The Double-Stranded DNA Virosphere as a Modular Hierarchical Network of Gene Sharing
Virus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution, gene and genome network analyses can complement traditional phylogenetics. We performed an exhaustive comparative analysis of the genomes of double-s...
Saved in:
Published in | mBio Vol. 7; no. 4; pp. e00978 - 16 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
02.08.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 2161-2129 2150-7511 2150-7511 |
DOI | 10.1128/mBio.00978-16 |
Cover
Abstract | Virus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution, gene and genome network analyses can complement traditional phylogenetics. We performed an exhaustive comparative analysis of the genomes of double-stranded DNA (dsDNA) viruses by using the bipartite network approach and found a robust hierarchical modularity in the dsDNA virosphere. Bipartite networks consist of two classes of nodes, with nodes in one class, in this case genomes, being connected via nodes of the second class, in this case genes. Such a network can be partitioned into modules that combine nodes from both classes. The bipartite network of dsDNA viruses includes 19 modules that form 5 major and 3 minor supermodules. Of these modules, 11 include tailed bacteriophages, reflecting the diversity of this largest group of viruses. The module analysis quantitatively validates and refines previously proposed nontrivial evolutionary relationships. An expansive supermodule combines the large and giant viruses of the putative order “Megavirales” with diverse moderate-sized viruses and related mobile elements. All viruses in this supermodule share a distinct morphogenetic tool kit with a double jelly roll major capsid protein. Herpesviruses and tailed bacteriophages comprise another supermodule, held together by a distinct set of morphogenetic proteins centered on the HK97-like major capsid protein. Together, these two supermodules cover the great majority of currently known dsDNA viruses. We formally identify a set of 14 viral hallmark genes that comprise the hubs of the network and account for most of the intermodule connections.
IMPORTANCE
Viruses and related mobile genetic elements are the dominant biological entities on earth, but their evolution is not sufficiently understood and their classification is not adequately developed. The key reason is the characteristic high rate of virus evolution that involves not only sequence change but also extensive gene loss, gain, and exchange. Therefore, in the study of virus evolution on a large scale, traditional phylogenetic approaches have limited applicability and have to be complemented by gene and genome network analyses. We applied state-of-the art methods of such analysis to reveal robust hierarchical modularity in the genomes of double-stranded DNA viruses. Some of the identified modules combine highly diverse viruses infecting bacteria, archaea, and eukaryotes, in support of previous hypotheses on direct evolutionary relationships between viruses from the three domains of cellular life. We formally identify a set of 14 viral hallmark genes that hold together the genomic network.
Viruses and related mobile genetic elements are the dominant biological entities on earth, but their evolution is not sufficiently understood and their classification is not adequately developed. The key reason is the characteristic high rate of virus evolution that involves not only sequence change but also extensive gene loss, gain, and exchange. Therefore, in the study of virus evolution on a large scale, traditional phylogenetic approaches have limited applicability and have to be complemented by gene and genome network analyses. We applied state-of-the art methods of such analysis to reveal robust hierarchical modularity in the genomes of double-stranded DNA viruses. Some of the identified modules combine highly diverse viruses infecting bacteria, archaea, and eukaryotes, in support of previous hypotheses on direct evolutionary relationships between viruses from the three domains of cellular life. We formally identify a set of 14 viral hallmark genes that hold together the genomic network. |
---|---|
AbstractList | Virus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution, gene and genome network analyses can complement traditional phylogenetics. We performed an exhaustive comparative analysis of the genomes of double-stranded DNA (dsDNA) viruses by using the bipartite network approach and found a robust hierarchical modularity in the dsDNA virosphere. Bipartite networks consist of two classes of nodes, with nodes in one class, in this case genomes, being connected via nodes of the second class, in this case genes. Such a network can be partitioned into modules that combine nodes from both classes. The bipartite network of dsDNA viruses includes 19 modules that form 5 major and 3 minor supermodules. Of these modules, 11 include tailed bacteriophages, reflecting the diversity of this largest group of viruses. The module analysis quantitatively validates and refines previously proposed nontrivial evolutionary relationships. An expansive supermodule combines the large and giant viruses of the putative order “Megavirales” with diverse moderate-sized viruses and related mobile elements. All viruses in this supermodule share a distinct morphogenetic tool kit with a double jelly roll major capsid protein. Herpesviruses and tailed bacteriophages comprise another supermodule, held together by a distinct set of morphogenetic proteins centered on the HK97-like major capsid protein. Together, these two supermodules cover the great majority of currently known dsDNA viruses. We formally identify a set of 14 viral hallmark genes that comprise the hubs of the network and account for most of the intermodule connections.
Viruses and related mobile genetic elements are the dominant biological entities on earth, but their evolution is not sufficiently understood and their classification is not adequately developed. The key reason is the characteristic high rate of virus evolution that involves not only sequence change but also extensive gene loss, gain, and exchange. Therefore, in the study of virus evolution on a large scale, traditional phylogenetic approaches have limited applicability and have to be complemented by gene and genome network analyses. We applied state-of-the art methods of such analysis to reveal robust hierarchical modularity in the genomes of double-stranded DNA viruses. Some of the identified modules combine highly diverse viruses infecting bacteria, archaea, and eukaryotes, in support of previous hypotheses on direct evolutionary relationships between viruses from the three domains of cellular life. We formally identify a set of 14 viral hallmark genes that hold together the genomic network. Virus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution, gene and genome network analyses can complement traditional phylogenetics. We performed an exhaustive comparative analysis of the genomes of double-stranded DNA (dsDNA) viruses by using the bipartite network approach and found a robust hierarchical modularity in the dsDNA virosphere. Bipartite networks consist of two classes of nodes, with nodes in one class, in this case genomes, being connected via nodes of the second class, in this case genes. Such a network can be partitioned into modules that combine nodes from both classes. The bipartite network of dsDNA viruses includes 19 modules that form 5 major and 3 minor supermodules. Of these modules, 11 include tailed bacteriophages, reflecting the diversity of this largest group of viruses. The module analysis quantitatively validates and refines previously proposed nontrivial evolutionary relationships. An expansive supermodule combines the large and giant viruses of the putative order “Megavirales” with diverse moderate-sized viruses and related mobile elements. All viruses in this supermodule share a distinct morphogenetic tool kit with a double jelly roll major capsid protein. Herpesviruses and tailed bacteriophages comprise another supermodule, held together by a distinct set of morphogenetic proteins centered on the HK97-like major capsid protein. Together, these two supermodules cover the great majority of currently known dsDNA viruses. We formally identify a set of 14 viral hallmark genes that comprise the hubs of the network and account for most of the intermodule connections. IMPORTANCE Viruses and related mobile genetic elements are the dominant biological entities on earth, but their evolution is not sufficiently understood and their classification is not adequately developed. The key reason is the characteristic high rate of virus evolution that involves not only sequence change but also extensive gene loss, gain, and exchange. Therefore, in the study of virus evolution on a large scale, traditional phylogenetic approaches have limited applicability and have to be complemented by gene and genome network analyses. We applied state-of-the art methods of such analysis to reveal robust hierarchical modularity in the genomes of double-stranded DNA viruses. Some of the identified modules combine highly diverse viruses infecting bacteria, archaea, and eukaryotes, in support of previous hypotheses on direct evolutionary relationships between viruses from the three domains of cellular life. We formally identify a set of 14 viral hallmark genes that hold together the genomic network. Viruses and related mobile genetic elements are the dominant biological entities on earth, but their evolution is not sufficiently understood and their classification is not adequately developed. The key reason is the characteristic high rate of virus evolution that involves not only sequence change but also extensive gene loss, gain, and exchange. Therefore, in the study of virus evolution on a large scale, traditional phylogenetic approaches have limited applicability and have to be complemented by gene and genome network analyses. We applied state-of-the art methods of such analysis to reveal robust hierarchical modularity in the genomes of double-stranded DNA viruses. Some of the identified modules combine highly diverse viruses infecting bacteria, archaea, and eukaryotes, in support of previous hypotheses on direct evolutionary relationships between viruses from the three domains of cellular life. We formally identify a set of 14 viral hallmark genes that hold together the genomic network. Virus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution, gene and genome network analyses can complement traditional phylogenetics. We performed an exhaustive comparative analysis of the genomes of double-stranded DNA (dsDNA) viruses by using the bipartite network approach and found a robust hierarchical modularity in the dsDNA virosphere. Bipartite networks consist of two classes of nodes, with nodes in one class, in this case genomes, being connected via nodes of the second class, in this case genes. Such a network can be partitioned into modules that combine nodes from both classes. The bipartite network of dsDNA viruses includes 19 modules that form 5 major and 3 minor supermodules. Of these modules, 11 include tailed bacteriophages, reflecting the diversity of this largest group of viruses. The module analysis quantitatively validates and refines previously proposed nontrivial evolutionary relationships. An expansive supermodule combines the large and giant viruses of the putative order "Megavirales" with diverse moderate-sized viruses and related mobile elements. All viruses in this supermodule share a distinct morphogenetic tool kit with a double jelly roll major capsid protein. Herpesviruses and tailed bacteriophages comprise another supermodule, held together by a distinct set of morphogenetic proteins centered on the HK97-like major capsid protein. Together, these two supermodules cover the great majority of currently known dsDNA viruses. We formally identify a set of 14 viral hallmark genes that comprise the hubs of the network and account for most of the intermodule connections. IMPORTANCE: Viruses and related mobile genetic elements are the dominant biological entities on earth, but their evolution is not sufficiently understood and their classification is not adequately developed. The key reason is the characteristic high rate of virus evolution that involves not only sequence change but also extensive gene loss, gain, and exchange. Therefore, in the study of virus evolution on a large scale, traditional phylogenetic approaches have limited applicability and have to be complemented by gene and genome network analyses. We applied state-of-the art methods of such analysis to reveal robust hierarchical modularity in the genomes of double-stranded DNA viruses. Some of the identified modules combine highly diverse viruses infecting bacteria, archaea, and eukaryotes, in support of previous hypotheses on direct evolutionary relationships between viruses from the three domains of cellular life. We formally identify a set of 14 viral hallmark genes that hold together the genomic network. Virus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution, gene and genome network analyses can complement traditional phylogenetics. We performed an exhaustive comparative analysis of the genomes of double-stranded DNA (dsDNA) viruses by using the bipartite network approach and found a robust hierarchical modularity in the dsDNA virosphere. Bipartite networks consist of two classes of nodes, with nodes in one class, in this case genomes, being connected via nodes of the second class, in this case genes. Such a network can be partitioned into modules that combine nodes from both classes. The bipartite network of dsDNA viruses includes 19 modules that form 5 major and 3 minor supermodules. Of these modules, 11 include tailed bacteriophages, reflecting the diversity of this largest group of viruses. The module analysis quantitatively validates and refines previously proposed nontrivial evolutionary relationships. An expansive supermodule combines the large and giant viruses of the putative order "Megavirales" with diverse moderate-sized viruses and related mobile elements. All viruses in this supermodule share a distinct morphogenetic tool kit with a double jelly roll major capsid protein. Herpesviruses and tailed bacteriophages comprise another supermodule, held together by a distinct set of morphogenetic proteins centered on the HK97-like major capsid protein. Together, these two supermodules cover the great majority of currently known dsDNA viruses. We formally identify a set of 14 viral hallmark genes that comprise the hubs of the network and account for most of the intermodule connections.UNLABELLEDVirus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution, gene and genome network analyses can complement traditional phylogenetics. We performed an exhaustive comparative analysis of the genomes of double-stranded DNA (dsDNA) viruses by using the bipartite network approach and found a robust hierarchical modularity in the dsDNA virosphere. Bipartite networks consist of two classes of nodes, with nodes in one class, in this case genomes, being connected via nodes of the second class, in this case genes. Such a network can be partitioned into modules that combine nodes from both classes. The bipartite network of dsDNA viruses includes 19 modules that form 5 major and 3 minor supermodules. Of these modules, 11 include tailed bacteriophages, reflecting the diversity of this largest group of viruses. The module analysis quantitatively validates and refines previously proposed nontrivial evolutionary relationships. An expansive supermodule combines the large and giant viruses of the putative order "Megavirales" with diverse moderate-sized viruses and related mobile elements. All viruses in this supermodule share a distinct morphogenetic tool kit with a double jelly roll major capsid protein. Herpesviruses and tailed bacteriophages comprise another supermodule, held together by a distinct set of morphogenetic proteins centered on the HK97-like major capsid protein. Together, these two supermodules cover the great majority of currently known dsDNA viruses. We formally identify a set of 14 viral hallmark genes that comprise the hubs of the network and account for most of the intermodule connections.Viruses and related mobile genetic elements are the dominant biological entities on earth, but their evolution is not sufficiently understood and their classification is not adequately developed. The key reason is the characteristic high rate of virus evolution that involves not only sequence change but also extensive gene loss, gain, and exchange. Therefore, in the study of virus evolution on a large scale, traditional phylogenetic approaches have limited applicability and have to be complemented by gene and genome network analyses. We applied state-of-the art methods of such analysis to reveal robust hierarchical modularity in the genomes of double-stranded DNA viruses. Some of the identified modules combine highly diverse viruses infecting bacteria, archaea, and eukaryotes, in support of previous hypotheses on direct evolutionary relationships between viruses from the three domains of cellular life. We formally identify a set of 14 viral hallmark genes that hold together the genomic network.IMPORTANCEViruses and related mobile genetic elements are the dominant biological entities on earth, but their evolution is not sufficiently understood and their classification is not adequately developed. The key reason is the characteristic high rate of virus evolution that involves not only sequence change but also extensive gene loss, gain, and exchange. Therefore, in the study of virus evolution on a large scale, traditional phylogenetic approaches have limited applicability and have to be complemented by gene and genome network analyses. We applied state-of-the art methods of such analysis to reveal robust hierarchical modularity in the genomes of double-stranded DNA viruses. Some of the identified modules combine highly diverse viruses infecting bacteria, archaea, and eukaryotes, in support of previous hypotheses on direct evolutionary relationships between viruses from the three domains of cellular life. We formally identify a set of 14 viral hallmark genes that hold together the genomic network. ABSTRACT Virus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution, gene and genome network analyses can complement traditional phylogenetics. We performed an exhaustive comparative analysis of the genomes of double-stranded DNA (dsDNA) viruses by using the bipartite network approach and found a robust hierarchical modularity in the dsDNA virosphere. Bipartite networks consist of two classes of nodes, with nodes in one class, in this case genomes, being connected via nodes of the second class, in this case genes. Such a network can be partitioned into modules that combine nodes from both classes. The bipartite network of dsDNA viruses includes 19 modules that form 5 major and 3 minor supermodules. Of these modules, 11 include tailed bacteriophages, reflecting the diversity of this largest group of viruses. The module analysis quantitatively validates and refines previously proposed nontrivial evolutionary relationships. An expansive supermodule combines the large and giant viruses of the putative order “Megavirales” with diverse moderate-sized viruses and related mobile elements. All viruses in this supermodule share a distinct morphogenetic tool kit with a double jelly roll major capsid protein. Herpesviruses and tailed bacteriophages comprise another supermodule, held together by a distinct set of morphogenetic proteins centered on the HK97-like major capsid protein. Together, these two supermodules cover the great majority of currently known dsDNA viruses. We formally identify a set of 14 viral hallmark genes that comprise the hubs of the network and account for most of the intermodule connections. IMPORTANCE Viruses and related mobile genetic elements are the dominant biological entities on earth, but their evolution is not sufficiently understood and their classification is not adequately developed. The key reason is the characteristic high rate of virus evolution that involves not only sequence change but also extensive gene loss, gain, and exchange. Therefore, in the study of virus evolution on a large scale, traditional phylogenetic approaches have limited applicability and have to be complemented by gene and genome network analyses. We applied state-of-the art methods of such analysis to reveal robust hierarchical modularity in the genomes of double-stranded DNA viruses. Some of the identified modules combine highly diverse viruses infecting bacteria, archaea, and eukaryotes, in support of previous hypotheses on direct evolutionary relationships between viruses from the three domains of cellular life. We formally identify a set of 14 viral hallmark genes that hold together the genomic network. |
Author | Iranzo, Jaime Krupovic, Mart Koonin, Eugene V. |
Author_xml | – sequence: 1 givenname: Jaime surname: Iranzo fullname: Iranzo, Jaime organization: National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA – sequence: 2 givenname: Mart orcidid: 0000-0001-5486-0098 surname: Krupovic fullname: Krupovic, Mart organization: Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Paris, France – sequence: 3 givenname: Eugene V. orcidid: 0000-0003-3943-8299 surname: Koonin fullname: Koonin, Eugene V. organization: National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27486193$$D View this record in MEDLINE/PubMed https://pasteur.hal.science/pasteur-01977375$$DView record in HAL |
BookMark | eNp1kk1v1DAQhi1URNulR67IRy4pntiJnQvS0tJupaUcunC1_DHZuGTjxUmK-Pdku6XQSvhiy_POM_bMe0wOutghIW-AnQLk6v3mY4injFVSZVC-IEc5FCyTBcDB7lxClkNeHZKTvr9l0-IcFGevyGEuhSqh4kdktWqQnsfRtpjdDMl0Hj09v57TbyHFfttgQmp6aujn6MfWJLoImExyTXCmpdc4_IzpO401vcQO6U1jUujWr8nL2rQ9njzsM_L14tPqbJEtv1xenc2XmSsKOWSCS1Vb4bEubSFLZL6uRO5tXTGFivmKwRTCwrlcWlA1-lxIbhV3whteeT4jV3uuj-ZWb1PYmPRLRxP0_UVMa23SEFyLmoNlqnDAPThhJTeikLL0DAWizUucWB_2rO1oN-gddlM32ifQp5EuNHod77SoFMiprzOS7QHNs7TFfKm3ph9wTJpBJSWXxR1M-ncPBVP8MWI_6E3oHbat6TCOvQbFKiZKIcpJ-vbftz3S_4zxb203Da1PWD9KgOmdU_TOKfreKRp2QP5M78JghhB3Xwvtf7J-A-eHwXU |
CitedBy_id | crossref_primary_10_1128_mBio_02329_18 crossref_primary_10_1016_j_virol_2017_10_009 crossref_primary_10_3390_v11020195 crossref_primary_10_1093_ve_veab081 crossref_primary_10_1186_s40168_021_01017_w crossref_primary_10_3390_v12101130 crossref_primary_10_1098_rsta_2020_0422 crossref_primary_10_1016_j_cell_2017_10_045 crossref_primary_10_1038_nrmicro_2017_125 crossref_primary_10_3389_fmicb_2019_00134 crossref_primary_10_1007_s00705_023_05793_8 crossref_primary_10_1111_1462_2920_15219 crossref_primary_10_1111_1462_2920_14800 crossref_primary_10_3390_v13030506 crossref_primary_10_1093_ve_vex036 crossref_primary_10_1073_pnas_2018297118 crossref_primary_10_1128_spectrum_00559_23 crossref_primary_10_1038_s41579_019_0205_6 crossref_primary_10_1016_j_coviro_2017_07_011 crossref_primary_10_1093_gbe_evz041 crossref_primary_10_3389_fmicb_2022_858366 crossref_primary_10_1099_jgv_0_001110 crossref_primary_10_31857_S0134347524010018 crossref_primary_10_1016_j_virusres_2017_10_016 crossref_primary_10_1093_molbev_msy001 crossref_primary_10_1016_j_csbj_2020_06_019 crossref_primary_10_1080_19420889_2023_2196145 crossref_primary_10_1016_j_tim_2019_11_006 crossref_primary_10_3389_fmicb_2018_00793 crossref_primary_10_1038_s41467_023_43236_9 crossref_primary_10_1146_annurev_phyto_030320_041346 crossref_primary_10_1038_s41467_020_15507_2 crossref_primary_10_1134_S106307402401005X crossref_primary_10_1111_1462_2920_16120 crossref_primary_10_3389_fmicb_2017_02340 crossref_primary_10_3389_fmars_2023_1159754 crossref_primary_10_1038_s41396_018_0052_x crossref_primary_10_1007_s00705_018_3723_z crossref_primary_10_15252_embr_202255393 crossref_primary_10_1007_s00705_016_3173_4 crossref_primary_10_1128_microbiolspec_MTBP_0008_2016 crossref_primary_10_1038_s41587_019_0100_8 crossref_primary_10_1016_j_virusres_2017_10_020 crossref_primary_10_3390_v14102305 crossref_primary_10_1103_PhysRevE_102_042304 crossref_primary_10_1371_journal_pgen_1011595 crossref_primary_10_1128_JVI_02275_16 crossref_primary_10_1128_JVI_01622_16 crossref_primary_10_1128_mBio_01870_17 crossref_primary_10_3389_fmicb_2020_00450 crossref_primary_10_1099_mgen_0_000649 crossref_primary_10_1093_ve_veae088 crossref_primary_10_1016_j_coviro_2018_07_018 crossref_primary_10_1038_s41564_022_01144_6 crossref_primary_10_1093_nar_gkw975 crossref_primary_10_1371_journal_pone_0283930 crossref_primary_10_3389_fmicb_2021_632686 crossref_primary_10_3390_v15040868 crossref_primary_10_1038_s41579_019_0299_x crossref_primary_10_1128_JB_00363_18 crossref_primary_10_3390_genes11010094 crossref_primary_10_3389_fmicb_2024_1400700 crossref_primary_10_3390_biom13040584 crossref_primary_10_1111_1462_2920_14479 crossref_primary_10_1128_JVI_02406_16 crossref_primary_10_3389_fmicb_2017_01515 crossref_primary_10_1111_1462_2920_14564 crossref_primary_10_1103_PhysRevE_106_054305 crossref_primary_10_1093_bioinformatics_btx157 crossref_primary_10_1098_rsob_180069 crossref_primary_10_3390_v9090240 crossref_primary_10_1128_mmbr_00004_21 crossref_primary_10_1038_s41598_018_36433_w crossref_primary_10_1038_s41396_020_0653_z crossref_primary_10_3389_fmolb_2022_962799 crossref_primary_10_1093_gbe_evy209 crossref_primary_10_3390_v13061164 crossref_primary_10_1111_1462_2920_14604 crossref_primary_10_1038_s41598_019_47742_z crossref_primary_10_3389_fmicb_2021_657471 crossref_primary_10_1038_nature25474 crossref_primary_10_4014_jmb_2005_05040 crossref_primary_10_1186_s40168_018_0422_7 crossref_primary_10_3390_v10040187 crossref_primary_10_3389_fendo_2019_00784 crossref_primary_10_1126_sciadv_ado2631 crossref_primary_10_1007_s00705_022_05694_2 crossref_primary_10_1128_MMBR_00061_19 crossref_primary_10_1038_s41579_019_0311_5 crossref_primary_10_1038_s43705_023_00295_9 crossref_primary_10_3390_biom12081061 crossref_primary_10_1088_1402_4896_aaaba4 crossref_primary_10_1093_nar_gkac1220 crossref_primary_10_1038_s41540_017_0035_y crossref_primary_10_3390_v11050425 crossref_primary_10_1016_j_ijbiomac_2024_131054 crossref_primary_10_1093_sysbio_syz036 crossref_primary_10_3390_v15041007 crossref_primary_10_1128_mmbr_00086_23 crossref_primary_10_1016_j_virusres_2017_11_025 crossref_primary_10_1038_s41564_020_0709_x crossref_primary_10_7717_peerj_3243 crossref_primary_10_1128_mbio_00588_22 crossref_primary_10_3390_v13122341 crossref_primary_10_3390_biom13020289 crossref_primary_10_1128_JVI_00589_17 crossref_primary_10_3389_fmicb_2020_604048 crossref_primary_10_1186_s12985_018_0974_y crossref_primary_10_1089_ast_2017_1649 crossref_primary_10_1016_j_coviro_2017_06_008 crossref_primary_10_1016_j_cell_2022_12_006 crossref_primary_10_1073_pnas_1621061114 crossref_primary_10_1099_jgv_0_001009 crossref_primary_10_3389_fmicb_2020_596541 crossref_primary_10_3390_v15010001 crossref_primary_10_1128_MMBR_00053_21 crossref_primary_10_1038_s41564_019_0510_x crossref_primary_10_1038_s41579_020_0408_x crossref_primary_10_1080_19420889_2017_1296614 |
Cites_doi | 10.1016/j.str.2013.02.026 10.1007/s00239-007-9044-6 10.1146/annurev.micro.112408.134233 10.1016/j.coviro.2011.06.001 10.1186/1745-6150-9-6 10.7554/eLife.06416 10.1016/j.molcel.2005.03.013 10.1103/PhysRevE.72.056127 10.1093/nar/gkh340 10.1186/1743-422X-10-158 10.1016/j.coviro.2013.06.013 10.1038/nrg1272 10.1016/S0378-8733(96)00301-2 10.1016/j.tig.2013.05.007 10.1038/nrmicro1750 10.1159/000336562 10.1103/PhysRevE.76.066102 10.1103/PhysRevE.76.036102 10.1093/gbe/evt002 10.1016/j.virusres.2006.01.007 10.1007/s00705-008-0278-4 10.1073/pnas.1211371110 10.1038/nature02555 10.1093/nar/25.17.3389 10.1111/j.1749-6632.2009.04992.x 10.1038/nrmicro2030-c2 10.1093/bioinformatics/btl158 10.1371/journal.pcbi.1002024 10.1038/nature08060 10.1128/JVI.01663-10 10.1038/nrmicro3389 10.1186/s12915-015-0194-5 10.1093/nar/29.14.2994 10.1021/pr4002788 10.1186/s13062-015-0054-9 10.1186/s12915-015-0125-5 10.1038/nrmicro2033 10.1186/s12915-015-0207-4 10.1016/S0923-2508(03)00065-2 10.1016/S0092-8674(03)00276-9 10.1371/journal.pone.0126094 10.1093/bioinformatics/bti125 10.1093/nar/gkn668 10.1126/science.1068696 10.1016/S0923-2508(03)00068-8 10.1038/nature04160 10.1016/j.tim.2011.07.001 10.1128/MMBR.00049-13 10.1007/s00705-015-2728-0 10.1016/j.str.2015.07.015 10.1111/j.1749-6632.2009.04993.x 10.1038/srep01691 10.1016/j.coviro.2014.02.003 10.5772/1346 10.3390/life5010818 10.1016/j.jip.2009.03.013 10.1111/j.1365-2958.2009.06775.x 10.1038/21119 10.1016/j.tim.2009.11.003 10.1016/j.jip.2012.07.015 10.1016/j.plrev.2012.06.001 10.1128/MMBR.00011-11 10.1016/j.sbi.2005.10.012 10.1016/j.virol.2014.06.032 10.1016/j.virol.2007.03.047 10.1038/nrmicro1163 10.1016/j.coviro.2013.06.008 10.1159/000312913 10.1128/JB.01801-12 10.1128/JVI.02203-10 10.1371/journal.pcbi.1004343 10.1111/nyas.12710 10.1007/978-3-540-68618-7_7 10.1128/JVI.79.23.14967-14970.2005 10.1016/j.mib.2003.09.004 10.1186/1745-6150-1-29 10.1002/bies.200900145 10.1007/s00705-013-1970-6 10.1111/j.1600-0587.2013.00506.x 10.1016/j.tim.2015.12.003 10.1101/gr.115592.110 10.1093/gbe/evu168 10.1128/JVI.01489-10 10.1016/0378-8733(78)90021-7 10.1038/nature14447 10.1007/s11262-011-0589-5 10.1038/ncomms5268 10.1186/1743-422X-6-223 10.1016/j.virol.2015.02.039 10.1128/JVI.00522-06 10.1038/nrmicro2030-c1 10.1186/1471-2164-13-196 10.1016/j.mib.2011.07.027 10.1093/molbev/msn023 10.1038/35047129 10.1016/j.physrep.2009.11.002 10.1016/S0022-5193(87)80191-1 10.1110/ps.04726004 10.1073/pnas.0706851105 10.1128/JB.01311-10 10.1007/s00705-013-1768-6 |
ContentType | Journal Article |
Contributor | Maslov, Sergei Segall, Anca |
Contributor_xml | – sequence: 1 givenname: Sergei surname: Maslov fullname: Maslov, Sergei – sequence: 2 givenname: Anca surname: Segall fullname: Segall, Anca |
Copyright | Copyright © 2016 Iranzo et al. Distributed under a Creative Commons Attribution 4.0 International License Copyright © 2016 Iranzo et al. 2016 Iranzo et al. |
Copyright_xml | – notice: Copyright © 2016 Iranzo et al. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright © 2016 Iranzo et al. 2016 Iranzo et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM DOA |
DOI | 10.1128/mBio.00978-16 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Double-Stranded DNA Virus Network |
EISSN | 2150-7511 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_31b085c13d1c4b73a45776d0e4eeb26e PMC4981718 oai_HAL_pasteur_01977375v1 27486193 10_1128_mBio_00978_16 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GrantInformation_xml | – fundername: US Department of Health and Human Services grantid: Intramural funds |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAGFI AAUOK AAYXX ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CITATION DIK E3Z EBS EJD FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 O5R O5S O9- OK1 P2P PGMZT RHI RNS RPM RSF CGR CUY CVF ECM EIF M~E NPM RHF 7X8 1XC C1A VOOES 5PM |
ID | FETCH-LOGICAL-c557t-4378fb4def6b576e0df942dbf908e80d901ef6e5cc27b18fed2473b83c4da39d3 |
IEDL.DBID | M48 |
ISSN | 2161-2129 2150-7511 |
IngestDate | Wed Aug 27 01:14:29 EDT 2025 Thu Aug 21 18:17:25 EDT 2025 Fri Sep 12 12:55:25 EDT 2025 Thu Jul 10 22:43:47 EDT 2025 Wed Feb 19 02:31:35 EST 2025 Thu Apr 24 23:01:28 EDT 2025 Tue Jul 01 01:52:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Copyright © 2016 Iranzo et al. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c557t-4378fb4def6b576e0df942dbf908e80d901ef6e5cc27b18fed2473b83c4da39d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC4981718 This article is a direct contribution from a Fellow of the American Academy of Microbiology. External solicited reviewers: Sergei Maslov, University of Illinois-Urbana-Champagne; Anca Segall, San Diego State University. Editor Roger Hendrix, University of Pittsburgh |
ORCID | 0000-0003-3943-8299 0000-0001-5486-0098 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mBio.00978-16 |
PMID | 27486193 |
PQID | 1809046446 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_31b085c13d1c4b73a45776d0e4eeb26e pubmedcentral_primary_oai_pubmedcentral_nih_gov_4981718 hal_primary_oai_HAL_pasteur_01977375v1 proquest_miscellaneous_1809046446 pubmed_primary_27486193 crossref_primary_10_1128_mBio_00978_16 crossref_citationtrail_10_1128_mBio_00978_16 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160802 |
PublicationDateYYYYMMDD | 2016-08-02 |
PublicationDate_xml | – month: 8 year: 2016 text: 20160802 day: 2 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAlternate | mBio |
PublicationYear | 2016 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_96_2 e_1_3_3_50_2 e_1_3_3_77_2 e_1_3_3_16_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_58_2 e_1_3_3_35_2 e_1_3_3_92_2 e_1_3_3_54_2 e_1_3_3_73_2 e_1_3_3_61_2 e_1_3_3_88_2 King AMQ (e_1_3_3_31_2) 2011 e_1_3_3_5_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_23_2 e_1_3_3_69_2 e_1_3_3_46_2 e_1_3_3_80_2 e_1_3_3_65_2 e_1_3_3_84_2 e_1_3_3_101_2 e_1_3_3_76_2 e_1_3_3_99_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_91_2 e_1_3_3_11_2 e_1_3_3_30_2 Koonin EV (e_1_3_3_42_2) 2011 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_95_2 e_1_3_3_60_2 e_1_3_3_87_2 e_1_3_3_8_2 e_1_3_3_104_2 e_1_3_3_49_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 e_1_3_3_83_2 e_1_3_3_100_2 e_1_3_3_75_2 e_1_3_3_71_2 e_1_3_3_98_2 e_1_3_3_79_2 e_1_3_3_18_2 e_1_3_3_37_2 e_1_3_3_90_2 e_1_3_3_14_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_94_2 e_1_3_3_10_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_86_2 e_1_3_3_7_2 e_1_3_3_29_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_67_2 e_1_3_3_44_2 e_1_3_3_82_2 e_1_3_3_103_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_74_2 e_1_3_3_97_2 e_1_3_3_70_2 e_1_3_3_78_2 e_1_3_3_17_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_93_2 e_1_3_3_62_2 e_1_3_3_85_2 e_1_3_3_89_2 e_1_3_3_6_2 e_1_3_3_28_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_81_2 e_1_3_3_102_2 28451057 - Commun Integr Biol. 2017 Feb 23;10(2):e1296614 |
References_xml | – ident: e_1_3_3_71_2 doi: 10.1016/j.str.2013.02.026 – ident: e_1_3_3_12_2 doi: 10.1007/s00239-007-9044-6 – ident: e_1_3_3_74_2 doi: 10.1146/annurev.micro.112408.134233 – ident: e_1_3_3_51_2 doi: 10.1016/j.coviro.2011.06.001 – ident: e_1_3_3_61_2 doi: 10.1186/1745-6150-9-6 – ident: e_1_3_3_64_2 doi: 10.7554/eLife.06416 – ident: e_1_3_3_68_2 doi: 10.1016/j.molcel.2005.03.013 – ident: e_1_3_3_39_2 doi: 10.1103/PhysRevE.72.056127 – ident: e_1_3_3_94_2 doi: 10.1093/nar/gkh340 – ident: e_1_3_3_21_2 doi: 10.1186/1743-422X-10-158 – ident: e_1_3_3_16_2 doi: 10.1016/j.coviro.2013.06.013 – ident: e_1_3_3_40_2 doi: 10.1038/nrg1272 – ident: e_1_3_3_33_2 doi: 10.1016/S0378-8733(96)00301-2 – ident: e_1_3_3_25_2 doi: 10.1016/j.tig.2013.05.007 – ident: e_1_3_3_6_2 doi: 10.1038/nrmicro1750 – ident: e_1_3_3_56_2 doi: 10.1159/000336562 – ident: e_1_3_3_101_2 doi: 10.1103/PhysRevE.76.066102 – ident: e_1_3_3_102_2 doi: 10.1103/PhysRevE.76.036102 – ident: e_1_3_3_44_2 doi: 10.1093/gbe/evt002 – ident: e_1_3_3_54_2 doi: 10.1016/j.virusres.2006.01.007 – ident: e_1_3_3_67_2 doi: 10.1007/s00705-008-0278-4 – ident: e_1_3_3_24_2 doi: 10.1073/pnas.1211371110 – ident: e_1_3_3_76_2 doi: 10.1038/nature02555 – ident: e_1_3_3_91_2 doi: 10.1093/nar/25.17.3389 – ident: e_1_3_3_82_2 doi: 10.1111/j.1749-6632.2009.04992.x – ident: e_1_3_3_52_2 doi: 10.1038/nrmicro2030-c2 – ident: e_1_3_3_90_2 doi: 10.1093/bioinformatics/btl158 – ident: e_1_3_3_13_2 doi: 10.1371/journal.pcbi.1002024 – ident: e_1_3_3_4_2 doi: 10.1038/nature08060 – ident: e_1_3_3_85_2 doi: 10.1128/JVI.01663-10 – ident: e_1_3_3_22_2 doi: 10.1038/nrmicro3389 – ident: e_1_3_3_81_2 doi: 10.1186/s12915-015-0194-5 – ident: e_1_3_3_92_2 doi: 10.1093/nar/29.14.2994 – ident: e_1_3_3_78_2 doi: 10.1021/pr4002788 – ident: e_1_3_3_63_2 doi: 10.1186/s13062-015-0054-9 – ident: e_1_3_3_26_2 doi: 10.1186/s12915-015-0125-5 – ident: e_1_3_3_49_2 doi: 10.1038/nrmicro2033 – ident: e_1_3_3_62_2 doi: 10.1186/s12915-015-0207-4 – ident: e_1_3_3_47_2 doi: 10.1016/S0923-2508(03)00065-2 – ident: e_1_3_3_3_2 doi: 10.1016/S0092-8674(03)00276-9 – ident: e_1_3_3_83_2 doi: 10.1371/journal.pone.0126094 – ident: e_1_3_3_96_2 doi: 10.1093/bioinformatics/bti125 – ident: e_1_3_3_41_2 doi: 10.1093/nar/gkn668 – ident: e_1_3_3_75_2 doi: 10.1126/science.1068696 – ident: e_1_3_3_45_2 doi: 10.1016/S0923-2508(03)00068-8 – volume-title: The logic of chance: the nature and origin of biological evolution year: 2011 ident: e_1_3_3_42_2 – ident: e_1_3_3_5_2 doi: 10.1038/nature04160 – ident: e_1_3_3_23_2 doi: 10.1016/j.tim.2011.07.001 – ident: e_1_3_3_20_2 doi: 10.1128/MMBR.00049-13 – ident: e_1_3_3_87_2 doi: 10.1007/s00705-015-2728-0 – ident: e_1_3_3_72_2 doi: 10.1016/j.str.2015.07.015 – ident: e_1_3_3_15_2 doi: 10.1111/j.1749-6632.2009.04993.x – ident: e_1_3_3_77_2 doi: 10.1038/srep01691 – ident: e_1_3_3_86_2 doi: 10.1016/j.coviro.2014.02.003 – ident: e_1_3_3_58_2 doi: 10.5772/1346 – ident: e_1_3_3_100_2 doi: 10.3390/life5010818 – ident: e_1_3_3_59_2 doi: 10.1016/j.jip.2009.03.013 – ident: e_1_3_3_65_2 doi: 10.1111/j.1365-2958.2009.06775.x – ident: e_1_3_3_7_2 doi: 10.1038/21119 – ident: e_1_3_3_9_2 doi: 10.1016/j.tim.2009.11.003 – ident: e_1_3_3_60_2 doi: 10.1016/j.jip.2012.07.015 – ident: e_1_3_3_14_2 doi: 10.1016/j.plrev.2012.06.001 – ident: e_1_3_3_46_2 doi: 10.1128/MMBR.00011-11 – ident: e_1_3_3_48_2 doi: 10.1016/j.sbi.2005.10.012 – ident: e_1_3_3_38_2 doi: 10.1016/j.virol.2014.06.032 – ident: e_1_3_3_104_2 doi: 10.1016/j.virol.2007.03.047 – ident: e_1_3_3_2_2 doi: 10.1038/nrmicro1163 – ident: e_1_3_3_17_2 doi: 10.1016/j.coviro.2013.06.008 – ident: e_1_3_3_55_2 doi: 10.1159/000312913 – ident: e_1_3_3_10_2 doi: 10.1128/JB.01801-12 – ident: e_1_3_3_19_2 doi: 10.1128/JVI.02203-10 – ident: e_1_3_3_95_2 doi: 10.1371/journal.pcbi.1004343 – ident: e_1_3_3_89_2 doi: 10.1111/nyas.12710 – ident: e_1_3_3_66_2 doi: 10.1007/978-3-540-68618-7_7 – ident: e_1_3_3_84_2 doi: 10.1128/JVI.79.23.14967-14970.2005 – ident: e_1_3_3_8_2 doi: 10.1016/j.mib.2003.09.004 – ident: e_1_3_3_18_2 doi: 10.1186/1745-6150-1-29 – ident: e_1_3_3_34_2 doi: 10.1002/bies.200900145 – ident: e_1_3_3_70_2 doi: 10.1007/s00705-013-1970-6 – ident: e_1_3_3_103_2 doi: 10.1111/j.1600-0587.2013.00506.x – ident: e_1_3_3_27_2 doi: 10.1016/j.tim.2015.12.003 – ident: e_1_3_3_28_2 doi: 10.1101/gr.115592.110 – volume-title: Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses. year: 2011 ident: e_1_3_3_31_2 – ident: e_1_3_3_30_2 doi: 10.1093/gbe/evu168 – ident: e_1_3_3_50_2 doi: 10.1128/JVI.01489-10 – ident: e_1_3_3_73_2 doi: 10.1016/0378-8733(78)90021-7 – ident: e_1_3_3_80_2 doi: 10.1038/nature14447 – ident: e_1_3_3_99_2 doi: 10.1007/s11262-011-0589-5 – ident: e_1_3_3_79_2 doi: 10.1038/ncomms5268 – ident: e_1_3_3_37_2 doi: 10.1186/1743-422X-6-223 – ident: e_1_3_3_32_2 doi: 10.1016/j.virol.2015.02.039 – ident: e_1_3_3_97_2 doi: 10.1128/JVI.00522-06 – ident: e_1_3_3_53_2 doi: 10.1038/nrmicro2030-c1 – ident: e_1_3_3_43_2 doi: 10.1186/1471-2164-13-196 – ident: e_1_3_3_29_2 doi: 10.1016/j.mib.2011.07.027 – ident: e_1_3_3_88_2 doi: 10.1093/molbev/msn023 – ident: e_1_3_3_69_2 doi: 10.1038/35047129 – ident: e_1_3_3_35_2 doi: 10.1016/j.physrep.2009.11.002 – ident: e_1_3_3_11_2 doi: 10.1016/S0022-5193(87)80191-1 – ident: e_1_3_3_98_2 doi: 10.1110/ps.04726004 – ident: e_1_3_3_93_2 doi: 10.1073/pnas.0706851105 – ident: e_1_3_3_36_2 doi: 10.1128/JB.01311-10 – ident: e_1_3_3_57_2 doi: 10.1007/s00705-013-1768-6 – reference: 28451057 - Commun Integr Biol. 2017 Feb 23;10(2):e1296614 |
SSID | ssj0000331830 |
Score | 2.5008533 |
Snippet | Virus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution, gene and... ABSTRACT Virus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution,... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e00978 |
SubjectTerms | Archaea Archaea - virology Bacteria Bacteria - virology Computational Biology DNA DNA - genetics DNA Viruses DNA Viruses - classification DNA Viruses - genetics Eukaryota Eukaryota - virology Evolution, Molecular Genes, Viral Life Sciences Microbiology and Parasitology Sequence Homology Virology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBYlUOil9F23SVCh9NRtdldaSXt00gZTGp-SkpvQY0QMzm5I7EL-fWa0trFbSi-9roSk1Yw030ijbxj7GFNyAne-wqP5KCSpsasUFCag-ojoVYh0Dnk2VZML-f2yudxK9UUxYQM98DBxR6LyiApCJWIVpNfCyUZrFUuQgE6hAtp9y7bccqbyHixIV8s1qWZtjq6PZ_2X_GqhoNzmW0Yoc_WjabmiSMg_Yebv0ZJb5uf0GXu6wo18PIz3OXsE3Qv2eMgkef-SnaO4OYJhP4eCCGfpXJt_nY75zxmOgKgDgLs77vhZHynwlE9m9PI4J0KZ8-kQC877xImGmhOLM5q0V-zi9Nv5yaRYJUwoQtPoRSGFNsnLCEl59COgjKmVdfSpLQ2YMqLtxyJoQqg1yiZBrKUW3oggoxNtFK_ZXtd38JbxOopSiqCaYJR0PnqnKnCQoIW6iTKO2Of1DNqwYhOnpBZzm72K2liacJsn3FZqxD5tqt8MNBp_q3hM4thUIvbr_AF1wq50wv5LJ7A3FOZOG5PxD3vjcOEsby2iWq2Fbn5VI_ZhLW-Ly4ruSlwH_fLOEq0Z3fpKHNGbQf6b9tCRN-h3ihHTO5qx0-FuSTe7ytTdsjUVooF3_-Mv37MniN5Ujkas99ne4nYJB4iQFv4wL4YHXE4PhQ priority: 102 providerName: Directory of Open Access Journals |
Title | The Double-Stranded DNA Virosphere as a Modular Hierarchical Network of Gene Sharing |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27486193 https://www.proquest.com/docview/1809046446 https://pasteur.hal.science/pasteur-01977375 https://pubmed.ncbi.nlm.nih.gov/PMC4981718 https://doaj.org/article/31b085c13d1c4b73a45776d0e4eeb26e |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9QwELagCIkL4s3yqIyEOJESx47tHBDaAmWF6J66aG-WX2lXWpKyD0T_PTNOdukWeskhcWzLM_Z89oy_IeR1qGvLYeXLHJiPTKAaWyZjpj2oDw9O-oDnkMdjOZqIr9Ny-pdSqB_A5X-3dphParKYH_z-efEBJvz77gKMfvfjcNYepAsJGZM3ya3kKsIovh7pp0WZo_LmG5bNq38hJ7ASWiYH9CUDlXj8weycYZTkvxD0aiTlJdN0dI_c7TElHXZKcJ_ciM0DcrvLMnnxkJyAKlAAym4eMySjxTNv-mk8pN9n0AOkFYjULqmlx23AoFQ6muGt5JQkZU7HXZw4bWuKFNUUGZ7B3D0ik6PPJx9HWZ9MIfNlqVaZ4ErXToRYSwd7jJiHuhJFcHWV66jzALgAPsXS-0KB3OoYCqG409yLYHkV-GOy17RNfEpoEXguuJel11JYF5yVLNpYxyoWZRBhQN5uRtD4nmkcE17MTdpxFNrg2Js09obJAXmzLX7eUWxcV_AQxbEthMzY6UW7ODX9RDOcOUCRnvHAvHCKW1EqJUMeRYyukBFaA2Hu1DEafjPnFibVemEA8SrFVfmLDcirjbwNTDn0o9gmtuulQcoz9AgL6NGTTv7b-jZaNCBqRzN2Gtz90szOEq23qDQDpPDs2jqfkzsA12QKPyxekL3VYh1fAiRauf10lADPL1O2nxT_D0z6C3U |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Double-Stranded+DNA+Virosphere+as+a+Modular+Hierarchical+Network+of+Gene+Sharing&rft.jtitle=mBio&rft.au=Iranzo%2C+Jaime&rft.au=Krupovic%2C+Mart&rft.au=Koonin%2C+Eugene+V&rft.date=2016-08-02&rft.eissn=2150-7511&rft.volume=7&rft.issue=4&rft_id=info:doi/10.1128%2FmBio.00978-16&rft_id=info%3Apmid%2F27486193&rft.externalDocID=27486193 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon |