How natural infection by Nosema ceranae causes honeybee colony collapse

In recent years, honeybees (Apis mellifera) have been strangely disappearing from their hives, and strong colonies have suddenly become weak and died. The precise aetiology underlying the disappearance of the bees remains a mystery. However, during the same period, Nosema ceranae, a microsporidium o...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental microbiology Vol. 10; no. 10; pp. 2659 - 2669
Main Authors Higes, Mariano, Martín-Hernández, Raquel, Botías, Cristina, Bailón, Encarna Garrido, González-Porto, Amelia V, Barrios, Laura, del Nozal, M. Jesús, Bernal, José L, Jiménez, Juan J, Palencia, Pilar García, Meana, Aránzazu
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.10.2008
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN1462-2912
1462-2920
1462-2920
DOI10.1111/j.1462-2920.2008.01687.x

Cover

Abstract In recent years, honeybees (Apis mellifera) have been strangely disappearing from their hives, and strong colonies have suddenly become weak and died. The precise aetiology underlying the disappearance of the bees remains a mystery. However, during the same period, Nosema ceranae, a microsporidium of the Asian bee Apis cerana, seems to have colonized A. mellifera, and it's now frequently detected all over the world in both healthy and weak honeybee colonies. For first time, we show that natural N. ceranae infection can cause the sudden collapse of bee colonies, establishing a direct correlation between N. ceranae infection and the death of honeybee colonies under field conditions. Signs of colony weakness were not evident until the queen could no longer replace the loss of the infected bees. The long asymptomatic incubation period can explain the absence of evident symptoms prior to colony collapse. Furthermore, our results demonstrate that healthy colonies near to an infected one can also become infected, and that N. ceranae infection can be controlled with a specific antibiotic, fumagillin. Moreover, the administration of 120 mg of fumagillin has proven to eliminate the infection, but it cannot avoid reinfection after 6 months. We provide Koch's postulates between N. ceranae infection and a syndrome with a long incubation period involving continuous death of adult bees, non-stop brood rearing by the bees and colony loss in winter or early spring despite the presence of sufficient remaining pollen and honey.
AbstractList Summary In recent years, honeybees (Apis mellifera) have been strangely disappearing from their hives, and strong colonies have suddenly become weak and died. The precise aetiology underlying the disappearance of the bees remains a mystery. However, during the same period, Nosema ceranae, a microsporidium of the Asian bee Apis cerana, seems to have colonized A. mellifera, and it's now frequently detected all over the world in both healthy and weak honeybee colonies. For first time, we show that natural N. ceranae infection can cause the sudden collapse of bee colonies, establishing a direct correlation between N. ceranae infection and the death of honeybee colonies under field conditions. Signs of colony weakness were not evident until the queen could no longer replace the loss of the infected bees. The long asymptomatic incubation period can explain the absence of evident symptoms prior to colony collapse. Furthermore, our results demonstrate that healthy colonies near to an infected one can also become infected, and that N. ceranae infection can be controlled with a specific antibiotic, fumagillin. Moreover, the administration of 120 mg of fumagillin has proven to eliminate the infection, but it cannot avoid reinfection after 6 months. We provide Koch's postulates between N. ceranae infection and a syndrome with a long incubation period involving continuous death of adult bees, non‐stop brood rearing by the bees and colony loss in winter or early spring despite the presence of sufficient remaining pollen and honey.
In recent years, honeybees (Apis mellifera) have been strangely disappearing from their hives, and strong colonies have suddenly become weak and died. The precise aetiology underlying the disappearance of the bees remains a mystery. However, during the same period, Nosema ceranae, a microsporidium of the Asian bee Apis cerana, seems to have colonized A. mellifera, and it's now frequently detected all over the world in both healthy and weak honeybee colonies. For first time, we show that natural N. ceranae infection can cause the sudden collapse of bee colonies, establishing a direct correlation between N. ceranae infection and the death of honeybee colonies under field conditions. Signs of colony weakness were not evident until the queen could no longer replace the loss of the infected bees. The long asymptomatic incubation period can explain the absence of evident symptoms prior to colony collapse. Furthermore, our results demonstrate that healthy colonies near to an infected one can also become infected, and that N. ceranae infection can be controlled with a specific antibiotic, fumagillin. Moreover, the administration of 120mg of fumagillin has proven to eliminate the infection, but it cannot avoid reinfection after 6months. We provide Koch's postulates between N. ceranae infection and a syndrome with a long incubation period involving continuous death of adult bees, non-stop brood rearing by the bees and colony loss in winter or early spring despite the presence of sufficient remaining pollen and honey.
In recent years, honeybees (Apis mellifera) have been strangely disappearing from their hives, and strong colonies have suddenly become weak and died. The precise aetiology underlying the disappearance of the bees remains a mystery. However, during the same period, Nosema ceranae, a microsporidium of the Asian bee Apis cerana, seems to have colonized A. mellifera, and it's now frequently detected all over the world in both healthy and weak honeybee colonies. For first time, we show that natural N. ceranae infection can cause the sudden collapse of bee colonies, establishing a direct correlation between N. ceranae infection and the death of honeybee colonies under field conditions. Signs of colony weakness were not evident until the queen could no longer replace the loss of the infected bees. The long asymptomatic incubation period can explain the absence of evident symptoms prior to colony collapse. Furthermore, our results demonstrate that healthy colonies near to an infected one can also become infected, and that N. ceranae infection can be controlled with a specific antibiotic, fumagillin. Moreover, the administration of 120 mg of fumagillin has proven to eliminate the infection, but it cannot avoid reinfection after 6 months. We provide Koch's postulates between N. ceranae infection and a syndrome with a long incubation period involving continuous death of adult bees, non-stop brood rearing by the bees and colony loss in winter or early spring despite the presence of sufficient remaining pollen and honey.
In recent years, honeybees (Apis mellifera) have been strangely disappearing from their hives, and strong colonies have suddenly become weak and died. The precise aetiology underlying the disappearance of the bees remains a mystery. However, during the same period, Nosema ceranae, a microsporidium of the Asian bee Apis cerana, seems to have colonized A. mellifera, and it's now frequently detected all over the world in both healthy and weak honeybee colonies. For first time, we show that natural N. ceranae infection can cause the sudden collapse of bee colonies, establishing a direct correlation between N. ceranae infection and the death of honeybee colonies under field conditions. Signs of colony weakness were not evident until the queen could no longer replace the loss of the infected bees. The long asymptomatic incubation period can explain the absence of evident symptoms prior to colony collapse. Furthermore, our results demonstrate that healthy colonies near to an infected one can also become infected, and that N. ceranae infection can be controlled with a specific antibiotic, fumagillin. Moreover, the administration of 120 mg of fumagillin has proven to eliminate the infection, but it cannot avoid reinfection after 6 months. We provide Koch's postulates between N. ceranae infection and a syndrome with a long incubation period involving continuous death of adult bees, non-stop brood rearing by the bees and colony loss in winter or early spring despite the presence of sufficient remaining pollen and honey.In recent years, honeybees (Apis mellifera) have been strangely disappearing from their hives, and strong colonies have suddenly become weak and died. The precise aetiology underlying the disappearance of the bees remains a mystery. However, during the same period, Nosema ceranae, a microsporidium of the Asian bee Apis cerana, seems to have colonized A. mellifera, and it's now frequently detected all over the world in both healthy and weak honeybee colonies. For first time, we show that natural N. ceranae infection can cause the sudden collapse of bee colonies, establishing a direct correlation between N. ceranae infection and the death of honeybee colonies under field conditions. Signs of colony weakness were not evident until the queen could no longer replace the loss of the infected bees. The long asymptomatic incubation period can explain the absence of evident symptoms prior to colony collapse. Furthermore, our results demonstrate that healthy colonies near to an infected one can also become infected, and that N. ceranae infection can be controlled with a specific antibiotic, fumagillin. Moreover, the administration of 120 mg of fumagillin has proven to eliminate the infection, but it cannot avoid reinfection after 6 months. We provide Koch's postulates between N. ceranae infection and a syndrome with a long incubation period involving continuous death of adult bees, non-stop brood rearing by the bees and colony loss in winter or early spring despite the presence of sufficient remaining pollen and honey.
In recent years, honeybees ( Apis mellifera ) have been strangely disappearing from their hives, and strong colonies have suddenly become weak and died. The precise aetiology underlying the disappearance of the bees remains a mystery. However, during the same period, Nosema ceranae , a microsporidium of the Asian bee Apis cerana , seems to have colonized A. mellifera , and it's now frequently detected all over the world in both healthy and weak honeybee colonies. For first time, we show that natural N. ceranae infection can cause the sudden collapse of bee colonies, establishing a direct correlation between N. ceranae infection and the death of honeybee colonies under field conditions. Signs of colony weakness were not evident until the queen could no longer replace the loss of the infected bees. The long asymptomatic incubation period can explain the absence of evident symptoms prior to colony collapse. Furthermore, our results demonstrate that healthy colonies near to an infected one can also become infected, and that N. ceranae infection can be controlled with a specific antibiotic, fumagillin. Moreover, the administration of 120 mg of fumagillin has proven to eliminate the infection, but it cannot avoid reinfection after 6 months. We provide Koch's postulates between N. ceranae infection and a syndrome with a long incubation period involving continuous death of adult bees, non‐stop brood rearing by the bees and colony loss in winter or early spring despite the presence of sufficient remaining pollen and honey.
Author González-Porto, Amelia V
del Nozal, M. Jesús
Bailón, Encarna Garrido
Jiménez, Juan J
Palencia, Pilar García
Higes, Mariano
Martín-Hernández, Raquel
Meana, Aránzazu
Botías, Cristina
Bernal, José L
Barrios, Laura
Author_xml – sequence: 1
  fullname: Higes, Mariano
– sequence: 2
  fullname: Martín-Hernández, Raquel
– sequence: 3
  fullname: Botías, Cristina
– sequence: 4
  fullname: Bailón, Encarna Garrido
– sequence: 5
  fullname: González-Porto, Amelia V
– sequence: 6
  fullname: Barrios, Laura
– sequence: 7
  fullname: del Nozal, M. Jesús
– sequence: 8
  fullname: Bernal, José L
– sequence: 9
  fullname: Jiménez, Juan J
– sequence: 10
  fullname: Palencia, Pilar García
– sequence: 11
  fullname: Meana, Aránzazu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18647336$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URD_gL0BO3BL8EX8dQKJL2a0oRQgqjiPHcSBLNl7sRN38exy27IHL4suM5eedGc3rc3TS-94hlBFckHRerQtSCppTTXFBMVYFJkLJYvcInR0eTg45oafoPMY1xkQyiZ-gU6JEKRkTZ2i58vdZb4YxmC5r-8bZofV9Vk3ZrY9uYzLrgumNy6wZo4vZjzTIVLl0953vpzl0ZhvdU_S4MV10zx7iBbp7f_V1scpvPi2vF29vcsu5lLnFSuoGV1bisiZ1o7DQWgirqSJECM0q7qisSy4a6qxlFavKuqqbktbcCaXZBXq5r7sN_tfo4gCbNlqXhuidHyMILTDHWhwFy7k1p_woSLRQpZQ0gc8fwLHauBq2od2YMMHfZSbgzR6wwccYXAO2Hcy8zyGYtgOCYXYP1jAbA7NJMLsHf9yDXSqg_ilw6HFc-novvW87N_23Dq4-Xs9Z0ud7fRsHtzvoTfgJIn0aDt9ul7B6Jxf48vIDfE78iz3fGA_me2gj3H2hmDBMOJNMK_YbMFjILg
CitedBy_id crossref_primary_10_1128_AEM_03097_09
crossref_primary_10_1007_s13592_019_00714_8
crossref_primary_10_1371_journal_pone_0268250
crossref_primary_10_3390_insects14010006
crossref_primary_10_3390_insects13040371
crossref_primary_10_3390_jof8050424
crossref_primary_10_1007_s11829_022_09918_9
crossref_primary_10_1016_j_jip_2010_01_009
crossref_primary_10_1371_journal_pone_0085261
crossref_primary_10_2478_fv_2023_0033
crossref_primary_10_3390_microorganisms9050949
crossref_primary_10_1093_ee_nvaa112
crossref_primary_10_1111_j_1758_2229_2009_00018_x
crossref_primary_10_1007_s42690_020_00114_x
crossref_primary_10_1111_jeu_12084
crossref_primary_10_3390_life14030373
crossref_primary_10_3896_IBRA_1_49_3_08
crossref_primary_10_1371_journal_pone_0142031
crossref_primary_10_1016_j_jinsphys_2012_07_010
crossref_primary_10_1111_eea_12902
crossref_primary_10_3390_insects10120417
crossref_primary_10_1080_00218839_2021_2008706
crossref_primary_10_1101_pdb_emo123
crossref_primary_10_3390_antibiotics10080960
crossref_primary_10_1007_s10530_022_02835_1
crossref_primary_10_3390_microorganisms9010022
crossref_primary_10_1016_j_jip_2013_06_005
crossref_primary_10_1007_s13592_024_01107_2
crossref_primary_10_1371_journal_pclm_0000485
crossref_primary_10_24190_ISSN2564_615X_2017_03_03
crossref_primary_10_3390_insects13030308
crossref_primary_10_3389_fphys_2023_1172859
crossref_primary_10_1007_s00248_018_1268_z
crossref_primary_10_1111_eva_12164
crossref_primary_10_3389_fcimb_2021_823050
crossref_primary_10_4039_tce_2018_28
crossref_primary_10_54097_hset_v35i_7053
crossref_primary_10_1016_j_jip_2024_108168
crossref_primary_10_3390_insects11020124
crossref_primary_10_1080_00218839_2016_1162978
crossref_primary_10_1111_j_1758_2229_2009_00072_x
crossref_primary_10_1111_j_1758_2229_2010_00170_x
crossref_primary_10_1007_s00705_021_05162_3
crossref_primary_10_1016_j_jip_2010_10_010
crossref_primary_10_1007_s13355_021_00735_9
crossref_primary_10_1111_j_1462_5822_2009_01362_x
crossref_primary_10_1660_062_124_0101
crossref_primary_10_1016_j_jip_2009_05_012
crossref_primary_10_1094_PDIS_04_20_0712_RE
crossref_primary_10_17221_2983_VETMED
crossref_primary_10_1016_j_ijpara_2019_04_002
crossref_primary_10_3896_IBRA_1_49_2_12
crossref_primary_10_1146_annurev_resource_101420_110406
crossref_primary_10_1016_j_jip_2010_08_004
crossref_primary_10_1016_j_vetmic_2012_09_012
crossref_primary_10_1111_imb_12190
crossref_primary_10_3390_insects11080504
crossref_primary_10_1007_s00436_021_07381_8
crossref_primary_10_3390_jof9100990
crossref_primary_10_1186_1756_0500_7_649
crossref_primary_10_3896_IBRA_1_53_2_04
crossref_primary_10_1080_00218839_2019_1708653
crossref_primary_10_1007_s00248_018_1147_7
crossref_primary_10_1371_journal_pone_0145609
crossref_primary_10_1051_apido_2010030
crossref_primary_10_1111_j_1462_2920_2009_01953_x
crossref_primary_10_1371_journal_pone_0099465
crossref_primary_10_1051_apido_2010034
crossref_primary_10_1016_j_ejop_2017_07_002
crossref_primary_10_3390_app13031303
crossref_primary_10_17221_8584_VETMED
crossref_primary_10_1111_ele_12188
crossref_primary_10_1111_1462_2920_12825
crossref_primary_10_2903_j_efsa_2023_8468
crossref_primary_10_1002_ece3_10528
crossref_primary_10_1007_s13592_015_0410_x
crossref_primary_10_1016_j_jip_2014_10_007
crossref_primary_10_1016_j_tim_2011_09_003
crossref_primary_10_1515_jas_2017_0007
crossref_primary_10_1007_s00114_015_1298_z
crossref_primary_10_1051_apido_2010021
crossref_primary_10_3390_vetsci8040058
crossref_primary_10_3389_fevo_2020_594263
crossref_primary_10_7243_2054_3425_2_4
crossref_primary_10_1016_j_mimet_2016_09_021
crossref_primary_10_1051_apido_2009039
crossref_primary_10_3389_fimmu_2024_1404766
crossref_primary_10_1021_es101468w
crossref_primary_10_1128_AEM_02227_09
crossref_primary_10_1051_apido_2010027
crossref_primary_10_1016_j_jip_2015_12_004
crossref_primary_10_1111_j_1758_2229_2011_00299_x
crossref_primary_10_1515_jas_2017_0015
crossref_primary_10_1051_apido_2010010
crossref_primary_10_2478_acve_2019_0001
crossref_primary_10_1051_apido_2010014
crossref_primary_10_1007_s10886_010_9786_2
crossref_primary_10_1051_apido_2009027
crossref_primary_10_1007_s13592_018_0602_2
crossref_primary_10_1016_j_jip_2012_06_008
crossref_primary_10_1186_s12866_020_01939_9
crossref_primary_10_1016_j_rbe_2016_06_003
crossref_primary_10_1002_yea_3309
crossref_primary_10_1016_j_jip_2021_107671
crossref_primary_10_1007_s13592_013_0241_6
crossref_primary_10_1016_j_jip_2021_107672
crossref_primary_10_3390_insects13090844
crossref_primary_10_1051_apido_2010019
crossref_primary_10_1007_s00436_020_06915_w
crossref_primary_10_1017_S0031182013001133
crossref_primary_10_1016_j_heliyon_2023_e13494
crossref_primary_10_1016_j_parint_2021_102361
crossref_primary_10_1016_j_jip_2024_108074
crossref_primary_10_1016_j_scitotenv_2024_176245
crossref_primary_10_3390_vetsci9070320
crossref_primary_10_4236_ae_2015_33009
crossref_primary_10_1016_j_jip_2022_107867
crossref_primary_10_1080_21505594_2020_1768338
crossref_primary_10_1016_j_jip_2009_06_011
crossref_primary_10_2139_ssrn_3945332
crossref_primary_10_1371_journal_pone_0140272
crossref_primary_10_1016_j_jip_2009_06_017
crossref_primary_10_1038_s41598_019_46453_9
crossref_primary_10_1002_ps_5188
crossref_primary_10_2478_jas_2020_0025
crossref_primary_10_1016_j_ijpara_2017_11_004
crossref_primary_10_1128_AEM_01067_10
crossref_primary_10_1073_pnas_1525266113
crossref_primary_10_1093_jisesa_ieaa130
crossref_primary_10_1016_j_jip_2009_07_016
crossref_primary_10_1111_1758_2229_12434
crossref_primary_10_1007_s00040_011_0210_x
crossref_primary_10_1111_jvp_12509
crossref_primary_10_1080_00218839_2016_1245396
crossref_primary_10_3896_IBRA_1_51_3_12
crossref_primary_10_1016_j_jinsphys_2010_05_016
crossref_primary_10_3390_app12125890
crossref_primary_10_3390_biology13110952
crossref_primary_10_1111_j_1758_2229_2009_00052_x
crossref_primary_10_37376_jsh_vi79_6598
crossref_primary_10_1038_srep22042
crossref_primary_10_1051_apido_2009076
crossref_primary_10_4039_tce_2022_30
crossref_primary_10_1016_j_pestbp_2021_104809
crossref_primary_10_1038_s41598_024_67264_7
crossref_primary_10_1016_j_vetmic_2015_02_003
crossref_primary_10_3954_JAUE13_03_1
crossref_primary_10_2754_avb201685030261
crossref_primary_10_3389_fmicb_2022_927892
crossref_primary_10_3390_microorganisms11051258
crossref_primary_10_3390_v7052654
crossref_primary_10_1080_00218839_2022_2154474
crossref_primary_10_1038_s41598_018_32681_y
crossref_primary_10_1016_j_jip_2014_06_004
crossref_primary_10_1111_1462_2920_14103
crossref_primary_10_1111_j_1758_2229_2009_00099_x
crossref_primary_10_1111_j_1758_2229_2010_00186_x
crossref_primary_10_1080_00218839_2018_1495440
crossref_primary_10_1016_j_bbamcr_2012_02_006
crossref_primary_10_1007_s00436_011_2760_2
crossref_primary_10_1111_eea_13286
crossref_primary_10_1007_s40726_020_00142_8
crossref_primary_10_1371_journal_pone_0047955
crossref_primary_10_1007_s00705_020_04697_1
crossref_primary_10_1016_j_envres_2025_121026
crossref_primary_10_1111_j_1462_2920_2009_02123_x
crossref_primary_10_1016_j_vetmic_2013_07_030
crossref_primary_10_1016_j_jviromet_2009_06_014
crossref_primary_10_1051_apido_2009070
crossref_primary_10_1111_j_1462_2920_2011_02645_x
crossref_primary_10_1111_age_12114
crossref_primary_10_3390_vetsci8060107
crossref_primary_10_1590_0001_3765201920180326
crossref_primary_10_1016_j_dci_2013_03_010
crossref_primary_10_3390_microorganisms9030481
crossref_primary_10_1016_j_pestbp_2019_11_006
crossref_primary_10_1051_apido_2010047
crossref_primary_10_1007_s12595_016_0188_5
crossref_primary_10_1051_apido_2010045
crossref_primary_10_1242_jeb_126920
crossref_primary_10_1515_jas_2016_0019
crossref_primary_10_1111_1365_2664_13461
crossref_primary_10_1515_jas_2016_0027
crossref_primary_10_1016_j_dci_2018_02_004
crossref_primary_10_1371_journal_pone_0152685
crossref_primary_10_1177_0300985819864302
crossref_primary_10_3896_IBRA_1_48_3_12
crossref_primary_10_1016_j_meegid_2014_02_008
crossref_primary_10_2478_jas_2020_0007
crossref_primary_10_3390_insects13121092
crossref_primary_10_1038_s41598_020_78561_2
crossref_primary_10_1016_j_jip_2011_02_003
crossref_primary_10_1016_j_rvsc_2012_03_006
crossref_primary_10_1038_s41598_024_64882_z
crossref_primary_10_1016_j_chemosphere_2015_12_030
crossref_primary_10_3390_toxics9080177
crossref_primary_10_1016_j_ecolmodel_2013_06_005
crossref_primary_10_1073_pnas_1422089112
crossref_primary_10_1038_s41598_024_78874_6
crossref_primary_10_31467_uluaricilik_379261
crossref_primary_10_30782_jrvm_593762
crossref_primary_10_1242_jeb_119198
crossref_primary_10_3390_ani11061823
crossref_primary_10_3390_agriculture14040583
crossref_primary_10_1016_j_mimet_2021_106183
crossref_primary_10_1016_j_jip_2008_12_001
crossref_primary_10_1038_s41559_017_0246_z
crossref_primary_10_1080_00218839_2021_1889803
crossref_primary_10_3390_insects10010010
crossref_primary_10_1093_jee_toad103
crossref_primary_10_1038_s41598_020_74209_3
crossref_primary_10_1080_0005772X_2015_1118962
crossref_primary_10_1371_journal_pone_0057540
crossref_primary_10_1038_s41598_021_95323_w
crossref_primary_10_1142_S0219525920500198
crossref_primary_10_1007_s13592_011_0003_2
crossref_primary_10_1016_j_jip_2012_04_001
crossref_primary_10_1016_j_vetpar_2010_02_010
crossref_primary_10_1093_jee_tow012
crossref_primary_10_33188_vetheder_1592535
crossref_primary_10_3390_pathogens10080955
crossref_primary_10_3389_fvets_2019_00079
crossref_primary_10_1016_j_jinsphys_2021_104237
crossref_primary_10_1016_j_sjbs_2017_01_054
crossref_primary_10_1016_j_rvsc_2015_08_003
crossref_primary_10_3390_insects3041271
crossref_primary_10_1007_s13592_015_0375_9
crossref_primary_10_1038_s41598_024_58883_1
crossref_primary_10_2139_ssrn_3711690
crossref_primary_10_1016_j_chemosphere_2019_02_129
crossref_primary_10_1371_journal_pone_0117200
crossref_primary_10_1002_ps_6788
crossref_primary_10_1111_j_1462_2920_2011_02647_x
crossref_primary_10_1002_ps_2188
crossref_primary_10_1371_journal_pone_0032151
crossref_primary_10_1080_00218839_2019_1676999
crossref_primary_10_1098_rspb_2014_1896
crossref_primary_10_1093_jee_tow103
crossref_primary_10_1016_j_aspen_2019_08_006
crossref_primary_10_1371_journal_pone_0163522
crossref_primary_10_3390_insects3041143
crossref_primary_10_1093_jee_toaa170
crossref_primary_10_1016_j_mib_2010_05_005
crossref_primary_10_1080_0194262X_2014_912573
crossref_primary_10_1016_j_jip_2014_07_002
crossref_primary_10_1002_cyto_a_22428
crossref_primary_10_1186_1297_9716_44_25
crossref_primary_10_3389_fevo_2018_00058
crossref_primary_10_1038_s41598_020_67183_3
crossref_primary_10_1007_s00203_023_03416_z
crossref_primary_10_4161_worm_20501
crossref_primary_10_1371_journal_pone_0091686
crossref_primary_10_1007_s13592_015_0409_3
crossref_primary_10_1016_j_jip_2009_08_005
crossref_primary_10_1016_j_jip_2016_01_007
crossref_primary_10_1007_s00248_015_0594_7
crossref_primary_10_1371_journal_pone_0291710
crossref_primary_10_1007_s00253_010_2573_8
crossref_primary_10_1139_cjfas_2013_0545
crossref_primary_10_1371_journal_pone_0187726
crossref_primary_10_1016_j_jip_2012_01_004
crossref_primary_10_1080_00218839_2018_1494892
crossref_primary_10_1007_s13592_012_0121_5
crossref_primary_10_1007_s13592_018_0589_8
crossref_primary_10_1186_1471_2164_14_451
crossref_primary_10_3390_insects12040282
crossref_primary_10_3390_vetsci7030113
crossref_primary_10_3390_insects8020048
crossref_primary_10_1016_j_virol_2014_02_012
crossref_primary_10_1371_journal_pone_0173438
crossref_primary_10_1515_agricultura_2017_0006
crossref_primary_10_1093_jee_toy341
crossref_primary_10_1093_jee_tow282
crossref_primary_10_17221_6982_VETMED
crossref_primary_10_1371_journal_pone_0126330
crossref_primary_10_1016_j_jip_2012_01_005
crossref_primary_10_1016_j_jip_2012_01_007
crossref_primary_10_3390_vetsci7030111
crossref_primary_10_1007_s00436_012_3195_0
crossref_primary_10_1016_j_heliyon_2020_e04599
crossref_primary_10_1038_s41598_023_38905_0
crossref_primary_10_4039_tce_2012_46
crossref_primary_10_1016_j_carbpol_2015_07_022
crossref_primary_10_3920_BM2015_0085
crossref_primary_10_7717_peerj_3297
crossref_primary_10_1016_j_pestbp_2015_09_015
crossref_primary_10_3390_biology10090905
crossref_primary_10_1016_j_zool_2016_03_007
crossref_primary_10_7717_peerj_6325
crossref_primary_10_3389_fnsys_2017_00063
crossref_primary_10_4001_003_022_0313
crossref_primary_10_1007_s00114_011_0881_1
crossref_primary_10_1016_j_scitotenv_2021_145213
crossref_primary_10_1007_s10393_013_0870_2
crossref_primary_10_1017_S0031182020001018
crossref_primary_10_3389_fgene_2015_00100
crossref_primary_10_3390_ani14152183
crossref_primary_10_1128_spectrum_05194_22
crossref_primary_10_1007_s13592_013_0201_1
crossref_primary_10_1017_S0031182021001827
crossref_primary_10_1371_journal_ppat_1004200
crossref_primary_10_1111_1758_2229_12024
crossref_primary_10_1371_journal_pone_0263273
crossref_primary_10_1177_10406387231194620
crossref_primary_10_3389_fmicb_2021_645353
crossref_primary_10_3390_app12020783
crossref_primary_10_3390_insects13020193
crossref_primary_10_1653_024_097_0233
crossref_primary_10_1111_j_1462_2920_2010_02346_x
crossref_primary_10_1016_j_jip_2012_09_002
crossref_primary_10_1371_journal_pone_0258801
crossref_primary_10_1111_j_1462_2920_2010_02311_x
crossref_primary_10_1007_s00436_011_2292_9
crossref_primary_10_1016_j_jinsphys_2017_12_010
crossref_primary_10_1038_s41598_019_50974_8
crossref_primary_10_1007_s00248_016_0880_z
crossref_primary_10_1371_journal_pone_0227484
crossref_primary_10_3389_fcimb_2017_00301
crossref_primary_10_1016_j_jip_2010_12_005
crossref_primary_10_3390_microorganisms12010192
crossref_primary_10_1016_j_foodchem_2015_01_111
crossref_primary_10_1080_00218839_2024_2423456
crossref_primary_10_1371_journal_ppat_1001160
crossref_primary_10_1007_s13592_013_0203_z
crossref_primary_10_3390_vetsci7040199
crossref_primary_10_1016_j_neuint_2012_09_020
crossref_primary_10_1098_rspb_2015_1371
crossref_primary_10_1038_srep32612
crossref_primary_10_1080_00218839_2021_1900636
crossref_primary_10_7717_peerj_13530
crossref_primary_10_3390_insects12121051
crossref_primary_10_3390_life13020438
crossref_primary_10_1093_jee_toy026
crossref_primary_10_1016_j_envpol_2020_115622
crossref_primary_10_1017_S0031182015000840
crossref_primary_10_52559_eunk_v1i1_24
crossref_primary_10_1016_j_biocon_2009_04_007
crossref_primary_10_3389_fimmu_2023_1247582
crossref_primary_10_3390_vetsci9050199
crossref_primary_10_17221_1587_VETMED
crossref_primary_10_3896_IBRA_1_52_5_09
crossref_primary_10_2478_s11756_012_0038_5
crossref_primary_10_1080_0005772X_2019_1699007
crossref_primary_10_1038_s41564_019_0514_6
crossref_primary_10_1371_journal_pone_0094459
crossref_primary_10_3390_microorganisms9030505
crossref_primary_10_1038_s41598_023_49189_9
crossref_primary_10_3390_insects15010029
crossref_primary_10_1016_j_jip_2012_02_014
crossref_primary_10_1007_s13592_015_0394_6
crossref_primary_10_1371_journal_pone_0115890
crossref_primary_10_1007_s13592_012_0147_8
crossref_primary_10_1080_00218839_2025_2471118
crossref_primary_10_1128_AEM_02908_08
crossref_primary_10_1016_j_rvsc_2011_08_002
crossref_primary_10_1016_j_ijpara_2024_12_003
crossref_primary_10_1371_journal_ppat_1002227
crossref_primary_10_1007_s00436_012_2875_0
crossref_primary_10_4039_n10_010
crossref_primary_10_3390_vetsci7030131
crossref_primary_10_1111_j_1365_2672_2009_04635_x
crossref_primary_10_1016_j_cnsns_2020_105207
crossref_primary_10_3390_app12010422
crossref_primary_10_1016_j_prevetmed_2021_105322
crossref_primary_10_3896_IBRA_1_52_4_13
crossref_primary_10_1017_S0031182014001243
crossref_primary_10_1093_jee_toac196
crossref_primary_10_1038_s41598_018_23678_8
crossref_primary_10_3390_vetsci7030125
crossref_primary_10_1007_s12602_022_10025_7
crossref_primary_10_1111_j_1758_2229_2011_00312_x
crossref_primary_10_1371_journal_ppat_1001243
crossref_primary_10_1038_nrmicro1979
crossref_primary_10_1080_00218839_2016_1144975
crossref_primary_10_1890_120126
crossref_primary_10_3390_vetsci9030130
crossref_primary_10_1016_j_cois_2015_04_006
crossref_primary_10_1016_j_jip_2013_01_004
crossref_primary_10_1016_j_jinsphys_2016_01_004
crossref_primary_10_1016_j_jip_2013_01_002
crossref_primary_10_1016_j_cois_2015_04_004
crossref_primary_10_1371_journal_pone_0021550
crossref_primary_10_1002_rcm_8980
crossref_primary_10_3390_insects15010059
crossref_primary_10_1038_srep10982
crossref_primary_10_1080_00218839_2017_1306375
crossref_primary_10_1007_s13592_015_0411_9
crossref_primary_10_1111_j_1758_2229_2009_00014_x
crossref_primary_10_1111_jam_12066
crossref_primary_10_36610_j_jsaas_2014_010200028
crossref_primary_10_3390_biology13020117
crossref_primary_10_7717_peerj_5887
crossref_primary_10_1007_s13592_015_0401_y
crossref_primary_10_1016_j_jip_2009_03_006
crossref_primary_10_1007_s13592_020_00831_9
crossref_primary_10_1128_mBio_02164_15
crossref_primary_10_7717_peerj_522
crossref_primary_10_1007_s12161_014_9956_x
crossref_primary_10_1128_AEM_02105_16
crossref_primary_10_1016_j_jip_2011_05_012
crossref_primary_10_1111_j_1365_2672_2011_05192_x
crossref_primary_10_1016_j_jip_2011_08_006
crossref_primary_10_1021_jf4055374
crossref_primary_10_24190_ISSN2564_615X_2017_01_06
crossref_primary_10_1016_j_cois_2018_02_006
crossref_primary_10_1093_jee_toz168
crossref_primary_10_3390_ecologies3030022
crossref_primary_10_1371_journal_pone_0018491
crossref_primary_10_1371_journal_pone_0072443
crossref_primary_10_1371_journal_pone_0070182
crossref_primary_10_3390_pathogens10070785
crossref_primary_10_1016_j_rbe_2018_04_001
crossref_primary_10_3920_JIFF2014_0022
crossref_primary_10_1016_j_sjbs_2018_11_017
crossref_primary_10_1146_annurev_micro_091014_104136
crossref_primary_10_1080_00218839_2023_2221563
crossref_primary_10_2903_j_efsa_2016_4578
crossref_primary_10_1093_jee_tox193
crossref_primary_10_1371_journal_pone_0103989
crossref_primary_10_1007_s13592_013_0243_4
crossref_primary_10_1093_jee_tox075
crossref_primary_10_1603_EC10235
crossref_primary_10_4142_jvs_2021_22_e40
crossref_primary_10_1016_j_jip_2010_06_005
crossref_primary_10_1002_ece3_21
crossref_primary_10_1038_s41598_024_67796_y
crossref_primary_10_1163_187498312X639568
crossref_primary_10_1016_j_ijpara_2024_11_008
crossref_primary_10_1016_j_jip_2010_06_001
crossref_primary_10_1021_acs_jproteome_0c00658
crossref_primary_10_1016_j_heliyon_2024_e34390
crossref_primary_10_1016_j_jip_2016_11_001
crossref_primary_10_35206_jan_688866
crossref_primary_10_1002_ece3_3178
crossref_primary_10_1016_j_jip_2016_11_003
crossref_primary_10_1016_j_jip_2016_11_002
crossref_primary_10_1007_s00436_017_5630_8
crossref_primary_10_1007_s00436_015_4733_3
crossref_primary_10_1128_AEM_06537_11
crossref_primary_10_1371_journal_pone_0037017
crossref_primary_10_1016_j_aspen_2021_05_006
crossref_primary_10_1016_j_jip_2020_107348
crossref_primary_10_1016_j_jinsphys_2018_05_002
crossref_primary_10_1128_mBio_00898_13
crossref_primary_10_1080_00218839_2019_1614737
crossref_primary_10_1016_j_jinsphys_2012_04_016
crossref_primary_10_3896_IBRA_1_53_5_09
crossref_primary_10_2478_jas_2023_0002
crossref_primary_10_1098_rsif_2016_0908
crossref_primary_10_1038_s41598_017_05596_3
crossref_primary_10_1016_j_jrurstud_2022_10_020
crossref_primary_10_1371_journal_ppat_1004816
crossref_primary_10_1039_C8LC01342J
crossref_primary_10_2903_sp_efsa_2012_EN_340
crossref_primary_10_1016_j_scitotenv_2019_134208
crossref_primary_10_1371_journal_ppat_1000466
crossref_primary_10_1016_j_aspen_2018_02_006
crossref_primary_10_1371_journal_pone_0020656
crossref_primary_10_3390_v6052012
crossref_primary_10_1016_j_jip_2018_09_007
crossref_primary_10_1111_j_1600_065X_2010_00985_x
crossref_primary_10_1038_s42003_023_04587_7
crossref_primary_10_1371_journal_ppat_1009270
crossref_primary_10_1111_1462_2920_12426
crossref_primary_10_1007_s00436_024_08225_x
crossref_primary_10_1007_s00248_022_02050_4
crossref_primary_10_1111_afe_12338
crossref_primary_10_1242_jeb_130435
crossref_primary_10_1242_jeb_244340
crossref_primary_10_1371_journal_ppat_1011225
crossref_primary_10_1080_00218839_2019_1614728
crossref_primary_10_1080_00218839_2019_1632150
crossref_primary_10_1080_00218839_2023_2175964
crossref_primary_10_1371_journal_pone_0297864
crossref_primary_10_1128_AEM_01025_09
crossref_primary_10_1111_ecog_06979
crossref_primary_10_1186_s13568_024_01734_z
crossref_primary_10_3390_pathogens10091117
crossref_primary_10_3896_IBRA_1_52_2_12
crossref_primary_10_3896_IBRA_1_49_1_22
crossref_primary_10_1016_j_jip_2013_09_002
crossref_primary_10_1371_journal_pone_0006481
crossref_primary_10_3896_IBRA_1_49_1_23
crossref_primary_10_1016_j_jip_2024_108215
crossref_primary_10_3390_ijms24010550
crossref_primary_10_3896_IBRA_1_49_1_29
crossref_primary_10_3389_fevo_2021_755226
crossref_primary_10_1016_j_cois_2015_05_010
crossref_primary_10_1017_S0031182009991818
crossref_primary_10_1371_journal_pone_0159615
crossref_primary_10_1007_s13592_021_00845_x
crossref_primary_10_1016_j_jchromb_2012_05_016
crossref_primary_10_51970_jasp_1266441
crossref_primary_10_1016_j_agee_2022_108084
crossref_primary_10_1111_1758_2229_12052
crossref_primary_10_1371_journal_pone_0030641
crossref_primary_10_2478_jas_2018_0007
crossref_primary_10_1016_j_tree_2021_03_006
crossref_primary_10_1242_jeb_161489
crossref_primary_10_1371_journal_pone_0182814
crossref_primary_10_2478_jas_2021_0010
crossref_primary_10_3896_IBRA_1_49_1_11
crossref_primary_10_1111_1758_2229_12059
crossref_primary_10_3896_IBRA_1_52_1_14
crossref_primary_10_1002_vms3_1194
crossref_primary_10_3389_fmicb_2022_835390
crossref_primary_10_5424_sjar_2017151_9652
crossref_primary_10_1007_s13592_011_0077_x
crossref_primary_10_1080_24750263_2022_2121009
crossref_primary_10_1016_j_gene_2025_149243
crossref_primary_10_1111_gec3_12266
crossref_primary_10_1371_journal_pone_0110237
crossref_primary_10_3390_insects11060382
crossref_primary_10_1007_s13592_018_0607_x
crossref_primary_10_3390_agriculture11100963
crossref_primary_10_1016_j_jip_2009_10_009
crossref_primary_10_1111_1462_2920_12883
crossref_primary_10_1002_eap_2442
crossref_primary_10_1007_s00248_021_01827_3
crossref_primary_10_3390_microorganisms13010142
crossref_primary_10_3896_IBRA_1_49_1_05
crossref_primary_10_1080_17513758_2016_1237682
crossref_primary_10_1111_j_1758_2229_2012_00386_x
crossref_primary_10_1016_S2222_1808_15_60980_X
crossref_primary_10_1080_00218839_2022_2053033
crossref_primary_10_1007_s00040_022_00860_w
crossref_primary_10_1080_07924259_2018_1433726
crossref_primary_10_1371_journal_pone_0133228
crossref_primary_10_1016_j_meegid_2013_04_016
crossref_primary_10_1111_1749_4877_12752
crossref_primary_10_3390_insects10100329
crossref_primary_10_7717_peerj_5812
crossref_primary_10_1007_s13592_018_0584_0
crossref_primary_10_2298_VETGL231129010D
crossref_primary_10_1016_j_rvsc_2013_09_012
Cites_doi 10.1016/S0022-5193(03)00121-8
10.1080/00218839.2000.11101029
10.1128/AEM.00270-07
10.1126/science.316.5827.970
10.1051/apido:2001004
10.1016/j.virol.2006.11.038
10.1016/j.jip.2006.11.001
10.1080/00218839.1989.11100829
10.3896/IBRA.1.46.2.12
10.1016/0022-2011(84)90026-0
10.1128/CDLI.8.1.93-104.2001
10.1007/s002650050276
10.1051/apido:2006040
10.1080/00218839.1989.11100828
10.1080/0005772X.2002.11099532
10.1080/00218839.1995.11100900
10.1051/apido:2007037
10.1126/science.1146498
10.1016/j.jip.2007.07.010
10.1016/j.jviromet.2006.11.021
10.1016/j.jip.2006.02.005
10.1128/AEM.67.5.2384-2387.2001
10.1016/j.jip.2007.02.014
10.1021/jf034310n
10.1016/S0065-3527(07)70002-7
10.1111/j.1744-7348.1953.tb01093.x
10.1128/AEM.72.1.606-611.2006
10.1016/S0021-9673(98)00292-1
10.1016/j.chroma.2007.01.117
ContentType Journal Article
Copyright 2008 The Authors. Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd
Copyright_xml – notice: 2008 The Authors. Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
C1K
M7N
7S9
L.6
7X8
DOI 10.1111/j.1462-2920.2008.01687.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Environmental Sciences and Pollution Management
Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Ecology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
Entomology Abstracts

MEDLINE
MEDLINE - Academic
AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-2920
EndPage 2669
ExternalDocumentID 18647336
10_1111_j_1462_2920_2008_01687_x
EMI1687
ark_67375_WNG_HD7C0BBK_Q
US201301537398
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XFK
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
ALVPJ
BSCLL
HGLYW
OIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
C1K
M7N
7S9
L.6
7X8
ID FETCH-LOGICAL-c5577-c0879f0bc704d1df8069966c928116693b5e27d456f2ecc3b3b4dbdf42d5e6893
IEDL.DBID DR2
ISSN 1462-2912
1462-2920
IngestDate Fri Jul 11 13:33:47 EDT 2025
Fri Jul 11 03:04:59 EDT 2025
Thu Jul 10 19:27:31 EDT 2025
Wed Feb 19 01:42:43 EST 2025
Tue Jul 01 00:42:40 EDT 2025
Thu Apr 24 23:07:20 EDT 2025
Wed Jan 22 16:59:20 EST 2025
Sun Sep 21 06:18:13 EDT 2025
Wed Dec 27 19:16:57 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5577-c0879f0bc704d1df8069966c928116693b5e27d456f2ecc3b3b4dbdf42d5e6893
Notes http://dx.doi.org/10.1111/j.1462-2920.2008.01687.x
ark:/67375/WNG-HD7C0BBK-Q
istex:579BA242BEC0F8D4C77DD902D36A9CEDDA3B59D7
ArticleID:EMI1687
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18647336
PQID 19684772
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_69605096
proquest_miscellaneous_48069525
proquest_miscellaneous_19684772
pubmed_primary_18647336
crossref_citationtrail_10_1111_j_1462_2920_2008_01687_x
crossref_primary_10_1111_j_1462_2920_2008_01687_x
wiley_primary_10_1111_j_1462_2920_2008_01687_x_EMI1687
istex_primary_ark_67375_WNG_HD7C0BBK_Q
fao_agris_US201301537398
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2008
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: October 2008
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2008
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
References Liu, T.P. (1984) Ultrastructure of the midgut of the worker honey bee Apis mellifera heavily infected with Nosema apis. J Invertebr Pathol 44: 282-291.
Pickard, R.S., and El-Shemy, A.A.M. (1989) Seasonal variation in the infection of honeybee colonies with Nosema apis Zander. J Apic Res 28: 93-100.
Martín-Hernández, R., Meana, A., Prieto, L., Martínez Salvador, A., Garrido-Bailón, E., and Higes, M. (2007) Outcome of colonization of Apis mellifera by Nosema ceranae. Appl Environ Microbiol 73: 6331-6338.
Paxton, R., Klee, J., Korpela, S., and Fries, I. (2007) Nosema ceranae has infected Apis mellifera Europe in at least 1998 and may be more virulent than Nosema apis. Apidologie 38: 558-565.
Chen, Y., Pettis, J.S., Collins, A.M., and Feldlaufer, M.F. (2006) Prevalence and transmission routes of honey bee viruses. App Environ Microbiol 72: 606-611.
Bakonyi, T., Frakas, R., Szendroi, A., Dobos-Kovacs, M., and Rusvai, M. (2002) Detection of acute bee paralysis virus by RT-PCR in honeybee and Varroa destructor field samples: rapid screening of representative Hungarian apiaries. Apidologie 33: 63-74.
Valdés, B., Diez, M.J., and Fernández, I. (1987) Atlas Polínico de Andalucía Occidental. Sevilla, Spain: Universidad de Sevilla (eds).
Erdtman, G. (1969) Handbook of Palynology. An Introduction to the Study of Pollen Grains and Spores. Copenhagen, Denmark: Munksgaard.
Higes, M., García-Palencia, P., Martín-Hernández, R., and Meana, A. (2007) Experimental infection of Apis mellifera honeybees with the Microsporidia Nosema ceranae. J Invertebr Pathol 94: 211-217.
Kralj, J., and Fuchs, S. (2006) Parasitic Varroa destructor mites influence flight duration and homing ability of infested Apis mellifera foragers. Apidologie 37: 577-587.
Doull, K.M., and Cellier, K.M. (1961) A survey of the incidence of Nosema disease (Nosema apis Zander) of the honey bee in South Australia. J Insect Pathol 3: 280-288.
Jiménez, J.J., Bernal, J.L., del Nozal, M.J., Toribio, L., and Martín, M.T. (1998) Gas chromatography with electron-capture and nitrogen-phosphorus detection in the analysis of pesticides in honey after elution from a Florisil column. Influence of the honey matrix on the quantitative results. J Chromatogr A 823: 381-387.
Klee, J., Besana, A.M., Genersch, E., Gisder, S., Nanetti, A., Tam, D.Q., et al. (2007) Widespread dispersal of the Microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J Invertebr Pathol 96: 1-10.
Grabensteiner, E., Ritter, W., Carter, M.J., Davison, S., Pechhacker, H., Kolodziejek, J., et al. (2001) Sacbrood virus of the honeybee (Apis mellifera): rapid identification and phylogenetic analysis using reverse transcription-PCR. Clin Diagn Lab Immunol 8: 93-104.
Chauzat, M.P., Higes, M., Martín-Hernández, R., Meana, A., Cougoule, N., and Faucon, J.P. (2007) Presence of Nosema ceranae in French honeybee colonies. J Apic Res 46: 127-128.
Faucon, J.P., Mathieu, L., Ribiere, M., Martel, A.C., Drajnudel, P., Zeggane, S., et al. (2002) Honey bee winter mortality in France in 1999 and 2000. Bee World 83: 13-23.
Amdam, G.A., and Omholt, W. (2003) The hive bee to forager transition in honeybee colonies: the double repressor hypothesis. J Theor Biol 223: 451-464.
Hung, A.C.F. (2000) PCR detection of Kashmir bee virus in honey bee excreta. J Apic Res 39: 103-106.
Chen, Y.P., and Siede, R. (2007) Honey bee virus. Adv Virus Res 70: 33-80.
Hassanein, M.H. (1953) The influence of infection with Nosema apis on the activities and longevity of the worker honeybee. Ann Appl Biol 40: 418-423.
Higes, M., Martín, R., and Meana, A. (2006) Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J Invertebr Pathol 92: 93-95.
Benjeddou, M., Leat, N., Allsopp, M., and Davison, S. (2001) Detection of acute paralysis virus and black queen cell virus from honeybees by reverse trasciptase PCR. Appl Environ Microbiol 67: 2384-2387.
Huang, Z.Y., and Robinson, G.E. (1996) Regulation of honey bee division of labor by colony age demography. Behav Ecol Sociobiol 39: 147-158.
Laurent, F.M., and Rathahao, E. (2003) Distribution of (C-14)imidacloprid in sunflowers (Helianthus annuus L.) following seed treatment. J Agric Food Chem 51: 8005-8010.
Faegri, K., and Iversen, J. (1989) Textbook of Pollen Analysis, IV Edition. Faegri, K., Kaland, P.E., Krzywinski, K. (eds). Chichester, USA: John Wiley & Sons.
El-Shemy, A.A.M., and Pickard, R.S. (1989) Nosema apis Zander infection levels in honeybees of known age. J Apic Res 28: 101-106.
Stoltz, D., Shen, X.R., Boggis, C., and Sisson, G. (1995) Molecular diagnosis of Kashmir bee virus infection. J Apic Res 34: 153-160.
Chen, Y., Evans, J.D., Smith, I.B., and Pettis, J.S. (2008) Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United States. J Invertebr Pathol 97: 186-188.
Higes, M., Martín, R., Sanz, A., Alvarez, N., Sanz, A., Garcia, M.P., and Meana, A. (2005) El síndrome de despoblamiento de las colmenas en España. Consideraciones sobre su origen. Vida Apícola 133: 15-21.
Jiménez, J.J., Bernal, J.L., del Nozal, M.J., Martín M.T., and Mayo, R. (2007) Comparative study of sample preparation procedures to determine fipronil in pollen by gas chromatography with mass spectrometric and electron capture detection. J Chromatogr A 1146: 8-16.
Maori, E., Tanne, E., and Sela, I. (2007) Reciprocal sequence exchange between non-retro viruses and hosts leading to the appearance of new host phenotypes. Virology 362: 342-349.
Cox-Foster, D.L., Conlan, S., Holmes, E., Palacios, G., Evans, J.D., Moran, N.A., et al. (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318: 283-287.
Blanchard, P., Ribiere, M., Celle, O., Lallemand, P., Schurr, F., Olivier, V., et al. (2007) Evaluation of a real-time two-step RT-PCR assay for quantitation of Chronic bee paralysis virus (CBPV) genome in experimentally-infected bee tissues and in life stages of a symptomatic colony. J Virol Methods 141: 7-13.
2006; 92
1996; 39
2006; 72
2005; 133
1984; 44
1995; 34
2007; 141
2002; 33
2007; 1146
2006; 37
2007; 362
2008
2007
2007; 70
2005
2007; 94
2004
2007; 73
2008; 97
2007; 96
2001; 67
2003; 51
1989; 28
2007; 38
2000; 39
2002; 83
1961; 3
2001; 8
1953; 40
1998; 823
1987
2003; 223
2007; 318
2007; 46
1969
1989
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
Higes M. (e_1_2_5_19_1) 2005; 133
e_1_2_5_29_1
Valdés B. (e_1_2_5_39_1) 1987
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
Faegri K. (e_1_2_5_14_1) 1989
e_1_2_5_2_1
Grabensteiner E. (e_1_2_5_17_1) 2001; 8
e_1_2_5_18_1
Erdtman G. (e_1_2_5_13_1) 1969
Doull K.M. (e_1_2_5_11_1) 1961; 3
e_1_2_5_30_1
e_1_2_5_31_1
El‐Shemy A.A.M. (e_1_2_5_12_1) 1989; 28
References_xml – reference: Kralj, J., and Fuchs, S. (2006) Parasitic Varroa destructor mites influence flight duration and homing ability of infested Apis mellifera foragers. Apidologie 37: 577-587.
– reference: Benjeddou, M., Leat, N., Allsopp, M., and Davison, S. (2001) Detection of acute paralysis virus and black queen cell virus from honeybees by reverse trasciptase PCR. Appl Environ Microbiol 67: 2384-2387.
– reference: Doull, K.M., and Cellier, K.M. (1961) A survey of the incidence of Nosema disease (Nosema apis Zander) of the honey bee in South Australia. J Insect Pathol 3: 280-288.
– reference: Chen, Y., Pettis, J.S., Collins, A.M., and Feldlaufer, M.F. (2006) Prevalence and transmission routes of honey bee viruses. App Environ Microbiol 72: 606-611.
– reference: Faucon, J.P., Mathieu, L., Ribiere, M., Martel, A.C., Drajnudel, P., Zeggane, S., et al. (2002) Honey bee winter mortality in France in 1999 and 2000. Bee World 83: 13-23.
– reference: Higes, M., García-Palencia, P., Martín-Hernández, R., and Meana, A. (2007) Experimental infection of Apis mellifera honeybees with the Microsporidia Nosema ceranae. J Invertebr Pathol 94: 211-217.
– reference: Chen, Y., Evans, J.D., Smith, I.B., and Pettis, J.S. (2008) Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United States. J Invertebr Pathol 97: 186-188.
– reference: Chauzat, M.P., Higes, M., Martín-Hernández, R., Meana, A., Cougoule, N., and Faucon, J.P. (2007) Presence of Nosema ceranae in French honeybee colonies. J Apic Res 46: 127-128.
– reference: Klee, J., Besana, A.M., Genersch, E., Gisder, S., Nanetti, A., Tam, D.Q., et al. (2007) Widespread dispersal of the Microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J Invertebr Pathol 96: 1-10.
– reference: Cox-Foster, D.L., Conlan, S., Holmes, E., Palacios, G., Evans, J.D., Moran, N.A., et al. (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318: 283-287.
– reference: Hassanein, M.H. (1953) The influence of infection with Nosema apis on the activities and longevity of the worker honeybee. Ann Appl Biol 40: 418-423.
– reference: Laurent, F.M., and Rathahao, E. (2003) Distribution of (C-14)imidacloprid in sunflowers (Helianthus annuus L.) following seed treatment. J Agric Food Chem 51: 8005-8010.
– reference: Jiménez, J.J., Bernal, J.L., del Nozal, M.J., Martín M.T., and Mayo, R. (2007) Comparative study of sample preparation procedures to determine fipronil in pollen by gas chromatography with mass spectrometric and electron capture detection. J Chromatogr A 1146: 8-16.
– reference: Martín-Hernández, R., Meana, A., Prieto, L., Martínez Salvador, A., Garrido-Bailón, E., and Higes, M. (2007) Outcome of colonization of Apis mellifera by Nosema ceranae. Appl Environ Microbiol 73: 6331-6338.
– reference: Valdés, B., Diez, M.J., and Fernández, I. (1987) Atlas Polínico de Andalucía Occidental. Sevilla, Spain: Universidad de Sevilla (eds).
– reference: El-Shemy, A.A.M., and Pickard, R.S. (1989) Nosema apis Zander infection levels in honeybees of known age. J Apic Res 28: 101-106.
– reference: Faegri, K., and Iversen, J. (1989) Textbook of Pollen Analysis, IV Edition. Faegri, K., Kaland, P.E., Krzywinski, K. (eds). Chichester, USA: John Wiley & Sons.
– reference: Chen, Y.P., and Siede, R. (2007) Honey bee virus. Adv Virus Res 70: 33-80.
– reference: Liu, T.P. (1984) Ultrastructure of the midgut of the worker honey bee Apis mellifera heavily infected with Nosema apis. J Invertebr Pathol 44: 282-291.
– reference: Maori, E., Tanne, E., and Sela, I. (2007) Reciprocal sequence exchange between non-retro viruses and hosts leading to the appearance of new host phenotypes. Virology 362: 342-349.
– reference: Blanchard, P., Ribiere, M., Celle, O., Lallemand, P., Schurr, F., Olivier, V., et al. (2007) Evaluation of a real-time two-step RT-PCR assay for quantitation of Chronic bee paralysis virus (CBPV) genome in experimentally-infected bee tissues and in life stages of a symptomatic colony. J Virol Methods 141: 7-13.
– reference: Stoltz, D., Shen, X.R., Boggis, C., and Sisson, G. (1995) Molecular diagnosis of Kashmir bee virus infection. J Apic Res 34: 153-160.
– reference: Amdam, G.A., and Omholt, W. (2003) The hive bee to forager transition in honeybee colonies: the double repressor hypothesis. J Theor Biol 223: 451-464.
– reference: Higes, M., Martín, R., Sanz, A., Alvarez, N., Sanz, A., Garcia, M.P., and Meana, A. (2005) El síndrome de despoblamiento de las colmenas en España. Consideraciones sobre su origen. Vida Apícola 133: 15-21.
– reference: Pickard, R.S., and El-Shemy, A.A.M. (1989) Seasonal variation in the infection of honeybee colonies with Nosema apis Zander. J Apic Res 28: 93-100.
– reference: Huang, Z.Y., and Robinson, G.E. (1996) Regulation of honey bee division of labor by colony age demography. Behav Ecol Sociobiol 39: 147-158.
– reference: Grabensteiner, E., Ritter, W., Carter, M.J., Davison, S., Pechhacker, H., Kolodziejek, J., et al. (2001) Sacbrood virus of the honeybee (Apis mellifera): rapid identification and phylogenetic analysis using reverse transcription-PCR. Clin Diagn Lab Immunol 8: 93-104.
– reference: Bakonyi, T., Frakas, R., Szendroi, A., Dobos-Kovacs, M., and Rusvai, M. (2002) Detection of acute bee paralysis virus by RT-PCR in honeybee and Varroa destructor field samples: rapid screening of representative Hungarian apiaries. Apidologie 33: 63-74.
– reference: Erdtman, G. (1969) Handbook of Palynology. An Introduction to the Study of Pollen Grains and Spores. Copenhagen, Denmark: Munksgaard.
– reference: Hung, A.C.F. (2000) PCR detection of Kashmir bee virus in honey bee excreta. J Apic Res 39: 103-106.
– reference: Jiménez, J.J., Bernal, J.L., del Nozal, M.J., Toribio, L., and Martín, M.T. (1998) Gas chromatography with electron-capture and nitrogen-phosphorus detection in the analysis of pesticides in honey after elution from a Florisil column. Influence of the honey matrix on the quantitative results. J Chromatogr A 823: 381-387.
– reference: Paxton, R., Klee, J., Korpela, S., and Fries, I. (2007) Nosema ceranae has infected Apis mellifera Europe in at least 1998 and may be more virulent than Nosema apis. Apidologie 38: 558-565.
– reference: Higes, M., Martín, R., and Meana, A. (2006) Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J Invertebr Pathol 92: 93-95.
– volume: 823
  start-page: 381
  year: 1998
  end-page: 387
  article-title: Gas chromatography with electron‐capture and nitrogen‐phosphorus detection in the analysis of pesticides in honey after elution from a Florisil column. Influence of the honey matrix on the quantitative results
  publication-title: J Chromatogr A
– volume: 97
  start-page: 186
  year: 2008
  end-page: 188
  article-title: is a long‐present and wide‐spread microsporidian infection of the European honey bee ( ) in the United States
  publication-title: J Invertebr Pathol
– volume: 223
  start-page: 451
  year: 2003
  end-page: 464
  article-title: The hive bee to forager transition in honeybee colonies: the double repressor hypothesis
  publication-title: J Theor Biol
– year: 2005
– volume: 33
  start-page: 63
  year: 2002
  end-page: 74
  article-title: Detection of acute bee paralysis virus by RT‐PCR in honeybee and field samples: rapid screening of representative Hungarian apiaries
  publication-title: Apidologie
– volume: 38
  start-page: 558
  year: 2007
  end-page: 565
  article-title: has infected Europe in at least 1998 and may be more virulent than
  publication-title: Apidologie
– volume: 39
  start-page: 147
  year: 1996
  end-page: 158
  article-title: Regulation of honey bee division of labor by colony age demography
  publication-title: Behav Ecol Sociobiol
– volume: 28
  start-page: 93
  year: 1989
  end-page: 100
  article-title: Seasonal variation in the infection of honeybee colonies with Zander
  publication-title: J Apic Res
– year: 2007
– volume: 73
  start-page: 6331
  year: 2007
  end-page: 6338
  article-title: Outcome of colonization of by
  publication-title: Appl Environ Microbiol
– year: 1987
– year: 1989
– volume: 141
  start-page: 7
  year: 2007
  end-page: 13
  article-title: Evaluation of a real‐time two‐step RT‐PCR assay for quantitation of Chronic bee paralysis virus (CBPV) genome in experimentally‐infected bee tissues and in life stages of a symptomatic colony
  publication-title: J Virol Methods
– volume: 67
  start-page: 2384
  year: 2001
  end-page: 2387
  article-title: Detection of acute paralysis virus and black queen cell virus from honeybees by reverse trasciptase PCR
  publication-title: Appl Environ Microbiol
– volume: 37
  start-page: 577
  year: 2006
  end-page: 587
  article-title: Parasitic mites influence flight duration and homing ability of infested foragers
  publication-title: Apidologie
– volume: 28
  start-page: 101
  year: 1989
  end-page: 106
  article-title: Zander infection levels in honeybees of known age
  publication-title: J Apic Res
– volume: 44
  start-page: 282
  year: 1984
  end-page: 291
  article-title: Ultrastructure of the midgut of the worker honey bee heavily infected with
  publication-title: J Invertebr Pathol
– volume: 70
  start-page: 33
  year: 2007
  end-page: 80
  article-title: Honey bee virus
  publication-title: Adv Virus Res
– volume: 40
  start-page: 418
  year: 1953
  end-page: 423
  article-title: The influence of infection with on the activities and longevity of the worker honeybee
  publication-title: Ann Appl Biol
– volume: 39
  start-page: 103
  year: 2000
  end-page: 106
  article-title: PCR detection of Kashmir bee virus in honey bee excreta
  publication-title: J Apic Res
– volume: 362
  start-page: 342
  year: 2007
  end-page: 349
  article-title: Reciprocal sequence exchange between non‐retro viruses and hosts leading to the appearance of new host phenotypes
  publication-title: Virology
– volume: 34
  start-page: 153
  year: 1995
  end-page: 160
  article-title: Molecular diagnosis of Kashmir bee virus infection
  publication-title: J Apic Res
– volume: 46
  start-page: 127
  year: 2007
  end-page: 128
  article-title: Presence of in French honeybee colonies
  publication-title: J Apic Res
– volume: 72
  start-page: 606
  year: 2006
  end-page: 611
  article-title: Prevalence and transmission routes of honey bee viruses
  publication-title: App Environ Microbiol
– volume: 8
  start-page: 93
  year: 2001
  end-page: 104
  article-title: Sacbrood virus of the honeybee ( ): rapid identification and phylogenetic analysis using reverse transcription‐PCR
  publication-title: Clin Diagn Lab Immunol
– volume: 1146
  start-page: 8
  year: 2007
  end-page: 16
  article-title: Comparative study of sample preparation procedures to determine fipronil in pollen by gas chromatography with mass spectrometric and electron capture detection
  publication-title: J Chromatogr A
– year: 1969
– year: 2008
– volume: 94
  start-page: 211
  year: 2007
  end-page: 217
  article-title: Experimental infection of honeybees with the
  publication-title: J Invertebr Pathol
– year: 2004
– volume: 3
  start-page: 280
  year: 1961
  end-page: 288
  article-title: A survey of the incidence of disease ( Zander) of the honey bee in South Australia
  publication-title: J Insect Pathol
– volume: 96
  start-page: 1
  year: 2007
  end-page: 10
  article-title: Widespread dispersal of the Microsporidian , an emergent pathogen of the western honey bee,
  publication-title: J Invertebr Pathol
– volume: 51
  start-page: 8005
  year: 2003
  end-page: 8010
  article-title: Distribution of (C‐14)imidacloprid in sunflowers ( L.) following seed treatment
  publication-title: J Agric Food Chem
– volume: 318
  start-page: 283
  year: 2007
  end-page: 287
  article-title: A metagenomic survey of microbes in honey bee colony collapse disorder
  publication-title: Science
– volume: 133
  start-page: 15
  year: 2005
  end-page: 21
  article-title: El síndrome de despoblamiento de las colmenas en España. Consideraciones sobre su origen
  publication-title: Vida Apícola
– volume: 92
  start-page: 93
  year: 2006
  end-page: 95
  article-title: , a new microsporidian parasite in honeybees in Europe
  publication-title: J Invertebr Pathol
– volume: 83
  start-page: 13
  year: 2002
  end-page: 23
  article-title: Honey bee winter mortality in France in 1999 and 2000
  publication-title: Bee World
– ident: e_1_2_5_2_1
  doi: 10.1016/S0022-5193(03)00121-8
– ident: e_1_2_5_23_1
  doi: 10.1080/00218839.2000.11101029
– ident: e_1_2_5_31_1
  doi: 10.1128/AEM.00270-07
– ident: e_1_2_5_37_1
  doi: 10.1126/science.316.5827.970
– ident: e_1_2_5_3_1
  doi: 10.1051/apido:2001004
– volume: 133
  start-page: 15
  year: 2005
  ident: e_1_2_5_19_1
  article-title: El síndrome de despoblamiento de las colmenas en España. Consideraciones sobre su origen
  publication-title: Vida Apícola
– ident: e_1_2_5_30_1
  doi: 10.1016/j.virol.2006.11.038
– ident: e_1_2_5_21_1
  doi: 10.1016/j.jip.2006.11.001
– ident: e_1_2_5_34_1
– volume: 28
  start-page: 101
  year: 1989
  ident: e_1_2_5_12_1
  article-title: Nosema apis Zander infection levels in honeybees of known age
  publication-title: J Apic Res
  doi: 10.1080/00218839.1989.11100829
– volume-title: Atlas Polínico de Andalucía Occidental
  year: 1987
  ident: e_1_2_5_39_1
– ident: e_1_2_5_6_1
  doi: 10.3896/IBRA.1.46.2.12
– ident: e_1_2_5_29_1
  doi: 10.1016/0022-2011(84)90026-0
– volume: 8
  start-page: 93
  year: 2001
  ident: e_1_2_5_17_1
  article-title: Sacbrood virus of the honeybee (Apis mellifera): rapid identification and phylogenetic analysis using reverse transcription‐PCR
  publication-title: Clin Diagn Lab Immunol
  doi: 10.1128/CDLI.8.1.93-104.2001
– ident: e_1_2_5_22_1
  doi: 10.1007/s002650050276
– ident: e_1_2_5_27_1
  doi: 10.1051/apido:2006040
– ident: e_1_2_5_36_1
  doi: 10.1080/00218839.1989.11100828
– ident: e_1_2_5_15_1
  doi: 10.1080/0005772X.2002.11099532
– ident: e_1_2_5_38_1
  doi: 10.1080/00218839.1995.11100900
– ident: e_1_2_5_33_1
– ident: e_1_2_5_35_1
  doi: 10.1051/apido:2007037
– ident: e_1_2_5_10_1
  doi: 10.1126/science.1146498
– ident: e_1_2_5_8_1
  doi: 10.1016/j.jip.2007.07.010
– ident: e_1_2_5_16_1
– ident: e_1_2_5_5_1
  doi: 10.1016/j.jviromet.2006.11.021
– ident: e_1_2_5_20_1
  doi: 10.1016/j.jip.2006.02.005
– ident: e_1_2_5_4_1
  doi: 10.1128/AEM.67.5.2384-2387.2001
– ident: e_1_2_5_26_1
  doi: 10.1016/j.jip.2007.02.014
– ident: e_1_2_5_28_1
  doi: 10.1021/jf034310n
– ident: e_1_2_5_9_1
  doi: 10.1016/S0065-3527(07)70002-7
– volume-title: Textbook of Pollen Analysis, IV Edition.
  year: 1989
  ident: e_1_2_5_14_1
– ident: e_1_2_5_18_1
  doi: 10.1111/j.1744-7348.1953.tb01093.x
– ident: e_1_2_5_32_1
– ident: e_1_2_5_7_1
  doi: 10.1128/AEM.72.1.606-611.2006
– ident: e_1_2_5_24_1
  doi: 10.1016/S0021-9673(98)00292-1
– ident: e_1_2_5_25_1
  doi: 10.1016/j.chroma.2007.01.117
– volume-title: Handbook of Palynology. An Introduction to the Study of Pollen Grains and Spores
  year: 1969
  ident: e_1_2_5_13_1
– volume: 3
  start-page: 280
  year: 1961
  ident: e_1_2_5_11_1
  article-title: A survey of the incidence of Nosema disease (Nosema apis Zander) of the honey bee in South Australia
  publication-title: J Insect Pathol
SSID ssj0017370
Score 2.4877985
Snippet In recent years, honeybees (Apis mellifera) have been strangely disappearing from their hives, and strong colonies have suddenly become weak and died. The...
Summary In recent years, honeybees (Apis mellifera) have been strangely disappearing from their hives, and strong colonies have suddenly become weak and died....
In recent years, honeybees ( Apis mellifera ) have been strangely disappearing from their hives, and strong colonies have suddenly become weak and died. The...
SourceID proquest
pubmed
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2659
SubjectTerms Animals
antibiotics
Antifungal Agents
Antifungal Agents - pharmacology
Apis cerana
Apis mellifera
Bees
Bees - microbiology
Bees - ultrastructure
brood rearing
Cyclohexanes
Cyclohexanes - pharmacology
death
disease control
etiology
Fatty Acids, Unsaturated
Fatty Acids, Unsaturated - pharmacology
Gastrointestinal Tract
Gastrointestinal Tract - pathology
honey
honey bee colonies
honey bees
isolation & purification
microbiology
Microscopy
Microscopy, Electron, Transmission
Microsporidiosis
Microsporidiosis - microbiology
Microsporidiosis - pathology
Microsporidium
Nosema
Nosema - isolation & purification
Nosema ceranae
pathology
pharmacology
pollen
Sesquiterpenes
Sesquiterpenes - pharmacology
spring
ultrastructure
winter
Title How natural infection by Nosema ceranae causes honeybee colony collapse
URI https://api.istex.fr/ark:/67375/WNG-HD7C0BBK-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-2920.2008.01687.x
https://www.ncbi.nlm.nih.gov/pubmed/18647336
https://www.proquest.com/docview/19684772
https://www.proquest.com/docview/48069525
https://www.proquest.com/docview/69605096
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagEhIXoLyaAsUHxC2r2IkfOdKWdlXESjxW9GbZjlOkhaRqdtUuv56ZPLbaVStViFsi2Y48nsdne_INIe80d8EG4WMX8OgG3GSsi4zHLuOF1dzr0Fae-zyR42l2cipO-_wn_Bem44dYHbihZbT-Gg3cumbTyHmM1Zb6lEgmtRohnmSpRBr9w68rJimm0rZuXN-FbST13DjQWqS6X9oa8CuK_uomMLqObdvgdPSYzIZpdTkps9Fi7kb-zwbj4_-Z9xPyqMew9EOndNvkXqiekgddVcvlM3I8ri9pSxgKjYZkr4q6JZ3UTfhtqQ8QIG2g3i6a0NCfdRWWLsA7DFAtaaua5014TqZHH78fjOO-XkPshVAq9olWeZk4r5KsYEWpE4m7KZ9zzZiUeepE4KoAyFZy0JzUpS4rXFGCWoggATi9IFsVfHKHUIiYilncbeVlFrhwpVKiBDTkFJdWyoioYW2M78nMsabGL7O2qeEGxdSX2kQxmauIsFXP847Q4w59dmD5jT0Dv2um3zje9kKkUGmuI_K-1YnVWPZihrlySpgfk2MzPlQHyf7-J_MlIm8HpTFgwXgtY6tQLxoDPhAgguK3t8hQkoKL21tI2IgikU9EXnb6eD03LTOkvIyIbLXqzpM24AfwafdfO74iD_lAHsxek635xSK8AQQ3d3utbf4FFGcxLg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagCMGF8mxDgeaAuGWVOPEjR1poA21XArqiN8t2HCq1JFWzK7r8emacZNGuWqlC3BLJduTxPD7bk28IeSupcdoxGxmHRzfgJiNZZjQyGS21pFY6X3nuaMyLSfb5hJ305YDwX5iOH2Jx4IaW4f01GjgeSK9aOY2w3FKfE5lwKUYAKO_56zpESF8XXFKJSH3luL5PspLWc-1IS7HqbqUbQLAo_Kvr4OgyuvXhaW-dnA8T67JSzkazqRnZ3yucj_9p5o_Jox7Ghu87vXtC7rj6KbnfFbacPyP7RfMr9Jyh0GjI96pDMw_HTet-6tA6iJHahVbPWteGp03t5sbBOwxQz0OvnRete04mex-Pd4uoL9kQWcaEiGwsRV7Fxoo4K5OykjHHDZXNqUwSzvPUMEdFCaitoqA8qUlNVpqyAs1gjgN2ekHWavjkJgkhaIpE44YrrzJHmamEYBUAIiMo15wHRAyLo2zPZ45lNc7V0r6GKhRTX20TxaSuApIsel50nB636LMJ66_0D3C9avKN4oUvBAuR5jIg77xSLMbSl2eYLieY-j7eV8UHsRvv7ByoLwHZHrRGgRHjzYyuXTNrFbhBQAmC3twiQ0kyym5uwWEvilw-AdnoFPLv3CTPkPUyINyr1a0nrcAV4NPLf-24TR4Ux0eH6vDT-GCLPKQDl3DyiqxNL2fuNQC6qXnjDfUPQHw1TA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD6CIRAv3GHhtjwg3lIlTnzJI9voCoOKW8XeLNtxQCok1dKKlV_POUla1GqTJsRbItmOfHwun-2T7wC8UMx647mLrKejG3STkSoyFtmMFUYxp3xbee79WIwm2dsTftLnP9G_MB0_xPrAjSyj9ddk4LOi3DZyFlG1pT4lMhFKDhBPXssERk0CSJ_WVFKJTNvCcX2fZCur59yRNkLV1dLUCGBJ9mfnodFNcNtGp-FtmK7m1SWlTAeLuR2431uUj_9n4nfgVg9iw1ed1t2FK766B9e7spbL-3A0qn-FLWMoNlple1WhXYbjuvE_Teg8RkjjQ2cWjW_C73Xll9bjOw5QLcNWN2eNfwCT4esvB6OoL9gQOc6ljFysZF7G1sk4K5KiVLGg7ZTLmUoSIfLUcs9kgZitZKg6qU1tVtiiRL3gXiByegg7FX5yF0IMmTIxtN3Ky8wzbkspeYlwyEomjBAByNXaaNezmVNRjR96Y1fDNImpr7VJYtJnASTrnrOO0eMSfXZx-bX5ho5XTz4zuu7FUCHTXAXwstWJ9VjmdErJcpLrr-MjPTqUB_H-_rH-GMDeSmk0mjDdy5jK14tGoxNEjCDZxS0ykiRn_OIWAneixOQTwKNOH__OTYmMOC8DEK1WXXrSGh0BPT3-1457cOPD4VC_ezM-fgI32YpIOHkKO_PThX-GaG5un7dm-gdUgjP7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+natural+infection+by+Nosema+ceranae+causes+honeybee+colony+collapse&rft.jtitle=Environmental+microbiology&rft.au=Higes%2C+Mariano&rft.au=Mart%C3%ADn%E2%80%90Hern%C3%A1ndez%2C+Raquel&rft.au=Bot%C3%ADas%2C+Cristina&rft.au=Bail%C3%B3n%2C+Encarna+Garrido&rft.date=2008-10-01&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=10&rft.issue=10&rft.spage=2659&rft.epage=2669&rft_id=info:doi/10.1111%2Fj.1462-2920.2008.01687.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1462_2920_2008_01687_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon