Using topographic wetness index in vegetation ecology: does the algorithm matter

Questions: How important is the choice of flow routing algorithm with respect to application of topographic wetness index (TWI) in vegetation ecology? Which flow routing algorithms are preferable for application in vegetation ecology? Location: Forests in three different regions of the Czech Republi...

Full description

Saved in:
Bibliographic Details
Published inApplied vegetation science Vol. 13; no. 4; pp. 450 - 459
Main Authors Kopecky, Martin, Cizkova, Stepanka
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.10.2010
Blackwell Publishing, Ltd
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1402-2001
1654-109X
DOI10.1111/j.1654-109x.2010.01083.x

Cover

Abstract Questions: How important is the choice of flow routing algorithm with respect to application of topographic wetness index (TWI) in vegetation ecology? Which flow routing algorithms are preferable for application in vegetation ecology? Location: Forests in three different regions of the Czech Republic. Methods: We used vegetation data from 521 georeferenced plots, recently sampled in a wide range of forest communities. From a digital elevation model, we calculated 11 variations of TWI for each plot with 11 different flow routing algorithms. We evaluated the performance of differently calculated TWI by (1) Spearman rank correlation with average Ellenberg indicator values for soil moisture, (2) Mantel correlation coefficient between dissimilarities of species composition and dissimilarities of TWI and (3) the amount of variation in species composition explained by canonical correspondence analysis. Results: The choice of flow routing algorithm had a considerable effect on the performance of TWI. Correlation with Ellenberg indicator values for soil moisture, Mantel correlation coefficient and explained variation doubled when the appropriate algorithm was used. In all regions, multiple flow routing algorithms performed best, while single flow routing algorithms performed worst. Conclusions: We recommend the multiple flow routing algorithms of Quinn et al. and Freeman for application in vegetation ecology.
AbstractList Questions: How important is the choice of flow routing algorithm with respect to application of topographic wetness index (TWI) in vegetation ecology? Which flow routing algorithms are preferable for application in vegetation ecology? Location: Forests in three different regions of the Czech Republic. Methods: We used vegetation data from 521 georeferenced plots, recently sampled in a wide range of forest communities. From a digital elevation model, we calculated 11 variations of TWI for each plot with 11 different flow routing algorithms. We evaluated the performance of differently calculated TWI by (1) Spearman rank correlation with average Ellenberg indicator values for soil moisture, (2) Mantel correlation coefficient between dissimilarities of species composition and dissimilarities of TWI and (3) the amount of variation in species composition explained by canonical correspondence analysis. Results: The choice of flow routing algorithm had a considerable effect on the performance of TWI. Correlation with Ellenberg indicator values for soil moisture, Mantel correlation coefficient and explained variation doubled when the appropriate algorithm was used. In all regions, multiple flow routing algorithms performed best, while single flow routing algorithms performed worst. Conclusions: We recommend the multiple flow routing algorithms of Quinn et al. and Freeman for application in vegetation ecology.
Questions: How important is the choice of flow routing algorithm with respect to application of topographic wetness index (TWI) in vegetation ecology? Which flow routing algorithms are preferable for application in vegetation ecology? Location: Forests in three different regions of the Czech Republic. Methods: We used vegetation data from 521 georeferenced plots, recently sampled in a wide range of forest communities. From a digital elevation model, we calculated 11 variations of TWI for each plot with 11 different flow routing algorithms. We evaluated the performance of differently calculated TWI by (1) Spearman rank correlation with average Ellenberg indicator values for soil moisture, (2) Mantel correlation coefficient between dissimilarities of species composition and dissimilarities of TWI and (3) the amount of variation in species composition explained by canonical correspondence analysis. Results: The choice of flow routing algorithm had a considerable effect on the performance of TWI. Correlation with Ellenberg indicator values for soil moisture, Mantel correlation coefficient and explained variation doubled when the appropriate algorithm was used. In all regions, multiple flow routing algorithms performed best, while single flow routing algorithms performed worst. Conclusions: We recommend the multiple flow routing algorithms of Quinn et al. and Freeman for application in vegetation ecology.
Questions: How important is the choice of flow routing algorithm with respect to application of topographic wetness index (TWI) in vegetation ecology? Which flow routing algorithms are preferable for application in vegetation ecology? Location: Forests in three different regions of the Czech Republic. Methods: We used vegetation data from 521 georeferenced plots, recently sampled in a wide range of forest communities. From a digital elevation model, we calculated 11 variations of TWI for each plot with 11 different flow routing algorithms. We evaluated the performance of differently calculated TWI by (1) Spearman rank correlation with average Ellenberg indicator values for soil moisture, (2) Mantel correlation coefficient between dissimilarities of species composition and dissimilarities of TWI and (3) the amount of variation in species composition explained by canonical correspondence analysis. Results: The choice of flow routing algorithm had a considerable effect on the performance of TWI. Correlation with Ellenberg indicator values for soil moisture, Mantel correlation coefficient and explained variation doubled when the appropriate algorithm was used. In all regions, multiple flow routing algorithms performed best, while single flow routing algorithms performed worst. Conclusions: We recommend the multiple flow routing algorithms of Quinn et al. and Freeman for application in vegetation ecology.
Author Čížková, Štěpánka
Kopecký, Martin
Author_xml – sequence: 1
  fullname: Kopecky, Martin
– sequence: 2
  fullname: Cizkova, Stepanka
BookMark eNqNkU1v1DAQhiNUJNrCT0BY4kAvWfyxjh0OSO0KWqQFitoFbpaTTLIO2XixvTT77-uQ0kMPqJZsjzzPvGP7PUoOettDkiCCZySOt-2MZHyeEpwPM4rjaZySzYYnyeG_xM-DGM8xTSnG5Fly5H0bA5Hz_DC5XHnTNyjYrW2c3q5NiW4g9OA9Mn0FQ1zRH2gg6GBsj6C0nW3271BlwaOwBqS7xjoT1hu00SGAe548rXXn4cXdfpysPn64Xlyky6_nnxany7TkXLCUgiQE06wqdFZKzWvKK11VrMYk3gzrnMki46KISE4LXNGCEgCpSzLPi1rk7Dh5M-lunf29Ax_UxvgSuk73YHdeSS4IYYLTSJ78lyRCZBmXEo_o6wdoa3euj--I1AhRhnmk3k9U6az3DmpVmul_gtOmUwSr0RrVqtEBNTqgRmvUX2vUEAXkA4GtMxvt9o8pvet9YzrYP7pOnX6_WoxhFHg5CbQ-WHcvMMc5FZKSmE-nvPEBhvu8dr9UJuJ_qh9fztXlt-UZo5_P1HXkX018ra3SjTNera5ia4aJzLEUhN0CkuTJ3w
CitedBy_id crossref_primary_10_3390_rs70708489
crossref_primary_10_3390_rs14133169
crossref_primary_10_1007_s10531_013_0442_3
crossref_primary_10_1111_ddi_12047
crossref_primary_10_1111_jvs_12060
crossref_primary_10_1080_11263504_2023_2165562
crossref_primary_10_1890_ES14_00384_1
crossref_primary_10_1007_s10980_019_00903_x
crossref_primary_10_1007_s12061_014_9130_2
crossref_primary_10_1016_j_ecolind_2021_108315
crossref_primary_10_1016_j_scitotenv_2020_137250
crossref_primary_10_1007_s10980_018_0723_z
crossref_primary_10_1016_j_jag_2013_05_011
crossref_primary_10_1016_j_dib_2023_109369
crossref_primary_10_1175_JHM_D_21_0251_1
crossref_primary_10_1016_j_jhydrol_2021_126621
crossref_primary_10_1016_j_scitotenv_2018_11_235
crossref_primary_10_1590_1809_4430_eng_agric_v36n6p1261_1271_2016
crossref_primary_10_1007_s12224_016_9276_6
crossref_primary_10_1071_WF16080
crossref_primary_10_1093_aob_mcad042
crossref_primary_10_5194_hess_18_3623_2014
crossref_primary_10_1111_1365_2664_12387
crossref_primary_10_1016_j_agrformet_2023_109828
crossref_primary_10_1111_plb_13082
crossref_primary_10_1016_j_ecolind_2019_105652
crossref_primary_10_1016_j_foreco_2014_09_032
crossref_primary_10_1016_j_hydroa_2023_100165
crossref_primary_10_1111_nph_20068
crossref_primary_10_1002_rse2_253
crossref_primary_10_3390_f9030130
crossref_primary_10_1515_biorc_2017_0010
crossref_primary_10_1016_j_foreco_2015_03_038
crossref_primary_10_4296_cwrj2011_909
crossref_primary_10_1016_j_catena_2023_107787
crossref_primary_10_1016_j_scitotenv_2021_151972
crossref_primary_10_1007_s00468_013_0869_x
crossref_primary_10_1016_j_foreco_2019_117469
crossref_primary_10_1029_2020WR028546
crossref_primary_10_1016_j_foreco_2020_118366
crossref_primary_10_1016_j_jhydrol_2020_124669
crossref_primary_10_1111_jvs_12642
crossref_primary_10_1080_01431161_2013_845318
crossref_primary_10_1139_cjfr_2015_0491
crossref_primary_10_1007_s11629_013_2644_2
crossref_primary_10_1080_10106049_2021_1974959
crossref_primary_10_1371_journal_pone_0097110
crossref_primary_10_1002_ece3_7253
crossref_primary_10_3390_land9090316
crossref_primary_10_3390_w15163005
crossref_primary_10_1016_j_scitotenv_2020_143785
crossref_primary_10_2478_mgr_2023_0020
crossref_primary_10_1371_journal_pone_0121172
crossref_primary_10_1111_jvs_12816
crossref_primary_10_1016_j_foreco_2017_05_048
crossref_primary_10_1134_S2079096122030039
crossref_primary_10_61186_jeer_14_3_66
crossref_primary_10_1002_esp_4301
crossref_primary_10_1051_e3sconf_202448301014
crossref_primary_10_1029_2018WR023627
crossref_primary_10_3390_su10020295
crossref_primary_10_1016_j_compag_2020_105253
crossref_primary_10_5424_fs_2016251_07123
crossref_primary_10_1890_ES13_00134_1
crossref_primary_10_1111_ecog_04687
crossref_primary_10_1111_jvs_12781
crossref_primary_10_1186_s40965_019_0066_y
crossref_primary_10_1007_s11769_022_1304_2
crossref_primary_10_1016_j_asr_2022_02_027
crossref_primary_10_1177_03091333211023689
crossref_primary_10_2478_foecol_2023_0010
crossref_primary_10_1007_s13157_012_0359_8
crossref_primary_10_1007_s40710_018_0341_4
crossref_primary_10_1016_j_foreco_2017_10_011
crossref_primary_10_1016_j_jag_2019_02_004
crossref_primary_10_1016_S2095_3119_15_61303_X
crossref_primary_10_1080_10106049_2022_2136253
crossref_primary_10_1016_j_jhydrol_2021_126132
crossref_primary_10_1016_j_ecolind_2017_10_011
crossref_primary_10_1890_13_0363_1
crossref_primary_10_5194_bg_13_1387_2016
crossref_primary_10_1002_ece3_4561
crossref_primary_10_1016_j_foreco_2014_08_033
crossref_primary_10_5194_hess_17_3679_2013
crossref_primary_10_1007_s00484_019_01763_5
crossref_primary_10_1111_jvs_13009
crossref_primary_10_1080_10106049_2019_1687595
crossref_primary_10_1016_j_ecolind_2019_106033
crossref_primary_10_3390_w16040536
crossref_primary_10_1016_j_ecolind_2015_05_011
crossref_primary_10_1016_j_apgeog_2017_12_005
crossref_primary_10_1002_ecs2_1797
crossref_primary_10_1016_j_heliyon_2023_e13482
crossref_primary_10_1016_j_ecolind_2015_04_012
crossref_primary_10_3390_su10072473
crossref_primary_10_1111_csp2_13151
crossref_primary_10_2136_sssaj2018_09_0355
crossref_primary_10_1016_j_foreco_2020_118324
crossref_primary_10_3846_20296991_2013_806702
crossref_primary_10_1111_gcb_12286
crossref_primary_10_1016_j_ecolind_2014_07_013
crossref_primary_10_1007_s11368_023_03586_9
crossref_primary_10_1080_17550874_2015_1010186
crossref_primary_10_1007_s10021_021_00725_6
crossref_primary_10_1016_j_apgeog_2014_07_014
crossref_primary_10_1007_s12224_023_09428_3
crossref_primary_10_1016_j_jag_2020_102147
crossref_primary_10_1016_j_apgeog_2018_11_001
crossref_primary_10_1111_aec_12786
crossref_primary_10_1071_WF18037
crossref_primary_10_3390_su11205639
crossref_primary_10_1002_eco_1994
crossref_primary_10_1016_j_ecolmodel_2018_05_006
crossref_primary_10_1111_jvs_13026
crossref_primary_10_1016_j_ecolind_2012_02_024
crossref_primary_10_1080_15481603_2024_2401247
crossref_primary_10_1007_s11258_018_0810_x
crossref_primary_10_1111_1365_2656_12808
crossref_primary_10_15421_022385
crossref_primary_10_1016_j_catena_2021_105468
crossref_primary_10_1016_j_jsames_2019_102359
crossref_primary_10_1111_oik_07488
Cites_doi 10.1029/90WR02658
10.1016/0022-1694(89)90073-5
10.1007/s10980-004-1296-6
10.1111/j.1365-2699.2007.01818.x
10.1890/03-0313
10.1080/02626667909491834
10.1111/j.1654-109X.2002.tb00543.x
10.1029/2004WR003069
10.1016/j.cageo.2007.05.003
10.1029/93WR03512
10.1016/S0734-189X(84)80011-0
10.1071/SR03028
10.1007/s10980-008-9316-6
10.1023/B:LAND.0000030451.29571.8b
10.1016/j.agrformet.2008.06.001
10.1007/978-3-540-77800-4_12
10.1002/hyp.3360080405
10.1111/j.1365-2389.2008.01094.x
10.14358/PERS.71.9.1071
10.1111/j.1654-1103.2002.tb02087.x
10.1002/esp.3290120107
10.1007/s10980-009-9341-0
10.1890/1540-9295(2004)002[0475:WITWAM]2.0.CO;2
10.3170/2008-7-18560
10.1080/02723646.1982.10642224
10.1029/2002WR001426
10.1023/A:1011975321668
10.1016/0098-3004(91)90048-I
10.1016/j.jhydrol.2009.03.031
10.1002/hyp.6277
10.1111/j.1654-109X.2002.tb00544.x
10.1080/13658810210149425
10.1111/j.1466-822X.2005.00141.x
10.1029/96WR03137
10.1007/978-94-010-2701-4_20
10.1111/j.1654-109X.2009.01023.x
10.1111/j.1654-1103.2001.tb02615.x
10.1029/2005WR004648
10.5194/hess-10-101-2006
10.1002/hyp.3360050103
10.2307/1942383
10.1023/A:1007989813501
10.1007/s10021-003-0125-0
10.1111/j.1654-1103.2004.tb02317.x
10.2307/2845287
10.1080/1365881031000135483
10.1111/j.1365-2699.2008.01922.x
10.1029/2006WR005128
10.1007/s10980-004-5652-3
10.1111/j.1365-2664.2008.01516.x
10.1002/hyp.3360050106
10.1890/03-0396
ContentType Journal Article
Copyright 2010 International Association for Vegetation Science
Copyright_xml – notice: 2010 International Association for Vegetation Science
DBID FBQ
BSCLL
AAYXX
CITATION
7SN
C1K
7S9
L.6
DOI 10.1111/j.1654-109x.2010.01083.x
DatabaseName AGRIS
Istex
CrossRef
Ecology Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Ecology Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Ecology Abstracts
Ecology Abstracts


Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Ecology
EISSN 1654-109X
EndPage 459
ExternalDocumentID 3957587341
10_1111_j_1654_109X_2010_01083_x
AVSC1083
40927821
ark_67375_WNG_PQLB32MB_T
US201301890871
Genre article
GeographicLocations Czech Republic
GeographicLocations_xml – name: Czech Republic
GroupedDBID -JH
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
2~F
31~
33P
3SF
4.4
4P2
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AACFU
AAESR
AAEVG
AAHHS
AAHKG
AANLZ
AAONW
AAPSS
AASGY
AAXRX
AAXTN
AAZKR
ABBHK
ABCQN
ABCUV
ABDBF
ABEML
ABHUG
ABJNI
ABPLY
ABPTK
ABPVW
ABTLG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADHSS
ADIZJ
ADKYN
ADMGS
ADOYD
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
ADZOD
AEDJY
AEEJZ
AEEZP
AEIGN
AEIMD
AENEX
AEPYG
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFFIJ
AFFPM
AFGKR
AFNWH
AFPWT
AFRAH
AFVGU
AGJLS
AGUYK
AICQM
AIRJO
AIURR
AIWBW
AJBDE
AJXKR
AKPMI
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANHSF
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
CBGCD
COF
CS3
CWIXF
D-E
D-F
DATOO
DC7
DCZOG
DFEDG
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DWIUU
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
EQZMY
ESX
F00
F01
F04
FBQ
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HTVGU
HVGLF
HZ~
IAG
IAO
IEP
IGH
IHR
ITC
IX1
J.8
J0M
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
KPI
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P4D
PQ0
Q.N
Q11
Q5J
QB0
R.K
RBO
ROL
RWI
RX1
SA0
SUPJJ
TEORI
TUS
UB1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~8M
~IA
~KM
~WT
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ABXSQ
ACHIC
ACRPL
ACUHS
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AITYG
ALVPJ
AQVQM
BSCLL
H13
HGLYW
IPSME
OIG
AAYXX
CITATION
7SN
C1K
7S9
L.6
ID FETCH-LOGICAL-c5573-2e811026dba6c8a5f25dadd3f011790a938b657b02692b0d2b21ee8ac149bf793
IEDL.DBID DR2
ISSN 1402-2001
IngestDate Thu Jul 10 22:59:47 EDT 2025
Tue Oct 07 08:30:52 EDT 2025
Fri Jul 25 10:39:42 EDT 2025
Wed Oct 01 03:01:17 EDT 2025
Thu Apr 24 23:09:38 EDT 2025
Wed Jan 22 16:46:32 EST 2025
Thu Jul 03 21:10:51 EDT 2025
Sun Sep 21 06:31:23 EDT 2025
Wed Dec 27 19:15:56 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5573-2e811026dba6c8a5f25dadd3f011790a938b657b02692b0d2b21ee8ac149bf793
Notes http://dx.doi.org/10.1111/j.1654-109X.2010.01083.x
ArticleID:AVSC1083
istex:D53FA805AC51F4284B5D4B504927789081BCA891
ark:/67375/WNG-PQLB32MB-T
Co‐ordinating Editor: Dr Lauchlan Fraser
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1766582305
PQPubID 946338
PageCount 10
ParticipantIDs proquest_miscellaneous_857113752
proquest_miscellaneous_1776658802
proquest_journals_1766582305
crossref_citationtrail_10_1111_j_1654_109X_2010_01083_x
crossref_primary_10_1111_j_1654_109X_2010_01083_x
wiley_primary_10_1111_j_1654_109X_2010_01083_x_AVSC1083
jstor_primary_40927821
istex_primary_ark_67375_WNG_PQLB32MB_T
fao_agris_US201301890871
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2010
PublicationDateYYYYMMDD 2010-10-01
PublicationDate_xml – month: 10
  year: 2010
  text: October 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Malden
PublicationTitle Applied vegetation science
PublicationYear 2010
Publisher Blackwell Publishing Ltd
Blackwell Publishing, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell Publishing, Ltd
– name: Wiley Subscription Services, Inc
References Dobrowski, S.Z., Safford, H.D., Cheng, Y.B. & Ustin, S.L. 2008. Mapping mountain vegetation using species distribution modeling, image-based texture analysis, and object-based classification. Applied Vegetation Science 11: 499-508.
Tolasz, R., Míková, T., Valeriánová, T. & Voženílek, V. (eds.) 2007. Climate atlas of Czechia. Czech Hydrometeorological Institute and Palacký University, Prague, CZ.
Tarboton, D.G. 1997. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research 33: 309-319.
Franklin, J. 2002. Enhancing a regional vegetation map with predictive models of dominant plant species in chaparral. Applied Vegetation Science 5: 135-146.
Seibert, J. & McGlynn, B. 2007. A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resources Research 43: W04501.
Piedallu, C. & Gégout, J. 2005. Effects of forest environment and survey protocol on GPS accuracy. Photogrammetric Engineering & Remote Sensing 71: 1071-1078.
Murphy, P.N.C., Ogilvie, J. & Arp, P. 2009. Topographic modelling of soil moisture conditions: a comparison and verification of two models. European Journal of Soil Science 60: 94-109.
Svenning, J.-C., Kinner, D.A., Stallard, R.F., Engelbrecht, B.M.J. & Wright, S.J. 2004. Ecological determinism in plant community structure across a tropical forest landscape. Ecology 85: 2526-2538.
Dyer, J.M. 2009. Assessing topographic patterns in moisture use and stress using a water balance approach. Landscape Ecology 24: 391-403.
Hutchinson, M.F. 1989. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology 106: 211-232.
Moore, I.D., Grayson, R.B. & Ladson, A.R. 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrologic Processes 5: 3-30.
Holmgren, P. 1994. Multiple flow direction algorithms for runoff modelling in grid based elevation models: an empirical evaluation. Hydrological Processes 8: 327-334.
Cairns, D.M. 2001. A comparison of methods for predicting vegetation type. Plant Ecology 156: 3-18.
Costa-Cabral, M. & Burges, S.J. 1994. Digital elevation model networks (DEMON): a model of flow over hillslopes for computation of contributing and dispersal areas. Water Resources Research 30: 1681-1692.
Summerell, G.K., Dowling, T.I., Wild, J.A. & Beale, G. 2004. FLAG UPNESS and its application for mapping seasonally wet to waterlogged soils. Australian Journal of Soil Research 42: 155-162.
Taverna, K., Urban, D.L. & McDonald, R.I. 2005. Modeling landscape vegetation pattern in response to historic land-use: a hypothesis-driven approach for the North Carolina Piedmont, USA. Landscape Ecology 20: 689-702.
Bader, M.Y. & Ruijten, J.J.A. 2008. A topography-based model of forest cover at the alpine tree line in the tropical Andes. Journal of Biogeography 35: 711-723.
McCune, B. & Keon, D. 2002. Equations for potential annual direct incident radiation and heat load. Journal of Vegetation Science 13: 603-606.
Pierce, K.B., Lookingbill, T.R. & Urban, D.L. 2005. A simple method for estimating potential relative radiation (PRR) for landscape-scale vegetation analysis. Landscape Ecology 20: 137-147.
Samek, V. 1964. Lesní společenstva Českého Krasu (Forest communities of the Bohemian Karst). NakladatelstvíČeskoslovenské akademie věd, Praha, CZ (in Czech).
Wilson, J.P., Lam, C.S. & Deng, Y.X. 2007. Comparison of performance of flow-routing algorithms used in Geographic Information Systems. Hydrological Processes 21: 1026-1044.
Gallant, J.C. & Dowling, T.I. 2003. A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resources Research 39: 1347-1360.
Zinko, U., Seibert, J., Dynesius, M. & Nilsson, C. 2005. Plant species numbers predicted by a topography based groundwater-flow index. Ecosystems 8: 430-441.
Johnson, C.E. & Barton, C.C. 2004. Where in the world are my field plots? Using GPS effectively in environmental field studies. Frontiers in Ecology and Environment 2: 475-482.
O'Callaghan, J.F. & Mark, D.M. 1984. The extraction of drainage networks from digital elevation data. Computer Vision, Graphic and Image Processing 28: 328-344.
Quinn, P., Beven, K., Chevallier, P. & Planchon, O. 1991. The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models. Hydrological Processes 5: 59-80.
Park, S.J., Rüecker, G.R., Agyare, W.R., Akramhanov, A., Kim, M. & Vlek, P.L.G. 2009. Influence of grid cell size and flow routing algorithm on soil-landform modelling. Journal of the Korean Geographical Society 44: 122-145.
Kopecký, M. & Vojta, J. 2009. Land use legacies in post-agricultural forests in the Doupovské Mountains, Czech Republic. Applied Vegetation Science 12: 251-260.
Freeman, G.T. 1991. Calculating catchment area with divergent flow based on a regular grid. Computers and Geosciences 17: 413-422.
Wise, S.M. 2007. Effect of differing DEM creation methods on the results from a hydrological model. Computers & Geosciences 33: 1351-1365.
Parolo, G., Rossi, G. & Ferrarini, A. 2008. Toward improved species niche modelling: Arnica montana in the Alps as a case study. Journal of Applied Ecology 45: 1410-1418.
Allen, R.B., Peet, R.K. & Baker, W.L. 1991. Gradient analysis of latitudinal variation in Southern Rocky Mountain forests. Journal of Biogeography 18: 123-139.
Sørensen, R., Zinko, U. & Seibert, J. 2006. On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrology and Earth System Sciences 10: 101-112.
Piedallu, C. & Gégout, J. 2008. Efficient assessment of topographic solar radiation to improve plant distribution models. Agriculture and Forest Meteorology 148: 1696-1706.
Beven, K.J. & Kirkby, M.J. 1979. A physically based, variable contributing area model of basin hydrology. Hydrologic Science Bulletin 24: 43-69.
Ellenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W. & Paulissen, D. 1992. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18: 1-258.
Grabs, T., Seibert, J., Bishop, K. & Laudon, H. 2009. Modeling spatial patterns of saturated areas: a comparison of the topographic wetness index and a dynamic distributed model. Journal of Hydrology 373: 15-23.
Loucks, O.L. 1962. Ordinating forest communities by means of environmental scalars and phytosociological indices. Ecological Monographs 32: 137-166.
Moody, A. & Meentemeyer, R.K. 2001. Environmental factors influencing spatial patterns of woody plant diversity in chaparral, Santa Ynez Mountains, California. Journal of Vegetation Science 12: 41-52.
Pan, F., Peters-Lidard, C.D., Sale, M.J. & King, A.W. 2004. A comparison of geographical information system-based algorithms for computing the TOPMODEL topographic index. Water Resources Research 40: 1-11.
Kubát, K., Hrouda, L., Chrtek, J. Jr., Kaplan, Z., Kirschner, J. & Stěpánek, J. (eds.), 2002. Key to the flora of the Czech Republic. Academia, Prague, CZ (in Czech).
Zhou, Q. & Liu, X. 2002. Error assessment of grid-based flow routing algorithms used in hydrological models. International Journal of Geographical Information Science 16: 819-842.
Parviainen, M., Luoto, M., Ryttari, T. & Heikkinen, R.K. 2008. Modelling the occurrence of threatened plant species in taiga landscapes: methodological and ecological perspectives. Journal of Biogeography 35: 1888-1905.
Zevenbergen, L.W. & Thorne, C.R. 1987. Quantitative analysis of land surface topography. Earth Surface Processes and Landforms 12: 47-56.
Dirnböck, T., Hobbs, R.J., Lambeck, R.J. & Caccetta, P.A. 2002. Vegetation distribution in relation to topographically driven processes in southwestern Australia. Applied Vegetation Science 5: 147-158.
Iverson, L.R., Dale, M.E., Scott, C.T. & Prasad, A. 1997. A GIS-derived integrated moisture index to predict forest composition and productivity of Ohio forests (U.S.A.). Landscape Ecology 12: 331-348.
Lookingbill, T.R. & Urban, D.L. 2004. An empirical approach towards improved spatial estimates of soil moisture for vegetation analysis. Landscape Ecology 19: 417-433.
Evans, J.S. & Cushman, S.A. 2009. Gradient modeling of conifer species using random forests. Landscape Ecology 24: 673-683.
Parker, A.J. 1982. The topographic relative moisture index: an approach to soil moisture assessment in mountain terrain. Physical Geography 3: 160-168.
Bunn, A.G., Waggoner, L.A. & Graumlich, L.J. 2005. Topographic mediation of growth in high elevation foxtail pine (Pinus balfournia Grev. et Balf.) forests in the Sierra Nevada, USA. Global Ecology and Biogeography 14: 103-114.
Erskine, R.H., Green, T.R., Ramirez, J.A. & MacDonald, L.H. 2006. Comparison of grid-based algorithms for computing upslope contributing area. Water Resources Research 42: W09416.
Van Niel, K.P., Laffan, S.W. & Lees, B.G. 2004. Effect of error in the DEM on environmental variables for predictive vegetation modelling. Journal of Vegetation Science 15: 747-756.
Endreny, T.A. & Wood, E.F. 2003. Maximizing spatial congruence of observed and DEM-delineated overland flow networks. International Journal of Geographical Information Science 17: 699-713.
Fairfield, J. & Leymarie, P. 1991. Drainage networks from grid digital elevation models. Water Resources Research 27: 709-717.
McDonald, R.I. & Urban, D.L. 2004. Forest edges and tree growth rates in the North Carolina Piedmont. Ecology 85: 2258-2266.
2002; 16
2009; 44
1991; 18
1991; 17
1984; 28
2002; 13
1992; 18
2005; 20
2008; 35
1973
2003; 17
2008; 148
2004; 2
1962; 32
2007; 33
2009; 12
1979; 24
1989; 106
1982; 3
1997; 12
1985
2005; 71
2001; 12
2007; 21
1994; 30
2004; 85
2009; 24
2004; 42
1987; 12
2004; 40
2006; 10
2009; 60
2002; 5
2008
2007
2003; 39
2008; 11
1992
2009; 373
2002
1991; 5
1994; 8
2001; 156
1991; 27
2006; 42
1997; 33
2004; 19
2004; 15
2005; 8
1964
2008; 45
2007; 43
2005; 14
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
Ellenberg H. (e_1_2_8_14_1) 1992; 18
e_1_2_8_5_1
Van Niel K.P. (e_1_2_8_58_1) 2004; 15
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
Reuter H.I. (e_1_2_8_48_1) 2008
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_60_1
Park S.J. (e_1_2_8_41_1) 2009; 44
e_1_2_8_17_1
Böhner J. (e_1_2_8_7_1) 2008
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
Kubát K. (e_1_2_8_29_1) 2002
Tolasz R. (e_1_2_8_57_1) 2007
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
Lea N.L. (e_1_2_8_30_1) 1992
e_1_2_8_25_1
e_1_2_8_46_1
Bock M. (e_1_2_8_6_1) 2008
e_1_2_8_27_1
Samek V. (e_1_2_8_50_1) 1964
Bauer J. (e_1_2_8_4_1) 1985
e_1_2_8_2_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
Gruber S. (e_1_2_8_23_1) 2008
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
References_xml – reference: Loucks, O.L. 1962. Ordinating forest communities by means of environmental scalars and phytosociological indices. Ecological Monographs 32: 137-166.
– reference: Franklin, J. 2002. Enhancing a regional vegetation map with predictive models of dominant plant species in chaparral. Applied Vegetation Science 5: 135-146.
– reference: Park, S.J., Rüecker, G.R., Agyare, W.R., Akramhanov, A., Kim, M. & Vlek, P.L.G. 2009. Influence of grid cell size and flow routing algorithm on soil-landform modelling. Journal of the Korean Geographical Society 44: 122-145.
– reference: Costa-Cabral, M. & Burges, S.J. 1994. Digital elevation model networks (DEMON): a model of flow over hillslopes for computation of contributing and dispersal areas. Water Resources Research 30: 1681-1692.
– reference: Parolo, G., Rossi, G. & Ferrarini, A. 2008. Toward improved species niche modelling: Arnica montana in the Alps as a case study. Journal of Applied Ecology 45: 1410-1418.
– reference: Allen, R.B., Peet, R.K. & Baker, W.L. 1991. Gradient analysis of latitudinal variation in Southern Rocky Mountain forests. Journal of Biogeography 18: 123-139.
– reference: Erskine, R.H., Green, T.R., Ramirez, J.A. & MacDonald, L.H. 2006. Comparison of grid-based algorithms for computing upslope contributing area. Water Resources Research 42: W09416.
– reference: Beven, K.J. & Kirkby, M.J. 1979. A physically based, variable contributing area model of basin hydrology. Hydrologic Science Bulletin 24: 43-69.
– reference: Iverson, L.R., Dale, M.E., Scott, C.T. & Prasad, A. 1997. A GIS-derived integrated moisture index to predict forest composition and productivity of Ohio forests (U.S.A.). Landscape Ecology 12: 331-348.
– reference: Cairns, D.M. 2001. A comparison of methods for predicting vegetation type. Plant Ecology 156: 3-18.
– reference: Van Niel, K.P., Laffan, S.W. & Lees, B.G. 2004. Effect of error in the DEM on environmental variables for predictive vegetation modelling. Journal of Vegetation Science 15: 747-756.
– reference: Grabs, T., Seibert, J., Bishop, K. & Laudon, H. 2009. Modeling spatial patterns of saturated areas: a comparison of the topographic wetness index and a dynamic distributed model. Journal of Hydrology 373: 15-23.
– reference: Zevenbergen, L.W. & Thorne, C.R. 1987. Quantitative analysis of land surface topography. Earth Surface Processes and Landforms 12: 47-56.
– reference: Piedallu, C. & Gégout, J. 2005. Effects of forest environment and survey protocol on GPS accuracy. Photogrammetric Engineering & Remote Sensing 71: 1071-1078.
– reference: Bunn, A.G., Waggoner, L.A. & Graumlich, L.J. 2005. Topographic mediation of growth in high elevation foxtail pine (Pinus balfournia Grev. et Balf.) forests in the Sierra Nevada, USA. Global Ecology and Biogeography 14: 103-114.
– reference: Evans, J.S. & Cushman, S.A. 2009. Gradient modeling of conifer species using random forests. Landscape Ecology 24: 673-683.
– reference: McCune, B. & Keon, D. 2002. Equations for potential annual direct incident radiation and heat load. Journal of Vegetation Science 13: 603-606.
– reference: Endreny, T.A. & Wood, E.F. 2003. Maximizing spatial congruence of observed and DEM-delineated overland flow networks. International Journal of Geographical Information Science 17: 699-713.
– reference: Holmgren, P. 1994. Multiple flow direction algorithms for runoff modelling in grid based elevation models: an empirical evaluation. Hydrological Processes 8: 327-334.
– reference: Summerell, G.K., Dowling, T.I., Wild, J.A. & Beale, G. 2004. FLAG UPNESS and its application for mapping seasonally wet to waterlogged soils. Australian Journal of Soil Research 42: 155-162.
– reference: McDonald, R.I. & Urban, D.L. 2004. Forest edges and tree growth rates in the North Carolina Piedmont. Ecology 85: 2258-2266.
– reference: Lookingbill, T.R. & Urban, D.L. 2004. An empirical approach towards improved spatial estimates of soil moisture for vegetation analysis. Landscape Ecology 19: 417-433.
– reference: Zinko, U., Seibert, J., Dynesius, M. & Nilsson, C. 2005. Plant species numbers predicted by a topography based groundwater-flow index. Ecosystems 8: 430-441.
– reference: Svenning, J.-C., Kinner, D.A., Stallard, R.F., Engelbrecht, B.M.J. & Wright, S.J. 2004. Ecological determinism in plant community structure across a tropical forest landscape. Ecology 85: 2526-2538.
– reference: Samek, V. 1964. Lesní společenstva Českého Krasu (Forest communities of the Bohemian Karst). NakladatelstvíČeskoslovenské akademie věd, Praha, CZ (in Czech).
– reference: Sørensen, R., Zinko, U. & Seibert, J. 2006. On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrology and Earth System Sciences 10: 101-112.
– reference: Seibert, J. & McGlynn, B. 2007. A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resources Research 43: W04501.
– reference: Fairfield, J. & Leymarie, P. 1991. Drainage networks from grid digital elevation models. Water Resources Research 27: 709-717.
– reference: Parker, A.J. 1982. The topographic relative moisture index: an approach to soil moisture assessment in mountain terrain. Physical Geography 3: 160-168.
– reference: Parviainen, M., Luoto, M., Ryttari, T. & Heikkinen, R.K. 2008. Modelling the occurrence of threatened plant species in taiga landscapes: methodological and ecological perspectives. Journal of Biogeography 35: 1888-1905.
– reference: Dirnböck, T., Hobbs, R.J., Lambeck, R.J. & Caccetta, P.A. 2002. Vegetation distribution in relation to topographically driven processes in southwestern Australia. Applied Vegetation Science 5: 147-158.
– reference: Kubát, K., Hrouda, L., Chrtek, J. Jr., Kaplan, Z., Kirschner, J. & Stěpánek, J. (eds.), 2002. Key to the flora of the Czech Republic. Academia, Prague, CZ (in Czech).
– reference: Moody, A. & Meentemeyer, R.K. 2001. Environmental factors influencing spatial patterns of woody plant diversity in chaparral, Santa Ynez Mountains, California. Journal of Vegetation Science 12: 41-52.
– reference: Piedallu, C. & Gégout, J. 2008. Efficient assessment of topographic solar radiation to improve plant distribution models. Agriculture and Forest Meteorology 148: 1696-1706.
– reference: Pierce, K.B., Lookingbill, T.R. & Urban, D.L. 2005. A simple method for estimating potential relative radiation (PRR) for landscape-scale vegetation analysis. Landscape Ecology 20: 137-147.
– reference: Pan, F., Peters-Lidard, C.D., Sale, M.J. & King, A.W. 2004. A comparison of geographical information system-based algorithms for computing the TOPMODEL topographic index. Water Resources Research 40: 1-11.
– reference: O'Callaghan, J.F. & Mark, D.M. 1984. The extraction of drainage networks from digital elevation data. Computer Vision, Graphic and Image Processing 28: 328-344.
– reference: Wise, S.M. 2007. Effect of differing DEM creation methods on the results from a hydrological model. Computers & Geosciences 33: 1351-1365.
– reference: Dobrowski, S.Z., Safford, H.D., Cheng, Y.B. & Ustin, S.L. 2008. Mapping mountain vegetation using species distribution modeling, image-based texture analysis, and object-based classification. Applied Vegetation Science 11: 499-508.
– reference: Tarboton, D.G. 1997. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research 33: 309-319.
– reference: Bader, M.Y. & Ruijten, J.J.A. 2008. A topography-based model of forest cover at the alpine tree line in the tropical Andes. Journal of Biogeography 35: 711-723.
– reference: Taverna, K., Urban, D.L. & McDonald, R.I. 2005. Modeling landscape vegetation pattern in response to historic land-use: a hypothesis-driven approach for the North Carolina Piedmont, USA. Landscape Ecology 20: 689-702.
– reference: Quinn, P., Beven, K., Chevallier, P. & Planchon, O. 1991. The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models. Hydrological Processes 5: 59-80.
– reference: Gallant, J.C. & Dowling, T.I. 2003. A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resources Research 39: 1347-1360.
– reference: Tolasz, R., Míková, T., Valeriánová, T. & Voženílek, V. (eds.) 2007. Climate atlas of Czechia. Czech Hydrometeorological Institute and Palacký University, Prague, CZ.
– reference: Hutchinson, M.F. 1989. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology 106: 211-232.
– reference: Moore, I.D., Grayson, R.B. & Ladson, A.R. 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrologic Processes 5: 3-30.
– reference: Dyer, J.M. 2009. Assessing topographic patterns in moisture use and stress using a water balance approach. Landscape Ecology 24: 391-403.
– reference: Johnson, C.E. & Barton, C.C. 2004. Where in the world are my field plots? Using GPS effectively in environmental field studies. Frontiers in Ecology and Environment 2: 475-482.
– reference: Murphy, P.N.C., Ogilvie, J. & Arp, P. 2009. Topographic modelling of soil moisture conditions: a comparison and verification of two models. European Journal of Soil Science 60: 94-109.
– reference: Wilson, J.P., Lam, C.S. & Deng, Y.X. 2007. Comparison of performance of flow-routing algorithms used in Geographic Information Systems. Hydrological Processes 21: 1026-1044.
– reference: Freeman, G.T. 1991. Calculating catchment area with divergent flow based on a regular grid. Computers and Geosciences 17: 413-422.
– reference: Zhou, Q. & Liu, X. 2002. Error assessment of grid-based flow routing algorithms used in hydrological models. International Journal of Geographical Information Science 16: 819-842.
– reference: Ellenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W. & Paulissen, D. 1992. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18: 1-258.
– reference: Kopecký, M. & Vojta, J. 2009. Land use legacies in post-agricultural forests in the Doupovské Mountains, Czech Republic. Applied Vegetation Science 12: 251-260.
– start-page: 171
  year: 2008
  end-page: 194
– volume: 373
  start-page: 15
  year: 2009
  end-page: 23
  article-title: Modeling spatial patterns of saturated areas
  publication-title: Journal of Hydrology
– volume: 13
  start-page: 603
  year: 2002
  end-page: 606
  article-title: Equations for potential annual direct incident radiation and heat load
  publication-title: Journal of Vegetation Science
– volume: 85
  start-page: 2258
  year: 2004
  end-page: 2266
  article-title: Forest edges and tree growth rates in the North Carolina Piedmont
  publication-title: Ecology
– volume: 43
  year: 2007
  article-title: A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models
  publication-title: Water Resources Research
– volume: 85
  start-page: 2526
  year: 2004
  end-page: 2538
  article-title: Ecological determinism in plant community structure across a tropical forest landscape
  publication-title: Ecology
– volume: 32
  start-page: 137
  year: 1962
  end-page: 166
  article-title: Ordinating forest communities by means of environmental scalars and phytosociological indices
  publication-title: Ecological Monographs
– volume: 8
  start-page: 430
  year: 2005
  end-page: 441
  article-title: Plant species numbers predicted by a topography based groundwater‐flow index
  publication-title: Ecosystems
– volume: 12
  start-page: 47
  year: 1987
  end-page: 56
  article-title: Quantitative analysis of land surface topography
  publication-title: Earth Surface Processes and Landforms
– volume: 45
  start-page: 1410
  year: 2008
  end-page: 1418
  article-title: Toward improved species niche modelling
  publication-title: Journal of Applied Ecology
– volume: 14
  start-page: 103
  year: 2005
  end-page: 114
  article-title: Topographic mediation of growth in high elevation foxtail pine ( Grev. et Balf.) forests in the Sierra Nevada, USA
  publication-title: Global Ecology and Biogeography
– volume: 20
  start-page: 137
  year: 2005
  end-page: 147
  article-title: A simple method for estimating potential relative radiation (PRR) for landscape‐scale vegetation analysis
  publication-title: Landscape Ecology
– volume: 20
  start-page: 689
  year: 2005
  end-page: 702
  article-title: Modeling landscape vegetation pattern in response to historic land‐use
  publication-title: Landscape Ecology
– start-page: 213
  year: 2008
  end-page: 236
– volume: 27
  start-page: 709
  year: 1991
  end-page: 717
  article-title: Drainage networks from grid digital elevation models
  publication-title: Water Resources Research
– volume: 148
  start-page: 1696
  year: 2008
  end-page: 1706
  article-title: Efficient assessment of topographic solar radiation to improve plant distribution models
  publication-title: Agriculture and Forest Meteorology
– volume: 15
  start-page: 747
  year: 2004
  end-page: 756
  article-title: Effect of error in the DEM on environmental variables for predictive vegetation modelling
  publication-title: Journal of Vegetation Science
– volume: 5
  start-page: 3
  year: 1991
  end-page: 30
  article-title: Digital terrain modelling
  publication-title: Hydrologic Processes
– volume: 60
  start-page: 94
  year: 2009
  end-page: 109
  article-title: Topographic modelling of soil moisture conditions
  publication-title: European Journal of Soil Science
– start-page: 195
  year: 2008
  end-page: 226
– volume: 5
  start-page: 147
  year: 2002
  end-page: 158
  article-title: Vegetation distribution in relation to topographically driven processes in southwestern Australia
  publication-title: Applied Vegetation Science
– volume: 17
  start-page: 413
  year: 1991
  end-page: 422
  article-title: Calculating catchment area with divergent flow based on a regular grid
  publication-title: Computers and Geosciences
– volume: 5
  start-page: 59
  year: 1991
  end-page: 80
  article-title: The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models
  publication-title: Hydrological Processes
– volume: 8
  start-page: 327
  year: 1994
  end-page: 334
  article-title: Multiple flow direction algorithms for runoff modelling in grid based elevation models
  publication-title: Hydrological Processes
– volume: 40
  start-page: 1
  year: 2004
  end-page: 11
  article-title: A comparison of geographical information system‐based algorithms for computing the TOPMODEL topographic index
  publication-title: Water Resources Research
– volume: 33
  start-page: 309
  year: 1997
  end-page: 319
  article-title: A new method for the determination of flow directions and upslope areas in grid digital elevation models
  publication-title: Water Resources Research
– volume: 24
  start-page: 391
  year: 2009
  end-page: 403
  article-title: Assessing topographic patterns in moisture use and stress using a water balance approach
  publication-title: Landscape Ecology
– volume: 19
  start-page: 417
  year: 2004
  end-page: 433
  article-title: An empirical approach towards improved spatial estimates of soil moisture for vegetation analysis
  publication-title: Landscape Ecology
– volume: 21
  start-page: 1026
  year: 2007
  end-page: 1044
  article-title: Comparison of performance of flow‐routing algorithms used in Geographic Information Systems
  publication-title: Hydrological Processes
– volume: 42
  year: 2006
  article-title: Comparison of grid‐based algorithms for computing upslope contributing area
  publication-title: Water Resources Research
– year: 1964
– volume: 71
  start-page: 1071
  year: 2005
  end-page: 1078
  article-title: Effects of forest environment and survey protocol on GPS accuracy
  publication-title: Photogrammetric Engineering & Remote Sensing
– volume: 106
  start-page: 211
  year: 1989
  end-page: 232
  article-title: A new procedure for gridding elevation and stream line data with automatic removal of spurious pits
  publication-title: Journal of Hydrology
– volume: 24
  start-page: 43
  year: 1979
  end-page: 69
  article-title: A physically based, variable contributing area model of basin hydrology
  publication-title: Hydrologic Science Bulletin
– volume: 17
  start-page: 699
  year: 2003
  end-page: 713
  article-title: Maximizing spatial congruence of observed and DEM‐delineated overland flow networks
  publication-title: International Journal of Geographical Information Science
– volume: 35
  start-page: 1888
  year: 2008
  end-page: 1905
  article-title: Modelling the occurrence of threatened plant species in taiga landscapes
  publication-title: Journal of Biogeography
– volume: 5
  start-page: 135
  year: 2002
  end-page: 146
  article-title: Enhancing a regional vegetation map with predictive models of dominant plant species in chaparral
  publication-title: Applied Vegetation Science
– year: 2007
– volume: 18
  start-page: 123
  year: 1991
  end-page: 139
  article-title: Gradient analysis of latitudinal variation in Southern Rocky Mountain forests
  publication-title: Journal of Biogeography
– volume: 12
  start-page: 331
  year: 1997
  end-page: 348
  article-title: A GIS‐derived integrated moisture index to predict forest composition and productivity of Ohio forests (U.S.A.)
  publication-title: Landscape Ecology
– volume: 156
  start-page: 3
  year: 2001
  end-page: 18
  article-title: A comparison of methods for predicting vegetation type
  publication-title: Plant Ecology
– start-page: 13
  year: 2008
  end-page: 22
– volume: 12
  start-page: 41
  year: 2001
  end-page: 52
  article-title: Environmental factors influencing spatial patterns of woody plant diversity in chaparral, Santa Ynez Mountains, California
  publication-title: Journal of Vegetation Science
– volume: 16
  start-page: 819
  year: 2002
  end-page: 842
  article-title: Error assessment of grid‐based flow routing algorithms used in hydrological models
  publication-title: International Journal of Geographical Information Science
– volume: 12
  start-page: 251
  year: 2009
  end-page: 260
  article-title: Land use legacies in post‐agricultural forests in the Doupovské Mountains, Czech Republic
  publication-title: Applied Vegetation Science
– volume: 24
  start-page: 673
  year: 2009
  end-page: 683
  article-title: Gradient modeling of conifer species using random forests
  publication-title: Landscape Ecology
– volume: 3
  start-page: 160
  year: 1982
  end-page: 168
  article-title: The topographic relative moisture index
  publication-title: Physical Geography
– start-page: 1
  year: 1985
  end-page: 15
– volume: 18
  start-page: 1
  year: 1992
  end-page: 258
  article-title: Zeigerwerte von Pflanzen in Mitteleuropa
  publication-title: Scripta Geobotanica
– volume: 28
  start-page: 328
  year: 1984
  end-page: 344
  article-title: The extraction of drainage networks from digital elevation data
  publication-title: Computer Vision, Graphic and Image Processing
– volume: 2
  start-page: 475
  year: 2004
  end-page: 482
  article-title: Where in the world are my field plots? Using GPS effectively in environmental field studies
  publication-title: Frontiers in Ecology and Environment
– volume: 33
  start-page: 1351
  year: 2007
  end-page: 1365
  article-title: Effect of differing DEM creation methods on the results from a hydrological model
  publication-title: Computers & Geosciences
– year: 2002
– start-page: 393
  year: 1992
  end-page: 407
– volume: 39
  start-page: 1347
  year: 2003
  end-page: 1360
  article-title: A multiresolution index of valley bottom flatness for mapping depositional areas
  publication-title: Water Resources Research
– volume: 30
  start-page: 1681
  year: 1994
  end-page: 1692
  article-title: Digital elevation model networks (DEMON)
  publication-title: Water Resources Research
– volume: 10
  start-page: 101
  year: 2006
  end-page: 112
  article-title: On the calculation of the topographic wetness index
  publication-title: Hydrology and Earth System Sciences
– start-page: 87
  year: 2008
  end-page: 120
– volume: 11
  start-page: 499
  year: 2008
  end-page: 508
  article-title: Mapping mountain vegetation using species distribution modeling, image‐based texture analysis, and object‐based classification
  publication-title: Applied Vegetation Science
– volume: 42
  start-page: 155
  year: 2004
  end-page: 162
  article-title: FLAG UPNESS and its application for mapping seasonally wet to waterlogged soils
  publication-title: Australian Journal of Soil Research
– volume: 35
  start-page: 711
  year: 2008
  end-page: 723
  article-title: A topography‐based model of forest cover at the alpine tree line in the tropical Andes
  publication-title: Journal of Biogeography
– volume: 44
  start-page: 122
  year: 2009
  end-page: 145
  article-title: Influence of grid cell size and flow routing algorithm on soil‐landform modelling
  publication-title: Journal of the Korean Geographical Society
– start-page: 617
  year: 1973
  end-page: 737
– ident: e_1_2_8_18_1
  doi: 10.1029/90WR02658
– ident: e_1_2_8_25_1
  doi: 10.1016/0022-1694(89)90073-5
– start-page: 393
  volume-title: Overland flow: hydraulics and erosion mechanics
  year: 1992
  ident: e_1_2_8_30_1
– ident: e_1_2_8_47_1
  doi: 10.1007/s10980-004-1296-6
– ident: e_1_2_8_3_1
  doi: 10.1111/j.1365-2699.2007.01818.x
– ident: e_1_2_8_35_1
  doi: 10.1890/03-0313
– ident: e_1_2_8_5_1
  doi: 10.1080/02626667909491834
– ident: e_1_2_8_19_1
  doi: 10.1111/j.1654-109X.2002.tb00543.x
– ident: e_1_2_8_40_1
  doi: 10.1029/2004WR003069
– ident: e_1_2_8_62_1
  doi: 10.1016/j.cageo.2007.05.003
– ident: e_1_2_8_10_1
  doi: 10.1029/93WR03512
– ident: e_1_2_8_39_1
  doi: 10.1016/S0734-189X(84)80011-0
– ident: e_1_2_8_53_1
  doi: 10.1071/SR03028
– ident: e_1_2_8_13_1
  doi: 10.1007/s10980-008-9316-6
– ident: e_1_2_8_31_1
  doi: 10.1023/B:LAND.0000030451.29571.8b
– ident: e_1_2_8_46_1
  doi: 10.1016/j.agrformet.2008.06.001
– ident: e_1_2_8_61_1
  doi: 10.1007/978-3-540-77800-4_12
– ident: e_1_2_8_24_1
  doi: 10.1002/hyp.3360080405
– start-page: 87
  volume-title: Geomorphometry: concepts, software, applications
  year: 2008
  ident: e_1_2_8_48_1
– ident: e_1_2_8_38_1
  doi: 10.1111/j.1365-2389.2008.01094.x
– ident: e_1_2_8_45_1
  doi: 10.14358/PERS.71.9.1071
– ident: e_1_2_8_34_1
  doi: 10.1111/j.1654-1103.2002.tb02087.x
– start-page: 13
  volume-title: SAGA – seconds out
  year: 2008
  ident: e_1_2_8_6_1
– ident: e_1_2_8_63_1
  doi: 10.1002/esp.3290120107
– ident: e_1_2_8_17_1
  doi: 10.1007/s10980-009-9341-0
– ident: e_1_2_8_27_1
  doi: 10.1890/1540-9295(2004)002[0475:WITWAM]2.0.CO;2
– ident: e_1_2_8_12_1
  doi: 10.3170/2008-7-18560
– ident: e_1_2_8_42_1
  doi: 10.1080/02723646.1982.10642224
– volume-title: Key to the flora of the Czech Republic
  year: 2002
  ident: e_1_2_8_29_1
– ident: e_1_2_8_21_1
  doi: 10.1029/2002WR001426
– ident: e_1_2_8_9_1
  doi: 10.1023/A:1011975321668
– ident: e_1_2_8_20_1
  doi: 10.1016/0098-3004(91)90048-I
– ident: e_1_2_8_22_1
  doi: 10.1016/j.jhydrol.2009.03.031
– ident: e_1_2_8_60_1
  doi: 10.1002/hyp.6277
– ident: e_1_2_8_11_1
  doi: 10.1111/j.1654-109X.2002.tb00544.x
– ident: e_1_2_8_64_1
  doi: 10.1080/13658810210149425
– ident: e_1_2_8_8_1
  doi: 10.1111/j.1466-822X.2005.00141.x
– start-page: 195
  volume-title: Geomorphometry: concepts, software, applications
  year: 2008
  ident: e_1_2_8_7_1
– volume-title: Climate atlas of Czechia
  year: 2007
  ident: e_1_2_8_57_1
– ident: e_1_2_8_55_1
  doi: 10.1029/96WR03137
– ident: e_1_2_8_59_1
  doi: 10.1007/978-94-010-2701-4_20
– ident: e_1_2_8_28_1
  doi: 10.1111/j.1654-109X.2009.01023.x
– ident: e_1_2_8_36_1
  doi: 10.1111/j.1654-1103.2001.tb02615.x
– volume-title: Lesní společenstva Českého Krasu (Forest communities of the Bohemian Karst)
  year: 1964
  ident: e_1_2_8_50_1
– ident: e_1_2_8_16_1
  doi: 10.1029/2005WR004648
– ident: e_1_2_8_33_1
– ident: e_1_2_8_52_1
  doi: 10.5194/hess-10-101-2006
– ident: e_1_2_8_37_1
  doi: 10.1002/hyp.3360050103
– ident: e_1_2_8_32_1
  doi: 10.2307/1942383
– start-page: 171
  volume-title: Geomorphometry: concepts, software, applications
  year: 2008
  ident: e_1_2_8_23_1
– ident: e_1_2_8_26_1
  doi: 10.1023/A:1007989813501
– ident: e_1_2_8_65_1
  doi: 10.1007/s10021-003-0125-0
– volume: 15
  start-page: 747
  year: 2004
  ident: e_1_2_8_58_1
  article-title: Effect of error in the DEM on environmental variables for predictive vegetation modelling
  publication-title: Journal of Vegetation Science
  doi: 10.1111/j.1654-1103.2004.tb02317.x
– ident: e_1_2_8_2_1
  doi: 10.2307/2845287
– ident: e_1_2_8_15_1
  doi: 10.1080/1365881031000135483
– ident: e_1_2_8_44_1
  doi: 10.1111/j.1365-2699.2008.01922.x
– start-page: 1
  volume-title: Parameteraufbereitung fuer deterministische Gebiets‐Wassermodelle, Grundlagenarbeiten zu Analyse von Agrar‐Oekosystemen
  year: 1985
  ident: e_1_2_8_4_1
– ident: e_1_2_8_51_1
  doi: 10.1029/2006WR005128
– volume: 18
  start-page: 1
  year: 1992
  ident: e_1_2_8_14_1
  article-title: Zeigerwerte von Pflanzen in Mitteleuropa
  publication-title: Scripta Geobotanica
– ident: e_1_2_8_56_1
  doi: 10.1007/s10980-004-5652-3
– volume: 44
  start-page: 122
  year: 2009
  ident: e_1_2_8_41_1
  article-title: Influence of grid cell size and flow routing algorithm on soil‐landform modelling
  publication-title: Journal of the Korean Geographical Society
– ident: e_1_2_8_43_1
  doi: 10.1111/j.1365-2664.2008.01516.x
– ident: e_1_2_8_49_1
  doi: 10.1002/hyp.3360050106
– ident: e_1_2_8_54_1
  doi: 10.1890/03-0396
SSID ssj0017959
Score 2.305914
Snippet Questions: How important is the choice of flow routing algorithm with respect to application of topographic wetness index (TWI) in vegetation ecology? Which...
Questions: How important is the choice of flow routing algorithm with respect to application of topographic wetness index (TWI) in vegetation ecology? Which...
SourceID proquest
crossref
wiley
jstor
istex
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 450
SubjectTerms Algorithms
botanical composition
Catchment area
Correlation coefficient
Czech Republic
Digital elevation model (DEM)
Digital elevation models
Ecological modeling
Ecology
Flow
Flow routing algorithm
flow routing algorithms
Forest communities
Forest ecology
Forest vegetation
geomorphology
Geomorphometry
Hydrological modeling
Landscape ecology
Moisture content
Network management systems
plant communities
plant ecology
Soil moisture
Soil water
soil water content
Species composition
species diversity
Temperate forest
temperate forests
Terrain analysis
Topographic parameters
topographic wetness index
Topography
Vegetation
Title Using topographic wetness index in vegetation ecology: does the algorithm matter
URI https://api.istex.fr/ark:/67375/WNG-PQLB32MB-T/fulltext.pdf
https://www.jstor.org/stable/40927821
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1654-109X.2010.01083.x
https://www.proquest.com/docview/1766582305
https://www.proquest.com/docview/1776658802
https://www.proquest.com/docview/857113752
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1654-109X
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0017959
  issn: 1402-2001
  databaseCode: ABDBF
  dateStart: 19991201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1402-2001
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1654-109X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017959
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZg4oEXfk8LDGQkxFurxIkThxe0TowJwcTYCn2zzonbTd2aqU1h46_n7pJGKwJpQqhS1Shnq3bPl-_qz98J8cqF4ArIw15GpQMSKpgKALjcEWuUJjGQe1b7PEj3h8mHkR61_Cc6C9PoQ3R_uNHK4HhNCxzcYn2RpzrBMJKPWoZWhHCiT3gyilPOrr50SlIRldTmg0Z0Ghmv10k9f-xo7Ul1ewwV4lea-ssVdXENlF6Htvxs2rsvpqtRNZSUaX9Zu37x8zfBx_8z7AfiXgth5U7jcw_FLT97JO4MKoSZV4_FIZMQZF1dNGLYp4X84WsKqJKVGfFdfveTluUoPatmX72RZeUXEtGohLNJNT-tT87lOWt_vn0ihnvvjnf3e23dhl6hdRb3lDcIKlRaOkgLA3qsdIlhNB6z_lwIeWxcqjOHJrlyYamcirw3UGC25sYYMDbFxqya-S0h0wxU4rTKXYIvBxgkXBS6xGsotQnzQGSr38gWrag51dY4s9eSG5wv2mgfWZovy_NlLwMRdS0vGmGPG7TZQjewMMH4a4dHinZ9I5OHmHQG4jX7RtcXzKfEmcu0_Xbw3n4-_DiI1aeBPQ7EJjtPZ4gJtkKYhj1sr7zJtnFkYUm-U9NeqA7Ey-42RgDa1oGZr5Zkw0YmVIGQf7ExOosi_DJokrF33XjMdufr0S59fPrPLZ-Ju8y5YArkttio50v_HKFc7V7wIv0FBog0tA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED7BQIIX2IBpgf0wEuKtVeLGicMLWqdtZXQVYy30zbITt0zrmqlLYeOv585JoxWBNCFUqWrVsxW7d18-x-fvAN4YX5tUJ34jptIBIRVM1VpjuCPXyGQodWKd2mcv6gzCo6EYVuWA6CxMqQ9RP3CjyHB4TQFOD6SXozwSIeJIMqxStALkE00klA_CCJctxJA-11pSARXVdkeN6Dwyfl9O6_ljT0v3qvsjnSODpcm_XiQvLtHS2-TW3Z0OnsJkMa4yKeW8OS9MM_35m-Tjfxr4KjypWCzbLd1uDe7Z6TN42M6Rad48hxOXh8CK_LLUwz5L2Q9bEKYyJ86I7-y7HVeJjsw64eybdyzL7RVDQsr0ZJzPzopvF-zCyX--fwGDg_3-XqdRlW5opELErQa3EnkFjzKjo1RqMeIiQyRtjZwEna-TljSRiA2aJNz4GTc8sFbqFBdsZoSYsQ4r03xqN4BFseahETwxIb6MRpwwgW9CK3QmpJ94EC_-JJVWuuZUXmOibq1vcL5or32oaL6Umy917UFQt7wstT3u0GYD_UDpMUKwGpxy2vgNZOLjutODt8456r707JzS5mKhvvYO1aeTbrvFj9uq78G6857aEJ2VI1PDHjYX7qQqKLlSpOApaDtUePC6_hlBgHZ29NTmc7JxRtLnHrC_2EgRBwFeDJrEzr3uPGa1--V0jz6-_OeWO_Co0z_uqu6H3sdX8NilYLiMyE1YKWZzu4XMrjDbLmJ_AXJkONU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED7BQIgXfk8LbGAkxFurxI0Thxe0bpQBo9rYCn2z7MQp07qm6tL94K_fnZNGKwJpQqhS1Shnq3bvLp_rz98BvDG-NqlO_FZMpQNCKpiqtcZwR6yRyVDqxDq1z360Mwg_D8WwLgdEZ2EqfYjmDzeKDJevKcDtNMuXozwSIeaRZFhTtALEE20ElHdCkUji921_a7SkAiqq7Y4a0XlkvF6m9fyxp6Vn1e1cF4hgafIvFuTFJVh6Hdy6p1PvIYwX46pIKcfteWna6a_fJB__08AfwYMaxbLNyu0ewy07eQJ3uwUizcunsO94CKwsppUe9lHKzm1JOZU5cUZ8Z2d2VBMdmXXC2ZfvWFbYU4aAlOnxqJgdlT9P2ImT_3z_DAa9D4dbO626dEMrFSLutLiViCt4lBkdpVKLnIsMM2kndxJ0vk460kQiNmiScONn3PDAWqlTXLCZHHPGKqxMioldAxbFmodG8MSE-DIa84QJfBNaoTMh_cSDePEjqbTWNafyGmN1bX2D80V77UNF86XcfKkLD4Km5bTS9rhBmzX0A6VHmILV4IDTxm8gEx_XnR68dc7R9KVnx0Sbi4X60f-o9vZ3ux3-tasOPVh13tMY4hqbI1LDHtYX7qTqVHKqSMFT0Hao8OB1cxuTAO3s6Ikt5mTjjKTPPWB_sZEiDgL8MmgSO_e68ZjV5veDLfr4_J9bvoJ7e9s9tfup_-UF3HcMDEeIXIeVcja3GwjsSvPSBewVyYc4WQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+topographic+wetness+index+in+vegetation+ecology%3A+does+the+algorithm+matter%3F&rft.jtitle=Applied+vegetation+science&rft.au=Kopeck%C3%BD%2C+Martin&rft.au=%C4%8C%C3%AD%C5%BEkov%C3%A1%2C+%C5%A0t%C4%9Bp%C3%A1nka&rft.date=2010-10-01&rft.issn=1402-2001&rft.eissn=1654-109X&rft.volume=13&rft.issue=4&rft.spage=450&rft.epage=459&rft_id=info:doi/10.1111%2Fj.1654-109X.2010.01083.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1654_109X_2010_01083_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1402-2001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1402-2001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1402-2001&client=summon