Inference in the Brain: Statistics Flowing in Redundant Population Codes
It is widely believed that the brain performs approximate probabilistic inference to estimate causal variables in the world from ambiguous sensory data. To understand these computations, we need to analyze how information is represented and transformed by the actions of nonlinear recurrent neural ne...
Saved in:
| Published in | Neuron (Cambridge, Mass.) Vol. 94; no. 5; pp. 943 - 953 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
07.06.2017
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0896-6273 1097-4199 1097-4199 |
| DOI | 10.1016/j.neuron.2017.05.028 |
Cover
| Abstract | It is widely believed that the brain performs approximate probabilistic inference to estimate causal variables in the world from ambiguous sensory data. To understand these computations, we need to analyze how information is represented and transformed by the actions of nonlinear recurrent neural networks. We propose that these probabilistic computations function by a message-passing algorithm operating at the level of redundant neural populations. To explain this framework, we review its underlying concepts, including graphical models, sufficient statistics, and message-passing, and then describe how these concepts could be implemented by recurrently connected probabilistic population codes. The relevant information flow in these networks will be most interpretable at the population level, particularly for redundant neural codes. We therefore outline a general approach to identify the essential features of a neural message-passing algorithm. Finally, we argue that to reveal the most important aspects of these neural computations, we must study large-scale activity patterns during moderately complex, naturalistic behaviors.
Pitkow and Angelaki speculate how the brain could perform inference by passing statistics between redundant, overlapping probabilistic population codes. They argue that neuroscience needs behavioral tasks that include uncertainty and nuisance variables to reveal these key computations. |
|---|---|
| AbstractList | It is widely believed that the brain performs approximate probabilistic inference to estimate causal variables in the world from ambiguous sensory data. To understand these computations, we need to analyze how information is represented and transformed by the actions of nonlinear recurrent neural networks. We propose that these probabilistic computations function by a message-passing algorithm operating at the level of redundant neural populations. To explain this framework, we review its underlying concepts, including graphical models, sufficient statistics, and message-passing, and then describe how these concepts could be implemented by recurrently connected probabilistic population codes. The relevant information flow in these networks will be most interpretable at the population level, particularly for redundant neural codes. We therefore outline a general approach to identify the essential features of a neural message-passing algorithm. Finally, we argue that to reveal the most important aspects of these neural computations, we must study large-scale activity patterns during moderately complex, naturalistic behaviors. It is widely believed that the brain performs approximate probabilistic inference to estimate causal variables in the world from ambiguous sensory data. To understand these computations, we need to analyze how information is represented and transformed by the actions of nonlinear recurrent neural networks. We propose that these probabilistic computations function by a message-passing algorithm operating at the level of redundant neural populations. To explain this framework, we review its underlying concepts, including graphical models, sufficient statistics, and message-passing, and then describe how these concepts could be implemented by recurrently connected probabilistic population codes. The relevant information flow in these networks will be most interpretable at the population level, particularly for redundant neural codes. We therefore outline a general approach to identify the essential features of a neural message-passing algorithm. Finally, we argue that to reveal the most important aspects of these neural computations, we must study large-scale activity patterns during moderately complex, naturalistic behaviors.It is widely believed that the brain performs approximate probabilistic inference to estimate causal variables in the world from ambiguous sensory data. To understand these computations, we need to analyze how information is represented and transformed by the actions of nonlinear recurrent neural networks. We propose that these probabilistic computations function by a message-passing algorithm operating at the level of redundant neural populations. To explain this framework, we review its underlying concepts, including graphical models, sufficient statistics, and message-passing, and then describe how these concepts could be implemented by recurrently connected probabilistic population codes. The relevant information flow in these networks will be most interpretable at the population level, particularly for redundant neural codes. We therefore outline a general approach to identify the essential features of a neural message-passing algorithm. Finally, we argue that to reveal the most important aspects of these neural computations, we must study large-scale activity patterns during moderately complex, naturalistic behaviors. It is widely believed that the brain performs approximate probabilistic inference to estimate causal variables in the world from ambiguous sensory data. To understand these computations, we need to analyze how information is represented and transformed by the actions of nonlinear recurrent neural networks. We propose that these probabilistic computations function by a message-passing algorithm operating at the level of redundant neural populations. To explain this framework, we review its underlying concepts, including graphical models, sufficient statistics, and message-passing, and then describe how these concepts could be implemented by recurrently connected probabilistic population codes. The relevant information flow in these networks will be most interpretable at the population level, particularly for redundant neural codes. We therefore outline a general approach to identify the essential features of a neural message-passing algorithm. Finally, we argue that to reveal the most important aspects of these neural computations, we must study large-scale activity patterns during moderately complex, naturalistic behaviors. Pitkow and Angelaki speculate how the brain could perform inference by passing statistics between redundant, overlapping probabilistic population codes. They argue that neuroscience needs behavioral tasks that include uncertainty and nuisance variables to reveal these key computations. |
| Author | Angelaki, Dora E. Pitkow, Xaq |
| AuthorAffiliation | 2 Department of Electrical and Computer Engineering, Rice University 1 Department of Neuroscience, Baylor College of Medicine |
| AuthorAffiliation_xml | – name: 2 Department of Electrical and Computer Engineering, Rice University – name: 1 Department of Neuroscience, Baylor College of Medicine |
| Author_xml | – sequence: 1 givenname: Xaq surname: Pitkow fullname: Pitkow, Xaq email: xaq@rice.edu organization: Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA – sequence: 2 givenname: Dora E. surname: Angelaki fullname: Angelaki, Dora E. organization: Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28595050$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk9v1DAQxS1URLeFb4BQJC5cEsZOnMQ9IMGK0kqVQPw5W1573HqVtRfbadVvT8KWlvZQ9TQH_97zzJs5IHs-eCTkNYWKAm3fryuPYwy-YkC7CngFrH9GFhREVzZUiD2ygF60Zcu6ep8cpLQGoA0X9AXZZz0XHDgsyMmptxjRayycL_IFFp-icv6o-JFVdik7nYrjIVw5fz4D39GM3iifi29hOw4TEnyxDAbTS_LcqiHhq5t6SH4df_65PCnPvn45XX48KzXnXS6pYco2vYbWKG4V19gLgcCgE2Bb3SITlvNVy6CtDQNrbL1ijLNe8d5OtT4kfOc7-q26vlLDILfRbVS8lhTknIxcy10yck5GApdTMpPuw063HVcbNBp9jupOG5ST91-8u5Dn4VJy3tStmD9-d2MQw-8RU5YblzQOg_IYxiSpAEE7BlBP6NsH6DqM0U-xzFRX076GuaM3_3d028q_5UxAswN0DClFtE-d9OiBTLv8d1PTXG54Ykw47fDSYZRJu_k8jIuoszTBPW7wBzq5zlg |
| CitedBy_id | crossref_primary_10_1016_j_neuron_2020_02_023 crossref_primary_10_1016_j_neubiorev_2024_105623 crossref_primary_10_1038_s41467_021_26793_9 crossref_primary_10_1016_j_pneurobio_2021_101996 crossref_primary_10_1073_pnas_1912336117 crossref_primary_10_1021_acsaelm_3c01808 crossref_primary_10_1152_jn_00087_2019 crossref_primary_10_1080_13546783_2021_2022531 crossref_primary_10_1177_20416695211018720 crossref_primary_10_1103_PhysRevX_13_031028 crossref_primary_10_1038_s41398_020_01166_w crossref_primary_10_1016_j_neubiorev_2022_104649 crossref_primary_10_1016_j_jneumeth_2019_01_019 crossref_primary_10_1016_j_cophys_2020_04_004 crossref_primary_10_1038_s41467_019_13472_z crossref_primary_10_1126_sciadv_adk7214 crossref_primary_10_1162_neco_a_01166 crossref_primary_10_7554_eLife_64615 crossref_primary_10_34248_bsengineering_1516593 crossref_primary_10_1016_j_cub_2021_09_076 crossref_primary_10_1146_annurev_neuro_080317_061936 crossref_primary_10_1007_s00429_020_02188_2 crossref_primary_10_1038_s41467_023_37400_4 crossref_primary_10_1038_s41583_022_00582_9 crossref_primary_10_1103_PhysRevLett_125_178301 crossref_primary_10_7554_eLife_33334 crossref_primary_10_1038_s41583_023_00699_5 crossref_primary_10_7554_eLife_80280 crossref_primary_10_1016_j_neurobiolaging_2021_09_002 crossref_primary_10_1080_13854046_2018_1523465 crossref_primary_10_1016_j_neuron_2019_01_029 crossref_primary_10_1038_s41593_024_01575_w crossref_primary_10_1523_JNEUROSCI_0674_21_2022 crossref_primary_10_1088_0253_6102_70_4_485 crossref_primary_10_1016_j_neuron_2018_05_040 crossref_primary_10_3390_e19090451 crossref_primary_10_1016_j_neubiorev_2022_104903 crossref_primary_10_3389_fams_2018_00011 crossref_primary_10_3389_fncom_2023_1092185 crossref_primary_10_3389_fncir_2018_00115 crossref_primary_10_1002_hbm_26257 crossref_primary_10_1016_j_biosystems_2022_104825 crossref_primary_10_1016_j_conb_2019_09_005 crossref_primary_10_1371_journal_pbio_2005239 crossref_primary_10_1038_s41583_024_00795_0 crossref_primary_10_1016_j_conb_2019_09_002 crossref_primary_10_1523_JNEUROSCI_1024_19_2019 crossref_primary_10_1016_j_conb_2018_04_004 crossref_primary_10_1126_sciadv_add4201 crossref_primary_10_2196_23777 crossref_primary_10_1038_s42003_024_06392_2 |
| Cites_doi | 10.1371/journal.pcbi.1002211 10.1016/j.neuron.2015.01.007 10.1073/pnas.1310416110 10.1038/381607a0 10.1073/pnas.1508738112 10.1038/nn.2735 10.1016/j.tics.2010.01.003 10.1016/j.neuron.2016.03.020 10.1371/journal.pcbi.1005268 10.1007/BF02551274 10.1523/JNEUROSCI.4522-12.2013 10.1038/nn1606 10.1038/nn1790 10.1016/j.neuron.2015.07.024 10.1038/nn.3309 10.1162/08997660460733976 10.1162/neco.1996.8.7.1341 10.1038/341052a0 10.1142/S0129065707001111 10.1038/nature12160 10.1038/nn.2191 10.1016/j.neuron.2013.09.006 10.1016/j.neuron.2013.09.007 10.1038/nature04766 10.1038/nn1691 10.1038/nn.3267 10.1016/j.neuron.2014.07.035 10.1037/a0021336 10.1038/370140a0 10.1016/0893-6080(91)90009-T 10.1038/nn.3807 10.1016/j.tics.2007.06.010 10.1038/nature13240 10.1038/nn.2983 10.1126/science.aac9462 10.1038/nature12742 10.1016/j.neuron.2008.08.007 10.1371/journal.pone.0015554 10.1016/j.conb.2015.04.003 10.1073/pnas.1101430108 10.1109/TPAMI.1984.4767596 10.1016/j.neuron.2016.09.038 10.1016/S0896-6273(04)00186-2 10.1523/JNEUROSCI.2837-13.2013 10.1523/JNEUROSCI.1706-11.2011 10.1364/JOSAA.20.001434 10.1016/j.neuron.2012.03.016 10.1073/pnas.0804451105 10.1016/j.neuron.2008.09.021 10.1038/nn1991 10.1523/JNEUROSCI.5179-08.2009 10.1016/j.neuron.2015.06.033 10.1073/pnas.1403112111 10.1561/2200000001 10.1126/science.1195870 10.1016/j.tics.2012.08.010 10.1017/S095252380000715X |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Inc. Copyright © 2017 Elsevier Inc. All rights reserved. 2017. Elsevier Inc. |
| Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright © 2017 Elsevier Inc. All rights reserved. – notice: 2017. Elsevier Inc. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM ADTOC UNPAY |
| DOI | 10.1016/j.neuron.2017.05.028 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Nursing & Allied Health Premium |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Biology Statistics |
| EISSN | 1097-4199 |
| EndPage | 953 |
| ExternalDocumentID | 10.1016/j.neuron.2017.05.028 PMC5543692 28595050 10_1016_j_neuron_2017_05_028 S089662731730466X |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: U01 NS094368 |
| GroupedDBID | --- --K -DZ -~X 0R~ 123 1RT 1~5 26- 2WC 3V. 4.4 457 4G. 53G 5RE 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFKRA AFTJW AGKMS AHHHB AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AQUVI ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BKNYI BPHCQ BVXVI CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HCIFZ HVGLF IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M0R M0T M2M M2O M3Z M41 M7P N9A NCXOZ O-L O9- OK1 P2P P6G PQQKQ PROAC RCE RIG ROL RPZ SCP SDP SES SSZ TR2 WOW WQ6 ZA5 .55 .GJ 29N 3O- 5VS AAEDT AAFWJ AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EFKBS FGOYB G-2 HZ~ ITC MVM OZT R2- X7M ZGI ZKB AGCQF CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c557t-1d2af48c06da5fa5ce899e020790f6c6e29f55b62063d20fdf3b22528a58f2523 |
| IEDL.DBID | IXB |
| ISSN | 0896-6273 1097-4199 |
| IngestDate | Sun Oct 26 03:30:21 EDT 2025 Tue Sep 30 15:36:35 EDT 2025 Thu Oct 02 11:33:09 EDT 2025 Tue Oct 07 06:38:10 EDT 2025 Mon Jul 21 05:48:42 EDT 2025 Thu Oct 16 04:43:17 EDT 2025 Thu Apr 24 23:10:26 EDT 2025 Fri Feb 23 02:22:45 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | coding message-passing population code inference nuisance brain nonlinear theory redundant |
| Language | English |
| License | This article is made available under the Elsevier license. Copyright © 2017 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c557t-1d2af48c06da5fa5ce899e020790f6c6e29f55b62063d20fdf3b22528a58f2523 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S089662731730466X |
| PMID | 28595050 |
| PQID | 1907318308 |
| PQPubID | 2031076 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1016_j_neuron_2017_05_028 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5543692 proquest_miscellaneous_1909172003 proquest_journals_1907318308 pubmed_primary_28595050 crossref_primary_10_1016_j_neuron_2017_05_028 crossref_citationtrail_10_1016_j_neuron_2017_05_028 elsevier_sciencedirect_doi_10_1016_j_neuron_2017_05_028 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-06-07 |
| PublicationDateYYYYMMDD | 2017-06-07 |
| PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-07 day: 07 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Cambridge |
| PublicationTitle | Neuron (Cambridge, Mass.) |
| PublicationTitleAlternate | Neuron |
| PublicationYear | 2017 |
| Publisher | Elsevier Inc Elsevier Limited |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
| References | Berkes, Orbán, Lengyel, Fiser (bib6) 2011; 331 DiCarlo, Cox (bib18) 2007; 11 Raju, Pitkow (bib66) 2016; 29 Chen, Deangelis, Angelaki (bib10) 2013; 33 Geman, Geman (bib24) 1984; 6 Sutton, Barto (bib73) 1998 Liu, Gu, DeAngelis, Angelaki (bib47) 2013; 16 Cohen, Newsome (bib13) 2008; 60 Kriegeskorte, Mur, Bandettini (bib41) 2008; 2 Schäfer, Zimmermann (bib72) 2007; 17 Koller, Friedman (bib40) 2009 Beck, Ma, Kiani, Hanks, Churchland, Roitman, Shadlen, Latham, Pouget (bib2) 2008; 60 Pitkow, Liu, Angelaki, DeAngelis, Pouget (bib65) 2015; 87 Chen, Deangelis, Angelaki (bib11) 2013; 80 Daunizeau, den Ouden, Pessiglione, Kiebel, Stephan, Friston (bib16) 2010; 5 Minka (bib53) 2001 Babadi, Sompolinsky (bib1) 2014; 83 Cybenko (bib15) 1989; 2 Cohen, Newsome (bib14) 2009; 29 Montúfar, Pascanu, Cho, Bengio (bib54) 2014; 27 Krizhevsky, Sutskever, Hinton (bib42) 2012; 25 Zeiler, Fergus (bib79) 2014 Haefner, Berkes, Fiser (bib28) 2016; 90 Helmholtz (bib30) 1925; Volume III Marr (bib52) 1982 Gao, Ganguli (bib23) 2015; 32 Pitkow (bib63) 2010; 10 Kanitscheider, Coen-Cagli, Pouget (bib37) 2015; 112 Moreno-Bote, Beck, Kanitscheider, Pitkow, Latham, Pouget (bib56) 2014; 17 Lee, Mumford (bib45) 2003; 20 Lakshminarasimhan, Pouget, DeAngelis, Angelaki, Pitkow (bib43) 2017 Fetsch, Pouget, DeAngelis, Angelaki (bib20) 2011; 15 Beck, Ma, Pitkow, Latham, Pouget (bib4) 2012; 74 Heinemann, Globerson (bib29) 2011 Moreno-Bote, Knill, Pouget (bib55) 2011; 108 Rust, Movshon (bib69) 2005; 8 Saez, Rigotti, Ostojic, Fusi, Salzman (bib70) 2015; 87 Uka, DeAngelis (bib74) 2004; 42 Jazayeri, Movshon (bib34) 2006; 9 Buesing, Bill, Nessler, Maass (bib9) 2011; 7 Hornik (bib32) 1991; 4 Hinton, G.E., and Sejnowski, T.J. (1983). Optimal perceptual inference. Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. pp. 448–453. Rigotti, Barak, Warden, Wang, Daw, Miller, Fusi (bib68) 2013; 497 Kira, Yang, Shadlen (bib39) 2015; 85 Laplace (bib44) 1812 Rao (bib67) 2004; 16 Savin, Denève (bib71) 2014; 27 Britten, Newsome, Shadlen, Celebrini, Movshon (bib8) 1996; 13 Ma, Beck, Latham, Pouget (bib49) 2006; 9 Pitkow, Ahmadian, Miller (bib64) 2011; 24 Ganguli, Huh, Sompolinsky (bib22) 2008; 105 Jonas, Körding (bib36) 2017; 13 Ng, A.Y., and Russell, S.J. (2000). Algorithms for inverse reinforcement learning. In Proceedings of ICML. Chen, DeAngelis, Angelaki (bib12) 2013; 33 Jiang, Shen, Cadwell, Berens, Sinz, Ecker, Patel, Tolias (bib35) 2015; 350 Kim, Greene, Zlateski, Lee, Richardson, Turaga, Purcaro, Balkam, Robinson, Behabadi (bib38) 2014; 509 Goodman, Ullman, Tenenbaum (bib25) 2011; 118 Ma (bib48) 2012; 16 Yamins, Hong, Cadieu, Solomon, Seibert, DiCarlo (bib78) 2014; 111 Hoyer, Hyvärinen (bib33) 2003; 15 Haefner, Gerwinn, Macke, Bethge (bib27) 2013; 16 Newsome, Britten, Movshon (bib57) 1989; 341 Zohary, Shadlen, Newsome (bib80) 1994; 370 Wainwright, Jordan (bib75) 2008; 1 Bellman (bib5) 1957 Orbán, Berkes, Fiser, Lengyel (bib61) 2016; 92 Pearl (bib62) 1988 Mante, Sussillo, Shenoy, Newsome (bib50) 2013; 503 Bondy, Cumming (bib7) 2016 Dolan, Dayan (bib19) 2013; 80 Fiser, Berkes, Orbán, Lengyel (bib21) 2010; 14 Liu, Dickman, Newlands, DeAngelis, Angelaki (bib46) 2013; 110 Daw, O’Doherty, Dayan, Seymour, Dolan (bib17) 2006; 441 Nienborg, Cumming (bib59) 2007; 10 Wainwright, Simoncelli (bib76) 2000; 12 Wolpert (bib77) 1996; 8 Beck, Latham, Pouget (bib3) 2011; 31 Marder, Taylor (bib51) 2011; 14 Gu, Angelaki, Deangelis (bib26) 2008; 11 Olshausen, Field (bib60) 1996; 381 Gu (10.1016/j.neuron.2017.05.028_bib26) 2008; 11 Goodman (10.1016/j.neuron.2017.05.028_bib25) 2011; 118 10.1016/j.neuron.2017.05.028_bib31 Moreno-Bote (10.1016/j.neuron.2017.05.028_bib56) 2014; 17 Raju (10.1016/j.neuron.2017.05.028_bib66) 2016; 29 Beck (10.1016/j.neuron.2017.05.028_bib3) 2011; 31 Mante (10.1016/j.neuron.2017.05.028_bib50) 2013; 503 Zohary (10.1016/j.neuron.2017.05.028_bib80) 1994; 370 Liu (10.1016/j.neuron.2017.05.028_bib47) 2013; 16 Bondy (10.1016/j.neuron.2017.05.028_bib7) 2016 Rao (10.1016/j.neuron.2017.05.028_bib67) 2004; 16 Fetsch (10.1016/j.neuron.2017.05.028_bib20) 2011; 15 Kriegeskorte (10.1016/j.neuron.2017.05.028_bib41) 2008; 2 Ganguli (10.1016/j.neuron.2017.05.028_bib22) 2008; 105 Jonas (10.1016/j.neuron.2017.05.028_bib36) 2017; 13 Krizhevsky (10.1016/j.neuron.2017.05.028_bib42) 2012; 25 Kim (10.1016/j.neuron.2017.05.028_bib38) 2014; 509 Nienborg (10.1016/j.neuron.2017.05.028_bib59) 2007; 10 Fiser (10.1016/j.neuron.2017.05.028_bib21) 2010; 14 Hoyer (10.1016/j.neuron.2017.05.028_bib33) 2003; 15 Lakshminarasimhan (10.1016/j.neuron.2017.05.028_bib43) 2017 Chen (10.1016/j.neuron.2017.05.028_bib12) 2013; 33 Bellman (10.1016/j.neuron.2017.05.028_bib5) 1957 Yamins (10.1016/j.neuron.2017.05.028_bib78) 2014; 111 Dolan (10.1016/j.neuron.2017.05.028_bib19) 2013; 80 Rigotti (10.1016/j.neuron.2017.05.028_bib68) 2013; 497 Babadi (10.1016/j.neuron.2017.05.028_bib1) 2014; 83 Cybenko (10.1016/j.neuron.2017.05.028_bib15) 1989; 2 Liu (10.1016/j.neuron.2017.05.028_bib46) 2013; 110 DiCarlo (10.1016/j.neuron.2017.05.028_bib18) 2007; 11 Wolpert (10.1016/j.neuron.2017.05.028_bib77) 1996; 8 Marr (10.1016/j.neuron.2017.05.028_bib52) 1982 Kira (10.1016/j.neuron.2017.05.028_bib39) 2015; 85 Rust (10.1016/j.neuron.2017.05.028_bib69) 2005; 8 Olshausen (10.1016/j.neuron.2017.05.028_bib60) 1996; 381 Schäfer (10.1016/j.neuron.2017.05.028_bib72) 2007; 17 Newsome (10.1016/j.neuron.2017.05.028_bib57) 1989; 341 Marder (10.1016/j.neuron.2017.05.028_bib51) 2011; 14 Kanitscheider (10.1016/j.neuron.2017.05.028_bib37) 2015; 112 Pitkow (10.1016/j.neuron.2017.05.028_bib65) 2015; 87 Hornik (10.1016/j.neuron.2017.05.028_bib32) 1991; 4 Saez (10.1016/j.neuron.2017.05.028_bib70) 2015; 87 Cohen (10.1016/j.neuron.2017.05.028_bib13) 2008; 60 Pitkow (10.1016/j.neuron.2017.05.028_bib63) 2010; 10 Ma (10.1016/j.neuron.2017.05.028_bib48) 2012; 16 Chen (10.1016/j.neuron.2017.05.028_bib10) 2013; 33 Haefner (10.1016/j.neuron.2017.05.028_bib28) 2016; 90 Wainwright (10.1016/j.neuron.2017.05.028_bib75) 2008; 1 Gao (10.1016/j.neuron.2017.05.028_bib23) 2015; 32 Geman (10.1016/j.neuron.2017.05.028_bib24) 1984; 6 Helmholtz (10.1016/j.neuron.2017.05.028_bib30) 1925; Volume III 10.1016/j.neuron.2017.05.028_bib58 Lee (10.1016/j.neuron.2017.05.028_bib45) 2003; 20 Orbán (10.1016/j.neuron.2017.05.028_bib61) 2016; 92 Minka (10.1016/j.neuron.2017.05.028_bib53) 2001 Beck (10.1016/j.neuron.2017.05.028_bib2) 2008; 60 Montúfar (10.1016/j.neuron.2017.05.028_bib54) 2014; 27 Chen (10.1016/j.neuron.2017.05.028_bib11) 2013; 80 Uka (10.1016/j.neuron.2017.05.028_bib74) 2004; 42 Jiang (10.1016/j.neuron.2017.05.028_bib35) 2015; 350 Pitkow (10.1016/j.neuron.2017.05.028_bib64) 2011; 24 Laplace (10.1016/j.neuron.2017.05.028_bib44) 1812 Zeiler (10.1016/j.neuron.2017.05.028_bib79) 2014 Koller (10.1016/j.neuron.2017.05.028_bib40) 2009 Jazayeri (10.1016/j.neuron.2017.05.028_bib34) 2006; 9 Britten (10.1016/j.neuron.2017.05.028_bib8) 1996; 13 Moreno-Bote (10.1016/j.neuron.2017.05.028_bib55) 2011; 108 Ma (10.1016/j.neuron.2017.05.028_bib49) 2006; 9 Daw (10.1016/j.neuron.2017.05.028_bib17) 2006; 441 Berkes (10.1016/j.neuron.2017.05.028_bib6) 2011; 331 Haefner (10.1016/j.neuron.2017.05.028_bib27) 2013; 16 Wainwright (10.1016/j.neuron.2017.05.028_bib76) 2000; 12 Sutton (10.1016/j.neuron.2017.05.028_bib73) 1998 Daunizeau (10.1016/j.neuron.2017.05.028_bib16) 2010; 5 Buesing (10.1016/j.neuron.2017.05.028_bib9) 2011; 7 Heinemann (10.1016/j.neuron.2017.05.028_bib29) 2011 Pearl (10.1016/j.neuron.2017.05.028_bib62) 1988 Savin (10.1016/j.neuron.2017.05.028_bib71) 2014; 27 Beck (10.1016/j.neuron.2017.05.028_bib4) 2012; 74 Cohen (10.1016/j.neuron.2017.05.028_bib14) 2009; 29 |
| References_xml | – volume: 9 start-page: 690 year: 2006 end-page: 696 ident: bib34 article-title: Optimal representation of sensory information by neural populations publication-title: Nat. Neurosci. – volume: 25 start-page: 1106 year: 2012 end-page: 1114 ident: bib42 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 1 start-page: 1 year: 2008 end-page: 305 ident: bib75 article-title: Graphical models, exponential families, and variational inference publication-title: Found. Trends Mach. Learn. – volume: 17 start-page: 1410 year: 2014 end-page: 1417 ident: bib56 article-title: Information-limiting correlations publication-title: Nat. Neurosci. – volume: 5 start-page: e15554 year: 2010 ident: bib16 article-title: Observing the observer (I): meta-bayesian models of learning and decision-making publication-title: PLoS ONE – volume: 13 start-page: 87 year: 1996 end-page: 100 ident: bib8 article-title: A relationship between behavioral choice and the visual responses of neurons in macaque MT publication-title: Vis. Neurosci. – volume: Volume III year: 1925 ident: bib30 publication-title: Treatise on Physiological Optics – volume: 32 start-page: 148 year: 2015 end-page: 155 ident: bib23 article-title: On simplicity and complexity in the brave new world of large-scale neuroscience publication-title: Curr. Opin. Neurobiol. – volume: 10 start-page: 1608 year: 2007 end-page: 1614 ident: bib59 article-title: Psychophysically measured task strategy for disparity discrimination is reflected in V2 neurons publication-title: Nat. Neurosci. – start-page: 319 year: 2011 end-page: 326 ident: bib29 article-title: What cannot be learned with Bethe approximations publication-title: Uncertainty in Artificial Intelligence – volume: 80 start-page: 1310 year: 2013 end-page: 1321 ident: bib11 article-title: Diverse spatial reference frames of vestibular signals in parietal cortex publication-title: Neuron – volume: 60 start-page: 1142 year: 2008 end-page: 1152 ident: bib2 article-title: Probabilistic population codes for Bayesian decision making publication-title: Neuron – volume: 441 start-page: 876 year: 2006 end-page: 879 ident: bib17 article-title: Cortical substrates for exploratory decisions in humans publication-title: Nature – volume: 29 start-page: 1 year: 2016 end-page: 9 ident: bib66 article-title: Inference by reparameterization in neural population codes publication-title: Adv. Neural Inf. Process. Syst. – volume: 110 start-page: 17999 year: 2013 end-page: 18004 ident: bib46 article-title: Reduced choice-related activity and correlated noise accompany perceptual deficits following unilateral vestibular lesion publication-title: Proc. Natl. Acad. Sci. USA – volume: 2 start-page: 4 year: 2008 ident: bib41 article-title: Representational similarity analysis—connecting the branches of systems neuroscience publication-title: Front. Syst. Neurosci. – year: 1988 ident: bib62 article-title: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference – volume: 509 start-page: 331 year: 2014 end-page: 336 ident: bib38 article-title: Space-time wiring specificity supports direction selectivity in the retina publication-title: Nature – volume: 16 start-page: 511 year: 2012 end-page: 518 ident: bib48 article-title: Organizing probabilistic models of perception publication-title: Trends Cogn. Sci. – volume: 27 start-page: 2924 year: 2014 end-page: 2932 ident: bib54 article-title: On the number of linear regions of deep neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 17 start-page: 253 year: 2007 end-page: 263 ident: bib72 article-title: Recurrent neural networks are universal approximators publication-title: Int. J. Neural Syst. – year: 2009 ident: bib40 article-title: Probabilistic Graphical Models: Principles and Techniques – volume: 8 start-page: 1341 year: 1996 end-page: 1390 ident: bib77 article-title: The lack of a priori distinctions between learning algorithms publication-title: Neural Comput. – volume: 20 start-page: 1434 year: 2003 end-page: 1448 ident: bib45 article-title: Hierarchical Bayesian inference in the visual cortex publication-title: J. Opt. Soc. Am. A Opt. Image Sci. Vis. – volume: 13 start-page: e1005268 year: 2017 ident: bib36 article-title: Could a neuroscientist understand a microprocessor? publication-title: PLoS Comput. Biol. – volume: 60 start-page: 162 year: 2008 end-page: 173 ident: bib13 article-title: Context-dependent changes in functional circuitry in visual area MT publication-title: Neuron – volume: 497 start-page: 585 year: 2013 end-page: 590 ident: bib68 article-title: The importance of mixed selectivity in complex cognitive tasks publication-title: Nature – year: 2016 ident: bib7 article-title: Feedback dynamics determine the structure of spike-count correlation in visual cortex publication-title: bioRxiv – start-page: 818 year: 2014 end-page: 833 ident: bib79 article-title: Visualizing and understanding convolutional networks publication-title: European conference on computer vision – volume: 14 start-page: 119 year: 2010 end-page: 130 ident: bib21 article-title: Statistically optimal perception and learning: from behavior to neural representations publication-title: Trends Cogn. Sci. – volume: 83 start-page: 1213 year: 2014 end-page: 1226 ident: bib1 article-title: Sparseness and expansion in sensory representations publication-title: Neuron – year: 1998 ident: bib73 article-title: Reinforcement Learning: An Introduction – volume: 4 start-page: 251 year: 1991 end-page: 257 ident: bib32 article-title: Approximation capabilities of multilayer feedforward networks publication-title: Neural Netw. – start-page: 362 year: 2001 end-page: 369 ident: bib53 article-title: Expectation propagation for approximate Bayesian inference publication-title: Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence (UAI) – volume: 74 start-page: 30 year: 2012 end-page: 39 ident: bib4 article-title: Not noisy, just wrong: the role of suboptimal inference in behavioral variability publication-title: Neuron – volume: 112 start-page: E6973 year: 2015 end-page: E6982 ident: bib37 article-title: Origin of information-limiting noise correlations publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 start-page: 855 year: 2000 end-page: 861 ident: bib76 article-title: Scale mixtures of Gaussians and the statistics of natural images publication-title: Adv. Neural Inf. Process. Syst. – volume: 16 start-page: 235 year: 2013 end-page: 242 ident: bib27 article-title: Inferring decoding strategies from choice probabilities in the presence of correlated variability publication-title: Nat. Neurosci. – year: 2017 ident: bib43 article-title: Inferring decoding strategies for multiple correlated neural populations publication-title: bioRxiv – volume: 80 start-page: 312 year: 2013 end-page: 325 ident: bib19 article-title: Goals and habits in the brain publication-title: Neuron – volume: 6 start-page: 721 year: 1984 end-page: 741 ident: bib24 article-title: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 42 start-page: 297 year: 2004 end-page: 310 ident: bib74 article-title: Contribution of area MT to stereoscopic depth perception: choice-related response modulations reflect task strategy publication-title: Neuron – volume: 108 start-page: 12491 year: 2011 end-page: 12496 ident: bib55 article-title: Bayesian sampling in visual perception publication-title: Proc. Natl. Acad. Sci. USA – reference: Hinton, G.E., and Sejnowski, T.J. (1983). Optimal perceptual inference. Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. pp. 448–453. – year: 1812 ident: bib44 article-title: Théorie Analytique des Probabilités – volume: 87 start-page: 411 year: 2015 end-page: 423 ident: bib65 article-title: How can single sensory neurons predict behavior? publication-title: Neuron – volume: 7 start-page: e1002211 year: 2011 ident: bib9 article-title: Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons publication-title: PLoS Comput. Biol. – volume: 11 start-page: 1201 year: 2008 end-page: 1210 ident: bib26 article-title: Neural correlates of multisensory cue integration in macaque MSTd publication-title: Nat. Neurosci. – volume: 14 start-page: 133 year: 2011 end-page: 138 ident: bib51 article-title: Multiple models to capture the variability in biological neurons and networks publication-title: Nat. Neurosci. – year: 1982 ident: bib52 article-title: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information – volume: 15 start-page: 277 year: 2003 end-page: 284 ident: bib33 article-title: Interpreting neural response variability as Monte Carlo sampling of the posterior publication-title: Adv. Neural Inf. Process. Syst. – volume: 350 start-page: aac9462 year: 2015 ident: bib35 article-title: Principles of connectivity among morphologically defined cell types in adult neocortex publication-title: Science – volume: 31 start-page: 15310 year: 2011 end-page: 15319 ident: bib3 article-title: Marginalization in neural circuits with divisive normalization publication-title: J. Neurosci. – volume: 87 start-page: 869 year: 2015 end-page: 881 ident: bib70 article-title: Abstract context representations in primate amygdala and prefrontal cortex publication-title: Neuron – volume: 118 start-page: 110 year: 2011 end-page: 119 ident: bib25 article-title: Learning a theory of causality publication-title: Psychol. Rev. – volume: 92 start-page: 530 year: 2016 end-page: 543 ident: bib61 article-title: Neural variability and sampling-based probabilistic representations in the visual cortex publication-title: Neuron – volume: 2 start-page: 303 year: 1989 end-page: 314 ident: bib15 article-title: Approximation by superpositions of a sigmoidal function publication-title: Math. Contr. Signals Syst. – volume: 33 start-page: 18574 year: 2013 end-page: 18582 ident: bib12 article-title: Eye-centered representation of optic flow tuning in the ventral intraparietal area publication-title: J. Neurosci. – volume: 331 start-page: 83 year: 2011 end-page: 87 ident: bib6 article-title: Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment publication-title: Science – volume: 27 start-page: 1 year: 2014 end-page: 6 ident: bib71 article-title: Spatio-temporal representations of uncertainty in spiking neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 11 start-page: 333 year: 2007 end-page: 341 ident: bib18 article-title: Untangling invariant object recognition publication-title: Trends Cogn. Sci. – volume: 16 start-page: 89 year: 2013 end-page: 97 ident: bib47 article-title: Choice-related activity and correlated noise in subcortical vestibular neurons publication-title: Nat. Neurosci. – volume: 15 start-page: 146 year: 2011 end-page: 154 ident: bib20 article-title: Neural correlates of reliability-based cue weighting during multisensory integration publication-title: Nat. Neurosci. – volume: 29 start-page: 6635 year: 2009 end-page: 6648 ident: bib14 article-title: Estimates of the contribution of single neurons to perception depend on timescale and noise correlation publication-title: J. Neurosci. – volume: 503 start-page: 78 year: 2013 end-page: 84 ident: bib50 article-title: Context-dependent computation by recurrent dynamics in prefrontal cortex publication-title: Nature – year: 1957 ident: bib5 article-title: Dynamic Programming – volume: 111 start-page: 8619 year: 2014 end-page: 8624 ident: bib78 article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex publication-title: Proc. Natl. Acad. Sci. USA – volume: 370 start-page: 140 year: 1994 end-page: 143 ident: bib80 article-title: Correlated neuronal discharge rate and its implications for psychophysical performance publication-title: Nature – volume: 85 start-page: 861 year: 2015 end-page: 873 ident: bib39 article-title: A neural implementation of Wald’s sequential probability ratio test publication-title: Neuron – reference: Ng, A.Y., and Russell, S.J. (2000). Algorithms for inverse reinforcement learning. In Proceedings of ICML. – volume: 10 start-page: 1 year: 2010 end-page: 20 ident: bib63 article-title: Exact feature probabilities in images with occlusion publication-title: J. Vis. – volume: 105 start-page: 18970 year: 2008 end-page: 18975 ident: bib22 article-title: Memory traces in dynamical systems publication-title: Proc. Natl. Acad. Sci. USA – volume: 33 start-page: 3567 year: 2013 end-page: 3581 ident: bib10 article-title: Functional specializations of the ventral intraparietal area for multisensory heading discrimination publication-title: J. Neurosci. – volume: 8 start-page: 1647 year: 2005 end-page: 1650 ident: bib69 article-title: In praise of artifice publication-title: Nat. Neurosci. – volume: 90 start-page: 649 year: 2016 end-page: 660 ident: bib28 article-title: Perceptual decision-making as probabilistic inference by neural sampling publication-title: Neuron – volume: 9 start-page: 1432 year: 2006 end-page: 1438 ident: bib49 article-title: Bayesian inference with probabilistic population codes publication-title: Nat. Neurosci. – volume: 24 start-page: 738 year: 2011 end-page: 746 ident: bib64 article-title: Learning unbelievable probabilities publication-title: Adv. Neural Inf. Process. Syst. – volume: 16 start-page: 1 year: 2004 end-page: 38 ident: bib67 article-title: Bayesian computation in recurrent neural circuits publication-title: Neural Comput. – volume: 341 start-page: 52 year: 1989 end-page: 54 ident: bib57 article-title: Neuronal correlates of a perceptual decision publication-title: Nature – volume: 381 start-page: 607 year: 1996 end-page: 609 ident: bib60 article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images publication-title: Nature – volume: 7 start-page: e1002211 year: 2011 ident: 10.1016/j.neuron.2017.05.028_bib9 article-title: Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002211 – volume: 85 start-page: 861 year: 2015 ident: 10.1016/j.neuron.2017.05.028_bib39 article-title: A neural implementation of Wald’s sequential probability ratio test publication-title: Neuron doi: 10.1016/j.neuron.2015.01.007 – volume: 110 start-page: 17999 year: 2013 ident: 10.1016/j.neuron.2017.05.028_bib46 article-title: Reduced choice-related activity and correlated noise accompany perceptual deficits following unilateral vestibular lesion publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1310416110 – year: 1988 ident: 10.1016/j.neuron.2017.05.028_bib62 – start-page: 362 year: 2001 ident: 10.1016/j.neuron.2017.05.028_bib53 article-title: Expectation propagation for approximate Bayesian inference – volume: 381 start-page: 607 year: 1996 ident: 10.1016/j.neuron.2017.05.028_bib60 article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images publication-title: Nature doi: 10.1038/381607a0 – volume: 112 start-page: E6973 year: 2015 ident: 10.1016/j.neuron.2017.05.028_bib37 article-title: Origin of information-limiting noise correlations publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1508738112 – volume: 14 start-page: 133 year: 2011 ident: 10.1016/j.neuron.2017.05.028_bib51 article-title: Multiple models to capture the variability in biological neurons and networks publication-title: Nat. Neurosci. doi: 10.1038/nn.2735 – volume: 14 start-page: 119 year: 2010 ident: 10.1016/j.neuron.2017.05.028_bib21 article-title: Statistically optimal perception and learning: from behavior to neural representations publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2010.01.003 – volume: 90 start-page: 649 year: 2016 ident: 10.1016/j.neuron.2017.05.028_bib28 article-title: Perceptual decision-making as probabilistic inference by neural sampling publication-title: Neuron doi: 10.1016/j.neuron.2016.03.020 – volume: 13 start-page: e1005268 year: 2017 ident: 10.1016/j.neuron.2017.05.028_bib36 article-title: Could a neuroscientist understand a microprocessor? publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005268 – volume: 27 start-page: 2924 year: 2014 ident: 10.1016/j.neuron.2017.05.028_bib54 article-title: On the number of linear regions of deep neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 2 start-page: 303 year: 1989 ident: 10.1016/j.neuron.2017.05.028_bib15 article-title: Approximation by superpositions of a sigmoidal function publication-title: Math. Contr. Signals Syst. doi: 10.1007/BF02551274 – volume: 33 start-page: 3567 year: 2013 ident: 10.1016/j.neuron.2017.05.028_bib10 article-title: Functional specializations of the ventral intraparietal area for multisensory heading discrimination publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4522-12.2013 – volume: 8 start-page: 1647 year: 2005 ident: 10.1016/j.neuron.2017.05.028_bib69 article-title: In praise of artifice publication-title: Nat. Neurosci. doi: 10.1038/nn1606 – start-page: 319 year: 2011 ident: 10.1016/j.neuron.2017.05.028_bib29 article-title: What cannot be learned with Bethe approximations – volume: 9 start-page: 1432 year: 2006 ident: 10.1016/j.neuron.2017.05.028_bib49 article-title: Bayesian inference with probabilistic population codes publication-title: Nat. Neurosci. doi: 10.1038/nn1790 – volume: 87 start-page: 869 year: 2015 ident: 10.1016/j.neuron.2017.05.028_bib70 article-title: Abstract context representations in primate amygdala and prefrontal cortex publication-title: Neuron doi: 10.1016/j.neuron.2015.07.024 – volume: 2 start-page: 4 year: 2008 ident: 10.1016/j.neuron.2017.05.028_bib41 article-title: Representational similarity analysis—connecting the branches of systems neuroscience publication-title: Front. Syst. Neurosci. – volume: 16 start-page: 235 year: 2013 ident: 10.1016/j.neuron.2017.05.028_bib27 article-title: Inferring decoding strategies from choice probabilities in the presence of correlated variability publication-title: Nat. Neurosci. doi: 10.1038/nn.3309 – year: 2016 ident: 10.1016/j.neuron.2017.05.028_bib7 article-title: Feedback dynamics determine the structure of spike-count correlation in visual cortex publication-title: bioRxiv – volume: 12 start-page: 855 year: 2000 ident: 10.1016/j.neuron.2017.05.028_bib76 article-title: Scale mixtures of Gaussians and the statistics of natural images publication-title: Adv. Neural Inf. Process. Syst. – volume: 16 start-page: 1 year: 2004 ident: 10.1016/j.neuron.2017.05.028_bib67 article-title: Bayesian computation in recurrent neural circuits publication-title: Neural Comput. doi: 10.1162/08997660460733976 – year: 1812 ident: 10.1016/j.neuron.2017.05.028_bib44 – volume: 8 start-page: 1341 year: 1996 ident: 10.1016/j.neuron.2017.05.028_bib77 article-title: The lack of a priori distinctions between learning algorithms publication-title: Neural Comput. doi: 10.1162/neco.1996.8.7.1341 – volume: 341 start-page: 52 year: 1989 ident: 10.1016/j.neuron.2017.05.028_bib57 article-title: Neuronal correlates of a perceptual decision publication-title: Nature doi: 10.1038/341052a0 – start-page: 818 year: 2014 ident: 10.1016/j.neuron.2017.05.028_bib79 article-title: Visualizing and understanding convolutional networks – volume: 29 start-page: 1 year: 2016 ident: 10.1016/j.neuron.2017.05.028_bib66 article-title: Inference by reparameterization in neural population codes publication-title: Adv. Neural Inf. Process. Syst. – volume: 17 start-page: 253 year: 2007 ident: 10.1016/j.neuron.2017.05.028_bib72 article-title: Recurrent neural networks are universal approximators publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065707001111 – volume: 24 start-page: 738 year: 2011 ident: 10.1016/j.neuron.2017.05.028_bib64 article-title: Learning unbelievable probabilities publication-title: Adv. Neural Inf. Process. Syst. – volume: 497 start-page: 585 year: 2013 ident: 10.1016/j.neuron.2017.05.028_bib68 article-title: The importance of mixed selectivity in complex cognitive tasks publication-title: Nature doi: 10.1038/nature12160 – year: 1998 ident: 10.1016/j.neuron.2017.05.028_bib73 – volume: 11 start-page: 1201 year: 2008 ident: 10.1016/j.neuron.2017.05.028_bib26 article-title: Neural correlates of multisensory cue integration in macaque MSTd publication-title: Nat. Neurosci. doi: 10.1038/nn.2191 – ident: 10.1016/j.neuron.2017.05.028_bib58 – volume: 80 start-page: 1310 year: 2013 ident: 10.1016/j.neuron.2017.05.028_bib11 article-title: Diverse spatial reference frames of vestibular signals in parietal cortex publication-title: Neuron doi: 10.1016/j.neuron.2013.09.006 – volume: 80 start-page: 312 year: 2013 ident: 10.1016/j.neuron.2017.05.028_bib19 article-title: Goals and habits in the brain publication-title: Neuron doi: 10.1016/j.neuron.2013.09.007 – volume: 15 start-page: 277 year: 2003 ident: 10.1016/j.neuron.2017.05.028_bib33 article-title: Interpreting neural response variability as Monte Carlo sampling of the posterior publication-title: Adv. Neural Inf. Process. Syst. – volume: 441 start-page: 876 year: 2006 ident: 10.1016/j.neuron.2017.05.028_bib17 article-title: Cortical substrates for exploratory decisions in humans publication-title: Nature doi: 10.1038/nature04766 – volume: 9 start-page: 690 year: 2006 ident: 10.1016/j.neuron.2017.05.028_bib34 article-title: Optimal representation of sensory information by neural populations publication-title: Nat. Neurosci. doi: 10.1038/nn1691 – volume: 16 start-page: 89 year: 2013 ident: 10.1016/j.neuron.2017.05.028_bib47 article-title: Choice-related activity and correlated noise in subcortical vestibular neurons publication-title: Nat. Neurosci. doi: 10.1038/nn.3267 – volume: 83 start-page: 1213 year: 2014 ident: 10.1016/j.neuron.2017.05.028_bib1 article-title: Sparseness and expansion in sensory representations publication-title: Neuron doi: 10.1016/j.neuron.2014.07.035 – volume: 118 start-page: 110 year: 2011 ident: 10.1016/j.neuron.2017.05.028_bib25 article-title: Learning a theory of causality publication-title: Psychol. Rev. doi: 10.1037/a0021336 – volume: 370 start-page: 140 year: 1994 ident: 10.1016/j.neuron.2017.05.028_bib80 article-title: Correlated neuronal discharge rate and its implications for psychophysical performance publication-title: Nature doi: 10.1038/370140a0 – volume: Volume III year: 1925 ident: 10.1016/j.neuron.2017.05.028_bib30 – volume: 4 start-page: 251 year: 1991 ident: 10.1016/j.neuron.2017.05.028_bib32 article-title: Approximation capabilities of multilayer feedforward networks publication-title: Neural Netw. doi: 10.1016/0893-6080(91)90009-T – volume: 17 start-page: 1410 year: 2014 ident: 10.1016/j.neuron.2017.05.028_bib56 article-title: Information-limiting correlations publication-title: Nat. Neurosci. doi: 10.1038/nn.3807 – volume: 11 start-page: 333 year: 2007 ident: 10.1016/j.neuron.2017.05.028_bib18 article-title: Untangling invariant object recognition publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2007.06.010 – volume: 509 start-page: 331 year: 2014 ident: 10.1016/j.neuron.2017.05.028_bib38 article-title: Space-time wiring specificity supports direction selectivity in the retina publication-title: Nature doi: 10.1038/nature13240 – volume: 15 start-page: 146 year: 2011 ident: 10.1016/j.neuron.2017.05.028_bib20 article-title: Neural correlates of reliability-based cue weighting during multisensory integration publication-title: Nat. Neurosci. doi: 10.1038/nn.2983 – year: 2009 ident: 10.1016/j.neuron.2017.05.028_bib40 – volume: 350 start-page: aac9462 year: 2015 ident: 10.1016/j.neuron.2017.05.028_bib35 article-title: Principles of connectivity among morphologically defined cell types in adult neocortex publication-title: Science doi: 10.1126/science.aac9462 – volume: 503 start-page: 78 year: 2013 ident: 10.1016/j.neuron.2017.05.028_bib50 article-title: Context-dependent computation by recurrent dynamics in prefrontal cortex publication-title: Nature doi: 10.1038/nature12742 – volume: 60 start-page: 162 year: 2008 ident: 10.1016/j.neuron.2017.05.028_bib13 article-title: Context-dependent changes in functional circuitry in visual area MT publication-title: Neuron doi: 10.1016/j.neuron.2008.08.007 – volume: 5 start-page: e15554 year: 2010 ident: 10.1016/j.neuron.2017.05.028_bib16 article-title: Observing the observer (I): meta-bayesian models of learning and decision-making publication-title: PLoS ONE doi: 10.1371/journal.pone.0015554 – volume: 32 start-page: 148 year: 2015 ident: 10.1016/j.neuron.2017.05.028_bib23 article-title: On simplicity and complexity in the brave new world of large-scale neuroscience publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2015.04.003 – year: 2017 ident: 10.1016/j.neuron.2017.05.028_bib43 article-title: Inferring decoding strategies for multiple correlated neural populations publication-title: bioRxiv – volume: 108 start-page: 12491 year: 2011 ident: 10.1016/j.neuron.2017.05.028_bib55 article-title: Bayesian sampling in visual perception publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1101430108 – volume: 27 start-page: 1 year: 2014 ident: 10.1016/j.neuron.2017.05.028_bib71 article-title: Spatio-temporal representations of uncertainty in spiking neural networks publication-title: Adv. Neural Inf. Process. Syst. – year: 1982 ident: 10.1016/j.neuron.2017.05.028_bib52 – volume: 6 start-page: 721 year: 1984 ident: 10.1016/j.neuron.2017.05.028_bib24 article-title: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1984.4767596 – volume: 92 start-page: 530 year: 2016 ident: 10.1016/j.neuron.2017.05.028_bib61 article-title: Neural variability and sampling-based probabilistic representations in the visual cortex publication-title: Neuron doi: 10.1016/j.neuron.2016.09.038 – volume: 25 start-page: 1106 year: 2012 ident: 10.1016/j.neuron.2017.05.028_bib42 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 10 start-page: 1 year: 2010 ident: 10.1016/j.neuron.2017.05.028_bib63 article-title: Exact feature probabilities in images with occlusion publication-title: J. Vis. – volume: 42 start-page: 297 year: 2004 ident: 10.1016/j.neuron.2017.05.028_bib74 article-title: Contribution of area MT to stereoscopic depth perception: choice-related response modulations reflect task strategy publication-title: Neuron doi: 10.1016/S0896-6273(04)00186-2 – volume: 33 start-page: 18574 year: 2013 ident: 10.1016/j.neuron.2017.05.028_bib12 article-title: Eye-centered representation of optic flow tuning in the ventral intraparietal area publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2837-13.2013 – ident: 10.1016/j.neuron.2017.05.028_bib31 – volume: 31 start-page: 15310 year: 2011 ident: 10.1016/j.neuron.2017.05.028_bib3 article-title: Marginalization in neural circuits with divisive normalization publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1706-11.2011 – volume: 20 start-page: 1434 year: 2003 ident: 10.1016/j.neuron.2017.05.028_bib45 article-title: Hierarchical Bayesian inference in the visual cortex publication-title: J. Opt. Soc. Am. A Opt. Image Sci. Vis. doi: 10.1364/JOSAA.20.001434 – volume: 74 start-page: 30 year: 2012 ident: 10.1016/j.neuron.2017.05.028_bib4 article-title: Not noisy, just wrong: the role of suboptimal inference in behavioral variability publication-title: Neuron doi: 10.1016/j.neuron.2012.03.016 – volume: 105 start-page: 18970 year: 2008 ident: 10.1016/j.neuron.2017.05.028_bib22 article-title: Memory traces in dynamical systems publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0804451105 – volume: 60 start-page: 1142 year: 2008 ident: 10.1016/j.neuron.2017.05.028_bib2 article-title: Probabilistic population codes for Bayesian decision making publication-title: Neuron doi: 10.1016/j.neuron.2008.09.021 – volume: 10 start-page: 1608 year: 2007 ident: 10.1016/j.neuron.2017.05.028_bib59 article-title: Psychophysically measured task strategy for disparity discrimination is reflected in V2 neurons publication-title: Nat. Neurosci. doi: 10.1038/nn1991 – year: 1957 ident: 10.1016/j.neuron.2017.05.028_bib5 – volume: 29 start-page: 6635 year: 2009 ident: 10.1016/j.neuron.2017.05.028_bib14 article-title: Estimates of the contribution of single neurons to perception depend on timescale and noise correlation publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5179-08.2009 – volume: 87 start-page: 411 year: 2015 ident: 10.1016/j.neuron.2017.05.028_bib65 article-title: How can single sensory neurons predict behavior? publication-title: Neuron doi: 10.1016/j.neuron.2015.06.033 – volume: 111 start-page: 8619 year: 2014 ident: 10.1016/j.neuron.2017.05.028_bib78 article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1403112111 – volume: 1 start-page: 1 year: 2008 ident: 10.1016/j.neuron.2017.05.028_bib75 article-title: Graphical models, exponential families, and variational inference publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000001 – volume: 331 start-page: 83 year: 2011 ident: 10.1016/j.neuron.2017.05.028_bib6 article-title: Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment publication-title: Science doi: 10.1126/science.1195870 – volume: 16 start-page: 511 year: 2012 ident: 10.1016/j.neuron.2017.05.028_bib48 article-title: Organizing probabilistic models of perception publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2012.08.010 – volume: 13 start-page: 87 year: 1996 ident: 10.1016/j.neuron.2017.05.028_bib8 article-title: A relationship between behavioral choice and the visual responses of neurons in macaque MT publication-title: Vis. Neurosci. doi: 10.1017/S095252380000715X |
| SSID | ssj0014591 |
| Score | 2.492624 |
| SecondaryResourceType | review_article |
| Snippet | It is widely believed that the brain performs approximate probabilistic inference to estimate causal variables in the world from ambiguous sensory data. To... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 943 |
| SubjectTerms | Activity patterns Algorithms Animals Brain Brain - physiology Codes coding Decision Making Humans Hypotheses inference Logic message-passing Models, Neurological Nerve Net - physiology Neural networks Neurons Neurosciences nonlinear Nonlinear Dynamics nuisance Perception - physiology Population population code Probability redundant Reviews Statistical analysis Statistics theory |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NToi98LHBKAxkJMRbujSOnYS3MlEVJKZpUKk8WY4_xKCkFWs1lb-eO-dDTEXaeKoin6U0d_H9HP_udwCvjfbc22EaldyIKM1EGmnhXISprORcOEwKVI386VROpunHmZjtQNu4kFiV9MU6rNHNszv-HOcF6ZRjqqNzPDk7Xlp_B3alQPjdg93p6dnoa0CLhYzILpxwFhmdcBZtuVzgdAWNSFI9HdZ6ndSD_d_paBtubrMm762rpd5c6fn8r5Q0fgDnbWFPzUT5MVivyoH5va3zePt_-xDuNwCVjWq7R7Djqn04GFW4Of-5YW9YoIyGb_H7cLfuZLk5gMmHtnCQXVQMQSV7R70n3jICs7UWNBvPF1eYKMng3FHxGjqVnXUNxNjJwrrLxzAdv_9yMomaJg2RESJbRUObaJ_mJpZWC6-FcbiDcwhCsyL20kiXFF6IUiaIhWwSe-t5iWtIkmuRe_zlT6BXLSr3lFhWZW50YnMtOZ36kzieMD7PbKplzl0feOsrZRoFc2qkMVctVe27qj2syMMqFgo93Ieom7WsFTxusM_aMFANCqnRhcIkc8PMozZqVLMSXCoEXBmtmzEOv-qG8R0mx-vKLdbBBnfNRBPsw2EdZN2tksAgotQYb-ta-HUGpA9-faS6-BZ0whEpclkkfRh0gXqrJ_Dsfyc8hz26Cgy67Ah6q19r9wKx2qp82bydfwBzPTsZ priority: 102 providerName: Unpaywall |
| Title | Inference in the Brain: Statistics Flowing in Redundant Population Codes |
| URI | https://dx.doi.org/10.1016/j.neuron.2017.05.028 https://www.ncbi.nlm.nih.gov/pubmed/28595050 https://www.proquest.com/docview/1907318308 https://www.proquest.com/docview/1909172003 https://pubmed.ncbi.nlm.nih.gov/PMC5543692 http://www.cell.com/article/S089662731730466X/pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 94 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1097-4199 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014591 issn: 0896-6273 databaseCode: KQ8 dateStart: 19950201 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVESC databaseName: Elsevier Free Content customDbUrl: eissn: 1097-4199 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0014591 issn: 0896-6273 databaseCode: IXB dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1097-4199 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0014591 issn: 0896-6273 databaseCode: DIK dateStart: 19950101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1097-4199 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014591 issn: 0896-6273 databaseCode: AKRWK dateStart: 19880301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBalY2wvY2v3I1tbNBh70-JYlqz0LQ0N6cpK6RaWPQlZlmhG5oQ1oeS_351km4UWOvZkZJ1B6KS7T9bdd4R8sMZzX_YyVnArWJaLjBnhHANXVnAuHDgFzEb-ciHHk-zzVEx3yLDJhcGwytr2R5serHX9plvPZnc5m3W_JqqP7OXgAPF2T07BDvNMYfmGs-lJe5OQiVg1D4QZSjfpcyHGK3BGIgtqL_J3Yk32-93TXfh5N4ryybpams2tmc__clGj5-RZjS3pIA7_Bdlx1R7ZH1Rwrv61oR9piPYMv9H3yONYhHKzT8ZnTc4fnVUU8CA9wbIRxxRxaKRxpqP54hZ8HApcOcw7A33Qy7b2Fx0uSnfzkkxGp9-GY1bXV2BWiHzFemVqfKZsIksjvBHWweHLAX7M-4mXVrq074UoZAowpkwTX3pewPZPlRHKw5O_IrvVonJvMECqUNakpTKS44U98toJ61VeZkYq7jqEN9OqbU0-jjUw5rqJMvupozI0KkMnQoMyOoS1Xy0j-cYD8nmjMb21iDT4hwe-PGgUrOtNfKMBK-Vo8hLoft92w_bDOxVTucU6yMCBFyP8OuR1XA_tUJEbEABmAsPaWimtAFJ7b_dUs-tA8Q0gj8t-2iGf2jX1TzPw9r9n4B15iq0QBZcfkN3V77U7BLy1Ko7Io8H51ffzo7CxoDW5uBz8-AN4tyx0 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NITReEGz8KAwwEuLNNI1jJ-Vtq6g62CYEm9Q3y3FsUVTSirWa-t9zZycR1ZCGeIoUXyTL57v7HN99B_DWGi98Nch4KazkWS4zbqRzHENZKYR0GBSoGvnsXE0us09TOd2BUVsLQ2mVje-PPj146-ZNv1nN_nI2639LiiGxl2MApNs9Nb0DdzOJ6ISq-KbH3VVCJmPbPJTmJN7Wz4Ukr0AaSTSog0jgSU3Z_x6fbuLPm2mUe-t6aTbXZj7_I0aNH8KDBlyyozj_R7Dj6n04OKrxYP1zw96xkO4Z_qPvw73YhXJzAJOTtuiPzWqGgJAdU9-ID4yAaORxZuP54hqDHAl8dVR4hgphX7rmX2y0qNzVY7gcf7wYTXjTYIFbKfMVH1Sp8VlhE1UZ6Y20Dk9fDgFkPky8ssqlQy9lqVLEMVWa-MqLEu0_LYwsPD7FE9itF7V7RhlSZWFNWhVGCbqxJ2I7aX2RV5lRhXA9EO2yatuwj1MTjLlu08x-6KgMTcrQidSojB7w7qtlZN-4RT5vNaa3dpHGAHHLl4etgnVjxVcawVJOPi_B4TfdMNofXaqY2i3WQQZPvJTi14OncT90UyVyQESYCU5ra6d0AsTtvT1Sz74Hjm9EeUIN0x687_bUP63A8_9egdewN7k4O9WnJ-efX8B9Ggkpcfkh7K5-rd1LBF-r8lUwrt_KOSxH |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NToi98LHBKAxkJMRbujSOnYS3MlEVJKZpUKk8WY4_xKCkFWs1lb-eO-dDTEXaeKoin6U0d_H9HP_udwCvjfbc22EaldyIKM1EGmnhXISprORcOEwKVI386VROpunHmZjtQNu4kFiV9MU6rNHNszv-HOcF6ZRjqqNzPDk7Xlp_B3alQPjdg93p6dnoa0CLhYzILpxwFhmdcBZtuVzgdAWNSFI9HdZ6ndSD_d_paBtubrMm762rpd5c6fn8r5Q0fgDnbWFPzUT5MVivyoH5va3zePt_-xDuNwCVjWq7R7Djqn04GFW4Of-5YW9YoIyGb_H7cLfuZLk5gMmHtnCQXVQMQSV7R70n3jICs7UWNBvPF1eYKMng3FHxGjqVnXUNxNjJwrrLxzAdv_9yMomaJg2RESJbRUObaJ_mJpZWC6-FcbiDcwhCsyL20kiXFF6IUiaIhWwSe-t5iWtIkmuRe_zlT6BXLSr3lFhWZW50YnMtOZ36kzieMD7PbKplzl0feOsrZRoFc2qkMVctVe27qj2syMMqFgo93Ieom7WsFTxusM_aMFANCqnRhcIkc8PMozZqVLMSXCoEXBmtmzEOv-qG8R0mx-vKLdbBBnfNRBPsw2EdZN2tksAgotQYb-ta-HUGpA9-faS6-BZ0whEpclkkfRh0gXqrJ_Dsfyc8hz26Cgy67Ah6q19r9wKx2qp82bydfwBzPTsZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inference+in+the+Brain%3A+Statistics+Flowing+in+Redundant+Population+Codes&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Pitkow%2C+Xaq&rft.au=Angelaki%2C+Dora+E&rft.date=2017-06-07&rft.issn=1097-4199&rft.eissn=1097-4199&rft.volume=94&rft.issue=5&rft.spage=943&rft_id=info:doi/10.1016%2Fj.neuron.2017.05.028&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon |