Source-Modeling Auditory Processes of EEG Data Using EEGLAB and Brainstorm
Electroencephalography (EEG) source localization approaches are often used to disentangle the spatial patterns mixed up in scalp EEG recordings. However, approaches differ substantially between experiments, may be strongly parameter-dependent, and results are not necessarily meaningful. In this pape...
Saved in:
Published in | Frontiers in neuroscience Vol. 12; p. 309 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
08.05.2018
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1662-453X 1662-4548 1662-453X |
DOI | 10.3389/fnins.2018.00309 |
Cover
Abstract | Electroencephalography (EEG) source localization approaches are often used to disentangle the spatial patterns mixed up in scalp EEG recordings. However, approaches differ substantially between experiments, may be strongly parameter-dependent, and results are not necessarily meaningful. In this paper we provide a pipeline for EEG source estimation, from raw EEG data pre-processing using EEGLAB functions up to source-level analysis as implemented in Brainstorm. The pipeline is tested using a data set of 10 individuals performing an auditory attention task. The analysis approach estimates sources of 64-channel EEG data without the prerequisite of individual anatomies or individually digitized sensor positions. First, we show advanced EEG pre-processing using EEGLAB, which includes artifact attenuation using independent component analysis (ICA). ICA is a linear decomposition technique that aims to reveal the underlying statistical sources of mixed signals and is further a powerful tool to attenuate stereotypical artifacts (e.g., eye movements or heartbeat). Data submitted to ICA are pre-processed to facilitate good-quality decompositions. Aiming toward an objective approach on component identification, the semi-automatic CORRMAP algorithm is applied for the identification of components representing prominent and stereotypic artifacts. Second, we present a step-wise approach to estimate active sources of auditory cortex event-related processing, on a single subject level. The presented approach assumes that no individual anatomy is available and therefore the default anatomy ICBM152, as implemented in Brainstorm, is used for all individuals. Individual noise modeling in this dataset is based on the pre-stimulus baseline period. For EEG source modeling we use the OpenMEEG algorithm as the underlying forward model based on the symmetric Boundary Element Method (BEM). We then apply the method of dynamical statistical parametric mapping (dSPM) to obtain physiologically plausible EEG source estimates. Finally, we show how to perform group level analysis in the time domain on anatomically defined regions of interest (auditory scout). The proposed pipeline needs to be tailored to the specific datasets and paradigms. However, the straightforward combination of EEGLAB and Brainstorm analysis tools may be of interest to others performing EEG source localization. |
---|---|
AbstractList | Electroencephalography (EEG) source localization approaches are often used to disentangle the spatial patterns mixed up in scalp EEG recordings. However, approaches differ substantially between experiments, may be strongly parameter-dependent, and results are not necessarily meaningful. In this paper we provide a pipeline for EEG source estimation, from raw EEG data pre-processing using EEGLAB functions up to source-level analysis as implemented in Brainstorm. The pipeline is tested using a data set of 10 individuals performing an auditory attention task. The analysis approach estimates sources of 64-channel EEG data without the prerequisite of individual anatomies or individually digitized sensor positions. First, we show advanced EEG pre-processing using EEGLAB, which includes artifact attenuation using independent component analysis (ICA). ICA is a linear decomposition technique that aims to reveal the underlying statistical sources of mixed signals and is further a powerful tool to attenuate stereotypical artifacts (e.g., eye movements or heartbeat). Data submitted to ICA are pre-processed to facilitate good-quality decompositions. Aiming toward an objective approach on component identification, the semi-automatic CORRMAP algorithm is applied for the identification of components representing prominent and stereotypic artifacts. Second, we present a step-wise approach to estimate active sources of auditory cortex event-related processing, on a single subject level. The presented approach assumes that no individual anatomy is available and therefore the default anatomy ICBM152, as implemented in Brainstorm, is used for all individuals. Individual noise modeling in this dataset is based on the pre-stimulus baseline period. For EEG source modeling we use the OpenMEEG algorithm as the underlying forward model based on the symmetric Boundary Element Method (BEM). We then apply the method of dynamical statistical parametric mapping (dSPM) to obtain physiologically plausible EEG source estimates. Finally, we show how to perform group level analysis in the time domain on anatomically defined regions of interest (auditory scout). The proposed pipeline needs to be tailored to the specific datasets and paradigms. However, the straightforward combination of EEGLAB and Brainstorm analysis tools may be of interest to others performing EEG source localization. EEG source localization approaches are often used to disentangle the spatial patterns mixed up in scalp electroencephalography (EEG) recordings. However, approaches differ substantially between experiments, may be strongly parameter-dependent, and results are not necessarily meaningful. In this paper we provide a pipeline for EEG source estimation, from raw EEG data pre-processing using EEGLAB functions up to source-level analysis as implemented in Brainstorm. The pipeline is tested using a data set of 10 individuals performing an auditory attention task. The analysis approach estimates sources of 64-channel EEG data without the prerequisite of individual anatomies or individually digitized sensor positions. First, we show advanced EEG pre-processing using EEGLAB, which includes artefact attenuation using independent component analysis (ICA). ICA is a linear decomposition technique that aims to reveal the underlying statistical sources of mixed signals and is further a powerful tool to attenuate stereotypical artefacts (e.g. eye movements or heartbeat). Data submitted to ICA are pre-processed to facilitate good-quality decompositions. Aiming towards an objective approach on component identification, the semi-automatic CORRMAP algorithm is applied for the identification of components representing prominent and stereotypic artefacts. Second, we present a step-wise approach to estimate active sources of auditory cortex event-related processing, on a single subject level. The presented approach assumes that no individual anatomy is available and therefore the default anatomy ICBM152, as implemented in Brainstorm, is used for all individuals. Individual noise modelling in this dataset is based on the pre-stimulus baseline period. For EEG source modelling we use the OpenMEEG algorithm as the underlying forward model based on the symmetric Boundary Element Method (BEM). We then apply the method of dynamical statistical parametric mapping (dSPM) to obtain physiologically plausible EEG source estimates. Finally, we show how to perform group level analysis in the time domain on anatomically defined regions of interest (auditory scout). The proposed pipeline needs to be tailored to the specific datasets and paradigms. However, the straightforward combination of EEGLAB and Brainstorm analysis tools may be of interest to others performing EEG source localization. Electroencephalography (EEG) source localization approaches are often used to disentangle the spatial patterns mixed up in scalp EEG recordings. However, approaches differ substantially between experiments, may be strongly parameter-dependent, and results are not necessarily meaningful. In this paper we provide a pipeline for EEG source estimation, from raw EEG data pre-processing using EEGLAB functions up to source-level analysis as implemented in Brainstorm. The pipeline is tested using a data set of 10 individuals performing an auditory attention task. The analysis approach estimates sources of 64-channel EEG data without the prerequisite of individual anatomies or individually digitized sensor positions. First, we show advanced EEG pre-processing using EEGLAB, which includes artifact attenuation using independent component analysis (ICA). ICA is a linear decomposition technique that aims to reveal the underlying statistical sources of mixed signals and is further a powerful tool to attenuate stereotypical artifacts (e.g., eye movements or heartbeat). Data submitted to ICA are pre-processed to facilitate good-quality decompositions. Aiming toward an objective approach on component identification, the semi-automatic CORRMAP algorithm is applied for the identification of components representing prominent and stereotypic artifacts. Second, we present a step-wise approach to estimate active sources of auditory cortex event-related processing, on a single subject level. The presented approach assumes that no individual anatomy is available and therefore the default anatomy ICBM152, as implemented in Brainstorm, is used for all individuals. Individual noise modeling in this dataset is based on the pre-stimulus baseline period. For EEG source modeling we use the OpenMEEG algorithm as the underlying forward model based on the symmetric Boundary Element Method (BEM). We then apply the method of dynamical statistical parametric mapping (dSPM) to obtain physiologically plausible EEG source estimates. Finally, we show how to perform group level analysis in the time domain on anatomically defined regions of interest (auditory scout). The proposed pipeline needs to be tailored to the specific datasets and paradigms. However, the straightforward combination of EEGLAB and Brainstorm analysis tools may be of interest to others performing EEG source localization.Electroencephalography (EEG) source localization approaches are often used to disentangle the spatial patterns mixed up in scalp EEG recordings. However, approaches differ substantially between experiments, may be strongly parameter-dependent, and results are not necessarily meaningful. In this paper we provide a pipeline for EEG source estimation, from raw EEG data pre-processing using EEGLAB functions up to source-level analysis as implemented in Brainstorm. The pipeline is tested using a data set of 10 individuals performing an auditory attention task. The analysis approach estimates sources of 64-channel EEG data without the prerequisite of individual anatomies or individually digitized sensor positions. First, we show advanced EEG pre-processing using EEGLAB, which includes artifact attenuation using independent component analysis (ICA). ICA is a linear decomposition technique that aims to reveal the underlying statistical sources of mixed signals and is further a powerful tool to attenuate stereotypical artifacts (e.g., eye movements or heartbeat). Data submitted to ICA are pre-processed to facilitate good-quality decompositions. Aiming toward an objective approach on component identification, the semi-automatic CORRMAP algorithm is applied for the identification of components representing prominent and stereotypic artifacts. Second, we present a step-wise approach to estimate active sources of auditory cortex event-related processing, on a single subject level. The presented approach assumes that no individual anatomy is available and therefore the default anatomy ICBM152, as implemented in Brainstorm, is used for all individuals. Individual noise modeling in this dataset is based on the pre-stimulus baseline period. For EEG source modeling we use the OpenMEEG algorithm as the underlying forward model based on the symmetric Boundary Element Method (BEM). We then apply the method of dynamical statistical parametric mapping (dSPM) to obtain physiologically plausible EEG source estimates. Finally, we show how to perform group level analysis in the time domain on anatomically defined regions of interest (auditory scout). The proposed pipeline needs to be tailored to the specific datasets and paradigms. However, the straightforward combination of EEGLAB and Brainstorm analysis tools may be of interest to others performing EEG source localization. |
Author | Stropahl, Maren Bleichner, Martin G. Debener, Stefan Bauer, Anna-Katharina R. |
AuthorAffiliation | 2 Cluster of Excellence Hearing4all, University of Oldenburg , Oldenburg , Germany 1 Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg , Oldenburg , Germany |
AuthorAffiliation_xml | – name: 2 Cluster of Excellence Hearing4all, University of Oldenburg , Oldenburg , Germany – name: 1 Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg , Oldenburg , Germany |
Author_xml | – sequence: 1 givenname: Maren surname: Stropahl fullname: Stropahl, Maren – sequence: 2 givenname: Anna-Katharina R. surname: Bauer fullname: Bauer, Anna-Katharina R. – sequence: 3 givenname: Stefan surname: Debener fullname: Debener, Stefan – sequence: 4 givenname: Martin G. surname: Bleichner fullname: Bleichner, Martin G. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29867321$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kslrGzEYxUVJaZb23lMZ6KWXcbRbuhSc1E1THFpoA70JjRZXZiwl0kwg_31kOwlJICdt7_14fHqHYC-m6AD4iOCEECGPfQyxTDBEYgIhgfINOECc45Yy8m_vyX4fHJaygpBjQfE7sI-l4FOC0QH4-SeN2bj2IlnXh7hsZqMNQ8q3ze-cjCvFlSb5Zj4_a77pQTeXZSOqx8XspNHRNidZ1wzVsX4P3nrdF_fhfj0Cl9_nf09_tItfZ-ens0VrGONDaymVnRHQdJ5y6Dw2NfmUesiY5XKqJULME6pNRwX0GhNvCLdSSMMsNc6QI3C-49qkV-oqh7XOtyrpoLYXKS-VzkMwvVOMiOomnfC4o5IgTbTHFiOqkbDc-sr6umNdjd3aWePikHX_DPr8JYb_apluFJMMQ4Ir4Ms9IKfr0ZVBrUMxru91dGksCkMGqWBC0Cr9_EK6qrOPdVQKk_o1WEpJqurT00SPUR6-rAr4TmByKiU7r0wY9BDSJmDoFYJq0w217YbadENtu1GN8IXxgf2q5Q7hmbwc |
CitedBy_id | crossref_primary_10_1016_j_ijhcs_2023_103066 crossref_primary_10_1016_j_neuri_2024_100172 crossref_primary_10_1093_cercor_bhad221 crossref_primary_10_1111_psyp_14329 crossref_primary_10_1038_s41598_023_36794_x crossref_primary_10_1088_1741_2552_ab57d5 crossref_primary_10_1016_j_heares_2024_109023 crossref_primary_10_1111_psyp_13632 crossref_primary_10_1016_j_ijpsycho_2022_12_006 crossref_primary_10_1088_1741_2552_ab4af6 crossref_primary_10_1162_jocn_a_01601 crossref_primary_10_1007_s10548_022_00902_3 crossref_primary_10_1007_s11571_024_10149_2 crossref_primary_10_1016_j_clinph_2023_07_009 crossref_primary_10_1007_s11357_025_01552_6 crossref_primary_10_1371_journal_pone_0266107 crossref_primary_10_1093_cercor_bhae317 crossref_primary_10_3389_fncom_2022_919215 crossref_primary_10_1016_j_neuroimage_2024_120784 crossref_primary_10_1016_j_crneur_2022_100059 crossref_primary_10_1111_psyp_13529 crossref_primary_10_1007_s00221_020_05996_4 crossref_primary_10_3390_signals2030024 crossref_primary_10_1523_ENEURO_0026_23_2023 crossref_primary_10_1016_j_neuropsychologia_2024_109033 crossref_primary_10_3389_fpsyg_2019_00786 crossref_primary_10_1016_j_brainres_2022_148135 crossref_primary_10_1016_j_heares_2022_108683 crossref_primary_10_1016_j_nicl_2022_102982 crossref_primary_10_1111_ejn_16132 crossref_primary_10_1007_s11042_023_15900_1 crossref_primary_10_1093_sleep_zsad243 crossref_primary_10_1515_jiip_2023_0041 crossref_primary_10_1515_bmt_2021_0418 crossref_primary_10_1080_10447318_2024_2358461 crossref_primary_10_3389_fninf_2022_970372 crossref_primary_10_1016_j_clinph_2022_11_015 crossref_primary_10_1523_ENEURO_0133_21_2021 crossref_primary_10_3390_s19235317 crossref_primary_10_7554_eLife_52984 crossref_primary_10_1016_j_brs_2021_06_014 crossref_primary_10_1038_s41598_020_62155_z crossref_primary_10_1371_journal_pone_0212754 crossref_primary_10_1007_s00221_020_05922_8 crossref_primary_10_1109_ACCESS_2021_3097797 crossref_primary_10_1162_netn_a_00261 crossref_primary_10_1007_s10548_022_00901_4 crossref_primary_10_1016_j_brainres_2023_148246 crossref_primary_10_1152_jn_00068_2021 crossref_primary_10_3389_fnhum_2019_00069 crossref_primary_10_2139_ssrn_4145247 crossref_primary_10_3233_JIFS_202046 crossref_primary_10_1016_j_isci_2024_109295 crossref_primary_10_1093_braincomms_fcad232 crossref_primary_10_1016_j_neuroimage_2023_120141 crossref_primary_10_3389_fnins_2021_665767 crossref_primary_10_1016_j_neuroimage_2025_121115 crossref_primary_10_3389_fnagi_2022_877235 crossref_primary_10_1111_psyp_13747 crossref_primary_10_1093_brain_awac094 crossref_primary_10_1111_psyp_14437 crossref_primary_10_1088_1741_2552_ac5fcb crossref_primary_10_1523_JNEUROSCI_0112_22_2023 crossref_primary_10_1016_j_neuroimage_2020_117315 crossref_primary_10_1016_j_neuropsychologia_2021_108011 crossref_primary_10_7554_eLife_70068 crossref_primary_10_1016_j_neuroimage_2022_119093 crossref_primary_10_1093_cercor_bhad257 crossref_primary_10_1016_j_neuroimage_2024_120834 crossref_primary_10_1038_s42003_025_07788_4 |
Cites_doi | 10.1016/j.clinph.2004.06.001 10.1016/j.clinph.2007.03.012 10.1111/1469-8986.3720163 10.1162/neco.1995.7.6.1129 10.1186/1743-0003-5-25 10.3389/fnint.2014.00098 10.1162/089976699300016719 10.1016/j.clinph.2007.11.010 10.1093/acprof:oso/9780195372731.003.0008 10.3389/fpsyg.2012.00233 10.1016/j.neuroimage.2017.11.037 10.1016/S0013-4694(98)00057-1 10.1016/j.neuroimage.2014.01.006 10.1016/j.jneumeth.2014.08.002 10.1007/s10548-007-0031-4 10.1016/j.neuroimage.2005.11.054 10.3389/fnins.2013.00267 10.1007/BF01132766 10.1002/hbm.20745 10.1016/j.neuroimage.2015.07.062 10.1016/j.neuron.2013.10.017 10.1111/j.1469-8986.1987.tb00311.x 10.1016/j.heares.2011.12.010 10.1007/s10548-014-0405-3 10.1016/j.clinph.2014.06.029 10.1016/j.clinph.2003.12.010 10.1155/2011/879716 10.1016/j.neuroimage.2010.06.010 10.1093/acprof:oso/9780195307238.001.0001 10.1016/j.heares.2008.11.012 10.1016/j.jneumeth.2003.10.009 10.1111/j.1469-8986.2007.00610.x 10.1186/1475-925X-9-45 10.1038/nn.3101 10.1155/2016/4382656 10.1016/S0079-6123(06)59003-X 10.1016/j.nicl.2017.09.001 10.1016/S0896-6273(00)81138-1 10.1016/j.heares.2016.07.005 10.1093/brain/awr243 10.1016/j.ijpsycho.2014.10.006 10.1016/j.clinph.2009.01.015 10.1002/hbm.20277 10.1016/j.neuroimage.2006.11.004 10.1126/science.1862336 10.1016/j.clinph.2003.12.011 10.1023/A:1022246825461 10.1038/nn.4504 10.1016/j.neuroimage.2011.12.039 10.1007/s10548-011-0202-1 10.4103/0972-6748.57865 10.1016/S1388-2457(00)00386-2 10.1093/cercor/bhj119 10.1093/brain/awr329 |
ContentType | Journal Article |
Copyright | 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2018 Stropahl, Bauer, Debener and Bleichner. 2018 Stropahl, Bauer, Debener and Bleichner |
Copyright_xml | – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2018 Stropahl, Bauer, Debener and Bleichner. 2018 Stropahl, Bauer, Debener and Bleichner |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnins.2018.00309 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Database Suite (ProQuest) Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Collection (ProQuest) Biological Sciences Science Database Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Statistics |
EISSN | 1662-453X |
ExternalDocumentID | oai_doaj_org_article_538fc33b8f2b4931a3af2d214a18d6df PMC5952032 29867321 10_3389_fnins_2018_00309 |
Genre | Journal Article |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RNS RPM W2D ACXDI C1A IAO IEA IHR ISR M~E NPM 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c556t-d449bc80cbf460ef2c03074f055d697a9115f34acb480fa23fc36d989c5d4cec3 |
IEDL.DBID | M48 |
ISSN | 1662-453X 1662-4548 |
IngestDate | Wed Aug 27 01:08:37 EDT 2025 Tue Sep 30 16:45:11 EDT 2025 Thu Sep 04 15:02:02 EDT 2025 Fri Jul 25 11:43:42 EDT 2025 Wed Feb 19 02:43:22 EST 2025 Wed Oct 01 01:43:11 EDT 2025 Thu Apr 24 22:56:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | auditory processing source localization EEGLAB Brainstorm EEG auditory N100 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c556t-d449bc80cbf460ef2c03074f055d697a9115f34acb480fa23fc36d989c5d4cec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewed by: Philippe Albouy, McGill University, Canada; Emily B. J. Coffey, Universität Tübingen, Germany This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience Edited by: Francois Tadel, INSERM U1216 Grenoble Institut des Neurosciences (GIN), France |
OpenAccessLink | https://doaj.org/article/538fc33b8f2b4931a3af2d214a18d6df |
PMID | 29867321 |
PQID | 2306229993 |
PQPubID | 4424402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_538fc33b8f2b4931a3af2d214a18d6df pubmedcentral_primary_oai_pubmedcentral_nih_gov_5952032 proquest_miscellaneous_2050485884 proquest_journals_2306229993 pubmed_primary_29867321 crossref_citationtrail_10_3389_fnins_2018_00309 crossref_primary_10_3389_fnins_2018_00309 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-08 |
PublicationDateYYYYMMDD | 2018-05-08 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in neuroscience |
PublicationTitleAlternate | Front Neurosci |
PublicationYear | 2018 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Lin (B32) 2006; 31 Zouridakis (B58) 1998; 10 Cohen (B9) 1991; 4 Gramfort (B20) 2010; 9 Malmivuo (B35) 2012; 25 Michel (B36) 2012; 61 Winkler (B57) 2015 Bigdely-Shamlo (B6) 2013 Sandmann (B41) 2012; 135 Barkley (B2) 2004; 115 Stenroos (B47) 2014; 94 Scheler (B43) 2007; 28 Crease (B10) 1991; 253 Näätänen (B39) 1987; 24 Grech (B21) 2008; 5 Jung (B27); 37 Lee (B31) 1999; 11 Lopes da Silva (B33) 2013; 80 Delorme (B15) 2007; 34 Klamer (B29) 2014; 28 Michel (B37) 2004; 115 Chen (B8) 2016; 2016 Brodbeck (B7) 2011; 134 Viola (B54) 2009; 120 Hansen (B22) 2010 Shahin (B45) 2007; 20 Debener (B13) 2010 Hipp (B26) 2012; 15 Hine (B24) 2007; 118 Baillet (B1) 2017; 20 Gramfort (B19) 2013; 7 Tadel (B52) 2011; 2011 Delorme (B14) 2004; 134 Stropahl (B48) 2017; 343 Bell (B5) 1995; 7 Stropahl (B50) 2015; 121 Fitzgibbon (B18) 2015; 97 Leahy (B30) 1998; 107 Luck (B34) 2005 Srinivasan (B46) 2006; 159 Sur (B51) 2009; 18 Destrieux (B17) 2010; 53 Jung (B28); 111 Schoffelen (B44) 2009; 30 Widmann (B56) 2014; 250 Hauthal (B23) 2014; 8 Dale (B11) 2000; 26 Sandmann (B42) 2015; 126 Hine (B25) 2008; 119 Debener (B12) 2008; 45 Widmann (B55) 2012; 3 Musha (B38) 1999; 27 Baumgartner (B4) 2004; 115 De Santis (B16) 2007; 17 Ross (B40) 2009; 248 Viola (B53) 2012; 284 Bauer (B3) 2018; 167 Stropahl (B49) 2017; 16 |
References_xml | – volume: 27 start-page: 189 year: 1999 ident: B38 article-title: Forward and inverse problems of EEG dipole localization publication-title: Crit. Rev. Biomed. Eng. – volume: 115 start-page: 2195 year: 2004 ident: B37 article-title: EEG source imaging publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2004.06.001 – start-page: 1 volume-title: An Introduction to the Event Related Potential Technique year: 2005 ident: B34 article-title: An introduction to the event related potential technique – volume: 118 start-page: 1274 year: 2007 ident: B24 article-title: Late auditory evoked potentials asymmetry revisited publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2007.03.012 – volume: 37 start-page: 163 ident: B27 article-title: Removing Electroencephalographic aretfacts by blind source seperation publication-title: Psychophysiology doi: 10.1111/1469-8986.3720163 – volume: 7 start-page: 1129 year: 1995 ident: B5 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Comput. doi: 10.1162/neco.1995.7.6.1129 – volume: 5 start-page: 25 year: 2008 ident: B21 article-title: Review on solving the inverse problem in EEG source analysis publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-5-25 – start-page: 5845 volume-title: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS) year: 2013 ident: B6 article-title: EyeCatch: data-mining over half a million EEG independent components to construct a fully-automated eye-component detector – volume: 8 start-page: 98 year: 2014 ident: B23 article-title: Visuo-tactile interactions in the congenitally deaf: a behavioral and event-related potential study publication-title: Front. Integr. Neurosci. doi: 10.3389/fnint.2014.00098 – volume: 11 start-page: 417 year: 1999 ident: B31 article-title: Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources publication-title: Neural Comput doi: 10.1162/089976699300016719 – volume: 119 start-page: 576 year: 2008 ident: B25 article-title: Does long-term unilateral deafness change auditory evoked potential asymmetries? publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2007.11.010 – start-page: 121 volume-title: Simultaneous EEG and fMRI: Recording, Analysis, and Application year: 2010 ident: B13 article-title: Using ICA for the analysis of multi-channel EEG Data doi: 10.1093/acprof:oso/9780195372731.003.0008 – volume: 3 start-page: 233 year: 2012 ident: B55 article-title: Filter effects and filter artifacts in the analysis of electrophysiological data publication-title: Front. Psychol. doi: 10.3389/fpsyg.2012.00233 – volume: 167 start-page: 396 year: 2018 ident: B3 article-title: Dynamic phase alignment of ongoing auditory cortex oscillations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.11.037 – volume: 107 start-page: 159 year: 1998 ident: B30 article-title: A study of dipole localization accuracy for MEG and EEG using a human skull phantom publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/S0013-4694(98)00057-1 – volume: 94 start-page: 337 year: 2014 ident: B47 article-title: Comparison of three-shell and simplified volume conductor models in magnetoencephalography publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.01.006 – volume: 250 start-page: 34 year: 2014 ident: B56 article-title: Digital filter design for electrophysiological data – a practical a p- proach publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2014.08.002 – volume: 20 start-page: 55 year: 2007 ident: B45 article-title: Sensitivity of EEG and MEG to the N1 and P2 auditory evoked responses modulated by spectral complexity of sounds publication-title: Brain Topogr. doi: 10.1007/s10548-007-0031-4 – volume: 31 start-page: 160 year: 2006 ident: B32 article-title: Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.11.054 – volume: 7 start-page: 267 year: 2013 ident: B19 article-title: MEG and EEG data analysis with MNE-Python publication-title: Front. Neurosci. doi: 10.3389/fnins.2013.00267 – volume: 4 start-page: 95 year: 1991 ident: B9 article-title: EEG versus MEG localization accuracy: theory and experiment publication-title: Brain Topogr. doi: 10.1007/BF01132766 – volume: 30 start-page: 1857 year: 2009 ident: B44 article-title: Source connectivity analysis with MEG and EEG publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20745 – volume: 121 start-page: 159 year: 2015 ident: B50 article-title: Cross-modal reorganization in cochlear implant users: auditory cortex contributes to visual face processing publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.07.062 – volume: 80 start-page: 1112 year: 2013 ident: B33 article-title: EEG and MEG: relevance to neuroscience publication-title: Neuron doi: 10.1016/j.neuron.2013.10.017 – volume: 24 start-page: 375 year: 1987 ident: B39 article-title: The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1987.tb00311.x – volume: 284 start-page: 6 year: 2012 ident: B53 article-title: Semi-automatic attenuation of cochlear implant artifacts for the evaluation of late auditory evoked potentials publication-title: Hear. Res. doi: 10.1016/j.heares.2011.12.010 – volume: 28 start-page: 87 year: 2014 ident: B29 article-title: Differences between MEG and high-density EEG source localizations using a distributed source model in comparison to fMRI publication-title: Brain Topogr. doi: 10.1007/s10548-014-0405-3 – volume: 126 start-page: 594 year: 2015 ident: B42 article-title: Rapid bilateral improvement in auditory cortex activity in postlingually deafened adults following cochlear implantation publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2014.06.029 – start-page: 4101 volume-title: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS year: 2015 ident: B57 article-title: On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP – volume: 115 start-page: 1010 year: 2004 ident: B4 article-title: Controversies in clinical neurophysiology. MEG is superior to EEG in the localization of interictal epileptiform activity: Con publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2003.12.010 – volume: 2011 start-page: 879716 year: 2011 ident: B52 article-title: Brainstorm: a user-friendly application for MEG/EEG analysis publication-title: Comput. Intell. Neurosci. doi: 10.1155/2011/879716 – volume: 53 start-page: 1 year: 2010 ident: B17 article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.010 – volume-title: MEG - An Introduction to Methods year: 2010 ident: B22 doi: 10.1093/acprof:oso/9780195307238.001.0001 – volume: 248 start-page: 48 year: 2009 ident: B40 article-title: Stimulus experience modifies auditory neuromagnetic responses in young and older listeners publication-title: Hear. Res. doi: 10.1016/j.heares.2008.11.012 – volume: 134 start-page: 9 year: 2004 ident: B14 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 45 start-page: 20 year: 2008 ident: B12 article-title: Source localization of auditory evoked potentials after cochlear implantation publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2007.00610.x – volume: 9 start-page: 45 year: 2010 ident: B20 article-title: OpenMEEG: opensource software for quasistatic bioelectromagnetics publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-9-45 – volume: 15 start-page: 884 year: 2012 ident: B26 article-title: Large-scale cortical correlation structure of spontaneous oscillatory activity publication-title: Nat. Neurosci. doi: 10.1038/nn.3101 – volume: 2016 start-page: 4382656 year: 2016 ident: B8 article-title: Cross-modal functional reorganization of visual and auditory cortex in adult cochlear implant users identified with fNIRS publication-title: Neural Plast. doi: 10.1155/2016/4382656 – volume: 159 start-page: 29 year: 2006 ident: B46 article-title: Source analysis of EEG oscillations using high-resolution EEG and MEG publication-title: Prog. Brain Res. doi: 10.1016/S0079-6123(06)59003-X – volume: 16 start-page: 514 year: 2017 ident: B49 article-title: Auditory cross-modal reorganization in cochlear implant users indicates audio-visual integration publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2017.09.001 – volume: 26 start-page: 55 year: 2000 ident: B11 article-title: Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity publication-title: Neuron doi: 10.1016/S0896-6273(00)81138-1 – volume: 343 start-page: 128 year: 2017 ident: B48 article-title: Cortical reorganization in postlingually deaf cochlear implant users: intra-modal and cross-modal considerations publication-title: Hear. Res. doi: 10.1016/j.heares.2016.07.005 – volume: 134 start-page: 2887 year: 2011 ident: B7 article-title: Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients publication-title: Brain doi: 10.1093/brain/awr243 – volume: 97 start-page: 277 year: 2015 ident: B18 article-title: Surface Laplacian of scalp electrical signals and independent component analysis resolve EMG contamination of electroencephalogram publication-title: Int. J. Psychophysiol doi: 10.1016/j.ijpsycho.2014.10.006 – volume: 120 start-page: 868 year: 2009 ident: B54 article-title: Semi-automatic identification of independent components representing EEG artifact publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2009.01.015 – volume: 28 start-page: 315 year: 2007 ident: B43 article-title: Spatial relationship of source localizations in patients with focal epilepsy: comparison of MEG and EEG with a three spherical shells and a boundary element volume conductor model publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20277 – volume: 34 start-page: 1443 year: 2007 ident: B15 article-title: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.11.004 – volume: 253 start-page: 374 year: 1991 ident: B10 article-title: Images of conflict: MEG vs. EEG publication-title: Science doi: 10.1126/science.1862336 – volume: 115 start-page: 1001 year: 2004 ident: B2 article-title: Controversies in neurophysiology. MEG is superior to EEG in localization of interictal epileptiform activity: pro publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2003.12.011 – volume: 10 start-page: 183 year: 1998 ident: B58 article-title: Multiple bilaterally asymmetric cortical sources account for the auditory N1m component publication-title: Brain Topogr. doi: 10.1023/A:1022246825461 – volume: 20 start-page: 327 year: 2017 ident: B1 article-title: Magnetoencephalography for brain electrophysiology and imaging publication-title: Nat. Neurosci. doi: 10.1038/nn.4504 – volume: 61 start-page: 371 year: 2012 ident: B36 article-title: Towards the utilization of EEG as a brain imaging tool publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.039 – volume: 25 start-page: 1 year: 2012 ident: B35 article-title: Comparison of the properties of EEG and MEG in detecting the electric activity of the brain publication-title: Brain Topogr. doi: 10.1007/s10548-011-0202-1 – volume: 18 start-page: 70 year: 2009 ident: B51 article-title: Event-related potential: an overview publication-title: Ind. Psychiatry J. doi: 10.4103/0972-6748.57865 – volume: 111 start-page: 1745 ident: B28 article-title: Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(00)00386-2 – volume: 17 start-page: 9 year: 2007 ident: B16 article-title: Automatic and intrinsic auditory “what” and “where” processing in humans revealed by electrical neuroimaging publication-title: Cereb. Cortex doi: 10.1093/cercor/bhj119 – volume: 135 start-page: 555 year: 2012 ident: B41 article-title: Visual activation of auditory cortex reflects maladaptive plasticity in cochlear implant users publication-title: Brain doi: 10.1093/brain/awr329 |
SSID | ssj0062842 |
Score | 2.4561768 |
Snippet | Electroencephalography (EEG) source localization approaches are often used to disentangle the spatial patterns mixed up in scalp EEG recordings. However,... EEG source localization approaches are often used to disentangle the spatial patterns mixed up in scalp electroencephalography (EEG) recordings. However,... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 309 |
SubjectTerms | Algorithms Anatomy Attention task auditory N100 auditory processing Brainstorm Cochlear implants Cortex (auditory) EEG EEGLAB Electroencephalography Hearing Information processing Localization Neuroscience Sensors source localization Statistics |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTlyqFkqbFpCRKqQeovV77eMuXUAIcWmRuEV-qkjFi-hy4N_jcbKr3aqiF45JHGUynofH_mYGoa8pKEmVYq3zhLRCM9Ma7kWbSKKhyBdJqaItrtT5tbi4kTdrrb4AE9aXB-4ZNyoKmTznTifmhOHUcptYYFRYqoMKCaxvcWPLYKq3waoYXdYfSpYQzIxSvs1Qm5sCcJID-HDNCdVa_f9aYP6Nk1xzPKfv0NthxYgnPaXv0ZuYd9DuJJdo-e4JH-OK4ayb47vo4kfdi2-hwxnkmeMJJF3MH57wkBAQ_-B5wrPZGf5uFxZXwABcXk6m2OaAp9AxAgCTdx_Q9ens58l5O3RLaL2UatEGIYzzmniXhCIxMQ_6KxKRMigztsWqycSF9U5okizjha0qGG28DMJHz_fQVp7n-AlhoUKE0mVOjIPQRhjKnWUiUUsClZE1aLRkX-eHUuLQ0eJ3V0IKYHhXGd4Bw7vK8AZ9W71x35fReGHsFGZkNQ4KYNcbRSy6QSy6_4lFg_aX89kNWlm-UeIjVvyv4Q06Wj0u-gSHJDbH-SPQIYtRg_TdBn3sp39FCTNajTmjDRpvCMYGqZtP8u2vWrNbGgm96j-_xr99QdvArQq71Ptoa_HwGA_K0mjhDqsWPAOxYwwk priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central Database Suite (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7aUXVFoegYKMhJA4ROv3xgeEdmFLVaEVAir1Fjl2DJVo0i7bQ_89HuehLkI95qWMJuPJ2P7m-wDeBK8V05rnlaM0lwU3uRFO5oEG5mN80RAS2mKlT87k6bk634HV0AuDsMohJ6ZE7VuHa-RTLJV5zJ1GfLi6zlE1CndXBwkN20sr-PeJYuwB7HJUVZ7A7mK5-vptyM06JuO0_4nWyVisdxuXcZpmpqG5aJC_myG4UiBA8c6PKvH5_68I_RdLeefndLwPD_uqksy7MHgEO3VzAIfzJs6oL2_JW5JwnmkB_QD2sL7s6JkP4fR7WrzPURING9PJHLs02vUt6TsI6j-kDWS5_Ew-2Y0lCWGAh1_mC2IbTxYoMYEIy8vHcHa8_PHxJO_lFXKnlN7kXkpTuYK6KkhN68AdDngZqFJem5mNaVAFIa2rZEGD5SI4ob0pjFNeutqJJzBp2qZ-BkRqXyPXWSVnXhZGGiYqy2Vglnqmap7BdPBl6XrucZTA-F3GOQh6v0zeL9H7ZfJ-Bu_GJ6463o177l3g5xnvQ8bsdKJd_yz7AVjGxB7tF1UReCWNYFbYwD1n0rLCax8yOBo-btkP4_iOMegyeD1ejgMQd1VsU7c3aIeKWRD7fTN42sXCaAk3hZ4JzjKYbUXJlqnbV5qLX4nkWxmF4vbP7zfrBeyhHxICsziCyWZ9U7-MVdKmetWH_l9POQ_- priority: 102 providerName: ProQuest |
Title | Source-Modeling Auditory Processes of EEG Data Using EEGLAB and Brainstorm |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29867321 https://www.proquest.com/docview/2306229993 https://www.proquest.com/docview/2050485884 https://pubmed.ncbi.nlm.nih.gov/PMC5952032 https://doaj.org/article/538fc33b8f2b4931a3af2d214a18d6df |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1662-453X dateEnd: 20211231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: BENPR dateStart: 20071015 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1662-453X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: M48 dateStart: 20071001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw8DS2F14QY3wERmUkNImHMH83fkCohW7TBBMCKvUtcux4TNqSreuk9d_jc9OKogrxEimxk5zOd7473xfA2-C1YlrzvHKU5rLgJjfCyTzQwHykLxpCirY40ydjeTpRky1YZpd0CLzdaNphP6nx9PL9_c38Y2T4D2hxRnl7GJqLBitvMwyLFNQcXN_k2FYK3a9dj40HsBNFFUey_ypXbgYd9-bkDkVgZdTdF37MjR9dk1upvP8mnfTv0Mo_ZNXRY3jUKZlksKCKXdiqmyewN2iigX01JwckhX2m8_Q9OP2Rju9zbIqGqelkgHka7XROuhyC-pa0gYxGx-SznVmSYgzw9stgSGzjyRCbTGCM5dVTGB-Nfn46ybsGC7lTSs9yL6WpXEFdFaSmdeAOWV4GqpTXpm_jRqiCkNZVsqDBchGc0N4UxikvXe3EM9hu2qZ-AURqX2O1s0r2vSyMNExUlsvALPVM1TyDwyX6StdVH8cmGJdltEIQ4WVCeIkILxPCM3i3euN6UXnjH3OHuCKreVgzOz1op-dlx4Jl3Noj_KIqAq-kEcwKG7jnTFpWeO1DBvvL9SyXdFiihcajyDYigzer4ciC6FexTd3eIRwq7oOY8ZvB88XyryDhptB9wVkG_TXCWAN1faS5-JXKfCujsL39y__47yt4iMhIgZjFPmzPpnf166gszaoe7AxHZ9--99JhQ7weT1gvMcFvyyEV3g |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9kAvCFoehgKLBEgcrNj7ivdQoYSmpG2IELRSb2a964VK1C5pKpQ_x29jZ21HDUK99ej3aHZmdsbzzQzAa2elSKWkcWGSJOYZVbFihscucan18pU4F9AWUzk-4Yen4nQN_nS1MAir7GxiMNS2NviPvIeuMvW2U7H3F79inBqF2dVuhIZuRyvY3dBirC3sOCoXv30Id7l7sOfX-w2l-6PjD-O4nTIQGyHkPLacq8JkiSkcl0npqEG55y4RwkrV194aCMe4NgXPEqcpc4ZJqzJlhOWmNMy_9w5seLeDea3aGI6mn790e4H0xj_kW5Eb3AcHTaLUh4Wq56qzCvuFpwjmZAiIvLYxhvkB_3N6_8VuXtsM9-_DvdaLJYNG7B7AWlltwfag8hH8-YK8JQFXGn7Yb8Em-rNNO-htOPwakgUxjmDDQngywKqQerYgbcVCeUlqR0ajj2RPzzUJiAY8nAyGRFeWDHGkBSI6zx_Cya0w-hGsV3VVPgHCpS2xt1rB-5ZniquUFZpyl-rEpqKkEfQ6Xuam7XWOIzd-5j7mQe7ngfs5cj8P3I_g3fKJi6bPxw33DnF5lvdhh-5wop59z1uFz_1G4ulnReZowRVLNdOOWppynWZWWhfBTre4eWs2_DeWQh7Bq-Vlr_CYxdFVWV8hHcJbXawvjuBxIwtLSqjKZJ_RNIL-ipSskLp6pTr7EZqKCyVowujTm8l6CXfHx58m-eRgevQMNpEnAf2Z7cD6fHZVPvce2rx40aoBgW-3rXl_Af9vTXc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEK9IGh5uBRYJEDiYMXeV7yHCiUkoS9FFVCpN3e964VKrV3SVCh_kV_FzsaOGoR66zGxnYxm5-n5ZgbgnbNSpFLSuDBJEvOMqlgxw2OXuNR6-UqcC2iLidw74Qen4nQN_rS9MAirbG1iMNS2NviOvIuhMvW2U7Gua2ARx8Pxp6tfMW6Qwkpru05DN2sW7G4YN9Y0eRyW898-nbve3R_6s39P6Xj0_fNe3GwciI0QchZbzlVhssQUjsukdNSgDnCXCGGl6mlvGYRjXJuCZ4nTlDnDpFWZMsJyUxrmf_cBrPewX7QD64PR5Phr6xekdwSh9oqc4T5RWBRNfYqouq46r3B2eIrATobgyFtOMuwS-F8A_C-O85ZjHD-GR01ES_oLEXwCa2W1CVv9ymfzl3PygQSMaXh5vwkbGNsuRkNvwcG3UDiIcR0bNsWTPnaI1NM5aboXymtSOzIafSFDPdMkoBvw41F_QHRlyQDXWyC68_IpnNwLo59Bp6qr8gUQLm2Jc9YK3rM8U1ylrNCUu1QnNhUljaDb8jI3zdxzXL9xkfv8B7mfB-7nyP08cD-Cj8snrhYzP-64d4DHs7wPp3WHL-rpj7xR_tw7FU8_KzJHC65Yqpl21NKU6zSz0roIdtrDzRsT4v9jKfARvF1e9sqPFR1dlfUN0iG8BcZe4wieL2RhSQlVmewxmkbQW5GSFVJXr1TnP8OAcaEETRjdvpusN_DQa2B-tD85fAkbyJIABM12oDOb3pSvfLA2K143WkDg7L4V7y-X5lGx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Source-Modeling+Auditory+Processes+of+EEG+Data+Using+EEGLAB+and+Brainstorm&rft.jtitle=Frontiers+in+neuroscience&rft.au=Stropahl%2C+Maren&rft.au=Bauer%2C+Anna-Katharina+R&rft.au=Debener%2C+Stefan&rft.au=Bleichner%2C+Martin+G&rft.date=2018-05-08&rft.issn=1662-4548&rft.volume=12&rft.spage=309&rft_id=info:doi/10.3389%2Ffnins.2018.00309&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |