Using topographic wetness index in vegetation ecology: does the algorithm matter
Questions: How important is the choice of flow routing algorithm with respect to application of topographic wetness index (TWI) in vegetation ecology? Which flow routing algorithms are preferable for application in vegetation ecology? Location: Forests in three different regions of the Czech Republi...
        Saved in:
      
    
          | Published in | Applied vegetation science Vol. 13; no. 4; pp. 450 - 459 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford, UK
          Blackwell Publishing Ltd
    
        01.10.2010
     Blackwell Publishing, Ltd Wiley Subscription Services, Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1402-2001 1654-109X  | 
| DOI | 10.1111/j.1654-109x.2010.01083.x | 
Cover
| Abstract | Questions: How important is the choice of flow routing algorithm with respect to application of topographic wetness index (TWI) in vegetation ecology? Which flow routing algorithms are preferable for application in vegetation ecology? Location: Forests in three different regions of the Czech Republic. Methods: We used vegetation data from 521 georeferenced plots, recently sampled in a wide range of forest communities. From a digital elevation model, we calculated 11 variations of TWI for each plot with 11 different flow routing algorithms. We evaluated the performance of differently calculated TWI by (1) Spearman rank correlation with average Ellenberg indicator values for soil moisture, (2) Mantel correlation coefficient between dissimilarities of species composition and dissimilarities of TWI and (3) the amount of variation in species composition explained by canonical correspondence analysis. Results: The choice of flow routing algorithm had a considerable effect on the performance of TWI. Correlation with Ellenberg indicator values for soil moisture, Mantel correlation coefficient and explained variation doubled when the appropriate algorithm was used. In all regions, multiple flow routing algorithms performed best, while single flow routing algorithms performed worst. Conclusions: We recommend the multiple flow routing algorithms of Quinn et al. and Freeman for application in vegetation ecology. | 
    
|---|---|
| AbstractList | Questions:
How important is the choice of flow routing algorithm with respect to application of topographic wetness index (TWI) in vegetation ecology? Which flow routing algorithms are preferable for application in vegetation ecology?
Location:
Forests in three different regions of the Czech Republic.
Methods:
We used vegetation data from 521 georeferenced plots, recently sampled in a wide range of forest communities. From a digital elevation model, we calculated 11 variations of TWI for each plot with 11 different flow routing algorithms. We evaluated the performance of differently calculated TWI by (1) Spearman rank correlation with average Ellenberg indicator values for soil moisture, (2) Mantel correlation coefficient between dissimilarities of species composition and dissimilarities of TWI and (3) the amount of variation in species composition explained by canonical correspondence analysis.
Results:
The choice of flow routing algorithm had a considerable effect on the performance of TWI. Correlation with Ellenberg indicator values for soil moisture, Mantel correlation coefficient and explained variation doubled when the appropriate algorithm was used. In all regions, multiple flow routing algorithms performed best, while single flow routing algorithms performed worst.
Conclusions:
We recommend the multiple flow routing algorithms of Quinn et al. and Freeman for application in vegetation ecology. Questions: How important is the choice of flow routing algorithm with respect to application of topographic wetness index (TWI) in vegetation ecology? Which flow routing algorithms are preferable for application in vegetation ecology? Location: Forests in three different regions of the Czech Republic. Methods: We used vegetation data from 521 georeferenced plots, recently sampled in a wide range of forest communities. From a digital elevation model, we calculated 11 variations of TWI for each plot with 11 different flow routing algorithms. We evaluated the performance of differently calculated TWI by (1) Spearman rank correlation with average Ellenberg indicator values for soil moisture, (2) Mantel correlation coefficient between dissimilarities of species composition and dissimilarities of TWI and (3) the amount of variation in species composition explained by canonical correspondence analysis. Results: The choice of flow routing algorithm had a considerable effect on the performance of TWI. Correlation with Ellenberg indicator values for soil moisture, Mantel correlation coefficient and explained variation doubled when the appropriate algorithm was used. In all regions, multiple flow routing algorithms performed best, while single flow routing algorithms performed worst. Conclusions: We recommend the multiple flow routing algorithms of Quinn et al. and Freeman for application in vegetation ecology. Questions: How important is the choice of flow routing algorithm with respect to application of topographic wetness index (TWI) in vegetation ecology? Which flow routing algorithms are preferable for application in vegetation ecology? Location: Forests in three different regions of the Czech Republic. Methods: We used vegetation data from 521 georeferenced plots, recently sampled in a wide range of forest communities. From a digital elevation model, we calculated 11 variations of TWI for each plot with 11 different flow routing algorithms. We evaluated the performance of differently calculated TWI by (1) Spearman rank correlation with average Ellenberg indicator values for soil moisture, (2) Mantel correlation coefficient between dissimilarities of species composition and dissimilarities of TWI and (3) the amount of variation in species composition explained by canonical correspondence analysis. Results: The choice of flow routing algorithm had a considerable effect on the performance of TWI. Correlation with Ellenberg indicator values for soil moisture, Mantel correlation coefficient and explained variation doubled when the appropriate algorithm was used. In all regions, multiple flow routing algorithms performed best, while single flow routing algorithms performed worst. Conclusions: We recommend the multiple flow routing algorithms of Quinn et al. and Freeman for application in vegetation ecology.  | 
    
| Author | Čížková, Štěpánka Kopecký, Martin  | 
    
| Author_xml | – sequence: 1 fullname: Kopecky, Martin – sequence: 2 fullname: Cizkova, Stepanka  | 
    
| BookMark | eNqNkU1v1DAQhiNUJNrCT0BY4kAvWfyxjh0OSO0KWqQFitoFbpaTTLIO2XixvTT77-uQ0kMPqJZsjzzPvGP7PUoOettDkiCCZySOt-2MZHyeEpwPM4rjaZySzYYnyeG_xM-DGM8xTSnG5Fly5H0bA5Hz_DC5XHnTNyjYrW2c3q5NiW4g9OA9Mn0FQ1zRH2gg6GBsj6C0nW3271BlwaOwBqS7xjoT1hu00SGAe548rXXn4cXdfpysPn64Xlyky6_nnxany7TkXLCUgiQE06wqdFZKzWvKK11VrMYk3gzrnMki46KISE4LXNGCEgCpSzLPi1rk7Dh5M-lunf29Ax_UxvgSuk73YHdeSS4IYYLTSJ78lyRCZBmXEo_o6wdoa3euj--I1AhRhnmk3k9U6az3DmpVmul_gtOmUwSr0RrVqtEBNTqgRmvUX2vUEAXkA4GtMxvt9o8pvet9YzrYP7pOnX6_WoxhFHg5CbQ-WHcvMMc5FZKSmE-nvPEBhvu8dr9UJuJ_qh9fztXlt-UZo5_P1HXkX018ra3SjTNera5ia4aJzLEUhN0CkuTJ3w | 
    
| CitedBy_id | crossref_primary_10_3390_rs70708489 crossref_primary_10_3390_rs14133169 crossref_primary_10_1007_s10531_013_0442_3 crossref_primary_10_1111_ddi_12047 crossref_primary_10_1111_jvs_12060 crossref_primary_10_1080_11263504_2023_2165562 crossref_primary_10_1890_ES14_00384_1 crossref_primary_10_1007_s10980_019_00903_x crossref_primary_10_1007_s12061_014_9130_2 crossref_primary_10_1016_j_ecolind_2021_108315 crossref_primary_10_1016_j_scitotenv_2020_137250 crossref_primary_10_1007_s10980_018_0723_z crossref_primary_10_1016_j_jag_2013_05_011 crossref_primary_10_1016_j_dib_2023_109369 crossref_primary_10_1175_JHM_D_21_0251_1 crossref_primary_10_1016_j_jhydrol_2021_126621 crossref_primary_10_1016_j_scitotenv_2018_11_235 crossref_primary_10_1590_1809_4430_eng_agric_v36n6p1261_1271_2016 crossref_primary_10_1007_s12224_016_9276_6 crossref_primary_10_1071_WF16080 crossref_primary_10_1093_aob_mcad042 crossref_primary_10_5194_hess_18_3623_2014 crossref_primary_10_1111_1365_2664_12387 crossref_primary_10_1016_j_agrformet_2023_109828 crossref_primary_10_1111_plb_13082 crossref_primary_10_1016_j_ecolind_2019_105652 crossref_primary_10_1016_j_foreco_2014_09_032 crossref_primary_10_1016_j_hydroa_2023_100165 crossref_primary_10_1111_nph_20068 crossref_primary_10_1002_rse2_253 crossref_primary_10_3390_f9030130 crossref_primary_10_1515_biorc_2017_0010 crossref_primary_10_1016_j_foreco_2015_03_038 crossref_primary_10_4296_cwrj2011_909 crossref_primary_10_1016_j_catena_2023_107787 crossref_primary_10_1016_j_scitotenv_2021_151972 crossref_primary_10_1007_s00468_013_0869_x crossref_primary_10_1016_j_foreco_2019_117469 crossref_primary_10_1029_2020WR028546 crossref_primary_10_1016_j_foreco_2020_118366 crossref_primary_10_1016_j_jhydrol_2020_124669 crossref_primary_10_1111_jvs_12642 crossref_primary_10_1080_01431161_2013_845318 crossref_primary_10_1139_cjfr_2015_0491 crossref_primary_10_1007_s11629_013_2644_2 crossref_primary_10_1080_10106049_2021_1974959 crossref_primary_10_1371_journal_pone_0097110 crossref_primary_10_1002_ece3_7253 crossref_primary_10_3390_land9090316 crossref_primary_10_3390_w15163005 crossref_primary_10_1016_j_scitotenv_2020_143785 crossref_primary_10_2478_mgr_2023_0020 crossref_primary_10_1371_journal_pone_0121172 crossref_primary_10_1111_jvs_12816 crossref_primary_10_1016_j_foreco_2017_05_048 crossref_primary_10_1134_S2079096122030039 crossref_primary_10_61186_jeer_14_3_66 crossref_primary_10_1002_esp_4301 crossref_primary_10_1051_e3sconf_202448301014 crossref_primary_10_1029_2018WR023627 crossref_primary_10_3390_su10020295 crossref_primary_10_1016_j_compag_2020_105253 crossref_primary_10_5424_fs_2016251_07123 crossref_primary_10_1890_ES13_00134_1 crossref_primary_10_1111_ecog_04687 crossref_primary_10_1111_jvs_12781 crossref_primary_10_1186_s40965_019_0066_y crossref_primary_10_1007_s11769_022_1304_2 crossref_primary_10_1016_j_asr_2022_02_027 crossref_primary_10_1177_03091333211023689 crossref_primary_10_2478_foecol_2023_0010 crossref_primary_10_1007_s13157_012_0359_8 crossref_primary_10_1007_s40710_018_0341_4 crossref_primary_10_1016_j_foreco_2017_10_011 crossref_primary_10_1016_j_jag_2019_02_004 crossref_primary_10_1016_S2095_3119_15_61303_X crossref_primary_10_1080_10106049_2022_2136253 crossref_primary_10_1016_j_jhydrol_2021_126132 crossref_primary_10_1016_j_ecolind_2017_10_011 crossref_primary_10_1890_13_0363_1 crossref_primary_10_5194_bg_13_1387_2016 crossref_primary_10_1002_ece3_4561 crossref_primary_10_1016_j_foreco_2014_08_033 crossref_primary_10_5194_hess_17_3679_2013 crossref_primary_10_1007_s00484_019_01763_5 crossref_primary_10_1111_jvs_13009 crossref_primary_10_1080_10106049_2019_1687595 crossref_primary_10_1016_j_ecolind_2019_106033 crossref_primary_10_3390_w16040536 crossref_primary_10_1016_j_ecolind_2015_05_011 crossref_primary_10_1016_j_apgeog_2017_12_005 crossref_primary_10_1002_ecs2_1797 crossref_primary_10_1016_j_heliyon_2023_e13482 crossref_primary_10_1016_j_ecolind_2015_04_012 crossref_primary_10_3390_su10072473 crossref_primary_10_1111_csp2_13151 crossref_primary_10_2136_sssaj2018_09_0355 crossref_primary_10_1016_j_foreco_2020_118324 crossref_primary_10_3846_20296991_2013_806702 crossref_primary_10_1111_gcb_12286 crossref_primary_10_1016_j_ecolind_2014_07_013 crossref_primary_10_1007_s11368_023_03586_9 crossref_primary_10_1080_17550874_2015_1010186 crossref_primary_10_1007_s10021_021_00725_6 crossref_primary_10_1016_j_apgeog_2014_07_014 crossref_primary_10_1007_s12224_023_09428_3 crossref_primary_10_1016_j_jag_2020_102147 crossref_primary_10_1016_j_apgeog_2018_11_001 crossref_primary_10_1111_aec_12786 crossref_primary_10_1071_WF18037 crossref_primary_10_3390_su11205639 crossref_primary_10_1002_eco_1994 crossref_primary_10_1016_j_ecolmodel_2018_05_006 crossref_primary_10_1111_jvs_13026 crossref_primary_10_1016_j_ecolind_2012_02_024 crossref_primary_10_1080_15481603_2024_2401247 crossref_primary_10_1007_s11258_018_0810_x crossref_primary_10_1111_1365_2656_12808 crossref_primary_10_15421_022385 crossref_primary_10_1016_j_catena_2021_105468 crossref_primary_10_1016_j_jsames_2019_102359 crossref_primary_10_1111_oik_07488  | 
    
| Cites_doi | 10.1029/90WR02658 10.1016/0022-1694(89)90073-5 10.1007/s10980-004-1296-6 10.1111/j.1365-2699.2007.01818.x 10.1890/03-0313 10.1080/02626667909491834 10.1111/j.1654-109X.2002.tb00543.x 10.1029/2004WR003069 10.1016/j.cageo.2007.05.003 10.1029/93WR03512 10.1016/S0734-189X(84)80011-0 10.1071/SR03028 10.1007/s10980-008-9316-6 10.1023/B:LAND.0000030451.29571.8b 10.1016/j.agrformet.2008.06.001 10.1007/978-3-540-77800-4_12 10.1002/hyp.3360080405 10.1111/j.1365-2389.2008.01094.x 10.14358/PERS.71.9.1071 10.1111/j.1654-1103.2002.tb02087.x 10.1002/esp.3290120107 10.1007/s10980-009-9341-0 10.1890/1540-9295(2004)002[0475:WITWAM]2.0.CO;2 10.3170/2008-7-18560 10.1080/02723646.1982.10642224 10.1029/2002WR001426 10.1023/A:1011975321668 10.1016/0098-3004(91)90048-I 10.1016/j.jhydrol.2009.03.031 10.1002/hyp.6277 10.1111/j.1654-109X.2002.tb00544.x 10.1080/13658810210149425 10.1111/j.1466-822X.2005.00141.x 10.1029/96WR03137 10.1007/978-94-010-2701-4_20 10.1111/j.1654-109X.2009.01023.x 10.1111/j.1654-1103.2001.tb02615.x 10.1029/2005WR004648 10.5194/hess-10-101-2006 10.1002/hyp.3360050103 10.2307/1942383 10.1023/A:1007989813501 10.1007/s10021-003-0125-0 10.1111/j.1654-1103.2004.tb02317.x 10.2307/2845287 10.1080/1365881031000135483 10.1111/j.1365-2699.2008.01922.x 10.1029/2006WR005128 10.1007/s10980-004-5652-3 10.1111/j.1365-2664.2008.01516.x 10.1002/hyp.3360050106 10.1890/03-0396  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2010 International Association for Vegetation Science | 
    
| Copyright_xml | – notice: 2010 International Association for Vegetation Science | 
    
| DBID | FBQ BSCLL AAYXX CITATION 7SN C1K 7S9 L.6  | 
    
| DOI | 10.1111/j.1654-109x.2010.01083.x | 
    
| DatabaseName | AGRIS Istex CrossRef Ecology Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef Ecology Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | CrossRef Ecology Abstracts Ecology Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Botany Ecology  | 
    
| EISSN | 1654-109X | 
    
| EndPage | 459 | 
    
| ExternalDocumentID | 3957587341 10_1111_j_1654_109X_2010_01083_x AVSC1083 40927821 ark_67375_WNG_PQLB32MB_T US201301890871  | 
    
| Genre | article | 
    
| GeographicLocations | Czech Republic | 
    
| GeographicLocations_xml | – name: Czech Republic | 
    
| GroupedDBID | -JH .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 2~F 31~ 33P 3SF 4.4 4P2 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AACFU AAESR AAEVG AAHHS AAHKG AANLZ AAONW AAPSS AASGY AAXRX AAXTN AAZKR ABBHK ABCQN ABCUV ABDBF ABEML ABHUG ABJNI ABPLY ABPTK ABPVW ABTLG ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADHSS ADIZJ ADKYN ADMGS ADOYD ADOZA ADULT ADXAS ADZLD ADZMN ADZOD AEDJY AEEJZ AEEZP AEIGN AEIMD AENEX AEPYG AEQDE AESBF AEUPB AEUQT AEUYR AFAZZ AFBPY AFFIJ AFFPM AFGKR AFNWH AFPWT AFRAH AFVGU AGJLS AGUYK AICQM AIRJO AIURR AIWBW AJBDE AJXKR AKPMI ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG CBGCD COF CS3 CWIXF D-E D-F DATOO DC7 DCZOG DFEDG DOOOF DPXWK DR2 DRFUL DRSTM DWIUU EAD EAP EBD EBS ECGQY EDH EJD EMK EQZMY ESX F00 F01 F04 FBQ FEDTE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HTVGU HVGLF HZ~ IAG IAO IEP IGH IHR ITC IX1 J.8 J0M JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST KPI LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OVD P2P P2W P2X P4D PQ0 Q.N Q11 Q5J QB0 R.K RBO ROL RWI RX1 SA0 SUPJJ TEORI TUS UB1 W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~8M ~IA ~KM ~WT AAHBH AAHQN AAMMB AAMNL AANHP AAYCA ABXSQ ACHIC ACRPL ACUHS ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AITYG ALVPJ AQVQM BSCLL H13 HGLYW IPSME OIG AAYXX CITATION 7SN C1K 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c5573-2e811026dba6c8a5f25dadd3f011790a938b657b02692b0d2b21ee8ac149bf793 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 1402-2001 | 
    
| IngestDate | Thu Jul 10 22:59:47 EDT 2025 Tue Oct 07 08:30:52 EDT 2025 Fri Jul 25 10:39:42 EDT 2025 Wed Oct 01 03:01:17 EDT 2025 Thu Apr 24 23:09:38 EDT 2025 Wed Jan 22 16:46:32 EST 2025 Thu Jul 03 21:10:51 EDT 2025 Sun Sep 21 06:31:23 EDT 2025 Wed Dec 27 19:15:56 EST 2023  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c5573-2e811026dba6c8a5f25dadd3f011790a938b657b02692b0d2b21ee8ac149bf793 | 
    
| Notes | http://dx.doi.org/10.1111/j.1654-109X.2010.01083.x ArticleID:AVSC1083 istex:D53FA805AC51F4284B5D4B504927789081BCA891 ark:/67375/WNG-PQLB32MB-T Co‐ordinating Editor: Dr Lauchlan Fraser ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PQID | 1766582305 | 
    
| PQPubID | 946338 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_miscellaneous_857113752 proquest_miscellaneous_1776658802 proquest_journals_1766582305 crossref_citationtrail_10_1111_j_1654_109X_2010_01083_x crossref_primary_10_1111_j_1654_109X_2010_01083_x wiley_primary_10_1111_j_1654_109X_2010_01083_x_AVSC1083 jstor_primary_40927821 istex_primary_ark_67375_WNG_PQLB32MB_T fao_agris_US201301890871  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | October 2010 | 
    
| PublicationDateYYYYMMDD | 2010-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2010 text: October 2010  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Oxford, UK | 
    
| PublicationPlace_xml | – name: Oxford, UK – name: Malden  | 
    
| PublicationTitle | Applied vegetation science | 
    
| PublicationYear | 2010 | 
    
| Publisher | Blackwell Publishing Ltd Blackwell Publishing, Ltd Wiley Subscription Services, Inc  | 
    
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell Publishing, Ltd – name: Wiley Subscription Services, Inc  | 
    
| References | Dobrowski, S.Z., Safford, H.D., Cheng, Y.B. & Ustin, S.L. 2008. Mapping mountain vegetation using species distribution modeling, image-based texture analysis, and object-based classification. Applied Vegetation Science 11: 499-508. Tolasz, R., Míková, T., Valeriánová, T. & Voženílek, V. (eds.) 2007. Climate atlas of Czechia. Czech Hydrometeorological Institute and Palacký University, Prague, CZ. Tarboton, D.G. 1997. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research 33: 309-319. Franklin, J. 2002. Enhancing a regional vegetation map with predictive models of dominant plant species in chaparral. Applied Vegetation Science 5: 135-146. Seibert, J. & McGlynn, B. 2007. A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resources Research 43: W04501. Piedallu, C. & Gégout, J. 2005. Effects of forest environment and survey protocol on GPS accuracy. Photogrammetric Engineering & Remote Sensing 71: 1071-1078. Murphy, P.N.C., Ogilvie, J. & Arp, P. 2009. Topographic modelling of soil moisture conditions: a comparison and verification of two models. European Journal of Soil Science 60: 94-109. Svenning, J.-C., Kinner, D.A., Stallard, R.F., Engelbrecht, B.M.J. & Wright, S.J. 2004. Ecological determinism in plant community structure across a tropical forest landscape. Ecology 85: 2526-2538. Dyer, J.M. 2009. Assessing topographic patterns in moisture use and stress using a water balance approach. Landscape Ecology 24: 391-403. Hutchinson, M.F. 1989. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology 106: 211-232. Moore, I.D., Grayson, R.B. & Ladson, A.R. 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrologic Processes 5: 3-30. Holmgren, P. 1994. Multiple flow direction algorithms for runoff modelling in grid based elevation models: an empirical evaluation. Hydrological Processes 8: 327-334. Cairns, D.M. 2001. A comparison of methods for predicting vegetation type. Plant Ecology 156: 3-18. Costa-Cabral, M. & Burges, S.J. 1994. Digital elevation model networks (DEMON): a model of flow over hillslopes for computation of contributing and dispersal areas. Water Resources Research 30: 1681-1692. Summerell, G.K., Dowling, T.I., Wild, J.A. & Beale, G. 2004. FLAG UPNESS and its application for mapping seasonally wet to waterlogged soils. Australian Journal of Soil Research 42: 155-162. Taverna, K., Urban, D.L. & McDonald, R.I. 2005. Modeling landscape vegetation pattern in response to historic land-use: a hypothesis-driven approach for the North Carolina Piedmont, USA. Landscape Ecology 20: 689-702. Bader, M.Y. & Ruijten, J.J.A. 2008. A topography-based model of forest cover at the alpine tree line in the tropical Andes. Journal of Biogeography 35: 711-723. McCune, B. & Keon, D. 2002. Equations for potential annual direct incident radiation and heat load. Journal of Vegetation Science 13: 603-606. Pierce, K.B., Lookingbill, T.R. & Urban, D.L. 2005. A simple method for estimating potential relative radiation (PRR) for landscape-scale vegetation analysis. Landscape Ecology 20: 137-147. Samek, V. 1964. Lesní společenstva Českého Krasu (Forest communities of the Bohemian Karst). NakladatelstvíČeskoslovenské akademie věd, Praha, CZ (in Czech). Wilson, J.P., Lam, C.S. & Deng, Y.X. 2007. Comparison of performance of flow-routing algorithms used in Geographic Information Systems. Hydrological Processes 21: 1026-1044. Gallant, J.C. & Dowling, T.I. 2003. A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resources Research 39: 1347-1360. Zinko, U., Seibert, J., Dynesius, M. & Nilsson, C. 2005. Plant species numbers predicted by a topography based groundwater-flow index. Ecosystems 8: 430-441. Johnson, C.E. & Barton, C.C. 2004. Where in the world are my field plots? Using GPS effectively in environmental field studies. Frontiers in Ecology and Environment 2: 475-482. O'Callaghan, J.F. & Mark, D.M. 1984. The extraction of drainage networks from digital elevation data. Computer Vision, Graphic and Image Processing 28: 328-344. Quinn, P., Beven, K., Chevallier, P. & Planchon, O. 1991. The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models. Hydrological Processes 5: 59-80. Park, S.J., Rüecker, G.R., Agyare, W.R., Akramhanov, A., Kim, M. & Vlek, P.L.G. 2009. Influence of grid cell size and flow routing algorithm on soil-landform modelling. Journal of the Korean Geographical Society 44: 122-145. Kopecký, M. & Vojta, J. 2009. Land use legacies in post-agricultural forests in the Doupovské Mountains, Czech Republic. Applied Vegetation Science 12: 251-260. Freeman, G.T. 1991. Calculating catchment area with divergent flow based on a regular grid. Computers and Geosciences 17: 413-422. Wise, S.M. 2007. Effect of differing DEM creation methods on the results from a hydrological model. Computers & Geosciences 33: 1351-1365. Parolo, G., Rossi, G. & Ferrarini, A. 2008. Toward improved species niche modelling: Arnica montana in the Alps as a case study. Journal of Applied Ecology 45: 1410-1418. Allen, R.B., Peet, R.K. & Baker, W.L. 1991. Gradient analysis of latitudinal variation in Southern Rocky Mountain forests. Journal of Biogeography 18: 123-139. Sørensen, R., Zinko, U. & Seibert, J. 2006. On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrology and Earth System Sciences 10: 101-112. Piedallu, C. & Gégout, J. 2008. Efficient assessment of topographic solar radiation to improve plant distribution models. Agriculture and Forest Meteorology 148: 1696-1706. Beven, K.J. & Kirkby, M.J. 1979. A physically based, variable contributing area model of basin hydrology. Hydrologic Science Bulletin 24: 43-69. Ellenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W. & Paulissen, D. 1992. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18: 1-258. Grabs, T., Seibert, J., Bishop, K. & Laudon, H. 2009. Modeling spatial patterns of saturated areas: a comparison of the topographic wetness index and a dynamic distributed model. Journal of Hydrology 373: 15-23. Loucks, O.L. 1962. Ordinating forest communities by means of environmental scalars and phytosociological indices. Ecological Monographs 32: 137-166. Moody, A. & Meentemeyer, R.K. 2001. Environmental factors influencing spatial patterns of woody plant diversity in chaparral, Santa Ynez Mountains, California. Journal of Vegetation Science 12: 41-52. Pan, F., Peters-Lidard, C.D., Sale, M.J. & King, A.W. 2004. A comparison of geographical information system-based algorithms for computing the TOPMODEL topographic index. Water Resources Research 40: 1-11. Kubát, K., Hrouda, L., Chrtek, J. Jr., Kaplan, Z., Kirschner, J. & Stěpánek, J. (eds.), 2002. Key to the flora of the Czech Republic. Academia, Prague, CZ (in Czech). Zhou, Q. & Liu, X. 2002. Error assessment of grid-based flow routing algorithms used in hydrological models. International Journal of Geographical Information Science 16: 819-842. Parviainen, M., Luoto, M., Ryttari, T. & Heikkinen, R.K. 2008. Modelling the occurrence of threatened plant species in taiga landscapes: methodological and ecological perspectives. Journal of Biogeography 35: 1888-1905. Zevenbergen, L.W. & Thorne, C.R. 1987. Quantitative analysis of land surface topography. Earth Surface Processes and Landforms 12: 47-56. Dirnböck, T., Hobbs, R.J., Lambeck, R.J. & Caccetta, P.A. 2002. Vegetation distribution in relation to topographically driven processes in southwestern Australia. Applied Vegetation Science 5: 147-158. Iverson, L.R., Dale, M.E., Scott, C.T. & Prasad, A. 1997. A GIS-derived integrated moisture index to predict forest composition and productivity of Ohio forests (U.S.A.). Landscape Ecology 12: 331-348. Lookingbill, T.R. & Urban, D.L. 2004. An empirical approach towards improved spatial estimates of soil moisture for vegetation analysis. Landscape Ecology 19: 417-433. Evans, J.S. & Cushman, S.A. 2009. Gradient modeling of conifer species using random forests. Landscape Ecology 24: 673-683. Parker, A.J. 1982. The topographic relative moisture index: an approach to soil moisture assessment in mountain terrain. Physical Geography 3: 160-168. Bunn, A.G., Waggoner, L.A. & Graumlich, L.J. 2005. Topographic mediation of growth in high elevation foxtail pine (Pinus balfournia Grev. et Balf.) forests in the Sierra Nevada, USA. Global Ecology and Biogeography 14: 103-114. Erskine, R.H., Green, T.R., Ramirez, J.A. & MacDonald, L.H. 2006. Comparison of grid-based algorithms for computing upslope contributing area. Water Resources Research 42: W09416. Van Niel, K.P., Laffan, S.W. & Lees, B.G. 2004. Effect of error in the DEM on environmental variables for predictive vegetation modelling. Journal of Vegetation Science 15: 747-756. Endreny, T.A. & Wood, E.F. 2003. Maximizing spatial congruence of observed and DEM-delineated overland flow networks. International Journal of Geographical Information Science 17: 699-713. Fairfield, J. & Leymarie, P. 1991. Drainage networks from grid digital elevation models. Water Resources Research 27: 709-717. McDonald, R.I. & Urban, D.L. 2004. Forest edges and tree growth rates in the North Carolina Piedmont. Ecology 85: 2258-2266. 2002; 16 2009; 44 1991; 18 1991; 17 1984; 28 2002; 13 1992; 18 2005; 20 2008; 35 1973 2003; 17 2008; 148 2004; 2 1962; 32 2007; 33 2009; 12 1979; 24 1989; 106 1982; 3 1997; 12 1985 2005; 71 2001; 12 2007; 21 1994; 30 2004; 85 2009; 24 2004; 42 1987; 12 2004; 40 2006; 10 2009; 60 2002; 5 2008 2007 2003; 39 2008; 11 1992 2009; 373 2002 1991; 5 1994; 8 2001; 156 1991; 27 2006; 42 1997; 33 2004; 19 2004; 15 2005; 8 1964 2008; 45 2007; 43 2005; 14 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 Ellenberg H. (e_1_2_8_14_1) 1992; 18 e_1_2_8_5_1 Van Niel K.P. (e_1_2_8_58_1) 2004; 15 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 Reuter H.I. (e_1_2_8_48_1) 2008 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_60_1 Park S.J. (e_1_2_8_41_1) 2009; 44 e_1_2_8_17_1 Böhner J. (e_1_2_8_7_1) 2008 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 Kubát K. (e_1_2_8_29_1) 2002 Tolasz R. (e_1_2_8_57_1) 2007 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 Lea N.L. (e_1_2_8_30_1) 1992 e_1_2_8_25_1 e_1_2_8_46_1 Bock M. (e_1_2_8_6_1) 2008 e_1_2_8_27_1 Samek V. (e_1_2_8_50_1) 1964 Bauer J. (e_1_2_8_4_1) 1985 e_1_2_8_2_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 Gruber S. (e_1_2_8_23_1) 2008 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1  | 
    
| References_xml | – reference: Loucks, O.L. 1962. Ordinating forest communities by means of environmental scalars and phytosociological indices. Ecological Monographs 32: 137-166. – reference: Franklin, J. 2002. Enhancing a regional vegetation map with predictive models of dominant plant species in chaparral. Applied Vegetation Science 5: 135-146. – reference: Park, S.J., Rüecker, G.R., Agyare, W.R., Akramhanov, A., Kim, M. & Vlek, P.L.G. 2009. Influence of grid cell size and flow routing algorithm on soil-landform modelling. Journal of the Korean Geographical Society 44: 122-145. – reference: Costa-Cabral, M. & Burges, S.J. 1994. Digital elevation model networks (DEMON): a model of flow over hillslopes for computation of contributing and dispersal areas. Water Resources Research 30: 1681-1692. – reference: Parolo, G., Rossi, G. & Ferrarini, A. 2008. Toward improved species niche modelling: Arnica montana in the Alps as a case study. Journal of Applied Ecology 45: 1410-1418. – reference: Allen, R.B., Peet, R.K. & Baker, W.L. 1991. Gradient analysis of latitudinal variation in Southern Rocky Mountain forests. Journal of Biogeography 18: 123-139. – reference: Erskine, R.H., Green, T.R., Ramirez, J.A. & MacDonald, L.H. 2006. Comparison of grid-based algorithms for computing upslope contributing area. Water Resources Research 42: W09416. – reference: Beven, K.J. & Kirkby, M.J. 1979. A physically based, variable contributing area model of basin hydrology. Hydrologic Science Bulletin 24: 43-69. – reference: Iverson, L.R., Dale, M.E., Scott, C.T. & Prasad, A. 1997. A GIS-derived integrated moisture index to predict forest composition and productivity of Ohio forests (U.S.A.). Landscape Ecology 12: 331-348. – reference: Cairns, D.M. 2001. A comparison of methods for predicting vegetation type. Plant Ecology 156: 3-18. – reference: Van Niel, K.P., Laffan, S.W. & Lees, B.G. 2004. Effect of error in the DEM on environmental variables for predictive vegetation modelling. Journal of Vegetation Science 15: 747-756. – reference: Grabs, T., Seibert, J., Bishop, K. & Laudon, H. 2009. Modeling spatial patterns of saturated areas: a comparison of the topographic wetness index and a dynamic distributed model. Journal of Hydrology 373: 15-23. – reference: Zevenbergen, L.W. & Thorne, C.R. 1987. Quantitative analysis of land surface topography. Earth Surface Processes and Landforms 12: 47-56. – reference: Piedallu, C. & Gégout, J. 2005. Effects of forest environment and survey protocol on GPS accuracy. Photogrammetric Engineering & Remote Sensing 71: 1071-1078. – reference: Bunn, A.G., Waggoner, L.A. & Graumlich, L.J. 2005. Topographic mediation of growth in high elevation foxtail pine (Pinus balfournia Grev. et Balf.) forests in the Sierra Nevada, USA. Global Ecology and Biogeography 14: 103-114. – reference: Evans, J.S. & Cushman, S.A. 2009. Gradient modeling of conifer species using random forests. Landscape Ecology 24: 673-683. – reference: McCune, B. & Keon, D. 2002. Equations for potential annual direct incident radiation and heat load. Journal of Vegetation Science 13: 603-606. – reference: Endreny, T.A. & Wood, E.F. 2003. Maximizing spatial congruence of observed and DEM-delineated overland flow networks. International Journal of Geographical Information Science 17: 699-713. – reference: Holmgren, P. 1994. Multiple flow direction algorithms for runoff modelling in grid based elevation models: an empirical evaluation. Hydrological Processes 8: 327-334. – reference: Summerell, G.K., Dowling, T.I., Wild, J.A. & Beale, G. 2004. FLAG UPNESS and its application for mapping seasonally wet to waterlogged soils. Australian Journal of Soil Research 42: 155-162. – reference: McDonald, R.I. & Urban, D.L. 2004. Forest edges and tree growth rates in the North Carolina Piedmont. Ecology 85: 2258-2266. – reference: Lookingbill, T.R. & Urban, D.L. 2004. An empirical approach towards improved spatial estimates of soil moisture for vegetation analysis. Landscape Ecology 19: 417-433. – reference: Zinko, U., Seibert, J., Dynesius, M. & Nilsson, C. 2005. Plant species numbers predicted by a topography based groundwater-flow index. Ecosystems 8: 430-441. – reference: Svenning, J.-C., Kinner, D.A., Stallard, R.F., Engelbrecht, B.M.J. & Wright, S.J. 2004. Ecological determinism in plant community structure across a tropical forest landscape. Ecology 85: 2526-2538. – reference: Samek, V. 1964. Lesní společenstva Českého Krasu (Forest communities of the Bohemian Karst). NakladatelstvíČeskoslovenské akademie věd, Praha, CZ (in Czech). – reference: Sørensen, R., Zinko, U. & Seibert, J. 2006. On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrology and Earth System Sciences 10: 101-112. – reference: Seibert, J. & McGlynn, B. 2007. A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resources Research 43: W04501. – reference: Fairfield, J. & Leymarie, P. 1991. Drainage networks from grid digital elevation models. Water Resources Research 27: 709-717. – reference: Parker, A.J. 1982. The topographic relative moisture index: an approach to soil moisture assessment in mountain terrain. Physical Geography 3: 160-168. – reference: Parviainen, M., Luoto, M., Ryttari, T. & Heikkinen, R.K. 2008. Modelling the occurrence of threatened plant species in taiga landscapes: methodological and ecological perspectives. Journal of Biogeography 35: 1888-1905. – reference: Dirnböck, T., Hobbs, R.J., Lambeck, R.J. & Caccetta, P.A. 2002. Vegetation distribution in relation to topographically driven processes in southwestern Australia. Applied Vegetation Science 5: 147-158. – reference: Kubát, K., Hrouda, L., Chrtek, J. Jr., Kaplan, Z., Kirschner, J. & Stěpánek, J. (eds.), 2002. Key to the flora of the Czech Republic. Academia, Prague, CZ (in Czech). – reference: Moody, A. & Meentemeyer, R.K. 2001. Environmental factors influencing spatial patterns of woody plant diversity in chaparral, Santa Ynez Mountains, California. Journal of Vegetation Science 12: 41-52. – reference: Piedallu, C. & Gégout, J. 2008. Efficient assessment of topographic solar radiation to improve plant distribution models. Agriculture and Forest Meteorology 148: 1696-1706. – reference: Pierce, K.B., Lookingbill, T.R. & Urban, D.L. 2005. A simple method for estimating potential relative radiation (PRR) for landscape-scale vegetation analysis. Landscape Ecology 20: 137-147. – reference: Pan, F., Peters-Lidard, C.D., Sale, M.J. & King, A.W. 2004. A comparison of geographical information system-based algorithms for computing the TOPMODEL topographic index. Water Resources Research 40: 1-11. – reference: O'Callaghan, J.F. & Mark, D.M. 1984. The extraction of drainage networks from digital elevation data. Computer Vision, Graphic and Image Processing 28: 328-344. – reference: Wise, S.M. 2007. Effect of differing DEM creation methods on the results from a hydrological model. Computers & Geosciences 33: 1351-1365. – reference: Dobrowski, S.Z., Safford, H.D., Cheng, Y.B. & Ustin, S.L. 2008. Mapping mountain vegetation using species distribution modeling, image-based texture analysis, and object-based classification. Applied Vegetation Science 11: 499-508. – reference: Tarboton, D.G. 1997. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research 33: 309-319. – reference: Bader, M.Y. & Ruijten, J.J.A. 2008. A topography-based model of forest cover at the alpine tree line in the tropical Andes. Journal of Biogeography 35: 711-723. – reference: Taverna, K., Urban, D.L. & McDonald, R.I. 2005. Modeling landscape vegetation pattern in response to historic land-use: a hypothesis-driven approach for the North Carolina Piedmont, USA. Landscape Ecology 20: 689-702. – reference: Quinn, P., Beven, K., Chevallier, P. & Planchon, O. 1991. The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models. Hydrological Processes 5: 59-80. – reference: Gallant, J.C. & Dowling, T.I. 2003. A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resources Research 39: 1347-1360. – reference: Tolasz, R., Míková, T., Valeriánová, T. & Voženílek, V. (eds.) 2007. Climate atlas of Czechia. Czech Hydrometeorological Institute and Palacký University, Prague, CZ. – reference: Hutchinson, M.F. 1989. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology 106: 211-232. – reference: Moore, I.D., Grayson, R.B. & Ladson, A.R. 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrologic Processes 5: 3-30. – reference: Dyer, J.M. 2009. Assessing topographic patterns in moisture use and stress using a water balance approach. Landscape Ecology 24: 391-403. – reference: Johnson, C.E. & Barton, C.C. 2004. Where in the world are my field plots? Using GPS effectively in environmental field studies. Frontiers in Ecology and Environment 2: 475-482. – reference: Murphy, P.N.C., Ogilvie, J. & Arp, P. 2009. Topographic modelling of soil moisture conditions: a comparison and verification of two models. European Journal of Soil Science 60: 94-109. – reference: Wilson, J.P., Lam, C.S. & Deng, Y.X. 2007. Comparison of performance of flow-routing algorithms used in Geographic Information Systems. Hydrological Processes 21: 1026-1044. – reference: Freeman, G.T. 1991. Calculating catchment area with divergent flow based on a regular grid. Computers and Geosciences 17: 413-422. – reference: Zhou, Q. & Liu, X. 2002. Error assessment of grid-based flow routing algorithms used in hydrological models. International Journal of Geographical Information Science 16: 819-842. – reference: Ellenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W. & Paulissen, D. 1992. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18: 1-258. – reference: Kopecký, M. & Vojta, J. 2009. Land use legacies in post-agricultural forests in the Doupovské Mountains, Czech Republic. Applied Vegetation Science 12: 251-260. – start-page: 171 year: 2008 end-page: 194 – volume: 373 start-page: 15 year: 2009 end-page: 23 article-title: Modeling spatial patterns of saturated areas publication-title: Journal of Hydrology – volume: 13 start-page: 603 year: 2002 end-page: 606 article-title: Equations for potential annual direct incident radiation and heat load publication-title: Journal of Vegetation Science – volume: 85 start-page: 2258 year: 2004 end-page: 2266 article-title: Forest edges and tree growth rates in the North Carolina Piedmont publication-title: Ecology – volume: 43 year: 2007 article-title: A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models publication-title: Water Resources Research – volume: 85 start-page: 2526 year: 2004 end-page: 2538 article-title: Ecological determinism in plant community structure across a tropical forest landscape publication-title: Ecology – volume: 32 start-page: 137 year: 1962 end-page: 166 article-title: Ordinating forest communities by means of environmental scalars and phytosociological indices publication-title: Ecological Monographs – volume: 8 start-page: 430 year: 2005 end-page: 441 article-title: Plant species numbers predicted by a topography based groundwater‐flow index publication-title: Ecosystems – volume: 12 start-page: 47 year: 1987 end-page: 56 article-title: Quantitative analysis of land surface topography publication-title: Earth Surface Processes and Landforms – volume: 45 start-page: 1410 year: 2008 end-page: 1418 article-title: Toward improved species niche modelling publication-title: Journal of Applied Ecology – volume: 14 start-page: 103 year: 2005 end-page: 114 article-title: Topographic mediation of growth in high elevation foxtail pine ( Grev. et Balf.) forests in the Sierra Nevada, USA publication-title: Global Ecology and Biogeography – volume: 20 start-page: 137 year: 2005 end-page: 147 article-title: A simple method for estimating potential relative radiation (PRR) for landscape‐scale vegetation analysis publication-title: Landscape Ecology – volume: 20 start-page: 689 year: 2005 end-page: 702 article-title: Modeling landscape vegetation pattern in response to historic land‐use publication-title: Landscape Ecology – start-page: 213 year: 2008 end-page: 236 – volume: 27 start-page: 709 year: 1991 end-page: 717 article-title: Drainage networks from grid digital elevation models publication-title: Water Resources Research – volume: 148 start-page: 1696 year: 2008 end-page: 1706 article-title: Efficient assessment of topographic solar radiation to improve plant distribution models publication-title: Agriculture and Forest Meteorology – volume: 15 start-page: 747 year: 2004 end-page: 756 article-title: Effect of error in the DEM on environmental variables for predictive vegetation modelling publication-title: Journal of Vegetation Science – volume: 5 start-page: 3 year: 1991 end-page: 30 article-title: Digital terrain modelling publication-title: Hydrologic Processes – volume: 60 start-page: 94 year: 2009 end-page: 109 article-title: Topographic modelling of soil moisture conditions publication-title: European Journal of Soil Science – start-page: 195 year: 2008 end-page: 226 – volume: 5 start-page: 147 year: 2002 end-page: 158 article-title: Vegetation distribution in relation to topographically driven processes in southwestern Australia publication-title: Applied Vegetation Science – volume: 17 start-page: 413 year: 1991 end-page: 422 article-title: Calculating catchment area with divergent flow based on a regular grid publication-title: Computers and Geosciences – volume: 5 start-page: 59 year: 1991 end-page: 80 article-title: The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models publication-title: Hydrological Processes – volume: 8 start-page: 327 year: 1994 end-page: 334 article-title: Multiple flow direction algorithms for runoff modelling in grid based elevation models publication-title: Hydrological Processes – volume: 40 start-page: 1 year: 2004 end-page: 11 article-title: A comparison of geographical information system‐based algorithms for computing the TOPMODEL topographic index publication-title: Water Resources Research – volume: 33 start-page: 309 year: 1997 end-page: 319 article-title: A new method for the determination of flow directions and upslope areas in grid digital elevation models publication-title: Water Resources Research – volume: 24 start-page: 391 year: 2009 end-page: 403 article-title: Assessing topographic patterns in moisture use and stress using a water balance approach publication-title: Landscape Ecology – volume: 19 start-page: 417 year: 2004 end-page: 433 article-title: An empirical approach towards improved spatial estimates of soil moisture for vegetation analysis publication-title: Landscape Ecology – volume: 21 start-page: 1026 year: 2007 end-page: 1044 article-title: Comparison of performance of flow‐routing algorithms used in Geographic Information Systems publication-title: Hydrological Processes – volume: 42 year: 2006 article-title: Comparison of grid‐based algorithms for computing upslope contributing area publication-title: Water Resources Research – year: 1964 – volume: 71 start-page: 1071 year: 2005 end-page: 1078 article-title: Effects of forest environment and survey protocol on GPS accuracy publication-title: Photogrammetric Engineering & Remote Sensing – volume: 106 start-page: 211 year: 1989 end-page: 232 article-title: A new procedure for gridding elevation and stream line data with automatic removal of spurious pits publication-title: Journal of Hydrology – volume: 24 start-page: 43 year: 1979 end-page: 69 article-title: A physically based, variable contributing area model of basin hydrology publication-title: Hydrologic Science Bulletin – volume: 17 start-page: 699 year: 2003 end-page: 713 article-title: Maximizing spatial congruence of observed and DEM‐delineated overland flow networks publication-title: International Journal of Geographical Information Science – volume: 35 start-page: 1888 year: 2008 end-page: 1905 article-title: Modelling the occurrence of threatened plant species in taiga landscapes publication-title: Journal of Biogeography – volume: 5 start-page: 135 year: 2002 end-page: 146 article-title: Enhancing a regional vegetation map with predictive models of dominant plant species in chaparral publication-title: Applied Vegetation Science – year: 2007 – volume: 18 start-page: 123 year: 1991 end-page: 139 article-title: Gradient analysis of latitudinal variation in Southern Rocky Mountain forests publication-title: Journal of Biogeography – volume: 12 start-page: 331 year: 1997 end-page: 348 article-title: A GIS‐derived integrated moisture index to predict forest composition and productivity of Ohio forests (U.S.A.) publication-title: Landscape Ecology – volume: 156 start-page: 3 year: 2001 end-page: 18 article-title: A comparison of methods for predicting vegetation type publication-title: Plant Ecology – start-page: 13 year: 2008 end-page: 22 – volume: 12 start-page: 41 year: 2001 end-page: 52 article-title: Environmental factors influencing spatial patterns of woody plant diversity in chaparral, Santa Ynez Mountains, California publication-title: Journal of Vegetation Science – volume: 16 start-page: 819 year: 2002 end-page: 842 article-title: Error assessment of grid‐based flow routing algorithms used in hydrological models publication-title: International Journal of Geographical Information Science – volume: 12 start-page: 251 year: 2009 end-page: 260 article-title: Land use legacies in post‐agricultural forests in the Doupovské Mountains, Czech Republic publication-title: Applied Vegetation Science – volume: 24 start-page: 673 year: 2009 end-page: 683 article-title: Gradient modeling of conifer species using random forests publication-title: Landscape Ecology – volume: 3 start-page: 160 year: 1982 end-page: 168 article-title: The topographic relative moisture index publication-title: Physical Geography – start-page: 1 year: 1985 end-page: 15 – volume: 18 start-page: 1 year: 1992 end-page: 258 article-title: Zeigerwerte von Pflanzen in Mitteleuropa publication-title: Scripta Geobotanica – volume: 28 start-page: 328 year: 1984 end-page: 344 article-title: The extraction of drainage networks from digital elevation data publication-title: Computer Vision, Graphic and Image Processing – volume: 2 start-page: 475 year: 2004 end-page: 482 article-title: Where in the world are my field plots? Using GPS effectively in environmental field studies publication-title: Frontiers in Ecology and Environment – volume: 33 start-page: 1351 year: 2007 end-page: 1365 article-title: Effect of differing DEM creation methods on the results from a hydrological model publication-title: Computers & Geosciences – year: 2002 – start-page: 393 year: 1992 end-page: 407 – volume: 39 start-page: 1347 year: 2003 end-page: 1360 article-title: A multiresolution index of valley bottom flatness for mapping depositional areas publication-title: Water Resources Research – volume: 30 start-page: 1681 year: 1994 end-page: 1692 article-title: Digital elevation model networks (DEMON) publication-title: Water Resources Research – volume: 10 start-page: 101 year: 2006 end-page: 112 article-title: On the calculation of the topographic wetness index publication-title: Hydrology and Earth System Sciences – start-page: 87 year: 2008 end-page: 120 – volume: 11 start-page: 499 year: 2008 end-page: 508 article-title: Mapping mountain vegetation using species distribution modeling, image‐based texture analysis, and object‐based classification publication-title: Applied Vegetation Science – volume: 42 start-page: 155 year: 2004 end-page: 162 article-title: FLAG UPNESS and its application for mapping seasonally wet to waterlogged soils publication-title: Australian Journal of Soil Research – volume: 35 start-page: 711 year: 2008 end-page: 723 article-title: A topography‐based model of forest cover at the alpine tree line in the tropical Andes publication-title: Journal of Biogeography – volume: 44 start-page: 122 year: 2009 end-page: 145 article-title: Influence of grid cell size and flow routing algorithm on soil‐landform modelling publication-title: Journal of the Korean Geographical Society – start-page: 617 year: 1973 end-page: 737 – ident: e_1_2_8_18_1 doi: 10.1029/90WR02658 – ident: e_1_2_8_25_1 doi: 10.1016/0022-1694(89)90073-5 – start-page: 393 volume-title: Overland flow: hydraulics and erosion mechanics year: 1992 ident: e_1_2_8_30_1 – ident: e_1_2_8_47_1 doi: 10.1007/s10980-004-1296-6 – ident: e_1_2_8_3_1 doi: 10.1111/j.1365-2699.2007.01818.x – ident: e_1_2_8_35_1 doi: 10.1890/03-0313 – ident: e_1_2_8_5_1 doi: 10.1080/02626667909491834 – ident: e_1_2_8_19_1 doi: 10.1111/j.1654-109X.2002.tb00543.x – ident: e_1_2_8_40_1 doi: 10.1029/2004WR003069 – ident: e_1_2_8_62_1 doi: 10.1016/j.cageo.2007.05.003 – ident: e_1_2_8_10_1 doi: 10.1029/93WR03512 – ident: e_1_2_8_39_1 doi: 10.1016/S0734-189X(84)80011-0 – ident: e_1_2_8_53_1 doi: 10.1071/SR03028 – ident: e_1_2_8_13_1 doi: 10.1007/s10980-008-9316-6 – ident: e_1_2_8_31_1 doi: 10.1023/B:LAND.0000030451.29571.8b – ident: e_1_2_8_46_1 doi: 10.1016/j.agrformet.2008.06.001 – ident: e_1_2_8_61_1 doi: 10.1007/978-3-540-77800-4_12 – ident: e_1_2_8_24_1 doi: 10.1002/hyp.3360080405 – start-page: 87 volume-title: Geomorphometry: concepts, software, applications year: 2008 ident: e_1_2_8_48_1 – ident: e_1_2_8_38_1 doi: 10.1111/j.1365-2389.2008.01094.x – ident: e_1_2_8_45_1 doi: 10.14358/PERS.71.9.1071 – ident: e_1_2_8_34_1 doi: 10.1111/j.1654-1103.2002.tb02087.x – start-page: 13 volume-title: SAGA – seconds out year: 2008 ident: e_1_2_8_6_1 – ident: e_1_2_8_63_1 doi: 10.1002/esp.3290120107 – ident: e_1_2_8_17_1 doi: 10.1007/s10980-009-9341-0 – ident: e_1_2_8_27_1 doi: 10.1890/1540-9295(2004)002[0475:WITWAM]2.0.CO;2 – ident: e_1_2_8_12_1 doi: 10.3170/2008-7-18560 – ident: e_1_2_8_42_1 doi: 10.1080/02723646.1982.10642224 – volume-title: Key to the flora of the Czech Republic year: 2002 ident: e_1_2_8_29_1 – ident: e_1_2_8_21_1 doi: 10.1029/2002WR001426 – ident: e_1_2_8_9_1 doi: 10.1023/A:1011975321668 – ident: e_1_2_8_20_1 doi: 10.1016/0098-3004(91)90048-I – ident: e_1_2_8_22_1 doi: 10.1016/j.jhydrol.2009.03.031 – ident: e_1_2_8_60_1 doi: 10.1002/hyp.6277 – ident: e_1_2_8_11_1 doi: 10.1111/j.1654-109X.2002.tb00544.x – ident: e_1_2_8_64_1 doi: 10.1080/13658810210149425 – ident: e_1_2_8_8_1 doi: 10.1111/j.1466-822X.2005.00141.x – start-page: 195 volume-title: Geomorphometry: concepts, software, applications year: 2008 ident: e_1_2_8_7_1 – volume-title: Climate atlas of Czechia year: 2007 ident: e_1_2_8_57_1 – ident: e_1_2_8_55_1 doi: 10.1029/96WR03137 – ident: e_1_2_8_59_1 doi: 10.1007/978-94-010-2701-4_20 – ident: e_1_2_8_28_1 doi: 10.1111/j.1654-109X.2009.01023.x – ident: e_1_2_8_36_1 doi: 10.1111/j.1654-1103.2001.tb02615.x – volume-title: Lesní společenstva Českého Krasu (Forest communities of the Bohemian Karst) year: 1964 ident: e_1_2_8_50_1 – ident: e_1_2_8_16_1 doi: 10.1029/2005WR004648 – ident: e_1_2_8_33_1 – ident: e_1_2_8_52_1 doi: 10.5194/hess-10-101-2006 – ident: e_1_2_8_37_1 doi: 10.1002/hyp.3360050103 – ident: e_1_2_8_32_1 doi: 10.2307/1942383 – start-page: 171 volume-title: Geomorphometry: concepts, software, applications year: 2008 ident: e_1_2_8_23_1 – ident: e_1_2_8_26_1 doi: 10.1023/A:1007989813501 – ident: e_1_2_8_65_1 doi: 10.1007/s10021-003-0125-0 – volume: 15 start-page: 747 year: 2004 ident: e_1_2_8_58_1 article-title: Effect of error in the DEM on environmental variables for predictive vegetation modelling publication-title: Journal of Vegetation Science doi: 10.1111/j.1654-1103.2004.tb02317.x – ident: e_1_2_8_2_1 doi: 10.2307/2845287 – ident: e_1_2_8_15_1 doi: 10.1080/1365881031000135483 – ident: e_1_2_8_44_1 doi: 10.1111/j.1365-2699.2008.01922.x – start-page: 1 volume-title: Parameteraufbereitung fuer deterministische Gebiets‐Wassermodelle, Grundlagenarbeiten zu Analyse von Agrar‐Oekosystemen year: 1985 ident: e_1_2_8_4_1 – ident: e_1_2_8_51_1 doi: 10.1029/2006WR005128 – volume: 18 start-page: 1 year: 1992 ident: e_1_2_8_14_1 article-title: Zeigerwerte von Pflanzen in Mitteleuropa publication-title: Scripta Geobotanica – ident: e_1_2_8_56_1 doi: 10.1007/s10980-004-5652-3 – volume: 44 start-page: 122 year: 2009 ident: e_1_2_8_41_1 article-title: Influence of grid cell size and flow routing algorithm on soil‐landform modelling publication-title: Journal of the Korean Geographical Society – ident: e_1_2_8_43_1 doi: 10.1111/j.1365-2664.2008.01516.x – ident: e_1_2_8_49_1 doi: 10.1002/hyp.3360050106 – ident: e_1_2_8_54_1 doi: 10.1890/03-0396  | 
    
| SSID | ssj0017959 | 
    
| Score | 2.305914 | 
    
| Snippet | Questions: How important is the choice of flow routing algorithm with respect to application of topographic wetness index (TWI) in vegetation ecology? Which... Questions: How important is the choice of flow routing algorithm with respect to application of topographic wetness index (TWI) in vegetation ecology? Which...  | 
    
| SourceID | proquest crossref wiley jstor istex fao  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 450 | 
    
| SubjectTerms | Algorithms botanical composition Catchment area Correlation coefficient Czech Republic Digital elevation model (DEM) Digital elevation models Ecological modeling Ecology Flow Flow routing algorithm flow routing algorithms Forest communities Forest ecology Forest vegetation geomorphology Geomorphometry Hydrological modeling Landscape ecology Moisture content Network management systems plant communities plant ecology Soil moisture Soil water soil water content Species composition species diversity Temperate forest temperate forests Terrain analysis Topographic parameters topographic wetness index Topography Vegetation  | 
    
| Title | Using topographic wetness index in vegetation ecology: does the algorithm matter | 
    
| URI | https://api.istex.fr/ark:/67375/WNG-PQLB32MB-T/fulltext.pdf https://www.jstor.org/stable/40927821 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1654-109X.2010.01083.x https://www.proquest.com/docview/1766582305 https://www.proquest.com/docview/1776658802 https://www.proquest.com/docview/857113752  | 
    
| Volume | 13 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1654-109X dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0017959 issn: 1402-2001 databaseCode: ABDBF dateStart: 19991201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1402-2001 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1654-109X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017959 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZg4oEXfk8LDGQkxFurxIkThxe0TowJwcTYCn2zzonbTd2aqU1h46_n7pJGKwJpQqhS1Shnq3bPl-_qz98J8cqF4ArIw15GpQMSKpgKALjcEWuUJjGQe1b7PEj3h8mHkR61_Cc6C9PoQ3R_uNHK4HhNCxzcYn2RpzrBMJKPWoZWhHCiT3gyilPOrr50SlIRldTmg0Z0Ghmv10k9f-xo7Ul1ewwV4lea-ssVdXENlF6Htvxs2rsvpqtRNZSUaX9Zu37x8zfBx_8z7AfiXgth5U7jcw_FLT97JO4MKoSZV4_FIZMQZF1dNGLYp4X84WsKqJKVGfFdfveTluUoPatmX72RZeUXEtGohLNJNT-tT87lOWt_vn0ihnvvjnf3e23dhl6hdRb3lDcIKlRaOkgLA3qsdIlhNB6z_lwIeWxcqjOHJrlyYamcirw3UGC25sYYMDbFxqya-S0h0wxU4rTKXYIvBxgkXBS6xGsotQnzQGSr38gWrag51dY4s9eSG5wv2mgfWZovy_NlLwMRdS0vGmGPG7TZQjewMMH4a4dHinZ9I5OHmHQG4jX7RtcXzKfEmcu0_Xbw3n4-_DiI1aeBPQ7EJjtPZ4gJtkKYhj1sr7zJtnFkYUm-U9NeqA7Ey-42RgDa1oGZr5Zkw0YmVIGQf7ExOosi_DJokrF33XjMdufr0S59fPrPLZ-Ju8y5YArkttio50v_HKFc7V7wIv0FBog0tA | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED7BQIIX2IBpgf0wEuKtVeLGicMLWqdtZXQVYy30zbITt0zrmqlLYeOv585JoxWBNCFUqWrVsxW7d18-x-fvAN4YX5tUJ34jptIBIRVM1VpjuCPXyGQodWKd2mcv6gzCo6EYVuWA6CxMqQ9RP3CjyHB4TQFOD6SXozwSIeJIMqxStALkE00klA_CCJctxJA-11pSARXVdkeN6Dwyfl9O6_ljT0v3qvsjnSODpcm_XiQvLtHS2-TW3Z0OnsJkMa4yKeW8OS9MM_35m-Tjfxr4KjypWCzbLd1uDe7Z6TN42M6Rad48hxOXh8CK_LLUwz5L2Q9bEKYyJ86I7-y7HVeJjsw64eybdyzL7RVDQsr0ZJzPzopvF-zCyX--fwGDg_3-XqdRlW5opELErQa3EnkFjzKjo1RqMeIiQyRtjZwEna-TljSRiA2aJNz4GTc8sFbqFBdsZoSYsQ4r03xqN4BFseahETwxIb6MRpwwgW9CK3QmpJ94EC_-JJVWuuZUXmOibq1vcL5or32oaL6Umy917UFQt7wstT3u0GYD_UDpMUKwGpxy2vgNZOLjutODt8456r707JzS5mKhvvYO1aeTbrvFj9uq78G6857aEJ2VI1PDHjYX7qQqKLlSpOApaDtUePC6_hlBgHZ29NTmc7JxRtLnHrC_2EgRBwFeDJrEzr3uPGa1--V0jz6-_OeWO_Co0z_uqu6H3sdX8NilYLiMyE1YKWZzu4XMrjDbLmJ_AXJkONU | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED7BQIgXfk8LbGAkxFurxI0Thxe0bpQBo9rYCn2z7MQp07qm6tL94K_fnZNGKwJpQqhS1Shnq3bvLp_rz98BvDG-NqlO_FZMpQNCKpiqtcZwR6yRyVDqxDq1z360Mwg_D8WwLgdEZ2EqfYjmDzeKDJevKcDtNMuXozwSIeaRZFhTtALEE20ElHdCkUji921_a7SkAiqq7Y4a0XlkvF6m9fyxp6Vn1e1cF4hgafIvFuTFJVh6Hdy6p1PvIYwX46pIKcfteWna6a_fJB__08AfwYMaxbLNyu0ewy07eQJ3uwUizcunsO94CKwsppUe9lHKzm1JOZU5cUZ8Z2d2VBMdmXXC2ZfvWFbYU4aAlOnxqJgdlT9P2ImT_3z_DAa9D4dbO626dEMrFSLutLiViCt4lBkdpVKLnIsMM2kndxJ0vk460kQiNmiScONn3PDAWqlTXLCZHHPGKqxMioldAxbFmodG8MSE-DIa84QJfBNaoTMh_cSDePEjqbTWNafyGmN1bX2D80V77UNF86XcfKkLD4Km5bTS9rhBmzX0A6VHmILV4IDTxm8gEx_XnR68dc7R9KVnx0Sbi4X60f-o9vZ3ux3-tasOPVh13tMY4hqbI1LDHtYX7qTqVHKqSMFT0Hao8OB1cxuTAO3s6Ikt5mTjjKTPPWB_sZEiDgL8MmgSO_e68ZjV5veDLfr4_J9bvoJ7e9s9tfup_-UF3HcMDEeIXIeVcja3GwjsSvPSBewVyYc4WQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+topographic+wetness+index+in+vegetation+ecology%3A+does+the+algorithm+matter%3F&rft.jtitle=Applied+vegetation+science&rft.au=Kopeck%C3%BD%2C+Martin&rft.au=%C4%8C%C3%AD%C5%BEkov%C3%A1%2C+%C5%A0t%C4%9Bp%C3%A1nka&rft.date=2010-10-01&rft.issn=1402-2001&rft.eissn=1654-109X&rft.volume=13&rft.issue=4&rft.spage=450&rft.epage=459&rft_id=info:doi/10.1111%2Fj.1654-109X.2010.01083.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1654_109X_2010_01083_x | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1402-2001&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1402-2001&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1402-2001&client=summon |