Source-Modeling Auditory Processes of EEG Data Using EEGLAB and Brainstorm

Electroencephalography (EEG) source localization approaches are often used to disentangle the spatial patterns mixed up in scalp EEG recordings. However, approaches differ substantially between experiments, may be strongly parameter-dependent, and results are not necessarily meaningful. In this pape...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 12; p. 309
Main Authors Stropahl, Maren, Bauer, Anna-Katharina R., Debener, Stefan, Bleichner, Martin G.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 08.05.2018
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-453X
1662-4548
1662-453X
DOI10.3389/fnins.2018.00309

Cover

Abstract Electroencephalography (EEG) source localization approaches are often used to disentangle the spatial patterns mixed up in scalp EEG recordings. However, approaches differ substantially between experiments, may be strongly parameter-dependent, and results are not necessarily meaningful. In this paper we provide a pipeline for EEG source estimation, from raw EEG data pre-processing using EEGLAB functions up to source-level analysis as implemented in Brainstorm. The pipeline is tested using a data set of 10 individuals performing an auditory attention task. The analysis approach estimates sources of 64-channel EEG data without the prerequisite of individual anatomies or individually digitized sensor positions. First, we show advanced EEG pre-processing using EEGLAB, which includes artifact attenuation using independent component analysis (ICA). ICA is a linear decomposition technique that aims to reveal the underlying statistical sources of mixed signals and is further a powerful tool to attenuate stereotypical artifacts (e.g., eye movements or heartbeat). Data submitted to ICA are pre-processed to facilitate good-quality decompositions. Aiming toward an objective approach on component identification, the semi-automatic CORRMAP algorithm is applied for the identification of components representing prominent and stereotypic artifacts. Second, we present a step-wise approach to estimate active sources of auditory cortex event-related processing, on a single subject level. The presented approach assumes that no individual anatomy is available and therefore the default anatomy ICBM152, as implemented in Brainstorm, is used for all individuals. Individual noise modeling in this dataset is based on the pre-stimulus baseline period. For EEG source modeling we use the OpenMEEG algorithm as the underlying forward model based on the symmetric Boundary Element Method (BEM). We then apply the method of dynamical statistical parametric mapping (dSPM) to obtain physiologically plausible EEG source estimates. Finally, we show how to perform group level analysis in the time domain on anatomically defined regions of interest (auditory scout). The proposed pipeline needs to be tailored to the specific datasets and paradigms. However, the straightforward combination of EEGLAB and Brainstorm analysis tools may be of interest to others performing EEG source localization.
AbstractList Electroencephalography (EEG) source localization approaches are often used to disentangle the spatial patterns mixed up in scalp EEG recordings. However, approaches differ substantially between experiments, may be strongly parameter-dependent, and results are not necessarily meaningful. In this paper we provide a pipeline for EEG source estimation, from raw EEG data pre-processing using EEGLAB functions up to source-level analysis as implemented in Brainstorm. The pipeline is tested using a data set of 10 individuals performing an auditory attention task. The analysis approach estimates sources of 64-channel EEG data without the prerequisite of individual anatomies or individually digitized sensor positions. First, we show advanced EEG pre-processing using EEGLAB, which includes artifact attenuation using independent component analysis (ICA). ICA is a linear decomposition technique that aims to reveal the underlying statistical sources of mixed signals and is further a powerful tool to attenuate stereotypical artifacts (e.g., eye movements or heartbeat). Data submitted to ICA are pre-processed to facilitate good-quality decompositions. Aiming toward an objective approach on component identification, the semi-automatic CORRMAP algorithm is applied for the identification of components representing prominent and stereotypic artifacts. Second, we present a step-wise approach to estimate active sources of auditory cortex event-related processing, on a single subject level. The presented approach assumes that no individual anatomy is available and therefore the default anatomy ICBM152, as implemented in Brainstorm, is used for all individuals. Individual noise modeling in this dataset is based on the pre-stimulus baseline period. For EEG source modeling we use the OpenMEEG algorithm as the underlying forward model based on the symmetric Boundary Element Method (BEM). We then apply the method of dynamical statistical parametric mapping (dSPM) to obtain physiologically plausible EEG source estimates. Finally, we show how to perform group level analysis in the time domain on anatomically defined regions of interest (auditory scout). The proposed pipeline needs to be tailored to the specific datasets and paradigms. However, the straightforward combination of EEGLAB and Brainstorm analysis tools may be of interest to others performing EEG source localization.
EEG source localization approaches are often used to disentangle the spatial patterns mixed up in scalp electroencephalography (EEG) recordings. However, approaches differ substantially between experiments, may be strongly parameter-dependent, and results are not necessarily meaningful. In this paper we provide a pipeline for EEG source estimation, from raw EEG data pre-processing using EEGLAB functions up to source-level analysis as implemented in Brainstorm. The pipeline is tested using a data set of 10 individuals performing an auditory attention task. The analysis approach estimates sources of 64-channel EEG data without the prerequisite of individual anatomies or individually digitized sensor positions. First, we show advanced EEG pre-processing using EEGLAB, which includes artefact attenuation using independent component analysis (ICA). ICA is a linear decomposition technique that aims to reveal the underlying statistical sources of mixed signals and is further a powerful tool to attenuate stereotypical artefacts (e.g. eye movements or heartbeat). Data submitted to ICA are pre-processed to facilitate good-quality decompositions. Aiming towards an objective approach on component identification, the semi-automatic CORRMAP algorithm is applied for the identification of components representing prominent and stereotypic artefacts. Second, we present a step-wise approach to estimate active sources of auditory cortex event-related processing, on a single subject level. The presented approach assumes that no individual anatomy is available and therefore the default anatomy ICBM152, as implemented in Brainstorm, is used for all individuals. Individual noise modelling in this dataset is based on the pre-stimulus baseline period. For EEG source modelling we use the OpenMEEG algorithm as the underlying forward model based on the symmetric Boundary Element Method (BEM). We then apply the method of dynamical statistical parametric mapping (dSPM) to obtain physiologically plausible EEG source estimates. Finally, we show how to perform group level analysis in the time domain on anatomically defined regions of interest (auditory scout). The proposed pipeline needs to be tailored to the specific datasets and paradigms. However, the straightforward combination of EEGLAB and Brainstorm analysis tools may be of interest to others performing EEG source localization.
Electroencephalography (EEG) source localization approaches are often used to disentangle the spatial patterns mixed up in scalp EEG recordings. However, approaches differ substantially between experiments, may be strongly parameter-dependent, and results are not necessarily meaningful. In this paper we provide a pipeline for EEG source estimation, from raw EEG data pre-processing using EEGLAB functions up to source-level analysis as implemented in Brainstorm. The pipeline is tested using a data set of 10 individuals performing an auditory attention task. The analysis approach estimates sources of 64-channel EEG data without the prerequisite of individual anatomies or individually digitized sensor positions. First, we show advanced EEG pre-processing using EEGLAB, which includes artifact attenuation using independent component analysis (ICA). ICA is a linear decomposition technique that aims to reveal the underlying statistical sources of mixed signals and is further a powerful tool to attenuate stereotypical artifacts (e.g., eye movements or heartbeat). Data submitted to ICA are pre-processed to facilitate good-quality decompositions. Aiming toward an objective approach on component identification, the semi-automatic CORRMAP algorithm is applied for the identification of components representing prominent and stereotypic artifacts. Second, we present a step-wise approach to estimate active sources of auditory cortex event-related processing, on a single subject level. The presented approach assumes that no individual anatomy is available and therefore the default anatomy ICBM152, as implemented in Brainstorm, is used for all individuals. Individual noise modeling in this dataset is based on the pre-stimulus baseline period. For EEG source modeling we use the OpenMEEG algorithm as the underlying forward model based on the symmetric Boundary Element Method (BEM). We then apply the method of dynamical statistical parametric mapping (dSPM) to obtain physiologically plausible EEG source estimates. Finally, we show how to perform group level analysis in the time domain on anatomically defined regions of interest (auditory scout). The proposed pipeline needs to be tailored to the specific datasets and paradigms. However, the straightforward combination of EEGLAB and Brainstorm analysis tools may be of interest to others performing EEG source localization.Electroencephalography (EEG) source localization approaches are often used to disentangle the spatial patterns mixed up in scalp EEG recordings. However, approaches differ substantially between experiments, may be strongly parameter-dependent, and results are not necessarily meaningful. In this paper we provide a pipeline for EEG source estimation, from raw EEG data pre-processing using EEGLAB functions up to source-level analysis as implemented in Brainstorm. The pipeline is tested using a data set of 10 individuals performing an auditory attention task. The analysis approach estimates sources of 64-channel EEG data without the prerequisite of individual anatomies or individually digitized sensor positions. First, we show advanced EEG pre-processing using EEGLAB, which includes artifact attenuation using independent component analysis (ICA). ICA is a linear decomposition technique that aims to reveal the underlying statistical sources of mixed signals and is further a powerful tool to attenuate stereotypical artifacts (e.g., eye movements or heartbeat). Data submitted to ICA are pre-processed to facilitate good-quality decompositions. Aiming toward an objective approach on component identification, the semi-automatic CORRMAP algorithm is applied for the identification of components representing prominent and stereotypic artifacts. Second, we present a step-wise approach to estimate active sources of auditory cortex event-related processing, on a single subject level. The presented approach assumes that no individual anatomy is available and therefore the default anatomy ICBM152, as implemented in Brainstorm, is used for all individuals. Individual noise modeling in this dataset is based on the pre-stimulus baseline period. For EEG source modeling we use the OpenMEEG algorithm as the underlying forward model based on the symmetric Boundary Element Method (BEM). We then apply the method of dynamical statistical parametric mapping (dSPM) to obtain physiologically plausible EEG source estimates. Finally, we show how to perform group level analysis in the time domain on anatomically defined regions of interest (auditory scout). The proposed pipeline needs to be tailored to the specific datasets and paradigms. However, the straightforward combination of EEGLAB and Brainstorm analysis tools may be of interest to others performing EEG source localization.
Author Stropahl, Maren
Bleichner, Martin G.
Debener, Stefan
Bauer, Anna-Katharina R.
AuthorAffiliation 2 Cluster of Excellence Hearing4all, University of Oldenburg , Oldenburg , Germany
1 Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg , Oldenburg , Germany
AuthorAffiliation_xml – name: 2 Cluster of Excellence Hearing4all, University of Oldenburg , Oldenburg , Germany
– name: 1 Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg , Oldenburg , Germany
Author_xml – sequence: 1
  givenname: Maren
  surname: Stropahl
  fullname: Stropahl, Maren
– sequence: 2
  givenname: Anna-Katharina R.
  surname: Bauer
  fullname: Bauer, Anna-Katharina R.
– sequence: 3
  givenname: Stefan
  surname: Debener
  fullname: Debener, Stefan
– sequence: 4
  givenname: Martin G.
  surname: Bleichner
  fullname: Bleichner, Martin G.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29867321$$D View this record in MEDLINE/PubMed
BookMark eNp1kslrGzEYxUVJaZb23lMZ6KWXcbRbuhSc1E1THFpoA70JjRZXZiwl0kwg_31kOwlJICdt7_14fHqHYC-m6AD4iOCEECGPfQyxTDBEYgIhgfINOECc45Yy8m_vyX4fHJaygpBjQfE7sI-l4FOC0QH4-SeN2bj2IlnXh7hsZqMNQ8q3ze-cjCvFlSb5Zj4_a77pQTeXZSOqx8XspNHRNidZ1wzVsX4P3nrdF_fhfj0Cl9_nf09_tItfZ-ens0VrGONDaymVnRHQdJ5y6Dw2NfmUesiY5XKqJULME6pNRwX0GhNvCLdSSMMsNc6QI3C-49qkV-oqh7XOtyrpoLYXKS-VzkMwvVOMiOomnfC4o5IgTbTHFiOqkbDc-sr6umNdjd3aWePikHX_DPr8JYb_apluFJMMQ4Ir4Ms9IKfr0ZVBrUMxru91dGksCkMGqWBC0Cr9_EK6qrOPdVQKk_o1WEpJqurT00SPUR6-rAr4TmByKiU7r0wY9BDSJmDoFYJq0w217YbadENtu1GN8IXxgf2q5Q7hmbwc
CitedBy_id crossref_primary_10_1016_j_ijhcs_2023_103066
crossref_primary_10_1016_j_neuri_2024_100172
crossref_primary_10_1093_cercor_bhad221
crossref_primary_10_1111_psyp_14329
crossref_primary_10_1038_s41598_023_36794_x
crossref_primary_10_1088_1741_2552_ab57d5
crossref_primary_10_1016_j_heares_2024_109023
crossref_primary_10_1111_psyp_13632
crossref_primary_10_1016_j_ijpsycho_2022_12_006
crossref_primary_10_1088_1741_2552_ab4af6
crossref_primary_10_1162_jocn_a_01601
crossref_primary_10_1007_s10548_022_00902_3
crossref_primary_10_1007_s11571_024_10149_2
crossref_primary_10_1016_j_clinph_2023_07_009
crossref_primary_10_1007_s11357_025_01552_6
crossref_primary_10_1371_journal_pone_0266107
crossref_primary_10_1093_cercor_bhae317
crossref_primary_10_3389_fncom_2022_919215
crossref_primary_10_1016_j_neuroimage_2024_120784
crossref_primary_10_1016_j_crneur_2022_100059
crossref_primary_10_1111_psyp_13529
crossref_primary_10_1007_s00221_020_05996_4
crossref_primary_10_3390_signals2030024
crossref_primary_10_1523_ENEURO_0026_23_2023
crossref_primary_10_1016_j_neuropsychologia_2024_109033
crossref_primary_10_3389_fpsyg_2019_00786
crossref_primary_10_1016_j_brainres_2022_148135
crossref_primary_10_1016_j_heares_2022_108683
crossref_primary_10_1016_j_nicl_2022_102982
crossref_primary_10_1111_ejn_16132
crossref_primary_10_1007_s11042_023_15900_1
crossref_primary_10_1093_sleep_zsad243
crossref_primary_10_1515_jiip_2023_0041
crossref_primary_10_1515_bmt_2021_0418
crossref_primary_10_1080_10447318_2024_2358461
crossref_primary_10_3389_fninf_2022_970372
crossref_primary_10_1016_j_clinph_2022_11_015
crossref_primary_10_1523_ENEURO_0133_21_2021
crossref_primary_10_3390_s19235317
crossref_primary_10_7554_eLife_52984
crossref_primary_10_1016_j_brs_2021_06_014
crossref_primary_10_1038_s41598_020_62155_z
crossref_primary_10_1371_journal_pone_0212754
crossref_primary_10_1007_s00221_020_05922_8
crossref_primary_10_1109_ACCESS_2021_3097797
crossref_primary_10_1162_netn_a_00261
crossref_primary_10_1007_s10548_022_00901_4
crossref_primary_10_1016_j_brainres_2023_148246
crossref_primary_10_1152_jn_00068_2021
crossref_primary_10_3389_fnhum_2019_00069
crossref_primary_10_2139_ssrn_4145247
crossref_primary_10_3233_JIFS_202046
crossref_primary_10_1016_j_isci_2024_109295
crossref_primary_10_1093_braincomms_fcad232
crossref_primary_10_1016_j_neuroimage_2023_120141
crossref_primary_10_3389_fnins_2021_665767
crossref_primary_10_1016_j_neuroimage_2025_121115
crossref_primary_10_3389_fnagi_2022_877235
crossref_primary_10_1111_psyp_13747
crossref_primary_10_1093_brain_awac094
crossref_primary_10_1111_psyp_14437
crossref_primary_10_1088_1741_2552_ac5fcb
crossref_primary_10_1523_JNEUROSCI_0112_22_2023
crossref_primary_10_1016_j_neuroimage_2020_117315
crossref_primary_10_1016_j_neuropsychologia_2021_108011
crossref_primary_10_7554_eLife_70068
crossref_primary_10_1016_j_neuroimage_2022_119093
crossref_primary_10_1093_cercor_bhad257
crossref_primary_10_1016_j_neuroimage_2024_120834
crossref_primary_10_1038_s42003_025_07788_4
Cites_doi 10.1016/j.clinph.2004.06.001
10.1016/j.clinph.2007.03.012
10.1111/1469-8986.3720163
10.1162/neco.1995.7.6.1129
10.1186/1743-0003-5-25
10.3389/fnint.2014.00098
10.1162/089976699300016719
10.1016/j.clinph.2007.11.010
10.1093/acprof:oso/9780195372731.003.0008
10.3389/fpsyg.2012.00233
10.1016/j.neuroimage.2017.11.037
10.1016/S0013-4694(98)00057-1
10.1016/j.neuroimage.2014.01.006
10.1016/j.jneumeth.2014.08.002
10.1007/s10548-007-0031-4
10.1016/j.neuroimage.2005.11.054
10.3389/fnins.2013.00267
10.1007/BF01132766
10.1002/hbm.20745
10.1016/j.neuroimage.2015.07.062
10.1016/j.neuron.2013.10.017
10.1111/j.1469-8986.1987.tb00311.x
10.1016/j.heares.2011.12.010
10.1007/s10548-014-0405-3
10.1016/j.clinph.2014.06.029
10.1016/j.clinph.2003.12.010
10.1155/2011/879716
10.1016/j.neuroimage.2010.06.010
10.1093/acprof:oso/9780195307238.001.0001
10.1016/j.heares.2008.11.012
10.1016/j.jneumeth.2003.10.009
10.1111/j.1469-8986.2007.00610.x
10.1186/1475-925X-9-45
10.1038/nn.3101
10.1155/2016/4382656
10.1016/S0079-6123(06)59003-X
10.1016/j.nicl.2017.09.001
10.1016/S0896-6273(00)81138-1
10.1016/j.heares.2016.07.005
10.1093/brain/awr243
10.1016/j.ijpsycho.2014.10.006
10.1016/j.clinph.2009.01.015
10.1002/hbm.20277
10.1016/j.neuroimage.2006.11.004
10.1126/science.1862336
10.1016/j.clinph.2003.12.011
10.1023/A:1022246825461
10.1038/nn.4504
10.1016/j.neuroimage.2011.12.039
10.1007/s10548-011-0202-1
10.4103/0972-6748.57865
10.1016/S1388-2457(00)00386-2
10.1093/cercor/bhj119
10.1093/brain/awr329
ContentType Journal Article
Copyright 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2018 Stropahl, Bauer, Debener and Bleichner. 2018 Stropahl, Bauer, Debener and Bleichner
Copyright_xml – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2018 Stropahl, Bauer, Debener and Bleichner. 2018 Stropahl, Bauer, Debener and Bleichner
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2018.00309
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Collection (ProQuest)
Biological Sciences
Science Database
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Statistics
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_538fc33b8f2b4931a3af2d214a18d6df
PMC5952032
29867321
10_3389_fnins_2018_00309
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RNS
RPM
W2D
ACXDI
C1A
IAO
IEA
IHR
ISR
M~E
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c556t-d449bc80cbf460ef2c03074f055d697a9115f34acb480fa23fc36d989c5d4cec3
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:08:37 EDT 2025
Tue Sep 30 16:45:11 EDT 2025
Thu Sep 04 15:02:02 EDT 2025
Fri Jul 25 11:43:42 EDT 2025
Wed Feb 19 02:43:22 EST 2025
Wed Oct 01 01:43:11 EDT 2025
Thu Apr 24 22:56:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords auditory processing
source localization
EEGLAB
Brainstorm
EEG
auditory N100
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-d449bc80cbf460ef2c03074f055d697a9115f34acb480fa23fc36d989c5d4cec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Philippe Albouy, McGill University, Canada; Emily B. J. Coffey, Universität Tübingen, Germany
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience
Edited by: Francois Tadel, INSERM U1216 Grenoble Institut des Neurosciences (GIN), France
OpenAccessLink https://doaj.org/article/538fc33b8f2b4931a3af2d214a18d6df
PMID 29867321
PQID 2306229993
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_538fc33b8f2b4931a3af2d214a18d6df
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5952032
proquest_miscellaneous_2050485884
proquest_journals_2306229993
pubmed_primary_29867321
crossref_citationtrail_10_3389_fnins_2018_00309
crossref_primary_10_3389_fnins_2018_00309
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-08
PublicationDateYYYYMMDD 2018-05-08
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-08
  day: 08
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2018
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Lin (B32) 2006; 31
Zouridakis (B58) 1998; 10
Cohen (B9) 1991; 4
Gramfort (B20) 2010; 9
Malmivuo (B35) 2012; 25
Michel (B36) 2012; 61
Winkler (B57) 2015
Bigdely-Shamlo (B6) 2013
Sandmann (B41) 2012; 135
Barkley (B2) 2004; 115
Stenroos (B47) 2014; 94
Scheler (B43) 2007; 28
Crease (B10) 1991; 253
Näätänen (B39) 1987; 24
Grech (B21) 2008; 5
Jung (B27); 37
Lee (B31) 1999; 11
Lopes da Silva (B33) 2013; 80
Delorme (B15) 2007; 34
Klamer (B29) 2014; 28
Michel (B37) 2004; 115
Chen (B8) 2016; 2016
Brodbeck (B7) 2011; 134
Viola (B54) 2009; 120
Hansen (B22) 2010
Shahin (B45) 2007; 20
Debener (B13) 2010
Hipp (B26) 2012; 15
Hine (B24) 2007; 118
Baillet (B1) 2017; 20
Gramfort (B19) 2013; 7
Tadel (B52) 2011; 2011
Delorme (B14) 2004; 134
Stropahl (B48) 2017; 343
Bell (B5) 1995; 7
Stropahl (B50) 2015; 121
Fitzgibbon (B18) 2015; 97
Leahy (B30) 1998; 107
Luck (B34) 2005
Srinivasan (B46) 2006; 159
Sur (B51) 2009; 18
Destrieux (B17) 2010; 53
Jung (B28); 111
Schoffelen (B44) 2009; 30
Widmann (B56) 2014; 250
Hauthal (B23) 2014; 8
Dale (B11) 2000; 26
Sandmann (B42) 2015; 126
Hine (B25) 2008; 119
Debener (B12) 2008; 45
Widmann (B55) 2012; 3
Musha (B38) 1999; 27
Baumgartner (B4) 2004; 115
De Santis (B16) 2007; 17
Ross (B40) 2009; 248
Viola (B53) 2012; 284
Bauer (B3) 2018; 167
Stropahl (B49) 2017; 16
References_xml – volume: 27
  start-page: 189
  year: 1999
  ident: B38
  article-title: Forward and inverse problems of EEG dipole localization
  publication-title: Crit. Rev. Biomed. Eng.
– volume: 115
  start-page: 2195
  year: 2004
  ident: B37
  article-title: EEG source imaging
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2004.06.001
– start-page: 1
  volume-title: An Introduction to the Event Related Potential Technique
  year: 2005
  ident: B34
  article-title: An introduction to the event related potential technique
– volume: 118
  start-page: 1274
  year: 2007
  ident: B24
  article-title: Late auditory evoked potentials asymmetry revisited
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2007.03.012
– volume: 37
  start-page: 163
  ident: B27
  article-title: Removing Electroencephalographic aretfacts by blind source seperation
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.3720163
– volume: 7
  start-page: 1129
  year: 1995
  ident: B5
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput.
  doi: 10.1162/neco.1995.7.6.1129
– volume: 5
  start-page: 25
  year: 2008
  ident: B21
  article-title: Review on solving the inverse problem in EEG source analysis
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-5-25
– start-page: 5845
  volume-title: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS)
  year: 2013
  ident: B6
  article-title: EyeCatch: data-mining over half a million EEG independent components to construct a fully-automated eye-component detector
– volume: 8
  start-page: 98
  year: 2014
  ident: B23
  article-title: Visuo-tactile interactions in the congenitally deaf: a behavioral and event-related potential study
  publication-title: Front. Integr. Neurosci.
  doi: 10.3389/fnint.2014.00098
– volume: 11
  start-page: 417
  year: 1999
  ident: B31
  article-title: Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources
  publication-title: Neural Comput
  doi: 10.1162/089976699300016719
– volume: 119
  start-page: 576
  year: 2008
  ident: B25
  article-title: Does long-term unilateral deafness change auditory evoked potential asymmetries?
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2007.11.010
– start-page: 121
  volume-title: Simultaneous EEG and fMRI: Recording, Analysis, and Application
  year: 2010
  ident: B13
  article-title: Using ICA for the analysis of multi-channel EEG Data
  doi: 10.1093/acprof:oso/9780195372731.003.0008
– volume: 3
  start-page: 233
  year: 2012
  ident: B55
  article-title: Filter effects and filter artifacts in the analysis of electrophysiological data
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2012.00233
– volume: 167
  start-page: 396
  year: 2018
  ident: B3
  article-title: Dynamic phase alignment of ongoing auditory cortex oscillations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.11.037
– volume: 107
  start-page: 159
  year: 1998
  ident: B30
  article-title: A study of dipole localization accuracy for MEG and EEG using a human skull phantom
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/S0013-4694(98)00057-1
– volume: 94
  start-page: 337
  year: 2014
  ident: B47
  article-title: Comparison of three-shell and simplified volume conductor models in magnetoencephalography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.01.006
– volume: 250
  start-page: 34
  year: 2014
  ident: B56
  article-title: Digital filter design for electrophysiological data – a practical a p- proach
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2014.08.002
– volume: 20
  start-page: 55
  year: 2007
  ident: B45
  article-title: Sensitivity of EEG and MEG to the N1 and P2 auditory evoked responses modulated by spectral complexity of sounds
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-007-0031-4
– volume: 31
  start-page: 160
  year: 2006
  ident: B32
  article-title: Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.11.054
– volume: 7
  start-page: 267
  year: 2013
  ident: B19
  article-title: MEG and EEG data analysis with MNE-Python
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2013.00267
– volume: 4
  start-page: 95
  year: 1991
  ident: B9
  article-title: EEG versus MEG localization accuracy: theory and experiment
  publication-title: Brain Topogr.
  doi: 10.1007/BF01132766
– volume: 30
  start-page: 1857
  year: 2009
  ident: B44
  article-title: Source connectivity analysis with MEG and EEG
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20745
– volume: 121
  start-page: 159
  year: 2015
  ident: B50
  article-title: Cross-modal reorganization in cochlear implant users: auditory cortex contributes to visual face processing
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.07.062
– volume: 80
  start-page: 1112
  year: 2013
  ident: B33
  article-title: EEG and MEG: relevance to neuroscience
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.10.017
– volume: 24
  start-page: 375
  year: 1987
  ident: B39
  article-title: The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1987.tb00311.x
– volume: 284
  start-page: 6
  year: 2012
  ident: B53
  article-title: Semi-automatic attenuation of cochlear implant artifacts for the evaluation of late auditory evoked potentials
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2011.12.010
– volume: 28
  start-page: 87
  year: 2014
  ident: B29
  article-title: Differences between MEG and high-density EEG source localizations using a distributed source model in comparison to fMRI
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-014-0405-3
– volume: 126
  start-page: 594
  year: 2015
  ident: B42
  article-title: Rapid bilateral improvement in auditory cortex activity in postlingually deafened adults following cochlear implantation
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2014.06.029
– start-page: 4101
  volume-title: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
  year: 2015
  ident: B57
  article-title: On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP
– volume: 115
  start-page: 1010
  year: 2004
  ident: B4
  article-title: Controversies in clinical neurophysiology. MEG is superior to EEG in the localization of interictal epileptiform activity: Con
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2003.12.010
– volume: 2011
  start-page: 879716
  year: 2011
  ident: B52
  article-title: Brainstorm: a user-friendly application for MEG/EEG analysis
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/879716
– volume: 53
  start-page: 1
  year: 2010
  ident: B17
  article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.010
– volume-title: MEG - An Introduction to Methods
  year: 2010
  ident: B22
  doi: 10.1093/acprof:oso/9780195307238.001.0001
– volume: 248
  start-page: 48
  year: 2009
  ident: B40
  article-title: Stimulus experience modifies auditory neuromagnetic responses in young and older listeners
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2008.11.012
– volume: 134
  start-page: 9
  year: 2004
  ident: B14
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 45
  start-page: 20
  year: 2008
  ident: B12
  article-title: Source localization of auditory evoked potentials after cochlear implantation
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2007.00610.x
– volume: 9
  start-page: 45
  year: 2010
  ident: B20
  article-title: OpenMEEG: opensource software for quasistatic bioelectromagnetics
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-9-45
– volume: 15
  start-page: 884
  year: 2012
  ident: B26
  article-title: Large-scale cortical correlation structure of spontaneous oscillatory activity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3101
– volume: 2016
  start-page: 4382656
  year: 2016
  ident: B8
  article-title: Cross-modal functional reorganization of visual and auditory cortex in adult cochlear implant users identified with fNIRS
  publication-title: Neural Plast.
  doi: 10.1155/2016/4382656
– volume: 159
  start-page: 29
  year: 2006
  ident: B46
  article-title: Source analysis of EEG oscillations using high-resolution EEG and MEG
  publication-title: Prog. Brain Res.
  doi: 10.1016/S0079-6123(06)59003-X
– volume: 16
  start-page: 514
  year: 2017
  ident: B49
  article-title: Auditory cross-modal reorganization in cochlear implant users indicates audio-visual integration
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2017.09.001
– volume: 26
  start-page: 55
  year: 2000
  ident: B11
  article-title: Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)81138-1
– volume: 343
  start-page: 128
  year: 2017
  ident: B48
  article-title: Cortical reorganization in postlingually deaf cochlear implant users: intra-modal and cross-modal considerations
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2016.07.005
– volume: 134
  start-page: 2887
  year: 2011
  ident: B7
  article-title: Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients
  publication-title: Brain
  doi: 10.1093/brain/awr243
– volume: 97
  start-page: 277
  year: 2015
  ident: B18
  article-title: Surface Laplacian of scalp electrical signals and independent component analysis resolve EMG contamination of electroencephalogram
  publication-title: Int. J. Psychophysiol
  doi: 10.1016/j.ijpsycho.2014.10.006
– volume: 120
  start-page: 868
  year: 2009
  ident: B54
  article-title: Semi-automatic identification of independent components representing EEG artifact
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2009.01.015
– volume: 28
  start-page: 315
  year: 2007
  ident: B43
  article-title: Spatial relationship of source localizations in patients with focal epilepsy: comparison of MEG and EEG with a three spherical shells and a boundary element volume conductor model
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20277
– volume: 34
  start-page: 1443
  year: 2007
  ident: B15
  article-title: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.11.004
– volume: 253
  start-page: 374
  year: 1991
  ident: B10
  article-title: Images of conflict: MEG vs. EEG
  publication-title: Science
  doi: 10.1126/science.1862336
– volume: 115
  start-page: 1001
  year: 2004
  ident: B2
  article-title: Controversies in neurophysiology. MEG is superior to EEG in localization of interictal epileptiform activity: pro
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2003.12.011
– volume: 10
  start-page: 183
  year: 1998
  ident: B58
  article-title: Multiple bilaterally asymmetric cortical sources account for the auditory N1m component
  publication-title: Brain Topogr.
  doi: 10.1023/A:1022246825461
– volume: 20
  start-page: 327
  year: 2017
  ident: B1
  article-title: Magnetoencephalography for brain electrophysiology and imaging
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4504
– volume: 61
  start-page: 371
  year: 2012
  ident: B36
  article-title: Towards the utilization of EEG as a brain imaging tool
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.039
– volume: 25
  start-page: 1
  year: 2012
  ident: B35
  article-title: Comparison of the properties of EEG and MEG in detecting the electric activity of the brain
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-011-0202-1
– volume: 18
  start-page: 70
  year: 2009
  ident: B51
  article-title: Event-related potential: an overview
  publication-title: Ind. Psychiatry J.
  doi: 10.4103/0972-6748.57865
– volume: 111
  start-page: 1745
  ident: B28
  article-title: Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(00)00386-2
– volume: 17
  start-page: 9
  year: 2007
  ident: B16
  article-title: Automatic and intrinsic auditory “what” and “where” processing in humans revealed by electrical neuroimaging
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhj119
– volume: 135
  start-page: 555
  year: 2012
  ident: B41
  article-title: Visual activation of auditory cortex reflects maladaptive plasticity in cochlear implant users
  publication-title: Brain
  doi: 10.1093/brain/awr329
SSID ssj0062842
Score 2.4561768
Snippet Electroencephalography (EEG) source localization approaches are often used to disentangle the spatial patterns mixed up in scalp EEG recordings. However,...
EEG source localization approaches are often used to disentangle the spatial patterns mixed up in scalp electroencephalography (EEG) recordings. However,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 309
SubjectTerms Algorithms
Anatomy
Attention task
auditory N100
auditory processing
Brainstorm
Cochlear implants
Cortex (auditory)
EEG
EEGLAB
Electroencephalography
Hearing
Information processing
Localization
Neuroscience
Sensors
source localization
Statistics
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTlyqFkqbFpCRKqQeovV77eMuXUAIcWmRuEV-qkjFi-hy4N_jcbKr3aqiF45JHGUynofH_mYGoa8pKEmVYq3zhLRCM9Ma7kWbSKKhyBdJqaItrtT5tbi4kTdrrb4AE9aXB-4ZNyoKmTznTifmhOHUcptYYFRYqoMKCaxvcWPLYKq3waoYXdYfSpYQzIxSvs1Qm5sCcJID-HDNCdVa_f9aYP6Nk1xzPKfv0NthxYgnPaXv0ZuYd9DuJJdo-e4JH-OK4ayb47vo4kfdi2-hwxnkmeMJJF3MH57wkBAQ_-B5wrPZGf5uFxZXwABcXk6m2OaAp9AxAgCTdx_Q9ens58l5O3RLaL2UatEGIYzzmniXhCIxMQ_6KxKRMigztsWqycSF9U5okizjha0qGG28DMJHz_fQVp7n-AlhoUKE0mVOjIPQRhjKnWUiUUsClZE1aLRkX-eHUuLQ0eJ3V0IKYHhXGd4Bw7vK8AZ9W71x35fReGHsFGZkNQ4KYNcbRSy6QSy6_4lFg_aX89kNWlm-UeIjVvyv4Q06Wj0u-gSHJDbH-SPQIYtRg_TdBn3sp39FCTNajTmjDRpvCMYGqZtP8u2vWrNbGgm96j-_xr99QdvArQq71Ptoa_HwGA_K0mjhDqsWPAOxYwwk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7aUXVFoegYKMhJA4ROv3xgeEdmFLVaEVAir1Fjl2DJVo0i7bQ_89HuehLkI95qWMJuPJ2P7m-wDeBK8V05rnlaM0lwU3uRFO5oEG5mN80RAS2mKlT87k6bk634HV0AuDsMohJ6ZE7VuHa-RTLJV5zJ1GfLi6zlE1CndXBwkN20sr-PeJYuwB7HJUVZ7A7mK5-vptyM06JuO0_4nWyVisdxuXcZpmpqG5aJC_myG4UiBA8c6PKvH5_68I_RdLeefndLwPD_uqksy7MHgEO3VzAIfzJs6oL2_JW5JwnmkB_QD2sL7s6JkP4fR7WrzPURING9PJHLs02vUt6TsI6j-kDWS5_Ew-2Y0lCWGAh1_mC2IbTxYoMYEIy8vHcHa8_PHxJO_lFXKnlN7kXkpTuYK6KkhN68AdDngZqFJem5mNaVAFIa2rZEGD5SI4ob0pjFNeutqJJzBp2qZ-BkRqXyPXWSVnXhZGGiYqy2Vglnqmap7BdPBl6XrucZTA-F3GOQh6v0zeL9H7ZfJ-Bu_GJ6463o177l3g5xnvQ8bsdKJd_yz7AVjGxB7tF1UReCWNYFbYwD1n0rLCax8yOBo-btkP4_iOMegyeD1ejgMQd1VsU7c3aIeKWRD7fTN42sXCaAk3hZ4JzjKYbUXJlqnbV5qLX4nkWxmF4vbP7zfrBeyhHxICsziCyWZ9U7-MVdKmetWH_l9POQ_-
  priority: 102
  providerName: ProQuest
Title Source-Modeling Auditory Processes of EEG Data Using EEGLAB and Brainstorm
URI https://www.ncbi.nlm.nih.gov/pubmed/29867321
https://www.proquest.com/docview/2306229993
https://www.proquest.com/docview/2050485884
https://pubmed.ncbi.nlm.nih.gov/PMC5952032
https://doaj.org/article/538fc33b8f2b4931a3af2d214a18d6df
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: BENPR
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M48
  dateStart: 20071001
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw8DS2F14QY3wERmUkNImHMH83fkCohW7TBBMCKvUtcux4TNqSreuk9d_jc9OKogrxEimxk5zOd7473xfA2-C1YlrzvHKU5rLgJjfCyTzQwHykLxpCirY40ydjeTpRky1YZpd0CLzdaNphP6nx9PL9_c38Y2T4D2hxRnl7GJqLBitvMwyLFNQcXN_k2FYK3a9dj40HsBNFFUey_ypXbgYd9-bkDkVgZdTdF37MjR9dk1upvP8mnfTv0Mo_ZNXRY3jUKZlksKCKXdiqmyewN2iigX01JwckhX2m8_Q9OP2Rju9zbIqGqelkgHka7XROuhyC-pa0gYxGx-SznVmSYgzw9stgSGzjyRCbTGCM5dVTGB-Nfn46ybsGC7lTSs9yL6WpXEFdFaSmdeAOWV4GqpTXpm_jRqiCkNZVsqDBchGc0N4UxikvXe3EM9hu2qZ-AURqX2O1s0r2vSyMNExUlsvALPVM1TyDwyX6StdVH8cmGJdltEIQ4WVCeIkILxPCM3i3euN6UXnjH3OHuCKreVgzOz1op-dlx4Jl3Noj_KIqAq-kEcwKG7jnTFpWeO1DBvvL9SyXdFiihcajyDYigzer4ciC6FexTd3eIRwq7oOY8ZvB88XyryDhptB9wVkG_TXCWAN1faS5-JXKfCujsL39y__47yt4iMhIgZjFPmzPpnf166gszaoe7AxHZ9--99JhQ7weT1gvMcFvyyEV3g
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9kAvCFoehgKLBEgcrNj7ivdQoYSmpG2IELRSb2a964VK1C5pKpQ_x29jZ21HDUK99ej3aHZmdsbzzQzAa2elSKWkcWGSJOYZVbFihscucan18pU4F9AWUzk-4Yen4nQN_nS1MAir7GxiMNS2NviPvIeuMvW2U7H3F79inBqF2dVuhIZuRyvY3dBirC3sOCoXv30Id7l7sOfX-w2l-6PjD-O4nTIQGyHkPLacq8JkiSkcl0npqEG55y4RwkrV194aCMe4NgXPEqcpc4ZJqzJlhOWmNMy_9w5seLeDea3aGI6mn790e4H0xj_kW5Eb3AcHTaLUh4Wq56qzCvuFpwjmZAiIvLYxhvkB_3N6_8VuXtsM9-_DvdaLJYNG7B7AWlltwfag8hH8-YK8JQFXGn7Yb8Em-rNNO-htOPwakgUxjmDDQngywKqQerYgbcVCeUlqR0ajj2RPzzUJiAY8nAyGRFeWDHGkBSI6zx_Cya0w-hGsV3VVPgHCpS2xt1rB-5ZniquUFZpyl-rEpqKkEfQ6Xuam7XWOIzd-5j7mQe7ngfs5cj8P3I_g3fKJi6bPxw33DnF5lvdhh-5wop59z1uFz_1G4ulnReZowRVLNdOOWppynWZWWhfBTre4eWs2_DeWQh7Bq-Vlr_CYxdFVWV8hHcJbXawvjuBxIwtLSqjKZJ_RNIL-ipSskLp6pTr7EZqKCyVowujTm8l6CXfHx58m-eRgevQMNpEnAf2Z7cD6fHZVPvce2rx40aoBgW-3rXl_Af9vTXc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEK9IGh5uBRYJEDiYMXeV7yHCiUkoS9FFVCpN3e964VKrV3SVCh_kV_FzsaOGoR66zGxnYxm5-n5ZgbgnbNSpFLSuDBJEvOMqlgxw2OXuNR6-UqcC2iLidw74Qen4nQN_rS9MAirbG1iMNS2NviOvIuhMvW2U7Gua2ARx8Pxp6tfMW6Qwkpru05DN2sW7G4YN9Y0eRyW898-nbve3R_6s39P6Xj0_fNe3GwciI0QchZbzlVhssQUjsukdNSgDnCXCGGl6mlvGYRjXJuCZ4nTlDnDpFWZMsJyUxrmf_cBrPewX7QD64PR5Phr6xekdwSh9oqc4T5RWBRNfYqouq46r3B2eIrATobgyFtOMuwS-F8A_C-O85ZjHD-GR01ES_oLEXwCa2W1CVv9ymfzl3PygQSMaXh5vwkbGNsuRkNvwcG3UDiIcR0bNsWTPnaI1NM5aboXymtSOzIafSFDPdMkoBvw41F_QHRlyQDXWyC68_IpnNwLo59Bp6qr8gUQLm2Jc9YK3rM8U1ylrNCUu1QnNhUljaDb8jI3zdxzXL9xkfv8B7mfB-7nyP08cD-Cj8snrhYzP-64d4DHs7wPp3WHL-rpj7xR_tw7FU8_KzJHC65Yqpl21NKU6zSz0roIdtrDzRsT4v9jKfARvF1e9sqPFR1dlfUN0iG8BcZe4wieL2RhSQlVmewxmkbQW5GSFVJXr1TnP8OAcaEETRjdvpusN_DQa2B-tD85fAkbyJIABM12oDOb3pSvfLA2K143WkDg7L4V7y-X5lGx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Source-Modeling+Auditory+Processes+of+EEG+Data+Using+EEGLAB+and+Brainstorm&rft.jtitle=Frontiers+in+neuroscience&rft.au=Stropahl%2C+Maren&rft.au=Bauer%2C+Anna-Katharina+R&rft.au=Debener%2C+Stefan&rft.au=Bleichner%2C+Martin+G&rft.date=2018-05-08&rft.issn=1662-4548&rft.volume=12&rft.spage=309&rft_id=info:doi/10.3389%2Ffnins.2018.00309&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon