) achieves this by capturing highly nonlinear mappings from multivariate inputs to the values of potential actions. We deployed DQN as a model of brain activity and behavior in participants playing three Atari video games during fMRI. Hidden layers of DQN exhibited a striking resemblance to voxel activity in a distributed sensorimotor network, extending throughout the dorsal visual pathway into posterior parietal cortex. Neural state-space representations emerged from nonlinear transformations of the pixel space bridging perception to action and reward. These transformations reshape axes to reflect relevant high-level features and strip away information about task-irrelevant sensory features. Our findings shed light on the neural encoding of task representations for decision-making in real-world situations. Humans possess an exceptional aptitude to efficiently make decisions from high-dimensional sensory observations. However, it is unknown how the brain compactly represents the current state of the environment to guide this process. The deep Q-network (DQN) achieves this by capturing highly nonlinear mappings from multivariate inputs to the values of potential actions. We deployed DQN as a model of brain activity and behavior in participants playing three Atari video games during fMRI. Hidden layers of DQN exhibited a striking resemblance to voxel activity in a distributed sensorimotor network, extending throughout the dorsal visual pathway into posterior parietal cortex. Neural state-space representations emerged from nonlinear transformations of the pixel space bridging perception to action and reward. These transformations reshape axes to reflect relevant high-level features and strip away information about task-irrelevant sensory features. Our findings shed light on the neural encoding of task representations for decision-making in real-world situations. |
| Author | Yue, Yisong Cockburn, Jeff O’Doherty, John P. Cross, Logan |
| AuthorAffiliation | 2 Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA 4 Lead Contact 3 Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA 1 Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, USA |
| AuthorAffiliation_xml | – name: 3 Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA – name: 1 Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, USA – name: 4 Lead Contact – name: 2 Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA |
| Author_xml | – sequence: 1 givenname: Logan surname: Cross fullname: Cross, Logan email: lcross@caltech.edu organization: Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 2 givenname: Jeff surname: Cockburn fullname: Cockburn, Jeff organization: Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 3 givenname: Yisong orcidid: 0000-0001-9127-1989 surname: Yue fullname: Yue, Yisong organization: Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 4 givenname: John P. surname: O’Doherty fullname: O’Doherty, John P. organization: Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33326755$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVUs1u1DAQtlAR3RbeAKFIXLhksZ04jjkgoQooUiUu9Gw5zmTXq6wdbGerPgGvzYQtBXoAcbElfz8z843PyIkPHgh5zuiaUda83q09zDH4Naccn9iacvaIrBhVsqyZUidkRVvVlA2X1Sk5S2lHKauFYk_IaVVVvJFCrMi36-T8pugBpiKC80OIFvbgczGCiX7BckDkAGYstuGmyFsoumicL8Db0EMqTJdyNDYXKZsMZZqMBVRMERL6mOyCTwXyt26zLXuH5gmf0A78weEAS7X0lDwezJjg2d19Tq4_vP9ycVleff746eLdVWmFkLmUohsYgKotw6PjjVVdxS1YMTS2avpW0AbB2rS1kJZXtJU9BzUYDs3QYxLnRBx9Zz-Z2xszjnqKbm_irWZUL8HqnT4Gq5dgNWMag0Xd26Numrs99BZ7juaXNhin_0S82-pNOGjZKslrgQav7gxi-DpDynrvkoVxNB7CnDSvJa5Lih-1Xj6g7sIcMbGFpaholGwrZL34vaP7Vn7uFglvjgQbQ0oRBm3dcR3YoBv_NW_9QPx_MQHu8OAg6mQdfhToXQSbdR_c3w2-A5xq5_Q |
| CitedBy_id | crossref_primary_10_1002_hbm_26189 crossref_primary_10_1680_jsmic_22_00027 crossref_primary_10_1038_s41386_021_01108_0 crossref_primary_10_1177_09567976241228503 crossref_primary_10_1155_2021_2033806 crossref_primary_10_1016_j_cell_2024_02_036 crossref_primary_10_1038_s41598_023_40807_0 crossref_primary_10_1073_pnas_2413449122 crossref_primary_10_1038_s42256_022_00599_w crossref_primary_10_1155_2022_6567431 crossref_primary_10_1002_hbm_26573 crossref_primary_10_1016_j_tins_2024_10_005 crossref_primary_10_1371_journal_pone_0290158 crossref_primary_10_1016_j_neunet_2024_107054 crossref_primary_10_1016_j_oceaneng_2024_118193 crossref_primary_10_1038_s41583_023_00705_w crossref_primary_10_5334_cpsy_93 crossref_primary_10_1038_s41593_022_01211_5 crossref_primary_10_1038_s41386_021_01126_y crossref_primary_10_1038_s41598_021_97966_1 crossref_primary_10_1126_sciadv_abn0984 crossref_primary_10_1016_j_neuron_2021_01_021 crossref_primary_10_1016_j_neuron_2023_01_023 crossref_primary_10_1038_s41562_024_01878_9 crossref_primary_10_3389_fninf_2023_1134405 crossref_primary_10_1142_S0219467825500202 |
| Cites_doi | 10.1126/science.1094285 10.1016/j.cobeha.2016.04.005 10.1093/cercor/bhx268 10.1073/pnas.0901077106 10.1016/j.neuron.2018.10.002 10.1016/j.neunet.2018.07.006 10.1016/j.cell.2017.05.011 10.1038/nature06713 10.1152/jn.1998.80.1.1 10.1371/journal.pcbi.1003915 10.1073/pnas.1403112111 10.1038/nature14236 10.1038/s41593-019-0470-8 10.1126/science.275.5306.1593 10.1038/s41593-018-0147-8 10.1146/annurev.neuro.25.112701.142922 10.1146/annurev-neuro-062012-170325 10.1016/j.tics.2007.06.010 10.1038/s41586-019-1924-6 10.1016/j.tics.2005.02.009 10.1146/annurev.neuro.29.051605.113038 10.1016/j.neuron.2009.12.009 10.1038/nature03689 10.1038/381607a0 10.1007/s12021-008-9041-y 10.1073/pnas.1905544116 10.1016/j.pneurobio.2019.101717 10.1016/j.neuroimage.2017.07.018 10.1002/hbm.23289 10.1038/nn.3413 10.1016/j.tics.2019.02.006 10.1016/j.neuroimage.2016.10.001 10.1038/nn.4244 10.1016/j.neuroimage.2004.07.051 10.1523/JNEUROSCI.5023-14.2015 10.1016/j.neuron.2018.01.044 10.1016/j.neuron.2009.08.028 10.1196/annals.1390.022 10.1016/j.neuron.2020.06.014 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. 2020. Elsevier Inc. |
| Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. – notice: 2020. Elsevier Inc. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM ADTOC UNPAY |
| DOI | 10.1016/j.neuron.2020.11.021 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Nursing & Allied Health Premium MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Biology |
| EISSN | 1097-4199 |
| EndPage | 738.e7 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:7897245 PMC7897245 33326755 10_1016_j_neuron_2020_11_021 S0896627320308990 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIDA NIH HHS grantid: R01 DA040011 – fundername: NIMH NIH HHS grantid: P50 MH094258 |
| GroupedDBID | --- --K -DZ -~X 0R~ 123 1RT 1~5 26- 2WC 4.4 457 4G. 53G 5RE 62- 7-5 8C1 8FE 8FH AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AHHHB AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AQUVI ASPBG AVWKF AZFZN BAWUL BBNVY BKEYQ BKNYI BPHCQ BVXVI CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE FIRID HVGLF IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M2M M2O M3Z M41 N9A O-L O9- OK1 P2P P6G PQQKQ PROAC RCE ROL RPZ SCP SDP SES SSZ TR2 WOW WQ6 ZA5 .55 .GJ 29N 3O- 5VS AAEDT AAFWJ AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EFKBS EJD FGOYB G-2 HZ~ ITC MVM OZT R2- X7M ZGI ZKB AGCQF CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c557t-75bf1ee94c1e94b26c9b32cec5f6c36d850694c4a8457c23087d2e9fa2e6fd273 |
| IEDL.DBID | IXB |
| ISSN | 0896-6273 1097-4199 |
| IngestDate | Sun Oct 26 03:26:45 EDT 2025 Tue Sep 30 16:31:11 EDT 2025 Sun Sep 28 07:59:06 EDT 2025 Tue Oct 07 06:33:22 EDT 2025 Mon Jul 21 06:01:47 EDT 2025 Thu Oct 16 04:33:25 EDT 2025 Thu Apr 24 22:53:10 EDT 2025 Fri Feb 23 02:48:58 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | fMRI deep reinforcement learning computational neuroscience decision-making naturalistic task |
| Language | English |
| License | Copyright © 2020 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c557t-75bf1ee94c1e94b26c9b32cec5f6c36d850694c4a8457c23087d2e9fa2e6fd273 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author Contributions L.C., J.C., and J.P.O designed the project. L.C. and J.C. developed experimental protocol and collected data. L.C. performed the analyses and wrote the draft of the manuscript. L.C., J.C., Y.Y., and J.P.O. discussed analyses and edited the manuscript. J.P.O acquired funding. |
| ORCID | 0000-0001-9127-1989 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7897245 |
| PMID | 33326755 |
| PQID | 2490569783 |
| PQPubID | 2031076 |
| ParticipantIDs | unpaywall_primary_10_1016_j_neuron_2020_11_021 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7897245 proquest_miscellaneous_2470897521 proquest_journals_2490569783 pubmed_primary_33326755 crossref_citationtrail_10_1016_j_neuron_2020_11_021 crossref_primary_10_1016_j_neuron_2020_11_021 elsevier_sciencedirect_doi_10_1016_j_neuron_2020_11_021 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-17 |
| PublicationDateYYYYMMDD | 2021-02-17 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Cambridge |
| PublicationTitle | Neuron (Cambridge, Mass.) |
| PublicationTitleAlternate | Neuron |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc Elsevier Limited |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
| References | Springenberg, Dosovitskiy, Brox, Riedmiller (bib49) 2015 Wen, Shi, Zhang, Lu, Cao, Liu (bib59) 2018; 28 Zhang, McAllister, Calandra, Gal, Levine (bib64) 2020 Ha, Schmidhuber (bib18) 2018 Srinivas, Laskin, Abbeel (bib50) 2020 Kriegeskorte, Mur, Bandettini (bib32) 2008; 2 Seeliger, Fritsche, Güçlü, Schoenmakers, Schoffelen, Bosch, van Gerven (bib46) 2018; 180 Wunderlich, Rangel, O’Doherty (bib60) 2009; 106 Penny, Friston, Ashburner, Kiebel, Nichols (bib43) 2011 Lake, Ullman, Tenenbaum, Gershman (bib33) 2016 Jaderberg, Mnih, Czarnecki, Schaul, Leibo, Silver, Kavukcuoglu (bib26) 2016 Bellemare, Naddaf, Veness, Bowling (bib7) 2013; 47 Summerfield, Luyckx, Sheahan (bib52) 2020; 184 Avants, Tustison, Song (bib5) 2009; 2009 Andersen, Cui (bib4) 2009; 63 Hayhoe, Ballard (bib21) 2005; 9 Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (bib36) 2015; 518 Gollisch, Meister (bib16) 2010; 65 Schultz (bib44) 1998; 80 Sutton, Barto (bib53) 2018 Andersen, Buneo (bib3) 2002; 25 Gold, Shadlen (bib15) 2007; 30 Zeiler, Fergus (bib63) 2013 Haxby, Connolly, Guntupalli (bib20) 2014; 37 Niv, Langdon (bib39) 2016; 11 Wang, Kurth-Nelson, Kumaran, Tirumala, Soyer, Leibo, Hassabis, Botvinick (bib56) 2018; 21 Behrens, Muller, Whittington, Mark, Baram, Stachenfeld, Kurth-Nelson (bib6) 2018; 100 DiCarlo, Cox (bib12) 2007; 11 Kietzmann, Spoerer, Sörensen, Cichy, Hauk, Kriegeskorte (bib30) 2019; 116 Kingma, Welling (bib31) 2014 Watkins, Dayan (bib57) 1992; 8 Higgins, Amos, Pfau, Racaniere, Matthey, Rezende, Lerchner (bib22) 2018 Hanke, Halchenko, Sederberg, Hanson, Haxby, Pollmann (bib19) 2009; 7 Lesort, Díaz-Rodríguez, Goudou, Filliat (bib35) 2018; 108 Yamins, DiCarlo (bib61) 2016; 19 Chang, Tsao (bib10) 2017; 169 Shwartz-Ziv, Tishby (bib47) 2017 van den Oord, Li, Vinyals (bib55) 2019 Olshausen, Field (bib42) 1996; 381 Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, De Luca, Drobnjak, Flitney (bib48) 2004; 23 Freedman, Ibos (bib14) 2018; 97 Kay, Naselaris, Prenger, Gallant (bib28) 2008; 452 Anand, Racah, Ozair, Bengio, Côté, Hjelm (bib2) 2019 Güçlü, van Gerven (bib17) 2015; 35 Botvinick, Ritter, Wang, Kurth-Nelson, Blundell, Hassabis (bib8) 2019; 23 Iigaya, Yi, Wahle, Tanwisuth, O’Doherty (bib25) 2020 Higgins, Pal, Rusu, Matthey, Burgess, Pritzel, Botvinick, Blundell, Lerchner (bib23) 2018; 70 Mohamed, Rezende (bib37) 2015 Achille, Soatto (bib1) 2018 Dabney, Kurth-Nelson, Uchida, Starkweather, Hassabis, Munos, Botvinick (bib11) 2020; 577 Hosoya, Baccus, Meister (bib24) 2005; 436 Eickenberg, Gramfort, Varoquaux, Thirion (bib13) 2017; 152 Lenc, Vedaldi (bib34) 2015 Botvinick, Wang, Dabney, Miller, Kurth-Nelson (bib9) 2020; 107 Niv (bib38) 2019; 22 Tyszka, Pauli (bib54) 2016; 37 Schultz, Dayan, Montague (bib45) 1997; 275 Kaiser, Babaeizadeh, Milos, Osinski, Campbell, Czechowski, Erhan, Finn, Kozakowski, Levine (bib27) 2020 Khaligh-Razavi, Kriegeskorte (bib29) 2014; 10 Watter, Springenberg, Boedecker, Riedmiller (bib58) 2015 O’Doherty, Dayan, Schultz, Deichmann, Friston, Dolan (bib40) 2004; 304 Yamins, Hong, Cadieu, Solomon, Seibert, DiCarlo (bib62) 2014; 111 O’Doherty, Hampton, Kim (bib41) 2007; 1104 Steinberg, Keiflin, Boivin, Witten, Deisseroth, Janak (bib51) 2013; 16 Dabney (10.1016/j.neuron.2020.11.021_bib11) 2020; 577 Hayhoe (10.1016/j.neuron.2020.11.021_bib21) 2005; 9 Tyszka (10.1016/j.neuron.2020.11.021_bib54) 2016; 37 Hosoya (10.1016/j.neuron.2020.11.021_bib24) 2005; 436 Lenc (10.1016/j.neuron.2020.11.021_bib34) 2015 Niv (10.1016/j.neuron.2020.11.021_bib38) 2019; 22 Chang (10.1016/j.neuron.2020.11.021_bib10) 2017; 169 Yamins (10.1016/j.neuron.2020.11.021_bib61) 2016; 19 Botvinick (10.1016/j.neuron.2020.11.021_bib8) 2019; 23 Andersen (10.1016/j.neuron.2020.11.021_bib4) 2009; 63 Kaiser (10.1016/j.neuron.2020.11.021_bib27) 2020 Srinivas (10.1016/j.neuron.2020.11.021_bib50) 2020 Higgins (10.1016/j.neuron.2020.11.021_bib22) 2018 Shwartz-Ziv (10.1016/j.neuron.2020.11.021_bib47) 2017 Güçlü (10.1016/j.neuron.2020.11.021_bib17) 2015; 35 Bellemare (10.1016/j.neuron.2020.11.021_bib7) 2013; 47 Avants (10.1016/j.neuron.2020.11.021_bib5) 2009; 2009 Watkins (10.1016/j.neuron.2020.11.021_bib57) 1992; 8 Kingma (10.1016/j.neuron.2020.11.021_bib31) 2014 Seeliger (10.1016/j.neuron.2020.11.021_bib46) 2018; 180 Khaligh-Razavi (10.1016/j.neuron.2020.11.021_bib29) 2014; 10 Ha (10.1016/j.neuron.2020.11.021_bib18) 2018 Botvinick (10.1016/j.neuron.2020.11.021_bib9) 2020; 107 Wen (10.1016/j.neuron.2020.11.021_bib59) 2018; 28 Schultz (10.1016/j.neuron.2020.11.021_bib45) 1997; 275 Wang (10.1016/j.neuron.2020.11.021_bib56) 2018; 21 Lake (10.1016/j.neuron.2020.11.021_bib33) 2016 Mohamed (10.1016/j.neuron.2020.11.021_bib37) 2015 Zhang (10.1016/j.neuron.2020.11.021_bib64) 2020 Higgins (10.1016/j.neuron.2020.11.021_bib23) 2018; 70 O’Doherty (10.1016/j.neuron.2020.11.021_bib40) 2004; 304 Freedman (10.1016/j.neuron.2020.11.021_bib14) 2018; 97 Behrens (10.1016/j.neuron.2020.11.021_bib6) 2018; 100 Springenberg (10.1016/j.neuron.2020.11.021_bib49) 2015 Achille (10.1016/j.neuron.2020.11.021_bib1) 2018 Kietzmann (10.1016/j.neuron.2020.11.021_bib30) 2019; 116 Zeiler (10.1016/j.neuron.2020.11.021_bib63) 2013 Smith (10.1016/j.neuron.2020.11.021_bib48) 2004; 23 Anand (10.1016/j.neuron.2020.11.021_bib2) 2019 Kay (10.1016/j.neuron.2020.11.021_bib28) 2008; 452 Kriegeskorte (10.1016/j.neuron.2020.11.021_bib32) 2008; 2 Mnih (10.1016/j.neuron.2020.11.021_bib36) 2015; 518 Sutton (10.1016/j.neuron.2020.11.021_bib53) 2018 Iigaya (10.1016/j.neuron.2020.11.021_bib25) 2020 Jaderberg (10.1016/j.neuron.2020.11.021_bib26) 2016 van den Oord (10.1016/j.neuron.2020.11.021_bib55) 2019 Andersen (10.1016/j.neuron.2020.11.021_bib3) 2002; 25 Schultz (10.1016/j.neuron.2020.11.021_bib44) 1998; 80 DiCarlo (10.1016/j.neuron.2020.11.021_bib12) 2007; 11 Gold (10.1016/j.neuron.2020.11.021_bib15) 2007; 30 Wunderlich (10.1016/j.neuron.2020.11.021_bib60) 2009; 106 Hanke (10.1016/j.neuron.2020.11.021_bib19) 2009; 7 O’Doherty (10.1016/j.neuron.2020.11.021_bib41) 2007; 1104 Eickenberg (10.1016/j.neuron.2020.11.021_bib13) 2017; 152 Yamins (10.1016/j.neuron.2020.11.021_bib62) 2014; 111 Steinberg (10.1016/j.neuron.2020.11.021_bib51) 2013; 16 Lesort (10.1016/j.neuron.2020.11.021_bib35) 2018; 108 Olshausen (10.1016/j.neuron.2020.11.021_bib42) 1996; 381 Haxby (10.1016/j.neuron.2020.11.021_bib20) 2014; 37 Gollisch (10.1016/j.neuron.2020.11.021_bib16) 2010; 65 Summerfield (10.1016/j.neuron.2020.11.021_bib52) 2020; 184 Niv (10.1016/j.neuron.2020.11.021_bib39) 2016; 11 Watter (10.1016/j.neuron.2020.11.021_bib58) 2015 Penny (10.1016/j.neuron.2020.11.021_bib43) 2011 33600753 - Neuron. 2021 Feb 17;109(4):568-570 |
| References_xml | – volume: 452 start-page: 352 year: 2008 end-page: 355 ident: bib28 article-title: Identifying natural images from human brain activity publication-title: Nature – year: 2016 ident: bib26 article-title: Reinforcement learning with unsupervised auxiliary tasks publication-title: arXiv – volume: 2009 start-page: 681 year: 2009 ident: bib5 article-title: Advanced Normalization Tools: V1.0 publication-title: Insight J. – volume: 304 start-page: 452 year: 2004 end-page: 454 ident: bib40 article-title: Dissociable roles of ventral and dorsal striatum in instrumental conditioning publication-title: Science – volume: 10 start-page: e1003915 year: 2014 ident: bib29 article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation publication-title: PLoS Comput. Biol. – volume: 152 start-page: 184 year: 2017 end-page: 194 ident: bib13 article-title: Seeing it all: convolutional network layers map the function of the human visual system publication-title: Neuroimage – volume: 275 start-page: 1593 year: 1997 end-page: 1599 ident: bib45 article-title: A neural substrate of prediction and reward publication-title: Science – year: 2019 ident: bib55 article-title: Representation learning with contrastive predictive coding publication-title: arXiv – volume: 23 start-page: 408 year: 2019 end-page: 422 ident: bib8 article-title: Reinforcement learning, fast and slow publication-title: Trends Cogn. Sci. – volume: 11 start-page: 333 year: 2007 end-page: 341 ident: bib12 article-title: Untangling invariant object recognition publication-title: Trends Cogn. Sci. – year: 2016 ident: bib33 article-title: Building machines that learn and think like people publication-title: arXiv – volume: 37 start-page: 3979 year: 2016 end-page: 3998 ident: bib54 article-title: In vivo delineation of subdivisions of the human amygdaloid complex in a high-resolution group template publication-title: Hum. Brain Mapp. – volume: 19 start-page: 356 year: 2016 end-page: 365 ident: bib61 article-title: Using goal-driven deep learning models to understand sensory cortex publication-title: Nat. Neurosci. – volume: 47 start-page: 253 year: 2013 end-page: 279 ident: bib7 article-title: The arcade learning environment: an evaluation platform for general agents publication-title: J. Artif. Intell. Res. – year: 2020 ident: bib25 article-title: Aesthetic preference for art emerges from a weighted integration over hierarchically structured visual features in the brain publication-title: bioRxiv – volume: 180 start-page: 253 year: 2018 end-page: 266 ident: bib46 article-title: Convolutional neural network-based encoding and decoding of visual object recognition in space and time publication-title: NeuroImage – volume: 23 start-page: S208 year: 2004 end-page: S219 ident: bib48 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage – volume: 25 start-page: 189 year: 2002 end-page: 220 ident: bib3 article-title: Intentional maps in posterior parietal cortex publication-title: Annu. Rev. Neurosci. – volume: 65 start-page: 150 year: 2010 end-page: 164 ident: bib16 article-title: Eye smarter than scientists believed: neural computations in circuits of the retina publication-title: Neuron – volume: 16 start-page: 966 year: 2013 end-page: 973 ident: bib51 article-title: A causal link between prediction errors, dopamine neurons and learning publication-title: Nat. Neurosci. – volume: 22 start-page: 1544 year: 2019 end-page: 1553 ident: bib38 article-title: Learning task-state representations publication-title: Nat. Neurosci. – volume: 8 start-page: 279 year: 1992 end-page: 292 ident: bib57 article-title: Q-learning publication-title: Mach. Learn. – volume: 7 start-page: 37 year: 2009 end-page: 53 ident: bib19 article-title: PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data publication-title: Neuroinformatics – volume: 100 start-page: 490 year: 2018 end-page: 509 ident: bib6 article-title: What is a cognitive map? Organizing knowledge for flexible behavior publication-title: Neuron – year: 2020 ident: bib64 article-title: Learning invariant representations for reinforcement learning without reconstruction publication-title: arXiv – year: 2018 ident: bib53 article-title: Reinforcement Learning: An Introduction – volume: 106 start-page: 17199 year: 2009 end-page: 17204 ident: bib60 article-title: Neural computations underlying action-based decision making in the human brain publication-title: Proc. Natl. Acad. Sci. USA – volume: 80 start-page: 1 year: 1998 end-page: 27 ident: bib44 article-title: Predictive reward signal of dopamine neurons publication-title: J. Neurophysiol. – volume: 184 start-page: 101717 year: 2020 ident: bib52 article-title: Structure learning and the posterior parietal cortex publication-title: Prog. Neurobiol. – year: 2015 ident: bib49 article-title: Striving for simplicity: the all convolutional net publication-title: arXiv – volume: 28 start-page: 4136 year: 2018 end-page: 4160 ident: bib59 article-title: Neural encoding and decoding with deep learning for dynamic natural vision publication-title: Cereb. Cortex – volume: 9 start-page: 188 year: 2005 end-page: 194 ident: bib21 article-title: Eye movements in natural behavior publication-title: Trends Cogn. Sci. – year: 2015 ident: bib58 article-title: Embed to control: a locally linear latent dynamics model for control from raw images publication-title: arXiv – volume: 30 start-page: 535 year: 2007 end-page: 574 ident: bib15 article-title: The neural basis of decision making publication-title: Annu. Rev. Neurosci. – volume: 518 start-page: 529 year: 2015 end-page: 533 ident: bib36 article-title: Human-level control through deep reinforcement learning publication-title: Nature – volume: 577 start-page: 671 year: 2020 end-page: 675 ident: bib11 article-title: A distributional code for value in dopamine-based reinforcement learning publication-title: Nature – start-page: 8769 year: 2019 end-page: 8782 ident: bib2 article-title: Unsupervised state representation learning in Atari publication-title: Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019) – start-page: 991 year: 2015 end-page: 999 ident: bib34 article-title: Understanding image representations by measuring their equivariance and equivalence publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2014 ident: bib31 article-title: Auto-encoding variational Bayes publication-title: arXiv – year: 2020 ident: bib27 article-title: Model-based reinforcement learning for Atari publication-title: arXiv – volume: 70 start-page: 1480 year: 2018 end-page: 1490 ident: bib23 article-title: DARLA: improving zero-shot transfer in reinforcement learning publication-title: Proceedings of the 34th International Conference on Machine Learning – volume: 63 start-page: 568 year: 2009 end-page: 583 ident: bib4 article-title: Intention, action planning, and decision making in parietal-frontal circuits publication-title: Neuron – year: 2018 ident: bib1 article-title: Emergence of invariance and disentanglement in deep representations publication-title: arXiv – volume: 35 start-page: 10005 year: 2015 end-page: 10014 ident: bib17 article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream publication-title: J. Neurosci. – volume: 11 start-page: 67 year: 2016 end-page: 73 ident: bib39 article-title: Reinforcement learning with Marr publication-title: Curr. Opin. Behav. – volume: 97 start-page: 1219 year: 2018 end-page: 1234 ident: bib14 article-title: An integrative framework for sensory, motor, and cognitive functions of the posterior parietal cortex publication-title: Neuron – year: 2017 ident: bib47 article-title: Opening the black box of deep neural networks via information publication-title: arXiv – volume: 111 start-page: 8619 year: 2014 end-page: 8624 ident: bib62 article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex publication-title: Proc. Natl. Acad. Sci. USA – volume: 1104 start-page: 35 year: 2007 end-page: 53 ident: bib41 article-title: Model-based fMRI and its application to reward learning and decision making publication-title: Ann. N Y Acad. Sci. – year: 2020 ident: bib50 article-title: CURL: contrastive unsupervised representations for reinforcement learning publication-title: arXiv – volume: 2 start-page: 4 year: 2008 ident: bib32 article-title: Representational similarity analysis: connecting the branches of systems neuroscience publication-title: Front. Syst. Neurosci. – year: 2018 ident: bib18 article-title: World models publication-title: arXiv – volume: 381 start-page: 607 year: 1996 end-page: 609 ident: bib42 article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images publication-title: Nature – year: 2013 ident: bib63 article-title: Visualizing and understanding convolutional networks publication-title: arXiv – year: 2018 ident: bib22 article-title: Towards a definition of disentangled representations publication-title: arXiv – volume: 116 start-page: 21854 year: 2019 end-page: 21863 ident: bib30 article-title: Recurrence is required to capture the representational dynamics of the human visual system publication-title: Proc. Natl. Acad. Sci. USA – year: 2011 ident: bib43 article-title: Statistical Parametric Mapping: The Analysis of Functional Brain Images – volume: 37 start-page: 435 year: 2014 end-page: 456 ident: bib20 article-title: Decoding neural representational spaces using multivariate pattern analysis publication-title: Annu. Rev. Neurosci. – volume: 436 start-page: 71 year: 2005 end-page: 77 ident: bib24 article-title: Dynamic predictive coding by the retina publication-title: Nature – volume: 21 start-page: 860 year: 2018 end-page: 868 ident: bib56 article-title: Prefrontal cortex as a meta-reinforcement learning system publication-title: Nat. Neurosci. – volume: 108 start-page: 379 year: 2018 end-page: 392 ident: bib35 article-title: State representation learning for control: An overview publication-title: Neural Netw. – year: 2015 ident: bib37 article-title: Variational information maximisation for intrinsically motivated reinforcement learning publication-title: arXiv – volume: 107 start-page: 603 year: 2020 end-page: 616 ident: bib9 article-title: Deep reinforcement learning and its neuroscientific implications publication-title: Neuron – volume: 169 start-page: 1013 year: 2017 end-page: 1028.e14 ident: bib10 article-title: The code for facial identity in the primate brain publication-title: Cell – volume: 304 start-page: 452 year: 2004 ident: 10.1016/j.neuron.2020.11.021_bib40 article-title: Dissociable roles of ventral and dorsal striatum in instrumental conditioning publication-title: Science doi: 10.1126/science.1094285 – year: 2020 ident: 10.1016/j.neuron.2020.11.021_bib25 article-title: Aesthetic preference for art emerges from a weighted integration over hierarchically structured visual features in the brain publication-title: bioRxiv – volume: 11 start-page: 67 year: 2016 ident: 10.1016/j.neuron.2020.11.021_bib39 article-title: Reinforcement learning with Marr publication-title: Curr. Opin. Behav. doi: 10.1016/j.cobeha.2016.04.005 – year: 2018 ident: 10.1016/j.neuron.2020.11.021_bib18 article-title: World models publication-title: arXiv – year: 2016 ident: 10.1016/j.neuron.2020.11.021_bib26 article-title: Reinforcement learning with unsupervised auxiliary tasks publication-title: arXiv – year: 2020 ident: 10.1016/j.neuron.2020.11.021_bib27 article-title: Model-based reinforcement learning for Atari publication-title: arXiv – volume: 28 start-page: 4136 year: 2018 ident: 10.1016/j.neuron.2020.11.021_bib59 article-title: Neural encoding and decoding with deep learning for dynamic natural vision publication-title: Cereb. Cortex doi: 10.1093/cercor/bhx268 – volume: 106 start-page: 17199 year: 2009 ident: 10.1016/j.neuron.2020.11.021_bib60 article-title: Neural computations underlying action-based decision making in the human brain publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0901077106 – year: 2018 ident: 10.1016/j.neuron.2020.11.021_bib1 article-title: Emergence of invariance and disentanglement in deep representations publication-title: arXiv – year: 2018 ident: 10.1016/j.neuron.2020.11.021_bib22 article-title: Towards a definition of disentangled representations publication-title: arXiv – volume: 70 start-page: 1480 year: 2018 ident: 10.1016/j.neuron.2020.11.021_bib23 article-title: DARLA: improving zero-shot transfer in reinforcement learning publication-title: Proceedings of the 34th International Conference on Machine Learning – year: 2014 ident: 10.1016/j.neuron.2020.11.021_bib31 article-title: Auto-encoding variational Bayes publication-title: arXiv – volume: 100 start-page: 490 year: 2018 ident: 10.1016/j.neuron.2020.11.021_bib6 article-title: What is a cognitive map? Organizing knowledge for flexible behavior publication-title: Neuron doi: 10.1016/j.neuron.2018.10.002 – volume: 108 start-page: 379 year: 2018 ident: 10.1016/j.neuron.2020.11.021_bib35 article-title: State representation learning for control: An overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.07.006 – year: 2015 ident: 10.1016/j.neuron.2020.11.021_bib37 article-title: Variational information maximisation for intrinsically motivated reinforcement learning publication-title: arXiv – volume: 169 start-page: 1013 year: 2017 ident: 10.1016/j.neuron.2020.11.021_bib10 article-title: The code for facial identity in the primate brain publication-title: Cell doi: 10.1016/j.cell.2017.05.011 – volume: 452 start-page: 352 year: 2008 ident: 10.1016/j.neuron.2020.11.021_bib28 article-title: Identifying natural images from human brain activity publication-title: Nature doi: 10.1038/nature06713 – year: 2016 ident: 10.1016/j.neuron.2020.11.021_bib33 article-title: Building machines that learn and think like people publication-title: arXiv – volume: 2 start-page: 4 year: 2008 ident: 10.1016/j.neuron.2020.11.021_bib32 article-title: Representational similarity analysis: connecting the branches of systems neuroscience publication-title: Front. Syst. Neurosci. – volume: 80 start-page: 1 year: 1998 ident: 10.1016/j.neuron.2020.11.021_bib44 article-title: Predictive reward signal of dopamine neurons publication-title: J. Neurophysiol. doi: 10.1152/jn.1998.80.1.1 – volume: 10 start-page: e1003915 year: 2014 ident: 10.1016/j.neuron.2020.11.021_bib29 article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003915 – year: 2020 ident: 10.1016/j.neuron.2020.11.021_bib50 article-title: CURL: contrastive unsupervised representations for reinforcement learning publication-title: arXiv – volume: 111 start-page: 8619 year: 2014 ident: 10.1016/j.neuron.2020.11.021_bib62 article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1403112111 – volume: 518 start-page: 529 year: 2015 ident: 10.1016/j.neuron.2020.11.021_bib36 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 22 start-page: 1544 year: 2019 ident: 10.1016/j.neuron.2020.11.021_bib38 article-title: Learning task-state representations publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0470-8 – volume: 275 start-page: 1593 year: 1997 ident: 10.1016/j.neuron.2020.11.021_bib45 article-title: A neural substrate of prediction and reward publication-title: Science doi: 10.1126/science.275.5306.1593 – volume: 21 start-page: 860 year: 2018 ident: 10.1016/j.neuron.2020.11.021_bib56 article-title: Prefrontal cortex as a meta-reinforcement learning system publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0147-8 – volume: 25 start-page: 189 year: 2002 ident: 10.1016/j.neuron.2020.11.021_bib3 article-title: Intentional maps in posterior parietal cortex publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.25.112701.142922 – volume: 37 start-page: 435 year: 2014 ident: 10.1016/j.neuron.2020.11.021_bib20 article-title: Decoding neural representational spaces using multivariate pattern analysis publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-062012-170325 – volume: 11 start-page: 333 year: 2007 ident: 10.1016/j.neuron.2020.11.021_bib12 article-title: Untangling invariant object recognition publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2007.06.010 – volume: 577 start-page: 671 year: 2020 ident: 10.1016/j.neuron.2020.11.021_bib11 article-title: A distributional code for value in dopamine-based reinforcement learning publication-title: Nature doi: 10.1038/s41586-019-1924-6 – volume: 9 start-page: 188 year: 2005 ident: 10.1016/j.neuron.2020.11.021_bib21 article-title: Eye movements in natural behavior publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2005.02.009 – start-page: 991 year: 2015 ident: 10.1016/j.neuron.2020.11.021_bib34 article-title: Understanding image representations by measuring their equivariance and equivalence publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2017 ident: 10.1016/j.neuron.2020.11.021_bib47 article-title: Opening the black box of deep neural networks via information publication-title: arXiv – volume: 30 start-page: 535 year: 2007 ident: 10.1016/j.neuron.2020.11.021_bib15 article-title: The neural basis of decision making publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.29.051605.113038 – year: 2020 ident: 10.1016/j.neuron.2020.11.021_bib64 article-title: Learning invariant representations for reinforcement learning without reconstruction publication-title: arXiv – volume: 65 start-page: 150 year: 2010 ident: 10.1016/j.neuron.2020.11.021_bib16 article-title: Eye smarter than scientists believed: neural computations in circuits of the retina publication-title: Neuron doi: 10.1016/j.neuron.2009.12.009 – volume: 436 start-page: 71 year: 2005 ident: 10.1016/j.neuron.2020.11.021_bib24 article-title: Dynamic predictive coding by the retina publication-title: Nature doi: 10.1038/nature03689 – volume: 47 start-page: 253 year: 2013 ident: 10.1016/j.neuron.2020.11.021_bib7 article-title: The arcade learning environment: an evaluation platform for general agents publication-title: J. Artif. Intell. Res. – volume: 381 start-page: 607 year: 1996 ident: 10.1016/j.neuron.2020.11.021_bib42 article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images publication-title: Nature doi: 10.1038/381607a0 – volume: 7 start-page: 37 year: 2009 ident: 10.1016/j.neuron.2020.11.021_bib19 article-title: PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data publication-title: Neuroinformatics doi: 10.1007/s12021-008-9041-y – volume: 116 start-page: 21854 year: 2019 ident: 10.1016/j.neuron.2020.11.021_bib30 article-title: Recurrence is required to capture the representational dynamics of the human visual system publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1905544116 – volume: 184 start-page: 101717 year: 2020 ident: 10.1016/j.neuron.2020.11.021_bib52 article-title: Structure learning and the posterior parietal cortex publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2019.101717 – year: 2015 ident: 10.1016/j.neuron.2020.11.021_bib58 article-title: Embed to control: a locally linear latent dynamics model for control from raw images publication-title: arXiv – year: 2011 ident: 10.1016/j.neuron.2020.11.021_bib43 – year: 2015 ident: 10.1016/j.neuron.2020.11.021_bib49 article-title: Striving for simplicity: the all convolutional net publication-title: arXiv – year: 2013 ident: 10.1016/j.neuron.2020.11.021_bib63 article-title: Visualizing and understanding convolutional networks publication-title: arXiv – volume: 8 start-page: 279 year: 1992 ident: 10.1016/j.neuron.2020.11.021_bib57 article-title: Q-learning publication-title: Mach. Learn. – volume: 180 start-page: 253 year: 2018 ident: 10.1016/j.neuron.2020.11.021_bib46 article-title: Convolutional neural network-based encoding and decoding of visual object recognition in space and time publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.07.018 – year: 2019 ident: 10.1016/j.neuron.2020.11.021_bib55 article-title: Representation learning with contrastive predictive coding publication-title: arXiv – volume: 37 start-page: 3979 year: 2016 ident: 10.1016/j.neuron.2020.11.021_bib54 article-title: In vivo delineation of subdivisions of the human amygdaloid complex in a high-resolution group template publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23289 – volume: 16 start-page: 966 year: 2013 ident: 10.1016/j.neuron.2020.11.021_bib51 article-title: A causal link between prediction errors, dopamine neurons and learning publication-title: Nat. Neurosci. doi: 10.1038/nn.3413 – volume: 23 start-page: 408 year: 2019 ident: 10.1016/j.neuron.2020.11.021_bib8 article-title: Reinforcement learning, fast and slow publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2019.02.006 – volume: 152 start-page: 184 year: 2017 ident: 10.1016/j.neuron.2020.11.021_bib13 article-title: Seeing it all: convolutional network layers map the function of the human visual system publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.10.001 – volume: 19 start-page: 356 year: 2016 ident: 10.1016/j.neuron.2020.11.021_bib61 article-title: Using goal-driven deep learning models to understand sensory cortex publication-title: Nat. Neurosci. doi: 10.1038/nn.4244 – year: 2018 ident: 10.1016/j.neuron.2020.11.021_bib53 – volume: 23 start-page: S208 issue: Suppl 1 year: 2004 ident: 10.1016/j.neuron.2020.11.021_bib48 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 2009 start-page: 681 year: 2009 ident: 10.1016/j.neuron.2020.11.021_bib5 article-title: Advanced Normalization Tools: V1.0 publication-title: Insight J. – volume: 35 start-page: 10005 year: 2015 ident: 10.1016/j.neuron.2020.11.021_bib17 article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5023-14.2015 – volume: 97 start-page: 1219 year: 2018 ident: 10.1016/j.neuron.2020.11.021_bib14 article-title: An integrative framework for sensory, motor, and cognitive functions of the posterior parietal cortex publication-title: Neuron doi: 10.1016/j.neuron.2018.01.044 – volume: 63 start-page: 568 year: 2009 ident: 10.1016/j.neuron.2020.11.021_bib4 article-title: Intention, action planning, and decision making in parietal-frontal circuits publication-title: Neuron doi: 10.1016/j.neuron.2009.08.028 – volume: 1104 start-page: 35 year: 2007 ident: 10.1016/j.neuron.2020.11.021_bib41 article-title: Model-based fMRI and its application to reward learning and decision making publication-title: Ann. N Y Acad. Sci. doi: 10.1196/annals.1390.022 – start-page: 8769 year: 2019 ident: 10.1016/j.neuron.2020.11.021_bib2 article-title: Unsupervised state representation learning in Atari publication-title: Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019) – volume: 107 start-page: 603 year: 2020 ident: 10.1016/j.neuron.2020.11.021_bib9 article-title: Deep reinforcement learning and its neuroscientific implications publication-title: Neuron doi: 10.1016/j.neuron.2020.06.014 – reference: 33600753 - Neuron. 2021 Feb 17;109(4):568-570 |
| SSID | ssj0014591 |
| Score | 2.540549 |
| Snippet | Humans possess an exceptional aptitude to efficiently make decisions from high-dimensional sensory observations. However, it is unknown how the brain compactly... SummaryHumans possess an exceptional aptitude to efficiently make decisions from high-dimensional sensory observations. However, it is unknown how the brain... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 724 |
| SubjectTerms | Adult Brain Brain - diagnostic imaging Brain - physiology Brain mapping computational neuroscience Computer & video games Cortex (parietal) Decision making Deep Learning deep reinforcement learning Female fMRI Functional magnetic resonance imaging Humans Magnetic Resonance Imaging - methods Male Mental task performance naturalistic task Neural coding Neural networks Psychomotor Performance - physiology Reinforcement Reinforcement, Psychology Sensorimotor system Somatosensory cortex Video Games Young Adult |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFL0qUyHY8Gh5DBRkJMTOaeP4kSxHiKpCokKIkcoqih2HFmYyo05G1fAD_Db3Og-1VKh0k43tKI8T-_jm3HMB3qrUpbaUKSc3OY781vIirRTXVvq0sIUoHcU7Ph3ro6n8eKJOtiDuc2GCaN_Zs6iezaP67DRoK5dzt9_rxPZNmhkh1R3Y1grp9wi2p8efJ98CW8w018K0ovrM0B_OrE-XC5qu4BFJrqeC5oroQMT_Wo6u083rqsl763pZbC6K2ezSknT4EL70N9MqUX5G68ZG7tdfPo-3uttH8KAjqGzSNj2GLV_vwO6kxs35fMPesSAZDbH4HbjbVrLc7MLvID1gpfdLdu6DG6sLgUfWlaX4zpoFI7soPPfp4oIh72SWylMwctIs_YoVlqIurmEhx4njTOc8C56bfX5UvWLYnwyWeUlFCVpDEXY5V-8JTA8_fH1_xLsaD9wpZRpulK1i7zPpYjxYoV1mE-G8U5V2iS7JUA8bZZFKZZwg_8JS-KwqhNdVie_6KYzqRe2fA_MmloKSCmwZSy9NqiuvfCUsTTJZkowh6V917joDdKrDMct7pduPvAVITgDBvVGOABkDH0YtWwOQG_qbHkV5R2JacpLjGnXDyL0edHk3kaxy3B0jRaX43BjeDM04BdB_naL2izX1MQh9o-gUz1qMDpeaJMjPjVJ4WVfQO3Qge_GrLYjDYDPeQW8M0YDz_3oCL2474CXcF6QUojI7Zg9Gzfnav0Kq19jX3cf9B0nGWGQ priority: 102 providerName: Unpaywall |
| Title | Using deep reinforcement learning to reveal how the brain encodes abstract state-space representations in high-dimensional environments |
| URI | https://dx.doi.org/10.1016/j.neuron.2020.11.021 https://www.ncbi.nlm.nih.gov/pubmed/33326755 https://www.proquest.com/docview/2490569783 https://www.proquest.com/docview/2470897521 https://pubmed.ncbi.nlm.nih.gov/PMC7897245 https://www.ncbi.nlm.nih.gov/pmc/articles/7897245 |
| UnpaywallVersion | submittedVersion |
| Volume | 109 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1097-4199 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014591 issn: 0896-6273 databaseCode: KQ8 dateStart: 19950201 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVESC databaseName: Elsevier Free Content customDbUrl: eissn: 1097-4199 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0014591 issn: 0896-6273 databaseCode: IXB dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1097-4199 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0014591 issn: 0896-6273 databaseCode: DIK dateStart: 19950101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1097-4199 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014591 issn: 0896-6273 databaseCode: AKRWK dateStart: 19880301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-lIvpStPXjaj0iiG_pdbPJZvfxLJZWsQh6cD4tm2TWnpx7R2-Pcn-B_7Yz2Q96FKn4sg-bSQiZyWQymfkNY2916lLrVSoITU6gfWtFkZZaJFZBWthCekf-js-XyflEfZzq6Q477XJhKKyy1f2NTg_auv0zaldztJzNRl9P0ozQy2NJkCuoVFEPxyql8g0X0_f9S4LSTdU8JBZE3aXPhRivgBlJKKiSdMfxiYz-djzdNT_vRlE-WlfLYnNTzOe3jqizJ2yvtS35uJn-U7YD1T47GFd4r_614e94iPYMbvR99rApQrk5YL9D1AD3AEt-DQFI1QWfIW8rSvzg9YIT0hOOfbW44WgyckuVJTiBYHpY8cKSw8TVPKQnCVRSDniAy-xSm6oVR3rCRhae6gk0WCD8dprdMzY5-_Dt9Fy05RmE09rUwmhbRgCZchF-rExcZmPpwOkycXHiCQsPG1WRKm2cJOhBLyErCwlJ6ZEVz9lutajgJeNgIiUpH8D6SIEyaVKChlJa0g9ZHA9Y3HEldy12OZXQmOddkNrPvOFlTrzEa02OvBww0fdaNtgd99CbjuH5lgzmeLzc0_Ook4-81QGrHC-2aF2Sa23A3vTNuHvpSaaoYLEmGoOSaTQN8aIRp36qcYymtdEap7UlaD0BIYNvt1Szq4AQbnBMqbDncS-S_7QCh_-9Aq_YY0nRPlQqxxyx3fp6Da_RXKvtEC8qF5-GYVcO2YPJ5Zfx9z9YeEXN |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEWovCFoeWwoYCXFzt3HsODmWimqBthdaaW9W7EzaRUt21c2q2l_A32bGeairChVxySEeW5ZnPB6PZ75h7KNOfeoKlQpCkxNo3zqRp6UWiVOQ5i6XhSd_x9l5MrpU38Z6vMGOu1wYCqtsdX-j04O2bv8M29UczieT4Y_DNCP08lgS5Aoq1UfssdJonVAW3_hz_5SgdFM2D6kFkXf5cyHIK4BGEgyqJOVxcCijv51P9-3P-2GUW8tqnq9u8-n0zhl18ow9bY1LftTM_znbgGqH7R5VeLH-teKfeAj3DH70HfakqUK52mW_Q9gALwDm_AYCkqoPTkPelpS44vWME9QTjn09u-VoM3JHpSU4oWAWsOC5I4-Jr3nITxKopTzwgJfZ5TZVC470BI4sCioo0ICB8Lt5di_Y5cmXi-ORaOszCK-1qYXRrowAMuUj_DiZ-MzF0oPXZeLjpCAwPGxUeaq08ZKwBwsJWZlLSMoCWfGSbVazCl4zDiZSkhICXBEpUCZNStBQSkcKIovjAYs7rljfgpdTDY2p7aLUftqGl5Z4ifcai7wcMNH3mjfgHQ_Qm47hdk0ILZ4vD_Tc7-TDtkpgYfFmi-Yl-dYG7EPfjNuX3mTyCmZLojEomUbTEK8aceqnGsdoWxutcVprgtYTEDT4eks1uQ4Q4QbHlAp7HvQi-U8rsPffK_CebY0uzk7t6dfz72_YtqTQH6qbY_bZZn2zhLdou9XuXdibfwDhlUZK |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFL0qUyHY8Gh5DBRkJMTOaeP4kSxHiKpCokKIkcoqih2HFmYyo05G1fAD_Db3Og-1VKh0k43tKI8T-_jm3HMB3qrUpbaUKSc3OY781vIirRTXVvq0sIUoHcU7Ph3ro6n8eKJOtiDuc2GCaN_Zs6iezaP67DRoK5dzt9_rxPZNmhkh1R3Y1grp9wi2p8efJ98CW8w018K0ovrM0B_OrE-XC5qu4BFJrqeC5oroQMT_Wo6u083rqsl763pZbC6K2ezSknT4EL70N9MqUX5G68ZG7tdfPo-3uttH8KAjqGzSNj2GLV_vwO6kxs35fMPesSAZDbH4HbjbVrLc7MLvID1gpfdLdu6DG6sLgUfWlaX4zpoFI7soPPfp4oIh72SWylMwctIs_YoVlqIurmEhx4njTOc8C56bfX5UvWLYnwyWeUlFCVpDEXY5V-8JTA8_fH1_xLsaD9wpZRpulK1i7zPpYjxYoV1mE-G8U5V2iS7JUA8bZZFKZZwg_8JS-KwqhNdVie_6KYzqRe2fA_MmloKSCmwZSy9NqiuvfCUsTTJZkowh6V917joDdKrDMct7pduPvAVITgDBvVGOABkDH0YtWwOQG_qbHkV5R2JacpLjGnXDyL0edHk3kaxy3B0jRaX43BjeDM04BdB_naL2izX1MQh9o-gUz1qMDpeaJMjPjVJ4WVfQO3Qge_GrLYjDYDPeQW8M0YDz_3oCL2474CXcF6QUojI7Zg9Gzfnav0Kq19jX3cf9B0nGWGQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+deep+reinforcement+learning+to+reveal+how+the+brain+encodes+abstract+state-space+representations+in+high-dimensional+environments&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Cross%2C+Logan&rft.au=Cockburn%2C+Jeff&rft.au=Yue%2C+Yisong&rft.au=O%27Doherty%2C+John+P&rft.date=2021-02-17&rft.eissn=1097-4199&rft.volume=109&rft.issue=4&rft.spage=724&rft_id=info:doi/10.1016%2Fj.neuron.2020.11.021&rft_id=info%3Apmid%2F33326755&rft.externalDocID=33326755 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon |