The Double-Stranded DNA Virosphere as a Modular Hierarchical Network of Gene Sharing

Virus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution, gene and genome network analyses can complement traditional phylogenetics. We performed an exhaustive comparative analysis of the genomes of double-s...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 7; no. 4; pp. e00978 - 16
Main Authors Iranzo, Jaime, Krupovic, Mart, Koonin, Eugene V.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 02.08.2016
Subjects
Online AccessGet full text
ISSN2161-2129
2150-7511
2150-7511
DOI10.1128/mBio.00978-16

Cover

Abstract Virus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution, gene and genome network analyses can complement traditional phylogenetics. We performed an exhaustive comparative analysis of the genomes of double-stranded DNA (dsDNA) viruses by using the bipartite network approach and found a robust hierarchical modularity in the dsDNA virosphere. Bipartite networks consist of two classes of nodes, with nodes in one class, in this case genomes, being connected via nodes of the second class, in this case genes. Such a network can be partitioned into modules that combine nodes from both classes. The bipartite network of dsDNA viruses includes 19 modules that form 5 major and 3 minor supermodules. Of these modules, 11 include tailed bacteriophages, reflecting the diversity of this largest group of viruses. The module analysis quantitatively validates and refines previously proposed nontrivial evolutionary relationships. An expansive supermodule combines the large and giant viruses of the putative order “Megavirales” with diverse moderate-sized viruses and related mobile elements. All viruses in this supermodule share a distinct morphogenetic tool kit with a double jelly roll major capsid protein. Herpesviruses and tailed bacteriophages comprise another supermodule, held together by a distinct set of morphogenetic proteins centered on the HK97-like major capsid protein. Together, these two supermodules cover the great majority of currently known dsDNA viruses. We formally identify a set of 14 viral hallmark genes that comprise the hubs of the network and account for most of the intermodule connections. IMPORTANCE Viruses and related mobile genetic elements are the dominant biological entities on earth, but their evolution is not sufficiently understood and their classification is not adequately developed. The key reason is the characteristic high rate of virus evolution that involves not only sequence change but also extensive gene loss, gain, and exchange. Therefore, in the study of virus evolution on a large scale, traditional phylogenetic approaches have limited applicability and have to be complemented by gene and genome network analyses. We applied state-of-the art methods of such analysis to reveal robust hierarchical modularity in the genomes of double-stranded DNA viruses. Some of the identified modules combine highly diverse viruses infecting bacteria, archaea, and eukaryotes, in support of previous hypotheses on direct evolutionary relationships between viruses from the three domains of cellular life. We formally identify a set of 14 viral hallmark genes that hold together the genomic network. Viruses and related mobile genetic elements are the dominant biological entities on earth, but their evolution is not sufficiently understood and their classification is not adequately developed. The key reason is the characteristic high rate of virus evolution that involves not only sequence change but also extensive gene loss, gain, and exchange. Therefore, in the study of virus evolution on a large scale, traditional phylogenetic approaches have limited applicability and have to be complemented by gene and genome network analyses. We applied state-of-the art methods of such analysis to reveal robust hierarchical modularity in the genomes of double-stranded DNA viruses. Some of the identified modules combine highly diverse viruses infecting bacteria, archaea, and eukaryotes, in support of previous hypotheses on direct evolutionary relationships between viruses from the three domains of cellular life. We formally identify a set of 14 viral hallmark genes that hold together the genomic network.
AbstractList Virus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution, gene and genome network analyses can complement traditional phylogenetics. We performed an exhaustive comparative analysis of the genomes of double-stranded DNA (dsDNA) viruses by using the bipartite network approach and found a robust hierarchical modularity in the dsDNA virosphere. Bipartite networks consist of two classes of nodes, with nodes in one class, in this case genomes, being connected via nodes of the second class, in this case genes. Such a network can be partitioned into modules that combine nodes from both classes. The bipartite network of dsDNA viruses includes 19 modules that form 5 major and 3 minor supermodules. Of these modules, 11 include tailed bacteriophages, reflecting the diversity of this largest group of viruses. The module analysis quantitatively validates and refines previously proposed nontrivial evolutionary relationships. An expansive supermodule combines the large and giant viruses of the putative order “Megavirales” with diverse moderate-sized viruses and related mobile elements. All viruses in this supermodule share a distinct morphogenetic tool kit with a double jelly roll major capsid protein. Herpesviruses and tailed bacteriophages comprise another supermodule, held together by a distinct set of morphogenetic proteins centered on the HK97-like major capsid protein. Together, these two supermodules cover the great majority of currently known dsDNA viruses. We formally identify a set of 14 viral hallmark genes that comprise the hubs of the network and account for most of the intermodule connections. Viruses and related mobile genetic elements are the dominant biological entities on earth, but their evolution is not sufficiently understood and their classification is not adequately developed. The key reason is the characteristic high rate of virus evolution that involves not only sequence change but also extensive gene loss, gain, and exchange. Therefore, in the study of virus evolution on a large scale, traditional phylogenetic approaches have limited applicability and have to be complemented by gene and genome network analyses. We applied state-of-the art methods of such analysis to reveal robust hierarchical modularity in the genomes of double-stranded DNA viruses. Some of the identified modules combine highly diverse viruses infecting bacteria, archaea, and eukaryotes, in support of previous hypotheses on direct evolutionary relationships between viruses from the three domains of cellular life. We formally identify a set of 14 viral hallmark genes that hold together the genomic network.
Virus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution, gene and genome network analyses can complement traditional phylogenetics. We performed an exhaustive comparative analysis of the genomes of double-stranded DNA (dsDNA) viruses by using the bipartite network approach and found a robust hierarchical modularity in the dsDNA virosphere. Bipartite networks consist of two classes of nodes, with nodes in one class, in this case genomes, being connected via nodes of the second class, in this case genes. Such a network can be partitioned into modules that combine nodes from both classes. The bipartite network of dsDNA viruses includes 19 modules that form 5 major and 3 minor supermodules. Of these modules, 11 include tailed bacteriophages, reflecting the diversity of this largest group of viruses. The module analysis quantitatively validates and refines previously proposed nontrivial evolutionary relationships. An expansive supermodule combines the large and giant viruses of the putative order “Megavirales” with diverse moderate-sized viruses and related mobile elements. All viruses in this supermodule share a distinct morphogenetic tool kit with a double jelly roll major capsid protein. Herpesviruses and tailed bacteriophages comprise another supermodule, held together by a distinct set of morphogenetic proteins centered on the HK97-like major capsid protein. Together, these two supermodules cover the great majority of currently known dsDNA viruses. We formally identify a set of 14 viral hallmark genes that comprise the hubs of the network and account for most of the intermodule connections. IMPORTANCE Viruses and related mobile genetic elements are the dominant biological entities on earth, but their evolution is not sufficiently understood and their classification is not adequately developed. The key reason is the characteristic high rate of virus evolution that involves not only sequence change but also extensive gene loss, gain, and exchange. Therefore, in the study of virus evolution on a large scale, traditional phylogenetic approaches have limited applicability and have to be complemented by gene and genome network analyses. We applied state-of-the art methods of such analysis to reveal robust hierarchical modularity in the genomes of double-stranded DNA viruses. Some of the identified modules combine highly diverse viruses infecting bacteria, archaea, and eukaryotes, in support of previous hypotheses on direct evolutionary relationships between viruses from the three domains of cellular life. We formally identify a set of 14 viral hallmark genes that hold together the genomic network. Viruses and related mobile genetic elements are the dominant biological entities on earth, but their evolution is not sufficiently understood and their classification is not adequately developed. The key reason is the characteristic high rate of virus evolution that involves not only sequence change but also extensive gene loss, gain, and exchange. Therefore, in the study of virus evolution on a large scale, traditional phylogenetic approaches have limited applicability and have to be complemented by gene and genome network analyses. We applied state-of-the art methods of such analysis to reveal robust hierarchical modularity in the genomes of double-stranded DNA viruses. Some of the identified modules combine highly diverse viruses infecting bacteria, archaea, and eukaryotes, in support of previous hypotheses on direct evolutionary relationships between viruses from the three domains of cellular life. We formally identify a set of 14 viral hallmark genes that hold together the genomic network.
Virus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution, gene and genome network analyses can complement traditional phylogenetics. We performed an exhaustive comparative analysis of the genomes of double-stranded DNA (dsDNA) viruses by using the bipartite network approach and found a robust hierarchical modularity in the dsDNA virosphere. Bipartite networks consist of two classes of nodes, with nodes in one class, in this case genomes, being connected via nodes of the second class, in this case genes. Such a network can be partitioned into modules that combine nodes from both classes. The bipartite network of dsDNA viruses includes 19 modules that form 5 major and 3 minor supermodules. Of these modules, 11 include tailed bacteriophages, reflecting the diversity of this largest group of viruses. The module analysis quantitatively validates and refines previously proposed nontrivial evolutionary relationships. An expansive supermodule combines the large and giant viruses of the putative order "Megavirales" with diverse moderate-sized viruses and related mobile elements. All viruses in this supermodule share a distinct morphogenetic tool kit with a double jelly roll major capsid protein. Herpesviruses and tailed bacteriophages comprise another supermodule, held together by a distinct set of morphogenetic proteins centered on the HK97-like major capsid protein. Together, these two supermodules cover the great majority of currently known dsDNA viruses. We formally identify a set of 14 viral hallmark genes that comprise the hubs of the network and account for most of the intermodule connections. IMPORTANCE: Viruses and related mobile genetic elements are the dominant biological entities on earth, but their evolution is not sufficiently understood and their classification is not adequately developed. The key reason is the characteristic high rate of virus evolution that involves not only sequence change but also extensive gene loss, gain, and exchange. Therefore, in the study of virus evolution on a large scale, traditional phylogenetic approaches have limited applicability and have to be complemented by gene and genome network analyses. We applied state-of-the art methods of such analysis to reveal robust hierarchical modularity in the genomes of double-stranded DNA viruses. Some of the identified modules combine highly diverse viruses infecting bacteria, archaea, and eukaryotes, in support of previous hypotheses on direct evolutionary relationships between viruses from the three domains of cellular life. We formally identify a set of 14 viral hallmark genes that hold together the genomic network.
Virus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution, gene and genome network analyses can complement traditional phylogenetics. We performed an exhaustive comparative analysis of the genomes of double-stranded DNA (dsDNA) viruses by using the bipartite network approach and found a robust hierarchical modularity in the dsDNA virosphere. Bipartite networks consist of two classes of nodes, with nodes in one class, in this case genomes, being connected via nodes of the second class, in this case genes. Such a network can be partitioned into modules that combine nodes from both classes. The bipartite network of dsDNA viruses includes 19 modules that form 5 major and 3 minor supermodules. Of these modules, 11 include tailed bacteriophages, reflecting the diversity of this largest group of viruses. The module analysis quantitatively validates and refines previously proposed nontrivial evolutionary relationships. An expansive supermodule combines the large and giant viruses of the putative order "Megavirales" with diverse moderate-sized viruses and related mobile elements. All viruses in this supermodule share a distinct morphogenetic tool kit with a double jelly roll major capsid protein. Herpesviruses and tailed bacteriophages comprise another supermodule, held together by a distinct set of morphogenetic proteins centered on the HK97-like major capsid protein. Together, these two supermodules cover the great majority of currently known dsDNA viruses. We formally identify a set of 14 viral hallmark genes that comprise the hubs of the network and account for most of the intermodule connections.UNLABELLEDVirus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution, gene and genome network analyses can complement traditional phylogenetics. We performed an exhaustive comparative analysis of the genomes of double-stranded DNA (dsDNA) viruses by using the bipartite network approach and found a robust hierarchical modularity in the dsDNA virosphere. Bipartite networks consist of two classes of nodes, with nodes in one class, in this case genomes, being connected via nodes of the second class, in this case genes. Such a network can be partitioned into modules that combine nodes from both classes. The bipartite network of dsDNA viruses includes 19 modules that form 5 major and 3 minor supermodules. Of these modules, 11 include tailed bacteriophages, reflecting the diversity of this largest group of viruses. The module analysis quantitatively validates and refines previously proposed nontrivial evolutionary relationships. An expansive supermodule combines the large and giant viruses of the putative order "Megavirales" with diverse moderate-sized viruses and related mobile elements. All viruses in this supermodule share a distinct morphogenetic tool kit with a double jelly roll major capsid protein. Herpesviruses and tailed bacteriophages comprise another supermodule, held together by a distinct set of morphogenetic proteins centered on the HK97-like major capsid protein. Together, these two supermodules cover the great majority of currently known dsDNA viruses. We formally identify a set of 14 viral hallmark genes that comprise the hubs of the network and account for most of the intermodule connections.Viruses and related mobile genetic elements are the dominant biological entities on earth, but their evolution is not sufficiently understood and their classification is not adequately developed. The key reason is the characteristic high rate of virus evolution that involves not only sequence change but also extensive gene loss, gain, and exchange. Therefore, in the study of virus evolution on a large scale, traditional phylogenetic approaches have limited applicability and have to be complemented by gene and genome network analyses. We applied state-of-the art methods of such analysis to reveal robust hierarchical modularity in the genomes of double-stranded DNA viruses. Some of the identified modules combine highly diverse viruses infecting bacteria, archaea, and eukaryotes, in support of previous hypotheses on direct evolutionary relationships between viruses from the three domains of cellular life. We formally identify a set of 14 viral hallmark genes that hold together the genomic network.IMPORTANCEViruses and related mobile genetic elements are the dominant biological entities on earth, but their evolution is not sufficiently understood and their classification is not adequately developed. The key reason is the characteristic high rate of virus evolution that involves not only sequence change but also extensive gene loss, gain, and exchange. Therefore, in the study of virus evolution on a large scale, traditional phylogenetic approaches have limited applicability and have to be complemented by gene and genome network analyses. We applied state-of-the art methods of such analysis to reveal robust hierarchical modularity in the genomes of double-stranded DNA viruses. Some of the identified modules combine highly diverse viruses infecting bacteria, archaea, and eukaryotes, in support of previous hypotheses on direct evolutionary relationships between viruses from the three domains of cellular life. We formally identify a set of 14 viral hallmark genes that hold together the genomic network.
ABSTRACT Virus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution, gene and genome network analyses can complement traditional phylogenetics. We performed an exhaustive comparative analysis of the genomes of double-stranded DNA (dsDNA) viruses by using the bipartite network approach and found a robust hierarchical modularity in the dsDNA virosphere. Bipartite networks consist of two classes of nodes, with nodes in one class, in this case genomes, being connected via nodes of the second class, in this case genes. Such a network can be partitioned into modules that combine nodes from both classes. The bipartite network of dsDNA viruses includes 19 modules that form 5 major and 3 minor supermodules. Of these modules, 11 include tailed bacteriophages, reflecting the diversity of this largest group of viruses. The module analysis quantitatively validates and refines previously proposed nontrivial evolutionary relationships. An expansive supermodule combines the large and giant viruses of the putative order “Megavirales” with diverse moderate-sized viruses and related mobile elements. All viruses in this supermodule share a distinct morphogenetic tool kit with a double jelly roll major capsid protein. Herpesviruses and tailed bacteriophages comprise another supermodule, held together by a distinct set of morphogenetic proteins centered on the HK97-like major capsid protein. Together, these two supermodules cover the great majority of currently known dsDNA viruses. We formally identify a set of 14 viral hallmark genes that comprise the hubs of the network and account for most of the intermodule connections. IMPORTANCE Viruses and related mobile genetic elements are the dominant biological entities on earth, but their evolution is not sufficiently understood and their classification is not adequately developed. The key reason is the characteristic high rate of virus evolution that involves not only sequence change but also extensive gene loss, gain, and exchange. Therefore, in the study of virus evolution on a large scale, traditional phylogenetic approaches have limited applicability and have to be complemented by gene and genome network analyses. We applied state-of-the art methods of such analysis to reveal robust hierarchical modularity in the genomes of double-stranded DNA viruses. Some of the identified modules combine highly diverse viruses infecting bacteria, archaea, and eukaryotes, in support of previous hypotheses on direct evolutionary relationships between viruses from the three domains of cellular life. We formally identify a set of 14 viral hallmark genes that hold together the genomic network.
Author Iranzo, Jaime
Krupovic, Mart
Koonin, Eugene V.
Author_xml – sequence: 1
  givenname: Jaime
  surname: Iranzo
  fullname: Iranzo, Jaime
  organization: National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
– sequence: 2
  givenname: Mart
  orcidid: 0000-0001-5486-0098
  surname: Krupovic
  fullname: Krupovic, Mart
  organization: Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Paris, France
– sequence: 3
  givenname: Eugene V.
  orcidid: 0000-0003-3943-8299
  surname: Koonin
  fullname: Koonin, Eugene V.
  organization: National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27486193$$D View this record in MEDLINE/PubMed
https://pasteur.hal.science/pasteur-01977375$$DView record in HAL
BookMark eNp1kk1v1DAQhi1URNulR67IRy4pntiJnQvS0tJupaUcunC1_DHZuGTjxUmK-Pdku6XQSvhiy_POM_bMe0wOutghIW-AnQLk6v3mY4injFVSZVC-IEc5FCyTBcDB7lxClkNeHZKTvr9l0-IcFGevyGEuhSqh4kdktWqQnsfRtpjdDMl0Hj09v57TbyHFfttgQmp6aujn6MfWJLoImExyTXCmpdc4_IzpO401vcQO6U1jUujWr8nL2rQ9njzsM_L14tPqbJEtv1xenc2XmSsKOWSCS1Vb4bEubSFLZL6uRO5tXTGFivmKwRTCwrlcWlA1-lxIbhV3whteeT4jV3uuj-ZWb1PYmPRLRxP0_UVMa23SEFyLmoNlqnDAPThhJTeikLL0DAWizUucWB_2rO1oN-gddlM32ifQp5EuNHod77SoFMiprzOS7QHNs7TFfKm3ph9wTJpBJSWXxR1M-ncPBVP8MWI_6E3oHbat6TCOvQbFKiZKIcpJ-vbftz3S_4zxb203Da1PWD9KgOmdU_TOKfreKRp2QP5M78JghhB3Xwvtf7J-A-eHwXU
CitedBy_id crossref_primary_10_1128_mBio_02329_18
crossref_primary_10_1016_j_virol_2017_10_009
crossref_primary_10_3390_v11020195
crossref_primary_10_1093_ve_veab081
crossref_primary_10_1186_s40168_021_01017_w
crossref_primary_10_3390_v12101130
crossref_primary_10_1098_rsta_2020_0422
crossref_primary_10_1016_j_cell_2017_10_045
crossref_primary_10_1038_nrmicro_2017_125
crossref_primary_10_3389_fmicb_2019_00134
crossref_primary_10_1007_s00705_023_05793_8
crossref_primary_10_1111_1462_2920_15219
crossref_primary_10_1111_1462_2920_14800
crossref_primary_10_3390_v13030506
crossref_primary_10_1093_ve_vex036
crossref_primary_10_1073_pnas_2018297118
crossref_primary_10_1128_spectrum_00559_23
crossref_primary_10_1038_s41579_019_0205_6
crossref_primary_10_1016_j_coviro_2017_07_011
crossref_primary_10_1093_gbe_evz041
crossref_primary_10_3389_fmicb_2022_858366
crossref_primary_10_1099_jgv_0_001110
crossref_primary_10_31857_S0134347524010018
crossref_primary_10_1016_j_virusres_2017_10_016
crossref_primary_10_1093_molbev_msy001
crossref_primary_10_1016_j_csbj_2020_06_019
crossref_primary_10_1080_19420889_2023_2196145
crossref_primary_10_1016_j_tim_2019_11_006
crossref_primary_10_3389_fmicb_2018_00793
crossref_primary_10_1038_s41467_023_43236_9
crossref_primary_10_1146_annurev_phyto_030320_041346
crossref_primary_10_1038_s41467_020_15507_2
crossref_primary_10_1134_S106307402401005X
crossref_primary_10_1111_1462_2920_16120
crossref_primary_10_3389_fmicb_2017_02340
crossref_primary_10_3389_fmars_2023_1159754
crossref_primary_10_1038_s41396_018_0052_x
crossref_primary_10_1007_s00705_018_3723_z
crossref_primary_10_15252_embr_202255393
crossref_primary_10_1007_s00705_016_3173_4
crossref_primary_10_1128_microbiolspec_MTBP_0008_2016
crossref_primary_10_1038_s41587_019_0100_8
crossref_primary_10_1016_j_virusres_2017_10_020
crossref_primary_10_3390_v14102305
crossref_primary_10_1103_PhysRevE_102_042304
crossref_primary_10_1371_journal_pgen_1011595
crossref_primary_10_1128_JVI_02275_16
crossref_primary_10_1128_JVI_01622_16
crossref_primary_10_1128_mBio_01870_17
crossref_primary_10_3389_fmicb_2020_00450
crossref_primary_10_1099_mgen_0_000649
crossref_primary_10_1093_ve_veae088
crossref_primary_10_1016_j_coviro_2018_07_018
crossref_primary_10_1038_s41564_022_01144_6
crossref_primary_10_1093_nar_gkw975
crossref_primary_10_1371_journal_pone_0283930
crossref_primary_10_3389_fmicb_2021_632686
crossref_primary_10_3390_v15040868
crossref_primary_10_1038_s41579_019_0299_x
crossref_primary_10_1128_JB_00363_18
crossref_primary_10_3390_genes11010094
crossref_primary_10_3389_fmicb_2024_1400700
crossref_primary_10_3390_biom13040584
crossref_primary_10_1111_1462_2920_14479
crossref_primary_10_1128_JVI_02406_16
crossref_primary_10_3389_fmicb_2017_01515
crossref_primary_10_1111_1462_2920_14564
crossref_primary_10_1103_PhysRevE_106_054305
crossref_primary_10_1093_bioinformatics_btx157
crossref_primary_10_1098_rsob_180069
crossref_primary_10_3390_v9090240
crossref_primary_10_1128_mmbr_00004_21
crossref_primary_10_1038_s41598_018_36433_w
crossref_primary_10_1038_s41396_020_0653_z
crossref_primary_10_3389_fmolb_2022_962799
crossref_primary_10_1093_gbe_evy209
crossref_primary_10_3390_v13061164
crossref_primary_10_1111_1462_2920_14604
crossref_primary_10_1038_s41598_019_47742_z
crossref_primary_10_3389_fmicb_2021_657471
crossref_primary_10_1038_nature25474
crossref_primary_10_4014_jmb_2005_05040
crossref_primary_10_1186_s40168_018_0422_7
crossref_primary_10_3390_v10040187
crossref_primary_10_3389_fendo_2019_00784
crossref_primary_10_1126_sciadv_ado2631
crossref_primary_10_1007_s00705_022_05694_2
crossref_primary_10_1128_MMBR_00061_19
crossref_primary_10_1038_s41579_019_0311_5
crossref_primary_10_1038_s43705_023_00295_9
crossref_primary_10_3390_biom12081061
crossref_primary_10_1088_1402_4896_aaaba4
crossref_primary_10_1093_nar_gkac1220
crossref_primary_10_1038_s41540_017_0035_y
crossref_primary_10_3390_v11050425
crossref_primary_10_1016_j_ijbiomac_2024_131054
crossref_primary_10_1093_sysbio_syz036
crossref_primary_10_3390_v15041007
crossref_primary_10_1128_mmbr_00086_23
crossref_primary_10_1016_j_virusres_2017_11_025
crossref_primary_10_1038_s41564_020_0709_x
crossref_primary_10_7717_peerj_3243
crossref_primary_10_1128_mbio_00588_22
crossref_primary_10_3390_v13122341
crossref_primary_10_3390_biom13020289
crossref_primary_10_1128_JVI_00589_17
crossref_primary_10_3389_fmicb_2020_604048
crossref_primary_10_1186_s12985_018_0974_y
crossref_primary_10_1089_ast_2017_1649
crossref_primary_10_1016_j_coviro_2017_06_008
crossref_primary_10_1016_j_cell_2022_12_006
crossref_primary_10_1073_pnas_1621061114
crossref_primary_10_1099_jgv_0_001009
crossref_primary_10_3389_fmicb_2020_596541
crossref_primary_10_3390_v15010001
crossref_primary_10_1128_MMBR_00053_21
crossref_primary_10_1038_s41564_019_0510_x
crossref_primary_10_1038_s41579_020_0408_x
crossref_primary_10_1080_19420889_2017_1296614
Cites_doi 10.1016/j.str.2013.02.026
10.1007/s00239-007-9044-6
10.1146/annurev.micro.112408.134233
10.1016/j.coviro.2011.06.001
10.1186/1745-6150-9-6
10.7554/eLife.06416
10.1016/j.molcel.2005.03.013
10.1103/PhysRevE.72.056127
10.1093/nar/gkh340
10.1186/1743-422X-10-158
10.1016/j.coviro.2013.06.013
10.1038/nrg1272
10.1016/S0378-8733(96)00301-2
10.1016/j.tig.2013.05.007
10.1038/nrmicro1750
10.1159/000336562
10.1103/PhysRevE.76.066102
10.1103/PhysRevE.76.036102
10.1093/gbe/evt002
10.1016/j.virusres.2006.01.007
10.1007/s00705-008-0278-4
10.1073/pnas.1211371110
10.1038/nature02555
10.1093/nar/25.17.3389
10.1111/j.1749-6632.2009.04992.x
10.1038/nrmicro2030-c2
10.1093/bioinformatics/btl158
10.1371/journal.pcbi.1002024
10.1038/nature08060
10.1128/JVI.01663-10
10.1038/nrmicro3389
10.1186/s12915-015-0194-5
10.1093/nar/29.14.2994
10.1021/pr4002788
10.1186/s13062-015-0054-9
10.1186/s12915-015-0125-5
10.1038/nrmicro2033
10.1186/s12915-015-0207-4
10.1016/S0923-2508(03)00065-2
10.1016/S0092-8674(03)00276-9
10.1371/journal.pone.0126094
10.1093/bioinformatics/bti125
10.1093/nar/gkn668
10.1126/science.1068696
10.1016/S0923-2508(03)00068-8
10.1038/nature04160
10.1016/j.tim.2011.07.001
10.1128/MMBR.00049-13
10.1007/s00705-015-2728-0
10.1016/j.str.2015.07.015
10.1111/j.1749-6632.2009.04993.x
10.1038/srep01691
10.1016/j.coviro.2014.02.003
10.5772/1346
10.3390/life5010818
10.1016/j.jip.2009.03.013
10.1111/j.1365-2958.2009.06775.x
10.1038/21119
10.1016/j.tim.2009.11.003
10.1016/j.jip.2012.07.015
10.1016/j.plrev.2012.06.001
10.1128/MMBR.00011-11
10.1016/j.sbi.2005.10.012
10.1016/j.virol.2014.06.032
10.1016/j.virol.2007.03.047
10.1038/nrmicro1163
10.1016/j.coviro.2013.06.008
10.1159/000312913
10.1128/JB.01801-12
10.1128/JVI.02203-10
10.1371/journal.pcbi.1004343
10.1111/nyas.12710
10.1007/978-3-540-68618-7_7
10.1128/JVI.79.23.14967-14970.2005
10.1016/j.mib.2003.09.004
10.1186/1745-6150-1-29
10.1002/bies.200900145
10.1007/s00705-013-1970-6
10.1111/j.1600-0587.2013.00506.x
10.1016/j.tim.2015.12.003
10.1101/gr.115592.110
10.1093/gbe/evu168
10.1128/JVI.01489-10
10.1016/0378-8733(78)90021-7
10.1038/nature14447
10.1007/s11262-011-0589-5
10.1038/ncomms5268
10.1186/1743-422X-6-223
10.1016/j.virol.2015.02.039
10.1128/JVI.00522-06
10.1038/nrmicro2030-c1
10.1186/1471-2164-13-196
10.1016/j.mib.2011.07.027
10.1093/molbev/msn023
10.1038/35047129
10.1016/j.physrep.2009.11.002
10.1016/S0022-5193(87)80191-1
10.1110/ps.04726004
10.1073/pnas.0706851105
10.1128/JB.01311-10
10.1007/s00705-013-1768-6
ContentType Journal Article
Contributor Maslov, Sergei
Segall, Anca
Contributor_xml – sequence: 1
  givenname: Sergei
  surname: Maslov
  fullname: Maslov, Sergei
– sequence: 2
  givenname: Anca
  surname: Segall
  fullname: Segall, Anca
Copyright Copyright © 2016 Iranzo et al.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2016 Iranzo et al. 2016 Iranzo et al.
Copyright_xml – notice: Copyright © 2016 Iranzo et al.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2016 Iranzo et al. 2016 Iranzo et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
DOA
DOI 10.1128/mBio.00978-16
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Double-Stranded DNA Virus Network
EISSN 2150-7511
EndPage 16
ExternalDocumentID oai_doaj_org_article_31b085c13d1c4b73a45776d0e4eeb26e
PMC4981718
oai_HAL_pasteur_01977375v1
27486193
10_1128_mBio_00978_16
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: US Department of Health and Human Services
  grantid: Intramural funds
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAGFI
AAUOK
AAYXX
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CITATION
DIK
E3Z
EBS
EJD
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
O5R
O5S
O9-
OK1
P2P
PGMZT
RHI
RNS
RPM
RSF
CGR
CUY
CVF
ECM
EIF
M~E
NPM
RHF
7X8
1XC
C1A
VOOES
5PM
ID FETCH-LOGICAL-c557t-4378fb4def6b576e0df942dbf908e80d901ef6e5cc27b18fed2473b83c4da39d3
IEDL.DBID M48
ISSN 2161-2129
2150-7511
IngestDate Wed Aug 27 01:14:29 EDT 2025
Thu Aug 21 18:17:25 EDT 2025
Fri Sep 12 12:55:25 EDT 2025
Thu Jul 10 22:43:47 EDT 2025
Wed Feb 19 02:31:35 EST 2025
Thu Apr 24 23:01:28 EDT 2025
Tue Jul 01 01:52:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Copyright © 2016 Iranzo et al.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c557t-4378fb4def6b576e0df942dbf908e80d901ef6e5cc27b18fed2473b83c4da39d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC4981718
This article is a direct contribution from a Fellow of the American Academy of Microbiology. External solicited reviewers: Sergei Maslov, University of Illinois-Urbana-Champagne; Anca Segall, San Diego State University.
Editor Roger Hendrix, University of Pittsburgh
ORCID 0000-0003-3943-8299
0000-0001-5486-0098
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mBio.00978-16
PMID 27486193
PQID 1809046446
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_31b085c13d1c4b73a45776d0e4eeb26e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4981718
hal_primary_oai_HAL_pasteur_01977375v1
proquest_miscellaneous_1809046446
pubmed_primary_27486193
crossref_primary_10_1128_mBio_00978_16
crossref_citationtrail_10_1128_mBio_00978_16
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160802
PublicationDateYYYYMMDD 2016-08-02
PublicationDate_xml – month: 8
  year: 2016
  text: 20160802
  day: 2
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAlternate mBio
PublicationYear 2016
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_96_2
e_1_3_3_50_2
e_1_3_3_77_2
e_1_3_3_16_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_58_2
e_1_3_3_35_2
e_1_3_3_92_2
e_1_3_3_54_2
e_1_3_3_73_2
e_1_3_3_61_2
e_1_3_3_88_2
King AMQ (e_1_3_3_31_2) 2011
e_1_3_3_5_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_23_2
e_1_3_3_69_2
e_1_3_3_46_2
e_1_3_3_80_2
e_1_3_3_65_2
e_1_3_3_84_2
e_1_3_3_101_2
e_1_3_3_76_2
e_1_3_3_99_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_91_2
e_1_3_3_11_2
e_1_3_3_30_2
Koonin EV (e_1_3_3_42_2) 2011
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_95_2
e_1_3_3_60_2
e_1_3_3_87_2
e_1_3_3_8_2
e_1_3_3_104_2
e_1_3_3_49_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
e_1_3_3_83_2
e_1_3_3_100_2
e_1_3_3_75_2
e_1_3_3_71_2
e_1_3_3_98_2
e_1_3_3_79_2
e_1_3_3_18_2
e_1_3_3_37_2
e_1_3_3_90_2
e_1_3_3_14_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_94_2
e_1_3_3_10_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_86_2
e_1_3_3_7_2
e_1_3_3_29_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_67_2
e_1_3_3_44_2
e_1_3_3_82_2
e_1_3_3_103_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_74_2
e_1_3_3_97_2
e_1_3_3_70_2
e_1_3_3_78_2
e_1_3_3_17_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_93_2
e_1_3_3_62_2
e_1_3_3_85_2
e_1_3_3_89_2
e_1_3_3_6_2
e_1_3_3_28_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_81_2
e_1_3_3_102_2
28451057 - Commun Integr Biol. 2017 Feb 23;10(2):e1296614
References_xml – ident: e_1_3_3_71_2
  doi: 10.1016/j.str.2013.02.026
– ident: e_1_3_3_12_2
  doi: 10.1007/s00239-007-9044-6
– ident: e_1_3_3_74_2
  doi: 10.1146/annurev.micro.112408.134233
– ident: e_1_3_3_51_2
  doi: 10.1016/j.coviro.2011.06.001
– ident: e_1_3_3_61_2
  doi: 10.1186/1745-6150-9-6
– ident: e_1_3_3_64_2
  doi: 10.7554/eLife.06416
– ident: e_1_3_3_68_2
  doi: 10.1016/j.molcel.2005.03.013
– ident: e_1_3_3_39_2
  doi: 10.1103/PhysRevE.72.056127
– ident: e_1_3_3_94_2
  doi: 10.1093/nar/gkh340
– ident: e_1_3_3_21_2
  doi: 10.1186/1743-422X-10-158
– ident: e_1_3_3_16_2
  doi: 10.1016/j.coviro.2013.06.013
– ident: e_1_3_3_40_2
  doi: 10.1038/nrg1272
– ident: e_1_3_3_33_2
  doi: 10.1016/S0378-8733(96)00301-2
– ident: e_1_3_3_25_2
  doi: 10.1016/j.tig.2013.05.007
– ident: e_1_3_3_6_2
  doi: 10.1038/nrmicro1750
– ident: e_1_3_3_56_2
  doi: 10.1159/000336562
– ident: e_1_3_3_101_2
  doi: 10.1103/PhysRevE.76.066102
– ident: e_1_3_3_102_2
  doi: 10.1103/PhysRevE.76.036102
– ident: e_1_3_3_44_2
  doi: 10.1093/gbe/evt002
– ident: e_1_3_3_54_2
  doi: 10.1016/j.virusres.2006.01.007
– ident: e_1_3_3_67_2
  doi: 10.1007/s00705-008-0278-4
– ident: e_1_3_3_24_2
  doi: 10.1073/pnas.1211371110
– ident: e_1_3_3_76_2
  doi: 10.1038/nature02555
– ident: e_1_3_3_91_2
  doi: 10.1093/nar/25.17.3389
– ident: e_1_3_3_82_2
  doi: 10.1111/j.1749-6632.2009.04992.x
– ident: e_1_3_3_52_2
  doi: 10.1038/nrmicro2030-c2
– ident: e_1_3_3_90_2
  doi: 10.1093/bioinformatics/btl158
– ident: e_1_3_3_13_2
  doi: 10.1371/journal.pcbi.1002024
– ident: e_1_3_3_4_2
  doi: 10.1038/nature08060
– ident: e_1_3_3_85_2
  doi: 10.1128/JVI.01663-10
– ident: e_1_3_3_22_2
  doi: 10.1038/nrmicro3389
– ident: e_1_3_3_81_2
  doi: 10.1186/s12915-015-0194-5
– ident: e_1_3_3_92_2
  doi: 10.1093/nar/29.14.2994
– ident: e_1_3_3_78_2
  doi: 10.1021/pr4002788
– ident: e_1_3_3_63_2
  doi: 10.1186/s13062-015-0054-9
– ident: e_1_3_3_26_2
  doi: 10.1186/s12915-015-0125-5
– ident: e_1_3_3_49_2
  doi: 10.1038/nrmicro2033
– ident: e_1_3_3_62_2
  doi: 10.1186/s12915-015-0207-4
– ident: e_1_3_3_47_2
  doi: 10.1016/S0923-2508(03)00065-2
– ident: e_1_3_3_3_2
  doi: 10.1016/S0092-8674(03)00276-9
– ident: e_1_3_3_83_2
  doi: 10.1371/journal.pone.0126094
– ident: e_1_3_3_96_2
  doi: 10.1093/bioinformatics/bti125
– ident: e_1_3_3_41_2
  doi: 10.1093/nar/gkn668
– ident: e_1_3_3_75_2
  doi: 10.1126/science.1068696
– ident: e_1_3_3_45_2
  doi: 10.1016/S0923-2508(03)00068-8
– volume-title: The logic of chance: the nature and origin of biological evolution
  year: 2011
  ident: e_1_3_3_42_2
– ident: e_1_3_3_5_2
  doi: 10.1038/nature04160
– ident: e_1_3_3_23_2
  doi: 10.1016/j.tim.2011.07.001
– ident: e_1_3_3_20_2
  doi: 10.1128/MMBR.00049-13
– ident: e_1_3_3_87_2
  doi: 10.1007/s00705-015-2728-0
– ident: e_1_3_3_72_2
  doi: 10.1016/j.str.2015.07.015
– ident: e_1_3_3_15_2
  doi: 10.1111/j.1749-6632.2009.04993.x
– ident: e_1_3_3_77_2
  doi: 10.1038/srep01691
– ident: e_1_3_3_86_2
  doi: 10.1016/j.coviro.2014.02.003
– ident: e_1_3_3_58_2
  doi: 10.5772/1346
– ident: e_1_3_3_100_2
  doi: 10.3390/life5010818
– ident: e_1_3_3_59_2
  doi: 10.1016/j.jip.2009.03.013
– ident: e_1_3_3_65_2
  doi: 10.1111/j.1365-2958.2009.06775.x
– ident: e_1_3_3_7_2
  doi: 10.1038/21119
– ident: e_1_3_3_9_2
  doi: 10.1016/j.tim.2009.11.003
– ident: e_1_3_3_60_2
  doi: 10.1016/j.jip.2012.07.015
– ident: e_1_3_3_14_2
  doi: 10.1016/j.plrev.2012.06.001
– ident: e_1_3_3_46_2
  doi: 10.1128/MMBR.00011-11
– ident: e_1_3_3_48_2
  doi: 10.1016/j.sbi.2005.10.012
– ident: e_1_3_3_38_2
  doi: 10.1016/j.virol.2014.06.032
– ident: e_1_3_3_104_2
  doi: 10.1016/j.virol.2007.03.047
– ident: e_1_3_3_2_2
  doi: 10.1038/nrmicro1163
– ident: e_1_3_3_17_2
  doi: 10.1016/j.coviro.2013.06.008
– ident: e_1_3_3_55_2
  doi: 10.1159/000312913
– ident: e_1_3_3_10_2
  doi: 10.1128/JB.01801-12
– ident: e_1_3_3_19_2
  doi: 10.1128/JVI.02203-10
– ident: e_1_3_3_95_2
  doi: 10.1371/journal.pcbi.1004343
– ident: e_1_3_3_89_2
  doi: 10.1111/nyas.12710
– ident: e_1_3_3_66_2
  doi: 10.1007/978-3-540-68618-7_7
– ident: e_1_3_3_84_2
  doi: 10.1128/JVI.79.23.14967-14970.2005
– ident: e_1_3_3_8_2
  doi: 10.1016/j.mib.2003.09.004
– ident: e_1_3_3_18_2
  doi: 10.1186/1745-6150-1-29
– ident: e_1_3_3_34_2
  doi: 10.1002/bies.200900145
– ident: e_1_3_3_70_2
  doi: 10.1007/s00705-013-1970-6
– ident: e_1_3_3_103_2
  doi: 10.1111/j.1600-0587.2013.00506.x
– ident: e_1_3_3_27_2
  doi: 10.1016/j.tim.2015.12.003
– ident: e_1_3_3_28_2
  doi: 10.1101/gr.115592.110
– volume-title: Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses.
  year: 2011
  ident: e_1_3_3_31_2
– ident: e_1_3_3_30_2
  doi: 10.1093/gbe/evu168
– ident: e_1_3_3_50_2
  doi: 10.1128/JVI.01489-10
– ident: e_1_3_3_73_2
  doi: 10.1016/0378-8733(78)90021-7
– ident: e_1_3_3_80_2
  doi: 10.1038/nature14447
– ident: e_1_3_3_99_2
  doi: 10.1007/s11262-011-0589-5
– ident: e_1_3_3_79_2
  doi: 10.1038/ncomms5268
– ident: e_1_3_3_37_2
  doi: 10.1186/1743-422X-6-223
– ident: e_1_3_3_32_2
  doi: 10.1016/j.virol.2015.02.039
– ident: e_1_3_3_97_2
  doi: 10.1128/JVI.00522-06
– ident: e_1_3_3_53_2
  doi: 10.1038/nrmicro2030-c1
– ident: e_1_3_3_43_2
  doi: 10.1186/1471-2164-13-196
– ident: e_1_3_3_29_2
  doi: 10.1016/j.mib.2011.07.027
– ident: e_1_3_3_88_2
  doi: 10.1093/molbev/msn023
– ident: e_1_3_3_69_2
  doi: 10.1038/35047129
– ident: e_1_3_3_35_2
  doi: 10.1016/j.physrep.2009.11.002
– ident: e_1_3_3_11_2
  doi: 10.1016/S0022-5193(87)80191-1
– ident: e_1_3_3_98_2
  doi: 10.1110/ps.04726004
– ident: e_1_3_3_93_2
  doi: 10.1073/pnas.0706851105
– ident: e_1_3_3_36_2
  doi: 10.1128/JB.01311-10
– ident: e_1_3_3_57_2
  doi: 10.1007/s00705-013-1768-6
– reference: 28451057 - Commun Integr Biol. 2017 Feb 23;10(2):e1296614
SSID ssj0000331830
Score 2.5008533
Snippet Virus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution, gene and...
ABSTRACT Virus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution,...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e00978
SubjectTerms Archaea
Archaea - virology
Bacteria
Bacteria - virology
Computational Biology
DNA
DNA - genetics
DNA Viruses
DNA Viruses - classification
DNA Viruses - genetics
Eukaryota
Eukaryota - virology
Evolution, Molecular
Genes, Viral
Life Sciences
Microbiology and Parasitology
Sequence Homology
Virology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBYlUOil9F23SVCh9NRtdldaSXt00gZTGp-SkpvQY0QMzm5I7EL-fWa0trFbSi-9roSk1Yw030ijbxj7GFNyAne-wqP5KCSpsasUFCag-ojoVYh0Dnk2VZML-f2yudxK9UUxYQM98DBxR6LyiApCJWIVpNfCyUZrFUuQgE6hAtp9y7bccqbyHixIV8s1qWZtjq6PZ_2X_GqhoNzmW0Yoc_WjabmiSMg_Yebv0ZJb5uf0GXu6wo18PIz3OXsE3Qv2eMgkef-SnaO4OYJhP4eCCGfpXJt_nY75zxmOgKgDgLs77vhZHynwlE9m9PI4J0KZ8-kQC877xImGmhOLM5q0V-zi9Nv5yaRYJUwoQtPoRSGFNsnLCEl59COgjKmVdfSpLQ2YMqLtxyJoQqg1yiZBrKUW3oggoxNtFK_ZXtd38JbxOopSiqCaYJR0PnqnKnCQoIW6iTKO2Of1DNqwYhOnpBZzm72K2liacJsn3FZqxD5tqt8MNBp_q3hM4thUIvbr_AF1wq50wv5LJ7A3FOZOG5PxD3vjcOEsby2iWq2Fbn5VI_ZhLW-Ly4ruSlwH_fLOEq0Z3fpKHNGbQf6b9tCRN-h3ihHTO5qx0-FuSTe7ytTdsjUVooF3_-Mv37MniN5Ujkas99ne4nYJB4iQFv4wL4YHXE4PhQ
  priority: 102
  providerName: Directory of Open Access Journals
Title The Double-Stranded DNA Virosphere as a Modular Hierarchical Network of Gene Sharing
URI https://www.ncbi.nlm.nih.gov/pubmed/27486193
https://www.proquest.com/docview/1809046446
https://pasteur.hal.science/pasteur-01977375
https://pubmed.ncbi.nlm.nih.gov/PMC4981718
https://doaj.org/article/31b085c13d1c4b73a45776d0e4eeb26e
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9QwELagCIkL4s3yqIyEOJESx47tHBDaAmWF6J66aG-WX2lXWpKyD0T_PTNOdukWeskhcWzLM_Z89oy_IeR1qGvLYeXLHJiPTKAaWyZjpj2oDw9O-oDnkMdjOZqIr9Ny-pdSqB_A5X-3dphParKYH_z-efEBJvz77gKMfvfjcNYepAsJGZM3ya3kKsIovh7pp0WZo_LmG5bNq38hJ7ASWiYH9CUDlXj8weycYZTkvxD0aiTlJdN0dI_c7TElHXZKcJ_ciM0DcrvLMnnxkJyAKlAAym4eMySjxTNv-mk8pN9n0AOkFYjULqmlx23AoFQ6muGt5JQkZU7HXZw4bWuKFNUUGZ7B3D0ik6PPJx9HWZ9MIfNlqVaZ4ErXToRYSwd7jJiHuhJFcHWV66jzALgAPsXS-0KB3OoYCqG409yLYHkV-GOy17RNfEpoEXguuJel11JYF5yVLNpYxyoWZRBhQN5uRtD4nmkcE17MTdpxFNrg2Js09obJAXmzLX7eUWxcV_AQxbEthMzY6UW7ODX9RDOcOUCRnvHAvHCKW1EqJUMeRYyukBFaA2Hu1DEafjPnFibVemEA8SrFVfmLDcirjbwNTDn0o9gmtuulQcoz9AgL6NGTTv7b-jZaNCBqRzN2Gtz90szOEq23qDQDpPDs2jqfkzsA12QKPyxekL3VYh1fAiRauf10lADPL1O2nxT_D0z6C3U
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Double-Stranded+DNA+Virosphere+as+a+Modular+Hierarchical+Network+of+Gene+Sharing&rft.jtitle=mBio&rft.au=Iranzo%2C+Jaime&rft.au=Krupovic%2C+Mart&rft.au=Koonin%2C+Eugene+V&rft.date=2016-08-02&rft.eissn=2150-7511&rft.volume=7&rft.issue=4&rft_id=info:doi/10.1128%2FmBio.00978-16&rft_id=info%3Apmid%2F27486193&rft.externalDocID=27486193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon