Outer membrane lipoprotein NlpI scaffolds peptidoglycan hydrolases within multi‐enzyme complexes in Escherichia coli

The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh‐like sacculus requires the combined activity of peptidoglycan synthases and hydrolases. In Escherichia coli , the activity of two PG synthases is d...

Full description

Saved in:
Bibliographic Details
Published inThe EMBO journal Vol. 39; no. 5; pp. e102246 - n/a
Main Authors Banzhaf, Manuel, Yau, Hamish CL, Verheul, Jolanda, Lodge, Adam, Kritikos, George, Mateus, André, Cordier, Baptiste, Hov, Ann Kristin, Stein, Frank, Wartel, Morgane, Pazos, Manuel, Solovyova, Alexandra S, Breukink, Eefjan, van Teeffelen, Sven, Savitski, Mikhail M, den Blaauwen, Tanneke, Typas, Athanasios, Vollmer, Waldemar
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.03.2020
Springer Nature B.V
EMBO Press
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0261-4189
1460-2075
1460-2075
DOI10.15252/embj.2019102246

Cover

Abstract The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh‐like sacculus requires the combined activity of peptidoglycan synthases and hydrolases. In Escherichia coli , the activity of two PG synthases is driven by lipoproteins anchored in the outer membrane (OM). However, the regulation of PG hydrolases is less well understood, with only regulators for PG amidases having been described. Here, we identify the OM lipoprotein NlpI as a general adaptor protein for PG hydrolases. NlpI binds to different classes of hydrolases and can specifically form complexes with various PG endopeptidases. In addition, NlpI seems to contribute both to PG elongation and division biosynthetic complexes based on its localization and genetic interactions. Consistent with such a role, we reconstitute PG multi‐enzyme complexes containing NlpI, the PG synthesis regulator LpoA, its cognate bifunctional synthase, PBP1A, and different endopeptidases. Our results indicate that peptidoglycan regulators and adaptors are part of PG biosynthetic multi‐enzyme complexes, regulating and potentially coordinating the spatiotemporal action of PG synthases and hydrolases. Synopsis In bacteria, enzyme activities regulating peptidoglycan biosynthesis and degradation have to be adjusted during cell wall growth. Here, the outer membrane‐anchored lipoprotein NlpI is shown to facilitate formation of peptidoglycan synthase and hydrolase multi‐enzyme complexes to coordinate correct enlargement of the cell wall peptidoglycan layer in E. coli . NlpI binds to different classes of peptidoglycan hydrolases. NlpI can specifically form multimeric complexes with various endopeptidases. NlpI contributes to peptidoglycan biosynthetic complexes active in cell elongation and cell division based on its cellular localization and genetic interactions. NlpI forms multi‐enzyme complexes containing peptidoglycan synthases and hydrolases in vitro . Graphical Abstract An adaptor protein for peptidoglycan hydrolases and synthases coordinates bacterial cell wall growth.
AbstractList The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh‐like sacculus requires the combined activity of peptidoglycan synthases and hydrolases. In Escherichia coli, the activity of two PG synthases is driven by lipoproteins anchored in the outer membrane (OM). However, the regulation of PG hydrolases is less well understood, with only regulators for PG amidases having been described. Here, we identify the OM lipoprotein NlpI as a general adaptor protein for PG hydrolases. NlpI binds to different classes of hydrolases and can specifically form complexes with various PG endopeptidases. In addition, NlpI seems to contribute both to PG elongation and division biosynthetic complexes based on its localization and genetic interactions. Consistent with such a role, we reconstitute PG multi‐enzyme complexes containing NlpI, the PG synthesis regulator LpoA, its cognate bifunctional synthase, PBP1A, and different endopeptidases. Our results indicate that peptidoglycan regulators and adaptors are part of PG biosynthetic multi‐enzyme complexes, regulating and potentially coordinating the spatiotemporal action of PG synthases and hydrolases. Synopsis In bacteria, enzyme activities regulating peptidoglycan biosynthesis and degradation have to be adjusted during cell wall growth. Here, the outer membrane‐anchored lipoprotein NlpI is shown to facilitate formation of peptidoglycan synthase and hydrolase multi‐enzyme complexes to coordinate correct enlargement of the cell wall peptidoglycan layer in E. coli. NlpI binds to different classes of peptidoglycan hydrolases. NlpI can specifically form multimeric complexes with various endopeptidases. NlpI contributes to peptidoglycan biosynthetic complexes active in cell elongation and cell division based on its cellular localization and genetic interactions. NlpI forms multi‐enzyme complexes containing peptidoglycan synthases and hydrolases in vitro. An adaptor protein for peptidoglycan hydrolases and synthases coordinates bacterial cell wall growth.
The peptidoglycan ( PG ) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh‐like sacculus requires the combined activity of peptidoglycan synthases and hydrolases. In Escherichia coli , the activity of two PG synthases is driven by lipoproteins anchored in the outer membrane ( OM ). However, the regulation of PG hydrolases is less well understood, with only regulators for PG amidases having been described. Here, we identify the OM lipoprotein NlpI as a general adaptor protein for PG hydrolases. NlpI binds to different classes of hydrolases and can specifically form complexes with various PG endopeptidases. In addition, NlpI seems to contribute both to PG elongation and division biosynthetic complexes based on its localization and genetic interactions. Consistent with such a role, we reconstitute PG multi‐enzyme complexes containing NlpI, the PG synthesis regulator LpoA, its cognate bifunctional synthase, PBP 1A, and different endopeptidases. Our results indicate that peptidoglycan regulators and adaptors are part of PG biosynthetic multi‐enzyme complexes, regulating and potentially coordinating the spatiotemporal action of PG synthases and hydrolases. An adaptor protein for peptidoglycan hydrolases and synthases coordinates bacterial cell wall growth.
The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh-like sacculus requires the combined activity of peptidoglycan synthases and hydrolases. In Escherichia coli, the activity of two PG synthases is driven by lipoproteins anchored in the outer membrane (OM). However, the regulation of PG hydrolases is less well understood, with only regulators for PG amidases having been described. Here, we identify the OM lipoprotein NlpI as a general adaptor protein for PG hydrolases. NlpI binds to different classes of hydrolases and can specifically form complexes with various PG endopeptidases. In addition, NlpI seems to contribute both to PG elongation and division biosynthetic complexes based on its localization and genetic interactions. Consistent with such a role, we reconstitute PG multi-enzyme complexes containing NlpI, the PG synthesis regulator LpoA, its cognate bifunctional synthase, PBP1A, and different endopeptidases. Our results indicate that peptidoglycan regulators and adaptors are part of PG biosynthetic multi-enzyme complexes, regulating and potentially coordinating the spatiotemporal action of PG synthases and hydrolases.
The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh-like sacculus requires the combined activity of peptidoglycan synthases and hydrolases. In Escherichia coli, the activity of two PG synthases is driven by lipoproteins anchored in the outer membrane (OM). However, the regulation of PG hydrolases is less well understood, with only regulators for PG amidases having been described. Here, we identify the OM lipoprotein NlpI as a general adaptor protein for PG hydrolases. NlpI binds to different classes of hydrolases and can specifically form complexes with various PG endopeptidases. In addition, NlpI seems to contribute both to PG elongation and division biosynthetic complexes based on its localization and genetic interactions. Consistent with such a role, we reconstitute PG multi-enzyme complexes containing NlpI, the PG synthesis regulator LpoA, its cognate bifunctional synthase, PBP1A, and different endopeptidases. Our results indicate that peptidoglycan regulators and adaptors are part of PG biosynthetic multi-enzyme complexes, regulating and potentially coordinating the spatiotemporal action of PG synthases and hydrolases.The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh-like sacculus requires the combined activity of peptidoglycan synthases and hydrolases. In Escherichia coli, the activity of two PG synthases is driven by lipoproteins anchored in the outer membrane (OM). However, the regulation of PG hydrolases is less well understood, with only regulators for PG amidases having been described. Here, we identify the OM lipoprotein NlpI as a general adaptor protein for PG hydrolases. NlpI binds to different classes of hydrolases and can specifically form complexes with various PG endopeptidases. In addition, NlpI seems to contribute both to PG elongation and division biosynthetic complexes based on its localization and genetic interactions. Consistent with such a role, we reconstitute PG multi-enzyme complexes containing NlpI, the PG synthesis regulator LpoA, its cognate bifunctional synthase, PBP1A, and different endopeptidases. Our results indicate that peptidoglycan regulators and adaptors are part of PG biosynthetic multi-enzyme complexes, regulating and potentially coordinating the spatiotemporal action of PG synthases and hydrolases.
The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh-like sacculus requires the combined activity of peptidoglycan synthases and hydrolases. In Escherichia coli, the activity of two PG synthases is driven by lipoproteins anchored in the outer membrane (OM). However, the regulation of PG hydrolases is less well understood, with only regulators for PG amidases having been described. Here, we identify the OM lipoprotein NlpI as a general adaptor protein for PG hydro-lases. NlpI binds to different classes of hydrolases and can specifically form complexes with various PG endopeptidases. In addition, NlpI seems to contribute both to PG elongation and division biosynthetic complexes based on its localization and genetic interactions. Consistent with such a role, we reconstitute PG multi-enzyme complexes containing NlpI, the PG synthesis regulator LpoA, its cognate bifunctional synthase, PBP1A, and different endopeptidases. Our results indicate that peptidoglycan regulators and adaptors are part of PG biosynthetic multi-enzyme complexes, regulating and potentially coordinating the spatiotemporal action of PG synthases and hydrolases.
The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh‐like sacculus requires the combined activity of peptidoglycan synthases and hydrolases. In Escherichia coli , the activity of two PG synthases is driven by lipoproteins anchored in the outer membrane (OM). However, the regulation of PG hydrolases is less well understood, with only regulators for PG amidases having been described. Here, we identify the OM lipoprotein NlpI as a general adaptor protein for PG hydrolases. NlpI binds to different classes of hydrolases and can specifically form complexes with various PG endopeptidases. In addition, NlpI seems to contribute both to PG elongation and division biosynthetic complexes based on its localization and genetic interactions. Consistent with such a role, we reconstitute PG multi‐enzyme complexes containing NlpI, the PG synthesis regulator LpoA, its cognate bifunctional synthase, PBP1A, and different endopeptidases. Our results indicate that peptidoglycan regulators and adaptors are part of PG biosynthetic multi‐enzyme complexes, regulating and potentially coordinating the spatiotemporal action of PG synthases and hydrolases. Synopsis In bacteria, enzyme activities regulating peptidoglycan biosynthesis and degradation have to be adjusted during cell wall growth. Here, the outer membrane‐anchored lipoprotein NlpI is shown to facilitate formation of peptidoglycan synthase and hydrolase multi‐enzyme complexes to coordinate correct enlargement of the cell wall peptidoglycan layer in E. coli . NlpI binds to different classes of peptidoglycan hydrolases. NlpI can specifically form multimeric complexes with various endopeptidases. NlpI contributes to peptidoglycan biosynthetic complexes active in cell elongation and cell division based on its cellular localization and genetic interactions. NlpI forms multi‐enzyme complexes containing peptidoglycan synthases and hydrolases in vitro . Graphical Abstract An adaptor protein for peptidoglycan hydrolases and synthases coordinates bacterial cell wall growth.
Author Verheul, Jolanda
Mateus, André
Hov, Ann Kristin
Breukink, Eefjan
Banzhaf, Manuel
Vollmer, Waldemar
Cordier, Baptiste
Yau, Hamish CL
Wartel, Morgane
Solovyova, Alexandra S
Kritikos, George
Stein, Frank
van Teeffelen, Sven
Typas, Athanasios
Lodge, Adam
Pazos, Manuel
Savitski, Mikhail M
den Blaauwen, Tanneke
AuthorAffiliation 6 Membrane Biochemistry and Biophysics Department of Chemistry Faculty of Science Utrecht University Utrecht The Netherlands
4 Microbial Morphogenesis and Growth Lab Institut Pasteur Paris France
1 European Molecular Biology Laboratory Genome Biology Unit Heidelberg Germany
3 Bacterial Cell Biology & Physiology Swammerdam Institute for Life Sciences Faculty of Science University of Amsterdam Amsterdam The Netherlands
5 Newcastle University Protein and Proteome Analysis Newcastle Upon Tyne UK
10 Present address: Iksuda Therapeutics The Biosphere Newcastle Upon Tyne UK
8 Present address: Institute of Microbiology & Infection and School of Biosciences University of Birmingham Edgbaston Birmingham UK
11 Present address: École polytechnique fédérale de Lausanne SV IBI‐SV UPDALPE, AAB 013 Lausanne Switzerland
9 Present address: Faculty of Science, Agriculture and Engineering Newcastle University Newcastle Upon Tyne UK
7 European Molecular Biology Laboratory Structural & Computational Unit Heidelberg
AuthorAffiliation_xml – name: 1 European Molecular Biology Laboratory Genome Biology Unit Heidelberg Germany
– name: 2 Centre for Bacterial Cell Biology Biosciences Institute Newcastle University Newcastle Upon Tyne UK
– name: 5 Newcastle University Protein and Proteome Analysis Newcastle Upon Tyne UK
– name: 7 European Molecular Biology Laboratory Structural & Computational Unit Heidelberg Germany
– name: 6 Membrane Biochemistry and Biophysics Department of Chemistry Faculty of Science Utrecht University Utrecht The Netherlands
– name: 8 Present address: Institute of Microbiology & Infection and School of Biosciences University of Birmingham Edgbaston Birmingham UK
– name: 9 Present address: Faculty of Science, Agriculture and Engineering Newcastle University Newcastle Upon Tyne UK
– name: 3 Bacterial Cell Biology & Physiology Swammerdam Institute for Life Sciences Faculty of Science University of Amsterdam Amsterdam The Netherlands
– name: 11 Present address: École polytechnique fédérale de Lausanne SV IBI‐SV UPDALPE, AAB 013 Lausanne Switzerland
– name: 4 Microbial Morphogenesis and Growth Lab Institut Pasteur Paris France
– name: 10 Present address: Iksuda Therapeutics The Biosphere Newcastle Upon Tyne UK
Author_xml – sequence: 1
  givenname: Manuel
  surname: Banzhaf
  fullname: Banzhaf, Manuel
  organization: European Molecular Biology Laboratory, Genome Biology Unit, Institute of Microbiology & Infection and School of Biosciences, University of Birmingham
– sequence: 2
  givenname: Hamish CL
  surname: Yau
  fullname: Yau, Hamish CL
  organization: Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Faculty of Science, Agriculture and Engineering, Newcastle University
– sequence: 3
  givenname: Jolanda
  surname: Verheul
  fullname: Verheul, Jolanda
  organization: Bacterial Cell Biology & Physiology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam
– sequence: 4
  givenname: Adam
  surname: Lodge
  fullname: Lodge, Adam
  organization: Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Iksuda Therapeutics, The Biosphere
– sequence: 5
  givenname: George
  surname: Kritikos
  fullname: Kritikos, George
  organization: European Molecular Biology Laboratory, Genome Biology Unit
– sequence: 6
  givenname: André
  orcidid: 0000-0001-6870-0677
  surname: Mateus
  fullname: Mateus, André
  organization: European Molecular Biology Laboratory, Genome Biology Unit
– sequence: 7
  givenname: Baptiste
  orcidid: 0000-0002-6042-9787
  surname: Cordier
  fullname: Cordier, Baptiste
  organization: Microbial Morphogenesis and Growth Lab, Institut Pasteur
– sequence: 8
  givenname: Ann Kristin
  surname: Hov
  fullname: Hov, Ann Kristin
  organization: European Molecular Biology Laboratory, Genome Biology Unit, École polytechnique fédérale de Lausanne SV IBI‐SV UPDALPE, AAB 013
– sequence: 9
  givenname: Frank
  surname: Stein
  fullname: Stein, Frank
  organization: European Molecular Biology Laboratory, Genome Biology Unit
– sequence: 10
  givenname: Morgane
  surname: Wartel
  fullname: Wartel, Morgane
  organization: European Molecular Biology Laboratory, Genome Biology Unit
– sequence: 11
  givenname: Manuel
  surname: Pazos
  fullname: Pazos, Manuel
  organization: Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University
– sequence: 12
  givenname: Alexandra S
  surname: Solovyova
  fullname: Solovyova, Alexandra S
  organization: Newcastle University Protein and Proteome Analysis
– sequence: 13
  givenname: Eefjan
  surname: Breukink
  fullname: Breukink, Eefjan
  organization: Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University
– sequence: 14
  givenname: Sven
  surname: van Teeffelen
  fullname: van Teeffelen, Sven
  organization: Microbial Morphogenesis and Growth Lab, Institut Pasteur
– sequence: 15
  givenname: Mikhail M
  orcidid: 0000-0003-2011-9247
  surname: Savitski
  fullname: Savitski, Mikhail M
  organization: European Molecular Biology Laboratory, Genome Biology Unit, European Molecular Biology Laboratory, Structural & Computational Unit
– sequence: 16
  givenname: Tanneke
  orcidid: 0000-0002-5403-5597
  surname: den Blaauwen
  fullname: den Blaauwen, Tanneke
  email: t.denblaauwen@uva.nl
  organization: Bacterial Cell Biology & Physiology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam
– sequence: 17
  givenname: Athanasios
  orcidid: 0000-0002-0797-9018
  surname: Typas
  fullname: Typas, Athanasios
  email: typas@embl.de
  organization: European Molecular Biology Laboratory, Genome Biology Unit, European Molecular Biology Laboratory, Structural & Computational Unit
– sequence: 18
  givenname: Waldemar
  orcidid: 0000-0003-0408-8567
  surname: Vollmer
  fullname: Vollmer, Waldemar
  email: w.vollmer@ncl.ac.uk
  organization: Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32009249$$D View this record in MEDLINE/PubMed
https://pasteur.hal.science/pasteur-02902798$$DView record in HAL
BookMark eNqFkk1v1DAQhi1URD_gzglF4sIlZex8OJYQUlsttGihFzhbXmey8cqJg51sWU78BH4jvwSXbSldCTj5MM_7jt-ZOSR7veuRkKcUjmnBCvYSu8XqmAEVFBjLywfkgOYlpAx4sUcOgJU0zWkl9slhCCsAKCpOH5H9jAEIlosDsr6cRvRJF4286jGxZnCDdyOaPvlgh4skaNU0ztYhGXAYTe2WdqNVn7Sb2jurAobkyoxtxLvJjubHt-_Yf910mGjXDRa_xHqszYJu0RvdGhUL1jwmDxtlAz65eY_Ipzezj2fn6fzy7cXZyTzVRcHLNObKK1EVAotKUwGqrHLUlGX5ouRlranisFCs4pBlTcGUziFrMqWbRV4jV5gdkddb32FadFhr7EevrBy86ZTfSKeMvF_pTSuXbi055KKiEA3SrUG7Izs_mctBhREnL4EJYFxUaxr5FzcNvfs8YRhlZ4JGa-Nw3RQkywrI4up4EdHnO-jKTb6P44hUKWgZWR6pZ38m-P2H2xVGoNwC2rsQPDZSm1GNxl0HMlZSkL9uRV7firy7lSiEHeGt9z8kr7aSK2Nx819ezt6fvrsnp1t5iMp-if4u8V9b_gQ5i-XE
CitedBy_id crossref_primary_10_1016_j_mib_2021_02_003
crossref_primary_10_1093_femsre_fuab051
crossref_primary_10_1128_mBio_01480_21
crossref_primary_10_1038_s41467_023_39783_w
crossref_primary_10_1099_acmi_0_000882_v3
crossref_primary_10_1107_S2052252521008666
crossref_primary_10_1128_mBio_02185_20
crossref_primary_10_1146_annurev_micro_040621_122027
crossref_primary_10_1111_mmi_14587
crossref_primary_10_1016_j_chembiol_2022_11_001
crossref_primary_10_1128_jb_00239_22
crossref_primary_10_1128_jb_00382_22
crossref_primary_10_1038_s41579_020_0366_3
crossref_primary_10_1128_jb_00164_22
crossref_primary_10_1016_j_mib_2024_102538
crossref_primary_10_1038_s41467_022_35528_3
crossref_primary_10_7554_eLife_51998
crossref_primary_10_1128_JB_00393_21
crossref_primary_10_3390_antibiotics10030274
crossref_primary_10_1155_2023_8079091
crossref_primary_10_3389_fcimb_2022_984955
crossref_primary_10_1021_acssynbio_3c00306
crossref_primary_10_1128_mBio_00306_20
crossref_primary_10_3390_ijms222212101
crossref_primary_10_3389_frans_2023_1186623
crossref_primary_10_1016_j_tcsw_2022_100086
crossref_primary_10_1016_j_mib_2023_102326
crossref_primary_10_1016_j_mib_2021_01_008
crossref_primary_10_3390_microorganisms9061336
crossref_primary_10_1002_cbic_202200693
crossref_primary_10_1128_mBio_02796_20
crossref_primary_10_1128_JB_00174_20
crossref_primary_10_3390_ijms242216355
crossref_primary_10_3390_ijms22041853
crossref_primary_10_1099_acmi_0_000759_v3
crossref_primary_10_15252_embj_2021108126
crossref_primary_10_3389_fmicb_2022_878049
crossref_primary_10_1093_bioinformatics_btad171
crossref_primary_10_1371_journal_pgen_1010222
crossref_primary_10_1128_mBio_03596_20
crossref_primary_10_1128_JB_00434_20
crossref_primary_10_1016_j_ymben_2023_06_008
crossref_primary_10_1016_j_sbi_2024_102946
crossref_primary_10_1038_s41467_024_51790_z
crossref_primary_10_1128_mBio_02456_20
crossref_primary_10_1128_mbio_01203_23
crossref_primary_10_1128_mbio_01419_24
crossref_primary_10_7554_eLife_62614
crossref_primary_10_1111_mmi_14711
crossref_primary_10_1371_journal_pgen_1009586
crossref_primary_10_1093_femsre_fuaa018
crossref_primary_10_1128_mbio_00325_24
crossref_primary_10_1128_ecosalplus_ESP_0010_2020
crossref_primary_10_15252_msb_20199232
crossref_primary_10_1146_annurev_micro_041522_094053
crossref_primary_10_3389_fmicb_2021_557902
crossref_primary_10_1038_s41589_023_01319_0
crossref_primary_10_1038_s41467_024_49552_y
crossref_primary_10_1371_journal_ppat_1010825
Cites_doi 10.1007/978-1-4757-9359-8_49
10.1128/mBio.02729-18
10.1016/j.cell.2010.11.037
10.1371/journal.pgen.1006888
10.1038/nature10098
10.1002/(SICI)1521-1878(199911)21:11<932::AID-BIES5>3.0.CO;2-N
10.1038/s41467-017-01697-9
10.1007/s00249-009-0418-0
10.1111/j.1365-2958.2012.08138.x
10.1038/nprot.2015.101
10.1021/bi051533t
10.1038/nrmicro2677
10.1128/JB.00505-09
10.3389/fmicb.2015.00586
10.1038/nbt.1511
10.1016/j.cell.2010.11.038
10.1038/msb4100050
10.1016/j.str.2012.01.006
10.1074/jbc.M508646200
10.7554/eLife.07118
10.1016/0003-2697(76)90527-3
10.1111/mmi.13258
10.1016/0378-1119(95)00193-A
10.1074/jbc.274.10.6726
10.1111/j.1574-6976.2007.00099.x
10.1110/ps.062092506
10.1111/mmi.13908
10.21769/BioProtoc.852
10.1016/j.cell.2018.03.053
10.1016/j.str.2014.04.017
10.1038/nature19331
10.1093/bioinformatics/18.suppl_1.S96
10.1016/j.mib.2017.01.007
10.1073/pnas.120163297
10.15252/msb.20188242
10.1038/nrmicro3508
10.1093/emboj/17.5.1192
10.1111/j.1365-2958.2012.08103.x
10.1128/MMBR.62.1.181-203.1998
10.1111/j.1432-1033.2004.04397.x
10.1128/JB.181.14.4318-4325.1999
10.1016/j.cell.2014.02.033
10.1046/j.1365-2958.2003.03316.x
10.1101/cshperspect.a000414
10.1128/MMBR.00022-11
10.1128/IAI.00012-14
10.1111/mmi.12058
10.1073/pnas.1717925115
10.1038/srep18190
10.1073/pnas.1816893116
10.1074/jbc.M604083200
10.1371/journal.pgen.1004056
10.1371/journal.pgen.1006934
10.1099/00221287-131-10-2839
10.1038/nrmicro.2016.191
10.1038/nmicrobiol.2017.14
10.1038/emboj.2010.36
10.1126/science.1255784
10.1111/mmi.12304
10.1073/pnas.44.6.590
10.1073/pnas.1507760112
10.1111/j.1574-6976.2007.00094.x
10.1089/adt.2011.0380
10.1111/mmi.14082
10.1093/nar/gkv007
10.1073/pnas.1400376111
10.1074/jbc.M301463200
10.1016/0003-2697(88)90468-X
10.1128/IAI.00034-10
10.1002/mbo3.244
10.1186/s12915-017-0348-8
10.1016/j.mib.2017.01.006
10.1016/S0006-3495(00)76713-0
ContentType Journal Article
Copyright The Author(s) 2020
2020 The Authors. Published under the terms of the CC BY 4.0 license
2020 The Authors. Published under the terms of the CC BY 4.0 license.
2020 EMBO
Attribution
Copyright_xml – notice: The Author(s) 2020
– notice: 2020 The Authors. Published under the terms of the CC BY 4.0 license
– notice: 2020 The Authors. Published under the terms of the CC BY 4.0 license.
– notice: 2020 EMBO
– notice: Attribution
DBID C6C
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
1XC
VOOES
5PM
DOI 10.15252/embj.2019102246
DatabaseName Springer Nature OA Free Journals
Wiley Online Library Open Access (Activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic


Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Manuel Banzhaf et al
EISSN 1460-2075
EndPage n/a
ExternalDocumentID PMC7049810
oai_HAL_pasteur_02902798v1
32009249
10_15252_embj_2019102246
EMBJ2019102246
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Agence Nationale de la Recherche (ANR)
  grantid: ANR‐10‐LABX‐62‐IBEID
  funderid: 10.13039/501100001665
– fundername: EC|H2020|H2020 Priority Excellent Science|H2020 European Research Council (ERC)
  grantid: 679980
  funderid: 10.13039/501100000781
– fundername: Volkswagen Foundation (VolkswagenStiftung)
  funderid: 10.13039/501100001663
– fundername: Wellcome Trust (WT)
  grantid: 101824/Z/13/Z
  funderid: 10.13039/100004440
– fundername: UK Research and Innovation|Medical Research Council (MRC)
  grantid: MR/N002679/1
  funderid: 10.13039/501100000265
– fundername: Royal Society
  grantid: RGS\R1\191041
  funderid: 10.13039/501100000288
– fundername: European Molecular Biology Laboratory (EMBL)
  grantid: 664726
  funderid: 10.13039/100013060
– fundername: European Molecular Biology Laboratory (EMBL)
  funderid: 664726
– fundername: EC|H2020|H2020 Priority Excellent Science|H2020 European Research Council (ERC)
  funderid: 679980
– fundername: Royal Society
  funderid: RGS\R1\191041
– fundername: Agence Nationale de la Recherche (ANR)
  funderid: ANR‐10‐LABX‐62‐IBEID
– fundername: UK Research and Innovation|Medical Research Council (MRC)
  funderid: MR/N002679/1
– fundername: Volkswagen Foundation (VolkswagenStiftung)
– fundername: Wellcome Trust (WT)
  funderid: 101824/Z/13/Z
– fundername: Agence Nationale de la Recherche (ANR)
  grantid: ANR-10-LABX-62-IBEID
– fundername: Wellcome Trust
– fundername: Wellcome Trust (WT)
  grantid: 101824/Z/13/Z
– fundername: Medical Research Council
  grantid: MR/N002679/1
– fundername: European Molecular Biology Laboratory (EMBL)
  grantid: 664726
– fundername: Medical Research Council
  grantid: MR/N501840/1
– fundername: Royal Society
  grantid: RGS\R1\191041
– fundername: EC|H2020|H2020 Priority Excellent Science|H2020 European Research Council (ERC)
  grantid: 679980
– fundername: ;
– fundername: ;
  grantid: 664726
– fundername: ;
  grantid: 101824/Z/13/Z
– fundername: ;
  grantid: ANR‐10‐LABX‐62‐IBEID
– fundername: ;
  grantid: RGS\R1\191041
– fundername: ;
  grantid: 679980
– fundername: ;
  grantid: MR/N002679/1
GroupedDBID ---
-DZ
-~X
0R~
123
1OC
24P
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAIHA
AAJSJ
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
GX1
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
Q2X
R.K
RHF
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
WYJ
YSK
ZCA
ZZTAW
~KM
ABJNI
-Q-
AASML
AAYXX
ABZEH
CITATION
NAO
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
AJAOE
ESTFP
1XC
VOOES
5PM
ID FETCH-LOGICAL-c5576-191489859e58c190a684ec1234b676dc1a70ba287033f52ac403f3acfb4de7ae3
IEDL.DBID C6C
ISSN 0261-4189
1460-2075
IngestDate Thu Aug 21 14:14:20 EDT 2025
Fri Sep 12 12:50:33 EDT 2025
Sat Sep 27 20:47:38 EDT 2025
Fri Jul 25 10:26:26 EDT 2025
Mon Jul 21 06:05:09 EDT 2025
Thu Apr 24 23:06:30 EDT 2025
Tue Jul 01 01:47:21 EDT 2025
Wed Jan 22 16:36:50 EST 2025
Fri Feb 21 02:37:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords peptidoglycan
bacterial cell envelope
endopeptidase
outer membrane lipoprotein
penicillin‐binding protein
penicillin-binding protein
Virology & Host Pathogen Interaction
outer membrane lipopro- tein
peptidoglycan Subject Category Microbiology
Language English
License Attribution
2020 The Authors. Published under the terms of the CC BY 4.0 license.
Attribution: http://creativecommons.org/licenses/by
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5576-191489859e58c190a684ec1234b676dc1a70ba287033f52ac403f3acfb4de7ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC7049810
These authors contributed equally to this work
ORCID 0000-0003-2011-9247
0000-0002-6042-9787
0000-0001-6870-0677
0000-0002-0797-9018
0000-0003-0408-8567
0000-0002-5403-5597
OpenAccessLink https://doi.org/10.15252/embj.2019102246
PMID 32009249
PQID 2369162357
PQPubID 35985
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7049810
hal_primary_oai_HAL_pasteur_02902798v1
proquest_miscellaneous_2350352575
proquest_journals_2369162357
pubmed_primary_32009249
crossref_citationtrail_10_15252_embj_2019102246
crossref_primary_10_15252_embj_2019102246
wiley_primary_10_15252_embj_2019102246_EMBJ2019102246
springer_journals_10_15252_embj_2019102246
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 02 March 2020
PublicationDateYYYYMMDD 2020-03-02
PublicationDate_xml – month: 03
  year: 2020
  text: 02 March 2020
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Hoboken
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2020
Publisher Nature Publishing Group UK
Springer Nature B.V
EMBO Press
John Wiley and Sons Inc
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: EMBO Press
– name: John Wiley and Sons Inc
References Cherepanov, Wackernagel (CR14) 1995; 158
Egan (CR22) 2018; 107
Banzhaf, van den Berg van Saparoea, Terrak, Fraipont, Egan, Philippe, Zapun, Breukink, Nguyen‐Disteche, den Blaauwen (CR3) 2012; 85
Egan, Jean, Koumoutsi, Bougault, Biboy, Sassine, Solovyova, Breukink, Typas, Vollmer (CR21) 2014; 111
Jerabek‐Willemsen, Wienken, Braun, Baaske, Duhr (CR33) 2011; 9
Schwechheimer, Rodriguez, Kuehn (CR52) 2015; 4
Su, Som, Wu, Su, Kuo, Ke, Ho, Tzeng, Teng, Mengin‐Lecreulx (CR56) 2017; 8
Paradis‐Bleau, Markovski, Uehara, Lupoli, Walker, Kahne, Bernhardt (CR44) 2010; 143
Yousif, Broome‐Smith, Spratt (CR72) 1985; 131
Beveridge (CR6) 1995; 61
Höltje, de Pedro, Höltje, Löffelhardt (CR29) 1993
CR37
Gray, Egan, Van't Veer, Verheul, Colavin, Koumoutsi, Biboy, Altelaar, Damen, Huang (CR26) 2015; 4
Pazos, Peters, Vollmer (CR46) 2017; 36
Typas, Banzhaf, van den Berg van Saparoea, Verheul, Biboy, Nichols, Zietek, Beilharz, Kannenberg, von Rechenberg (CR60) 2010; 143
Moré, Martorana, Biboy, Otten, Winkle, Serrano, Monton Silva, Atkinson, Yau, Breukink (CR41) 2019; 10
Dorr, Moll, Chao, Cava, Lam, Davis, Waldor (CR20) 2014; 82
Vischer, Verheul, Postma, van den Berg van Saparoea, Galli, Natale, Gerdes, Luirink, Vollmer, Vicente (CR66) 2015; 6
Buddelmeijer, Aarsman, den Blaauwen (CR500) 2013; 3
Kishida, Unzai, Roper, Lloyd, Park, Tame (CR34) 2006; 45
Schwanhausser, Busse, Li, Dittmar, Schuchhardt, Wolf, Chen, Selbach (CR51) 2011; 473
den Blaauwen, Aarsman, Vischer, Nanninga (CR7) 2003; 47
Typas, Sourjik (CR62) 2015; 13
Becher, Andrés‐Pons, Romanov, Stein, Schramm, Baudin, Helm, Kurzawa, Mateus, Mackmull (CR4) 2018; 173
Mateus, Bobonis, Kurzawa, Stein, Helm, Hevler, Typas, Savitski (CR39) 2018; 14
Peters, Morlot, Yang, Uehara, Vernet, Bernhardt (CR47) 2013; 89
Savitski, Reinhard, Franken, Werner, Savitski, Eberhard, Martinez Molina, Jafari, Dovega, Klaeger (CR49) 2014; 346
Kritikos, Banzhaf, Herrera‐Dominguez, Koumoutsi, Wartel, Zietek, Typas (CR35) 2017; 2
Silhavy, Kahne, Walker (CR53) 2010; 2
Teng, Tseng, Maruvada, Pearce, Xie, Paul‐Satyaseela, Kim (CR57) 2010; 78
Datsenko, Wanner (CR19) 2000; 97
Noinaj, Gumbart, Buchanan (CR42) 2017; 15
Born, Breukink, Vollmer (CR10) 2006; 281
Paradis‐Bleau, Kritikos, Orlova, Typas, Bernhardt (CR45) 2014; 10
Zeytuni, Zarivach (CR74) 2012; 20
Huber, von Heydebreck, Sultmann, Poustka, Vingron (CR30) 2002; 18
den Blaauwen, Hamoen, Levin (CR8) 2017; 36
Adams, Luria (CR1) 1958; 44
Egan, Maya‐Martinez, Ayala, Bougault, Banzhaf, Breukink, Vollmer, Simorre (CR23) 2018; 110
Meeske, Riley, Robins, Uehara, Mekalanos, Kahne, Walker, Kruse, Bernhardt, Rudner (CR40) 2016; 537
Lai, Cho, Bernhardt (CR36) 2017; 13
van Heijenoort (CR28) 2011; 75
Singh, Parveen, SaiSree, Reddy (CR55) 2015; 112
Ursell, Lee, Shiomi, Shi, Tropini, Monds, Colavin, Billings, Bhaya‐Grossman, Broxton (CR65) 2017; 15
Yunck, Cho, Bernhardt (CR73) 2016; 99
Ohara, Wu, Sankaran, Rick (CR43) 1999; 181
Cortajarena, Regan (CR16) 2006; 15
Li, Burkhardt, Gross, Weissman (CR38) 2014; 157
Glauner (CR25) 1988; 172
Singh, SaiSree, Amrutha, Reddy (CR54) 2012; 86
Blatch, Lassle (CR9) 1999; 21
Ritchie, Phipson, Wu, Hu, Law, Shi, Smyth (CR48) 2015; 43
Vollmer, Blanot, de Pedro (CR68) 2008; 32
Baba, Ara, Hasegawa, Takai, Okumura, Baba, Datsenko, Tomita, Wanner, Mori (CR2) 2006; 2
Franken, Mathieson, Childs, Sweetman, Werner, Togel, Doce, Gade, Bantscheff, Drewes (CR24) 2015; 10
Tsang, Yakhnina, Bernhardt (CR59) 2017; 13
Cox, Mann (CR17) 2008; 26
Breukink, van Heusden, Vollmerhaus, Swiezewska, Brunner, Walker, Heck, de Kruijff (CR12) 2003; 278
Das, Cohen, Barford (CR18) 1998; 17
Brookes, Demeler, Rosano, Rocco (CR13) 2010; 39
Bradford (CR11) 1976; 72
Trip, Scheffers (CR58) 2015; 5
Vollmer, Joris, Charlier, Foster (CR69) 2008; 32
Hӧltje (CR31) 1998; 62
Schuck (CR50) 2000; 78
Uehara, Parzych, Dinh, Bernhardt (CR64) 2010; 29
Typas, Banzhaf, Gross, Vollmer (CR61) 2012; 10
Wilson, Kajander, Regan (CR70) 2005; 272
Jean, Bougault, Lodge, Derouaux, Callens, Egan, Ayala, Lewis, Vollmer, Simorre (CR32) 2014; 22
Yang, Tan, Joachimiak, Bernhardt (CR71) 2012; 85
Chodisetti, Reddy (CR15) 2019; 116
Vollmer, von Rechenberg, Höltje (CR67) 1999; 274
Uehara, Dinh, Bernhardt (CR63) 2009; 191
Bertsche, Breukink, Kast, Vollmer (CR5) 2005; 280
Greene, Fumeaux, Bernhardt (CR27) 2018; 115
2017; 8
2013; 3
2017; 2
2002; 18
2019; 10
2010; 143
2008b; 32
2003; 278
2012; 10
2014; 22
2011; 473
1995; 61
1998; 17
2018; 173
2017; 36
2010; 29
1976; 72
1958; 44
2000; 97
1999; 181
2015; 43
2003; 47
2019; 116
2008; 26
2006; 281
2010; 2
1985; 131
2012; 20
2014; 10
2010; 78
2015; 13
2015; 6
2015; 5
2005; 272
2015; 4
1988; 172
2010; 39
2018; 107
2013; 89
2006; 15
2015; 10
2011; 75
1999; 21
1995; 158
1993
1992
2006; 2
2014; 111
1998; 62
2014; 82
2011; 9
2014; 157
2016; 99
2005; 280
2018; 110
2006; 45
2017; 15
2009; 191
2016; 537
2000; 78
2015; 112
2018; 115
2017; 13
1999; 274
2014; 346
2012; 86
2008a; 32
2012; 85
2018; 14
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
Laue T (e_1_2_9_39_1) 1992
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
Beveridge TJ (e_1_2_9_7_1) 1995; 61
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 61
  start-page: 125
  year: 1995
  end-page: 130
  ident: CR6
  article-title: The periplasmic space and the periplasm in Gram‐positive and Gram‐negative bacteria
  publication-title: ASM News
– volume: 15
  start-page: 17
  year: 2017
  ident: CR65
  article-title: Rapid, precise quantification of bacterial cellular dimensions across a genomic‐scale knockout library
  publication-title: BMC Biol
– volume: 107
  start-page: 676
  year: 2018
  end-page: 687
  ident: CR22
  article-title: Bacterial outer membrane constriction
  publication-title: Mol Microbiol
– volume: 20
  start-page: 397
  year: 2012
  end-page: 405
  ident: CR74
  article-title: Structural and functional discussion of the tetra‐trico‐peptide repeat, a protein interaction module
  publication-title: Structure
– volume: 4
  start-page: e07118
  year: 2015
  ident: CR26
  article-title: Coordination of peptidoglycan synthesis and outer membrane constriction during cell division
  publication-title: eLife
– volume: 473
  start-page: 337
  year: 2011
  end-page: 342
  ident: CR51
  article-title: Global quantification of mammalian gene expression control
  publication-title: Nature
– volume: 32
  start-page: 149
  year: 2008
  end-page: 167
  ident: CR68
  article-title: Peptidoglycan structure and architecture
  publication-title: FEMS Microbiol Rev
– volume: 10
  start-page: e1004056
  year: 2014
  ident: CR45
  article-title: A genome‐wide screen for bacterial envelope biogenesis mutants identifies a novel factor involved in cell wall precursor metabolism
  publication-title: PLoS Genet
– start-page: 419
  year: 1993
  end-page: 426
  ident: CR29
  article-title: “Three for one” — a simple growth mechanism that guarantees a precise copy of the thin, rod‐shaped murein sacculus of
  publication-title: Bacterial Growth and Lysis: Metabolism and Structure of the Bacterial Sacculus
– volume: 143
  start-page: 1097
  year: 2010
  end-page: 1109
  ident: CR60
  article-title: Regulation of peptidoglycan synthesis by outer‐membrane proteins
  publication-title: Cell
– volume: 537
  start-page: 634
  year: 2016
  end-page: 638
  ident: CR40
  article-title: SEDS proteins are a widespread family of bacterial cell wall polymerases
  publication-title: Nature
– volume: 116
  start-page: 7825
  year: 2019
  end-page: 7830
  ident: CR15
  article-title: Peptidoglycan hydrolase of an unusual cross‐link cleavage specificity contributes to bacterial cell wall synthesis
  publication-title: Proc Natl Acad Sci USA
– volume: 39
  start-page: 423
  year: 2010
  end-page: 435
  ident: CR13
  article-title: The implementation of SOMO (SOlution MOdeller) in the UltraScan analytical ultracentrifugation data analysis suite: enhanced capabilities allow the reliable hydrodynamic modeling of virtually any kind of biomacromolecule
  publication-title: Eur Biophys J
– volume: 13
  start-page: e1006934
  year: 2017
  ident: CR36
  article-title: The mecillinam resistome reveals a role for peptidoglycan endopeptidases in stimulating cell wall synthesis in
  publication-title: PLoS Genet
– volume: 43
  start-page: e47
  year: 2015
  ident: CR48
  article-title: limma powers differential expression analyses for RNA‐sequencing and microarray studies
  publication-title: Nucleic Acids Res
– volume: 281
  start-page: 26985
  year: 2006
  end-page: 26993
  ident: CR10
  article-title: synthesis of cross‐linked murein and its attachment to sacculi by PBP1A from
  publication-title: J Biol Chem
– volume: 97
  start-page: 6640
  year: 2000
  end-page: 6645
  ident: CR19
  article-title: One‐step inactivation of chromosomal genes in K‐12 using PCR products
  publication-title: Proc Natl Acad Sci USA
– volume: 111
  start-page: 8197
  year: 2014
  end-page: 8202
  ident: CR21
  article-title: Outer‐membrane lipoprotein LpoB spans the periplasm to stimulate the peptidoglycan synthase PBP1B
  publication-title: Proc Natl Acad Sci USA
– volume: 115
  start-page: 3150
  year: 2018
  end-page: 3155
  ident: CR27
  article-title: Conserved mechanism of cell‐wall synthase regulation revealed by the identification of a new PBP activator in
  publication-title: Proc Natl Acad Sci USA
– volume: 191
  start-page: 5094
  year: 2009
  end-page: 5107
  ident: CR63
  article-title: LytM‐domain factors are required for daughter cell separation and rapid ampicillin‐induced lysis in
  publication-title: J Bacteriol
– volume: 45
  start-page: 783
  year: 2006
  end-page: 792
  ident: CR34
  article-title: Crystal structure of penicillin binding protein 4 ( ) from , both in the native form and covalently linked to various antibiotics
  publication-title: Biochemistry
– volume: 15
  start-page: 1193
  year: 2006
  end-page: 1198
  ident: CR16
  article-title: Ligand binding by TPR domains
  publication-title: Protein Sci
– volume: 78
  start-page: 3090
  year: 2010
  end-page: 3096
  ident: CR57
  article-title: NlpI contributes to K1 strain RS218 interaction with human brain microvascular endothelial cells
  publication-title: Infect Immun
– volume: 5
  start-page: 18190
  year: 2015
  ident: CR58
  article-title: A 1 MDa protein complex containing critical components of the divisome
  publication-title: Sci Rep
– volume: 13
  start-page: 559
  year: 2015
  end-page: 572
  ident: CR62
  article-title: Bacterial protein networks: properties and functions
  publication-title: Nat Rev Microbiol
– volume: 3
  start-page: e852
  year: 2013
  ident: CR500
  article-title: Immunolabeling of proteins in K12 strains
  publication-title: Bio‐Protocol
– volume: 8
  start-page: 1516
  year: 2017
  ident: CR56
  article-title: Structural basis of adaptor‐mediated protein degradation by the tail‐specific PDZ‐protease Prc
  publication-title: Nat Commun
– volume: 82
  start-page: 2115
  year: 2014
  end-page: 2124
  ident: CR20
  article-title: Differential requirement for PBP1a and PBP1b in and fitness of
  publication-title: Infect Immun
– volume: 17
  start-page: 1192
  year: 1998
  end-page: 1199
  ident: CR18
  article-title: The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR‐mediated protein‐protein interactions
  publication-title: EMBO J
– volume: 14
  start-page: e8242
  year: 2018
  ident: CR39
  article-title: Thermal proteome profiling in bacteria: probing protein state
  publication-title: Mol Syst Biol
– volume: 21
  start-page: 932
  year: 1999
  end-page: 939
  ident: CR9
  article-title: The tetratricopeptide repeat: a structural motif mediating protein‐protein interactions
  publication-title: BioEssays
– volume: 158
  start-page: 9
  year: 1995
  end-page: 14
  ident: CR14
  article-title: Gene disruption in : TcR and KmR cassettes with the option of Flp‐catalyzed excision of the antibiotic‐resistance determinant
  publication-title: Gene
– volume: 15
  start-page: 197
  year: 2017
  end-page: 204
  ident: CR42
  article-title: The beta‐barrel assembly machinery in motion
  publication-title: Nat Rev Microbiol
– volume: 36
  start-page: 85
  year: 2017
  end-page: 94
  ident: CR8
  article-title: The divisome at 25: the road ahead
  publication-title: Curr Opin Microbiol
– volume: 72
  start-page: 248
  year: 1976
  end-page: 254
  ident: CR11
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding
  publication-title: Anal Biochem
– volume: 278
  start-page: 19898
  year: 2003
  end-page: 19903
  ident: CR12
  article-title: Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes
  publication-title: J Biol Chem
– volume: 2
  start-page: 2006.0008
  year: 2006
  ident: CR2
  article-title: Construction of K‐12 in‐frame, single‐gene knockout mutants: the Keio collection
  publication-title: Mol Syst Biol
– volume: 47
  start-page: 539
  year: 2003
  end-page: 547
  ident: CR7
  article-title: Penicillin‐binding protein PBP2 of localizes preferentially in the lateral wall and at mid‐cell in comparison with the old cell pole
  publication-title: Mol Microbiol
– volume: 112
  start-page: 10956
  year: 2015
  end-page: 10961
  ident: CR55
  article-title: Regulated proteolysis of a cross‐link‐specific peptidoglycan hydrolase contributes to bacterial morphogenesis
  publication-title: Proc Natl Acad Sci USA
– volume: 26
  start-page: 1367
  year: 2008
  end-page: 1372
  ident: CR17
  article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification
  publication-title: Nat Biotechnol
– volume: 22
  start-page: 1047
  year: 2014
  end-page: 1054
  ident: CR32
  article-title: Elongated structure of the outer‐membrane activator of peptidoglycan synthesis LpoA: implications for PBP1A stimulation
  publication-title: Structure
– volume: 172
  start-page: 451
  year: 1988
  end-page: 464
  ident: CR25
  article-title: Separation and quantification of muropeptides with high‐performance liquid chromatography
  publication-title: Anal Biochem
– volume: 75
  start-page: 636
  year: 2011
  end-page: 663
  ident: CR28
  article-title: Peptidoglycan hydrolases of
  publication-title: Microbiol Mol Biol Rev
– volume: 85
  start-page: 768
  year: 2012
  end-page: 781
  ident: CR71
  article-title: A conformational switch controls cell wall‐remodelling enzymes required for bacterial cell division
  publication-title: Mol Microbiol
– volume: 44
  start-page: 590
  year: 1958
  end-page: 594
  ident: CR1
  article-title: Transduction by bacteriophage P1: abnormal phage function of the transducing particles
  publication-title: Proc Natl Acad Sci USA
– ident: CR37
– volume: 10
  start-page: e02729‐18
  year: 2019
  ident: CR41
  article-title: Peptidoglycan remodeling enables to survive severe outer membrane assembly defect
  publication-title: mBio
– volume: 89
  start-page: 690
  year: 2013
  end-page: 701
  ident: CR47
  article-title: Structure‐function analysis of the LytM domain of EnvC, an activator of cell wall remodelling at the division site
  publication-title: Mol Microbiol
– volume: 4
  start-page: 375
  year: 2015
  end-page: 389
  ident: CR52
  article-title: NlpI‐mediated modulation of outer membrane vesicle production through peptidoglycan dynamics in
  publication-title: Microbiologyopen
– volume: 62
  start-page: 181
  year: 1998
  end-page: 203
  ident: CR31
  article-title: Growth of the stress‐bearing and shape‐maintaining murein sacculus of
  publication-title: Microbiol Mol Biol Rev
– volume: 280
  start-page: 38096
  year: 2005
  end-page: 38101
  ident: CR5
  article-title: murein peptidoglycan synthesis by dimers of the bifunctional transglycosylase‐transpeptidase PBP1B from
  publication-title: J Biol Chem
– volume: 157
  start-page: 624
  year: 2014
  end-page: 635
  ident: CR38
  article-title: Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources
  publication-title: Cell
– volume: 274
  start-page: 6726
  year: 1999
  end-page: 6734
  ident: CR67
  article-title: Demonstration of molecular interactions between the murein polymerase PBP1B, the lytic transglycosylase MltA, and the scaffolding protein MipA of
  publication-title: J Biol Chem
– volume: 2
  start-page: 17014
  year: 2017
  ident: CR35
  article-title: A tool named Iris for versatile high‐throughput phenotyping in microorganisms
  publication-title: Nat Microbiol
– volume: 2
  start-page: a000414
  year: 2010
  ident: CR53
  article-title: The bacterial cell envelope
  publication-title: Cold Spring Harb Perspect Biol
– volume: 9
  start-page: 342
  year: 2011
  end-page: 353
  ident: CR33
  article-title: Molecular interaction studies using microscale thermophoresis
  publication-title: Assay Drug Dev Technol
– volume: 78
  start-page: 1606
  year: 2000
  end-page: 1619
  ident: CR50
  article-title: Size‐distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling
  publication-title: Biophys J
– volume: 6
  start-page: 586
  year: 2015
  ident: CR66
  article-title: Cell age dependent concentration of divisome proteins analyzed with ImageJ and ObjectJ
  publication-title: Front Microbiol
– volume: 181
  start-page: 4318
  year: 1999
  end-page: 4325
  ident: CR43
  article-title: Identification and characterization of a new lipoprotein, NlpI, in K‐12
  publication-title: J Bacteriol
– volume: 131
  start-page: 2839
  year: 1985
  end-page: 2845
  ident: CR72
  article-title: Lysis of by beta‐lactam antibiotics: deletion analysis of the role of penicillin‐binding proteins 1A and 1B
  publication-title: J Gen Microbiol
– volume: 143
  start-page: 1110
  year: 2010
  end-page: 1120
  ident: CR44
  article-title: Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases
  publication-title: Cell
– volume: 36
  start-page: 55
  year: 2017
  end-page: 61
  ident: CR46
  article-title: Robust peptidoglycan growth by dynamic and variable multi‐protein complexes
  publication-title: Curr Opin Microbiol
– volume: 18
  start-page: S96
  issue: Suppl 1
  year: 2002
  end-page: S104
  ident: CR30
  article-title: Variance stabilization applied to microarray data calibration and to the quantification of differential expression
  publication-title: Bioinformatics
– volume: 10
  start-page: 1567
  year: 2015
  end-page: 1593
  ident: CR24
  article-title: Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry
  publication-title: Nat Protoc
– volume: 10
  start-page: 123
  year: 2012
  end-page: 136
  ident: CR61
  article-title: From the regulation of peptidoglycan synthesis to bacterial growth and morphology
  publication-title: Nat Rev Microbiol
– volume: 85
  start-page: 179
  year: 2012
  end-page: 194
  ident: CR3
  article-title: Cooperativity of peptidoglycan synthases active in bacterial cell elongation
  publication-title: Mol Microbiol
– volume: 86
  start-page: 1036
  year: 2012
  end-page: 1051
  ident: CR54
  article-title: Three redundant murein endopeptidases catalyse an essential cleavage step in peptidoglycan synthesis of K12
  publication-title: Mol Microbiol
– volume: 272
  start-page: 166
  year: 2005
  end-page: 179
  ident: CR70
  article-title: The crystal structure of NlpI. A prokaryotic tetratricopeptide repeat protein with a globular fold
  publication-title: FEBS J
– volume: 346
  start-page: 1255784
  year: 2014
  ident: CR49
  article-title: Tracking cancer drugs in living cells by thermal profiling of the proteome
  publication-title: Science
– volume: 110
  start-page: 335
  year: 2018
  end-page: 356
  ident: CR23
  article-title: Induced conformational changes activate the peptidoglycan synthase PBP1B
  publication-title: Mol Microbiol
– volume: 29
  start-page: 1412
  year: 2010
  end-page: 1422
  ident: CR64
  article-title: Daughter cell separation is controlled by cytokinetic ring‐activated cell wall hydrolysis
  publication-title: EMBO J
– volume: 13
  start-page: e1006888
  year: 2017
  ident: CR59
  article-title: NlpD links cell wall remodeling and outer membrane invagination during cytokinesis in
  publication-title: PLoS Genet
– volume: 173
  start-page: 1495
  year: 2018
  end-page: 1507
  ident: CR4
  article-title: Pervasive protein thermal stability variation during the cell cycle
  publication-title: Cell
– volume: 32
  start-page: 259
  year: 2008
  end-page: 286
  ident: CR69
  article-title: Bacterial peptidoglycan (murein) hydrolases
  publication-title: FEMS Microbiol Rev
– volume: 99
  start-page: 700
  year: 2016
  end-page: 718
  ident: CR73
  article-title: Identification of MltG as a potential terminase for peptidoglycan polymerization in bacteria
  publication-title: Mol Microbiol
– volume: 346
  start-page: 1255784
  year: 2014
  article-title: Tracking cancer drugs in living cells by thermal profiling of the proteome
  publication-title: Science
– volume: 5
  start-page: 18190
  year: 2015
  article-title: A 1 MDa protein complex containing critical components of the divisome
  publication-title: Sci Rep
– volume: 10
  start-page: 123
  year: 2012
  end-page: 136
  article-title: From the regulation of peptidoglycan synthesis to bacterial growth and morphology
  publication-title: Nat Rev Microbiol
– volume: 13
  start-page: e1006934
  year: 2017
  article-title: The mecillinam resistome reveals a role for peptidoglycan endopeptidases in stimulating cell wall synthesis in
  publication-title: PLoS Genet
– volume: 143
  start-page: 1097
  year: 2010
  end-page: 1109
  article-title: Regulation of peptidoglycan synthesis by outer‐membrane proteins
  publication-title: Cell
– volume: 75
  start-page: 636
  year: 2011
  end-page: 663
  article-title: Peptidoglycan hydrolases of
  publication-title: Microbiol Mol Biol Rev
– volume: 272
  start-page: 166
  year: 2005
  end-page: 179
  article-title: The crystal structure of NlpI. A prokaryotic tetratricopeptide repeat protein with a globular fold
  publication-title: FEBS J
– volume: 15
  start-page: 1193
  year: 2006
  end-page: 1198
  article-title: Ligand binding by TPR domains
  publication-title: Protein Sci
– volume: 111
  start-page: 8197
  year: 2014
  end-page: 8202
  article-title: Outer‐membrane lipoprotein LpoB spans the periplasm to stimulate the peptidoglycan synthase PBP1B
  publication-title: Proc Natl Acad Sci USA
– volume: 13
  start-page: e1006888
  year: 2017
  article-title: NlpD links cell wall remodeling and outer membrane invagination during cytokinesis in
  publication-title: PLoS Genet
– volume: 32
  start-page: 259
  year: 2008b
  end-page: 286
  article-title: Bacterial peptidoglycan (murein) hydrolases
  publication-title: FEMS Microbiol Rev
– volume: 78
  start-page: 1606
  year: 2000
  end-page: 1619
  article-title: Size‐distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling
  publication-title: Biophys J
– volume: 280
  start-page: 38096
  year: 2005
  end-page: 38101
  article-title: murein peptidoglycan synthesis by dimers of the bifunctional transglycosylase‐transpeptidase PBP1B from
  publication-title: J Biol Chem
– volume: 13
  start-page: 559
  year: 2015
  end-page: 572
  article-title: Bacterial protein networks: properties and functions
  publication-title: Nat Rev Microbiol
– volume: 2
  start-page: a000414
  year: 2010
  article-title: The bacterial cell envelope
  publication-title: Cold Spring Harb Perspect Biol
– volume: 26
  start-page: 1367
  year: 2008
  end-page: 1372
  article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification
  publication-title: Nat Biotechnol
– volume: 32
  start-page: 149
  year: 2008a
  end-page: 167
  article-title: Peptidoglycan structure and architecture
  publication-title: FEMS Microbiol Rev
– volume: 20
  start-page: 397
  year: 2012
  end-page: 405
  article-title: Structural and functional discussion of the tetra‐trico‐peptide repeat, a protein interaction module
  publication-title: Structure
– volume: 18
  start-page: S96
  issue: Suppl 1
  year: 2002
  end-page: S104
  article-title: Variance stabilization applied to microarray data calibration and to the quantification of differential expression
  publication-title: Bioinformatics
– volume: 3
  start-page: e852
  year: 2013
  article-title: Immunolabeling of proteins in K12 strains
  publication-title: Bio‐Protocol
– volume: 173
  start-page: 1495
  year: 2018
  end-page: 1507
  article-title: Pervasive protein thermal stability variation during the cell cycle
  publication-title: Cell
– volume: 2
  start-page: 2006.0008
  year: 2006
  article-title: Construction of K‐12 in‐frame, single‐gene knockout mutants: the Keio collection
  publication-title: Mol Syst Biol
– volume: 17
  start-page: 1192
  year: 1998
  end-page: 1199
  article-title: The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR‐mediated protein‐protein interactions
  publication-title: EMBO J
– volume: 10
  start-page: e02729‐18
  year: 2019
  article-title: Peptidoglycan remodeling enables to survive severe outer membrane assembly defect
  publication-title: mBio
– volume: 21
  start-page: 932
  year: 1999
  end-page: 939
  article-title: The tetratricopeptide repeat: a structural motif mediating protein‐protein interactions
  publication-title: BioEssays
– volume: 281
  start-page: 26985
  year: 2006
  end-page: 26993
  article-title: synthesis of cross‐linked murein and its attachment to sacculi by PBP1A from
  publication-title: J Biol Chem
– volume: 278
  start-page: 19898
  year: 2003
  end-page: 19903
  article-title: Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes
  publication-title: J Biol Chem
– volume: 61
  start-page: 125
  year: 1995
  end-page: 130
  article-title: The periplasmic space and the periplasm in Gram‐positive and Gram‐negative bacteria
  publication-title: ASM News
– volume: 85
  start-page: 179
  year: 2012
  end-page: 194
  article-title: Cooperativity of peptidoglycan synthases active in bacterial cell elongation
  publication-title: Mol Microbiol
– volume: 29
  start-page: 1412
  year: 2010
  end-page: 1422
  article-title: Daughter cell separation is controlled by cytokinetic ring‐activated cell wall hydrolysis
  publication-title: EMBO J
– volume: 9
  start-page: 342
  year: 2011
  end-page: 353
  article-title: Molecular interaction studies using microscale thermophoresis
  publication-title: Assay Drug Dev Technol
– volume: 72
  start-page: 248
  year: 1976
  end-page: 254
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding
  publication-title: Anal Biochem
– volume: 82
  start-page: 2115
  year: 2014
  end-page: 2124
  article-title: Differential requirement for PBP1a and PBP1b in and fitness of
  publication-title: Infect Immun
– volume: 15
  start-page: 17
  year: 2017
  article-title: Rapid, precise quantification of bacterial cellular dimensions across a genomic‐scale knockout library
  publication-title: BMC Biol
– volume: 97
  start-page: 6640
  year: 2000
  end-page: 6645
  article-title: One‐step inactivation of chromosomal genes in K‐12 using PCR products
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 1567
  year: 2015
  end-page: 1593
  article-title: Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry
  publication-title: Nat Protoc
– volume: 158
  start-page: 9
  year: 1995
  end-page: 14
  article-title: Gene disruption in : TcR and KmR cassettes with the option of Flp‐catalyzed excision of the antibiotic‐resistance determinant
  publication-title: Gene
– volume: 131
  start-page: 2839
  year: 1985
  end-page: 2845
  article-title: Lysis of by beta‐lactam antibiotics: deletion analysis of the role of penicillin‐binding proteins 1A and 1B
  publication-title: J Gen Microbiol
– volume: 181
  start-page: 4318
  year: 1999
  end-page: 4325
  article-title: Identification and characterization of a new lipoprotein, NlpI, in K‐12
  publication-title: J Bacteriol
– volume: 89
  start-page: 690
  year: 2013
  end-page: 701
  article-title: Structure‐function analysis of the LytM domain of EnvC, an activator of cell wall remodelling at the division site
  publication-title: Mol Microbiol
– volume: 473
  start-page: 337
  year: 2011
  end-page: 342
  article-title: Global quantification of mammalian gene expression control
  publication-title: Nature
– volume: 44
  start-page: 590
  year: 1958
  end-page: 594
  article-title: Transduction by bacteriophage P1: abnormal phage function of the transducing particles
  publication-title: Proc Natl Acad Sci USA
– volume: 172
  start-page: 451
  year: 1988
  end-page: 464
  article-title: Separation and quantification of muropeptides with high‐performance liquid chromatography
  publication-title: Anal Biochem
– volume: 110
  start-page: 335
  year: 2018
  end-page: 356
  article-title: Induced conformational changes activate the peptidoglycan synthase PBP1B
  publication-title: Mol Microbiol
– volume: 36
  start-page: 55
  year: 2017
  end-page: 61
  article-title: Robust peptidoglycan growth by dynamic and variable multi‐protein complexes
  publication-title: Curr Opin Microbiol
– volume: 116
  start-page: 7825
  year: 2019
  end-page: 7830
  article-title: Peptidoglycan hydrolase of an unusual cross‐link cleavage specificity contributes to bacterial cell wall synthesis
  publication-title: Proc Natl Acad Sci USA
– volume: 112
  start-page: 10956
  year: 2015
  end-page: 10961
  article-title: Regulated proteolysis of a cross‐link‐specific peptidoglycan hydrolase contributes to bacterial morphogenesis
  publication-title: Proc Natl Acad Sci USA
– volume: 78
  start-page: 3090
  year: 2010
  end-page: 3096
  article-title: NlpI contributes to K1 strain RS218 interaction with human brain microvascular endothelial cells
  publication-title: Infect Immun
– volume: 107
  start-page: 676
  year: 2018
  end-page: 687
  article-title: Bacterial outer membrane constriction
  publication-title: Mol Microbiol
– volume: 15
  start-page: 197
  year: 2017
  end-page: 204
  article-title: The beta‐barrel assembly machinery in motion
  publication-title: Nat Rev Microbiol
– volume: 6
  start-page: 586
  year: 2015
  article-title: Cell age dependent concentration of divisome proteins analyzed with ImageJ and ObjectJ
  publication-title: Front Microbiol
– volume: 86
  start-page: 1036
  year: 2012
  end-page: 1051
  article-title: Three redundant murein endopeptidases catalyse an essential cleavage step in peptidoglycan synthesis of K12
  publication-title: Mol Microbiol
– volume: 8
  start-page: 1516
  year: 2017
  article-title: Structural basis of adaptor‐mediated protein degradation by the tail‐specific PDZ‐protease Prc
  publication-title: Nat Commun
– volume: 43
  start-page: e47
  year: 2015
  article-title: limma powers differential expression analyses for RNA‐sequencing and microarray studies
  publication-title: Nucleic Acids Res
– volume: 4
  start-page: 375
  year: 2015
  end-page: 389
  article-title: NlpI‐mediated modulation of outer membrane vesicle production through peptidoglycan dynamics in
  publication-title: Microbiologyopen
– volume: 115
  start-page: 3150
  year: 2018
  end-page: 3155
  article-title: Conserved mechanism of cell‐wall synthase regulation revealed by the identification of a new PBP activator in
  publication-title: Proc Natl Acad Sci USA
– volume: 99
  start-page: 700
  year: 2016
  end-page: 718
  article-title: Identification of MltG as a potential terminase for peptidoglycan polymerization in bacteria
  publication-title: Mol Microbiol
– volume: 10
  start-page: e1004056
  year: 2014
  article-title: A genome‐wide screen for bacterial envelope biogenesis mutants identifies a novel factor involved in cell wall precursor metabolism
  publication-title: PLoS Genet
– volume: 39
  start-page: 423
  year: 2010
  end-page: 435
  article-title: The implementation of SOMO (SOlution MOdeller) in the UltraScan analytical ultracentrifugation data analysis suite: enhanced capabilities allow the reliable hydrodynamic modeling of virtually any kind of biomacromolecule
  publication-title: Eur Biophys J
– volume: 157
  start-page: 624
  year: 2014
  end-page: 635
  article-title: Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources
  publication-title: Cell
– volume: 36
  start-page: 85
  year: 2017
  end-page: 94
  article-title: The divisome at 25: the road ahead
  publication-title: Curr Opin Microbiol
– volume: 47
  start-page: 539
  year: 2003
  end-page: 547
  article-title: Penicillin‐binding protein PBP2 of localizes preferentially in the lateral wall and at mid‐cell in comparison with the old cell pole
  publication-title: Mol Microbiol
– volume: 14
  start-page: e8242
  year: 2018
  article-title: Thermal proteome profiling in bacteria: probing protein state
  publication-title: Mol Syst Biol
– volume: 45
  start-page: 783
  year: 2006
  end-page: 792
  article-title: Crystal structure of penicillin binding protein 4 ( ) from , both in the native form and covalently linked to various antibiotics
  publication-title: Biochemistry
– volume: 274
  start-page: 6726
  year: 1999
  end-page: 6734
  article-title: Demonstration of molecular interactions between the murein polymerase PBP1B, the lytic transglycosylase MltA, and the scaffolding protein MipA of
  publication-title: J Biol Chem
– volume: 22
  start-page: 1047
  year: 2014
  end-page: 1054
  article-title: Elongated structure of the outer‐membrane activator of peptidoglycan synthesis LpoA: implications for PBP1A stimulation
  publication-title: Structure
– volume: 2
  start-page: 17014
  year: 2017
  article-title: A tool named Iris for versatile high‐throughput phenotyping in microorganisms
  publication-title: Nat Microbiol
– start-page: 419
  year: 1993
  end-page: 426
– volume: 85
  start-page: 768
  year: 2012
  end-page: 781
  article-title: A conformational switch controls cell wall‐remodelling enzymes required for bacterial cell division
  publication-title: Mol Microbiol
– volume: 4
  start-page: e07118
  year: 2015
  article-title: Coordination of peptidoglycan synthesis and outer membrane constriction during cell division
  publication-title: eLife
– volume: 537
  start-page: 634
  year: 2016
  end-page: 638
  article-title: SEDS proteins are a widespread family of bacterial cell wall polymerases
  publication-title: Nature
– start-page: 90
  year: 1992
  end-page: 125
  article-title: Computer‐aided interpretation of analytical sedimentation data for proteins
  publication-title: Roy Soc Chem
– volume: 62
  start-page: 181
  year: 1998
  end-page: 203
  article-title: Growth of the stress‐bearing and shape‐maintaining murein sacculus of
  publication-title: Microbiol Mol Biol Rev
– volume: 143
  start-page: 1110
  year: 2010
  end-page: 1120
  article-title: Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases
  publication-title: Cell
– volume: 191
  start-page: 5094
  year: 2009
  end-page: 5107
  article-title: LytM‐domain factors are required for daughter cell separation and rapid ampicillin‐induced lysis in
  publication-title: J Bacteriol
– ident: e_1_2_9_31_1
  doi: 10.1007/978-1-4757-9359-8_49
– ident: e_1_2_9_43_1
  doi: 10.1128/mBio.02729-18
– ident: e_1_2_9_46_1
  doi: 10.1016/j.cell.2010.11.037
– ident: e_1_2_9_61_1
  doi: 10.1371/journal.pgen.1006888
– ident: e_1_2_9_53_1
  doi: 10.1038/nature10098
– ident: e_1_2_9_10_1
  doi: 10.1002/(SICI)1521-1878(199911)21:11<932::AID-BIES5>3.0.CO;2-N
– ident: e_1_2_9_58_1
  doi: 10.1038/s41467-017-01697-9
– ident: e_1_2_9_14_1
  doi: 10.1007/s00249-009-0418-0
– ident: e_1_2_9_73_1
  doi: 10.1111/j.1365-2958.2012.08138.x
– ident: e_1_2_9_26_1
  doi: 10.1038/nprot.2015.101
– ident: e_1_2_9_36_1
  doi: 10.1021/bi051533t
– ident: e_1_2_9_63_1
  doi: 10.1038/nrmicro2677
– ident: e_1_2_9_65_1
  doi: 10.1128/JB.00505-09
– ident: e_1_2_9_68_1
  doi: 10.3389/fmicb.2015.00586
– ident: e_1_2_9_19_1
  doi: 10.1038/nbt.1511
– ident: e_1_2_9_62_1
  doi: 10.1016/j.cell.2010.11.038
– ident: e_1_2_9_3_1
  doi: 10.1038/msb4100050
– ident: e_1_2_9_76_1
  doi: 10.1016/j.str.2012.01.006
– volume: 61
  start-page: 125
  year: 1995
  ident: e_1_2_9_7_1
  article-title: The periplasmic space and the periplasm in Gram‐positive and Gram‐negative bacteria
  publication-title: ASM News
– start-page: 90
  year: 1992
  ident: e_1_2_9_39_1
  article-title: Computer‐aided interpretation of analytical sedimentation data for proteins
  publication-title: Roy Soc Chem
– ident: e_1_2_9_6_1
  doi: 10.1074/jbc.M508646200
– ident: e_1_2_9_28_1
  doi: 10.7554/eLife.07118
– ident: e_1_2_9_12_1
  doi: 10.1016/0003-2697(76)90527-3
– ident: e_1_2_9_75_1
  doi: 10.1111/mmi.13258
– ident: e_1_2_9_16_1
  doi: 10.1016/0378-1119(95)00193-A
– ident: e_1_2_9_69_1
  doi: 10.1074/jbc.274.10.6726
– ident: e_1_2_9_71_1
  doi: 10.1111/j.1574-6976.2007.00099.x
– ident: e_1_2_9_18_1
  doi: 10.1110/ps.062092506
– ident: e_1_2_9_24_1
  doi: 10.1111/mmi.13908
– ident: e_1_2_9_15_1
  doi: 10.21769/BioProtoc.852
– ident: e_1_2_9_5_1
  doi: 10.1016/j.cell.2018.03.053
– ident: e_1_2_9_34_1
  doi: 10.1016/j.str.2014.04.017
– ident: e_1_2_9_42_1
  doi: 10.1038/nature19331
– ident: e_1_2_9_32_1
  doi: 10.1093/bioinformatics/18.suppl_1.S96
– ident: e_1_2_9_9_1
  doi: 10.1016/j.mib.2017.01.007
– ident: e_1_2_9_21_1
  doi: 10.1073/pnas.120163297
– ident: e_1_2_9_41_1
  doi: 10.15252/msb.20188242
– ident: e_1_2_9_64_1
  doi: 10.1038/nrmicro3508
– ident: e_1_2_9_20_1
  doi: 10.1093/emboj/17.5.1192
– ident: e_1_2_9_4_1
  doi: 10.1111/j.1365-2958.2012.08103.x
– ident: e_1_2_9_33_1
  doi: 10.1128/MMBR.62.1.181-203.1998
– ident: e_1_2_9_72_1
  doi: 10.1111/j.1432-1033.2004.04397.x
– ident: e_1_2_9_45_1
  doi: 10.1128/JB.181.14.4318-4325.1999
– ident: e_1_2_9_40_1
  doi: 10.1016/j.cell.2014.02.033
– ident: e_1_2_9_8_1
  doi: 10.1046/j.1365-2958.2003.03316.x
– ident: e_1_2_9_55_1
  doi: 10.1101/cshperspect.a000414
– ident: e_1_2_9_30_1
  doi: 10.1128/MMBR.00022-11
– ident: e_1_2_9_22_1
  doi: 10.1128/IAI.00012-14
– ident: e_1_2_9_56_1
  doi: 10.1111/mmi.12058
– ident: e_1_2_9_29_1
  doi: 10.1073/pnas.1717925115
– ident: e_1_2_9_60_1
  doi: 10.1038/srep18190
– ident: e_1_2_9_17_1
  doi: 10.1073/pnas.1816893116
– ident: e_1_2_9_11_1
  doi: 10.1074/jbc.M604083200
– ident: e_1_2_9_47_1
  doi: 10.1371/journal.pgen.1004056
– ident: e_1_2_9_38_1
  doi: 10.1371/journal.pgen.1006934
– ident: e_1_2_9_74_1
  doi: 10.1099/00221287-131-10-2839
– ident: e_1_2_9_44_1
  doi: 10.1038/nrmicro.2016.191
– ident: e_1_2_9_37_1
  doi: 10.1038/nmicrobiol.2017.14
– ident: e_1_2_9_66_1
  doi: 10.1038/emboj.2010.36
– ident: e_1_2_9_51_1
  doi: 10.1126/science.1255784
– ident: e_1_2_9_49_1
  doi: 10.1111/mmi.12304
– ident: e_1_2_9_2_1
  doi: 10.1073/pnas.44.6.590
– ident: e_1_2_9_57_1
  doi: 10.1073/pnas.1507760112
– ident: e_1_2_9_70_1
  doi: 10.1111/j.1574-6976.2007.00094.x
– ident: e_1_2_9_35_1
  doi: 10.1089/adt.2011.0380
– ident: e_1_2_9_25_1
  doi: 10.1111/mmi.14082
– ident: e_1_2_9_50_1
  doi: 10.1093/nar/gkv007
– ident: e_1_2_9_23_1
  doi: 10.1073/pnas.1400376111
– ident: e_1_2_9_13_1
  doi: 10.1074/jbc.M301463200
– ident: e_1_2_9_27_1
  doi: 10.1016/0003-2697(88)90468-X
– ident: e_1_2_9_59_1
  doi: 10.1128/IAI.00034-10
– ident: e_1_2_9_54_1
  doi: 10.1002/mbo3.244
– ident: e_1_2_9_67_1
  doi: 10.1186/s12915-017-0348-8
– ident: e_1_2_9_48_1
  doi: 10.1016/j.mib.2017.01.006
– ident: e_1_2_9_52_1
  doi: 10.1016/S0006-3495(00)76713-0
SSID ssj0005871
Score 2.5423675
Snippet The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh‐like...
The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh-like...
The peptidoglycan ( PG ) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh‐like...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
wiley
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e102246
SubjectTerms Adapters
Antibiotics
Bacteria
bacterial cell envelope
Biochemistry
Biochemistry, Molecular Biology
Biodegradation
Biosynthesis
Cell division
Cell size
Cell Wall - enzymology
Cell walls
E coli
Elongation
EMBO23
endopeptidase
Endopeptidases - genetics
Endopeptidases - metabolism
Enlargement
Enzymatic activity
Enzymes
Escherichia coli
Escherichia coli - enzymology
Escherichia coli - genetics
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Hydrolase
Life Sciences
Lipoproteins
Lipoproteins - genetics
Lipoproteins - metabolism
Localization
Mechanical properties
Membranes
Multienzyme Complexes
N-Acetylmuramoyl-L-alanine Amidase - genetics
N-Acetylmuramoyl-L-alanine Amidase - metabolism
Osmotic stress
outer membrane lipoprotein
Penicillin
penicillin‐binding protein
peptidoglycan
Peptidoglycan - metabolism
Peptidoglycans
Regulators
Saccule
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access (Activated by CARLI)
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9RAEF9sReyLaP0XrbKCCAqhSXaT7D7WcuUstvpgoW9hs9l4kVwuXHql55Mfwc_oJ3Fm8-eMRQVfAsdskr3MTOY3u5PfEPLSSyGMRoa5uYADjyPPlYJFrvKzXOZRFiuFHzifnEbTM358Hp7_8i1Myw8xLLihZ9j3NTq4Spu-Yw-yhpp5-gVrs2TLirZFbgK2Z2jlAf-4KfMQNumy6yzcF7LbqsRr7P92hVFo2pphYeR11Hm9eHLYQR3jWxugju6SOx2ypAetKdwjN0y1S261vSbXu-T2Yd_a7T65_ICNHOgcZgahytCyqBeWsKGo6GlZv6ONVnm-KLOG1lj1ki0-l2vQAZ2tsyXkwo1pKC7gwnBbkPjj23dTfV3PDbUV6uYK5CCbNGgRBVZTg6AsHpCzo8mnw6nbNWBwdQh5iIvcb0KKUJpQaEAOKhLcaIh1PI3iKNO-ir1U4VYpY3kYKM09ljOl85RnJlaGPSTb1aIyjwmNdQpAiWUADxWPRaakzAJP5DpmAt4LuUP2-2ef6I6dHJtklAlmKaitBLWVbLTlkNfDGXXLzPGXsa9AncMwpNSeHrxPagWetFomXiAhO5fi0nfIXq_xpHPmJglYBCAaeYEc8mIQg8pwbwW0tFjhmLBllg0d8qg1kOF2zDJbcemQeGQ6o_mMJVUxs1TfMSRwwvcc8qY3ss20_vxnQ2uG_3wqyeTk7fHm55P_PO8p2QlwEQIL84I9sn2xXJlngNQu0ufWFX8CfGc0-Q
  priority: 102
  providerName: Wiley-Blackwell
Title Outer membrane lipoprotein NlpI scaffolds peptidoglycan hydrolases within multi‐enzyme complexes in Escherichia coli
URI https://link.springer.com/article/10.15252/embj.2019102246
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2019102246
https://www.ncbi.nlm.nih.gov/pubmed/32009249
https://www.proquest.com/docview/2369162357
https://www.proquest.com/docview/2350352575
https://pasteur.hal.science/pasteur-02902798
https://pubmed.ncbi.nlm.nih.gov/PMC7049810
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEB6RIgQXBOXPUKpFQkggWbW9Xnv3WKJUoaKFA5V6s9b2ujFybCtuKsKJR-AZeRJmbCfBKj_iEsmajb3Zmc3M7Hz-BuClE6MbDQy3M4kffhg4tpI8sLWbZioL0lBresH55DSYnvnH5-K8P--gd2F-rd8LT3gHZh5_JgSW6rjPRnBT4N8u2fI4GG_BHLJNrdrTFN-Vqi9I_u4OAwc0mhH88XpseR0iuamTDqPY1g0d3YO7ffzIDjuF34cbptyFW11HydUu3B6vG7g9gKsP1K6BzXFm6JAMK_K6amkZ8pKdFvU71iQ6y6oibVhN2Ja0uihWuNJstkoXmPE2pmF0TIvDW9jhj2_fTfl1NTesxaGbLyhH2aQhveeEmUZBkT-Es6PJp_HU7tss2InAbMMmhjeppFBGyATjAx1I3yTo0fw4CIM0cXXoxJoKopxnwtOJ7_CM6ySL_dSE2vBHsFNWpXkCLExiDId4ikGg9kOZaqVSz5FZEnKJuz-z4GC99lHSc5BTK4wiolyEtBWRtqKttix4vflG3fFv_GXsK1TnZhgRZ08P30e1xv2yXESOpzAHV_LKtWBvrfGo37JN5PEAQ2Vi_7HgxUaMKqMKCmqpWtIY0fHHCgsedwayeRxv-at8ZUE4MJ3BfIaSMp-1hN4hpmnSdSx4szay7bT-_GNFa4b_XJVocvL2eHv59H8e8gzueHS-QJg7bw92LhdL8xyDsMt4H0ae_3G_3YU_AdZWKh4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB7RIlQuCMrLUMBICAkkq7bXj91jiVKlJQmXVurNWtu7jZFjW3FTEU78BH4jv4QZ23GIykNcLFmzttc7u5qZnW-_AXhjx2hGA8UszfHihYFtCc4CSzqpFjpIQynpgPNkGozOvdML_6Lb76CzML_m733Xdw_VPP5MCCzRcp_twG3KWxJL_iAYbMAcvAmtmt0Uz-GiS0j-7g1bBmhnRvDHm77lTYhknyfd9mIbM3R8H-51_qN51Cr8AdxSxT7caStKrvZhb7Au4PYQrj9RuQZzjj1Dg6TMPKvKhpYhK8xpXp2YdSK1LvO0NivCtqTlZb7CkTZnq3SBEW-tapO2abF5Azv88e27Kr6u5spscOjqC8pRNqxJ7xlhplGQZ4_g_Hh4NhhZXZkFK_Ex2rCI4Y0L7gvl8wT9AxlwTyVo0bw4CIM0cWRox5ISooxp35WJZzPNZKJjL1WhVOwx7BZloZ6CGSYxukMsRSdQeiFPpRCpa3OdhIzj6tcGHK7HPko6DnIqhZFHFIuQtiLSVrTRlgHv-ieqln_jL23fojr7ZkScPToaR5XE9bJcRLYrMAYX_Nox4GCt8ahbsnXksgBdZWL_MeB1L0aVUQYFtVQuqY3f8sf6BjxpJ0j_OdbwV3nCgHBr6mz1Z1tSZLOG0DvEMI07tgHv15Ns060__6zfTMN_jko0nHw43dw--5-PvIK90dlkHI1Pph-fw12X9hoIf-cewO7VYqleoEN2Fb9s1uJPAMMsNg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtNAEB3RVlxeEBQKhgJGQkggWXG8vuw-hpKoDW1Agkp9s9beXRLkOFacVIQnPoFv5EuY8SVRVC7iJZI1G3uzM5uZ2Tk-A_DCTdCNhpo5huOHH4WuIzgLHdlVRphQRVLSC85no_D43B9eBBfNgVvZot3bkmT9TgOxNOWLTqFM26_H6-hp8oVwWaJmRNuBPR4IgcnXXq83_DjcgDx4lXJVpyx-l4umUPm7e2w5pp0xwSKvxpxXoZPr-ul2dFu5p8EduN3ElXavNoS7cE3n-3C97jS52oebR21jt3tw-Z7aONhTnBk6Km1nk2JW0TVMcnuUFSd2mUpjZpkq7YIwL2r2OVuhBuzxSs0xEy51adPxLQ6v4Ig_v__Q-bfVVNsVPl1_RTnK-iXZw4Sw1CjIJvfhfND_dHTsNO0XnDTALMQh5jcucF11wFOMG2TIfZ2ip_OTMApV2pWRm0gqlDJmAk-mvssMk6lJfKUjqdkB7OazXD8EO0oTDJOYwuBQ-hFXUgjludykEeP4r2As6LRrH6cNNzm1yMhiylFIWzFpK95oy4JX628UNS_HX8a-RHWuhxGh9nHvNC4k7qPlPHY9gbm54JddCw5bjcfNVi5jj4UYQhMrkAXP12JUGVVWUEuzJY0Jal7ZwIIHtYGsH8cqXitfWBBtmc7WfLYl-WRcEX1HmL7xrmvB69bINtP6848NKjP856rE_bM3w83lo_95yDO48eHtID49Gb17DLc8OoIgWJ53CLuL-VI_wThtkTxtNuMvKsU19A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Outer+membrane+lipoprotein+NlpI+scaffolds+peptidoglycan+hydrolases+within+multi-enzyme+complexes+in+Escherichia+coli&rft.jtitle=The+EMBO+journal&rft.au=Banzhaf%2C+Manuel&rft.au=Yau%2C+Hamish+Cl&rft.au=Verheul%2C+Jolanda&rft.au=Lodge%2C+Adam&rft.date=2020-03-02&rft.eissn=1460-2075&rft.volume=39&rft.issue=5&rft.spage=e102246&rft_id=info:doi/10.15252%2Fembj.2019102246&rft_id=info%3Apmid%2F32009249&rft.externalDocID=32009249
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon