How natural infection by Nosema ceranae causes honeybee colony collapse
In recent years, honeybees (Apis mellifera) have been strangely disappearing from their hives, and strong colonies have suddenly become weak and died. The precise aetiology underlying the disappearance of the bees remains a mystery. However, during the same period, Nosema ceranae, a microsporidium o...
Saved in:
Published in | Environmental microbiology Vol. 10; no. 10; pp. 2659 - 2669 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.10.2008
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1462-2912 1462-2920 1462-2920 |
DOI | 10.1111/j.1462-2920.2008.01687.x |
Cover
Abstract | In recent years, honeybees (Apis mellifera) have been strangely disappearing from their hives, and strong colonies have suddenly become weak and died. The precise aetiology underlying the disappearance of the bees remains a mystery. However, during the same period, Nosema ceranae, a microsporidium of the Asian bee Apis cerana, seems to have colonized A. mellifera, and it's now frequently detected all over the world in both healthy and weak honeybee colonies. For first time, we show that natural N. ceranae infection can cause the sudden collapse of bee colonies, establishing a direct correlation between N. ceranae infection and the death of honeybee colonies under field conditions. Signs of colony weakness were not evident until the queen could no longer replace the loss of the infected bees. The long asymptomatic incubation period can explain the absence of evident symptoms prior to colony collapse. Furthermore, our results demonstrate that healthy colonies near to an infected one can also become infected, and that N. ceranae infection can be controlled with a specific antibiotic, fumagillin. Moreover, the administration of 120 mg of fumagillin has proven to eliminate the infection, but it cannot avoid reinfection after 6 months. We provide Koch's postulates between N. ceranae infection and a syndrome with a long incubation period involving continuous death of adult bees, non-stop brood rearing by the bees and colony loss in winter or early spring despite the presence of sufficient remaining pollen and honey. |
---|---|
AbstractList | Summary
In recent years, honeybees (Apis mellifera) have been strangely disappearing from their hives, and strong colonies have suddenly become weak and died. The precise aetiology underlying the disappearance of the bees remains a mystery. However, during the same period, Nosema ceranae, a microsporidium of the Asian bee Apis cerana, seems to have colonized A. mellifera, and it's now frequently detected all over the world in both healthy and weak honeybee colonies. For first time, we show that natural N. ceranae infection can cause the sudden collapse of bee colonies, establishing a direct correlation between N. ceranae infection and the death of honeybee colonies under field conditions. Signs of colony weakness were not evident until the queen could no longer replace the loss of the infected bees. The long asymptomatic incubation period can explain the absence of evident symptoms prior to colony collapse. Furthermore, our results demonstrate that healthy colonies near to an infected one can also become infected, and that N. ceranae infection can be controlled with a specific antibiotic, fumagillin. Moreover, the administration of 120 mg of fumagillin has proven to eliminate the infection, but it cannot avoid reinfection after 6 months. We provide Koch's postulates between N. ceranae infection and a syndrome with a long incubation period involving continuous death of adult bees, non‐stop brood rearing by the bees and colony loss in winter or early spring despite the presence of sufficient remaining pollen and honey. In recent years, honeybees (Apis mellifera) have been strangely disappearing from their hives, and strong colonies have suddenly become weak and died. The precise aetiology underlying the disappearance of the bees remains a mystery. However, during the same period, Nosema ceranae, a microsporidium of the Asian bee Apis cerana, seems to have colonized A. mellifera, and it's now frequently detected all over the world in both healthy and weak honeybee colonies. For first time, we show that natural N. ceranae infection can cause the sudden collapse of bee colonies, establishing a direct correlation between N. ceranae infection and the death of honeybee colonies under field conditions. Signs of colony weakness were not evident until the queen could no longer replace the loss of the infected bees. The long asymptomatic incubation period can explain the absence of evident symptoms prior to colony collapse. Furthermore, our results demonstrate that healthy colonies near to an infected one can also become infected, and that N. ceranae infection can be controlled with a specific antibiotic, fumagillin. Moreover, the administration of 120mg of fumagillin has proven to eliminate the infection, but it cannot avoid reinfection after 6months. We provide Koch's postulates between N. ceranae infection and a syndrome with a long incubation period involving continuous death of adult bees, non-stop brood rearing by the bees and colony loss in winter or early spring despite the presence of sufficient remaining pollen and honey. In recent years, honeybees (Apis mellifera) have been strangely disappearing from their hives, and strong colonies have suddenly become weak and died. The precise aetiology underlying the disappearance of the bees remains a mystery. However, during the same period, Nosema ceranae, a microsporidium of the Asian bee Apis cerana, seems to have colonized A. mellifera, and it's now frequently detected all over the world in both healthy and weak honeybee colonies. For first time, we show that natural N. ceranae infection can cause the sudden collapse of bee colonies, establishing a direct correlation between N. ceranae infection and the death of honeybee colonies under field conditions. Signs of colony weakness were not evident until the queen could no longer replace the loss of the infected bees. The long asymptomatic incubation period can explain the absence of evident symptoms prior to colony collapse. Furthermore, our results demonstrate that healthy colonies near to an infected one can also become infected, and that N. ceranae infection can be controlled with a specific antibiotic, fumagillin. Moreover, the administration of 120 mg of fumagillin has proven to eliminate the infection, but it cannot avoid reinfection after 6 months. We provide Koch's postulates between N. ceranae infection and a syndrome with a long incubation period involving continuous death of adult bees, non-stop brood rearing by the bees and colony loss in winter or early spring despite the presence of sufficient remaining pollen and honey. In recent years, honeybees (Apis mellifera) have been strangely disappearing from their hives, and strong colonies have suddenly become weak and died. The precise aetiology underlying the disappearance of the bees remains a mystery. However, during the same period, Nosema ceranae, a microsporidium of the Asian bee Apis cerana, seems to have colonized A. mellifera, and it's now frequently detected all over the world in both healthy and weak honeybee colonies. For first time, we show that natural N. ceranae infection can cause the sudden collapse of bee colonies, establishing a direct correlation between N. ceranae infection and the death of honeybee colonies under field conditions. Signs of colony weakness were not evident until the queen could no longer replace the loss of the infected bees. The long asymptomatic incubation period can explain the absence of evident symptoms prior to colony collapse. Furthermore, our results demonstrate that healthy colonies near to an infected one can also become infected, and that N. ceranae infection can be controlled with a specific antibiotic, fumagillin. Moreover, the administration of 120 mg of fumagillin has proven to eliminate the infection, but it cannot avoid reinfection after 6 months. We provide Koch's postulates between N. ceranae infection and a syndrome with a long incubation period involving continuous death of adult bees, non-stop brood rearing by the bees and colony loss in winter or early spring despite the presence of sufficient remaining pollen and honey.In recent years, honeybees (Apis mellifera) have been strangely disappearing from their hives, and strong colonies have suddenly become weak and died. The precise aetiology underlying the disappearance of the bees remains a mystery. However, during the same period, Nosema ceranae, a microsporidium of the Asian bee Apis cerana, seems to have colonized A. mellifera, and it's now frequently detected all over the world in both healthy and weak honeybee colonies. For first time, we show that natural N. ceranae infection can cause the sudden collapse of bee colonies, establishing a direct correlation between N. ceranae infection and the death of honeybee colonies under field conditions. Signs of colony weakness were not evident until the queen could no longer replace the loss of the infected bees. The long asymptomatic incubation period can explain the absence of evident symptoms prior to colony collapse. Furthermore, our results demonstrate that healthy colonies near to an infected one can also become infected, and that N. ceranae infection can be controlled with a specific antibiotic, fumagillin. Moreover, the administration of 120 mg of fumagillin has proven to eliminate the infection, but it cannot avoid reinfection after 6 months. We provide Koch's postulates between N. ceranae infection and a syndrome with a long incubation period involving continuous death of adult bees, non-stop brood rearing by the bees and colony loss in winter or early spring despite the presence of sufficient remaining pollen and honey. In recent years, honeybees ( Apis mellifera ) have been strangely disappearing from their hives, and strong colonies have suddenly become weak and died. The precise aetiology underlying the disappearance of the bees remains a mystery. However, during the same period, Nosema ceranae , a microsporidium of the Asian bee Apis cerana , seems to have colonized A. mellifera , and it's now frequently detected all over the world in both healthy and weak honeybee colonies. For first time, we show that natural N. ceranae infection can cause the sudden collapse of bee colonies, establishing a direct correlation between N. ceranae infection and the death of honeybee colonies under field conditions. Signs of colony weakness were not evident until the queen could no longer replace the loss of the infected bees. The long asymptomatic incubation period can explain the absence of evident symptoms prior to colony collapse. Furthermore, our results demonstrate that healthy colonies near to an infected one can also become infected, and that N. ceranae infection can be controlled with a specific antibiotic, fumagillin. Moreover, the administration of 120 mg of fumagillin has proven to eliminate the infection, but it cannot avoid reinfection after 6 months. We provide Koch's postulates between N. ceranae infection and a syndrome with a long incubation period involving continuous death of adult bees, non‐stop brood rearing by the bees and colony loss in winter or early spring despite the presence of sufficient remaining pollen and honey. |
Author | González-Porto, Amelia V del Nozal, M. Jesús Bailón, Encarna Garrido Jiménez, Juan J Palencia, Pilar García Higes, Mariano Martín-Hernández, Raquel Meana, Aránzazu Botías, Cristina Bernal, José L Barrios, Laura |
Author_xml | – sequence: 1 fullname: Higes, Mariano – sequence: 2 fullname: Martín-Hernández, Raquel – sequence: 3 fullname: Botías, Cristina – sequence: 4 fullname: Bailón, Encarna Garrido – sequence: 5 fullname: González-Porto, Amelia V – sequence: 6 fullname: Barrios, Laura – sequence: 7 fullname: del Nozal, M. Jesús – sequence: 8 fullname: Bernal, José L – sequence: 9 fullname: Jiménez, Juan J – sequence: 10 fullname: Palencia, Pilar García – sequence: 11 fullname: Meana, Aránzazu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18647336$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URD_gL0BO3BL8EX8dQKJL2a0oRQgqjiPHcSBLNl7sRN38exy27IHL4suM5eedGc3rc3TS-94hlBFckHRerQtSCppTTXFBMVYFJkLJYvcInR0eTg45oafoPMY1xkQyiZ-gU6JEKRkTZ2i58vdZb4YxmC5r-8bZofV9Vk3ZrY9uYzLrgumNy6wZo4vZjzTIVLl0953vpzl0ZhvdU_S4MV10zx7iBbp7f_V1scpvPi2vF29vcsu5lLnFSuoGV1bisiZ1o7DQWgirqSJECM0q7qisSy4a6qxlFavKuqqbktbcCaXZBXq5r7sN_tfo4gCbNlqXhuidHyMILTDHWhwFy7k1p_woSLRQpZQ0gc8fwLHauBq2od2YMMHfZSbgzR6wwccYXAO2Hcy8zyGYtgOCYXYP1jAbA7NJMLsHf9yDXSqg_ilw6HFc-novvW87N_23Dq4-Xs9Z0ud7fRsHtzvoTfgJIn0aDt9ul7B6Jxf48vIDfE78iz3fGA_me2gj3H2hmDBMOJNMK_YbMFjILg |
CitedBy_id | crossref_primary_10_1128_AEM_03097_09 crossref_primary_10_1007_s13592_019_00714_8 crossref_primary_10_1371_journal_pone_0268250 crossref_primary_10_3390_insects14010006 crossref_primary_10_3390_insects13040371 crossref_primary_10_3390_jof8050424 crossref_primary_10_1007_s11829_022_09918_9 crossref_primary_10_1016_j_jip_2010_01_009 crossref_primary_10_1371_journal_pone_0085261 crossref_primary_10_2478_fv_2023_0033 crossref_primary_10_3390_microorganisms9050949 crossref_primary_10_1093_ee_nvaa112 crossref_primary_10_1111_j_1758_2229_2009_00018_x crossref_primary_10_1007_s42690_020_00114_x crossref_primary_10_1111_jeu_12084 crossref_primary_10_3390_life14030373 crossref_primary_10_3896_IBRA_1_49_3_08 crossref_primary_10_1371_journal_pone_0142031 crossref_primary_10_1016_j_jinsphys_2012_07_010 crossref_primary_10_1111_eea_12902 crossref_primary_10_3390_insects10120417 crossref_primary_10_1080_00218839_2021_2008706 crossref_primary_10_1101_pdb_emo123 crossref_primary_10_3390_antibiotics10080960 crossref_primary_10_1007_s10530_022_02835_1 crossref_primary_10_3390_microorganisms9010022 crossref_primary_10_1016_j_jip_2013_06_005 crossref_primary_10_1007_s13592_024_01107_2 crossref_primary_10_1371_journal_pclm_0000485 crossref_primary_10_24190_ISSN2564_615X_2017_03_03 crossref_primary_10_3390_insects13030308 crossref_primary_10_3389_fphys_2023_1172859 crossref_primary_10_1007_s00248_018_1268_z crossref_primary_10_1111_eva_12164 crossref_primary_10_3389_fcimb_2021_823050 crossref_primary_10_4039_tce_2018_28 crossref_primary_10_54097_hset_v35i_7053 crossref_primary_10_1016_j_jip_2024_108168 crossref_primary_10_3390_insects11020124 crossref_primary_10_1080_00218839_2016_1162978 crossref_primary_10_1111_j_1758_2229_2009_00072_x crossref_primary_10_1111_j_1758_2229_2010_00170_x crossref_primary_10_1007_s00705_021_05162_3 crossref_primary_10_1016_j_jip_2010_10_010 crossref_primary_10_1007_s13355_021_00735_9 crossref_primary_10_1111_j_1462_5822_2009_01362_x crossref_primary_10_1660_062_124_0101 crossref_primary_10_1016_j_jip_2009_05_012 crossref_primary_10_1094_PDIS_04_20_0712_RE crossref_primary_10_17221_2983_VETMED crossref_primary_10_1016_j_ijpara_2019_04_002 crossref_primary_10_3896_IBRA_1_49_2_12 crossref_primary_10_1146_annurev_resource_101420_110406 crossref_primary_10_1016_j_jip_2010_08_004 crossref_primary_10_1016_j_vetmic_2012_09_012 crossref_primary_10_1111_imb_12190 crossref_primary_10_3390_insects11080504 crossref_primary_10_1007_s00436_021_07381_8 crossref_primary_10_3390_jof9100990 crossref_primary_10_1186_1756_0500_7_649 crossref_primary_10_3896_IBRA_1_53_2_04 crossref_primary_10_1080_00218839_2019_1708653 crossref_primary_10_1007_s00248_018_1147_7 crossref_primary_10_1371_journal_pone_0145609 crossref_primary_10_1051_apido_2010030 crossref_primary_10_1111_j_1462_2920_2009_01953_x crossref_primary_10_1371_journal_pone_0099465 crossref_primary_10_1051_apido_2010034 crossref_primary_10_1016_j_ejop_2017_07_002 crossref_primary_10_3390_app13031303 crossref_primary_10_17221_8584_VETMED crossref_primary_10_1111_ele_12188 crossref_primary_10_1111_1462_2920_12825 crossref_primary_10_2903_j_efsa_2023_8468 crossref_primary_10_1002_ece3_10528 crossref_primary_10_1007_s13592_015_0410_x crossref_primary_10_1016_j_jip_2014_10_007 crossref_primary_10_1016_j_tim_2011_09_003 crossref_primary_10_1515_jas_2017_0007 crossref_primary_10_1007_s00114_015_1298_z crossref_primary_10_1051_apido_2010021 crossref_primary_10_3390_vetsci8040058 crossref_primary_10_3389_fevo_2020_594263 crossref_primary_10_7243_2054_3425_2_4 crossref_primary_10_1016_j_mimet_2016_09_021 crossref_primary_10_1051_apido_2009039 crossref_primary_10_3389_fimmu_2024_1404766 crossref_primary_10_1021_es101468w crossref_primary_10_1128_AEM_02227_09 crossref_primary_10_1051_apido_2010027 crossref_primary_10_1016_j_jip_2015_12_004 crossref_primary_10_1111_j_1758_2229_2011_00299_x crossref_primary_10_1515_jas_2017_0015 crossref_primary_10_1051_apido_2010010 crossref_primary_10_2478_acve_2019_0001 crossref_primary_10_1051_apido_2010014 crossref_primary_10_1007_s10886_010_9786_2 crossref_primary_10_1051_apido_2009027 crossref_primary_10_1007_s13592_018_0602_2 crossref_primary_10_1016_j_jip_2012_06_008 crossref_primary_10_1186_s12866_020_01939_9 crossref_primary_10_1016_j_rbe_2016_06_003 crossref_primary_10_1002_yea_3309 crossref_primary_10_1016_j_jip_2021_107671 crossref_primary_10_1007_s13592_013_0241_6 crossref_primary_10_1016_j_jip_2021_107672 crossref_primary_10_3390_insects13090844 crossref_primary_10_1051_apido_2010019 crossref_primary_10_1007_s00436_020_06915_w crossref_primary_10_1017_S0031182013001133 crossref_primary_10_1016_j_heliyon_2023_e13494 crossref_primary_10_1016_j_parint_2021_102361 crossref_primary_10_1016_j_jip_2024_108074 crossref_primary_10_1016_j_scitotenv_2024_176245 crossref_primary_10_3390_vetsci9070320 crossref_primary_10_4236_ae_2015_33009 crossref_primary_10_1016_j_jip_2022_107867 crossref_primary_10_1080_21505594_2020_1768338 crossref_primary_10_1016_j_jip_2009_06_011 crossref_primary_10_2139_ssrn_3945332 crossref_primary_10_1371_journal_pone_0140272 crossref_primary_10_1016_j_jip_2009_06_017 crossref_primary_10_1038_s41598_019_46453_9 crossref_primary_10_1002_ps_5188 crossref_primary_10_2478_jas_2020_0025 crossref_primary_10_1016_j_ijpara_2017_11_004 crossref_primary_10_1128_AEM_01067_10 crossref_primary_10_1073_pnas_1525266113 crossref_primary_10_1093_jisesa_ieaa130 crossref_primary_10_1016_j_jip_2009_07_016 crossref_primary_10_1111_1758_2229_12434 crossref_primary_10_1007_s00040_011_0210_x crossref_primary_10_1111_jvp_12509 crossref_primary_10_1080_00218839_2016_1245396 crossref_primary_10_3896_IBRA_1_51_3_12 crossref_primary_10_1016_j_jinsphys_2010_05_016 crossref_primary_10_3390_app12125890 crossref_primary_10_3390_biology13110952 crossref_primary_10_1111_j_1758_2229_2009_00052_x crossref_primary_10_37376_jsh_vi79_6598 crossref_primary_10_1038_srep22042 crossref_primary_10_1051_apido_2009076 crossref_primary_10_4039_tce_2022_30 crossref_primary_10_1016_j_pestbp_2021_104809 crossref_primary_10_1038_s41598_024_67264_7 crossref_primary_10_1016_j_vetmic_2015_02_003 crossref_primary_10_3954_JAUE13_03_1 crossref_primary_10_2754_avb201685030261 crossref_primary_10_3389_fmicb_2022_927892 crossref_primary_10_3390_microorganisms11051258 crossref_primary_10_3390_v7052654 crossref_primary_10_1080_00218839_2022_2154474 crossref_primary_10_1038_s41598_018_32681_y crossref_primary_10_1016_j_jip_2014_06_004 crossref_primary_10_1111_1462_2920_14103 crossref_primary_10_1111_j_1758_2229_2009_00099_x crossref_primary_10_1111_j_1758_2229_2010_00186_x crossref_primary_10_1080_00218839_2018_1495440 crossref_primary_10_1016_j_bbamcr_2012_02_006 crossref_primary_10_1007_s00436_011_2760_2 crossref_primary_10_1111_eea_13286 crossref_primary_10_1007_s40726_020_00142_8 crossref_primary_10_1371_journal_pone_0047955 crossref_primary_10_1007_s00705_020_04697_1 crossref_primary_10_1016_j_envres_2025_121026 crossref_primary_10_1111_j_1462_2920_2009_02123_x crossref_primary_10_1016_j_vetmic_2013_07_030 crossref_primary_10_1016_j_jviromet_2009_06_014 crossref_primary_10_1051_apido_2009070 crossref_primary_10_1111_j_1462_2920_2011_02645_x crossref_primary_10_1111_age_12114 crossref_primary_10_3390_vetsci8060107 crossref_primary_10_1590_0001_3765201920180326 crossref_primary_10_1016_j_dci_2013_03_010 crossref_primary_10_3390_microorganisms9030481 crossref_primary_10_1016_j_pestbp_2019_11_006 crossref_primary_10_1051_apido_2010047 crossref_primary_10_1007_s12595_016_0188_5 crossref_primary_10_1051_apido_2010045 crossref_primary_10_1242_jeb_126920 crossref_primary_10_1515_jas_2016_0019 crossref_primary_10_1111_1365_2664_13461 crossref_primary_10_1515_jas_2016_0027 crossref_primary_10_1016_j_dci_2018_02_004 crossref_primary_10_1371_journal_pone_0152685 crossref_primary_10_1177_0300985819864302 crossref_primary_10_3896_IBRA_1_48_3_12 crossref_primary_10_1016_j_meegid_2014_02_008 crossref_primary_10_2478_jas_2020_0007 crossref_primary_10_3390_insects13121092 crossref_primary_10_1038_s41598_020_78561_2 crossref_primary_10_1016_j_jip_2011_02_003 crossref_primary_10_1016_j_rvsc_2012_03_006 crossref_primary_10_1038_s41598_024_64882_z crossref_primary_10_1016_j_chemosphere_2015_12_030 crossref_primary_10_3390_toxics9080177 crossref_primary_10_1016_j_ecolmodel_2013_06_005 crossref_primary_10_1073_pnas_1422089112 crossref_primary_10_1038_s41598_024_78874_6 crossref_primary_10_31467_uluaricilik_379261 crossref_primary_10_30782_jrvm_593762 crossref_primary_10_1242_jeb_119198 crossref_primary_10_3390_ani11061823 crossref_primary_10_3390_agriculture14040583 crossref_primary_10_1016_j_mimet_2021_106183 crossref_primary_10_1016_j_jip_2008_12_001 crossref_primary_10_1038_s41559_017_0246_z crossref_primary_10_1080_00218839_2021_1889803 crossref_primary_10_3390_insects10010010 crossref_primary_10_1093_jee_toad103 crossref_primary_10_1038_s41598_020_74209_3 crossref_primary_10_1080_0005772X_2015_1118962 crossref_primary_10_1371_journal_pone_0057540 crossref_primary_10_1038_s41598_021_95323_w crossref_primary_10_1142_S0219525920500198 crossref_primary_10_1007_s13592_011_0003_2 crossref_primary_10_1016_j_jip_2012_04_001 crossref_primary_10_1016_j_vetpar_2010_02_010 crossref_primary_10_1093_jee_tow012 crossref_primary_10_33188_vetheder_1592535 crossref_primary_10_3390_pathogens10080955 crossref_primary_10_3389_fvets_2019_00079 crossref_primary_10_1016_j_jinsphys_2021_104237 crossref_primary_10_1016_j_sjbs_2017_01_054 crossref_primary_10_1016_j_rvsc_2015_08_003 crossref_primary_10_3390_insects3041271 crossref_primary_10_1007_s13592_015_0375_9 crossref_primary_10_1038_s41598_024_58883_1 crossref_primary_10_2139_ssrn_3711690 crossref_primary_10_1016_j_chemosphere_2019_02_129 crossref_primary_10_1371_journal_pone_0117200 crossref_primary_10_1002_ps_6788 crossref_primary_10_1111_j_1462_2920_2011_02647_x crossref_primary_10_1002_ps_2188 crossref_primary_10_1371_journal_pone_0032151 crossref_primary_10_1080_00218839_2019_1676999 crossref_primary_10_1098_rspb_2014_1896 crossref_primary_10_1093_jee_tow103 crossref_primary_10_1016_j_aspen_2019_08_006 crossref_primary_10_1371_journal_pone_0163522 crossref_primary_10_3390_insects3041143 crossref_primary_10_1093_jee_toaa170 crossref_primary_10_1016_j_mib_2010_05_005 crossref_primary_10_1080_0194262X_2014_912573 crossref_primary_10_1016_j_jip_2014_07_002 crossref_primary_10_1002_cyto_a_22428 crossref_primary_10_1186_1297_9716_44_25 crossref_primary_10_3389_fevo_2018_00058 crossref_primary_10_1038_s41598_020_67183_3 crossref_primary_10_1007_s00203_023_03416_z crossref_primary_10_4161_worm_20501 crossref_primary_10_1371_journal_pone_0091686 crossref_primary_10_1007_s13592_015_0409_3 crossref_primary_10_1016_j_jip_2009_08_005 crossref_primary_10_1016_j_jip_2016_01_007 crossref_primary_10_1007_s00248_015_0594_7 crossref_primary_10_1371_journal_pone_0291710 crossref_primary_10_1007_s00253_010_2573_8 crossref_primary_10_1139_cjfas_2013_0545 crossref_primary_10_1371_journal_pone_0187726 crossref_primary_10_1016_j_jip_2012_01_004 crossref_primary_10_1080_00218839_2018_1494892 crossref_primary_10_1007_s13592_012_0121_5 crossref_primary_10_1007_s13592_018_0589_8 crossref_primary_10_1186_1471_2164_14_451 crossref_primary_10_3390_insects12040282 crossref_primary_10_3390_vetsci7030113 crossref_primary_10_3390_insects8020048 crossref_primary_10_1016_j_virol_2014_02_012 crossref_primary_10_1371_journal_pone_0173438 crossref_primary_10_1515_agricultura_2017_0006 crossref_primary_10_1093_jee_toy341 crossref_primary_10_1093_jee_tow282 crossref_primary_10_17221_6982_VETMED crossref_primary_10_1371_journal_pone_0126330 crossref_primary_10_1016_j_jip_2012_01_005 crossref_primary_10_1016_j_jip_2012_01_007 crossref_primary_10_3390_vetsci7030111 crossref_primary_10_1007_s00436_012_3195_0 crossref_primary_10_1016_j_heliyon_2020_e04599 crossref_primary_10_1038_s41598_023_38905_0 crossref_primary_10_4039_tce_2012_46 crossref_primary_10_1016_j_carbpol_2015_07_022 crossref_primary_10_3920_BM2015_0085 crossref_primary_10_7717_peerj_3297 crossref_primary_10_1016_j_pestbp_2015_09_015 crossref_primary_10_3390_biology10090905 crossref_primary_10_1016_j_zool_2016_03_007 crossref_primary_10_7717_peerj_6325 crossref_primary_10_3389_fnsys_2017_00063 crossref_primary_10_4001_003_022_0313 crossref_primary_10_1007_s00114_011_0881_1 crossref_primary_10_1016_j_scitotenv_2021_145213 crossref_primary_10_1007_s10393_013_0870_2 crossref_primary_10_1017_S0031182020001018 crossref_primary_10_3389_fgene_2015_00100 crossref_primary_10_3390_ani14152183 crossref_primary_10_1128_spectrum_05194_22 crossref_primary_10_1007_s13592_013_0201_1 crossref_primary_10_1017_S0031182021001827 crossref_primary_10_1371_journal_ppat_1004200 crossref_primary_10_1111_1758_2229_12024 crossref_primary_10_1371_journal_pone_0263273 crossref_primary_10_1177_10406387231194620 crossref_primary_10_3389_fmicb_2021_645353 crossref_primary_10_3390_app12020783 crossref_primary_10_3390_insects13020193 crossref_primary_10_1653_024_097_0233 crossref_primary_10_1111_j_1462_2920_2010_02346_x crossref_primary_10_1016_j_jip_2012_09_002 crossref_primary_10_1371_journal_pone_0258801 crossref_primary_10_1111_j_1462_2920_2010_02311_x crossref_primary_10_1007_s00436_011_2292_9 crossref_primary_10_1016_j_jinsphys_2017_12_010 crossref_primary_10_1038_s41598_019_50974_8 crossref_primary_10_1007_s00248_016_0880_z crossref_primary_10_1371_journal_pone_0227484 crossref_primary_10_3389_fcimb_2017_00301 crossref_primary_10_1016_j_jip_2010_12_005 crossref_primary_10_3390_microorganisms12010192 crossref_primary_10_1016_j_foodchem_2015_01_111 crossref_primary_10_1080_00218839_2024_2423456 crossref_primary_10_1371_journal_ppat_1001160 crossref_primary_10_1007_s13592_013_0203_z crossref_primary_10_3390_vetsci7040199 crossref_primary_10_1016_j_neuint_2012_09_020 crossref_primary_10_1098_rspb_2015_1371 crossref_primary_10_1038_srep32612 crossref_primary_10_1080_00218839_2021_1900636 crossref_primary_10_7717_peerj_13530 crossref_primary_10_3390_insects12121051 crossref_primary_10_3390_life13020438 crossref_primary_10_1093_jee_toy026 crossref_primary_10_1016_j_envpol_2020_115622 crossref_primary_10_1017_S0031182015000840 crossref_primary_10_52559_eunk_v1i1_24 crossref_primary_10_1016_j_biocon_2009_04_007 crossref_primary_10_3389_fimmu_2023_1247582 crossref_primary_10_3390_vetsci9050199 crossref_primary_10_17221_1587_VETMED crossref_primary_10_3896_IBRA_1_52_5_09 crossref_primary_10_2478_s11756_012_0038_5 crossref_primary_10_1080_0005772X_2019_1699007 crossref_primary_10_1038_s41564_019_0514_6 crossref_primary_10_1371_journal_pone_0094459 crossref_primary_10_3390_microorganisms9030505 crossref_primary_10_1038_s41598_023_49189_9 crossref_primary_10_3390_insects15010029 crossref_primary_10_1016_j_jip_2012_02_014 crossref_primary_10_1007_s13592_015_0394_6 crossref_primary_10_1371_journal_pone_0115890 crossref_primary_10_1007_s13592_012_0147_8 crossref_primary_10_1080_00218839_2025_2471118 crossref_primary_10_1128_AEM_02908_08 crossref_primary_10_1016_j_rvsc_2011_08_002 crossref_primary_10_1016_j_ijpara_2024_12_003 crossref_primary_10_1371_journal_ppat_1002227 crossref_primary_10_1007_s00436_012_2875_0 crossref_primary_10_4039_n10_010 crossref_primary_10_3390_vetsci7030131 crossref_primary_10_1111_j_1365_2672_2009_04635_x crossref_primary_10_1016_j_cnsns_2020_105207 crossref_primary_10_3390_app12010422 crossref_primary_10_1016_j_prevetmed_2021_105322 crossref_primary_10_3896_IBRA_1_52_4_13 crossref_primary_10_1017_S0031182014001243 crossref_primary_10_1093_jee_toac196 crossref_primary_10_1038_s41598_018_23678_8 crossref_primary_10_3390_vetsci7030125 crossref_primary_10_1007_s12602_022_10025_7 crossref_primary_10_1111_j_1758_2229_2011_00312_x crossref_primary_10_1371_journal_ppat_1001243 crossref_primary_10_1038_nrmicro1979 crossref_primary_10_1080_00218839_2016_1144975 crossref_primary_10_1890_120126 crossref_primary_10_3390_vetsci9030130 crossref_primary_10_1016_j_cois_2015_04_006 crossref_primary_10_1016_j_jip_2013_01_004 crossref_primary_10_1016_j_jinsphys_2016_01_004 crossref_primary_10_1016_j_jip_2013_01_002 crossref_primary_10_1016_j_cois_2015_04_004 crossref_primary_10_1371_journal_pone_0021550 crossref_primary_10_1002_rcm_8980 crossref_primary_10_3390_insects15010059 crossref_primary_10_1038_srep10982 crossref_primary_10_1080_00218839_2017_1306375 crossref_primary_10_1007_s13592_015_0411_9 crossref_primary_10_1111_j_1758_2229_2009_00014_x crossref_primary_10_1111_jam_12066 crossref_primary_10_36610_j_jsaas_2014_010200028 crossref_primary_10_3390_biology13020117 crossref_primary_10_7717_peerj_5887 crossref_primary_10_1007_s13592_015_0401_y crossref_primary_10_1016_j_jip_2009_03_006 crossref_primary_10_1007_s13592_020_00831_9 crossref_primary_10_1128_mBio_02164_15 crossref_primary_10_7717_peerj_522 crossref_primary_10_1007_s12161_014_9956_x crossref_primary_10_1128_AEM_02105_16 crossref_primary_10_1016_j_jip_2011_05_012 crossref_primary_10_1111_j_1365_2672_2011_05192_x crossref_primary_10_1016_j_jip_2011_08_006 crossref_primary_10_1021_jf4055374 crossref_primary_10_24190_ISSN2564_615X_2017_01_06 crossref_primary_10_1016_j_cois_2018_02_006 crossref_primary_10_1093_jee_toz168 crossref_primary_10_3390_ecologies3030022 crossref_primary_10_1371_journal_pone_0018491 crossref_primary_10_1371_journal_pone_0072443 crossref_primary_10_1371_journal_pone_0070182 crossref_primary_10_3390_pathogens10070785 crossref_primary_10_1016_j_rbe_2018_04_001 crossref_primary_10_3920_JIFF2014_0022 crossref_primary_10_1016_j_sjbs_2018_11_017 crossref_primary_10_1146_annurev_micro_091014_104136 crossref_primary_10_1080_00218839_2023_2221563 crossref_primary_10_2903_j_efsa_2016_4578 crossref_primary_10_1093_jee_tox193 crossref_primary_10_1371_journal_pone_0103989 crossref_primary_10_1007_s13592_013_0243_4 crossref_primary_10_1093_jee_tox075 crossref_primary_10_1603_EC10235 crossref_primary_10_4142_jvs_2021_22_e40 crossref_primary_10_1016_j_jip_2010_06_005 crossref_primary_10_1002_ece3_21 crossref_primary_10_1038_s41598_024_67796_y crossref_primary_10_1163_187498312X639568 crossref_primary_10_1016_j_ijpara_2024_11_008 crossref_primary_10_1016_j_jip_2010_06_001 crossref_primary_10_1021_acs_jproteome_0c00658 crossref_primary_10_1016_j_heliyon_2024_e34390 crossref_primary_10_1016_j_jip_2016_11_001 crossref_primary_10_35206_jan_688866 crossref_primary_10_1002_ece3_3178 crossref_primary_10_1016_j_jip_2016_11_003 crossref_primary_10_1016_j_jip_2016_11_002 crossref_primary_10_1007_s00436_017_5630_8 crossref_primary_10_1007_s00436_015_4733_3 crossref_primary_10_1128_AEM_06537_11 crossref_primary_10_1371_journal_pone_0037017 crossref_primary_10_1016_j_aspen_2021_05_006 crossref_primary_10_1016_j_jip_2020_107348 crossref_primary_10_1016_j_jinsphys_2018_05_002 crossref_primary_10_1128_mBio_00898_13 crossref_primary_10_1080_00218839_2019_1614737 crossref_primary_10_1016_j_jinsphys_2012_04_016 crossref_primary_10_3896_IBRA_1_53_5_09 crossref_primary_10_2478_jas_2023_0002 crossref_primary_10_1098_rsif_2016_0908 crossref_primary_10_1038_s41598_017_05596_3 crossref_primary_10_1016_j_jrurstud_2022_10_020 crossref_primary_10_1371_journal_ppat_1004816 crossref_primary_10_1039_C8LC01342J crossref_primary_10_2903_sp_efsa_2012_EN_340 crossref_primary_10_1016_j_scitotenv_2019_134208 crossref_primary_10_1371_journal_ppat_1000466 crossref_primary_10_1016_j_aspen_2018_02_006 crossref_primary_10_1371_journal_pone_0020656 crossref_primary_10_3390_v6052012 crossref_primary_10_1016_j_jip_2018_09_007 crossref_primary_10_1111_j_1600_065X_2010_00985_x crossref_primary_10_1038_s42003_023_04587_7 crossref_primary_10_1371_journal_ppat_1009270 crossref_primary_10_1111_1462_2920_12426 crossref_primary_10_1007_s00436_024_08225_x crossref_primary_10_1007_s00248_022_02050_4 crossref_primary_10_1111_afe_12338 crossref_primary_10_1242_jeb_130435 crossref_primary_10_1242_jeb_244340 crossref_primary_10_1371_journal_ppat_1011225 crossref_primary_10_1080_00218839_2019_1614728 crossref_primary_10_1080_00218839_2019_1632150 crossref_primary_10_1080_00218839_2023_2175964 crossref_primary_10_1371_journal_pone_0297864 crossref_primary_10_1128_AEM_01025_09 crossref_primary_10_1111_ecog_06979 crossref_primary_10_1186_s13568_024_01734_z crossref_primary_10_3390_pathogens10091117 crossref_primary_10_3896_IBRA_1_52_2_12 crossref_primary_10_3896_IBRA_1_49_1_22 crossref_primary_10_1016_j_jip_2013_09_002 crossref_primary_10_1371_journal_pone_0006481 crossref_primary_10_3896_IBRA_1_49_1_23 crossref_primary_10_1016_j_jip_2024_108215 crossref_primary_10_3390_ijms24010550 crossref_primary_10_3896_IBRA_1_49_1_29 crossref_primary_10_3389_fevo_2021_755226 crossref_primary_10_1016_j_cois_2015_05_010 crossref_primary_10_1017_S0031182009991818 crossref_primary_10_1371_journal_pone_0159615 crossref_primary_10_1007_s13592_021_00845_x crossref_primary_10_1016_j_jchromb_2012_05_016 crossref_primary_10_51970_jasp_1266441 crossref_primary_10_1016_j_agee_2022_108084 crossref_primary_10_1111_1758_2229_12052 crossref_primary_10_1371_journal_pone_0030641 crossref_primary_10_2478_jas_2018_0007 crossref_primary_10_1016_j_tree_2021_03_006 crossref_primary_10_1242_jeb_161489 crossref_primary_10_1371_journal_pone_0182814 crossref_primary_10_2478_jas_2021_0010 crossref_primary_10_3896_IBRA_1_49_1_11 crossref_primary_10_1111_1758_2229_12059 crossref_primary_10_3896_IBRA_1_52_1_14 crossref_primary_10_1002_vms3_1194 crossref_primary_10_3389_fmicb_2022_835390 crossref_primary_10_5424_sjar_2017151_9652 crossref_primary_10_1007_s13592_011_0077_x crossref_primary_10_1080_24750263_2022_2121009 crossref_primary_10_1016_j_gene_2025_149243 crossref_primary_10_1111_gec3_12266 crossref_primary_10_1371_journal_pone_0110237 crossref_primary_10_3390_insects11060382 crossref_primary_10_1007_s13592_018_0607_x crossref_primary_10_3390_agriculture11100963 crossref_primary_10_1016_j_jip_2009_10_009 crossref_primary_10_1111_1462_2920_12883 crossref_primary_10_1002_eap_2442 crossref_primary_10_1007_s00248_021_01827_3 crossref_primary_10_3390_microorganisms13010142 crossref_primary_10_3896_IBRA_1_49_1_05 crossref_primary_10_1080_17513758_2016_1237682 crossref_primary_10_1111_j_1758_2229_2012_00386_x crossref_primary_10_1016_S2222_1808_15_60980_X crossref_primary_10_1080_00218839_2022_2053033 crossref_primary_10_1007_s00040_022_00860_w crossref_primary_10_1080_07924259_2018_1433726 crossref_primary_10_1371_journal_pone_0133228 crossref_primary_10_1016_j_meegid_2013_04_016 crossref_primary_10_1111_1749_4877_12752 crossref_primary_10_3390_insects10100329 crossref_primary_10_7717_peerj_5812 crossref_primary_10_1007_s13592_018_0584_0 crossref_primary_10_2298_VETGL231129010D crossref_primary_10_1016_j_rvsc_2013_09_012 |
Cites_doi | 10.1016/S0022-5193(03)00121-8 10.1080/00218839.2000.11101029 10.1128/AEM.00270-07 10.1126/science.316.5827.970 10.1051/apido:2001004 10.1016/j.virol.2006.11.038 10.1016/j.jip.2006.11.001 10.1080/00218839.1989.11100829 10.3896/IBRA.1.46.2.12 10.1016/0022-2011(84)90026-0 10.1128/CDLI.8.1.93-104.2001 10.1007/s002650050276 10.1051/apido:2006040 10.1080/00218839.1989.11100828 10.1080/0005772X.2002.11099532 10.1080/00218839.1995.11100900 10.1051/apido:2007037 10.1126/science.1146498 10.1016/j.jip.2007.07.010 10.1016/j.jviromet.2006.11.021 10.1016/j.jip.2006.02.005 10.1128/AEM.67.5.2384-2387.2001 10.1016/j.jip.2007.02.014 10.1021/jf034310n 10.1016/S0065-3527(07)70002-7 10.1111/j.1744-7348.1953.tb01093.x 10.1128/AEM.72.1.606-611.2006 10.1016/S0021-9673(98)00292-1 10.1016/j.chroma.2007.01.117 |
ContentType | Journal Article |
Copyright | 2008 The Authors. Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd |
Copyright_xml | – notice: 2008 The Authors. Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS C1K M7N 7S9 L.6 7X8 |
DOI | 10.1111/j.1462-2920.2008.01687.x |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Environmental Sciences and Pollution Management Algology Mycology and Protozoology Abstracts (Microbiology C) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Ecology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Entomology Abstracts MEDLINE MEDLINE - Academic AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1462-2920 |
EndPage | 2669 |
ExternalDocumentID | 18647336 10_1111_j_1462_2920_2008_01687_x EMI1687 ark_67375_WNG_HD7C0BBK_Q US201301537398 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABCVL ABEML ABHUG ABJNI ABPTK ABPVW ABWRO ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIAGR AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XFK XG1 XIH YUY ZZTAW ~02 ~IA ~KM ~WT AAHBH AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG ALVPJ BSCLL HGLYW OIG AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS C1K M7N 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c5577-c0879f0bc704d1df8069966c928116693b5e27d456f2ecc3b3b4dbdf42d5e6893 |
IEDL.DBID | DR2 |
ISSN | 1462-2912 1462-2920 |
IngestDate | Fri Jul 11 13:33:47 EDT 2025 Fri Jul 11 03:04:59 EDT 2025 Thu Jul 10 19:27:31 EDT 2025 Wed Feb 19 01:42:43 EST 2025 Tue Jul 01 00:42:40 EDT 2025 Thu Apr 24 23:07:20 EDT 2025 Wed Jan 22 16:59:20 EST 2025 Sun Sep 21 06:18:13 EDT 2025 Wed Dec 27 19:16:57 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5577-c0879f0bc704d1df8069966c928116693b5e27d456f2ecc3b3b4dbdf42d5e6893 |
Notes | http://dx.doi.org/10.1111/j.1462-2920.2008.01687.x ark:/67375/WNG-HD7C0BBK-Q istex:579BA242BEC0F8D4C77DD902D36A9CEDDA3B59D7 ArticleID:EMI1687 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 18647336 |
PQID | 19684772 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_69605096 proquest_miscellaneous_48069525 proquest_miscellaneous_19684772 pubmed_primary_18647336 crossref_citationtrail_10_1111_j_1462_2920_2008_01687_x crossref_primary_10_1111_j_1462_2920_2008_01687_x wiley_primary_10_1111_j_1462_2920_2008_01687_x_EMI1687 istex_primary_ark_67375_WNG_HD7C0BBK_Q fao_agris_US201301537398 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2008 |
PublicationDateYYYYMMDD | 2008-10-01 |
PublicationDate_xml | – month: 10 year: 2008 text: October 2008 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | Environmental microbiology |
PublicationTitleAlternate | Environ Microbiol |
PublicationYear | 2008 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd |
References | Liu, T.P. (1984) Ultrastructure of the midgut of the worker honey bee Apis mellifera heavily infected with Nosema apis. J Invertebr Pathol 44: 282-291. Pickard, R.S., and El-Shemy, A.A.M. (1989) Seasonal variation in the infection of honeybee colonies with Nosema apis Zander. J Apic Res 28: 93-100. Martín-Hernández, R., Meana, A., Prieto, L., Martínez Salvador, A., Garrido-Bailón, E., and Higes, M. (2007) Outcome of colonization of Apis mellifera by Nosema ceranae. Appl Environ Microbiol 73: 6331-6338. Paxton, R., Klee, J., Korpela, S., and Fries, I. (2007) Nosema ceranae has infected Apis mellifera Europe in at least 1998 and may be more virulent than Nosema apis. Apidologie 38: 558-565. Chen, Y., Pettis, J.S., Collins, A.M., and Feldlaufer, M.F. (2006) Prevalence and transmission routes of honey bee viruses. App Environ Microbiol 72: 606-611. Bakonyi, T., Frakas, R., Szendroi, A., Dobos-Kovacs, M., and Rusvai, M. (2002) Detection of acute bee paralysis virus by RT-PCR in honeybee and Varroa destructor field samples: rapid screening of representative Hungarian apiaries. Apidologie 33: 63-74. Valdés, B., Diez, M.J., and Fernández, I. (1987) Atlas Polínico de Andalucía Occidental. Sevilla, Spain: Universidad de Sevilla (eds). Erdtman, G. (1969) Handbook of Palynology. An Introduction to the Study of Pollen Grains and Spores. Copenhagen, Denmark: Munksgaard. Higes, M., García-Palencia, P., Martín-Hernández, R., and Meana, A. (2007) Experimental infection of Apis mellifera honeybees with the Microsporidia Nosema ceranae. J Invertebr Pathol 94: 211-217. Kralj, J., and Fuchs, S. (2006) Parasitic Varroa destructor mites influence flight duration and homing ability of infested Apis mellifera foragers. Apidologie 37: 577-587. Doull, K.M., and Cellier, K.M. (1961) A survey of the incidence of Nosema disease (Nosema apis Zander) of the honey bee in South Australia. J Insect Pathol 3: 280-288. Jiménez, J.J., Bernal, J.L., del Nozal, M.J., Toribio, L., and Martín, M.T. (1998) Gas chromatography with electron-capture and nitrogen-phosphorus detection in the analysis of pesticides in honey after elution from a Florisil column. Influence of the honey matrix on the quantitative results. J Chromatogr A 823: 381-387. Klee, J., Besana, A.M., Genersch, E., Gisder, S., Nanetti, A., Tam, D.Q., et al. (2007) Widespread dispersal of the Microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J Invertebr Pathol 96: 1-10. Grabensteiner, E., Ritter, W., Carter, M.J., Davison, S., Pechhacker, H., Kolodziejek, J., et al. (2001) Sacbrood virus of the honeybee (Apis mellifera): rapid identification and phylogenetic analysis using reverse transcription-PCR. Clin Diagn Lab Immunol 8: 93-104. Chauzat, M.P., Higes, M., Martín-Hernández, R., Meana, A., Cougoule, N., and Faucon, J.P. (2007) Presence of Nosema ceranae in French honeybee colonies. J Apic Res 46: 127-128. Faucon, J.P., Mathieu, L., Ribiere, M., Martel, A.C., Drajnudel, P., Zeggane, S., et al. (2002) Honey bee winter mortality in France in 1999 and 2000. Bee World 83: 13-23. Amdam, G.A., and Omholt, W. (2003) The hive bee to forager transition in honeybee colonies: the double repressor hypothesis. J Theor Biol 223: 451-464. Hung, A.C.F. (2000) PCR detection of Kashmir bee virus in honey bee excreta. J Apic Res 39: 103-106. Chen, Y.P., and Siede, R. (2007) Honey bee virus. Adv Virus Res 70: 33-80. Hassanein, M.H. (1953) The influence of infection with Nosema apis on the activities and longevity of the worker honeybee. Ann Appl Biol 40: 418-423. Higes, M., Martín, R., and Meana, A. (2006) Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J Invertebr Pathol 92: 93-95. Benjeddou, M., Leat, N., Allsopp, M., and Davison, S. (2001) Detection of acute paralysis virus and black queen cell virus from honeybees by reverse trasciptase PCR. Appl Environ Microbiol 67: 2384-2387. Huang, Z.Y., and Robinson, G.E. (1996) Regulation of honey bee division of labor by colony age demography. Behav Ecol Sociobiol 39: 147-158. Laurent, F.M., and Rathahao, E. (2003) Distribution of (C-14)imidacloprid in sunflowers (Helianthus annuus L.) following seed treatment. J Agric Food Chem 51: 8005-8010. Faegri, K., and Iversen, J. (1989) Textbook of Pollen Analysis, IV Edition. Faegri, K., Kaland, P.E., Krzywinski, K. (eds). Chichester, USA: John Wiley & Sons. El-Shemy, A.A.M., and Pickard, R.S. (1989) Nosema apis Zander infection levels in honeybees of known age. J Apic Res 28: 101-106. Stoltz, D., Shen, X.R., Boggis, C., and Sisson, G. (1995) Molecular diagnosis of Kashmir bee virus infection. J Apic Res 34: 153-160. Chen, Y., Evans, J.D., Smith, I.B., and Pettis, J.S. (2008) Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United States. J Invertebr Pathol 97: 186-188. Higes, M., Martín, R., Sanz, A., Alvarez, N., Sanz, A., Garcia, M.P., and Meana, A. (2005) El síndrome de despoblamiento de las colmenas en España. Consideraciones sobre su origen. Vida Apícola 133: 15-21. Jiménez, J.J., Bernal, J.L., del Nozal, M.J., Martín M.T., and Mayo, R. (2007) Comparative study of sample preparation procedures to determine fipronil in pollen by gas chromatography with mass spectrometric and electron capture detection. J Chromatogr A 1146: 8-16. Maori, E., Tanne, E., and Sela, I. (2007) Reciprocal sequence exchange between non-retro viruses and hosts leading to the appearance of new host phenotypes. Virology 362: 342-349. Cox-Foster, D.L., Conlan, S., Holmes, E., Palacios, G., Evans, J.D., Moran, N.A., et al. (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318: 283-287. Blanchard, P., Ribiere, M., Celle, O., Lallemand, P., Schurr, F., Olivier, V., et al. (2007) Evaluation of a real-time two-step RT-PCR assay for quantitation of Chronic bee paralysis virus (CBPV) genome in experimentally-infected bee tissues and in life stages of a symptomatic colony. J Virol Methods 141: 7-13. 2006; 92 1996; 39 2006; 72 2005; 133 1984; 44 1995; 34 2007; 141 2002; 33 2007; 1146 2006; 37 2007; 362 2008 2007 2007; 70 2005 2007; 94 2004 2007; 73 2008; 97 2007; 96 2001; 67 2003; 51 1989; 28 2007; 38 2000; 39 2002; 83 1961; 3 2001; 8 1953; 40 1998; 823 1987 2003; 223 2007; 318 2007; 46 1969 1989 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 Higes M. (e_1_2_5_19_1) 2005; 133 e_1_2_5_29_1 Valdés B. (e_1_2_5_39_1) 1987 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 Faegri K. (e_1_2_5_14_1) 1989 e_1_2_5_2_1 Grabensteiner E. (e_1_2_5_17_1) 2001; 8 e_1_2_5_18_1 Erdtman G. (e_1_2_5_13_1) 1969 Doull K.M. (e_1_2_5_11_1) 1961; 3 e_1_2_5_30_1 e_1_2_5_31_1 El‐Shemy A.A.M. (e_1_2_5_12_1) 1989; 28 |
References_xml | – reference: Kralj, J., and Fuchs, S. (2006) Parasitic Varroa destructor mites influence flight duration and homing ability of infested Apis mellifera foragers. Apidologie 37: 577-587. – reference: Benjeddou, M., Leat, N., Allsopp, M., and Davison, S. (2001) Detection of acute paralysis virus and black queen cell virus from honeybees by reverse trasciptase PCR. Appl Environ Microbiol 67: 2384-2387. – reference: Doull, K.M., and Cellier, K.M. (1961) A survey of the incidence of Nosema disease (Nosema apis Zander) of the honey bee in South Australia. J Insect Pathol 3: 280-288. – reference: Chen, Y., Pettis, J.S., Collins, A.M., and Feldlaufer, M.F. (2006) Prevalence and transmission routes of honey bee viruses. App Environ Microbiol 72: 606-611. – reference: Faucon, J.P., Mathieu, L., Ribiere, M., Martel, A.C., Drajnudel, P., Zeggane, S., et al. (2002) Honey bee winter mortality in France in 1999 and 2000. Bee World 83: 13-23. – reference: Higes, M., García-Palencia, P., Martín-Hernández, R., and Meana, A. (2007) Experimental infection of Apis mellifera honeybees with the Microsporidia Nosema ceranae. J Invertebr Pathol 94: 211-217. – reference: Chen, Y., Evans, J.D., Smith, I.B., and Pettis, J.S. (2008) Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United States. J Invertebr Pathol 97: 186-188. – reference: Chauzat, M.P., Higes, M., Martín-Hernández, R., Meana, A., Cougoule, N., and Faucon, J.P. (2007) Presence of Nosema ceranae in French honeybee colonies. J Apic Res 46: 127-128. – reference: Klee, J., Besana, A.M., Genersch, E., Gisder, S., Nanetti, A., Tam, D.Q., et al. (2007) Widespread dispersal of the Microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J Invertebr Pathol 96: 1-10. – reference: Cox-Foster, D.L., Conlan, S., Holmes, E., Palacios, G., Evans, J.D., Moran, N.A., et al. (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318: 283-287. – reference: Hassanein, M.H. (1953) The influence of infection with Nosema apis on the activities and longevity of the worker honeybee. Ann Appl Biol 40: 418-423. – reference: Laurent, F.M., and Rathahao, E. (2003) Distribution of (C-14)imidacloprid in sunflowers (Helianthus annuus L.) following seed treatment. J Agric Food Chem 51: 8005-8010. – reference: Jiménez, J.J., Bernal, J.L., del Nozal, M.J., Martín M.T., and Mayo, R. (2007) Comparative study of sample preparation procedures to determine fipronil in pollen by gas chromatography with mass spectrometric and electron capture detection. J Chromatogr A 1146: 8-16. – reference: Martín-Hernández, R., Meana, A., Prieto, L., Martínez Salvador, A., Garrido-Bailón, E., and Higes, M. (2007) Outcome of colonization of Apis mellifera by Nosema ceranae. Appl Environ Microbiol 73: 6331-6338. – reference: Valdés, B., Diez, M.J., and Fernández, I. (1987) Atlas Polínico de Andalucía Occidental. Sevilla, Spain: Universidad de Sevilla (eds). – reference: El-Shemy, A.A.M., and Pickard, R.S. (1989) Nosema apis Zander infection levels in honeybees of known age. J Apic Res 28: 101-106. – reference: Faegri, K., and Iversen, J. (1989) Textbook of Pollen Analysis, IV Edition. Faegri, K., Kaland, P.E., Krzywinski, K. (eds). Chichester, USA: John Wiley & Sons. – reference: Chen, Y.P., and Siede, R. (2007) Honey bee virus. Adv Virus Res 70: 33-80. – reference: Liu, T.P. (1984) Ultrastructure of the midgut of the worker honey bee Apis mellifera heavily infected with Nosema apis. J Invertebr Pathol 44: 282-291. – reference: Maori, E., Tanne, E., and Sela, I. (2007) Reciprocal sequence exchange between non-retro viruses and hosts leading to the appearance of new host phenotypes. Virology 362: 342-349. – reference: Blanchard, P., Ribiere, M., Celle, O., Lallemand, P., Schurr, F., Olivier, V., et al. (2007) Evaluation of a real-time two-step RT-PCR assay for quantitation of Chronic bee paralysis virus (CBPV) genome in experimentally-infected bee tissues and in life stages of a symptomatic colony. J Virol Methods 141: 7-13. – reference: Stoltz, D., Shen, X.R., Boggis, C., and Sisson, G. (1995) Molecular diagnosis of Kashmir bee virus infection. J Apic Res 34: 153-160. – reference: Amdam, G.A., and Omholt, W. (2003) The hive bee to forager transition in honeybee colonies: the double repressor hypothesis. J Theor Biol 223: 451-464. – reference: Higes, M., Martín, R., Sanz, A., Alvarez, N., Sanz, A., Garcia, M.P., and Meana, A. (2005) El síndrome de despoblamiento de las colmenas en España. Consideraciones sobre su origen. Vida Apícola 133: 15-21. – reference: Pickard, R.S., and El-Shemy, A.A.M. (1989) Seasonal variation in the infection of honeybee colonies with Nosema apis Zander. J Apic Res 28: 93-100. – reference: Huang, Z.Y., and Robinson, G.E. (1996) Regulation of honey bee division of labor by colony age demography. Behav Ecol Sociobiol 39: 147-158. – reference: Grabensteiner, E., Ritter, W., Carter, M.J., Davison, S., Pechhacker, H., Kolodziejek, J., et al. (2001) Sacbrood virus of the honeybee (Apis mellifera): rapid identification and phylogenetic analysis using reverse transcription-PCR. Clin Diagn Lab Immunol 8: 93-104. – reference: Bakonyi, T., Frakas, R., Szendroi, A., Dobos-Kovacs, M., and Rusvai, M. (2002) Detection of acute bee paralysis virus by RT-PCR in honeybee and Varroa destructor field samples: rapid screening of representative Hungarian apiaries. Apidologie 33: 63-74. – reference: Erdtman, G. (1969) Handbook of Palynology. An Introduction to the Study of Pollen Grains and Spores. Copenhagen, Denmark: Munksgaard. – reference: Hung, A.C.F. (2000) PCR detection of Kashmir bee virus in honey bee excreta. J Apic Res 39: 103-106. – reference: Jiménez, J.J., Bernal, J.L., del Nozal, M.J., Toribio, L., and Martín, M.T. (1998) Gas chromatography with electron-capture and nitrogen-phosphorus detection in the analysis of pesticides in honey after elution from a Florisil column. Influence of the honey matrix on the quantitative results. J Chromatogr A 823: 381-387. – reference: Paxton, R., Klee, J., Korpela, S., and Fries, I. (2007) Nosema ceranae has infected Apis mellifera Europe in at least 1998 and may be more virulent than Nosema apis. Apidologie 38: 558-565. – reference: Higes, M., Martín, R., and Meana, A. (2006) Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J Invertebr Pathol 92: 93-95. – volume: 823 start-page: 381 year: 1998 end-page: 387 article-title: Gas chromatography with electron‐capture and nitrogen‐phosphorus detection in the analysis of pesticides in honey after elution from a Florisil column. Influence of the honey matrix on the quantitative results publication-title: J Chromatogr A – volume: 97 start-page: 186 year: 2008 end-page: 188 article-title: is a long‐present and wide‐spread microsporidian infection of the European honey bee ( ) in the United States publication-title: J Invertebr Pathol – volume: 223 start-page: 451 year: 2003 end-page: 464 article-title: The hive bee to forager transition in honeybee colonies: the double repressor hypothesis publication-title: J Theor Biol – year: 2005 – volume: 33 start-page: 63 year: 2002 end-page: 74 article-title: Detection of acute bee paralysis virus by RT‐PCR in honeybee and field samples: rapid screening of representative Hungarian apiaries publication-title: Apidologie – volume: 38 start-page: 558 year: 2007 end-page: 565 article-title: has infected Europe in at least 1998 and may be more virulent than publication-title: Apidologie – volume: 39 start-page: 147 year: 1996 end-page: 158 article-title: Regulation of honey bee division of labor by colony age demography publication-title: Behav Ecol Sociobiol – volume: 28 start-page: 93 year: 1989 end-page: 100 article-title: Seasonal variation in the infection of honeybee colonies with Zander publication-title: J Apic Res – year: 2007 – volume: 73 start-page: 6331 year: 2007 end-page: 6338 article-title: Outcome of colonization of by publication-title: Appl Environ Microbiol – year: 1987 – year: 1989 – volume: 141 start-page: 7 year: 2007 end-page: 13 article-title: Evaluation of a real‐time two‐step RT‐PCR assay for quantitation of Chronic bee paralysis virus (CBPV) genome in experimentally‐infected bee tissues and in life stages of a symptomatic colony publication-title: J Virol Methods – volume: 67 start-page: 2384 year: 2001 end-page: 2387 article-title: Detection of acute paralysis virus and black queen cell virus from honeybees by reverse trasciptase PCR publication-title: Appl Environ Microbiol – volume: 37 start-page: 577 year: 2006 end-page: 587 article-title: Parasitic mites influence flight duration and homing ability of infested foragers publication-title: Apidologie – volume: 28 start-page: 101 year: 1989 end-page: 106 article-title: Zander infection levels in honeybees of known age publication-title: J Apic Res – volume: 44 start-page: 282 year: 1984 end-page: 291 article-title: Ultrastructure of the midgut of the worker honey bee heavily infected with publication-title: J Invertebr Pathol – volume: 70 start-page: 33 year: 2007 end-page: 80 article-title: Honey bee virus publication-title: Adv Virus Res – volume: 40 start-page: 418 year: 1953 end-page: 423 article-title: The influence of infection with on the activities and longevity of the worker honeybee publication-title: Ann Appl Biol – volume: 39 start-page: 103 year: 2000 end-page: 106 article-title: PCR detection of Kashmir bee virus in honey bee excreta publication-title: J Apic Res – volume: 362 start-page: 342 year: 2007 end-page: 349 article-title: Reciprocal sequence exchange between non‐retro viruses and hosts leading to the appearance of new host phenotypes publication-title: Virology – volume: 34 start-page: 153 year: 1995 end-page: 160 article-title: Molecular diagnosis of Kashmir bee virus infection publication-title: J Apic Res – volume: 46 start-page: 127 year: 2007 end-page: 128 article-title: Presence of in French honeybee colonies publication-title: J Apic Res – volume: 72 start-page: 606 year: 2006 end-page: 611 article-title: Prevalence and transmission routes of honey bee viruses publication-title: App Environ Microbiol – volume: 8 start-page: 93 year: 2001 end-page: 104 article-title: Sacbrood virus of the honeybee ( ): rapid identification and phylogenetic analysis using reverse transcription‐PCR publication-title: Clin Diagn Lab Immunol – volume: 1146 start-page: 8 year: 2007 end-page: 16 article-title: Comparative study of sample preparation procedures to determine fipronil in pollen by gas chromatography with mass spectrometric and electron capture detection publication-title: J Chromatogr A – year: 1969 – year: 2008 – volume: 94 start-page: 211 year: 2007 end-page: 217 article-title: Experimental infection of honeybees with the publication-title: J Invertebr Pathol – year: 2004 – volume: 3 start-page: 280 year: 1961 end-page: 288 article-title: A survey of the incidence of disease ( Zander) of the honey bee in South Australia publication-title: J Insect Pathol – volume: 96 start-page: 1 year: 2007 end-page: 10 article-title: Widespread dispersal of the Microsporidian , an emergent pathogen of the western honey bee, publication-title: J Invertebr Pathol – volume: 51 start-page: 8005 year: 2003 end-page: 8010 article-title: Distribution of (C‐14)imidacloprid in sunflowers ( L.) following seed treatment publication-title: J Agric Food Chem – volume: 318 start-page: 283 year: 2007 end-page: 287 article-title: A metagenomic survey of microbes in honey bee colony collapse disorder publication-title: Science – volume: 133 start-page: 15 year: 2005 end-page: 21 article-title: El síndrome de despoblamiento de las colmenas en España. Consideraciones sobre su origen publication-title: Vida Apícola – volume: 92 start-page: 93 year: 2006 end-page: 95 article-title: , a new microsporidian parasite in honeybees in Europe publication-title: J Invertebr Pathol – volume: 83 start-page: 13 year: 2002 end-page: 23 article-title: Honey bee winter mortality in France in 1999 and 2000 publication-title: Bee World – ident: e_1_2_5_2_1 doi: 10.1016/S0022-5193(03)00121-8 – ident: e_1_2_5_23_1 doi: 10.1080/00218839.2000.11101029 – ident: e_1_2_5_31_1 doi: 10.1128/AEM.00270-07 – ident: e_1_2_5_37_1 doi: 10.1126/science.316.5827.970 – ident: e_1_2_5_3_1 doi: 10.1051/apido:2001004 – volume: 133 start-page: 15 year: 2005 ident: e_1_2_5_19_1 article-title: El síndrome de despoblamiento de las colmenas en España. Consideraciones sobre su origen publication-title: Vida Apícola – ident: e_1_2_5_30_1 doi: 10.1016/j.virol.2006.11.038 – ident: e_1_2_5_21_1 doi: 10.1016/j.jip.2006.11.001 – ident: e_1_2_5_34_1 – volume: 28 start-page: 101 year: 1989 ident: e_1_2_5_12_1 article-title: Nosema apis Zander infection levels in honeybees of known age publication-title: J Apic Res doi: 10.1080/00218839.1989.11100829 – volume-title: Atlas Polínico de Andalucía Occidental year: 1987 ident: e_1_2_5_39_1 – ident: e_1_2_5_6_1 doi: 10.3896/IBRA.1.46.2.12 – ident: e_1_2_5_29_1 doi: 10.1016/0022-2011(84)90026-0 – volume: 8 start-page: 93 year: 2001 ident: e_1_2_5_17_1 article-title: Sacbrood virus of the honeybee (Apis mellifera): rapid identification and phylogenetic analysis using reverse transcription‐PCR publication-title: Clin Diagn Lab Immunol doi: 10.1128/CDLI.8.1.93-104.2001 – ident: e_1_2_5_22_1 doi: 10.1007/s002650050276 – ident: e_1_2_5_27_1 doi: 10.1051/apido:2006040 – ident: e_1_2_5_36_1 doi: 10.1080/00218839.1989.11100828 – ident: e_1_2_5_15_1 doi: 10.1080/0005772X.2002.11099532 – ident: e_1_2_5_38_1 doi: 10.1080/00218839.1995.11100900 – ident: e_1_2_5_33_1 – ident: e_1_2_5_35_1 doi: 10.1051/apido:2007037 – ident: e_1_2_5_10_1 doi: 10.1126/science.1146498 – ident: e_1_2_5_8_1 doi: 10.1016/j.jip.2007.07.010 – ident: e_1_2_5_16_1 – ident: e_1_2_5_5_1 doi: 10.1016/j.jviromet.2006.11.021 – ident: e_1_2_5_20_1 doi: 10.1016/j.jip.2006.02.005 – ident: e_1_2_5_4_1 doi: 10.1128/AEM.67.5.2384-2387.2001 – ident: e_1_2_5_26_1 doi: 10.1016/j.jip.2007.02.014 – ident: e_1_2_5_28_1 doi: 10.1021/jf034310n – ident: e_1_2_5_9_1 doi: 10.1016/S0065-3527(07)70002-7 – volume-title: Textbook of Pollen Analysis, IV Edition. year: 1989 ident: e_1_2_5_14_1 – ident: e_1_2_5_18_1 doi: 10.1111/j.1744-7348.1953.tb01093.x – ident: e_1_2_5_32_1 – ident: e_1_2_5_7_1 doi: 10.1128/AEM.72.1.606-611.2006 – ident: e_1_2_5_24_1 doi: 10.1016/S0021-9673(98)00292-1 – ident: e_1_2_5_25_1 doi: 10.1016/j.chroma.2007.01.117 – volume-title: Handbook of Palynology. An Introduction to the Study of Pollen Grains and Spores year: 1969 ident: e_1_2_5_13_1 – volume: 3 start-page: 280 year: 1961 ident: e_1_2_5_11_1 article-title: A survey of the incidence of Nosema disease (Nosema apis Zander) of the honey bee in South Australia publication-title: J Insect Pathol |
SSID | ssj0017370 |
Score | 2.4877985 |
Snippet | In recent years, honeybees (Apis mellifera) have been strangely disappearing from their hives, and strong colonies have suddenly become weak and died. The... Summary In recent years, honeybees (Apis mellifera) have been strangely disappearing from their hives, and strong colonies have suddenly become weak and died.... In recent years, honeybees ( Apis mellifera ) have been strangely disappearing from their hives, and strong colonies have suddenly become weak and died. The... |
SourceID | proquest pubmed crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2659 |
SubjectTerms | Animals antibiotics Antifungal Agents Antifungal Agents - pharmacology Apis cerana Apis mellifera Bees Bees - microbiology Bees - ultrastructure brood rearing Cyclohexanes Cyclohexanes - pharmacology death disease control etiology Fatty Acids, Unsaturated Fatty Acids, Unsaturated - pharmacology Gastrointestinal Tract Gastrointestinal Tract - pathology honey honey bee colonies honey bees isolation & purification microbiology Microscopy Microscopy, Electron, Transmission Microsporidiosis Microsporidiosis - microbiology Microsporidiosis - pathology Microsporidium Nosema Nosema - isolation & purification Nosema ceranae pathology pharmacology pollen Sesquiterpenes Sesquiterpenes - pharmacology spring ultrastructure winter |
Title | How natural infection by Nosema ceranae causes honeybee colony collapse |
URI | https://api.istex.fr/ark:/67375/WNG-HD7C0BBK-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-2920.2008.01687.x https://www.ncbi.nlm.nih.gov/pubmed/18647336 https://www.proquest.com/docview/19684772 https://www.proquest.com/docview/48069525 https://www.proquest.com/docview/69605096 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagEhIXoLyaAsUHxC2r2IkfOdKWdlXESjxW9GbZjlOkhaRqdtUuv56ZPLbaVStViFsi2Y48nsdne_INIe80d8EG4WMX8OgG3GSsi4zHLuOF1dzr0Fae-zyR42l2cipO-_wn_Bem44dYHbihZbT-Gg3cumbTyHmM1Zb6lEgmtRohnmSpRBr9w68rJimm0rZuXN-FbST13DjQWqS6X9oa8CuK_uomMLqObdvgdPSYzIZpdTkps9Fi7kb-zwbj4_-Z9xPyqMew9EOndNvkXqiekgddVcvlM3I8ri9pSxgKjYZkr4q6JZ3UTfhtqQ8QIG2g3i6a0NCfdRWWLsA7DFAtaaua5014TqZHH78fjOO-XkPshVAq9olWeZk4r5KsYEWpE4m7KZ9zzZiUeepE4KoAyFZy0JzUpS4rXFGCWoggATi9IFsVfHKHUIiYilncbeVlFrhwpVKiBDTkFJdWyoioYW2M78nMsabGL7O2qeEGxdSX2kQxmauIsFXP847Q4w59dmD5jT0Dv2um3zje9kKkUGmuI_K-1YnVWPZihrlySpgfk2MzPlQHyf7-J_MlIm8HpTFgwXgtY6tQLxoDPhAgguK3t8hQkoKL21tI2IgikU9EXnb6eD03LTOkvIyIbLXqzpM24AfwafdfO74iD_lAHsxek635xSK8AQQ3d3utbf4FFGcxLg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagCMGF8mxDgeaAuGWVOPEjR1poA21XArqiN8t2HCq1JFWzK7r8emacZNGuWqlC3BLJduTxPD7bk28IeSupcdoxGxmHRzfgJiNZZjQyGS21pFY6X3nuaMyLSfb5hJ305YDwX5iOH2Jx4IaW4f01GjgeSK9aOY2w3FKfE5lwKUYAKO_56zpESF8XXFKJSH3luL5PspLWc-1IS7HqbqUbQLAo_Kvr4OgyuvXhaW-dnA8T67JSzkazqRnZ3yucj_9p5o_Jox7Ghu87vXtC7rj6KbnfFbacPyP7RfMr9Jyh0GjI96pDMw_HTet-6tA6iJHahVbPWteGp03t5sbBOwxQz0OvnRete04mex-Pd4uoL9kQWcaEiGwsRV7Fxoo4K5OykjHHDZXNqUwSzvPUMEdFCaitoqA8qUlNVpqyAs1gjgN2ekHWavjkJgkhaIpE44YrrzJHmamEYBUAIiMo15wHRAyLo2zPZ45lNc7V0r6GKhRTX20TxaSuApIsel50nB636LMJ66_0D3C9avKN4oUvBAuR5jIg77xSLMbSl2eYLieY-j7eV8UHsRvv7ByoLwHZHrRGgRHjzYyuXTNrFbhBQAmC3twiQ0kyym5uwWEvilw-AdnoFPLv3CTPkPUyINyr1a0nrcAV4NPLf-24TR4Ux0eH6vDT-GCLPKQDl3DyiqxNL2fuNQC6qXnjDfUPQHw1TA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD6CIRAv3GHhtjwg3lIlTnzJI9voCoOKW8XeLNtxQCok1dKKlV_POUla1GqTJsRbItmOfHwun-2T7wC8UMx647mLrKejG3STkSoyFtmMFUYxp3xbee79WIwm2dsTftLnP9G_MB0_xPrAjSyj9ddk4LOi3DZyFlG1pT4lMhFKDhBPXssERk0CSJ_WVFKJTNvCcX2fZCur59yRNkLV1dLUCGBJ9mfnodFNcNtGp-FtmK7m1SWlTAeLuR2431uUj_9n4nfgVg9iw1ed1t2FK766B9e7spbL-3A0qn-FLWMoNlple1WhXYbjuvE_Teg8RkjjQ2cWjW_C73Xll9bjOw5QLcNWN2eNfwCT4esvB6OoL9gQOc6ljFysZF7G1sk4K5KiVLGg7ZTLmUoSIfLUcs9kgZitZKg6qU1tVtiiRL3gXiByegg7FX5yF0IMmTIxtN3Ky8wzbkspeYlwyEomjBAByNXaaNezmVNRjR96Y1fDNImpr7VJYtJnASTrnrOO0eMSfXZx-bX5ho5XTz4zuu7FUCHTXAXwstWJ9VjmdErJcpLrr-MjPTqUB_H-_rH-GMDeSmk0mjDdy5jK14tGoxNEjCDZxS0ykiRn_OIWAneixOQTwKNOH__OTYmMOC8DEK1WXXrSGh0BPT3-1457cOPD4VC_ezM-fgI32YpIOHkKO_PThX-GaG5un7dm-gdUgjP7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+natural+infection+by+Nosema+ceranae+causes+honeybee+colony+collapse&rft.jtitle=Environmental+microbiology&rft.au=Higes%2C+Mariano&rft.au=Mart%C3%ADn%E2%80%90Hern%C3%A1ndez%2C+Raquel&rft.au=Bot%C3%ADas%2C+Cristina&rft.au=Bail%C3%B3n%2C+Encarna+Garrido&rft.date=2008-10-01&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=10&rft.issue=10&rft.spage=2659&rft.epage=2669&rft_id=info:doi/10.1111%2Fj.1462-2920.2008.01687.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1462_2920_2008_01687_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon |