Outer membrane lipoprotein NlpI scaffolds peptidoglycan hydrolases within multi‐enzyme complexes in Escherichia coli
The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh‐like sacculus requires the combined activity of peptidoglycan synthases and hydrolases. In Escherichia coli , the activity of two PG synthases is d...
Saved in:
Published in | The EMBO journal Vol. 39; no. 5; pp. e102246 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.03.2020
Springer Nature B.V EMBO Press John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0261-4189 1460-2075 1460-2075 |
DOI | 10.15252/embj.2019102246 |
Cover
Abstract | The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh‐like sacculus requires the combined activity of peptidoglycan synthases and hydrolases. In
Escherichia coli
, the activity of two PG synthases is driven by lipoproteins anchored in the outer membrane (OM). However, the regulation of PG hydrolases is less well understood, with only regulators for PG amidases having been described. Here, we identify the OM lipoprotein NlpI as a general adaptor protein for PG hydrolases. NlpI binds to different classes of hydrolases and can specifically form complexes with various PG endopeptidases. In addition, NlpI seems to contribute both to PG elongation and division biosynthetic complexes based on its localization and genetic interactions. Consistent with such a role, we reconstitute PG multi‐enzyme complexes containing NlpI, the PG synthesis regulator LpoA, its cognate bifunctional synthase, PBP1A, and different endopeptidases. Our results indicate that peptidoglycan regulators and adaptors are part of PG biosynthetic multi‐enzyme complexes, regulating and potentially coordinating the spatiotemporal action of PG synthases and hydrolases.
Synopsis
In bacteria, enzyme activities regulating peptidoglycan biosynthesis and degradation have to be adjusted during cell wall growth. Here, the outer membrane‐anchored lipoprotein NlpI is shown to facilitate formation of peptidoglycan synthase and hydrolase multi‐enzyme complexes to coordinate correct enlargement of the cell wall peptidoglycan layer in
E. coli
.
NlpI binds to different classes of peptidoglycan hydrolases.
NlpI can specifically form multimeric complexes with various endopeptidases.
NlpI contributes to peptidoglycan biosynthetic complexes active in cell elongation and cell division based on its cellular localization and genetic interactions.
NlpI forms multi‐enzyme complexes containing peptidoglycan synthases and hydrolases
in vitro
.
Graphical Abstract
An adaptor protein for peptidoglycan hydrolases and synthases coordinates bacterial cell wall growth. |
---|---|
AbstractList | The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh‐like sacculus requires the combined activity of peptidoglycan synthases and hydrolases. In Escherichia coli, the activity of two PG synthases is driven by lipoproteins anchored in the outer membrane (OM). However, the regulation of PG hydrolases is less well understood, with only regulators for PG amidases having been described. Here, we identify the OM lipoprotein NlpI as a general adaptor protein for PG hydrolases. NlpI binds to different classes of hydrolases and can specifically form complexes with various PG endopeptidases. In addition, NlpI seems to contribute both to PG elongation and division biosynthetic complexes based on its localization and genetic interactions. Consistent with such a role, we reconstitute PG multi‐enzyme complexes containing NlpI, the PG synthesis regulator LpoA, its cognate bifunctional synthase, PBP1A, and different endopeptidases. Our results indicate that peptidoglycan regulators and adaptors are part of PG biosynthetic multi‐enzyme complexes, regulating and potentially coordinating the spatiotemporal action of PG synthases and hydrolases.
Synopsis
In bacteria, enzyme activities regulating peptidoglycan biosynthesis and degradation have to be adjusted during cell wall growth. Here, the outer membrane‐anchored lipoprotein NlpI is shown to facilitate formation of peptidoglycan synthase and hydrolase multi‐enzyme complexes to coordinate correct enlargement of the cell wall peptidoglycan layer in E. coli.
NlpI binds to different classes of peptidoglycan hydrolases.
NlpI can specifically form multimeric complexes with various endopeptidases.
NlpI contributes to peptidoglycan biosynthetic complexes active in cell elongation and cell division based on its cellular localization and genetic interactions.
NlpI forms multi‐enzyme complexes containing peptidoglycan synthases and hydrolases in vitro.
An adaptor protein for peptidoglycan hydrolases and synthases coordinates bacterial cell wall growth. The peptidoglycan ( PG ) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh‐like sacculus requires the combined activity of peptidoglycan synthases and hydrolases. In Escherichia coli , the activity of two PG synthases is driven by lipoproteins anchored in the outer membrane ( OM ). However, the regulation of PG hydrolases is less well understood, with only regulators for PG amidases having been described. Here, we identify the OM lipoprotein NlpI as a general adaptor protein for PG hydrolases. NlpI binds to different classes of hydrolases and can specifically form complexes with various PG endopeptidases. In addition, NlpI seems to contribute both to PG elongation and division biosynthetic complexes based on its localization and genetic interactions. Consistent with such a role, we reconstitute PG multi‐enzyme complexes containing NlpI, the PG synthesis regulator LpoA, its cognate bifunctional synthase, PBP 1A, and different endopeptidases. Our results indicate that peptidoglycan regulators and adaptors are part of PG biosynthetic multi‐enzyme complexes, regulating and potentially coordinating the spatiotemporal action of PG synthases and hydrolases. An adaptor protein for peptidoglycan hydrolases and synthases coordinates bacterial cell wall growth. The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh-like sacculus requires the combined activity of peptidoglycan synthases and hydrolases. In Escherichia coli, the activity of two PG synthases is driven by lipoproteins anchored in the outer membrane (OM). However, the regulation of PG hydrolases is less well understood, with only regulators for PG amidases having been described. Here, we identify the OM lipoprotein NlpI as a general adaptor protein for PG hydrolases. NlpI binds to different classes of hydrolases and can specifically form complexes with various PG endopeptidases. In addition, NlpI seems to contribute both to PG elongation and division biosynthetic complexes based on its localization and genetic interactions. Consistent with such a role, we reconstitute PG multi-enzyme complexes containing NlpI, the PG synthesis regulator LpoA, its cognate bifunctional synthase, PBP1A, and different endopeptidases. Our results indicate that peptidoglycan regulators and adaptors are part of PG biosynthetic multi-enzyme complexes, regulating and potentially coordinating the spatiotemporal action of PG synthases and hydrolases. The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh-like sacculus requires the combined activity of peptidoglycan synthases and hydrolases. In Escherichia coli, the activity of two PG synthases is driven by lipoproteins anchored in the outer membrane (OM). However, the regulation of PG hydrolases is less well understood, with only regulators for PG amidases having been described. Here, we identify the OM lipoprotein NlpI as a general adaptor protein for PG hydrolases. NlpI binds to different classes of hydrolases and can specifically form complexes with various PG endopeptidases. In addition, NlpI seems to contribute both to PG elongation and division biosynthetic complexes based on its localization and genetic interactions. Consistent with such a role, we reconstitute PG multi-enzyme complexes containing NlpI, the PG synthesis regulator LpoA, its cognate bifunctional synthase, PBP1A, and different endopeptidases. Our results indicate that peptidoglycan regulators and adaptors are part of PG biosynthetic multi-enzyme complexes, regulating and potentially coordinating the spatiotemporal action of PG synthases and hydrolases.The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh-like sacculus requires the combined activity of peptidoglycan synthases and hydrolases. In Escherichia coli, the activity of two PG synthases is driven by lipoproteins anchored in the outer membrane (OM). However, the regulation of PG hydrolases is less well understood, with only regulators for PG amidases having been described. Here, we identify the OM lipoprotein NlpI as a general adaptor protein for PG hydrolases. NlpI binds to different classes of hydrolases and can specifically form complexes with various PG endopeptidases. In addition, NlpI seems to contribute both to PG elongation and division biosynthetic complexes based on its localization and genetic interactions. Consistent with such a role, we reconstitute PG multi-enzyme complexes containing NlpI, the PG synthesis regulator LpoA, its cognate bifunctional synthase, PBP1A, and different endopeptidases. Our results indicate that peptidoglycan regulators and adaptors are part of PG biosynthetic multi-enzyme complexes, regulating and potentially coordinating the spatiotemporal action of PG synthases and hydrolases. The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh-like sacculus requires the combined activity of peptidoglycan synthases and hydrolases. In Escherichia coli, the activity of two PG synthases is driven by lipoproteins anchored in the outer membrane (OM). However, the regulation of PG hydrolases is less well understood, with only regulators for PG amidases having been described. Here, we identify the OM lipoprotein NlpI as a general adaptor protein for PG hydro-lases. NlpI binds to different classes of hydrolases and can specifically form complexes with various PG endopeptidases. In addition, NlpI seems to contribute both to PG elongation and division biosynthetic complexes based on its localization and genetic interactions. Consistent with such a role, we reconstitute PG multi-enzyme complexes containing NlpI, the PG synthesis regulator LpoA, its cognate bifunctional synthase, PBP1A, and different endopeptidases. Our results indicate that peptidoglycan regulators and adaptors are part of PG biosynthetic multi-enzyme complexes, regulating and potentially coordinating the spatiotemporal action of PG synthases and hydrolases. The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh‐like sacculus requires the combined activity of peptidoglycan synthases and hydrolases. In Escherichia coli , the activity of two PG synthases is driven by lipoproteins anchored in the outer membrane (OM). However, the regulation of PG hydrolases is less well understood, with only regulators for PG amidases having been described. Here, we identify the OM lipoprotein NlpI as a general adaptor protein for PG hydrolases. NlpI binds to different classes of hydrolases and can specifically form complexes with various PG endopeptidases. In addition, NlpI seems to contribute both to PG elongation and division biosynthetic complexes based on its localization and genetic interactions. Consistent with such a role, we reconstitute PG multi‐enzyme complexes containing NlpI, the PG synthesis regulator LpoA, its cognate bifunctional synthase, PBP1A, and different endopeptidases. Our results indicate that peptidoglycan regulators and adaptors are part of PG biosynthetic multi‐enzyme complexes, regulating and potentially coordinating the spatiotemporal action of PG synthases and hydrolases. Synopsis In bacteria, enzyme activities regulating peptidoglycan biosynthesis and degradation have to be adjusted during cell wall growth. Here, the outer membrane‐anchored lipoprotein NlpI is shown to facilitate formation of peptidoglycan synthase and hydrolase multi‐enzyme complexes to coordinate correct enlargement of the cell wall peptidoglycan layer in E. coli . NlpI binds to different classes of peptidoglycan hydrolases. NlpI can specifically form multimeric complexes with various endopeptidases. NlpI contributes to peptidoglycan biosynthetic complexes active in cell elongation and cell division based on its cellular localization and genetic interactions. NlpI forms multi‐enzyme complexes containing peptidoglycan synthases and hydrolases in vitro . Graphical Abstract An adaptor protein for peptidoglycan hydrolases and synthases coordinates bacterial cell wall growth. |
Author | Verheul, Jolanda Mateus, André Hov, Ann Kristin Breukink, Eefjan Banzhaf, Manuel Vollmer, Waldemar Cordier, Baptiste Yau, Hamish CL Wartel, Morgane Solovyova, Alexandra S Kritikos, George Stein, Frank van Teeffelen, Sven Typas, Athanasios Lodge, Adam Pazos, Manuel Savitski, Mikhail M den Blaauwen, Tanneke |
AuthorAffiliation | 6 Membrane Biochemistry and Biophysics Department of Chemistry Faculty of Science Utrecht University Utrecht The Netherlands 4 Microbial Morphogenesis and Growth Lab Institut Pasteur Paris France 1 European Molecular Biology Laboratory Genome Biology Unit Heidelberg Germany 3 Bacterial Cell Biology & Physiology Swammerdam Institute for Life Sciences Faculty of Science University of Amsterdam Amsterdam The Netherlands 5 Newcastle University Protein and Proteome Analysis Newcastle Upon Tyne UK 10 Present address: Iksuda Therapeutics The Biosphere Newcastle Upon Tyne UK 8 Present address: Institute of Microbiology & Infection and School of Biosciences University of Birmingham Edgbaston Birmingham UK 11 Present address: École polytechnique fédérale de Lausanne SV IBI‐SV UPDALPE, AAB 013 Lausanne Switzerland 9 Present address: Faculty of Science, Agriculture and Engineering Newcastle University Newcastle Upon Tyne UK 7 European Molecular Biology Laboratory Structural & Computational Unit Heidelberg |
AuthorAffiliation_xml | – name: 1 European Molecular Biology Laboratory Genome Biology Unit Heidelberg Germany – name: 2 Centre for Bacterial Cell Biology Biosciences Institute Newcastle University Newcastle Upon Tyne UK – name: 5 Newcastle University Protein and Proteome Analysis Newcastle Upon Tyne UK – name: 7 European Molecular Biology Laboratory Structural & Computational Unit Heidelberg Germany – name: 6 Membrane Biochemistry and Biophysics Department of Chemistry Faculty of Science Utrecht University Utrecht The Netherlands – name: 8 Present address: Institute of Microbiology & Infection and School of Biosciences University of Birmingham Edgbaston Birmingham UK – name: 9 Present address: Faculty of Science, Agriculture and Engineering Newcastle University Newcastle Upon Tyne UK – name: 3 Bacterial Cell Biology & Physiology Swammerdam Institute for Life Sciences Faculty of Science University of Amsterdam Amsterdam The Netherlands – name: 11 Present address: École polytechnique fédérale de Lausanne SV IBI‐SV UPDALPE, AAB 013 Lausanne Switzerland – name: 4 Microbial Morphogenesis and Growth Lab Institut Pasteur Paris France – name: 10 Present address: Iksuda Therapeutics The Biosphere Newcastle Upon Tyne UK |
Author_xml | – sequence: 1 givenname: Manuel surname: Banzhaf fullname: Banzhaf, Manuel organization: European Molecular Biology Laboratory, Genome Biology Unit, Institute of Microbiology & Infection and School of Biosciences, University of Birmingham – sequence: 2 givenname: Hamish CL surname: Yau fullname: Yau, Hamish CL organization: Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Faculty of Science, Agriculture and Engineering, Newcastle University – sequence: 3 givenname: Jolanda surname: Verheul fullname: Verheul, Jolanda organization: Bacterial Cell Biology & Physiology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam – sequence: 4 givenname: Adam surname: Lodge fullname: Lodge, Adam organization: Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Iksuda Therapeutics, The Biosphere – sequence: 5 givenname: George surname: Kritikos fullname: Kritikos, George organization: European Molecular Biology Laboratory, Genome Biology Unit – sequence: 6 givenname: André orcidid: 0000-0001-6870-0677 surname: Mateus fullname: Mateus, André organization: European Molecular Biology Laboratory, Genome Biology Unit – sequence: 7 givenname: Baptiste orcidid: 0000-0002-6042-9787 surname: Cordier fullname: Cordier, Baptiste organization: Microbial Morphogenesis and Growth Lab, Institut Pasteur – sequence: 8 givenname: Ann Kristin surname: Hov fullname: Hov, Ann Kristin organization: European Molecular Biology Laboratory, Genome Biology Unit, École polytechnique fédérale de Lausanne SV IBI‐SV UPDALPE, AAB 013 – sequence: 9 givenname: Frank surname: Stein fullname: Stein, Frank organization: European Molecular Biology Laboratory, Genome Biology Unit – sequence: 10 givenname: Morgane surname: Wartel fullname: Wartel, Morgane organization: European Molecular Biology Laboratory, Genome Biology Unit – sequence: 11 givenname: Manuel surname: Pazos fullname: Pazos, Manuel organization: Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University – sequence: 12 givenname: Alexandra S surname: Solovyova fullname: Solovyova, Alexandra S organization: Newcastle University Protein and Proteome Analysis – sequence: 13 givenname: Eefjan surname: Breukink fullname: Breukink, Eefjan organization: Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University – sequence: 14 givenname: Sven surname: van Teeffelen fullname: van Teeffelen, Sven organization: Microbial Morphogenesis and Growth Lab, Institut Pasteur – sequence: 15 givenname: Mikhail M orcidid: 0000-0003-2011-9247 surname: Savitski fullname: Savitski, Mikhail M organization: European Molecular Biology Laboratory, Genome Biology Unit, European Molecular Biology Laboratory, Structural & Computational Unit – sequence: 16 givenname: Tanneke orcidid: 0000-0002-5403-5597 surname: den Blaauwen fullname: den Blaauwen, Tanneke email: t.denblaauwen@uva.nl organization: Bacterial Cell Biology & Physiology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam – sequence: 17 givenname: Athanasios orcidid: 0000-0002-0797-9018 surname: Typas fullname: Typas, Athanasios email: typas@embl.de organization: European Molecular Biology Laboratory, Genome Biology Unit, European Molecular Biology Laboratory, Structural & Computational Unit – sequence: 18 givenname: Waldemar orcidid: 0000-0003-0408-8567 surname: Vollmer fullname: Vollmer, Waldemar email: w.vollmer@ncl.ac.uk organization: Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32009249$$D View this record in MEDLINE/PubMed https://pasteur.hal.science/pasteur-02902798$$DView record in HAL |
BookMark | eNqFkk1v1DAQhi1URD_gzglF4sIlZex8OJYQUlsttGihFzhbXmey8cqJg51sWU78BH4jvwSXbSldCTj5MM_7jt-ZOSR7veuRkKcUjmnBCvYSu8XqmAEVFBjLywfkgOYlpAx4sUcOgJU0zWkl9slhCCsAKCpOH5H9jAEIlosDsr6cRvRJF4286jGxZnCDdyOaPvlgh4skaNU0ztYhGXAYTe2WdqNVn7Sb2jurAobkyoxtxLvJjubHt-_Yf910mGjXDRa_xHqszYJu0RvdGhUL1jwmDxtlAz65eY_Ipzezj2fn6fzy7cXZyTzVRcHLNObKK1EVAotKUwGqrHLUlGX5ouRlranisFCs4pBlTcGUziFrMqWbRV4jV5gdkddb32FadFhr7EevrBy86ZTfSKeMvF_pTSuXbi055KKiEA3SrUG7Izs_mctBhREnL4EJYFxUaxr5FzcNvfs8YRhlZ4JGa-Nw3RQkywrI4up4EdHnO-jKTb6P44hUKWgZWR6pZ38m-P2H2xVGoNwC2rsQPDZSm1GNxl0HMlZSkL9uRV7firy7lSiEHeGt9z8kr7aSK2Nx819ezt6fvrsnp1t5iMp-if4u8V9b_gQ5i-XE |
CitedBy_id | crossref_primary_10_1016_j_mib_2021_02_003 crossref_primary_10_1093_femsre_fuab051 crossref_primary_10_1128_mBio_01480_21 crossref_primary_10_1038_s41467_023_39783_w crossref_primary_10_1099_acmi_0_000882_v3 crossref_primary_10_1107_S2052252521008666 crossref_primary_10_1128_mBio_02185_20 crossref_primary_10_1146_annurev_micro_040621_122027 crossref_primary_10_1111_mmi_14587 crossref_primary_10_1016_j_chembiol_2022_11_001 crossref_primary_10_1128_jb_00239_22 crossref_primary_10_1128_jb_00382_22 crossref_primary_10_1038_s41579_020_0366_3 crossref_primary_10_1128_jb_00164_22 crossref_primary_10_1016_j_mib_2024_102538 crossref_primary_10_1038_s41467_022_35528_3 crossref_primary_10_7554_eLife_51998 crossref_primary_10_1128_JB_00393_21 crossref_primary_10_3390_antibiotics10030274 crossref_primary_10_1155_2023_8079091 crossref_primary_10_3389_fcimb_2022_984955 crossref_primary_10_1021_acssynbio_3c00306 crossref_primary_10_1128_mBio_00306_20 crossref_primary_10_3390_ijms222212101 crossref_primary_10_3389_frans_2023_1186623 crossref_primary_10_1016_j_tcsw_2022_100086 crossref_primary_10_1016_j_mib_2023_102326 crossref_primary_10_1016_j_mib_2021_01_008 crossref_primary_10_3390_microorganisms9061336 crossref_primary_10_1002_cbic_202200693 crossref_primary_10_1128_mBio_02796_20 crossref_primary_10_1128_JB_00174_20 crossref_primary_10_3390_ijms242216355 crossref_primary_10_3390_ijms22041853 crossref_primary_10_1099_acmi_0_000759_v3 crossref_primary_10_15252_embj_2021108126 crossref_primary_10_3389_fmicb_2022_878049 crossref_primary_10_1093_bioinformatics_btad171 crossref_primary_10_1371_journal_pgen_1010222 crossref_primary_10_1128_mBio_03596_20 crossref_primary_10_1128_JB_00434_20 crossref_primary_10_1016_j_ymben_2023_06_008 crossref_primary_10_1016_j_sbi_2024_102946 crossref_primary_10_1038_s41467_024_51790_z crossref_primary_10_1128_mBio_02456_20 crossref_primary_10_1128_mbio_01203_23 crossref_primary_10_1128_mbio_01419_24 crossref_primary_10_7554_eLife_62614 crossref_primary_10_1111_mmi_14711 crossref_primary_10_1371_journal_pgen_1009586 crossref_primary_10_1093_femsre_fuaa018 crossref_primary_10_1128_mbio_00325_24 crossref_primary_10_1128_ecosalplus_ESP_0010_2020 crossref_primary_10_15252_msb_20199232 crossref_primary_10_1146_annurev_micro_041522_094053 crossref_primary_10_3389_fmicb_2021_557902 crossref_primary_10_1038_s41589_023_01319_0 crossref_primary_10_1038_s41467_024_49552_y crossref_primary_10_1371_journal_ppat_1010825 |
Cites_doi | 10.1007/978-1-4757-9359-8_49 10.1128/mBio.02729-18 10.1016/j.cell.2010.11.037 10.1371/journal.pgen.1006888 10.1038/nature10098 10.1002/(SICI)1521-1878(199911)21:11<932::AID-BIES5>3.0.CO;2-N 10.1038/s41467-017-01697-9 10.1007/s00249-009-0418-0 10.1111/j.1365-2958.2012.08138.x 10.1038/nprot.2015.101 10.1021/bi051533t 10.1038/nrmicro2677 10.1128/JB.00505-09 10.3389/fmicb.2015.00586 10.1038/nbt.1511 10.1016/j.cell.2010.11.038 10.1038/msb4100050 10.1016/j.str.2012.01.006 10.1074/jbc.M508646200 10.7554/eLife.07118 10.1016/0003-2697(76)90527-3 10.1111/mmi.13258 10.1016/0378-1119(95)00193-A 10.1074/jbc.274.10.6726 10.1111/j.1574-6976.2007.00099.x 10.1110/ps.062092506 10.1111/mmi.13908 10.21769/BioProtoc.852 10.1016/j.cell.2018.03.053 10.1016/j.str.2014.04.017 10.1038/nature19331 10.1093/bioinformatics/18.suppl_1.S96 10.1016/j.mib.2017.01.007 10.1073/pnas.120163297 10.15252/msb.20188242 10.1038/nrmicro3508 10.1093/emboj/17.5.1192 10.1111/j.1365-2958.2012.08103.x 10.1128/MMBR.62.1.181-203.1998 10.1111/j.1432-1033.2004.04397.x 10.1128/JB.181.14.4318-4325.1999 10.1016/j.cell.2014.02.033 10.1046/j.1365-2958.2003.03316.x 10.1101/cshperspect.a000414 10.1128/MMBR.00022-11 10.1128/IAI.00012-14 10.1111/mmi.12058 10.1073/pnas.1717925115 10.1038/srep18190 10.1073/pnas.1816893116 10.1074/jbc.M604083200 10.1371/journal.pgen.1004056 10.1371/journal.pgen.1006934 10.1099/00221287-131-10-2839 10.1038/nrmicro.2016.191 10.1038/nmicrobiol.2017.14 10.1038/emboj.2010.36 10.1126/science.1255784 10.1111/mmi.12304 10.1073/pnas.44.6.590 10.1073/pnas.1507760112 10.1111/j.1574-6976.2007.00094.x 10.1089/adt.2011.0380 10.1111/mmi.14082 10.1093/nar/gkv007 10.1073/pnas.1400376111 10.1074/jbc.M301463200 10.1016/0003-2697(88)90468-X 10.1128/IAI.00034-10 10.1002/mbo3.244 10.1186/s12915-017-0348-8 10.1016/j.mib.2017.01.006 10.1016/S0006-3495(00)76713-0 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 2020 The Authors. Published under the terms of the CC BY 4.0 license 2020 The Authors. Published under the terms of the CC BY 4.0 license. 2020 EMBO Attribution |
Copyright_xml | – notice: The Author(s) 2020 – notice: 2020 The Authors. Published under the terms of the CC BY 4.0 license – notice: 2020 The Authors. Published under the terms of the CC BY 4.0 license. – notice: 2020 EMBO – notice: Attribution |
DBID | C6C 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 1XC VOOES 5PM |
DOI | 10.15252/embj.2019102246 |
DatabaseName | Springer Nature OA Free Journals Wiley Online Library Open Access (Activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
DocumentTitleAlternate | Manuel Banzhaf et al |
EISSN | 1460-2075 |
EndPage | n/a |
ExternalDocumentID | PMC7049810 oai_HAL_pasteur_02902798v1 32009249 10_15252_embj_2019102246 EMBJ2019102246 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Agence Nationale de la Recherche (ANR) grantid: ANR‐10‐LABX‐62‐IBEID funderid: 10.13039/501100001665 – fundername: EC|H2020|H2020 Priority Excellent Science|H2020 European Research Council (ERC) grantid: 679980 funderid: 10.13039/501100000781 – fundername: Volkswagen Foundation (VolkswagenStiftung) funderid: 10.13039/501100001663 – fundername: Wellcome Trust (WT) grantid: 101824/Z/13/Z funderid: 10.13039/100004440 – fundername: UK Research and Innovation|Medical Research Council (MRC) grantid: MR/N002679/1 funderid: 10.13039/501100000265 – fundername: Royal Society grantid: RGS\R1\191041 funderid: 10.13039/501100000288 – fundername: European Molecular Biology Laboratory (EMBL) grantid: 664726 funderid: 10.13039/100013060 – fundername: European Molecular Biology Laboratory (EMBL) funderid: 664726 – fundername: EC|H2020|H2020 Priority Excellent Science|H2020 European Research Council (ERC) funderid: 679980 – fundername: Royal Society funderid: RGS\R1\191041 – fundername: Agence Nationale de la Recherche (ANR) funderid: ANR‐10‐LABX‐62‐IBEID – fundername: UK Research and Innovation|Medical Research Council (MRC) funderid: MR/N002679/1 – fundername: Volkswagen Foundation (VolkswagenStiftung) – fundername: Wellcome Trust (WT) funderid: 101824/Z/13/Z – fundername: Agence Nationale de la Recherche (ANR) grantid: ANR-10-LABX-62-IBEID – fundername: Wellcome Trust – fundername: Wellcome Trust (WT) grantid: 101824/Z/13/Z – fundername: Medical Research Council grantid: MR/N002679/1 – fundername: European Molecular Biology Laboratory (EMBL) grantid: 664726 – fundername: Medical Research Council grantid: MR/N501840/1 – fundername: Royal Society grantid: RGS\R1\191041 – fundername: EC|H2020|H2020 Priority Excellent Science|H2020 European Research Council (ERC) grantid: 679980 – fundername: ; – fundername: ; grantid: 664726 – fundername: ; grantid: 101824/Z/13/Z – fundername: ; grantid: ANR‐10‐LABX‐62‐IBEID – fundername: ; grantid: RGS\R1\191041 – fundername: ; grantid: 679980 – fundername: ; grantid: MR/N002679/1 |
GroupedDBID | --- -DZ -~X 0R~ 123 1OC 24P 29G 2WC 33P 36B 39C 53G 5VS 70F 8R4 8R5 A8Z AAESR AAEVG AAHBH AAHHS AAIHA AAJSJ AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABLJU ACAHQ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFGKR AFPWT AFRAH AFWVQ AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BDRZF BENPR BFHJK BMNLL BMXJE BRXPI BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM DU5 E3Z EBD EBLON EBS EMB EMOBN F5P G-S GROUPED_DOAJ GX1 HH5 HK~ HYE KQ8 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P2P P2W Q2X R.K RHF RHI RNS ROL RPM SV3 TN5 TR2 WBKPD WH7 WIH WIK WIN WOHZO WXSBR WYJ YSK ZCA ZZTAW ~KM ABJNI -Q- AASML AAYXX ABZEH CITATION NAO AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 AJAOE ESTFP 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c5576-191489859e58c190a684ec1234b676dc1a70ba287033f52ac403f3acfb4de7ae3 |
IEDL.DBID | C6C |
ISSN | 0261-4189 1460-2075 |
IngestDate | Thu Aug 21 14:14:20 EDT 2025 Fri Sep 12 12:50:33 EDT 2025 Sat Sep 27 20:47:38 EDT 2025 Fri Jul 25 10:26:26 EDT 2025 Mon Jul 21 06:05:09 EDT 2025 Thu Apr 24 23:06:30 EDT 2025 Tue Jul 01 01:47:21 EDT 2025 Wed Jan 22 16:36:50 EST 2025 Fri Feb 21 02:37:34 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | peptidoglycan bacterial cell envelope endopeptidase outer membrane lipoprotein penicillin‐binding protein penicillin-binding protein Virology & Host Pathogen Interaction outer membrane lipopro- tein peptidoglycan Subject Category Microbiology |
Language | English |
License | Attribution 2020 The Authors. Published under the terms of the CC BY 4.0 license. Attribution: http://creativecommons.org/licenses/by This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5576-191489859e58c190a684ec1234b676dc1a70ba287033f52ac403f3acfb4de7ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 PMCID: PMC7049810 These authors contributed equally to this work |
ORCID | 0000-0003-2011-9247 0000-0002-6042-9787 0000-0001-6870-0677 0000-0002-0797-9018 0000-0003-0408-8567 0000-0002-5403-5597 |
OpenAccessLink | https://doi.org/10.15252/embj.2019102246 |
PMID | 32009249 |
PQID | 2369162357 |
PQPubID | 35985 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7049810 hal_primary_oai_HAL_pasteur_02902798v1 proquest_miscellaneous_2350352575 proquest_journals_2369162357 pubmed_primary_32009249 crossref_citationtrail_10_15252_embj_2019102246 crossref_primary_10_15252_embj_2019102246 wiley_primary_10_15252_embj_2019102246_EMBJ2019102246 springer_journals_10_15252_embj_2019102246 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 02 March 2020 |
PublicationDateYYYYMMDD | 2020-03-02 |
PublicationDate_xml | – month: 03 year: 2020 text: 02 March 2020 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: New York – name: Hoboken |
PublicationTitle | The EMBO journal |
PublicationTitleAbbrev | EMBO J |
PublicationTitleAlternate | EMBO J |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Springer Nature B.V EMBO Press John Wiley and Sons Inc |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: EMBO Press – name: John Wiley and Sons Inc |
References | Cherepanov, Wackernagel (CR14) 1995; 158 Egan (CR22) 2018; 107 Banzhaf, van den Berg van Saparoea, Terrak, Fraipont, Egan, Philippe, Zapun, Breukink, Nguyen‐Disteche, den Blaauwen (CR3) 2012; 85 Egan, Jean, Koumoutsi, Bougault, Biboy, Sassine, Solovyova, Breukink, Typas, Vollmer (CR21) 2014; 111 Jerabek‐Willemsen, Wienken, Braun, Baaske, Duhr (CR33) 2011; 9 Schwechheimer, Rodriguez, Kuehn (CR52) 2015; 4 Su, Som, Wu, Su, Kuo, Ke, Ho, Tzeng, Teng, Mengin‐Lecreulx (CR56) 2017; 8 Paradis‐Bleau, Markovski, Uehara, Lupoli, Walker, Kahne, Bernhardt (CR44) 2010; 143 Yousif, Broome‐Smith, Spratt (CR72) 1985; 131 Beveridge (CR6) 1995; 61 Höltje, de Pedro, Höltje, Löffelhardt (CR29) 1993 CR37 Gray, Egan, Van't Veer, Verheul, Colavin, Koumoutsi, Biboy, Altelaar, Damen, Huang (CR26) 2015; 4 Pazos, Peters, Vollmer (CR46) 2017; 36 Typas, Banzhaf, van den Berg van Saparoea, Verheul, Biboy, Nichols, Zietek, Beilharz, Kannenberg, von Rechenberg (CR60) 2010; 143 Moré, Martorana, Biboy, Otten, Winkle, Serrano, Monton Silva, Atkinson, Yau, Breukink (CR41) 2019; 10 Dorr, Moll, Chao, Cava, Lam, Davis, Waldor (CR20) 2014; 82 Vischer, Verheul, Postma, van den Berg van Saparoea, Galli, Natale, Gerdes, Luirink, Vollmer, Vicente (CR66) 2015; 6 Buddelmeijer, Aarsman, den Blaauwen (CR500) 2013; 3 Kishida, Unzai, Roper, Lloyd, Park, Tame (CR34) 2006; 45 Schwanhausser, Busse, Li, Dittmar, Schuchhardt, Wolf, Chen, Selbach (CR51) 2011; 473 den Blaauwen, Aarsman, Vischer, Nanninga (CR7) 2003; 47 Typas, Sourjik (CR62) 2015; 13 Becher, Andrés‐Pons, Romanov, Stein, Schramm, Baudin, Helm, Kurzawa, Mateus, Mackmull (CR4) 2018; 173 Mateus, Bobonis, Kurzawa, Stein, Helm, Hevler, Typas, Savitski (CR39) 2018; 14 Peters, Morlot, Yang, Uehara, Vernet, Bernhardt (CR47) 2013; 89 Savitski, Reinhard, Franken, Werner, Savitski, Eberhard, Martinez Molina, Jafari, Dovega, Klaeger (CR49) 2014; 346 Kritikos, Banzhaf, Herrera‐Dominguez, Koumoutsi, Wartel, Zietek, Typas (CR35) 2017; 2 Silhavy, Kahne, Walker (CR53) 2010; 2 Teng, Tseng, Maruvada, Pearce, Xie, Paul‐Satyaseela, Kim (CR57) 2010; 78 Datsenko, Wanner (CR19) 2000; 97 Noinaj, Gumbart, Buchanan (CR42) 2017; 15 Born, Breukink, Vollmer (CR10) 2006; 281 Paradis‐Bleau, Kritikos, Orlova, Typas, Bernhardt (CR45) 2014; 10 Zeytuni, Zarivach (CR74) 2012; 20 Huber, von Heydebreck, Sultmann, Poustka, Vingron (CR30) 2002; 18 den Blaauwen, Hamoen, Levin (CR8) 2017; 36 Adams, Luria (CR1) 1958; 44 Egan, Maya‐Martinez, Ayala, Bougault, Banzhaf, Breukink, Vollmer, Simorre (CR23) 2018; 110 Meeske, Riley, Robins, Uehara, Mekalanos, Kahne, Walker, Kruse, Bernhardt, Rudner (CR40) 2016; 537 Lai, Cho, Bernhardt (CR36) 2017; 13 van Heijenoort (CR28) 2011; 75 Singh, Parveen, SaiSree, Reddy (CR55) 2015; 112 Ursell, Lee, Shiomi, Shi, Tropini, Monds, Colavin, Billings, Bhaya‐Grossman, Broxton (CR65) 2017; 15 Yunck, Cho, Bernhardt (CR73) 2016; 99 Ohara, Wu, Sankaran, Rick (CR43) 1999; 181 Cortajarena, Regan (CR16) 2006; 15 Li, Burkhardt, Gross, Weissman (CR38) 2014; 157 Glauner (CR25) 1988; 172 Singh, SaiSree, Amrutha, Reddy (CR54) 2012; 86 Blatch, Lassle (CR9) 1999; 21 Ritchie, Phipson, Wu, Hu, Law, Shi, Smyth (CR48) 2015; 43 Vollmer, Blanot, de Pedro (CR68) 2008; 32 Baba, Ara, Hasegawa, Takai, Okumura, Baba, Datsenko, Tomita, Wanner, Mori (CR2) 2006; 2 Franken, Mathieson, Childs, Sweetman, Werner, Togel, Doce, Gade, Bantscheff, Drewes (CR24) 2015; 10 Tsang, Yakhnina, Bernhardt (CR59) 2017; 13 Cox, Mann (CR17) 2008; 26 Breukink, van Heusden, Vollmerhaus, Swiezewska, Brunner, Walker, Heck, de Kruijff (CR12) 2003; 278 Das, Cohen, Barford (CR18) 1998; 17 Brookes, Demeler, Rosano, Rocco (CR13) 2010; 39 Bradford (CR11) 1976; 72 Trip, Scheffers (CR58) 2015; 5 Vollmer, Joris, Charlier, Foster (CR69) 2008; 32 Hӧltje (CR31) 1998; 62 Schuck (CR50) 2000; 78 Uehara, Parzych, Dinh, Bernhardt (CR64) 2010; 29 Typas, Banzhaf, Gross, Vollmer (CR61) 2012; 10 Wilson, Kajander, Regan (CR70) 2005; 272 Jean, Bougault, Lodge, Derouaux, Callens, Egan, Ayala, Lewis, Vollmer, Simorre (CR32) 2014; 22 Yang, Tan, Joachimiak, Bernhardt (CR71) 2012; 85 Chodisetti, Reddy (CR15) 2019; 116 Vollmer, von Rechenberg, Höltje (CR67) 1999; 274 Uehara, Dinh, Bernhardt (CR63) 2009; 191 Bertsche, Breukink, Kast, Vollmer (CR5) 2005; 280 Greene, Fumeaux, Bernhardt (CR27) 2018; 115 2017; 8 2013; 3 2017; 2 2002; 18 2019; 10 2010; 143 2008b; 32 2003; 278 2012; 10 2014; 22 2011; 473 1995; 61 1998; 17 2018; 173 2017; 36 2010; 29 1976; 72 1958; 44 2000; 97 1999; 181 2015; 43 2003; 47 2019; 116 2008; 26 2006; 281 2010; 2 1985; 131 2012; 20 2014; 10 2010; 78 2015; 13 2015; 6 2015; 5 2005; 272 2015; 4 1988; 172 2010; 39 2018; 107 2013; 89 2006; 15 2015; 10 2011; 75 1999; 21 1995; 158 1993 1992 2006; 2 2014; 111 1998; 62 2014; 82 2011; 9 2014; 157 2016; 99 2005; 280 2018; 110 2006; 45 2017; 15 2009; 191 2016; 537 2000; 78 2015; 112 2018; 115 2017; 13 1999; 274 2014; 346 2012; 86 2008a; 32 2012; 85 2018; 14 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 Laue T (e_1_2_9_39_1) 1992 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 Beveridge TJ (e_1_2_9_7_1) 1995; 61 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 61 start-page: 125 year: 1995 end-page: 130 ident: CR6 article-title: The periplasmic space and the periplasm in Gram‐positive and Gram‐negative bacteria publication-title: ASM News – volume: 15 start-page: 17 year: 2017 ident: CR65 article-title: Rapid, precise quantification of bacterial cellular dimensions across a genomic‐scale knockout library publication-title: BMC Biol – volume: 107 start-page: 676 year: 2018 end-page: 687 ident: CR22 article-title: Bacterial outer membrane constriction publication-title: Mol Microbiol – volume: 20 start-page: 397 year: 2012 end-page: 405 ident: CR74 article-title: Structural and functional discussion of the tetra‐trico‐peptide repeat, a protein interaction module publication-title: Structure – volume: 4 start-page: e07118 year: 2015 ident: CR26 article-title: Coordination of peptidoglycan synthesis and outer membrane constriction during cell division publication-title: eLife – volume: 473 start-page: 337 year: 2011 end-page: 342 ident: CR51 article-title: Global quantification of mammalian gene expression control publication-title: Nature – volume: 32 start-page: 149 year: 2008 end-page: 167 ident: CR68 article-title: Peptidoglycan structure and architecture publication-title: FEMS Microbiol Rev – volume: 10 start-page: e1004056 year: 2014 ident: CR45 article-title: A genome‐wide screen for bacterial envelope biogenesis mutants identifies a novel factor involved in cell wall precursor metabolism publication-title: PLoS Genet – start-page: 419 year: 1993 end-page: 426 ident: CR29 article-title: “Three for one” — a simple growth mechanism that guarantees a precise copy of the thin, rod‐shaped murein sacculus of publication-title: Bacterial Growth and Lysis: Metabolism and Structure of the Bacterial Sacculus – volume: 143 start-page: 1097 year: 2010 end-page: 1109 ident: CR60 article-title: Regulation of peptidoglycan synthesis by outer‐membrane proteins publication-title: Cell – volume: 537 start-page: 634 year: 2016 end-page: 638 ident: CR40 article-title: SEDS proteins are a widespread family of bacterial cell wall polymerases publication-title: Nature – volume: 116 start-page: 7825 year: 2019 end-page: 7830 ident: CR15 article-title: Peptidoglycan hydrolase of an unusual cross‐link cleavage specificity contributes to bacterial cell wall synthesis publication-title: Proc Natl Acad Sci USA – volume: 39 start-page: 423 year: 2010 end-page: 435 ident: CR13 article-title: The implementation of SOMO (SOlution MOdeller) in the UltraScan analytical ultracentrifugation data analysis suite: enhanced capabilities allow the reliable hydrodynamic modeling of virtually any kind of biomacromolecule publication-title: Eur Biophys J – volume: 13 start-page: e1006934 year: 2017 ident: CR36 article-title: The mecillinam resistome reveals a role for peptidoglycan endopeptidases in stimulating cell wall synthesis in publication-title: PLoS Genet – volume: 43 start-page: e47 year: 2015 ident: CR48 article-title: limma powers differential expression analyses for RNA‐sequencing and microarray studies publication-title: Nucleic Acids Res – volume: 281 start-page: 26985 year: 2006 end-page: 26993 ident: CR10 article-title: synthesis of cross‐linked murein and its attachment to sacculi by PBP1A from publication-title: J Biol Chem – volume: 97 start-page: 6640 year: 2000 end-page: 6645 ident: CR19 article-title: One‐step inactivation of chromosomal genes in K‐12 using PCR products publication-title: Proc Natl Acad Sci USA – volume: 111 start-page: 8197 year: 2014 end-page: 8202 ident: CR21 article-title: Outer‐membrane lipoprotein LpoB spans the periplasm to stimulate the peptidoglycan synthase PBP1B publication-title: Proc Natl Acad Sci USA – volume: 115 start-page: 3150 year: 2018 end-page: 3155 ident: CR27 article-title: Conserved mechanism of cell‐wall synthase regulation revealed by the identification of a new PBP activator in publication-title: Proc Natl Acad Sci USA – volume: 191 start-page: 5094 year: 2009 end-page: 5107 ident: CR63 article-title: LytM‐domain factors are required for daughter cell separation and rapid ampicillin‐induced lysis in publication-title: J Bacteriol – volume: 45 start-page: 783 year: 2006 end-page: 792 ident: CR34 article-title: Crystal structure of penicillin binding protein 4 ( ) from , both in the native form and covalently linked to various antibiotics publication-title: Biochemistry – volume: 15 start-page: 1193 year: 2006 end-page: 1198 ident: CR16 article-title: Ligand binding by TPR domains publication-title: Protein Sci – volume: 78 start-page: 3090 year: 2010 end-page: 3096 ident: CR57 article-title: NlpI contributes to K1 strain RS218 interaction with human brain microvascular endothelial cells publication-title: Infect Immun – volume: 5 start-page: 18190 year: 2015 ident: CR58 article-title: A 1 MDa protein complex containing critical components of the divisome publication-title: Sci Rep – volume: 13 start-page: 559 year: 2015 end-page: 572 ident: CR62 article-title: Bacterial protein networks: properties and functions publication-title: Nat Rev Microbiol – volume: 3 start-page: e852 year: 2013 ident: CR500 article-title: Immunolabeling of proteins in K12 strains publication-title: Bio‐Protocol – volume: 8 start-page: 1516 year: 2017 ident: CR56 article-title: Structural basis of adaptor‐mediated protein degradation by the tail‐specific PDZ‐protease Prc publication-title: Nat Commun – volume: 82 start-page: 2115 year: 2014 end-page: 2124 ident: CR20 article-title: Differential requirement for PBP1a and PBP1b in and fitness of publication-title: Infect Immun – volume: 17 start-page: 1192 year: 1998 end-page: 1199 ident: CR18 article-title: The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR‐mediated protein‐protein interactions publication-title: EMBO J – volume: 14 start-page: e8242 year: 2018 ident: CR39 article-title: Thermal proteome profiling in bacteria: probing protein state publication-title: Mol Syst Biol – volume: 21 start-page: 932 year: 1999 end-page: 939 ident: CR9 article-title: The tetratricopeptide repeat: a structural motif mediating protein‐protein interactions publication-title: BioEssays – volume: 158 start-page: 9 year: 1995 end-page: 14 ident: CR14 article-title: Gene disruption in : TcR and KmR cassettes with the option of Flp‐catalyzed excision of the antibiotic‐resistance determinant publication-title: Gene – volume: 15 start-page: 197 year: 2017 end-page: 204 ident: CR42 article-title: The beta‐barrel assembly machinery in motion publication-title: Nat Rev Microbiol – volume: 36 start-page: 85 year: 2017 end-page: 94 ident: CR8 article-title: The divisome at 25: the road ahead publication-title: Curr Opin Microbiol – volume: 72 start-page: 248 year: 1976 end-page: 254 ident: CR11 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding publication-title: Anal Biochem – volume: 278 start-page: 19898 year: 2003 end-page: 19903 ident: CR12 article-title: Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes publication-title: J Biol Chem – volume: 2 start-page: 2006.0008 year: 2006 ident: CR2 article-title: Construction of K‐12 in‐frame, single‐gene knockout mutants: the Keio collection publication-title: Mol Syst Biol – volume: 47 start-page: 539 year: 2003 end-page: 547 ident: CR7 article-title: Penicillin‐binding protein PBP2 of localizes preferentially in the lateral wall and at mid‐cell in comparison with the old cell pole publication-title: Mol Microbiol – volume: 112 start-page: 10956 year: 2015 end-page: 10961 ident: CR55 article-title: Regulated proteolysis of a cross‐link‐specific peptidoglycan hydrolase contributes to bacterial morphogenesis publication-title: Proc Natl Acad Sci USA – volume: 26 start-page: 1367 year: 2008 end-page: 1372 ident: CR17 article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification publication-title: Nat Biotechnol – volume: 22 start-page: 1047 year: 2014 end-page: 1054 ident: CR32 article-title: Elongated structure of the outer‐membrane activator of peptidoglycan synthesis LpoA: implications for PBP1A stimulation publication-title: Structure – volume: 172 start-page: 451 year: 1988 end-page: 464 ident: CR25 article-title: Separation and quantification of muropeptides with high‐performance liquid chromatography publication-title: Anal Biochem – volume: 75 start-page: 636 year: 2011 end-page: 663 ident: CR28 article-title: Peptidoglycan hydrolases of publication-title: Microbiol Mol Biol Rev – volume: 85 start-page: 768 year: 2012 end-page: 781 ident: CR71 article-title: A conformational switch controls cell wall‐remodelling enzymes required for bacterial cell division publication-title: Mol Microbiol – volume: 44 start-page: 590 year: 1958 end-page: 594 ident: CR1 article-title: Transduction by bacteriophage P1: abnormal phage function of the transducing particles publication-title: Proc Natl Acad Sci USA – ident: CR37 – volume: 10 start-page: e02729‐18 year: 2019 ident: CR41 article-title: Peptidoglycan remodeling enables to survive severe outer membrane assembly defect publication-title: mBio – volume: 89 start-page: 690 year: 2013 end-page: 701 ident: CR47 article-title: Structure‐function analysis of the LytM domain of EnvC, an activator of cell wall remodelling at the division site publication-title: Mol Microbiol – volume: 4 start-page: 375 year: 2015 end-page: 389 ident: CR52 article-title: NlpI‐mediated modulation of outer membrane vesicle production through peptidoglycan dynamics in publication-title: Microbiologyopen – volume: 62 start-page: 181 year: 1998 end-page: 203 ident: CR31 article-title: Growth of the stress‐bearing and shape‐maintaining murein sacculus of publication-title: Microbiol Mol Biol Rev – volume: 280 start-page: 38096 year: 2005 end-page: 38101 ident: CR5 article-title: murein peptidoglycan synthesis by dimers of the bifunctional transglycosylase‐transpeptidase PBP1B from publication-title: J Biol Chem – volume: 157 start-page: 624 year: 2014 end-page: 635 ident: CR38 article-title: Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources publication-title: Cell – volume: 274 start-page: 6726 year: 1999 end-page: 6734 ident: CR67 article-title: Demonstration of molecular interactions between the murein polymerase PBP1B, the lytic transglycosylase MltA, and the scaffolding protein MipA of publication-title: J Biol Chem – volume: 2 start-page: 17014 year: 2017 ident: CR35 article-title: A tool named Iris for versatile high‐throughput phenotyping in microorganisms publication-title: Nat Microbiol – volume: 2 start-page: a000414 year: 2010 ident: CR53 article-title: The bacterial cell envelope publication-title: Cold Spring Harb Perspect Biol – volume: 9 start-page: 342 year: 2011 end-page: 353 ident: CR33 article-title: Molecular interaction studies using microscale thermophoresis publication-title: Assay Drug Dev Technol – volume: 78 start-page: 1606 year: 2000 end-page: 1619 ident: CR50 article-title: Size‐distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling publication-title: Biophys J – volume: 6 start-page: 586 year: 2015 ident: CR66 article-title: Cell age dependent concentration of divisome proteins analyzed with ImageJ and ObjectJ publication-title: Front Microbiol – volume: 181 start-page: 4318 year: 1999 end-page: 4325 ident: CR43 article-title: Identification and characterization of a new lipoprotein, NlpI, in K‐12 publication-title: J Bacteriol – volume: 131 start-page: 2839 year: 1985 end-page: 2845 ident: CR72 article-title: Lysis of by beta‐lactam antibiotics: deletion analysis of the role of penicillin‐binding proteins 1A and 1B publication-title: J Gen Microbiol – volume: 143 start-page: 1110 year: 2010 end-page: 1120 ident: CR44 article-title: Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases publication-title: Cell – volume: 36 start-page: 55 year: 2017 end-page: 61 ident: CR46 article-title: Robust peptidoglycan growth by dynamic and variable multi‐protein complexes publication-title: Curr Opin Microbiol – volume: 18 start-page: S96 issue: Suppl 1 year: 2002 end-page: S104 ident: CR30 article-title: Variance stabilization applied to microarray data calibration and to the quantification of differential expression publication-title: Bioinformatics – volume: 10 start-page: 1567 year: 2015 end-page: 1593 ident: CR24 article-title: Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry publication-title: Nat Protoc – volume: 10 start-page: 123 year: 2012 end-page: 136 ident: CR61 article-title: From the regulation of peptidoglycan synthesis to bacterial growth and morphology publication-title: Nat Rev Microbiol – volume: 85 start-page: 179 year: 2012 end-page: 194 ident: CR3 article-title: Cooperativity of peptidoglycan synthases active in bacterial cell elongation publication-title: Mol Microbiol – volume: 86 start-page: 1036 year: 2012 end-page: 1051 ident: CR54 article-title: Three redundant murein endopeptidases catalyse an essential cleavage step in peptidoglycan synthesis of K12 publication-title: Mol Microbiol – volume: 272 start-page: 166 year: 2005 end-page: 179 ident: CR70 article-title: The crystal structure of NlpI. A prokaryotic tetratricopeptide repeat protein with a globular fold publication-title: FEBS J – volume: 346 start-page: 1255784 year: 2014 ident: CR49 article-title: Tracking cancer drugs in living cells by thermal profiling of the proteome publication-title: Science – volume: 110 start-page: 335 year: 2018 end-page: 356 ident: CR23 article-title: Induced conformational changes activate the peptidoglycan synthase PBP1B publication-title: Mol Microbiol – volume: 29 start-page: 1412 year: 2010 end-page: 1422 ident: CR64 article-title: Daughter cell separation is controlled by cytokinetic ring‐activated cell wall hydrolysis publication-title: EMBO J – volume: 13 start-page: e1006888 year: 2017 ident: CR59 article-title: NlpD links cell wall remodeling and outer membrane invagination during cytokinesis in publication-title: PLoS Genet – volume: 173 start-page: 1495 year: 2018 end-page: 1507 ident: CR4 article-title: Pervasive protein thermal stability variation during the cell cycle publication-title: Cell – volume: 32 start-page: 259 year: 2008 end-page: 286 ident: CR69 article-title: Bacterial peptidoglycan (murein) hydrolases publication-title: FEMS Microbiol Rev – volume: 99 start-page: 700 year: 2016 end-page: 718 ident: CR73 article-title: Identification of MltG as a potential terminase for peptidoglycan polymerization in bacteria publication-title: Mol Microbiol – volume: 346 start-page: 1255784 year: 2014 article-title: Tracking cancer drugs in living cells by thermal profiling of the proteome publication-title: Science – volume: 5 start-page: 18190 year: 2015 article-title: A 1 MDa protein complex containing critical components of the divisome publication-title: Sci Rep – volume: 10 start-page: 123 year: 2012 end-page: 136 article-title: From the regulation of peptidoglycan synthesis to bacterial growth and morphology publication-title: Nat Rev Microbiol – volume: 13 start-page: e1006934 year: 2017 article-title: The mecillinam resistome reveals a role for peptidoglycan endopeptidases in stimulating cell wall synthesis in publication-title: PLoS Genet – volume: 143 start-page: 1097 year: 2010 end-page: 1109 article-title: Regulation of peptidoglycan synthesis by outer‐membrane proteins publication-title: Cell – volume: 75 start-page: 636 year: 2011 end-page: 663 article-title: Peptidoglycan hydrolases of publication-title: Microbiol Mol Biol Rev – volume: 272 start-page: 166 year: 2005 end-page: 179 article-title: The crystal structure of NlpI. A prokaryotic tetratricopeptide repeat protein with a globular fold publication-title: FEBS J – volume: 15 start-page: 1193 year: 2006 end-page: 1198 article-title: Ligand binding by TPR domains publication-title: Protein Sci – volume: 111 start-page: 8197 year: 2014 end-page: 8202 article-title: Outer‐membrane lipoprotein LpoB spans the periplasm to stimulate the peptidoglycan synthase PBP1B publication-title: Proc Natl Acad Sci USA – volume: 13 start-page: e1006888 year: 2017 article-title: NlpD links cell wall remodeling and outer membrane invagination during cytokinesis in publication-title: PLoS Genet – volume: 32 start-page: 259 year: 2008b end-page: 286 article-title: Bacterial peptidoglycan (murein) hydrolases publication-title: FEMS Microbiol Rev – volume: 78 start-page: 1606 year: 2000 end-page: 1619 article-title: Size‐distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling publication-title: Biophys J – volume: 280 start-page: 38096 year: 2005 end-page: 38101 article-title: murein peptidoglycan synthesis by dimers of the bifunctional transglycosylase‐transpeptidase PBP1B from publication-title: J Biol Chem – volume: 13 start-page: 559 year: 2015 end-page: 572 article-title: Bacterial protein networks: properties and functions publication-title: Nat Rev Microbiol – volume: 2 start-page: a000414 year: 2010 article-title: The bacterial cell envelope publication-title: Cold Spring Harb Perspect Biol – volume: 26 start-page: 1367 year: 2008 end-page: 1372 article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification publication-title: Nat Biotechnol – volume: 32 start-page: 149 year: 2008a end-page: 167 article-title: Peptidoglycan structure and architecture publication-title: FEMS Microbiol Rev – volume: 20 start-page: 397 year: 2012 end-page: 405 article-title: Structural and functional discussion of the tetra‐trico‐peptide repeat, a protein interaction module publication-title: Structure – volume: 18 start-page: S96 issue: Suppl 1 year: 2002 end-page: S104 article-title: Variance stabilization applied to microarray data calibration and to the quantification of differential expression publication-title: Bioinformatics – volume: 3 start-page: e852 year: 2013 article-title: Immunolabeling of proteins in K12 strains publication-title: Bio‐Protocol – volume: 173 start-page: 1495 year: 2018 end-page: 1507 article-title: Pervasive protein thermal stability variation during the cell cycle publication-title: Cell – volume: 2 start-page: 2006.0008 year: 2006 article-title: Construction of K‐12 in‐frame, single‐gene knockout mutants: the Keio collection publication-title: Mol Syst Biol – volume: 17 start-page: 1192 year: 1998 end-page: 1199 article-title: The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR‐mediated protein‐protein interactions publication-title: EMBO J – volume: 10 start-page: e02729‐18 year: 2019 article-title: Peptidoglycan remodeling enables to survive severe outer membrane assembly defect publication-title: mBio – volume: 21 start-page: 932 year: 1999 end-page: 939 article-title: The tetratricopeptide repeat: a structural motif mediating protein‐protein interactions publication-title: BioEssays – volume: 281 start-page: 26985 year: 2006 end-page: 26993 article-title: synthesis of cross‐linked murein and its attachment to sacculi by PBP1A from publication-title: J Biol Chem – volume: 278 start-page: 19898 year: 2003 end-page: 19903 article-title: Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes publication-title: J Biol Chem – volume: 61 start-page: 125 year: 1995 end-page: 130 article-title: The periplasmic space and the periplasm in Gram‐positive and Gram‐negative bacteria publication-title: ASM News – volume: 85 start-page: 179 year: 2012 end-page: 194 article-title: Cooperativity of peptidoglycan synthases active in bacterial cell elongation publication-title: Mol Microbiol – volume: 29 start-page: 1412 year: 2010 end-page: 1422 article-title: Daughter cell separation is controlled by cytokinetic ring‐activated cell wall hydrolysis publication-title: EMBO J – volume: 9 start-page: 342 year: 2011 end-page: 353 article-title: Molecular interaction studies using microscale thermophoresis publication-title: Assay Drug Dev Technol – volume: 72 start-page: 248 year: 1976 end-page: 254 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding publication-title: Anal Biochem – volume: 82 start-page: 2115 year: 2014 end-page: 2124 article-title: Differential requirement for PBP1a and PBP1b in and fitness of publication-title: Infect Immun – volume: 15 start-page: 17 year: 2017 article-title: Rapid, precise quantification of bacterial cellular dimensions across a genomic‐scale knockout library publication-title: BMC Biol – volume: 97 start-page: 6640 year: 2000 end-page: 6645 article-title: One‐step inactivation of chromosomal genes in K‐12 using PCR products publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 1567 year: 2015 end-page: 1593 article-title: Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry publication-title: Nat Protoc – volume: 158 start-page: 9 year: 1995 end-page: 14 article-title: Gene disruption in : TcR and KmR cassettes with the option of Flp‐catalyzed excision of the antibiotic‐resistance determinant publication-title: Gene – volume: 131 start-page: 2839 year: 1985 end-page: 2845 article-title: Lysis of by beta‐lactam antibiotics: deletion analysis of the role of penicillin‐binding proteins 1A and 1B publication-title: J Gen Microbiol – volume: 181 start-page: 4318 year: 1999 end-page: 4325 article-title: Identification and characterization of a new lipoprotein, NlpI, in K‐12 publication-title: J Bacteriol – volume: 89 start-page: 690 year: 2013 end-page: 701 article-title: Structure‐function analysis of the LytM domain of EnvC, an activator of cell wall remodelling at the division site publication-title: Mol Microbiol – volume: 473 start-page: 337 year: 2011 end-page: 342 article-title: Global quantification of mammalian gene expression control publication-title: Nature – volume: 44 start-page: 590 year: 1958 end-page: 594 article-title: Transduction by bacteriophage P1: abnormal phage function of the transducing particles publication-title: Proc Natl Acad Sci USA – volume: 172 start-page: 451 year: 1988 end-page: 464 article-title: Separation and quantification of muropeptides with high‐performance liquid chromatography publication-title: Anal Biochem – volume: 110 start-page: 335 year: 2018 end-page: 356 article-title: Induced conformational changes activate the peptidoglycan synthase PBP1B publication-title: Mol Microbiol – volume: 36 start-page: 55 year: 2017 end-page: 61 article-title: Robust peptidoglycan growth by dynamic and variable multi‐protein complexes publication-title: Curr Opin Microbiol – volume: 116 start-page: 7825 year: 2019 end-page: 7830 article-title: Peptidoglycan hydrolase of an unusual cross‐link cleavage specificity contributes to bacterial cell wall synthesis publication-title: Proc Natl Acad Sci USA – volume: 112 start-page: 10956 year: 2015 end-page: 10961 article-title: Regulated proteolysis of a cross‐link‐specific peptidoglycan hydrolase contributes to bacterial morphogenesis publication-title: Proc Natl Acad Sci USA – volume: 78 start-page: 3090 year: 2010 end-page: 3096 article-title: NlpI contributes to K1 strain RS218 interaction with human brain microvascular endothelial cells publication-title: Infect Immun – volume: 107 start-page: 676 year: 2018 end-page: 687 article-title: Bacterial outer membrane constriction publication-title: Mol Microbiol – volume: 15 start-page: 197 year: 2017 end-page: 204 article-title: The beta‐barrel assembly machinery in motion publication-title: Nat Rev Microbiol – volume: 6 start-page: 586 year: 2015 article-title: Cell age dependent concentration of divisome proteins analyzed with ImageJ and ObjectJ publication-title: Front Microbiol – volume: 86 start-page: 1036 year: 2012 end-page: 1051 article-title: Three redundant murein endopeptidases catalyse an essential cleavage step in peptidoglycan synthesis of K12 publication-title: Mol Microbiol – volume: 8 start-page: 1516 year: 2017 article-title: Structural basis of adaptor‐mediated protein degradation by the tail‐specific PDZ‐protease Prc publication-title: Nat Commun – volume: 43 start-page: e47 year: 2015 article-title: limma powers differential expression analyses for RNA‐sequencing and microarray studies publication-title: Nucleic Acids Res – volume: 4 start-page: 375 year: 2015 end-page: 389 article-title: NlpI‐mediated modulation of outer membrane vesicle production through peptidoglycan dynamics in publication-title: Microbiologyopen – volume: 115 start-page: 3150 year: 2018 end-page: 3155 article-title: Conserved mechanism of cell‐wall synthase regulation revealed by the identification of a new PBP activator in publication-title: Proc Natl Acad Sci USA – volume: 99 start-page: 700 year: 2016 end-page: 718 article-title: Identification of MltG as a potential terminase for peptidoglycan polymerization in bacteria publication-title: Mol Microbiol – volume: 10 start-page: e1004056 year: 2014 article-title: A genome‐wide screen for bacterial envelope biogenesis mutants identifies a novel factor involved in cell wall precursor metabolism publication-title: PLoS Genet – volume: 39 start-page: 423 year: 2010 end-page: 435 article-title: The implementation of SOMO (SOlution MOdeller) in the UltraScan analytical ultracentrifugation data analysis suite: enhanced capabilities allow the reliable hydrodynamic modeling of virtually any kind of biomacromolecule publication-title: Eur Biophys J – volume: 157 start-page: 624 year: 2014 end-page: 635 article-title: Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources publication-title: Cell – volume: 36 start-page: 85 year: 2017 end-page: 94 article-title: The divisome at 25: the road ahead publication-title: Curr Opin Microbiol – volume: 47 start-page: 539 year: 2003 end-page: 547 article-title: Penicillin‐binding protein PBP2 of localizes preferentially in the lateral wall and at mid‐cell in comparison with the old cell pole publication-title: Mol Microbiol – volume: 14 start-page: e8242 year: 2018 article-title: Thermal proteome profiling in bacteria: probing protein state publication-title: Mol Syst Biol – volume: 45 start-page: 783 year: 2006 end-page: 792 article-title: Crystal structure of penicillin binding protein 4 ( ) from , both in the native form and covalently linked to various antibiotics publication-title: Biochemistry – volume: 274 start-page: 6726 year: 1999 end-page: 6734 article-title: Demonstration of molecular interactions between the murein polymerase PBP1B, the lytic transglycosylase MltA, and the scaffolding protein MipA of publication-title: J Biol Chem – volume: 22 start-page: 1047 year: 2014 end-page: 1054 article-title: Elongated structure of the outer‐membrane activator of peptidoglycan synthesis LpoA: implications for PBP1A stimulation publication-title: Structure – volume: 2 start-page: 17014 year: 2017 article-title: A tool named Iris for versatile high‐throughput phenotyping in microorganisms publication-title: Nat Microbiol – start-page: 419 year: 1993 end-page: 426 – volume: 85 start-page: 768 year: 2012 end-page: 781 article-title: A conformational switch controls cell wall‐remodelling enzymes required for bacterial cell division publication-title: Mol Microbiol – volume: 4 start-page: e07118 year: 2015 article-title: Coordination of peptidoglycan synthesis and outer membrane constriction during cell division publication-title: eLife – volume: 537 start-page: 634 year: 2016 end-page: 638 article-title: SEDS proteins are a widespread family of bacterial cell wall polymerases publication-title: Nature – start-page: 90 year: 1992 end-page: 125 article-title: Computer‐aided interpretation of analytical sedimentation data for proteins publication-title: Roy Soc Chem – volume: 62 start-page: 181 year: 1998 end-page: 203 article-title: Growth of the stress‐bearing and shape‐maintaining murein sacculus of publication-title: Microbiol Mol Biol Rev – volume: 143 start-page: 1110 year: 2010 end-page: 1120 article-title: Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases publication-title: Cell – volume: 191 start-page: 5094 year: 2009 end-page: 5107 article-title: LytM‐domain factors are required for daughter cell separation and rapid ampicillin‐induced lysis in publication-title: J Bacteriol – ident: e_1_2_9_31_1 doi: 10.1007/978-1-4757-9359-8_49 – ident: e_1_2_9_43_1 doi: 10.1128/mBio.02729-18 – ident: e_1_2_9_46_1 doi: 10.1016/j.cell.2010.11.037 – ident: e_1_2_9_61_1 doi: 10.1371/journal.pgen.1006888 – ident: e_1_2_9_53_1 doi: 10.1038/nature10098 – ident: e_1_2_9_10_1 doi: 10.1002/(SICI)1521-1878(199911)21:11<932::AID-BIES5>3.0.CO;2-N – ident: e_1_2_9_58_1 doi: 10.1038/s41467-017-01697-9 – ident: e_1_2_9_14_1 doi: 10.1007/s00249-009-0418-0 – ident: e_1_2_9_73_1 doi: 10.1111/j.1365-2958.2012.08138.x – ident: e_1_2_9_26_1 doi: 10.1038/nprot.2015.101 – ident: e_1_2_9_36_1 doi: 10.1021/bi051533t – ident: e_1_2_9_63_1 doi: 10.1038/nrmicro2677 – ident: e_1_2_9_65_1 doi: 10.1128/JB.00505-09 – ident: e_1_2_9_68_1 doi: 10.3389/fmicb.2015.00586 – ident: e_1_2_9_19_1 doi: 10.1038/nbt.1511 – ident: e_1_2_9_62_1 doi: 10.1016/j.cell.2010.11.038 – ident: e_1_2_9_3_1 doi: 10.1038/msb4100050 – ident: e_1_2_9_76_1 doi: 10.1016/j.str.2012.01.006 – volume: 61 start-page: 125 year: 1995 ident: e_1_2_9_7_1 article-title: The periplasmic space and the periplasm in Gram‐positive and Gram‐negative bacteria publication-title: ASM News – start-page: 90 year: 1992 ident: e_1_2_9_39_1 article-title: Computer‐aided interpretation of analytical sedimentation data for proteins publication-title: Roy Soc Chem – ident: e_1_2_9_6_1 doi: 10.1074/jbc.M508646200 – ident: e_1_2_9_28_1 doi: 10.7554/eLife.07118 – ident: e_1_2_9_12_1 doi: 10.1016/0003-2697(76)90527-3 – ident: e_1_2_9_75_1 doi: 10.1111/mmi.13258 – ident: e_1_2_9_16_1 doi: 10.1016/0378-1119(95)00193-A – ident: e_1_2_9_69_1 doi: 10.1074/jbc.274.10.6726 – ident: e_1_2_9_71_1 doi: 10.1111/j.1574-6976.2007.00099.x – ident: e_1_2_9_18_1 doi: 10.1110/ps.062092506 – ident: e_1_2_9_24_1 doi: 10.1111/mmi.13908 – ident: e_1_2_9_15_1 doi: 10.21769/BioProtoc.852 – ident: e_1_2_9_5_1 doi: 10.1016/j.cell.2018.03.053 – ident: e_1_2_9_34_1 doi: 10.1016/j.str.2014.04.017 – ident: e_1_2_9_42_1 doi: 10.1038/nature19331 – ident: e_1_2_9_32_1 doi: 10.1093/bioinformatics/18.suppl_1.S96 – ident: e_1_2_9_9_1 doi: 10.1016/j.mib.2017.01.007 – ident: e_1_2_9_21_1 doi: 10.1073/pnas.120163297 – ident: e_1_2_9_41_1 doi: 10.15252/msb.20188242 – ident: e_1_2_9_64_1 doi: 10.1038/nrmicro3508 – ident: e_1_2_9_20_1 doi: 10.1093/emboj/17.5.1192 – ident: e_1_2_9_4_1 doi: 10.1111/j.1365-2958.2012.08103.x – ident: e_1_2_9_33_1 doi: 10.1128/MMBR.62.1.181-203.1998 – ident: e_1_2_9_72_1 doi: 10.1111/j.1432-1033.2004.04397.x – ident: e_1_2_9_45_1 doi: 10.1128/JB.181.14.4318-4325.1999 – ident: e_1_2_9_40_1 doi: 10.1016/j.cell.2014.02.033 – ident: e_1_2_9_8_1 doi: 10.1046/j.1365-2958.2003.03316.x – ident: e_1_2_9_55_1 doi: 10.1101/cshperspect.a000414 – ident: e_1_2_9_30_1 doi: 10.1128/MMBR.00022-11 – ident: e_1_2_9_22_1 doi: 10.1128/IAI.00012-14 – ident: e_1_2_9_56_1 doi: 10.1111/mmi.12058 – ident: e_1_2_9_29_1 doi: 10.1073/pnas.1717925115 – ident: e_1_2_9_60_1 doi: 10.1038/srep18190 – ident: e_1_2_9_17_1 doi: 10.1073/pnas.1816893116 – ident: e_1_2_9_11_1 doi: 10.1074/jbc.M604083200 – ident: e_1_2_9_47_1 doi: 10.1371/journal.pgen.1004056 – ident: e_1_2_9_38_1 doi: 10.1371/journal.pgen.1006934 – ident: e_1_2_9_74_1 doi: 10.1099/00221287-131-10-2839 – ident: e_1_2_9_44_1 doi: 10.1038/nrmicro.2016.191 – ident: e_1_2_9_37_1 doi: 10.1038/nmicrobiol.2017.14 – ident: e_1_2_9_66_1 doi: 10.1038/emboj.2010.36 – ident: e_1_2_9_51_1 doi: 10.1126/science.1255784 – ident: e_1_2_9_49_1 doi: 10.1111/mmi.12304 – ident: e_1_2_9_2_1 doi: 10.1073/pnas.44.6.590 – ident: e_1_2_9_57_1 doi: 10.1073/pnas.1507760112 – ident: e_1_2_9_70_1 doi: 10.1111/j.1574-6976.2007.00094.x – ident: e_1_2_9_35_1 doi: 10.1089/adt.2011.0380 – ident: e_1_2_9_25_1 doi: 10.1111/mmi.14082 – ident: e_1_2_9_50_1 doi: 10.1093/nar/gkv007 – ident: e_1_2_9_23_1 doi: 10.1073/pnas.1400376111 – ident: e_1_2_9_13_1 doi: 10.1074/jbc.M301463200 – ident: e_1_2_9_27_1 doi: 10.1016/0003-2697(88)90468-X – ident: e_1_2_9_59_1 doi: 10.1128/IAI.00034-10 – ident: e_1_2_9_54_1 doi: 10.1002/mbo3.244 – ident: e_1_2_9_67_1 doi: 10.1186/s12915-017-0348-8 – ident: e_1_2_9_48_1 doi: 10.1016/j.mib.2017.01.006 – ident: e_1_2_9_52_1 doi: 10.1016/S0006-3495(00)76713-0 |
SSID | ssj0005871 |
Score | 2.5423675 |
Snippet | The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh‐like... The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh-like... The peptidoglycan ( PG ) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh‐like... |
SourceID | pubmedcentral hal proquest pubmed crossref wiley springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e102246 |
SubjectTerms | Adapters Antibiotics Bacteria bacterial cell envelope Biochemistry Biochemistry, Molecular Biology Biodegradation Biosynthesis Cell division Cell size Cell Wall - enzymology Cell walls E coli Elongation EMBO23 endopeptidase Endopeptidases - genetics Endopeptidases - metabolism Enlargement Enzymatic activity Enzymes Escherichia coli Escherichia coli - enzymology Escherichia coli - genetics Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Hydrolase Life Sciences Lipoproteins Lipoproteins - genetics Lipoproteins - metabolism Localization Mechanical properties Membranes Multienzyme Complexes N-Acetylmuramoyl-L-alanine Amidase - genetics N-Acetylmuramoyl-L-alanine Amidase - metabolism Osmotic stress outer membrane lipoprotein Penicillin penicillin‐binding protein peptidoglycan Peptidoglycan - metabolism Peptidoglycans Regulators Saccule |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access (Activated by CARLI) dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9RAEF9sReyLaP0XrbKCCAqhSXaT7D7WcuUstvpgoW9hs9l4kVwuXHql55Mfwc_oJ3Fm8-eMRQVfAsdskr3MTOY3u5PfEPLSSyGMRoa5uYADjyPPlYJFrvKzXOZRFiuFHzifnEbTM358Hp7_8i1Myw8xLLihZ9j3NTq4Spu-Yw-yhpp5-gVrs2TLirZFbgK2Z2jlAf-4KfMQNumy6yzcF7LbqsRr7P92hVFo2pphYeR11Hm9eHLYQR3jWxugju6SOx2ypAetKdwjN0y1S261vSbXu-T2Yd_a7T65_ICNHOgcZgahytCyqBeWsKGo6GlZv6ONVnm-KLOG1lj1ki0-l2vQAZ2tsyXkwo1pKC7gwnBbkPjj23dTfV3PDbUV6uYK5CCbNGgRBVZTg6AsHpCzo8mnw6nbNWBwdQh5iIvcb0KKUJpQaEAOKhLcaIh1PI3iKNO-ir1U4VYpY3kYKM09ljOl85RnJlaGPSTb1aIyjwmNdQpAiWUADxWPRaakzAJP5DpmAt4LuUP2-2ef6I6dHJtklAlmKaitBLWVbLTlkNfDGXXLzPGXsa9AncMwpNSeHrxPagWetFomXiAhO5fi0nfIXq_xpHPmJglYBCAaeYEc8mIQg8pwbwW0tFjhmLBllg0d8qg1kOF2zDJbcemQeGQ6o_mMJVUxs1TfMSRwwvcc8qY3ss20_vxnQ2uG_3wqyeTk7fHm55P_PO8p2QlwEQIL84I9sn2xXJlngNQu0ufWFX8CfGc0-Q priority: 102 providerName: Wiley-Blackwell |
Title | Outer membrane lipoprotein NlpI scaffolds peptidoglycan hydrolases within multi‐enzyme complexes in Escherichia coli |
URI | https://link.springer.com/article/10.15252/embj.2019102246 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2019102246 https://www.ncbi.nlm.nih.gov/pubmed/32009249 https://www.proquest.com/docview/2369162357 https://www.proquest.com/docview/2350352575 https://pasteur.hal.science/pasteur-02902798 https://pubmed.ncbi.nlm.nih.gov/PMC7049810 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEB6RIgQXBOXPUKpFQkggWbW9Xnv3WKJUoaKFA5V6s9b2ujFybCtuKsKJR-AZeRJmbCfBKj_iEsmajb3Zmc3M7Hz-BuClE6MbDQy3M4kffhg4tpI8sLWbZioL0lBresH55DSYnvnH5-K8P--gd2F-rd8LT3gHZh5_JgSW6rjPRnBT4N8u2fI4GG_BHLJNrdrTFN-Vqi9I_u4OAwc0mhH88XpseR0iuamTDqPY1g0d3YO7ffzIDjuF34cbptyFW11HydUu3B6vG7g9gKsP1K6BzXFm6JAMK_K6amkZ8pKdFvU71iQ6y6oibVhN2Ja0uihWuNJstkoXmPE2pmF0TIvDW9jhj2_fTfl1NTesxaGbLyhH2aQhveeEmUZBkT-Es6PJp_HU7tss2InAbMMmhjeppFBGyATjAx1I3yTo0fw4CIM0cXXoxJoKopxnwtOJ7_CM6ySL_dSE2vBHsFNWpXkCLExiDId4ikGg9kOZaqVSz5FZEnKJuz-z4GC99lHSc5BTK4wiolyEtBWRtqKttix4vflG3fFv_GXsK1TnZhgRZ08P30e1xv2yXESOpzAHV_LKtWBvrfGo37JN5PEAQ2Vi_7HgxUaMKqMKCmqpWtIY0fHHCgsedwayeRxv-at8ZUE4MJ3BfIaSMp-1hN4hpmnSdSx4szay7bT-_GNFa4b_XJVocvL2eHv59H8e8gzueHS-QJg7bw92LhdL8xyDsMt4H0ae_3G_3YU_AdZWKh4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB7RIlQuCMrLUMBICAkkq7bXj91jiVKlJQmXVurNWtu7jZFjW3FTEU78BH4jv4QZ23GIykNcLFmzttc7u5qZnW-_AXhjx2hGA8UszfHihYFtCc4CSzqpFjpIQynpgPNkGozOvdML_6Lb76CzML_m733Xdw_VPP5MCCzRcp_twG3KWxJL_iAYbMAcvAmtmt0Uz-GiS0j-7g1bBmhnRvDHm77lTYhknyfd9mIbM3R8H-51_qN51Cr8AdxSxT7caStKrvZhb7Au4PYQrj9RuQZzjj1Dg6TMPKvKhpYhK8xpXp2YdSK1LvO0NivCtqTlZb7CkTZnq3SBEW-tapO2abF5Azv88e27Kr6u5spscOjqC8pRNqxJ7xlhplGQZ4_g_Hh4NhhZXZkFK_Ex2rCI4Y0L7gvl8wT9AxlwTyVo0bw4CIM0cWRox5ISooxp35WJZzPNZKJjL1WhVOwx7BZloZ6CGSYxukMsRSdQeiFPpRCpa3OdhIzj6tcGHK7HPko6DnIqhZFHFIuQtiLSVrTRlgHv-ieqln_jL23fojr7ZkScPToaR5XE9bJcRLYrMAYX_Nox4GCt8ahbsnXksgBdZWL_MeB1L0aVUQYFtVQuqY3f8sf6BjxpJ0j_OdbwV3nCgHBr6mz1Z1tSZLOG0DvEMI07tgHv15Ns060__6zfTMN_jko0nHw43dw--5-PvIK90dlkHI1Pph-fw12X9hoIf-cewO7VYqleoEN2Fb9s1uJPAMMsNg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtNAEB3RVlxeEBQKhgJGQkggWXG8vuw-hpKoDW1Agkp9s9beXRLkOFacVIQnPoFv5EuY8SVRVC7iJZI1G3uzM5uZ2Tk-A_DCTdCNhpo5huOHH4WuIzgLHdlVRphQRVLSC85no_D43B9eBBfNgVvZot3bkmT9TgOxNOWLTqFM26_H6-hp8oVwWaJmRNuBPR4IgcnXXq83_DjcgDx4lXJVpyx-l4umUPm7e2w5pp0xwSKvxpxXoZPr-ul2dFu5p8EduN3ElXavNoS7cE3n-3C97jS52oebR21jt3tw-Z7aONhTnBk6Km1nk2JW0TVMcnuUFSd2mUpjZpkq7YIwL2r2OVuhBuzxSs0xEy51adPxLQ6v4Ig_v__Q-bfVVNsVPl1_RTnK-iXZw4Sw1CjIJvfhfND_dHTsNO0XnDTALMQh5jcucF11wFOMG2TIfZ2ip_OTMApV2pWRm0gqlDJmAk-mvssMk6lJfKUjqdkB7OazXD8EO0oTDJOYwuBQ-hFXUgjludykEeP4r2As6LRrH6cNNzm1yMhiylFIWzFpK95oy4JX628UNS_HX8a-RHWuhxGh9nHvNC4k7qPlPHY9gbm54JddCw5bjcfNVi5jj4UYQhMrkAXP12JUGVVWUEuzJY0Jal7ZwIIHtYGsH8cqXitfWBBtmc7WfLYl-WRcEX1HmL7xrmvB69bINtP6848NKjP856rE_bM3w83lo_95yDO48eHtID49Gb17DLc8OoIgWJ53CLuL-VI_wThtkTxtNuMvKsU19A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Outer+membrane+lipoprotein+NlpI+scaffolds+peptidoglycan+hydrolases+within+multi-enzyme+complexes+in+Escherichia+coli&rft.jtitle=The+EMBO+journal&rft.au=Banzhaf%2C+Manuel&rft.au=Yau%2C+Hamish+Cl&rft.au=Verheul%2C+Jolanda&rft.au=Lodge%2C+Adam&rft.date=2020-03-02&rft.eissn=1460-2075&rft.volume=39&rft.issue=5&rft.spage=e102246&rft_id=info:doi/10.15252%2Fembj.2019102246&rft_id=info%3Apmid%2F32009249&rft.externalDocID=32009249 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |