GPROF-NN: a neural-network-based implementation of the Goddard Profiling Algorithm

The Global Precipitation Measurement (GPM) mission measures global precipitation at a temporal resolution of a few hours to enable close monitoring of the global hydrological cycle. GPM achieves this by combining observations from a spaceborne precipitation radar, a constellation of passive microwav...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric measurement techniques Vol. 15; no. 17; pp. 5033 - 5060
Main Authors Pfreundschuh, Simon, Brown, Paula J., Kummerow, Christian D., Eriksson, Patrick, Norrestad​​​​​​​, Teodor
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 02.09.2022
Copernicus Publications
Subjects
Online AccessGet full text
ISSN1867-8548
1867-1381
1867-8548
DOI10.5194/amt-15-5033-2022

Cover

Abstract The Global Precipitation Measurement (GPM) mission measures global precipitation at a temporal resolution of a few hours to enable close monitoring of the global hydrological cycle. GPM achieves this by combining observations from a spaceborne precipitation radar, a constellation of passive microwave (PMW) sensors, and geostationary satellites. The Goddard Profiling Algorithm (GPROF) is used operationally to retrieve precipitation from all PMW sensors of the GPM constellation. Since the resulting precipitation rates serve as input for many of the level 3 retrieval products, GPROF constitutes an essential component of the GPM processing pipeline. This study investigates ways to improve GPROF using modern machine learning methods. We present two neural-network-based, probabilistic implementations of GPROF: GPROF-NN 1D, which (just like the current GPROF implementation) processes pixels individually, and GPROF-NN 3D, which employs a convolutional neural network to incorporate structural information into the retrieval. The accuracy of the retrievals is evaluated using a test dataset consistent with the data used in the development of the GPROF and GPROF-NN retrievals. This allows for assessing the accuracy of the retrieval method isolated from the representativeness of the training data, which remains a major source of uncertainty in the development of precipitation retrievals. Despite using the same input information as GPROF, the GPROF-NN 1D retrieval improves the accuracy of the retrieved surface precipitation for the GPM Microwave Imager (GMI) from 0.079 to 0.059 mm h−1 in terms of mean absolute error (MAE), from 76.1 % to 69.5 % in terms of symmetric mean absolute percentage error (SMAPE) and from 0.797 to 0.847 in terms of correlation. The improvements for the Microwave Humidity Sounder (MHS) are from 0.085 to 0.061 mm h−1 in terms of MAE, from 81 % to 70.1 % for SMAPE, and from 0.724 to 0.804 in terms of correlation. Comparable improvements are found for the retrieved hydrometeor profiles and their column integrals, as well as the detection of precipitation. Moreover, the ability of the retrievals to resolve small-scale variability is improved by more than 40 % for GMI and 29 % for MHS. The GPROF-NN 3D retrieval further improves the MAE to 0.043 mm h−1; the SMAPE to 48.67 %; and the correlation to 0.897 for GMI and 0.043 mm h−1, 63.42 %, and 0.83 for MHS. Application of the retrievals to GMI observations of Hurricane Harvey shows moderate improvements when compared to co-located GPM-combined and ground-based radar measurements indicating that the improvements at least partially carry over to assessment against independent measurements. Similar retrievals for MHS do not show equally clear improvements, leaving the validation against independent measurements for future investigation. Both GPROF-NN algorithms make use of the same input and output data as the original GPROF algorithm and thus may replace the current implementation in a future update of the GPM processing pipeline. Despite their superior accuracy, the single-core runtime required for the operational processing of an orbit of observations is lower than that of GPROF. The GPROF-NN algorithms promise to be a simple and cost-efficient way to increase the accuracy of the PMW precipitation retrievals of the GPM constellation and thus improve the monitoring of the global hydrological cycle.
AbstractList The Global Precipitation Measurement (GPM) mission measures global precipitation at a temporal resolution of a few hours to enable close monitoring of the global hydrological cycle. GPM achieves this by combining observations from a spaceborne precipitation radar, a constellation of passive microwave (PMW) sensors, and geostationary satellites. The Goddard Profiling Algorithm (GPROF) is used operationally to retrieve precipitation from all PMW sensors of the GPM constellation. Since the resulting precipitation rates serve as input for many of the level 3 retrieval products, GPROF constitutes an essential component of the GPM processing pipeline.
The Global Precipitation Measurement (GPM) mission measures global precipitation at a temporal resolution of a few hours to enable close monitoring of the global hydrological cycle. GPM achieves this by combining observations from a spaceborne precipitation radar, a constellation of passive microwave (PMW) sensors, and geostationary satellites. The Goddard Profiling Algorithm (GPROF) is used operationally to retrieve precipitation from all PMW sensors of the GPM constellation. Since the resulting precipitation rates serve as input for many of the level 3 retrieval products, GPROF constitutes an essential component of the GPM processing pipeline. This study investigates ways to improve GPROF using modern machine learning methods. We present two neural-network-based, probabilistic implementations of GPROF: GPROF-NN 1D, which (just like the current GPROF implementation) processes pixels individually, and GPROF-NN 3D, which employs a convolutional neural network to incorporate structural information into the retrieval. The accuracy of the retrievals is evaluated using a test dataset consistent with the data used in the development of the GPROF and GPROF-NN retrievals. This allows for assessing the accuracy of the retrieval method isolated from the representativeness of the training data, which remains a major source of uncertainty in the development of precipitation retrievals. Despite using the same input information as GPROF, the GPROF-NN 1D retrieval improves the accuracy of the retrieved surface precipitation for the GPM Microwave Imager (GMI) from 0.079 to 0.059 mm h.sup.-1 in terms of mean absolute error (MAE), from 76.1 % to 69.5 % in terms of symmetric mean absolute percentage error (SMAPE) and from 0.797 to 0.847 in terms of correlation. The improvements for the Microwave Humidity Sounder (MHS) are from 0.085 to 0.061 mm h.sup.-1 in terms of MAE, from 81 % to 70.1 % for SMAPE, and from 0.724 to 0.804 in terms of correlation. Comparable improvements are found for the retrieved hydrometeor profiles and their column integrals, as well as the detection of precipitation. Moreover, the ability of the retrievals to resolve small-scale variability is improved by more than 40 % for GMI and 29 % for MHS. The GPROF-NN 3D retrieval further improves the MAE to 0.043 mm h.sup.-1 ; the SMAPE to 48.67 %; and the correlation to 0.897 for GMI and 0.043 mm h.sup.-1, 63.42 %, and 0.83 for MHS. Application of the retrievals to GMI observations of Hurricane Harvey shows moderate improvements when compared to co-located GPM-combined and ground-based radar measurements indicating that the improvements at least partially carry over to assessment against independent measurements. Similar retrievals for MHS do not show equally clear improvements, leaving the validation against independent measurements for future investigation. Both GPROF-NN algorithms make use of the same input and output data as the original GPROF algorithm and thus may replace the current implementation in a future update of the GPM processing pipeline. Despite their superior accuracy, the single-core runtime required for the operational processing of an orbit of observations is lower than that of GPROF. The GPROF-NN algorithms promise to be a simple and cost-efficient way to increase the accuracy of the PMW precipitation retrievals of the GPM constellation and thus improve the monitoring of the global hydrological cycle.
The Global Precipitation Measurement (GPM) mission measures global precipitation at a temporal resolution of a few hours to enable close monitoring of the global hydrological cycle. GPM achieves this by combining observations from a spaceborne precipitation radar, a constellation of passive microwave (PMW) sensors, and geostationary satellites. The Goddard Profiling Algorithm (GPROF) is used operationally to retrieve precipitation from all PMW sensors of the GPM constellation. Since the resulting precipitation rates serve as input for many of the level 3 retrieval products, GPROF constitutes an essential component of the GPM processing pipeline. This study investigates ways to improve GPROF using modern machine learning methods. We present two neural-network-based, probabilistic implementations of GPROF: GPROF-NN 1D, which (just like the current GPROF implementation) processes pixels individually, and GPROF-NN 3D, which employs a convolutional neural network to incorporate structural information into the retrieval. The accuracy of the retrievals is evaluated using a test dataset consistent with the data used in the development of the GPROF and GPROF-NN retrievals. This allows for assessing the accuracy of the retrieval method isolated from the representativeness of the training data, which remains a major source of uncertainty in the development of precipitation retrievals. Despite using the same input information as GPROF, the GPROF-NN 1D retrieval improves the accuracy of the retrieved surface precipitation for the GPM Microwave Imager (GMI) from 0.079 to 0.059 mm h−1 in terms of mean absolute error (MAE), from 76.1 % to 69.5 % in terms of symmetric mean absolute percentage error (SMAPE) and from 0.797 to 0.847 in terms of correlation. The improvements for the Microwave Humidity Sounder (MHS) are from 0.085 to 0.061 mm h−1 in terms of MAE, from 81 % to 70.1 % for SMAPE, and from 0.724 to 0.804 in terms of correlation. Comparable improvements are found for the retrieved hydrometeor profiles and their column integrals, as well as the detection of precipitation. Moreover, the ability of the retrievals to resolve small-scale variability is improved by more than 40 % for GMI and 29 % for MHS. The GPROF-NN 3D retrieval further improves the MAE to 0.043 mm h−1; the SMAPE to 48.67 %; and the correlation to 0.897 for GMI and 0.043 mm h−1, 63.42 %, and 0.83 for MHS. Application of the retrievals to GMI observations of Hurricane Harvey shows moderate improvements when compared to co-located GPM-combined and ground-based radar measurements indicating that the improvements at least partially carry over to assessment against independent measurements. Similar retrievals for MHS do not show equally clear improvements, leaving the validation against independent measurements for future investigation. Both GPROF-NN algorithms make use of the same input and output data as the original GPROF algorithm and thus may replace the current implementation in a future update of the GPM processing pipeline. Despite their superior accuracy, the single-core runtime required for the operational processing of an orbit of observations is lower than that of GPROF. The GPROF-NN algorithms promise to be a simple and cost-efficient way to increase the accuracy of the PMW precipitation retrievals of the GPM constellation and thus improve the monitoring of the global hydrological cycle.
The Global Precipitation Measurement (GPM) mission measures global precipitation at a temporal resolution of a few hours to enable close monitoring of the global hydrological cycle. GPM achieves this by combining observations from a spaceborne precipitation radar, a constellation of passive microwave (PMW) sensors, and geostationary satellites. The Goddard Profiling Algorithm (GPROF) is used operationally to retrieve precipitation from all PMW sensors of the GPM constellation. Since the resulting precipitation rates serve as input for many of the level 3 retrieval products, GPROF constitutes an essential component of the GPM processing pipeline. This study investigates ways to improve GPROF using modern machine learning methods. We present two neuralnetwork-based, probabilistic implementations of GPROF: GPROF-NN 1D, which (just like the current GPROF implementation) processes pixels individually, and GPROF-NN 3D, which employs a convolutional neural network to incorporate structural information into the retrieval. The accuracy of the retrievals is evaluated using a test dataset consistent with the data used in the development of the GPROF and GPROF-NN retrievals. This allows for assessing the accuracy of the retrieval method isolated from the representativeness of the training data, which remains a major source of uncertainty in the development of precipitation retrievals. Despite using the same input information as GPROF, the GPROF-NN 1D retrieval improves the accuracy of the retrieved surface precipitation for the GPM Microwave Imager (GMI) from 0.079 to 0.059mmh 1 in terms of mean abso- lute error (MAE), from 76.1% to 69.5% in terms of symmetric mean absolute percentage error (SMAPE) and from 0 :797 to 0 :847 in terms of correlation. The improvements for the Microwave Humidity Sounder (MHS) are from 0.085 to 0.061mmh 1 in terms of MAE, from 81% to 70.1% for SMAPE, and from 0 :724 to 0 :804 in terms of correlation. Comparable improvements are found for the retrieved hydrometeor profiles and their column integrals, as well as the detection of precipitation. Moreover, the ability of the retrievals to resolve small-scale variability is improved by more than 40% for GMI and 29% for MHS. The GPROFNN 3D retrieval further improves the MAE to 0.043mmh 1; the SMAPE to 48.67 %; and the correlation to 0:897 for GMI and 0.043mmh 1, 63.42 %, and 0:83 for MHS. Application of the retrievals to GMI observations of Hurricane Harvey shows moderate improvements when compared to co-located GPM-combined and ground-based radar measurements indicating that the improvements at least partially carry over to assessment against independent measurements. Similar retrievals for MHS do not show equally clear improvements, leaving the validation against independent measurements for future investigation. Both GPROF-NN algorithms make use of the same input and output data as the original GPROF algorithm and thus may replace the current implementation in a future update of the GPM processing pipeline. Despite their superior accuracy, the single-core runtime required for the operational processing of an orbit of observations is lower than that of GPROF. The GPROF-NN algorithms promise to be a simple and cost-efficient way to increase the accuracy of the PMW precipitation retrievals of the GPM constellation and thus improve the monitoring of the global hydrological cycle.
The Global Precipitation Measurement (GPM) mission measures global precipitation at a temporal resolution of a few hours to enable close monitoring of the global hydrological cycle. GPM achieves this by combining observations from a spaceborne precipitation radar, a constellation of passive microwave (PMW) sensors, and geostationary satellites. The Goddard Profiling Algorithm (GPROF) is used operationally to retrieve precipitation from all PMW sensors of the GPM constellation. Since the resulting precipitation rates serve as input for many of the level 3 retrieval products, GPROF constitutes an essential component of the GPM processing pipeline.This study investigates ways to improve GPROF using modern machine learning methods. We present two neural-network-based, probabilistic implementations of GPROF: GPROF-NN 1D, which (just like the current GPROF implementation) processes pixels individually, and GPROF-NN 3D, which employs a convolutional neural network to incorporate structural information into the retrieval. The accuracy of the retrievals is evaluated using a test dataset consistent with the data used in the development of the GPROF and GPROF-NN retrievals. This allows for assessing the accuracy of the retrieval method isolated from the representativeness of the training data, which remains a major source of uncertainty in the development of precipitation retrievals. Despite using the same input information as GPROF, the GPROF-NN 1D retrieval improves the accuracy of the retrieved surface precipitation for the GPM Microwave Imager (GMI) from 0.079 to 0.059 mm h-1 in terms of mean absolute error (MAE), from 76.1 % to 69.5 % in terms of symmetric mean absolute percentage error (SMAPE) and from 0.797 to 0.847 in terms of correlation. The improvements for the Microwave Humidity Sounder (MHS) are from 0.085 to 0.061 mm h-1 in terms of MAE, from 81 % to 70.1 % for SMAPE, and from 0.724 to 0.804 in terms of correlation. Comparable improvements are found for the retrieved hydrometeor profiles and their column integrals, as well as the detection of precipitation. Moreover, the ability of the retrievals to resolve small-scale variability is improved by more than 40 % for GMI and 29 % for MHS. The GPROF-NN 3D retrieval further improves the MAE to 0.043 mm h-1; the SMAPE to 48.67 %; and the correlation to 0.897 for GMI and 0.043 mm h-1, 63.42 %, and 0.83 for MHS.Application of the retrievals to GMI observations of Hurricane Harvey shows moderate improvements when compared to co-located GPM-combined and ground-based radar measurements indicating that the improvements at least partially carry over to assessment against independent measurements. Similar retrievals for MHS do not show equally clear improvements, leaving the validation against independent measurements for future investigation.Both GPROF-NN algorithms make use of the same input and output data as the original GPROF algorithm and thus may replace the current implementation in a future update of the GPM processing pipeline. Despite their superior accuracy, the single-core runtime required for the operational processing of an orbit of observations is lower than that of GPROF. The GPROF-NN algorithms promise to be a simple and cost-efficient way to increase the accuracy of the PMW precipitation retrievals of the GPM constellation and thus improve the monitoring of the global hydrological cycle.
The Global Precipitation Measurement (GPM) mission measures global precipitation at a temporal resolution of a few hours to enable close monitoring of the global hydrological cycle. GPM achieves this by combining observations from a spaceborne precipitation radar, a constellation of passive microwave (PMW) sensors, and geostationary satellites. The Goddard Profiling Algorithm (GPROF) is used operationally to retrieve precipitation from all PMW sensors of the GPM constellation. Since the resulting precipitation rates serve as input for many of the level 3 retrieval products, GPROF constitutes an essential component of the GPM processing pipeline. This study investigates ways to improve GPROF using modern machine learning methods. We present two neural-network-based, probabilistic implementations of GPROF: GPROF-NN 1D, which (just like the current GPROF implementation) processes pixels individually, and GPROF-NN 3D, which employs a convolutional neural network to incorporate structural information into the retrieval. The accuracy of the retrievals is evaluated using a test dataset consistent with the data used in the development of the GPROF and GPROF-NN retrievals. This allows for assessing the accuracy of the retrieval method isolated from the representativeness of the training data, which remains a major source of uncertainty in the development of precipitation retrievals. Despite using the same input information as GPROF, the GPROF-NN 1D retrieval improves the accuracy of the retrieved surface precipitation for the GPM Microwave Imager (GMI) from 0.079 to 0.059 mm h −1 in terms of mean absolute error (MAE), from 76.1 % to 69.5 % in terms of symmetric mean absolute percentage error (SMAPE) and from 0.797 to 0.847 in terms of correlation. The improvements for the Microwave Humidity Sounder (MHS) are from 0.085 to 0.061 mm h −1 in terms of MAE, from 81 % to 70.1 % for SMAPE, and from 0.724 to 0.804 in terms of correlation. Comparable improvements are found for the retrieved hydrometeor profiles and their column integrals, as well as the detection of precipitation. Moreover, the ability of the retrievals to resolve small-scale variability is improved by more than 40 % for GMI and 29 % for MHS. The GPROF-NN 3D retrieval further improves the MAE to 0.043 mm h −1 ; the SMAPE to 48.67 %; and the correlation to 0.897 for GMI and 0.043 mm h −1 , 63.42 %, and 0.83 for MHS. Application of the retrievals to GMI observations of Hurricane Harvey shows moderate improvements when compared to co-located GPM-combined and ground-based radar measurements indicating that the improvements at least partially carry over to assessment against independent measurements. Similar retrievals for MHS do not show equally clear improvements, leaving the validation against independent measurements for future investigation. Both GPROF-NN algorithms make use of the same input and output data as the original GPROF algorithm and thus may replace the current implementation in a future update of the GPM processing pipeline. Despite their superior accuracy, the single-core runtime required for the operational processing of an orbit of observations is lower than that of GPROF. The GPROF-NN algorithms promise to be a simple and cost-efficient way to increase the accuracy of the PMW precipitation retrievals of the GPM constellation and thus improve the monitoring of the global hydrological cycle.
Audience Academic
Author Pfreundschuh, Simon
Norrestad​​​​​​​, Teodor
Kummerow, Christian D.
Eriksson, Patrick
Brown, Paula J.
Author_xml – sequence: 1
  givenname: Simon
  orcidid: 0000-0001-6566-2732
  surname: Pfreundschuh
  fullname: Pfreundschuh, Simon
– sequence: 2
  givenname: Paula J.
  surname: Brown
  fullname: Brown, Paula J.
– sequence: 3
  givenname: Christian D.
  surname: Kummerow
  fullname: Kummerow, Christian D.
– sequence: 4
  givenname: Patrick
  orcidid: 0000-0002-8475-0479
  surname: Eriksson
  fullname: Eriksson, Patrick
– sequence: 5
  givenname: Teodor
  surname: Norrestad​​​​​​​
  fullname: Norrestad​​​​​​​, Teodor
BackLink https://research.chalmers.se/publication/532125$$DView record from Swedish Publication Index
BookMark eNqNks1v1DAQxSNUJNrCnWMkThxSbCf-4lZVtFSq2moLZ2tij3e9JPFiZ9X2v8dlEbAIJOTDWNZ7P43fzFF1MMUJq-o1JSec6u4djHNDecNJ2zaMMPasOqRKyEbxTh38dn9RHeW8JkR0VLLDanFxu7g5b66v39dQT7hNMDQTzvcxfWl6yOjqMG4GHHGaYQ5xqqOv5xXWF9E5SK6-TdGHIUzL-nRYxhTm1fiyeu5hyPjqRz2uPp9_-HT2sbm6ubg8O71qLOdibjxqBYqwXnvpXCtVT6XsCFdgmbM9E8x5pQmFFkCBYCi8a1uQmnFBe-na4-pyx3UR1maTwgjp0UQI5vtDTEsDaQ52QNNZxoigQljETkqnuRROWa06RoAjKSy6Y22nDTzewzD8BFJingI2JWBDuXkK2DwFXDx3O0--x8223-sgYUZIdmXsCoYRUzYZDfq297LwOu-16TgKo4lC43Xb9qB4DwiF-mZH3aT4dYt5Nuu4TVMJ0jBJlBaCaP5LtYTyvTD5OCewY8jWnErKtaCc6aI6-YuqHIdjsGV_yuhw3_B2z1A0Mz7MS9jmbC7vFvtastPaFHNO6P8nMfGHxYbdWpW-wvBv4zfyMeOk
CitedBy_id crossref_primary_10_1109_TGRS_2024_3352654
crossref_primary_10_1109_TGRS_2024_3396379
crossref_primary_10_5194_amt_17_247_2024
crossref_primary_10_3390_atmos15111268
crossref_primary_10_1016_j_atmosres_2024_107879
crossref_primary_10_1109_TGRS_2024_3403373
crossref_primary_10_1109_TGRS_2025_3548518
crossref_primary_10_5194_amt_17_4337_2024
crossref_primary_10_1109_TGRS_2024_3470552
crossref_primary_10_5194_amt_17_3583_2024
crossref_primary_10_5194_amt_17_515_2024
crossref_primary_10_1109_LGRS_2023_3284278
crossref_primary_10_31857_S0205961424040019
crossref_primary_10_1109_TGRS_2024_3453248
crossref_primary_10_5194_amt_17_5957_2024
Cites_doi 10.1029/2020EA001423
10.1175/JAMC-D-14-0105.1
10.5194/amt-9-5441-2016
10.1175/JHM-D-21-0194.1
10.1109/TGRS.2011.2158438
10.1175/1520-0450(1994)033<0003:APMTFE>2.0.CO;2
10.1175/BAMS-D-13-00164.1
10.1109/36.868889
10.1007/978-3-030-24568-9_19
10.1175/JHM-D-17-0087.1
10.1109/MCSE.2011.37
10.1109/TGRS.2007.908302
10.5334/jors.148
10.5194/amt-8-837-2015
10.1117/12.737986
10.1109/CVPR.2017.195
10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2
10.3390/rs10071122
10.1175/JTECH-D-15-0039.1
10.1257/jep.15.4.143
10.1038/s41586-021-03819-2
10.1109/36.536538
10.1175/BAMS-D-14-00173.1
10.1175/JAM2173.1
10.1175/JTECH-D-16-0019.1
10.1175/2010JTECHA1468.1
10.5194/amt-12-6341-2019
10.1109/MCSE.2007.53
10.3390/rs11212463
10.1029/2018WR023830
10.5194/amt-11-4627-2018
10.1038/nature16961
10.1175/JHM-D-19-0110.1
10.1175/1520-0450(1994)033<0019:APMTFE>2.0.CO;2
10.1175/BAMS-86-8-1079
10.1007/BF01029783
10.1175/2010JTECHA1454.1
10.1109/MCSE.2007.55
10.5194/amt-2022-15
ContentType Journal Article
Copyright COPYRIGHT 2022 Copernicus GmbH
2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 Copernicus GmbH
– notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
ADTOC
UNPAY
DOA
DOI 10.5194/amt-15-5033-2022
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
SWEPUB Chalmers tekniska högskola full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Chalmers tekniska högskola
SwePub Articles full text
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1867-8548
EndPage 5060
ExternalDocumentID oai_doaj_org_article_4c2206166cee477d9576d8c98420a5e0
10.5194/amt-15-5033-2022
oai_research_chalmers_se_ef3bf710_4ff9_45e6_908e_f933ba85baea
A715961529
10_5194_amt_15_5033_2022
GroupedDBID 23N
5VS
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABDBF
ABUWG
ACGFO
ACUHS
ADBBV
AEGXH
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
ESX
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
ISR
ITC
K6-
KQ8
LK5
M7R
OK1
P2P
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
Q2X
RKB
RNS
TR2
TUS
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQUKI
PRINS
ABBSD
ADTPV
AOWAS
C1A
D8T
F1S
IPNFZ
RIG
ZZAVC
ADTOC
UNPAY
ID FETCH-LOGICAL-c556t-fe98a802b9f7dd378b1774058ac2dcb262df8901a3aa8a62e6fd33a792561b7d3
IEDL.DBID BENPR
ISSN 1867-8548
1867-1381
IngestDate Tue Oct 14 19:02:35 EDT 2025
Wed Oct 01 15:33:29 EDT 2025
Tue Sep 09 23:57:34 EDT 2025
Fri Jul 25 22:07:34 EDT 2025
Mon Oct 20 22:37:19 EDT 2025
Mon Oct 20 16:48:25 EDT 2025
Thu Oct 16 14:46:51 EDT 2025
Wed Oct 01 03:51:35 EDT 2025
Thu Apr 24 23:08:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-fe98a802b9f7dd378b1774058ac2dcb262df8901a3aa8a62e6fd33a792561b7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6566-2732
0000-0002-8475-0479
OpenAccessLink https://www.proquest.com/docview/2708966095?pq-origsite=%requestingapplication%&accountid=15518
PQID 2708966095
PQPubID 105742
PageCount 28
ParticipantIDs doaj_primary_oai_doaj_org_article_4c2206166cee477d9576d8c98420a5e0
unpaywall_primary_10_5194_amt_15_5033_2022
swepub_primary_oai_research_chalmers_se_ef3bf710_4ff9_45e6_908e_f933ba85baea
proquest_journals_2708966095
gale_infotracmisc_A715961529
gale_infotracacademiconefile_A715961529
gale_incontextgauss_ISR_A715961529
crossref_primary_10_5194_amt_15_5033_2022
crossref_citationtrail_10_5194_amt_15_5033_2022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-02
PublicationDateYYYYMMDD 2022-09-02
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-02
  day: 02
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric measurement techniques
PublicationYear 2022
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref37
– ident: ref30
  doi: 10.1029/2020EA001423
– ident: ref1
– ident: ref8
  doi: 10.1175/JAMC-D-14-0105.1
– ident: ref43
– ident: ref46
  doi: 10.5194/amt-9-5441-2016
– ident: ref11
  doi: 10.1175/JHM-D-21-0194.1
– ident: ref5
  doi: 10.1109/TGRS.2011.2158438
– ident: ref9
– ident: ref24
  doi: 10.1175/1520-0450(1994)033<0003:APMTFE>2.0.CO;2
– ident: ref25
  doi: 10.1175/1520-0450(1994)033<0003:APMTFE>2.0.CO;2
– ident: ref17
  doi: 10.1175/BAMS-D-13-00164.1
– ident: ref34
– ident: ref36
– ident: ref53
  doi: 10.1109/36.868889
– ident: ref2
– ident: ref19
  doi: 10.1007/978-3-030-24568-9_19
– ident: ref13
  doi: 10.1175/JHM-D-17-0087.1
– ident: ref57
  doi: 10.1109/MCSE.2011.37
– ident: ref54
  doi: 10.1109/TGRS.2007.908302
– ident: ref18
  doi: 10.5334/jors.148
– ident: ref45
  doi: 10.5194/amt-8-837-2015
– ident: ref4
  doi: 10.1117/12.737986
– ident: ref6
  doi: 10.1109/CVPR.2017.195
– ident: ref52
  doi: 10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2
– ident: ref47
  doi: 10.3390/rs10071122
– ident: ref29
  doi: 10.1175/JTECH-D-15-0039.1
– ident: ref39
– ident: ref3
– ident: ref23
  doi: 10.1257/jep.15.4.143
– ident: ref21
  doi: 10.1038/s41586-021-03819-2
– ident: ref27
  doi: 10.1109/36.536538
– ident: ref51
  doi: 10.1175/BAMS-D-14-00173.1
– ident: ref16
  doi: 10.1175/JAM2173.1
– ident: ref22
– ident: ref12
  doi: 10.1175/JTECH-D-16-0019.1
– ident: ref28
  doi: 10.1175/2010JTECHA1468.1
– ident: ref32
– ident: ref7
  doi: 10.5194/amt-12-6341-2019
– ident: ref40
  doi: 10.1109/MCSE.2007.53
– ident: ref33
  doi: 10.3390/rs11212463
– ident: ref15
– ident: ref55
  doi: 10.1029/2018WR023830
– ident: ref38
– ident: ref42
  doi: 10.5194/amt-11-4627-2018
– ident: ref49
  doi: 10.1038/nature16961
– ident: ref44
  doi: 10.1175/JHM-D-19-0110.1
– ident: ref26
  doi: 10.1175/1520-0450(1994)033<0019:APMTFE>2.0.CO;2
– ident: ref48
  doi: 10.1175/BAMS-86-8-1079
– ident: ref50
  doi: 10.1007/BF01029783
– ident: ref56
– ident: ref10
  doi: 10.1175/2010JTECHA1454.1
– ident: ref20
  doi: 10.1109/MCSE.2007.55
– ident: ref35
– ident: ref14
– ident: ref31
– ident: ref41
  doi: 10.5194/amt-2022-15
SSID ssj0064172
Score 2.4417744
Snippet The Global Precipitation Measurement (GPM) mission measures global precipitation at a temporal resolution of a few hours to enable close monitoring of the...
SourceID doaj
unpaywall
swepub
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5033
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Artificial satellites
Correlation
Geostationary satellites
Global precipitation
Hurricanes
Hydrologic cycle
Hydrological cycle
Hydrology
Hydrometeor profiles
Hydrometeors
Information retrieval
Machine learning
Monitoring
Neural networks
Precipitation
Profiling
Radar
Radar measurement
Rainfall measurement
Satellite constellations
Sensors
Synchronous satellites
Temporal resolution
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9NAEF_kXtQH8RNznrKIKAqhyWaT3fhWD3unePWoHtzbsl-5FtLkaFPE_96ZTVquCN6Lj0kmYTMzu_ObzeQ3hLxJDCuEFzY2qeExL7AIwHMdGyeY1q7kNmzon02L0wv-9TK_vNHqC2vCenrgXnEjbhmDmFMUsJpzIVwJANlJW0rOEp37kK0nstwmU_0aXPA0tG1CtjZk2Uv7D5SAVvhIL7s4zeM8NDFLGNsLSIG3_-_Veccjep_c3TTX-vcvXdc34tDkIXkwAEg67gf-iNzxzWMSnQH2bVdhi5y-pcf1AoBoOHpCZifns--TeDr9SDVF-kpdx01f_B1jDHN0sdwWkaOVaFtRQIX0pHW4x0DPQ1dviHB0XF-1q0U3Xz4lF5PPP49P46GTQmzzvOjiypdSy4SZshLOZUIi6RRANaktcxbMxVwlARnoTGupC-aLymWZFiUAotQIlz0jB03b-OeEMm6k9YZDJgTgyyaYcDEh8jLLjJfORmS0VaeyA804druoFaQbaAAFBlBprtAACg0Qkfe7O657io1_yH5CC-3kkBw7nACXUYPLqNtcJiKv0b4K6S8arK-50pv1Wn35MVNjAfAOQB4rI_JuEKpaGL_Vw-8KoAVkzNqTPNqThPlp9y9v3UgN68NaMQE-WyDZX0S-9a61904D09Nc2Xloo7NWa698lZkKEKHiVVUqnvtClYn0qkLda5kb7XVEPuwc9FZtHv4Pbb4g9_BZoe6OHZGDbrXxLwGodeZVmJN_AOI4NTc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegewAe-EYEBrIQAoGULXXs2OGtTHQDsVIVJo0ny19ZK9JkalIh-Os5u2m1AuLjKV-XKLk7537nXH6H0NNEk4w7bmLd1zSmmS8CcFTF2nKilM2pCRP6x6Ps6IS-O2Wn3XyH_xfmwvd7wBZ0X83buM9iFlqOQby5jHYyBqi7h3ZORuPBZ59PCRjr_TT0Iw3rAlD46ovkby-xFYECUf-vr-MNceg1dGVZnatvX1VZXgg8wxsrFqQm8BX6epMve8tW75nvP7E5_ssz3UTXO_SJByt3uYUuueo2io4BONeLML-On-GDcgYoNmzdQZPD8eTDMB6NXmGFPfelKuNqVTke-wBo8Wy-rkD3JsZ1gQFS4sPa-gkKPA4twSE84kF5Vi9m7XR-F50M33w6OIq7NgyxYSxr48LlQomE6Lzg1qZceMYqwHlCGWIN2JrYQgCsUKlSQmXEZYVNU8VzQFN9zW16D_WqunL3ESZUC-M0hTQKkJtJfLZGOGd5mmonrInQ_to00nQc5b5VRikhV_G6k6A72WfS60563UXoxeaM8xU_xx9kX3trb-Q8s3bYAcaR3UCV1BACGCfLAD1Qzm0OCZkVJheUJIq5JEJPvK9Iz51R-eKcM7VsGvn240QOOGBDQIgkj9DzTqio4f6N6v51AC14uq0tyd0tSRjcZvvw2iVl93JpJOGJ8KSqOYvQ-5Wbbj1TRxM1lWYaevA0snHSFakuAE5KWhS5pMxlMk-Ek4XXvRJMK6ci9HLj7H_V5oP_EX6IrvpFKM4ju6jXLpbuEaC5Vj_uBvIPpeI-5Q
  priority: 102
  providerName: Unpaywall
Title GPROF-NN: a neural-network-based implementation of the Goddard Profiling Algorithm
URI https://www.proquest.com/docview/2708966095
https://research.chalmers.se/publication/532125
https://doi.org/10.5194/amt-15-5033-2022
https://doaj.org/article/4c2206166cee477d9576d8c98420a5e0
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: ABDBF
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: BFMQW
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: BENPR
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: 8FG
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fi9NAEF7ueg_qg_gTo2cJIopCaLLZZDeCSO-43ileLdXC-bRsdjftQZrU_kD8753ZJtUinI9pp5DOzM5-O5l8HyEvw5ym3HId5FHOApbiEIBlKsgNp0qZjGnX0L8cphcT9ukquTogw_ZdGByrbGuiK9Sm1tgj71EeCmSSzJIPix8Bqkbh09VWQkM10grmvaMYOyRHFJmxOuTo5Gw4Gre1OWWRk3NCFjdk34u2Dy4BxbCemq-DKAkSJ24WUrq3UTk-_3-r9o5f9A65takW6tdPVZZ_7U-De-RuAyz9_jYT7pMDWz0g3iVg4nrpWuf-K_-0vAaA6q4ekvH5aPxlEAyH73zlI62lKoNqOxQe4N5m_Ot5O1yO0fPrwge06J_XBnsP_sipfcPO5_fLKXhqPZs_IpPB2bfTi6BRWAh0kqTroLCZUCKkeVZwY2IukIwKIJxQmhoNYaSmEIAYVKyUUCm1aWHiWPEMgFKUcxM_Jp2qruwT4lOWC21zBickAGU6xIMY5TzJ4ji3wmiP9Fp3St3Qj6MKRinhGIIBkBAAGSUSAyAxAB55s_vFYku9cYPtCUZoZ4ek2e6DejmVzRqUTFMK8CVNARgwzk0GZy0jdCYYDVViQ4-8wPhKpMWocO5mqjarlfz4dSz7HGAfgD-aeeR1Y1TUcP9aNa8xgBeQSWvP8njPEtat3v-6TSPZ1I2V_JPlHvm8Ta29_9QwQM2knjl5nZVcWWmLOC8AKUpWFJlkiU1lFgorC_S9EkmurPLI212C_tebT2--tWfkNlq5STt6TDrr5cY-B2i2zrvkUAzOu82q67oGB1xNhqP-998_VTfJ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbG9jB4QFxFYICFuAikqInjxA7ShLaxG9vK1G3S3oxjO-2kNCltp2l_jt_GOWlSqJDG0x7bnlSJz7HPd5zj7yPkbZCxRDhh_CzMuM8TbAJwXPuZFUxrm3JTb-gfdZO9M_7tPD5fIr_aszDYVtmuifVCbSuDe-QdJgKJTJJp_GX000fVKHy72kpo6EZawa7XFGPNwY4Dd30FJdxkff8r-PsdYzvbp1t7fqMy4Js4TqZ-7lKpZcCyNBfWRkIiIRPAGKkNswYehdlcQtbUkdZSJ8wluY0iLVIAC2EmbAT_e4es8IinUPytbG53j3ttLkh4WMtHIWscsv2FsxelgJp4Rw-nfhj7cS2mFjC2kBhr_YB_s8Scz_QeWb0sR_r6ShfFX_lw5wG53wBZujGLvIdkyZWPiHcEGLwa11v19D3dKi4AENefHpPe7nHv-47f7X6mmiKNpi78ctaE7mMutfRi2DazY7TQKqeATuluZXGvgx7X6uKQaelG0QfPTAfDJ-TsVsb6KVkuq9I9I5TxTBqXcajIAASaAAs_JkScRlHmpDUe6bTDqUxDd46qG4WCsgcdoMABKowVOkChAzzycX7FaEb1cYPtJnpobock3fUX1bivmjmvuGEM4FKSABDhQtgUajsrTSo5C3TsAo-8Qf8qpOEosc-nry8nE7V_0lMbAmAmgE2WeuRDY5RXcP9GN8cmYBSQuWvBcm3BEtYJs_hzG0aqWacm6s-s8sjhLLQWnqlhnBooM6jlfCZq4pTLoywHZKp4nqeKxy5RaSCdynHstYwz7bRHPs0D9L-j-fzmW3tNVvdOjw7V4X734AW5i1fUXX5sjSxPx5fuJcDCafaqmXuU_Ljt6f4bLzBxdg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtNAEF2VVuLywB1hKLBCXASSG2e99q6REOqFtKVtWgoVfVv25rYijUuTqCqfxq_wM8z4EghI5akPPCZZR97xmdkzu-MzhDyJDEuFFzY0bcNDnmIRgOc6NE4wrV3Gbbmhv9FNV3b4u91kd4p8b96FwbLKJiaWgdoVFvfIW0xEEpUks6SV12URW0udN0dfQ-wghSetTTuNCiJr_vQE0rfB69UleNZPGeu8_bi4EtYdBkKbJOkwzH0mtYyYyXLhXCwkijEBhZHaMmdhGszlElZMHWstdcp8mrs41iIDotA2wsXwvxfIjEQRtGkys9DZeP-pWQdS3i5bR6FiHCr9tatDUmBMvKUPh2E7CZOykVrE2MSiWPYO-HuFGGuZXiGXRv0jfXqie73f1sLONfKjsWJVAvNlbjQ0c_bbHwKT_6eZr5OrNUWn85VP3SBTvn-TBBuQXRTH5SEEfUYXewdA9ctPt8j28tb2Zifsdl9RTVEgVPfCflVeHyJLcPTgsCnTRz-gRU6Bd9PlwuEuDt0q-6YDh6DzvT0wwHD_8DbZOZcp3iHT_aLv7xLKuJHWGw65JtBbG2FKy4RIsjg2XjobkFYDFmVrIXfsJ9JTkNAhvBTAS7UThfBSCK-AvBhfcVSJmJwxdgHxNx6H8uPlF8XxnqqjmeKWMSCCaQoUiwvhMshanbSZ5CzSiY8C8hjRq1BgpI8Y2tOjwUCtfthW8wIINNBolgXkeT0oL-D-ra5fCAEroCbZxMjZiZEQAe3kzw2WVR2BB-oXkAOyXjnOxJxqLa19ZffLRkUDNfDK57HJgXMrnueZ4olPVRZJr3K0vZaJ0V4H5OXY_f5pzXtn39ojchG8S62vdtfuk8t4QVm-yGbJ9PB45B8A3x2ah3VgoeTzeTvZT-V_uC8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegewAe-EYEBrIQAoGULXXs2OGtTHQDsVIVJo0ny19ZK9JkalIh-Os5u2m1AuLjKV-XKLk7537nXH6H0NNEk4w7bmLd1zSmmS8CcFTF2nKilM2pCRP6x6Ps6IS-O2Wn3XyH_xfmwvd7wBZ0X83buM9iFlqOQby5jHYyBqi7h3ZORuPBZ59PCRjr_TT0Iw3rAlD46ovkby-xFYECUf-vr-MNceg1dGVZnatvX1VZXgg8wxsrFqQm8BX6epMve8tW75nvP7E5_ssz3UTXO_SJByt3uYUuueo2io4BONeLML-On-GDcgYoNmzdQZPD8eTDMB6NXmGFPfelKuNqVTke-wBo8Wy-rkD3JsZ1gQFS4sPa-gkKPA4twSE84kF5Vi9m7XR-F50M33w6OIq7NgyxYSxr48LlQomE6Lzg1qZceMYqwHlCGWIN2JrYQgCsUKlSQmXEZYVNU8VzQFN9zW16D_WqunL3ESZUC-M0hTQKkJtJfLZGOGd5mmonrInQ_to00nQc5b5VRikhV_G6k6A72WfS60563UXoxeaM8xU_xx9kX3trb-Q8s3bYAcaR3UCV1BACGCfLAD1Qzm0OCZkVJheUJIq5JEJPvK9Iz51R-eKcM7VsGvn240QOOGBDQIgkj9DzTqio4f6N6v51AC14uq0tyd0tSRjcZvvw2iVl93JpJOGJ8KSqOYvQ-5Wbbj1TRxM1lWYaevA0snHSFakuAE5KWhS5pMxlMk-Ek4XXvRJMK6ci9HLj7H_V5oP_EX6IrvpFKM4ju6jXLpbuEaC5Vj_uBvIPpeI-5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GPROF-NN%3A+a+neural-network-based+implementation+of+the+Goddard+Profiling+Algorithm&rft.jtitle=Atmospheric+measurement+techniques&rft.au=Pfreundschuh%2C+Simon&rft.au=Brown%2C+Paula+J&rft.au=Kummerow%2C+Christian+D&rft.au=Eriksson%2C+Patrick&rft.date=2022-09-02&rft.pub=Copernicus+GmbH&rft.issn=1867-1381&rft.volume=15&rft.issue=17&rft.spage=5033&rft_id=info:doi/10.5194%2Famt-15-5033-2022&rft.externalDocID=A715961529
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-8548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-8548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-8548&client=summon