Using the General Linear Model to Improve Performance in fNIRS Single Trial Analysis and Classification: A Perspective

Within a decade, single trial analysis of functional Near Infrared Spectroscopy (fNIRS) signals has gained significant momentum, and fNIRS joined the set of modalities frequently used for active and passive Brain Computer Interfaces (BCI). A great variety of methods for feature extraction and classi...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in human neuroscience Vol. 14; p. 30
Main Authors von Lühmann, Alexander, Ortega-Martinez, Antonio, Boas, David A., Yücel, Meryem Ayşe
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 18.02.2020
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-5161
1662-5161
DOI10.3389/fnhum.2020.00030

Cover

Abstract Within a decade, single trial analysis of functional Near Infrared Spectroscopy (fNIRS) signals has gained significant momentum, and fNIRS joined the set of modalities frequently used for active and passive Brain Computer Interfaces (BCI). A great variety of methods for feature extraction and classification have been explored using state-of-the-art Machine Learning methods. In contrast, signal preprocessing and cleaning pipelines for fNIRS often follow simple recipes and so far rarely incorporate the available state-of-the-art in adjacent fields. In neuroscience, where fMRI and fNIRS are established neuroimaging tools, evoked hemodynamic brain activity is typically estimated across multiple trials using a General Linear Model (GLM). With the help of the GLM, subject, channel, and task specific evoked hemodynamic responses are estimated, and the evoked brain activity is more robustly separated from systemic physiological interference using independent measures of nuisance regressors, such as short-separation fNIRS measurements. When correctly applied in single trial analysis, e.g., in BCI, this approach can significantly enhance contrast to noise ratio of the brain signal, improve feature separability and ultimately lead to better classification accuracy. In this manuscript, we provide a brief introduction into the GLM and show how to incorporate it into a typical BCI preprocessing pipeline and cross-validation. Using a resting state fNIRS data set augmented with synthetic hemodynamic responses that provide ground truth brain activity, we compare the quality of commonly used fNIRS features for BCI that are extracted from (1) conventionally preprocessed signals, and (2) signals preprocessed with the GLM and physiological nuisance regressors. We show that the GLM-based approach can provide better single trial estimates of brain activity as well as a new feature type, i.e., the weight of the individual and channel-specific hemodynamic response function (HRF) regressor. The improved estimates yield features with higher separability, that significantly enhance accuracy in a binary classification task when compared to conventional preprocessing-on average +7.4% across subjects and feature types. We propose to adapt this well-established approach from neuroscience to the domain of single-trial analysis and preprocessing wherever the classification of evoked brain activity is of concern, for instance in BCI.
AbstractList Within a decade, single trial analysis of functional Near Infrared Spectroscopy (fNIRS) signals has gained significant momentum, and fNIRS joined the set of modalities frequently used for active and passive Brain Computer Interfaces (BCI). A great variety of methods for feature extraction and classification have been explored using state-of-the-art Machine Learning methods. In contrast, signal preprocessing and cleaning pipelines for fNIRS often follow simple recipes and so far rarely incorporate the available state-of-the-art in adjacent fields. In neuroscience, where fMRI and fNIRS are established neuroimaging tools, evoked hemodynamic brain activity is typically estimated across multiple trials using a General Linear Model (GLM). With the help of the GLM, subject, channel, and task specific evoked hemodynamic responses are estimated, and the evoked brain activity is more robustly separated from systemic physiological interference using independent measures of nuisance regressors, such as short-separation fNIRS measurements. When correctly applied in single trial analysis, e.g., in BCI, this approach can significantly enhance contrast to noise ratio of the brain signal, improve feature separability and ultimately lead to better classification accuracy. In this manuscript, we provide a brief introduction into the GLM and show how to incorporate it into a typical BCI preprocessing pipeline and cross-validation. Using a resting state fNIRS data set augmented with synthetic hemodynamic responses that provide ground truth brain activity, we compare the quality of commonly used fNIRS features for BCI that are extracted from (1) conventionally preprocessed signals, and (2) signals preprocessed with the GLM and physiological nuisance regressors. We show that the GLM-based approach can provide better single trial estimates of brain activity as well as a new feature type, i.e., the weight of the individual and channel-specific hemodynamic response function (HRF) regressor. The improved estimates yield features with higher separability, that significantly enhance accuracy in a binary classification task when compared to conventional preprocessing-on average +7.4% across subjects and feature types. We propose to adapt this well-established approach from neuroscience to the domain of single-trial analysis and preprocessing wherever the classification of evoked brain activity is of concern, for instance in BCI.
Within a decade, single trial analysis of functional Near Infrared Spectroscopy (fNIRS) signals has gained significant momentum, and fNIRS joined the set of modalities frequently used for active and passive Brain Computer Interfaces (BCI). A great variety of methods for feature extraction and classification have been explored using state-of-the-art Machine Learning methods. In contrast, however, signal preprocessing and cleaning pipelines for fNIRS often follow simple recipes and so far rarely incorporate the available state-of-the-art in adjacent fields. In neuroscience, where fMRI and fNIRS are established neuroimaging tools, evoked hemodynamic brain activity is typically estimated across multiple trials using a General Linear Model (GLM). With the help of the GLM, subject, channel and task specific evoked hemodynamic responses are estimated, and the evoked brain activity is more robustly separated from systemic physiological interference using independent measures of nuisance regressors, such as short-separation fNIRS measurements. When correctly applied in single trial analysis, e.g., in BCI, this approach can significantly enhance contrast to noise ratio of the brain signal, improve feature separability and ultimately lead to better classification accuracy. In this manuscript, we provide a brief introduction into the GLM and show how to incorporate it into a typical BCI preprocessing pipeline and cross-validation. Using a resting state fNIRS data set augmented with synthetic hemodynamic responses that provide ground truth brain activity, we compare the quality of commonly used fNIRS features for BCI that are extracted from 1) conventionally preprocessed signals, and 2) signals preprocessed with the GLM and physiological nuisance regressors. We show that the GLM-based approach can provide better single trial estimates of brain activity as well as a new feature type, i.e., the weight of the individual and channel-specific hemodynamic response function (HRF) regressor. The improved estimates yield features with higher separability, that significantly enhance accuracy in a binary classification task when compared to conventional preprocessing - on average +7.4% across subjects and feature types. We propose to adapt this well-established approach from neuroscience to the domain of single-trial analysis and preprocessing wherever the classification of evoked brain activity is of concern, for instance in BCI.
Within a decade, single trial analysis of functional Near Infrared Spectroscopy (fNIRS) signals has gained significant momentum, and fNIRS joined the set of modalities frequently used for active and passive Brain Computer Interfaces (BCI). A great variety of methods for feature extraction and classification have been explored using state-of-the-art Machine Learning methods. In contrast, signal preprocessing and cleaning pipelines for fNIRS often follow simple recipes and so far rarely incorporate the available state-of-the-art in adjacent fields. In neuroscience, where fMRI and fNIRS are established neuroimaging tools, evoked hemodynamic brain activity is typically estimated across multiple trials using a General Linear Model (GLM). With the help of the GLM, subject, channel, and task specific evoked hemodynamic responses are estimated, and the evoked brain activity is more robustly separated from systemic physiological interference using independent measures of nuisance regressors, such as short-separation fNIRS measurements. When correctly applied in single trial analysis, e.g., in BCI, this approach can significantly enhance contrast to noise ratio of the brain signal, improve feature separability and ultimately lead to better classification accuracy. In this manuscript, we provide a brief introduction into the GLM and show how to incorporate it into a typical BCI preprocessing pipeline and cross-validation. Using a resting state fNIRS data set augmented with synthetic hemodynamic responses that provide ground truth brain activity, we compare the quality of commonly used fNIRS features for BCI that are extracted from (1) conventionally preprocessed signals, and (2) signals preprocessed with the GLM and physiological nuisance regressors. We show that the GLM-based approach can provide better single trial estimates of brain activity as well as a new feature type, i.e., the weight of the individual and channel-specific hemodynamic response function (HRF) regressor. The improved estimates yield features with higher separability, that significantly enhance accuracy in a binary classification task when compared to conventional preprocessing-on average +7.4% across subjects and feature types. We propose to adapt this well-established approach from neuroscience to the domain of single-trial analysis and preprocessing wherever the classification of evoked brain activity is of concern, for instance in BCI.Within a decade, single trial analysis of functional Near Infrared Spectroscopy (fNIRS) signals has gained significant momentum, and fNIRS joined the set of modalities frequently used for active and passive Brain Computer Interfaces (BCI). A great variety of methods for feature extraction and classification have been explored using state-of-the-art Machine Learning methods. In contrast, signal preprocessing and cleaning pipelines for fNIRS often follow simple recipes and so far rarely incorporate the available state-of-the-art in adjacent fields. In neuroscience, where fMRI and fNIRS are established neuroimaging tools, evoked hemodynamic brain activity is typically estimated across multiple trials using a General Linear Model (GLM). With the help of the GLM, subject, channel, and task specific evoked hemodynamic responses are estimated, and the evoked brain activity is more robustly separated from systemic physiological interference using independent measures of nuisance regressors, such as short-separation fNIRS measurements. When correctly applied in single trial analysis, e.g., in BCI, this approach can significantly enhance contrast to noise ratio of the brain signal, improve feature separability and ultimately lead to better classification accuracy. In this manuscript, we provide a brief introduction into the GLM and show how to incorporate it into a typical BCI preprocessing pipeline and cross-validation. Using a resting state fNIRS data set augmented with synthetic hemodynamic responses that provide ground truth brain activity, we compare the quality of commonly used fNIRS features for BCI that are extracted from (1) conventionally preprocessed signals, and (2) signals preprocessed with the GLM and physiological nuisance regressors. We show that the GLM-based approach can provide better single trial estimates of brain activity as well as a new feature type, i.e., the weight of the individual and channel-specific hemodynamic response function (HRF) regressor. The improved estimates yield features with higher separability, that significantly enhance accuracy in a binary classification task when compared to conventional preprocessing-on average +7.4% across subjects and feature types. We propose to adapt this well-established approach from neuroscience to the domain of single-trial analysis and preprocessing wherever the classification of evoked brain activity is of concern, for instance in BCI.
Author Boas, David A.
Yücel, Meryem Ayşe
von Lühmann, Alexander
Ortega-Martinez, Antonio
AuthorAffiliation 2 Machine Learning Department, Berlin Institute of Technology , Berlin , Germany
1 Neurophotonics Center, Biomedical Engineering, Boston University , Boston, MA , United States
AuthorAffiliation_xml – name: 2 Machine Learning Department, Berlin Institute of Technology , Berlin , Germany
– name: 1 Neurophotonics Center, Biomedical Engineering, Boston University , Boston, MA , United States
Author_xml – sequence: 1
  givenname: Alexander
  surname: von Lühmann
  fullname: von Lühmann, Alexander
– sequence: 2
  givenname: Antonio
  surname: Ortega-Martinez
  fullname: Ortega-Martinez, Antonio
– sequence: 3
  givenname: David A.
  surname: Boas
  fullname: Boas, David A.
– sequence: 4
  givenname: Meryem Ayşe
  surname: Yücel
  fullname: Yücel, Meryem Ayşe
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32132909$$D View this record in MEDLINE/PubMed
BookMark eNp1kktrGzEUhYeS0jzafVdF0E03dq-kkWami4IxTWJwHzTJWsiaK1tmRnKlsSH_vrKdhiTQlYT0ncN9nPPixAePRfGewpjzuvls_WrbjxkwGAMAh1fFGZWSjQSV9OTJ_bQ4T2kNIJkU9E1xyhnlrIHmrNjdJeeXZFghuUKPUXdk7jzqSL6HFjsyBDLrNzHskPzCaEPstTdInCf2x-z3DbnJ6g7JbXRZOfG6u08uEe1bMu10Ss46owcX_Bcy2RukDZrB7fBt8drqLuG7h_OiuLv8dju9Hs1_Xs2mk_nICCGHkQVgmkrWmEUtF2AlYy0aqFut0YraQtmALKVe2Ap4C1SUi5ZzLHVZ60xrflHMjr5t0Gu1ia7X8V4F7dThIcSl0nFwpkNl26plDFtO0ZZVRXWj67oGKyqaZ4sie309em22ix5bg37I43pm-vzHu5Vahp2qoAQuy2zw6cEghj9bTIPqXTLYddpj2CbFeEVrUfJaZvTjC3QdtjGPd0_tKxJU8Ex9eFrRYyn_1psBOAImhpQi2keEgtonSB0SpPYJUocEZYl8ITFuOKww9-S6_wv_AmHSy6w
CitedBy_id crossref_primary_10_1080_2326263X_2021_1900032
crossref_primary_10_1007_s00221_022_06365_z
crossref_primary_10_1117_1_NPh_11_2_025004
crossref_primary_10_1016_j_neuroimage_2024_120793
crossref_primary_10_1140_epjp_s13360_021_01516_7
crossref_primary_10_3390_app12010316
crossref_primary_10_1117_1_NPh_9_S2_S24001
crossref_primary_10_1016_j_neuri_2021_100004
crossref_primary_10_1007_s13534_023_00291_x
crossref_primary_10_1109_ACCESS_2024_3508875
crossref_primary_10_1016_j_heliyon_2023_e13628
crossref_primary_10_3389_fnins_2020_00594
crossref_primary_10_1117_1_NPh_11_1_010701
crossref_primary_10_1515_tnsci_2020_0147
crossref_primary_10_3389_fnagi_2022_958656
crossref_primary_10_1016_j_neuroimage_2024_120944
crossref_primary_10_1109_JTEHM_2024_3448457
crossref_primary_10_3390_s22155865
crossref_primary_10_1088_1742_6596_2570_1_012027
crossref_primary_10_1109_JSEN_2024_3404030
crossref_primary_10_3389_fnbeh_2021_793643
crossref_primary_10_3389_fnhum_2020_561223
crossref_primary_10_1109_TNSRE_2024_3458396
crossref_primary_10_3390_children10091574
crossref_primary_10_1038_s41598_024_69863_w
crossref_primary_10_1117_1_NPh_9_2_025003
crossref_primary_10_3389_fnimg_2024_1361513
crossref_primary_10_3389_fnins_2023_1180293
crossref_primary_10_3389_fnhum_2021_646915
crossref_primary_10_3390_brainsci11020196
crossref_primary_10_1162_imag_a_00014
crossref_primary_10_1016_j_bbr_2022_114074
crossref_primary_10_3389_fnins_2020_579353
crossref_primary_10_1002_hbm_26786
crossref_primary_10_1016_j_compbiomed_2024_108840
crossref_primary_10_3390_s22114010
crossref_primary_10_3389_fnhum_2024_1329086
crossref_primary_10_1109_TNSRE_2025_3540673
crossref_primary_10_1111_ejn_16679
crossref_primary_10_3389_fpsyt_2021_669533
crossref_primary_10_1016_j_scispo_2022_05_001
crossref_primary_10_1016_j_cobme_2021_100272
crossref_primary_10_3389_fnrgo_2023_1273810
crossref_primary_10_25046_aj070621
crossref_primary_10_1007_s12021_022_09595_2
crossref_primary_10_3389_fnhum_2020_00236
crossref_primary_10_1007_s11571_024_10159_0
crossref_primary_10_1016_j_neuroimage_2022_119216
crossref_primary_10_1007_s10548_023_00963_y
crossref_primary_10_1016_j_nicl_2021_102577
crossref_primary_10_3389_fnrgo_2024_1286586
crossref_primary_10_1002_jbio_202300346
crossref_primary_10_1088_1741_2552_ac4bfc
crossref_primary_10_1109_ACCESS_2024_3443066
crossref_primary_10_3389_fpsyt_2022_1046849
crossref_primary_10_3390_bioengineering10060685
Cites_doi 10.1016/j.neuroimage.2010.11.004
10.1016/j.neuroimage.2012.03.049
10.1364/boe.7.003078
10.3389/fnins.2012.00147
10.1109/MSP.2008.4408445
10.3389/fnhum.2015.00003
10.1006/cbmr.1996.0014
10.1016/j.neuroimage.2019.116472
10.1038/18581
10.1088/0967-3334/33/2/259
10.1016/j.ijpsycho.2010.03.013
10.1016/j.neuroimage.2009.01.033
10.1142/S1793545813500661
10.1016/S0047-259X(03)00096-4
10.1016/j.jneumeth.2007.09.022
10.1088/1741-2560/8/2/025005
10.1016/j.neuroimage.2009.11.050
10.1016/j.neuroimage.2013.04.082
10.1016/j.neuroimage.2011.03.001
10.1002/hbm.460020402
10.1016/j.neuroimage.2013.05.004
10.1117/1.2940587
10.1007/978-1-4615-4717-4_8
10.3389/fnhum.2017.00641
10.1088/1741-2560/10/5/056001
10.1016/S1388-2457(02)00057-3
10.1016/j.neuroimage.2009.07.045
10.1016/j.media.2007.06.002
10.1109/MC.2012.107
10.3389/fnene.2010.00014
10.1016/j.medengphy.2012.01.002
10.3389/fnbot.2017.00033
10.1016/0165-1684(94)90029-9
10.1016/j.neuroimage.2005.05.032
10.1518/001872008X288349
10.1117/12.612143
10.3389/fnins.2016.00530
10.3389/fnhum.2018.00246
10.1117/1.nph.5.1.011012
10.1016/S0166-2236(97)01132-6
10.3389/fnbot.2017.00035
10.1007/978-1-4419-1241-1_34
10.1097/00004647-199609000-00006
10.1364/ao.48.00d280
10.1109/MSP.2008.4408441
10.1016/j.neuroimage.2005.08.065
10.1117/1.2754714
10.1016/j.cobme.2017.09.011
10.1186/1475-925X-9-82
10.7551/mitpress/7493.001.0001
10.1016/j.medengphy.2015.01.005
10.1088/0031-9155/33/12/008
10.1109/86.712231
10.1016/j.neuroimage.2011.06.023
10.3389/fnhum.2015.00617
10.1016/j.neuroimage.2005.09.016
10.1016/j.neuroimage.2013.11.033
10.1016/j.neuroimage.2004.07.011
10.1088/0967-3334/31/5/004
10.1016/j.neuroimage.2019.06.021
10.1080/14639220210199753
10.1016/j.neuroimage.2010.06.048
10.3389/fnins.2010.00198
10.1109/TBME.2016.2594127
10.1098/rspa.1998.0193
10.1088/1741-2560/11/5/056011
10.1002/hbm.23849
10.1117/1.NPh.2.3.035005
ContentType Journal Article
Copyright Copyright © 2020 von Lühmann, Ortega-Martinez, Boas and Yücel.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2020 von Lühmann, Ortega-Martinez, Boas and Yücel. 2020 von Lühmann, Ortega-Martinez, Boas and Yücel
Copyright_xml – notice: Copyright © 2020 von Lühmann, Ortega-Martinez, Boas and Yücel.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2020 von Lühmann, Ortega-Martinez, Boas and Yücel. 2020 von Lühmann, Ortega-Martinez, Boas and Yücel
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnhum.2020.00030
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5161
ExternalDocumentID oai_doaj_org_article_fd7d22ed31ef4771a9a8880f571000e5
PMC7040364
32132909
10_3389_fnhum_2020_00030
Genre Journal Article
GrantInformation_xml – fundername: Foundation for the National Institutes of Health
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABIVO
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EMOBN
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IPNFZ
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c556t-f002a1629cb86b0f622dec08daaef58f0490646abf703d0154bd33e4a48a0f6a3
IEDL.DBID M48
ISSN 1662-5161
IngestDate Wed Aug 27 01:25:07 EDT 2025
Thu Aug 21 18:41:51 EDT 2025
Fri Sep 05 13:33:35 EDT 2025
Fri Jul 25 11:43:16 EDT 2025
Thu Apr 03 07:08:30 EDT 2025
Thu Apr 24 22:56:33 EDT 2025
Tue Jul 01 03:44:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords fNIRS
nuisance regression
preprocessing
short-separation
BCI
GLM
classification
HRF
Language English
License Copyright © 2020 von Lühmann, Ortega-Martinez, Boas and Yücel.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-f002a1629cb86b0f622dec08daaef58f0490646abf703d0154bd33e4a48a0f6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This article was submitted to Brain-Computer Interfaces, a section of the journal Frontiers in Human Neuroscience
Edited by: Chang-Hwan Im, Hanyang University, South Korea
Reviewed by: Noman Naseer, Air University, Pakistan; Jaeyoung Shin, Wonkwang University, South Korea
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnhum.2020.00030
PMID 32132909
PQID 2357105153
PQPubID 4424408
ParticipantIDs doaj_primary_oai_doaj_org_article_fd7d22ed31ef4771a9a8880f571000e5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7040364
proquest_miscellaneous_2371854386
proquest_journals_2357105153
pubmed_primary_32132909
crossref_primary_10_3389_fnhum_2020_00030
crossref_citationtrail_10_3389_fnhum_2020_00030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-18
PublicationDateYYYYMMDD 2020-02-18
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-18
  day: 18
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in human neuroscience
PublicationTitleAlternate Front Hum Neurosci
PublicationYear 2020
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Naseer (B44) 2015; 9
Lemm (B39) 2011; 56
Appel (B3) 2005
von Lühmann (B63) 2017; 64
Ferrari (B23) 2012; 63
Hong (B30) 2018; 12
Huang (B32) 1998; 454
Brigadoi (B13) 2014; 85
Elwell (B22) 1999; 471
Cohen-Adad (B14) 2007; 11
Zander (B71) 2011; 8
Birbaumer (B5) 1999; 398
Friston (B24) 1994; 2
Yücel (B69) 2014; 7
Ayaz (B4) 2012; 59
Blankertz (B9) 2010; 4
Cox (B17) 1996; 29
Van Erp (B58) 2012; 45
Molavi (B42) 2012; 33
Tachtsidis (B56) 2010; 662
Cooper (B16) 2012; 6
Safaie (B53) 2013; 10
Boas (B11) 2004; 23
Abibullaev (B2) 2012; 34
Saager (B52) 2008; 13
Scholkmann (B55) 2010; 31
Huppert (B34) 2006; 29
Ledoit (B38) 2004; 88
Yücel (B70) 2017; 4
Diamond (B20) 2006; 30
Gagnon (B25) 2011; 56
Parasuraman (B45) 2003; 4
Kassab (B36) 2018; 39
Parasuraman (B46) 2008; 50
Hong (B29) 2017; 11
Dornhege (B21) 2007
Parra (B47) 2005; 28
Zhang (B72) 2007; 12
von Lühmann (B61) 2015; 9
Yücel (B67) 2016; 7
Gregg (B26) 2010; 2
Hu (B31) 2010; 9
Mallat (B40) 1999
Pfurtscheller (B50) 1997; 42
Blankertz (B10) 2008; 25
Yin (B66) 2015; 37
Pfurtscheller (B49) 2010; 76
von Lühmann (B62) 2020; 208
von Lühmann (B60) 2019; 200
Zhao (B73) 2017; 5
Yücel (B68) 2015; 2
Delpy (B19) 1988; 33
Matthews (B41) 2008; 25
Pfeifer (B48) 2018; 11
Blankertz (B6) 2016; 10
Comon (B15) 1994; 36
Blankertz (B8) 2011; 56
Kleinschmidt (B37) 1996; 16
Boas (B12) 2014; 85
Wolpaw (B65) 2002; 113
Huppert (B33) 2009; 48
Tomioka (B57) 2010; 49
Cui (B18) 2010; 49
He (B28) 2012
Müller (B43) 2008; 167
Villringer (B59) 1997; 20
Qureshi (B51) 2017; 11
Abdelnour (B1) 2009; 46
Blankertz (B7) 2002
Haufe (B27) 2014; 11
Huppert (B35) 2005; 5693
Scholkmann (B54) 2014; 85
Wolpaw (B64) 1998; 6
References_xml – volume: 56
  start-page: 387
  year: 2011
  ident: B39
  article-title: Introduction to machine learning for brain imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.11.004
– volume: 63
  start-page: 921
  year: 2012
  ident: B23
  article-title: A brief review on the history of human functional near-infrared spectroscopy (FNIRS) development and fields of application
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.03.049
– volume: 7
  start-page: 3078
  year: 2016
  ident: B67
  article-title: Mayer waves reduce the accuracy of estimated hemodynamic response functions in functional near-infrared spectroscopy
  publication-title: Biomed. Opt. Express
  doi: 10.1364/boe.7.003078
– volume: 6
  start-page: 147
  year: 2012
  ident: B16
  article-title: A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00147
– volume-title: A Wavelet Tour of Signal Processing. 2nd Edn
  year: 1999
  ident: B40
– volume: 25
  start-page: 87
  year: 2008
  ident: B41
  article-title: Hemodynamics for brain-computer interfaces
  publication-title: Signal Process. Mag. IEEE
  doi: 10.1109/MSP.2008.4408445
– volume: 9
  start-page: 3
  year: 2015
  ident: B44
  article-title: FNIRS-based brain-computer interfaces: a review
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2015.00003
– volume: 29
  start-page: 162
  year: 1996
  ident: B17
  article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Comput. Biomed. Res.
  doi: 10.1006/cbmr.1996.0014
– volume: 208
  start-page: 116472
  year: 2020
  ident: B62
  article-title: Improved physiological noise regression in the FNIRS signal: a multimodal extension of the general linear model using temporally embedded canonical correlation analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.116472
– volume: 398
  start-page: 297
  year: 1999
  ident: B5
  article-title: A spelling device for the paralysed
  publication-title: Nature
  doi: 10.1038/18581
– volume: 33
  start-page: 259
  year: 2012
  ident: B42
  article-title: Wavelet-based motion artifact removal for functional near-infrared spectroscopy
  publication-title: Physiol. Measure.
  doi: 10.1088/0967-3334/33/2/259
– volume: 76
  start-page: 186
  year: 2010
  ident: B49
  article-title: Focal frontal (de)oxyhemoglobin responses during simple arithmetic
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2010.03.013
– volume: 46
  start-page: 133
  year: 2009
  ident: B1
  article-title: Real-time imaging of human brain function by near-infrared spectroscopy using an adaptive general linear model
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.01.033
– volume: 7
  start-page: 1350066
  year: 2014
  ident: B69
  article-title: Targeted principle component analysis: a new motion artifact correction approach for near-infrared spectroscopy
  publication-title: J. Innov. Opt. Health Sci.
  doi: 10.1142/S1793545813500661
– volume: 88
  start-page: 365
  year: 2004
  ident: B38
  article-title: A well-conditioned estimator for large-dimensional covariance matrices
  publication-title: J. Multivar. Anal.
  doi: 10.1016/S0047-259X(03)00096-4
– volume: 167
  start-page: 82
  year: 2008
  ident: B43
  article-title: Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.09.022
– volume: 8
  start-page: 25005
  year: 2011
  ident: B71
  article-title: Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/2/025005
– volume: 49
  start-page: 3039
  year: 2010
  ident: B18
  article-title: Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.11.050
– volume: 42
  start-page: 7
  year: 1997
  ident: B50
  article-title: Elimination von atmungseffekten auf bewegungsinduzierte änderungen der herzrate
  publication-title: Biomed. Technik
– volume: 85
  start-page: 181
  year: 2014
  ident: B13
  article-title: Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.082
– volume: 56
  start-page: 1362
  year: 2011
  ident: B25
  article-title: Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.03.001
– volume: 2
  start-page: 189
  year: 1994
  ident: B24
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum. Brain Map
  doi: 10.1002/hbm.460020402
– volume: 85
  start-page: 6
  year: 2014
  ident: B54
  article-title: A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.004
– volume: 13
  start-page: 034017
  year: 2008
  ident: B52
  article-title: Measurement of layer-like hemodynamic trends in scalp and cortex: implications for physiological baseline suppression in functional near-infrared spectroscopy
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.2940587
– volume: 471
  start-page: 57
  year: 1999
  ident: B22
  article-title: Oscillations in cerebral haemodynamics. Implications for functional activation studies
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-1-4615-4717-4_8
– volume-title: Technical Analysis Power Tools for Active Investors, 1st Edn
  year: 2005
  ident: B3
– volume: 11
  start-page: 641
  year: 2018
  ident: B48
  article-title: Signal processing in functional near-infrared spectroscopy (FNIRS): methodological differences lead to different statistical results
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2017.00641
– volume: 10
  start-page: 56001
  year: 2013
  ident: B53
  article-title: Toward a fully integrated wireless wearable EEG-NIRS bimodal acquisition system
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/5/056001
– volume: 113
  start-page: 767
  year: 2002
  ident: B65
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 49
  start-page: 415
  year: 2010
  ident: B57
  article-title: A regularized discriminative framework for eeg analysis with application to brain–computer interface
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.07.045
– volume: 11
  start-page: 616
  year: 2007
  ident: B14
  article-title: Activation detection in diffuse optical imaging by means of the general linear model
  publication-title: Med. Image Anal
  doi: 10.1016/j.media.2007.06.002
– volume: 45
  start-page: 26
  year: 2012
  ident: B58
  article-title: Brain-computer interfaces: beyond medical applications
  publication-title: Computer
  doi: 10.1109/MC.2012.107
– volume: 2
  start-page: 14
  year: 2010
  ident: B26
  article-title: Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography
  publication-title: Front. Neuroenerg.
  doi: 10.3389/fnene.2010.00014
– volume: 34
  start-page: 1394
  year: 2012
  ident: B2
  article-title: Classification of frontal cortex haemodynamic responses during cognitive tasks using wavelet transforms and machine learning algorithms
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2012.01.002
– volume: 11
  start-page: 33
  year: 2017
  ident: B51
  article-title: Enhancing classification performance of functional near-infrared spectroscopy-brain-computer interface using adaptive estimation of general linear model coefficients
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2017.00033
– volume: 36
  start-page: 287
  year: 1994
  ident: B15
  article-title: Independent component analysis, a new concept?
  publication-title: Signal Process.
  doi: 10.1016/0165-1684(94)90029-9
– volume: 28
  start-page: 326
  year: 2005
  ident: B47
  article-title: Recipes for the linear analysis of EEG
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.05.032
– volume: 50
  start-page: 468
  year: 2008
  ident: B46
  article-title: Putting the brain to work: neuroergonomics past, present, and future
  publication-title: Hum. Factors
  doi: 10.1518/001872008X288349
– start-page: 157
  volume-title: Advances in Neural Information Processing Systems
  year: 2002
  ident: B7
  article-title: Classifying single trial EEG: towards brain computer interfacing,
– volume: 5693
  start-page: 191
  year: 2005
  ident: B35
  article-title: A Spatial-temporal comparison of FMRI and NIRS hemodynamic responses to motor stimuli in adult humans
  publication-title: Opt. Tomogr. Spectrosc. Tissue
  doi: 10.1117/12.612143
– volume: 10
  start-page: 530
  year: 2016
  ident: B6
  article-title: The Berlin brain-computer interface: progress beyond communication and control
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00530
– volume: 12
  start-page: 246
  year: 2018
  ident: B30
  article-title: Feature extraction and classification methods for hybrid FNIRS-EEG brain-computer interfaces
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2018.00246
– volume: 5
  start-page: 1
  year: 2017
  ident: B73
  article-title: Review of recent progress toward a fiberless, whole-scalp diffuse optical tomography system
  publication-title: Neurophotonics
  doi: 10.1117/1.nph.5.1.011012
– volume: 20
  start-page: 435
  year: 1997
  ident: B59
  article-title: Non-invasive optical spectroscopy and imaging of human brain function
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(97)01132-6
– volume: 11
  start-page: 35
  year: 2017
  ident: B29
  article-title: Hybrid brain–computer interface techniques for improved classification accuracy and increased number of commands: a review
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2017.00035
– volume: 662
  start-page: 237
  year: 2010
  ident: B56
  article-title: Functional optical topography analysis using statistical parametric mapping (SPM) methodology with and without physiological confounds
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-1-4419-1241-1_34
– volume: 16
  start-page: 817
  year: 1996
  ident: B37
  article-title: Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1097/00004647-199609000-00006
– volume: 48
  start-page: D280
  year: 2009
  ident: B33
  article-title: HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain
  publication-title: Appl. Opt
  doi: 10.1364/ao.48.00d280
– volume: 25
  start-page: 41
  year: 2008
  ident: B10
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: Signal Proc. Mag. IEEE
  doi: 10.1109/MSP.2008.4408441
– volume: 29
  start-page: 368
  year: 2006
  ident: B34
  article-title: A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.08.065
– volume: 12
  start-page: 044014
  year: 2007
  ident: B72
  article-title: adaptive filtering for global interference cancellation and real-time recovery of evoked brain activity: a monte carlo simulation study
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.2754714
– volume: 4
  start-page: 78
  year: 2017
  ident: B70
  article-title: Functional near infrared spectroscopy: enabling routine functional brain imaging
  publication-title: Curr. Opin. Biomed. Eng.
  doi: 10.1016/j.cobme.2017.09.011
– volume: 9
  start-page: 1
  year: 2010
  ident: B31
  article-title: Kalman estimator- and general linear model-based on-line brain activation mapping by near-infrared spectroscopy
  publication-title: Bio Med. Eng. Online
  doi: 10.1186/1475-925X-9-82
– volume-title: Toward Brain-Computer Interfacing
  year: 2007
  ident: B21
  doi: 10.7551/mitpress/7493.001.0001
– volume: 37
  start-page: 280
  year: 2015
  ident: B66
  article-title: NIRS-based classification of clench force and speed motor imagery with the use of empirical mode decomposition for BCI
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2015.01.005
– volume-title: Brain–Computer Interfaces, 2nd Edn
  year: 2012
  ident: B28
– volume: 33
  start-page: 1433
  year: 1988
  ident: B19
  article-title: Estimation of optical pathlength through tissue from direct time of flight measurement
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/33/12/008
– volume: 6
  start-page: 326
  year: 1998
  ident: B64
  article-title: EEG-based communication: improved accuracy by response verification
  publication-title: IEEE Trans. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc.
  doi: 10.1109/86.712231
– volume: 59
  start-page: 36
  year: 2012
  ident: B4
  article-title: Optical brain monitoring for operator training and mental workload assessment
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.06.023
– volume: 9
  start-page: 617
  year: 2015
  ident: B61
  article-title: Toward a wireless open source instrument: functional near-infrared spectroscopy in mobile neuroergonomics and BCI applications
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2015.00617
– volume: 30
  start-page: 88
  year: 2006
  ident: B20
  article-title: Dynamic physiological modeling for functional diffuse optical tomography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.09.016
– volume: 85
  start-page: 1
  year: 2014
  ident: B12
  article-title: Twenty years of functional near-infrared spectroscopy: introduction for the special issue
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.11.033
– volume: 23
  start-page: S275
  year: 2004
  ident: B11
  article-title: Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.011
– volume: 31
  start-page: 649
  year: 2010
  ident: B55
  article-title: How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation
  publication-title: Physiol. Measure.
  doi: 10.1088/0967-3334/31/5/004
– volume: 200
  start-page: 72
  year: 2019
  ident: B60
  article-title: A new blind source separation framework for signal analysis and artifact rejection in functional near-infrared spectroscopy
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.06.021
– volume: 4
  start-page: 5
  year: 2003
  ident: B45
  article-title: Neuroergonomics: research and practice
  publication-title: Theor. Issues Ergon. Sci.
  doi: 10.1080/14639220210199753
– volume: 56
  start-page: 814
  year: 2011
  ident: B8
  article-title: Single-trial analysis and classification of ERP components - a tutorial
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.06.048
– volume: 4
  start-page: 198
  year: 2010
  ident: B9
  article-title: The Berlin brain-computer interface: non-medical uses of BCI technology
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2010.00198
– volume: 64
  start-page: 1199
  year: 2017
  ident: B63
  article-title: M3BA: A mobile, modular, multimodal biosignal acquisition architecture for miniaturized eeg-nirs-based Hybrid BCI and Monitoring
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2594127
– volume: 454
  start-page: 303
  year: 1998
  ident: B32
  article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 11
  start-page: 56011
  year: 2014
  ident: B27
  article-title: Electrophysiology-based detection of emergency braking intention in real-world driving
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/5/056011
– volume: 39
  start-page: 7
  year: 2018
  ident: B36
  article-title: Multichannel wearable FNIRS-EEG system for long-term clinical monitoring
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23849
– volume: 2
  start-page: 035005
  year: 2015
  ident: B68
  article-title: Short separation regression improves statistical significance and better localizes the hemodynamic response obtained by near-infrared spectroscopy for tasks with differing autonomic responses
  publication-title: Neurophotonics
  doi: 10.1117/1.NPh.2.3.035005
SSID ssj0062651
Score 2.5163891
Snippet Within a decade, single trial analysis of functional Near Infrared Spectroscopy (fNIRS) signals has gained significant momentum, and fNIRS joined the set of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 30
SubjectTerms BCI
Blood pressure
Brain mapping
Brain research
Classification
fNIRS
Functional magnetic resonance imaging
GLM
HRF
Human Neuroscience
Infrared spectroscopy
Interfaces
Learning algorithms
Machine learning
Nervous system
Neuroimaging
Neurosciences
Noise
Physiology
preprocessing
Respiration
Signal processing
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA_SJ19ErR-rrYwggg_L7WaT7Ma3a7FUwSK2hb6FbD5o4cyJ3gn-985kd693Ivriw75sJks2M8nMJDO_YeyV81Y7KXzpUDuV-LhSW96WKlSR22hV11I28sczdXopPlzJq61SXxQTNsADDxM3i771nAff1CGKtq2ttui0VVESLE0VMnpppavJmRr2YLTSZT1cSqILpmcxXa8p7ZxTHFeOeN5SQhmr_08G5u9xkluK5-Q-uzdajDAfRvqA3QnpIdufJ_SWv_yE15BjOPPh-D77kSMAAI06GPGkAZ1NFGagmmcLWC1hOEUI8Ok2YwBuEsSz95_P4Rx7LwJckFTChFcCNnnIxTMprChz8i3M6QNTmuYjdnny7uL4tBwrK5ROSrUqI-6DtlZcu75TfRUV5z64qvPWhii7SNeBSijbR9wQPJlZvW-aIKzoLFLb5jHbS8sUnjKwkVRa49DuwV4S1b9Em8EGHYQKPNiCzaapNm6EHafqFwuD7gcxx2TmGGKOycwp2JtNj68D5MZfaI-Iexs6AsvOL1CEzChC5l8iVLCDifdmXMHfDcEA1VQApynYy00zrj26ULEpLNdEg5pdiqZTBXsyiMpmJA1HP19XumDtjhDtDHW3Jd1cZ3zvFjfWRoln_-PfnrO7NFsUZ153B2xv9W0dDtGMWvUv8or5BS8uG_k
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_q9cUXUetHtMoKIvgQLtlkN4kgcpWWKniUfkDfwmQ_bOFMar0T_O-d2STXnkgf7iXZPZb8Zudjd-Y3AG-Nxcqo3MaGrFNMPxNXKItYu8RL9KjLgquRv8314Vn-9Vydb8F8rIXhtMpRJwZFbTvDZ-RTpmVJuSFJ9unqZ8xdo_h2dWyhgUNrBfsxUIzdg21SySqZwPbe_vzoeNTN5L2rtL-spNCsmvr2YsXl6JLzu0Im9C3jFDj8_-d4_ps_ecsgHTyEB4MnKWY99I9gy7WPYWfWUhT94494J0JuZzg034HfITNAkLMnBp5pQUEoCbngXmgLsexEf7rgxNFNJYG4bIWffzk-ESc0e-HEKUurGHlMBLZWhKaanG4UEP4gZvwHY_nmEzg72D_9fBgPHRdio5Rexp70I6ZaVqYpdZN4LaV1JiktovOq9HxNqHONjSdFYdn9amyWuRzzEmk0Zk9h0natew4CPZu6zJA_RLMIE6XIl0BXuVw76TCC6fipazPQkXNXjEVNYQmDUwdwaganDuBE8H4946qn4rhj7B6jtx7HJNrhQXf9vR72ZO1tYaV0Nkudz4sixQpLUmeeBS1JnIpgd8S-Hnb2r_pGDiN4s35Ne5IvWrB13YrHkMVXeVbqCJ71orJeSSYp_q-SKoJiQ4g2lrr5pr28CLzfBSncTOcv7l7WS7jP34Ezy9NyFybL65V7RY7Tsnk97Ia_dqgaNg
  priority: 102
  providerName: ProQuest
Title Using the General Linear Model to Improve Performance in fNIRS Single Trial Analysis and Classification: A Perspective
URI https://www.ncbi.nlm.nih.gov/pubmed/32132909
https://www.proquest.com/docview/2357105153
https://www.proquest.com/docview/2371854386
https://pubmed.ncbi.nlm.nih.gov/PMC7040364
https://doaj.org/article/fd7d22ed31ef4771a9a8880f571000e5
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB-0BemLqPUjWo8VRPAh9rLZ3SSCyFVaq-BR2h7cW9hkd23h3NPzTux_78zmoz05fPAheUh2QtiZ3fnNzhfAy9roopbCxDVqpxivOi40z2Jlh45rp1WeUTbyl7E6nojPUzm9To9uJ_DnRtOO-klNFrM3v39cvccF_44sTtS3-85frCipnFOUFgrtbdgO3iIK5BO9TwGRu0waR-VGqh24k3Jqu06xiTd0VCjlvwl__h1GeUMvHd2Duy2gZKNGAu7DLesfwO7IozH97Yq9YiHEM5yd78KvECDAEPOxttw0Q1sUZZ1RS7QZW85Zc8hg2cl1QgG79MyNP52esTOknll2TkLLunImTHvDQm9NijoKjH7LRvSBLovzIUyODs8_HMdt44W4llItY4fbpE4UL-oqV9XQKc6NrYe50do6mTvyFiqhdOVwvzCEwiqTplZokWscrdNHsOXn3j4Bph1pvLRGWIRUEtGBREihbWGFstzqCPa7qS7rtio5NceYlWidEJ_KwKeS-FQGPkXwuqf43lTk-MfYA-JeP45qaYcH88XXsl2apTOZ4dyaNLFOZFmiC53jruYkFT4aWhnBXsf7spPPkqoEJdQfJ43gRf8alyb5W7S38xWNQcUvRZqrCB43otL_SSdqEWRrQrT2q-tv_OVFKP-d4b6bKvH0vymfwQ5NEcWeJ_kebC0XK_scodWyGsD2weH45HQQjibw_nGaDMIq-gNY6CgZ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuCCiPQAEjARKHaBM7cRKkCm2h1S5tV1W7lXoLTmzTSktS2l1Q_xy_jRkn2XYR6q2HXOKHLM94HvbMfABvS62yMo60X6J28vEr_UzxxJcmsFxZJdOEspH3xnJ4FH09jo9X4E-XC0NhlZ1MdIJa1yXdkfepLEtIgCTi09lPn1Cj6HW1g9BQLbSC3nAlxtrEjh1z-RtduIuN0Rek9zvOt7cmn4d-izLgl3EsZ75FmaBCybOySGURWMm5NmWQaqWMjVNLT2MykqqweDg0mRyFFsJEKkoV9lYC570DqxFdoPRgdXNrvH_Q6QL0FuKweRxFVzDr2-pkTunvnOLJXOT1NWXoMAP-Z-j-G695TQFuP4D7reXKBg2rPYQVUz2CtUGFXvuPS_aeuVhSd0m_Br9cJAJD45K1da0ZOr24W4yw16ZsVrPmNsOw_avMBXZaMTseHRyyQxw9NWxCp4N1dVOYqjRzIJ4U3uQ46iMb0ARduuhjOLqVvX8CvaquzDNgypJqFSXaXzgKeSCO0XZRJjORNNwoD_rdVudlW_6cUDimObpBRJzcEScn4uSOOB58WIw4a0p_3NB3k6i36EdFu92P-vx73sqA3OpEc260CI2NkiRUmUpRfFpi7CAwsQfrHe3zVpJc5Fd878GbRTPKAHrYUZWp59QHLYw4Eqn04GnDKouVCB4KngWZB8kSEy0tdbmlOj1xdcYTFPBCRs9vXtZruDuc7O3mu6Pxzgu4R3tCUe1hug692fncvESjbVa8ak8Gg2-3fRj_AuBOV28
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFD5BSIwvRsVLBXVM1MSHZttpO21NiFmEDSu62XBJeCvTuQjJ0iLsaviL_irPmbYLawxvPPSlnWkmc-4z3zkH4J3SMldJrH2F1snHR_m55KkvTGC5tFJkKWUjfx-JncP461FytAR_ulwYglV2OtEpal0rOiPvUVmWkBqSRD3bwiLGW4PP5z996iBFN61dOw3ZtlnQG67cWJvksWuufmM4d7kx3ELav-d8sH3wZcdvOw74KknE1LeoH2QoeK7KTJSBFZxro4JMS2lsklm6JhOxkKVFQdHkfpQ6ikws40ziaBnhf-_BSopWHwPBlc3t0XivswsYOSRhc1GKYWHes9XJjFLhOWHLHAr7hmF0_QP-5_T-i928YQwHj-Bh68WyfsN2j2HJVE9gtV9hBH92xT4whyt1B_ar8MuhEhg6mqytcc0wAMbdYtSHbcKmNWtONgwbX2cxsNOK2dFwb5_t4-yJYQckKayrocJkpZlr6ElQJ8ddn1ifftCljj6FwzvZ-2ewXNWVeQFMWjKzkUJfDGchDyQJ-jHS5CYWhhvpQa_b6kK1pdCpI8ekwJCIiFM44hREnMIRx4OP8xnnTRmQW8ZuEvXm46iAt3tRX_woWn1QWJ1qzo2OQmPjNA1lLjNUpZaYPAhM4sF6R_ui1SqXxbUMePB2_hn1AV3yyMrUMxqD3kYSR5nw4HnDKvOVRDyMeB7kHqQLTLSw1MUv1emJqzmeorKPRPzy9mW9gfsolMW34Wh3DR7QlhDAPczWYXl6MTOv0H-blq9bwWBwfNey-Bfxi1uz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+the+General+Linear+Model+to+Improve+Performance+in+fNIRS+Single+Trial+Analysis+and+Classification%3A+A+Perspective&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=von+L%C3%BChmann%2C+Alexander&rft.au=Ortega-Martinez%2C+Antonio&rft.au=Boas%2C+David+A.&rft.au=Y%C3%BCcel%2C+Meryem+Ay%C5%9Fe&rft.date=2020-02-18&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5161&rft.volume=14&rft_id=info:doi/10.3389%2Ffnhum.2020.00030&rft_id=info%3Apmid%2F32132909&rft.externalDocID=PMC7040364
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon