Using the General Linear Model to Improve Performance in fNIRS Single Trial Analysis and Classification: A Perspective
Within a decade, single trial analysis of functional Near Infrared Spectroscopy (fNIRS) signals has gained significant momentum, and fNIRS joined the set of modalities frequently used for active and passive Brain Computer Interfaces (BCI). A great variety of methods for feature extraction and classi...
Saved in:
Published in | Frontiers in human neuroscience Vol. 14; p. 30 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
18.02.2020
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1662-5161 1662-5161 |
DOI | 10.3389/fnhum.2020.00030 |
Cover
Abstract | Within a decade, single trial analysis of functional Near Infrared Spectroscopy (fNIRS) signals has gained significant momentum, and fNIRS joined the set of modalities frequently used for active and passive Brain Computer Interfaces (BCI). A great variety of methods for feature extraction and classification have been explored using state-of-the-art Machine Learning methods. In contrast, signal preprocessing and cleaning pipelines for fNIRS often follow simple recipes and so far rarely incorporate the available state-of-the-art in adjacent fields. In neuroscience, where fMRI and fNIRS are established neuroimaging tools, evoked hemodynamic brain activity is typically estimated across multiple trials using a General Linear Model (GLM). With the help of the GLM, subject, channel, and task specific evoked hemodynamic responses are estimated, and the evoked brain activity is more robustly separated from systemic physiological interference using independent measures of nuisance regressors, such as short-separation fNIRS measurements. When correctly applied in single trial analysis, e.g., in BCI, this approach can significantly enhance contrast to noise ratio of the brain signal, improve feature separability and ultimately lead to better classification accuracy. In this manuscript, we provide a brief introduction into the GLM and show how to incorporate it into a typical BCI preprocessing pipeline and cross-validation. Using a resting state fNIRS data set augmented with synthetic hemodynamic responses that provide ground truth brain activity, we compare the quality of commonly used fNIRS features for BCI that are extracted from (1) conventionally preprocessed signals, and (2) signals preprocessed with the GLM and physiological nuisance regressors. We show that the GLM-based approach can provide better single trial estimates of brain activity as well as a new feature type, i.e., the weight of the individual and channel-specific hemodynamic response function (HRF) regressor. The improved estimates yield features with higher separability, that significantly enhance accuracy in a binary classification task when compared to conventional preprocessing-on average +7.4% across subjects and feature types. We propose to adapt this well-established approach from neuroscience to the domain of single-trial analysis and preprocessing wherever the classification of evoked brain activity is of concern, for instance in BCI. |
---|---|
AbstractList | Within a decade, single trial analysis of functional Near Infrared Spectroscopy (fNIRS) signals has gained significant momentum, and fNIRS joined the set of modalities frequently used for active and passive Brain Computer Interfaces (BCI). A great variety of methods for feature extraction and classification have been explored using state-of-the-art Machine Learning methods. In contrast, signal preprocessing and cleaning pipelines for fNIRS often follow simple recipes and so far rarely incorporate the available state-of-the-art in adjacent fields. In neuroscience, where fMRI and fNIRS are established neuroimaging tools, evoked hemodynamic brain activity is typically estimated across multiple trials using a General Linear Model (GLM). With the help of the GLM, subject, channel, and task specific evoked hemodynamic responses are estimated, and the evoked brain activity is more robustly separated from systemic physiological interference using independent measures of nuisance regressors, such as short-separation fNIRS measurements. When correctly applied in single trial analysis, e.g., in BCI, this approach can significantly enhance contrast to noise ratio of the brain signal, improve feature separability and ultimately lead to better classification accuracy. In this manuscript, we provide a brief introduction into the GLM and show how to incorporate it into a typical BCI preprocessing pipeline and cross-validation. Using a resting state fNIRS data set augmented with synthetic hemodynamic responses that provide ground truth brain activity, we compare the quality of commonly used fNIRS features for BCI that are extracted from (1) conventionally preprocessed signals, and (2) signals preprocessed with the GLM and physiological nuisance regressors. We show that the GLM-based approach can provide better single trial estimates of brain activity as well as a new feature type, i.e., the weight of the individual and channel-specific hemodynamic response function (HRF) regressor. The improved estimates yield features with higher separability, that significantly enhance accuracy in a binary classification task when compared to conventional preprocessing-on average +7.4% across subjects and feature types. We propose to adapt this well-established approach from neuroscience to the domain of single-trial analysis and preprocessing wherever the classification of evoked brain activity is of concern, for instance in BCI. Within a decade, single trial analysis of functional Near Infrared Spectroscopy (fNIRS) signals has gained significant momentum, and fNIRS joined the set of modalities frequently used for active and passive Brain Computer Interfaces (BCI). A great variety of methods for feature extraction and classification have been explored using state-of-the-art Machine Learning methods. In contrast, however, signal preprocessing and cleaning pipelines for fNIRS often follow simple recipes and so far rarely incorporate the available state-of-the-art in adjacent fields. In neuroscience, where fMRI and fNIRS are established neuroimaging tools, evoked hemodynamic brain activity is typically estimated across multiple trials using a General Linear Model (GLM). With the help of the GLM, subject, channel and task specific evoked hemodynamic responses are estimated, and the evoked brain activity is more robustly separated from systemic physiological interference using independent measures of nuisance regressors, such as short-separation fNIRS measurements. When correctly applied in single trial analysis, e.g., in BCI, this approach can significantly enhance contrast to noise ratio of the brain signal, improve feature separability and ultimately lead to better classification accuracy. In this manuscript, we provide a brief introduction into the GLM and show how to incorporate it into a typical BCI preprocessing pipeline and cross-validation. Using a resting state fNIRS data set augmented with synthetic hemodynamic responses that provide ground truth brain activity, we compare the quality of commonly used fNIRS features for BCI that are extracted from 1) conventionally preprocessed signals, and 2) signals preprocessed with the GLM and physiological nuisance regressors. We show that the GLM-based approach can provide better single trial estimates of brain activity as well as a new feature type, i.e., the weight of the individual and channel-specific hemodynamic response function (HRF) regressor. The improved estimates yield features with higher separability, that significantly enhance accuracy in a binary classification task when compared to conventional preprocessing - on average +7.4% across subjects and feature types. We propose to adapt this well-established approach from neuroscience to the domain of single-trial analysis and preprocessing wherever the classification of evoked brain activity is of concern, for instance in BCI. Within a decade, single trial analysis of functional Near Infrared Spectroscopy (fNIRS) signals has gained significant momentum, and fNIRS joined the set of modalities frequently used for active and passive Brain Computer Interfaces (BCI). A great variety of methods for feature extraction and classification have been explored using state-of-the-art Machine Learning methods. In contrast, signal preprocessing and cleaning pipelines for fNIRS often follow simple recipes and so far rarely incorporate the available state-of-the-art in adjacent fields. In neuroscience, where fMRI and fNIRS are established neuroimaging tools, evoked hemodynamic brain activity is typically estimated across multiple trials using a General Linear Model (GLM). With the help of the GLM, subject, channel, and task specific evoked hemodynamic responses are estimated, and the evoked brain activity is more robustly separated from systemic physiological interference using independent measures of nuisance regressors, such as short-separation fNIRS measurements. When correctly applied in single trial analysis, e.g., in BCI, this approach can significantly enhance contrast to noise ratio of the brain signal, improve feature separability and ultimately lead to better classification accuracy. In this manuscript, we provide a brief introduction into the GLM and show how to incorporate it into a typical BCI preprocessing pipeline and cross-validation. Using a resting state fNIRS data set augmented with synthetic hemodynamic responses that provide ground truth brain activity, we compare the quality of commonly used fNIRS features for BCI that are extracted from (1) conventionally preprocessed signals, and (2) signals preprocessed with the GLM and physiological nuisance regressors. We show that the GLM-based approach can provide better single trial estimates of brain activity as well as a new feature type, i.e., the weight of the individual and channel-specific hemodynamic response function (HRF) regressor. The improved estimates yield features with higher separability, that significantly enhance accuracy in a binary classification task when compared to conventional preprocessing-on average +7.4% across subjects and feature types. We propose to adapt this well-established approach from neuroscience to the domain of single-trial analysis and preprocessing wherever the classification of evoked brain activity is of concern, for instance in BCI.Within a decade, single trial analysis of functional Near Infrared Spectroscopy (fNIRS) signals has gained significant momentum, and fNIRS joined the set of modalities frequently used for active and passive Brain Computer Interfaces (BCI). A great variety of methods for feature extraction and classification have been explored using state-of-the-art Machine Learning methods. In contrast, signal preprocessing and cleaning pipelines for fNIRS often follow simple recipes and so far rarely incorporate the available state-of-the-art in adjacent fields. In neuroscience, where fMRI and fNIRS are established neuroimaging tools, evoked hemodynamic brain activity is typically estimated across multiple trials using a General Linear Model (GLM). With the help of the GLM, subject, channel, and task specific evoked hemodynamic responses are estimated, and the evoked brain activity is more robustly separated from systemic physiological interference using independent measures of nuisance regressors, such as short-separation fNIRS measurements. When correctly applied in single trial analysis, e.g., in BCI, this approach can significantly enhance contrast to noise ratio of the brain signal, improve feature separability and ultimately lead to better classification accuracy. In this manuscript, we provide a brief introduction into the GLM and show how to incorporate it into a typical BCI preprocessing pipeline and cross-validation. Using a resting state fNIRS data set augmented with synthetic hemodynamic responses that provide ground truth brain activity, we compare the quality of commonly used fNIRS features for BCI that are extracted from (1) conventionally preprocessed signals, and (2) signals preprocessed with the GLM and physiological nuisance regressors. We show that the GLM-based approach can provide better single trial estimates of brain activity as well as a new feature type, i.e., the weight of the individual and channel-specific hemodynamic response function (HRF) regressor. The improved estimates yield features with higher separability, that significantly enhance accuracy in a binary classification task when compared to conventional preprocessing-on average +7.4% across subjects and feature types. We propose to adapt this well-established approach from neuroscience to the domain of single-trial analysis and preprocessing wherever the classification of evoked brain activity is of concern, for instance in BCI. |
Author | Boas, David A. Yücel, Meryem Ayşe von Lühmann, Alexander Ortega-Martinez, Antonio |
AuthorAffiliation | 2 Machine Learning Department, Berlin Institute of Technology , Berlin , Germany 1 Neurophotonics Center, Biomedical Engineering, Boston University , Boston, MA , United States |
AuthorAffiliation_xml | – name: 2 Machine Learning Department, Berlin Institute of Technology , Berlin , Germany – name: 1 Neurophotonics Center, Biomedical Engineering, Boston University , Boston, MA , United States |
Author_xml | – sequence: 1 givenname: Alexander surname: von Lühmann fullname: von Lühmann, Alexander – sequence: 2 givenname: Antonio surname: Ortega-Martinez fullname: Ortega-Martinez, Antonio – sequence: 3 givenname: David A. surname: Boas fullname: Boas, David A. – sequence: 4 givenname: Meryem Ayşe surname: Yücel fullname: Yücel, Meryem Ayşe |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32132909$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktrGzEUhYeS0jzafVdF0E03dq-kkWami4IxTWJwHzTJWsiaK1tmRnKlsSH_vrKdhiTQlYT0ncN9nPPixAePRfGewpjzuvls_WrbjxkwGAMAh1fFGZWSjQSV9OTJ_bQ4T2kNIJkU9E1xyhnlrIHmrNjdJeeXZFghuUKPUXdk7jzqSL6HFjsyBDLrNzHskPzCaEPstTdInCf2x-z3DbnJ6g7JbXRZOfG6u08uEe1bMu10Ss46owcX_Bcy2RukDZrB7fBt8drqLuG7h_OiuLv8dju9Hs1_Xs2mk_nICCGHkQVgmkrWmEUtF2AlYy0aqFut0YraQtmALKVe2Ap4C1SUi5ZzLHVZ60xrflHMjr5t0Gu1ia7X8V4F7dThIcSl0nFwpkNl26plDFtO0ZZVRXWj67oGKyqaZ4sie309em22ix5bg37I43pm-vzHu5Vahp2qoAQuy2zw6cEghj9bTIPqXTLYddpj2CbFeEVrUfJaZvTjC3QdtjGPd0_tKxJU8Ex9eFrRYyn_1psBOAImhpQi2keEgtonSB0SpPYJUocEZYl8ITFuOKww9-S6_wv_AmHSy6w |
CitedBy_id | crossref_primary_10_1080_2326263X_2021_1900032 crossref_primary_10_1007_s00221_022_06365_z crossref_primary_10_1117_1_NPh_11_2_025004 crossref_primary_10_1016_j_neuroimage_2024_120793 crossref_primary_10_1140_epjp_s13360_021_01516_7 crossref_primary_10_3390_app12010316 crossref_primary_10_1117_1_NPh_9_S2_S24001 crossref_primary_10_1016_j_neuri_2021_100004 crossref_primary_10_1007_s13534_023_00291_x crossref_primary_10_1109_ACCESS_2024_3508875 crossref_primary_10_1016_j_heliyon_2023_e13628 crossref_primary_10_3389_fnins_2020_00594 crossref_primary_10_1117_1_NPh_11_1_010701 crossref_primary_10_1515_tnsci_2020_0147 crossref_primary_10_3389_fnagi_2022_958656 crossref_primary_10_1016_j_neuroimage_2024_120944 crossref_primary_10_1109_JTEHM_2024_3448457 crossref_primary_10_3390_s22155865 crossref_primary_10_1088_1742_6596_2570_1_012027 crossref_primary_10_1109_JSEN_2024_3404030 crossref_primary_10_3389_fnbeh_2021_793643 crossref_primary_10_3389_fnhum_2020_561223 crossref_primary_10_1109_TNSRE_2024_3458396 crossref_primary_10_3390_children10091574 crossref_primary_10_1038_s41598_024_69863_w crossref_primary_10_1117_1_NPh_9_2_025003 crossref_primary_10_3389_fnimg_2024_1361513 crossref_primary_10_3389_fnins_2023_1180293 crossref_primary_10_3389_fnhum_2021_646915 crossref_primary_10_3390_brainsci11020196 crossref_primary_10_1162_imag_a_00014 crossref_primary_10_1016_j_bbr_2022_114074 crossref_primary_10_3389_fnins_2020_579353 crossref_primary_10_1002_hbm_26786 crossref_primary_10_1016_j_compbiomed_2024_108840 crossref_primary_10_3390_s22114010 crossref_primary_10_3389_fnhum_2024_1329086 crossref_primary_10_1109_TNSRE_2025_3540673 crossref_primary_10_1111_ejn_16679 crossref_primary_10_3389_fpsyt_2021_669533 crossref_primary_10_1016_j_scispo_2022_05_001 crossref_primary_10_1016_j_cobme_2021_100272 crossref_primary_10_3389_fnrgo_2023_1273810 crossref_primary_10_25046_aj070621 crossref_primary_10_1007_s12021_022_09595_2 crossref_primary_10_3389_fnhum_2020_00236 crossref_primary_10_1007_s11571_024_10159_0 crossref_primary_10_1016_j_neuroimage_2022_119216 crossref_primary_10_1007_s10548_023_00963_y crossref_primary_10_1016_j_nicl_2021_102577 crossref_primary_10_3389_fnrgo_2024_1286586 crossref_primary_10_1002_jbio_202300346 crossref_primary_10_1088_1741_2552_ac4bfc crossref_primary_10_1109_ACCESS_2024_3443066 crossref_primary_10_3389_fpsyt_2022_1046849 crossref_primary_10_3390_bioengineering10060685 |
Cites_doi | 10.1016/j.neuroimage.2010.11.004 10.1016/j.neuroimage.2012.03.049 10.1364/boe.7.003078 10.3389/fnins.2012.00147 10.1109/MSP.2008.4408445 10.3389/fnhum.2015.00003 10.1006/cbmr.1996.0014 10.1016/j.neuroimage.2019.116472 10.1038/18581 10.1088/0967-3334/33/2/259 10.1016/j.ijpsycho.2010.03.013 10.1016/j.neuroimage.2009.01.033 10.1142/S1793545813500661 10.1016/S0047-259X(03)00096-4 10.1016/j.jneumeth.2007.09.022 10.1088/1741-2560/8/2/025005 10.1016/j.neuroimage.2009.11.050 10.1016/j.neuroimage.2013.04.082 10.1016/j.neuroimage.2011.03.001 10.1002/hbm.460020402 10.1016/j.neuroimage.2013.05.004 10.1117/1.2940587 10.1007/978-1-4615-4717-4_8 10.3389/fnhum.2017.00641 10.1088/1741-2560/10/5/056001 10.1016/S1388-2457(02)00057-3 10.1016/j.neuroimage.2009.07.045 10.1016/j.media.2007.06.002 10.1109/MC.2012.107 10.3389/fnene.2010.00014 10.1016/j.medengphy.2012.01.002 10.3389/fnbot.2017.00033 10.1016/0165-1684(94)90029-9 10.1016/j.neuroimage.2005.05.032 10.1518/001872008X288349 10.1117/12.612143 10.3389/fnins.2016.00530 10.3389/fnhum.2018.00246 10.1117/1.nph.5.1.011012 10.1016/S0166-2236(97)01132-6 10.3389/fnbot.2017.00035 10.1007/978-1-4419-1241-1_34 10.1097/00004647-199609000-00006 10.1364/ao.48.00d280 10.1109/MSP.2008.4408441 10.1016/j.neuroimage.2005.08.065 10.1117/1.2754714 10.1016/j.cobme.2017.09.011 10.1186/1475-925X-9-82 10.7551/mitpress/7493.001.0001 10.1016/j.medengphy.2015.01.005 10.1088/0031-9155/33/12/008 10.1109/86.712231 10.1016/j.neuroimage.2011.06.023 10.3389/fnhum.2015.00617 10.1016/j.neuroimage.2005.09.016 10.1016/j.neuroimage.2013.11.033 10.1016/j.neuroimage.2004.07.011 10.1088/0967-3334/31/5/004 10.1016/j.neuroimage.2019.06.021 10.1080/14639220210199753 10.1016/j.neuroimage.2010.06.048 10.3389/fnins.2010.00198 10.1109/TBME.2016.2594127 10.1098/rspa.1998.0193 10.1088/1741-2560/11/5/056011 10.1002/hbm.23849 10.1117/1.NPh.2.3.035005 |
ContentType | Journal Article |
Copyright | Copyright © 2020 von Lühmann, Ortega-Martinez, Boas and Yücel. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2020 von Lühmann, Ortega-Martinez, Boas and Yücel. 2020 von Lühmann, Ortega-Martinez, Boas and Yücel |
Copyright_xml | – notice: Copyright © 2020 von Lühmann, Ortega-Martinez, Boas and Yücel. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2020 von Lühmann, Ortega-Martinez, Boas and Yücel. 2020 von Lühmann, Ortega-Martinez, Boas and Yücel |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnhum.2020.00030 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student ProQuest SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5161 |
ExternalDocumentID | oai_doaj_org_article_fd7d22ed31ef4771a9a8880f571000e5 PMC7040364 32132909 10_3389_fnhum_2020_00030 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Foundation for the National Institutes of Health |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABIVO ABUWG ACGFO ACGFS ACXDI ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EMOBN F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 C1A IPNFZ NPM RIG 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c556t-f002a1629cb86b0f622dec08daaef58f0490646abf703d0154bd33e4a48a0f6a3 |
IEDL.DBID | M48 |
ISSN | 1662-5161 |
IngestDate | Wed Aug 27 01:25:07 EDT 2025 Thu Aug 21 18:41:51 EDT 2025 Fri Sep 05 13:33:35 EDT 2025 Fri Jul 25 11:43:16 EDT 2025 Thu Apr 03 07:08:30 EDT 2025 Thu Apr 24 22:56:33 EDT 2025 Tue Jul 01 03:44:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | fNIRS nuisance regression preprocessing short-separation BCI GLM classification HRF |
Language | English |
License | Copyright © 2020 von Lühmann, Ortega-Martinez, Boas and Yücel. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c556t-f002a1629cb86b0f622dec08daaef58f0490646abf703d0154bd33e4a48a0f6a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 This article was submitted to Brain-Computer Interfaces, a section of the journal Frontiers in Human Neuroscience Edited by: Chang-Hwan Im, Hanyang University, South Korea Reviewed by: Noman Naseer, Air University, Pakistan; Jaeyoung Shin, Wonkwang University, South Korea |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnhum.2020.00030 |
PMID | 32132909 |
PQID | 2357105153 |
PQPubID | 4424408 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fd7d22ed31ef4771a9a8880f571000e5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7040364 proquest_miscellaneous_2371854386 proquest_journals_2357105153 pubmed_primary_32132909 crossref_primary_10_3389_fnhum_2020_00030 crossref_citationtrail_10_3389_fnhum_2020_00030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-18 |
PublicationDateYYYYMMDD | 2020-02-18 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in human neuroscience |
PublicationTitleAlternate | Front Hum Neurosci |
PublicationYear | 2020 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Naseer (B44) 2015; 9 Lemm (B39) 2011; 56 Appel (B3) 2005 von Lühmann (B63) 2017; 64 Ferrari (B23) 2012; 63 Hong (B30) 2018; 12 Huang (B32) 1998; 454 Brigadoi (B13) 2014; 85 Elwell (B22) 1999; 471 Cohen-Adad (B14) 2007; 11 Zander (B71) 2011; 8 Birbaumer (B5) 1999; 398 Friston (B24) 1994; 2 Yücel (B69) 2014; 7 Ayaz (B4) 2012; 59 Blankertz (B9) 2010; 4 Cox (B17) 1996; 29 Van Erp (B58) 2012; 45 Molavi (B42) 2012; 33 Tachtsidis (B56) 2010; 662 Cooper (B16) 2012; 6 Safaie (B53) 2013; 10 Boas (B11) 2004; 23 Abibullaev (B2) 2012; 34 Saager (B52) 2008; 13 Scholkmann (B55) 2010; 31 Huppert (B34) 2006; 29 Ledoit (B38) 2004; 88 Yücel (B70) 2017; 4 Diamond (B20) 2006; 30 Gagnon (B25) 2011; 56 Parasuraman (B45) 2003; 4 Kassab (B36) 2018; 39 Parasuraman (B46) 2008; 50 Hong (B29) 2017; 11 Dornhege (B21) 2007 Parra (B47) 2005; 28 Zhang (B72) 2007; 12 von Lühmann (B61) 2015; 9 Yücel (B67) 2016; 7 Gregg (B26) 2010; 2 Hu (B31) 2010; 9 Mallat (B40) 1999 Pfurtscheller (B50) 1997; 42 Blankertz (B10) 2008; 25 Yin (B66) 2015; 37 Pfurtscheller (B49) 2010; 76 von Lühmann (B62) 2020; 208 von Lühmann (B60) 2019; 200 Zhao (B73) 2017; 5 Yücel (B68) 2015; 2 Delpy (B19) 1988; 33 Matthews (B41) 2008; 25 Pfeifer (B48) 2018; 11 Blankertz (B6) 2016; 10 Comon (B15) 1994; 36 Blankertz (B8) 2011; 56 Kleinschmidt (B37) 1996; 16 Boas (B12) 2014; 85 Wolpaw (B65) 2002; 113 Huppert (B33) 2009; 48 Tomioka (B57) 2010; 49 Cui (B18) 2010; 49 He (B28) 2012 Müller (B43) 2008; 167 Villringer (B59) 1997; 20 Qureshi (B51) 2017; 11 Abdelnour (B1) 2009; 46 Blankertz (B7) 2002 Haufe (B27) 2014; 11 Huppert (B35) 2005; 5693 Scholkmann (B54) 2014; 85 Wolpaw (B64) 1998; 6 |
References_xml | – volume: 56 start-page: 387 year: 2011 ident: B39 article-title: Introduction to machine learning for brain imaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.11.004 – volume: 63 start-page: 921 year: 2012 ident: B23 article-title: A brief review on the history of human functional near-infrared spectroscopy (FNIRS) development and fields of application publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.03.049 – volume: 7 start-page: 3078 year: 2016 ident: B67 article-title: Mayer waves reduce the accuracy of estimated hemodynamic response functions in functional near-infrared spectroscopy publication-title: Biomed. Opt. Express doi: 10.1364/boe.7.003078 – volume: 6 start-page: 147 year: 2012 ident: B16 article-title: A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00147 – volume-title: A Wavelet Tour of Signal Processing. 2nd Edn year: 1999 ident: B40 – volume: 25 start-page: 87 year: 2008 ident: B41 article-title: Hemodynamics for brain-computer interfaces publication-title: Signal Process. Mag. IEEE doi: 10.1109/MSP.2008.4408445 – volume: 9 start-page: 3 year: 2015 ident: B44 article-title: FNIRS-based brain-computer interfaces: a review publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2015.00003 – volume: 29 start-page: 162 year: 1996 ident: B17 article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Comput. Biomed. Res. doi: 10.1006/cbmr.1996.0014 – volume: 208 start-page: 116472 year: 2020 ident: B62 article-title: Improved physiological noise regression in the FNIRS signal: a multimodal extension of the general linear model using temporally embedded canonical correlation analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.116472 – volume: 398 start-page: 297 year: 1999 ident: B5 article-title: A spelling device for the paralysed publication-title: Nature doi: 10.1038/18581 – volume: 33 start-page: 259 year: 2012 ident: B42 article-title: Wavelet-based motion artifact removal for functional near-infrared spectroscopy publication-title: Physiol. Measure. doi: 10.1088/0967-3334/33/2/259 – volume: 76 start-page: 186 year: 2010 ident: B49 article-title: Focal frontal (de)oxyhemoglobin responses during simple arithmetic publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2010.03.013 – volume: 46 start-page: 133 year: 2009 ident: B1 article-title: Real-time imaging of human brain function by near-infrared spectroscopy using an adaptive general linear model publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.01.033 – volume: 7 start-page: 1350066 year: 2014 ident: B69 article-title: Targeted principle component analysis: a new motion artifact correction approach for near-infrared spectroscopy publication-title: J. Innov. Opt. Health Sci. doi: 10.1142/S1793545813500661 – volume: 88 start-page: 365 year: 2004 ident: B38 article-title: A well-conditioned estimator for large-dimensional covariance matrices publication-title: J. Multivar. Anal. doi: 10.1016/S0047-259X(03)00096-4 – volume: 167 start-page: 82 year: 2008 ident: B43 article-title: Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2007.09.022 – volume: 8 start-page: 25005 year: 2011 ident: B71 article-title: Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/2/025005 – volume: 49 start-page: 3039 year: 2010 ident: B18 article-title: Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.11.050 – volume: 42 start-page: 7 year: 1997 ident: B50 article-title: Elimination von atmungseffekten auf bewegungsinduzierte änderungen der herzrate publication-title: Biomed. Technik – volume: 85 start-page: 181 year: 2014 ident: B13 article-title: Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.082 – volume: 56 start-page: 1362 year: 2011 ident: B25 article-title: Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.03.001 – volume: 2 start-page: 189 year: 1994 ident: B24 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum. Brain Map doi: 10.1002/hbm.460020402 – volume: 85 start-page: 6 year: 2014 ident: B54 article-title: A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.004 – volume: 13 start-page: 034017 year: 2008 ident: B52 article-title: Measurement of layer-like hemodynamic trends in scalp and cortex: implications for physiological baseline suppression in functional near-infrared spectroscopy publication-title: J. Biomed. Opt. doi: 10.1117/1.2940587 – volume: 471 start-page: 57 year: 1999 ident: B22 article-title: Oscillations in cerebral haemodynamics. Implications for functional activation studies publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-1-4615-4717-4_8 – volume-title: Technical Analysis Power Tools for Active Investors, 1st Edn year: 2005 ident: B3 – volume: 11 start-page: 641 year: 2018 ident: B48 article-title: Signal processing in functional near-infrared spectroscopy (FNIRS): methodological differences lead to different statistical results publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2017.00641 – volume: 10 start-page: 56001 year: 2013 ident: B53 article-title: Toward a fully integrated wireless wearable EEG-NIRS bimodal acquisition system publication-title: J. Neural Eng. doi: 10.1088/1741-2560/10/5/056001 – volume: 113 start-page: 767 year: 2002 ident: B65 article-title: Brain–computer interfaces for communication and control publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(02)00057-3 – volume: 49 start-page: 415 year: 2010 ident: B57 article-title: A regularized discriminative framework for eeg analysis with application to brain–computer interface publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.07.045 – volume: 11 start-page: 616 year: 2007 ident: B14 article-title: Activation detection in diffuse optical imaging by means of the general linear model publication-title: Med. Image Anal doi: 10.1016/j.media.2007.06.002 – volume: 45 start-page: 26 year: 2012 ident: B58 article-title: Brain-computer interfaces: beyond medical applications publication-title: Computer doi: 10.1109/MC.2012.107 – volume: 2 start-page: 14 year: 2010 ident: B26 article-title: Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography publication-title: Front. Neuroenerg. doi: 10.3389/fnene.2010.00014 – volume: 34 start-page: 1394 year: 2012 ident: B2 article-title: Classification of frontal cortex haemodynamic responses during cognitive tasks using wavelet transforms and machine learning algorithms publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2012.01.002 – volume: 11 start-page: 33 year: 2017 ident: B51 article-title: Enhancing classification performance of functional near-infrared spectroscopy-brain-computer interface using adaptive estimation of general linear model coefficients publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2017.00033 – volume: 36 start-page: 287 year: 1994 ident: B15 article-title: Independent component analysis, a new concept? publication-title: Signal Process. doi: 10.1016/0165-1684(94)90029-9 – volume: 28 start-page: 326 year: 2005 ident: B47 article-title: Recipes for the linear analysis of EEG publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.05.032 – volume: 50 start-page: 468 year: 2008 ident: B46 article-title: Putting the brain to work: neuroergonomics past, present, and future publication-title: Hum. Factors doi: 10.1518/001872008X288349 – start-page: 157 volume-title: Advances in Neural Information Processing Systems year: 2002 ident: B7 article-title: Classifying single trial EEG: towards brain computer interfacing, – volume: 5693 start-page: 191 year: 2005 ident: B35 article-title: A Spatial-temporal comparison of FMRI and NIRS hemodynamic responses to motor stimuli in adult humans publication-title: Opt. Tomogr. Spectrosc. Tissue doi: 10.1117/12.612143 – volume: 10 start-page: 530 year: 2016 ident: B6 article-title: The Berlin brain-computer interface: progress beyond communication and control publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00530 – volume: 12 start-page: 246 year: 2018 ident: B30 article-title: Feature extraction and classification methods for hybrid FNIRS-EEG brain-computer interfaces publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2018.00246 – volume: 5 start-page: 1 year: 2017 ident: B73 article-title: Review of recent progress toward a fiberless, whole-scalp diffuse optical tomography system publication-title: Neurophotonics doi: 10.1117/1.nph.5.1.011012 – volume: 20 start-page: 435 year: 1997 ident: B59 article-title: Non-invasive optical spectroscopy and imaging of human brain function publication-title: Trends Neurosci. doi: 10.1016/S0166-2236(97)01132-6 – volume: 11 start-page: 35 year: 2017 ident: B29 article-title: Hybrid brain–computer interface techniques for improved classification accuracy and increased number of commands: a review publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2017.00035 – volume: 662 start-page: 237 year: 2010 ident: B56 article-title: Functional optical topography analysis using statistical parametric mapping (SPM) methodology with and without physiological confounds publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-1-4419-1241-1_34 – volume: 16 start-page: 817 year: 1996 ident: B37 article-title: Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/00004647-199609000-00006 – volume: 48 start-page: D280 year: 2009 ident: B33 article-title: HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain publication-title: Appl. Opt doi: 10.1364/ao.48.00d280 – volume: 25 start-page: 41 year: 2008 ident: B10 article-title: Optimizing spatial filters for robust EEG single-trial analysis publication-title: Signal Proc. Mag. IEEE doi: 10.1109/MSP.2008.4408441 – volume: 29 start-page: 368 year: 2006 ident: B34 article-title: A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.08.065 – volume: 12 start-page: 044014 year: 2007 ident: B72 article-title: adaptive filtering for global interference cancellation and real-time recovery of evoked brain activity: a monte carlo simulation study publication-title: J. Biomed. Opt. doi: 10.1117/1.2754714 – volume: 4 start-page: 78 year: 2017 ident: B70 article-title: Functional near infrared spectroscopy: enabling routine functional brain imaging publication-title: Curr. Opin. Biomed. Eng. doi: 10.1016/j.cobme.2017.09.011 – volume: 9 start-page: 1 year: 2010 ident: B31 article-title: Kalman estimator- and general linear model-based on-line brain activation mapping by near-infrared spectroscopy publication-title: Bio Med. Eng. Online doi: 10.1186/1475-925X-9-82 – volume-title: Toward Brain-Computer Interfacing year: 2007 ident: B21 doi: 10.7551/mitpress/7493.001.0001 – volume: 37 start-page: 280 year: 2015 ident: B66 article-title: NIRS-based classification of clench force and speed motor imagery with the use of empirical mode decomposition for BCI publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2015.01.005 – volume-title: Brain–Computer Interfaces, 2nd Edn year: 2012 ident: B28 – volume: 33 start-page: 1433 year: 1988 ident: B19 article-title: Estimation of optical pathlength through tissue from direct time of flight measurement publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/33/12/008 – volume: 6 start-page: 326 year: 1998 ident: B64 article-title: EEG-based communication: improved accuracy by response verification publication-title: IEEE Trans. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. doi: 10.1109/86.712231 – volume: 59 start-page: 36 year: 2012 ident: B4 article-title: Optical brain monitoring for operator training and mental workload assessment publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.06.023 – volume: 9 start-page: 617 year: 2015 ident: B61 article-title: Toward a wireless open source instrument: functional near-infrared spectroscopy in mobile neuroergonomics and BCI applications publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2015.00617 – volume: 30 start-page: 88 year: 2006 ident: B20 article-title: Dynamic physiological modeling for functional diffuse optical tomography publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.09.016 – volume: 85 start-page: 1 year: 2014 ident: B12 article-title: Twenty years of functional near-infrared spectroscopy: introduction for the special issue publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.11.033 – volume: 23 start-page: S275 year: 2004 ident: B11 article-title: Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.011 – volume: 31 start-page: 649 year: 2010 ident: B55 article-title: How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation publication-title: Physiol. Measure. doi: 10.1088/0967-3334/31/5/004 – volume: 200 start-page: 72 year: 2019 ident: B60 article-title: A new blind source separation framework for signal analysis and artifact rejection in functional near-infrared spectroscopy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.06.021 – volume: 4 start-page: 5 year: 2003 ident: B45 article-title: Neuroergonomics: research and practice publication-title: Theor. Issues Ergon. Sci. doi: 10.1080/14639220210199753 – volume: 56 start-page: 814 year: 2011 ident: B8 article-title: Single-trial analysis and classification of ERP components - a tutorial publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.06.048 – volume: 4 start-page: 198 year: 2010 ident: B9 article-title: The Berlin brain-computer interface: non-medical uses of BCI technology publication-title: Front. Neurosci. doi: 10.3389/fnins.2010.00198 – volume: 64 start-page: 1199 year: 2017 ident: B63 article-title: M3BA: A mobile, modular, multimodal biosignal acquisition architecture for miniaturized eeg-nirs-based Hybrid BCI and Monitoring publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2594127 – volume: 454 start-page: 303 year: 1998 ident: B32 article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – volume: 11 start-page: 56011 year: 2014 ident: B27 article-title: Electrophysiology-based detection of emergency braking intention in real-world driving publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/5/056011 – volume: 39 start-page: 7 year: 2018 ident: B36 article-title: Multichannel wearable FNIRS-EEG system for long-term clinical monitoring publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23849 – volume: 2 start-page: 035005 year: 2015 ident: B68 article-title: Short separation regression improves statistical significance and better localizes the hemodynamic response obtained by near-infrared spectroscopy for tasks with differing autonomic responses publication-title: Neurophotonics doi: 10.1117/1.NPh.2.3.035005 |
SSID | ssj0062651 |
Score | 2.5163891 |
Snippet | Within a decade, single trial analysis of functional Near Infrared Spectroscopy (fNIRS) signals has gained significant momentum, and fNIRS joined the set of... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 30 |
SubjectTerms | BCI Blood pressure Brain mapping Brain research Classification fNIRS Functional magnetic resonance imaging GLM HRF Human Neuroscience Infrared spectroscopy Interfaces Learning algorithms Machine learning Nervous system Neuroimaging Neurosciences Noise Physiology preprocessing Respiration Signal processing |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA_SJ19ErR-rrYwggg_L7WaT7Ma3a7FUwSK2hb6FbD5o4cyJ3gn-985kd693Ivriw75sJks2M8nMJDO_YeyV81Y7KXzpUDuV-LhSW96WKlSR22hV11I28sczdXopPlzJq61SXxQTNsADDxM3i771nAff1CGKtq2ttui0VVESLE0VMnpppavJmRr2YLTSZT1cSqILpmcxXa8p7ZxTHFeOeN5SQhmr_08G5u9xkluK5-Q-uzdajDAfRvqA3QnpIdufJ_SWv_yE15BjOPPh-D77kSMAAI06GPGkAZ1NFGagmmcLWC1hOEUI8Ok2YwBuEsSz95_P4Rx7LwJckFTChFcCNnnIxTMprChz8i3M6QNTmuYjdnny7uL4tBwrK5ROSrUqI-6DtlZcu75TfRUV5z64qvPWhii7SNeBSijbR9wQPJlZvW-aIKzoLFLb5jHbS8sUnjKwkVRa49DuwV4S1b9Em8EGHYQKPNiCzaapNm6EHafqFwuD7gcxx2TmGGKOycwp2JtNj68D5MZfaI-Iexs6AsvOL1CEzChC5l8iVLCDifdmXMHfDcEA1VQApynYy00zrj26ULEpLNdEg5pdiqZTBXsyiMpmJA1HP19XumDtjhDtDHW3Jd1cZ3zvFjfWRoln_-PfnrO7NFsUZ153B2xv9W0dDtGMWvUv8or5BS8uG_k priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_q9cUXUetHtMoKIvgQLtlkN4kgcpWWKniUfkDfwmQ_bOFMar0T_O-d2STXnkgf7iXZPZb8Zudjd-Y3AG-Nxcqo3MaGrFNMPxNXKItYu8RL9KjLgquRv8314Vn-9Vydb8F8rIXhtMpRJwZFbTvDZ-RTpmVJuSFJ9unqZ8xdo_h2dWyhgUNrBfsxUIzdg21SySqZwPbe_vzoeNTN5L2rtL-spNCsmvr2YsXl6JLzu0Im9C3jFDj8_-d4_ps_ecsgHTyEB4MnKWY99I9gy7WPYWfWUhT94494J0JuZzg034HfITNAkLMnBp5pQUEoCbngXmgLsexEf7rgxNFNJYG4bIWffzk-ESc0e-HEKUurGHlMBLZWhKaanG4UEP4gZvwHY_nmEzg72D_9fBgPHRdio5Rexp70I6ZaVqYpdZN4LaV1JiktovOq9HxNqHONjSdFYdn9amyWuRzzEmk0Zk9h0natew4CPZu6zJA_RLMIE6XIl0BXuVw76TCC6fipazPQkXNXjEVNYQmDUwdwaganDuBE8H4946qn4rhj7B6jtx7HJNrhQXf9vR72ZO1tYaV0Nkudz4sixQpLUmeeBS1JnIpgd8S-Hnb2r_pGDiN4s35Ne5IvWrB13YrHkMVXeVbqCJ71orJeSSYp_q-SKoJiQ4g2lrr5pr28CLzfBSncTOcv7l7WS7jP34Ezy9NyFybL65V7RY7Tsnk97Ia_dqgaNg priority: 102 providerName: ProQuest |
Title | Using the General Linear Model to Improve Performance in fNIRS Single Trial Analysis and Classification: A Perspective |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32132909 https://www.proquest.com/docview/2357105153 https://www.proquest.com/docview/2371854386 https://pubmed.ncbi.nlm.nih.gov/PMC7040364 https://doaj.org/article/fd7d22ed31ef4771a9a8880f571000e5 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB-0BemLqPUjWo8VRPAh9rLZ3SSCyFVaq-BR2h7cW9hkd23h3NPzTux_78zmoz05fPAheUh2QtiZ3fnNzhfAy9roopbCxDVqpxivOi40z2Jlh45rp1WeUTbyl7E6nojPUzm9To9uJ_DnRtOO-klNFrM3v39cvccF_44sTtS3-85frCipnFOUFgrtbdgO3iIK5BO9TwGRu0waR-VGqh24k3Jqu06xiTd0VCjlvwl__h1GeUMvHd2Duy2gZKNGAu7DLesfwO7IozH97Yq9YiHEM5yd78KvECDAEPOxttw0Q1sUZZ1RS7QZW85Zc8hg2cl1QgG79MyNP52esTOknll2TkLLunImTHvDQm9NijoKjH7LRvSBLovzIUyODs8_HMdt44W4llItY4fbpE4UL-oqV9XQKc6NrYe50do6mTvyFiqhdOVwvzCEwiqTplZokWscrdNHsOXn3j4Bph1pvLRGWIRUEtGBREihbWGFstzqCPa7qS7rtio5NceYlWidEJ_KwKeS-FQGPkXwuqf43lTk-MfYA-JeP45qaYcH88XXsl2apTOZ4dyaNLFOZFmiC53jruYkFT4aWhnBXsf7spPPkqoEJdQfJ43gRf8alyb5W7S38xWNQcUvRZqrCB43otL_SSdqEWRrQrT2q-tv_OVFKP-d4b6bKvH0vymfwQ5NEcWeJ_kebC0XK_scodWyGsD2weH45HQQjibw_nGaDMIq-gNY6CgZ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuCCiPQAEjARKHaBM7cRKkCm2h1S5tV1W7lXoLTmzTSktS2l1Q_xy_jRkn2XYR6q2HXOKHLM94HvbMfABvS62yMo60X6J28vEr_UzxxJcmsFxZJdOEspH3xnJ4FH09jo9X4E-XC0NhlZ1MdIJa1yXdkfepLEtIgCTi09lPn1Cj6HW1g9BQLbSC3nAlxtrEjh1z-RtduIuN0Rek9zvOt7cmn4d-izLgl3EsZ75FmaBCybOySGURWMm5NmWQaqWMjVNLT2MykqqweDg0mRyFFsJEKkoV9lYC570DqxFdoPRgdXNrvH_Q6QL0FuKweRxFVzDr2-pkTunvnOLJXOT1NWXoMAP-Z-j-G695TQFuP4D7reXKBg2rPYQVUz2CtUGFXvuPS_aeuVhSd0m_Br9cJAJD45K1da0ZOr24W4yw16ZsVrPmNsOw_avMBXZaMTseHRyyQxw9NWxCp4N1dVOYqjRzIJ4U3uQ46iMb0ARduuhjOLqVvX8CvaquzDNgypJqFSXaXzgKeSCO0XZRJjORNNwoD_rdVudlW_6cUDimObpBRJzcEScn4uSOOB58WIw4a0p_3NB3k6i36EdFu92P-vx73sqA3OpEc260CI2NkiRUmUpRfFpi7CAwsQfrHe3zVpJc5Fd878GbRTPKAHrYUZWp59QHLYw4Eqn04GnDKouVCB4KngWZB8kSEy0tdbmlOj1xdcYTFPBCRs9vXtZruDuc7O3mu6Pxzgu4R3tCUe1hug692fncvESjbVa8ak8Gg2-3fRj_AuBOV28 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFD5BSIwvRsVLBXVM1MSHZttpO21NiFmEDSu62XBJeCvTuQjJ0iLsaviL_irPmbYLawxvPPSlnWkmc-4z3zkH4J3SMldJrH2F1snHR_m55KkvTGC5tFJkKWUjfx-JncP461FytAR_ulwYglV2OtEpal0rOiPvUVmWkBqSRD3bwiLGW4PP5z996iBFN61dOw3ZtlnQG67cWJvksWuufmM4d7kx3ELav-d8sH3wZcdvOw74KknE1LeoH2QoeK7KTJSBFZxro4JMS2lsklm6JhOxkKVFQdHkfpQ6ikws40ziaBnhf-_BSopWHwPBlc3t0XivswsYOSRhc1GKYWHes9XJjFLhOWHLHAr7hmF0_QP-5_T-i928YQwHj-Bh68WyfsN2j2HJVE9gtV9hBH92xT4whyt1B_ar8MuhEhg6mqytcc0wAMbdYtSHbcKmNWtONgwbX2cxsNOK2dFwb5_t4-yJYQckKayrocJkpZlr6ElQJ8ddn1ifftCljj6FwzvZ-2ewXNWVeQFMWjKzkUJfDGchDyQJ-jHS5CYWhhvpQa_b6kK1pdCpI8ekwJCIiFM44hREnMIRx4OP8xnnTRmQW8ZuEvXm46iAt3tRX_woWn1QWJ1qzo2OQmPjNA1lLjNUpZaYPAhM4sF6R_ui1SqXxbUMePB2_hn1AV3yyMrUMxqD3kYSR5nw4HnDKvOVRDyMeB7kHqQLTLSw1MUv1emJqzmeorKPRPzy9mW9gfsolMW34Wh3DR7QlhDAPczWYXl6MTOv0H-blq9bwWBwfNey-Bfxi1uz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+the+General+Linear+Model+to+Improve+Performance+in+fNIRS+Single+Trial+Analysis+and+Classification%3A+A+Perspective&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=von+L%C3%BChmann%2C+Alexander&rft.au=Ortega-Martinez%2C+Antonio&rft.au=Boas%2C+David+A.&rft.au=Y%C3%BCcel%2C+Meryem+Ay%C5%9Fe&rft.date=2020-02-18&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5161&rft.volume=14&rft_id=info:doi/10.3389%2Ffnhum.2020.00030&rft_id=info%3Apmid%2F32132909&rft.externalDocID=PMC7040364 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon |