Deep Learning in Alzheimer's Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data

Deep learning, a state-of-the-art machine learning approach, has shown outstanding performance over traditional machine learning in identifying intricate structures in complex high-dimensional data, especially in the domain of computer vision. The application of deep learning to early detection and...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in aging neuroscience Vol. 11; p. 220
Main Authors Jo, Taeho, Nho, Kwangsik, Saykin, Andrew J.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 20.08.2019
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1663-4365
1663-4365
DOI10.3389/fnagi.2019.00220

Cover

Abstract Deep learning, a state-of-the-art machine learning approach, has shown outstanding performance over traditional machine learning in identifying intricate structures in complex high-dimensional data, especially in the domain of computer vision. The application of deep learning to early detection and automated classification of Alzheimer's disease (AD) has recently gained considerable attention, as rapid progress in neuroimaging techniques has generated large-scale multimodal neuroimaging data. A systematic review of publications using deep learning approaches and neuroimaging data for diagnostic classification of AD was performed. A PubMed and Google Scholar search was used to identify deep learning papers on AD published between January 2013 and July 2018. These papers were reviewed, evaluated, and classified by algorithm and neuroimaging type, and the findings were summarized. Of 16 studies meeting full inclusion criteria, 4 used a combination of deep learning and traditional machine learning approaches, and 12 used only deep learning approaches. The combination of traditional machine learning for classification and stacked auto-encoder (SAE) for feature selection produced accuracies of up to 98.8% for AD classification and 83.7% for prediction of conversion from mild cognitive impairment (MCI), a prodromal stage of AD, to AD. Deep learning approaches, such as convolutional neural network (CNN) or recurrent neural network (RNN), that use neuroimaging data without pre-processing for feature selection have yielded accuracies of up to 96.0% for AD classification and 84.2% for MCI conversion prediction. The best classification performance was obtained when multimodal neuroimaging and fluid biomarkers were combined. Deep learning approaches continue to improve in performance and appear to hold promise for diagnostic classification of AD using multimodal neuroimaging data. AD research that uses deep learning is still evolving, improving performance by incorporating additional hybrid data types, such as-omics data, increasing transparency with explainable approaches that add knowledge of specific disease-related features and mechanisms.
AbstractList Deep learning, a state-of-the-art machine learning approach, has shown outstanding performance over traditional machine learning in identifying intricate structures in complex high-dimensional data, especially in the domain of computer vision. The application of deep learning to early detection and automated classification of Alzheimer's disease (AD) has recently gained considerable attention, as rapid progress in neuroimaging techniques has generated large-scale multimodal neuroimaging data. A systematic review of publications using deep learning approaches and neuroimaging data for diagnostic classification of AD was performed. A PubMed and Google Scholar search was used to identify deep learning papers on AD published between January 2013 and July 2018. These papers were reviewed, evaluated, and classified by algorithm and neuroimaging type, and the findings were summarized. Of 16 studies meeting full inclusion criteria, 4 used a combination of deep learning and traditional machine learning approaches, and 12 used only deep learning approaches. The combination of traditional machine learning for classification and stacked auto-encoder (SAE) for feature selection produced accuracies of up to 98.8% for AD classification and 83.7% for prediction of conversion from mild cognitive impairment (MCI), a prodromal stage of AD, to AD. Deep learning approaches, such as convolutional neural network (CNN) or recurrent neural network (RNN), that use neuroimaging data without pre-processing for feature selection have yielded accuracies of up to 96.0% for AD classification and 84.2% for MCI conversion prediction. The best classification performance was obtained when multimodal neuroimaging and fluid biomarkers were combined. Deep learning approaches continue to improve in performance and appear to hold promise for diagnostic classification of AD using multimodal neuroimaging data. AD research that uses deep learning is still evolving, improving performance by incorporating additional hybrid data types, such as—omics data, increasing transparency with explainable approaches that add knowledge of specific disease-related features and mechanisms.
Deep learning, a state-of-the-art machine learning approach, has shown outstanding performance over traditional machine learning in identifying intricate structures in complex high-dimensional data, especially in the domain of computer vision. The application of deep learning to early detection and automated classification of Alzheimer's disease (AD) has recently gained considerable attention, as rapid progress in neuroimaging techniques has generated large-scale multimodal neuroimaging data. A systematic review of publications using deep learning approaches and neuroimaging data for diagnostic classification of AD was performed. A PubMed and Google Scholar search was used to identify deep learning papers on AD published between January 2013 and July 2018. These papers were reviewed, evaluated, and classified by algorithm and neuroimaging type, and the findings were summarized. Of 16 studies meeting full inclusion criteria, 4 used a combination of deep learning and traditional machine learning approaches, and 12 used only deep learning approaches. The combination of traditional machine learning for classification and stacked auto-encoder (SAE) for feature selection produced accuracies of up to 98.8% for AD classification and 83.7% for prediction of conversion from mild cognitive impairment (MCI), a prodromal stage of AD, to AD. Deep learning approaches, such as convolutional neural network (CNN) or recurrent neural network (RNN), that use neuroimaging data without pre-processing for feature selection have yielded accuracies of up to 96.0% for AD classification and 84.2% for MCI conversion prediction. The best classification performance was obtained when multimodal neuroimaging and fluid biomarkers were combined. Deep learning approaches continue to improve in performance and appear to hold promise for diagnostic classification of AD using multimodal neuroimaging data. AD research that uses deep learning is still evolving, improving performance by incorporating additional hybrid data types, such as-omics data, increasing transparency with explainable approaches that add knowledge of specific disease-related features and mechanisms.Deep learning, a state-of-the-art machine learning approach, has shown outstanding performance over traditional machine learning in identifying intricate structures in complex high-dimensional data, especially in the domain of computer vision. The application of deep learning to early detection and automated classification of Alzheimer's disease (AD) has recently gained considerable attention, as rapid progress in neuroimaging techniques has generated large-scale multimodal neuroimaging data. A systematic review of publications using deep learning approaches and neuroimaging data for diagnostic classification of AD was performed. A PubMed and Google Scholar search was used to identify deep learning papers on AD published between January 2013 and July 2018. These papers were reviewed, evaluated, and classified by algorithm and neuroimaging type, and the findings were summarized. Of 16 studies meeting full inclusion criteria, 4 used a combination of deep learning and traditional machine learning approaches, and 12 used only deep learning approaches. The combination of traditional machine learning for classification and stacked auto-encoder (SAE) for feature selection produced accuracies of up to 98.8% for AD classification and 83.7% for prediction of conversion from mild cognitive impairment (MCI), a prodromal stage of AD, to AD. Deep learning approaches, such as convolutional neural network (CNN) or recurrent neural network (RNN), that use neuroimaging data without pre-processing for feature selection have yielded accuracies of up to 96.0% for AD classification and 84.2% for MCI conversion prediction. The best classification performance was obtained when multimodal neuroimaging and fluid biomarkers were combined. Deep learning approaches continue to improve in performance and appear to hold promise for diagnostic classification of AD using multimodal neuroimaging data. AD research that uses deep learning is still evolving, improving performance by incorporating additional hybrid data types, such as-omics data, increasing transparency with explainable approaches that add knowledge of specific disease-related features and mechanisms.
Deep learning, a state-of-the-art machine learning approach, has shown outstanding performance over traditional machine learning in identifying intricate structures in complex high-dimensional data, especially in the domain of computer vision. The application of deep learning to early detection and automated classification of Alzheimer’s disease (AD) has recently gained considerable attention, as rapid progress in neuroimaging techniques has generated large-scale multimodal neuroimaging data. A systematic review of publications using deep learning approaches and neuroimaging data for diagnostic classification of AD was performed. A PubMed and Google Scholar search was used to identify deep learning papers on AD published between January 2013 and July 2018. These papers were reviewed, evaluated, and classified by algorithm and neuroimaging type, and the findings were summarized. Of 16 studies meeting full inclusion criteria, 4 used a combination of deep learning and traditional machine learning approaches, and 12 used only deep learning approaches. The combination of traditional machine learning for classification and stacked auto-encoder (SAE) for feature selection produced accuracies of up to 98.8% for AD classification and 83.7% for prediction of conversion from mild cognitive impairment (MCI), a prodromal stage of AD, to AD. Deep learning approaches, such as convolutional neural network (CNN) or recurrent neural network (RNN), that use neuroimaging data without preprocessing for feature selection have yielded accuracies of up to 96.0% for AD classification and 84.2% for MCI conversion prediction. The best classification performance was obtained when multimodal neuroimaging and fluid biomarkers were combined. Deep learning approaches continue to improve in performance and appear to hold promise for diagnostic classification of AD using multimodal neuroimaging data. AD research that uses deep learning is still evolving, improving performance by incorporating additional hybrid data types, such as –omics data, increasing transparency with explainable approaches that add knowledge of specific disease-related features and mechanisms.
Author Nho, Kwangsik
Saykin, Andrew J.
Jo, Taeho
AuthorAffiliation 2 Indiana Alzheimer Disease Center, Indiana University School of Medicine , Indianapolis, IN , United States
3 Indiana University Network Science Institute , Bloomington, IN , United States
1 Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine , Indianapolis, IN , United States
AuthorAffiliation_xml – name: 1 Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine , Indianapolis, IN , United States
– name: 3 Indiana University Network Science Institute , Bloomington, IN , United States
– name: 2 Indiana Alzheimer Disease Center, Indiana University School of Medicine , Indianapolis, IN , United States
Author_xml – sequence: 1
  givenname: Taeho
  surname: Jo
  fullname: Jo, Taeho
– sequence: 2
  givenname: Kwangsik
  surname: Nho
  fullname: Nho, Kwangsik
– sequence: 3
  givenname: Andrew J.
  surname: Saykin
  fullname: Saykin, Andrew J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31481890$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAQjVARLaV3TigSB3rZZWI7jsMBqdrlo9IKeqBna-JMtl5l7a2dgNpfj3e3rdpKSPjisee9pzcfr7MD5x1l2dsCppyr-mPncGmnDIp6CsAYvMiOCin5RHBZHjyKD7OTGFeQDucApXqVHfJCqELVcJRdz4k2-YIwOOuWuXX5WX97RXZN4UPM5zYSRvqUAlw6Hwdr8lmPMdrOGhysdzm6Nr8I_j57Eai1Zpe5jFvFHzQGb9fJanrMccA32csO-0gnd_dxdvn1y6_Z98ni57fz2dliYspSDhMsoVGN6FRBXS2YoBapraGrSBoDvKFKlcBL1rVUNbUBEiWTVaoZoWHCVPw4O9_rth5XehOSh3CjPVq9-_BhqTEkyz3psmMSW66EqLkAUynksm4bUdWUGgUyaRV7rdFt8OYP9v2DYAF6Ow29m4beTkPvppE4n_eczdisqTXkhoD9EyNPM85e6aX_rWVVgBAiCZzeCQR_PVIc9NpGQ32PjvwYNWNKlBJSyQn6_hl05cfgUnsTqlIFFwy2gu8eO3qwcr8NCQB7gAk-xkDd_1Qpn1GMHXabkWqy_b-JfwFTiNsO
CitedBy_id crossref_primary_10_1142_S0219649222500782
crossref_primary_10_1111_acel_13280
crossref_primary_10_1093_cercor_bhad381
crossref_primary_10_1093_jnen_nlac127
crossref_primary_10_7717_peerj_15351
crossref_primary_10_1155_2022_8680737
crossref_primary_10_1007_s13369_023_07973_9
crossref_primary_10_1002_ima_22657
crossref_primary_10_1016_j_neunet_2024_106778
crossref_primary_10_3390_bdcc5030041
crossref_primary_10_1007_s10462_021_10016_0
crossref_primary_10_1038_s41684_023_01286_y
crossref_primary_10_3233_JAD_201438
crossref_primary_10_3233_JIFS_230090
crossref_primary_10_1055_s_0044_1788657
crossref_primary_10_1016_j_cej_2025_160780
crossref_primary_10_3233_ADR_230083
crossref_primary_10_1007_s10462_024_10948_3
crossref_primary_10_1055_s_0042_1759863
crossref_primary_10_1016_j_jksuci_2024_101940
crossref_primary_10_1109_ACCESS_2025_3540567
crossref_primary_10_1016_j_acra_2023_05_036
crossref_primary_10_32604_cmc_2023_032752
crossref_primary_10_1016_j_bbe_2021_02_006
crossref_primary_10_1007_s44196_025_00780_0
crossref_primary_10_1088_1361_6560_ac8f10
crossref_primary_10_1177_02841851231218384
crossref_primary_10_1186_s40537_022_00650_y
crossref_primary_10_3390_diagnostics12010134
crossref_primary_10_3390_diagnostics12071543
crossref_primary_10_36548_jaicn_2022_1_005
crossref_primary_10_1001_jamanetworkopen_2023_42203
crossref_primary_10_31202_ecjse_728049
crossref_primary_10_1016_j_nicl_2023_103533
crossref_primary_10_1557_s43578_022_00591_5
crossref_primary_10_3389_fncom_2024_1402689
crossref_primary_10_1007_s40199_024_00548_5
crossref_primary_10_1016_j_ejrad_2023_111081
crossref_primary_10_1124_pharmrev_122_000622
crossref_primary_10_1016_j_transproceed_2023_09_032
crossref_primary_10_1038_s44222_023_00114_9
crossref_primary_10_3390_app10030934
crossref_primary_10_1109_ACCESS_2021_3127394
crossref_primary_10_1007_s13042_022_01570_2
crossref_primary_10_1007_s10619_021_07345_y
crossref_primary_10_1016_j_compbiomed_2023_107050
crossref_primary_10_1007_s00500_023_08615_w
crossref_primary_10_1109_JBHI_2020_3030853
crossref_primary_10_1038_s41746_021_00544_y
crossref_primary_10_1111_bpa_12974
crossref_primary_10_1080_23279095_2023_2169886
crossref_primary_10_1002_alz_12948
crossref_primary_10_1080_10494820_2021_1984255
crossref_primary_10_3389_fpubh_2024_1449798
crossref_primary_10_3390_ijms25147641
crossref_primary_10_1007_s40596_020_01243_8
crossref_primary_10_1016_j_inffus_2022_11_007
crossref_primary_10_1186_s13195_021_00900_w
crossref_primary_10_1016_j_neucom_2020_07_102
crossref_primary_10_2174_1573405617666211126154101
crossref_primary_10_3389_fneur_2024_1510729
crossref_primary_10_3390_pr9020264
crossref_primary_10_1007_s42979_023_02560_z
crossref_primary_10_1007_s42979_023_01853_7
crossref_primary_10_1016_j_ymeth_2020_09_007
crossref_primary_10_1097_RLI_0000000000000735
crossref_primary_10_3390_ijms22052761
crossref_primary_10_1016_j_banm_2021_06_021
crossref_primary_10_1007_s10462_023_10644_8
crossref_primary_10_1049_iet_ipr_2019_1526
crossref_primary_10_1002_ima_22622
crossref_primary_10_1038_s41598_024_74508_z
crossref_primary_10_21923_jesd_887327
crossref_primary_10_1080_03155986_2023_2287996
crossref_primary_10_1007_s11063_024_11600_5
crossref_primary_10_1093_jnen_nlab122
crossref_primary_10_7717_peerj_10549
crossref_primary_10_1007_s12561_024_09459_0
crossref_primary_10_1016_j_bspc_2022_103527
crossref_primary_10_1016_j_neumar_2024_100034
crossref_primary_10_3389_fnsys_2021_595507
crossref_primary_10_1007_s10462_024_10914_z
crossref_primary_10_3233_JAD_221250
crossref_primary_10_3389_fmed_2025_1540297
crossref_primary_10_1007_s43681_025_00673_0
crossref_primary_10_32628_CSEIT2390530
crossref_primary_10_1016_j_arr_2021_101404
crossref_primary_10_3390_app11135961
crossref_primary_10_3389_fbioe_2019_00485
crossref_primary_10_1007_s11042_022_11925_0
crossref_primary_10_32628_IJSRSET229242
crossref_primary_10_3390_app11052187
crossref_primary_10_1109_ACCESS_2020_2979969
crossref_primary_10_1155_2022_5261942
crossref_primary_10_3390_jimaging6060052
crossref_primary_10_3389_fnins_2024_1388391
crossref_primary_10_1007_s40998_023_00622_9
crossref_primary_10_3390_diagnostics15060710
crossref_primary_10_1007_s13735_023_00271_y
crossref_primary_10_1166_jmihi_2021_3708
crossref_primary_10_1007_s00521_021_06105_4
crossref_primary_10_52589_AJMSS_4WNIT6F9
crossref_primary_10_3390_biomedicines13010167
crossref_primary_10_1016_j_bspc_2024_106023
crossref_primary_10_1177_14777509221138750
crossref_primary_10_1016_j_compbiomed_2025_109785
crossref_primary_10_1145_3502433
crossref_primary_10_1007_s13139_022_00767_1
crossref_primary_10_1002_gps_6007
crossref_primary_10_1002_alz_12422
crossref_primary_10_3389_fninf_2024_1346723
crossref_primary_10_1007_s00062_022_01226_2
crossref_primary_10_1007_s00521_021_05758_5
crossref_primary_10_4108_eetpht_9_3966
crossref_primary_10_1088_1742_6596_1631_1_012168
crossref_primary_10_1016_j_cmpb_2020_105348
crossref_primary_10_1016_j_neuroimage_2024_120530
crossref_primary_10_1016_j_compbiomed_2024_108000
crossref_primary_10_1016_j_media_2023_102913
crossref_primary_10_3390_jpm11111213
crossref_primary_10_1007_s00330_023_09708_8
crossref_primary_10_1007_s00415_020_10040_0
crossref_primary_10_1109_ACCESS_2024_3487114
crossref_primary_10_3390_diagnostics12010166
crossref_primary_10_3390_jmmp8010008
crossref_primary_10_3390_diagnostics13040664
crossref_primary_10_1177_19714009251313511
crossref_primary_10_31083_j_fbl2810248
crossref_primary_10_1016_j_phymed_2023_155231
crossref_primary_10_3390_app12157355
crossref_primary_10_3390_diagnostics11030440
crossref_primary_10_3934_mbe_2023366
crossref_primary_10_1038_s41598_022_20674_x
crossref_primary_10_1016_j_teac_2022_e00160
crossref_primary_10_1016_j_expneurol_2021_113608
crossref_primary_10_3390_sci5010013
crossref_primary_10_3233_JAD_221261
crossref_primary_10_36306_konjes_731624
crossref_primary_10_1038_s41598_023_33055_9
crossref_primary_10_1109_ACCESS_2022_3216393
crossref_primary_10_1007_s00259_019_04593_0
crossref_primary_10_1016_j_jneumeth_2020_108795
crossref_primary_10_1038_s41598_020_79243_9
crossref_primary_10_1007_s11042_024_19677_9
crossref_primary_10_1109_JBHI_2022_3197331
crossref_primary_10_3389_fnagi_2022_810873
crossref_primary_10_1007_s11831_024_10176_6
crossref_primary_10_1007_s11042_024_19446_8
crossref_primary_10_1016_j_eswa_2023_119541
crossref_primary_10_1016_j_compbiomed_2022_105634
crossref_primary_10_1016_j_nicl_2021_102584
crossref_primary_10_1007_s42452_024_06440_w
crossref_primary_10_1016_j_ebiom_2023_104540
crossref_primary_10_1093_braincomms_fcaa057
crossref_primary_10_32604_cmes_2021_016728
crossref_primary_10_1007_s10462_025_11146_5
crossref_primary_10_1080_14756366_2019_1680659
crossref_primary_10_1142_S1793962322500088
crossref_primary_10_3389_fpubh_2022_860396
crossref_primary_10_2174_1573405618666220823115848
crossref_primary_10_3390_make6010024
crossref_primary_10_1016_j_jns_2024_123319
crossref_primary_10_3390_jcm11226844
crossref_primary_10_4108_eetpht_9_4334
crossref_primary_10_1007_s10115_022_01756_8
crossref_primary_10_1080_02648725_2023_2196476
crossref_primary_10_22159_ajpcr_2023_v16i11_48193
crossref_primary_10_1007_s10439_023_03365_0
crossref_primary_10_3390_brainsci13020260
crossref_primary_10_1016_j_pscychresns_2022_111576
crossref_primary_10_1007_s11042_023_16858_w
crossref_primary_10_1109_ACCESS_2020_3028600
crossref_primary_10_1016_j_arr_2023_102013
crossref_primary_10_3390_math11122664
crossref_primary_10_1016_j_fmre_2024_04_021
crossref_primary_10_1371_journal_pone_0240513
crossref_primary_10_3390_diagnostics11081402
crossref_primary_10_1109_TMI_2023_3314507
crossref_primary_10_3390_brainsci13020254
crossref_primary_10_1007_s00259_023_06440_9
crossref_primary_10_1016_j_bspc_2021_103293
crossref_primary_10_1016_j_inffus_2020_09_002
crossref_primary_10_1111_pcn_13557
crossref_primary_10_1016_j_nbd_2023_106310
crossref_primary_10_1186_s40035_022_00315_z
crossref_primary_10_1111_ejn_16332
crossref_primary_10_1016_j_compbiomed_2023_107339
crossref_primary_10_3390_info16030160
crossref_primary_10_1007_s00521_021_05799_w
crossref_primary_10_47164_ijngc_v13i3_711
crossref_primary_10_3233_JAD_231271
crossref_primary_10_1109_JBHI_2024_3386801
crossref_primary_10_1016_j_ailsci_2021_100018
crossref_primary_10_1016_j_imu_2024_101551
crossref_primary_10_2186_ajps_12_135
crossref_primary_10_3390_math11051136
crossref_primary_10_3389_fpsyt_2021_706695
crossref_primary_10_1145_3656174
crossref_primary_10_3390_s24206658
crossref_primary_10_3389_fnins_2022_1050777
crossref_primary_10_3390_brainsci12030319
crossref_primary_10_2147_NDT_S337814
crossref_primary_10_1002_hbm_25850
crossref_primary_10_1371_journal_pone_0297996
crossref_primary_10_1007_s00521_021_06430_8
crossref_primary_10_1007_s12559_021_09946_2
crossref_primary_10_1016_j_compmedimag_2022_102171
crossref_primary_10_1007_s11042_022_13809_9
crossref_primary_10_26599_BSA_2021_9050005
crossref_primary_10_1038_s41598_023_30904_5
crossref_primary_10_3390_electronics11193229
crossref_primary_10_3389_fnins_2022_695888
crossref_primary_10_1016_j_wneu_2020_06_172
crossref_primary_10_1007_s10044_024_01297_6
crossref_primary_10_1007_s13139_025_00908_2
crossref_primary_10_1016_j_ebiom_2024_105047
crossref_primary_10_3390_diagnostics11112103
crossref_primary_10_1007_s11227_023_05655_9
crossref_primary_10_3389_fgene_2021_784814
crossref_primary_10_3390_app13137833
crossref_primary_10_3390_diagnostics13010167
crossref_primary_10_1007_s00521_024_09468_6
crossref_primary_10_2196_57830
crossref_primary_10_1016_j_compmedimag_2024_102400
crossref_primary_10_3390_brainsci12111517
crossref_primary_10_3390_cells11111744
crossref_primary_10_1186_s40708_023_00195_7
crossref_primary_10_1186_s12859_020_03848_0
crossref_primary_10_1007_s11831_022_09870_0
crossref_primary_10_3389_fnagi_2022_945274
crossref_primary_10_1186_s13195_021_00941_1
crossref_primary_10_3390_ijms21165895
crossref_primary_10_1167_tvst_9_2_6
crossref_primary_10_3389_fnagi_2022_854733
crossref_primary_10_3390_bioengineering10080950
crossref_primary_10_1002_dad2_12246
crossref_primary_10_1016_j_neuroscience_2022_03_026
crossref_primary_10_4103_1673_5374_355982
crossref_primary_10_1093_braincomms_fcac155
crossref_primary_10_1515_revneuro_2024_0088
crossref_primary_10_47164_ijngc_v15i1_1242
crossref_primary_10_1038_s41598_024_80938_6
crossref_primary_10_1142_S0218339024500438
crossref_primary_10_1177_17562864221138154
crossref_primary_10_1016_j_neucom_2020_05_113
crossref_primary_10_1093_bib_bbac022
crossref_primary_10_3389_fcell_2020_605734
crossref_primary_10_1080_01932691_2021_1880927
crossref_primary_10_1016_j_bspc_2024_106895
crossref_primary_10_1016_j_csbj_2023_02_021
crossref_primary_10_1186_s42492_020_00062_w
crossref_primary_10_1007_s11042_024_19104_z
crossref_primary_10_3389_fnins_2021_630747
crossref_primary_10_1007_s10072_024_07649_8
crossref_primary_10_1016_j_compmedimag_2022_102158
crossref_primary_10_1016_j_neunet_2024_106296
crossref_primary_10_31083_j_rcm2505184
crossref_primary_10_1016_j_imu_2024_101584
crossref_primary_10_1007_s11227_022_04668_0
crossref_primary_10_3389_fnins_2024_1352129
crossref_primary_10_1186_s40478_023_01574_1
crossref_primary_10_3389_fbioe_2022_985692
crossref_primary_10_1007_s11042_023_16026_0
crossref_primary_10_1186_s13195_021_00879_4
crossref_primary_10_3390_brainsci14121266
crossref_primary_10_1016_j_asoc_2024_112374
crossref_primary_10_1007_s00521_023_09301_6
crossref_primary_10_1016_j_neucom_2023_126436
crossref_primary_10_3389_fnagi_2020_603179
crossref_primary_10_1155_2022_7593750
crossref_primary_10_1007_s13721_022_00366_2
crossref_primary_10_3390_app12136507
crossref_primary_10_3390_healthcare10101842
crossref_primary_10_1097_MS9_0000000000001700
crossref_primary_10_1142_S021946782140012X
crossref_primary_10_1002_hbm_26344
crossref_primary_10_1155_2022_1854718
crossref_primary_10_1111_ggi_14670
crossref_primary_10_3389_fsufs_2023_1172543
crossref_primary_10_1016_j_tins_2022_12_004
crossref_primary_10_3390_diagnostics11050887
crossref_primary_10_1186_s12911_023_02122_6
crossref_primary_10_1007_s11831_023_09957_2
crossref_primary_10_1097_RMR_0000000000000224
crossref_primary_10_3390_cells10112924
crossref_primary_10_1063_5_0079602
crossref_primary_10_3389_fpubh_2020_584430
crossref_primary_10_3389_fmed_2020_592924
crossref_primary_10_12677_AP_2024_143139
crossref_primary_10_1016_j_ebiom_2023_104820
crossref_primary_10_1109_ACCESS_2021_3066213
crossref_primary_10_1007_s10462_023_10415_5
crossref_primary_10_3233_JAD_201033
crossref_primary_10_1016_j_wneu_2024_01_076
crossref_primary_10_13104_imri_2022_26_1_1
crossref_primary_10_1007_s12652_021_03612_z
crossref_primary_10_1016_j_brainres_2025_149549
crossref_primary_10_3390_diagnostics11030393
crossref_primary_10_1007_s11936_020_00814_0
crossref_primary_10_1016_j_media_2022_102585
crossref_primary_10_1007_s42979_024_02743_2
crossref_primary_10_1007_s44174_023_00078_9
crossref_primary_10_1016_j_artmed_2022_102332
crossref_primary_10_1109_TMTT_2023_3245665
crossref_primary_10_1007_s00234_021_02774_z
crossref_primary_10_1016_j_scib_2024_03_006
crossref_primary_10_3389_fnhum_2021_700627
Cites_doi 10.1093/bib/bbq074
10.1016/j.cell.2015.12.056
10.1007/s00429-013-0687-3
10.1016/j.jalz.2018.08.005
10.1016/j.bbr.2018.02.017
10.1109/TSMC.1971.4308320
10.1561/2200000006
10.1109/BIGCOMP.2017.7881683
10.1016/j.neuroimage.2014.06.077
10.1007/978-3-642-39593-2_1
10.1109/CVPR.2012.6248110
10.1007/BFb0006203
10.1109/TBME.2014.2372011
10.3389/fninf.2018.00035
10.7326/0003-4819-151-4-200908180-00135
10.1126/science.359.6377.725
10.1109/ISBI.2017.7950647
10.1007/BF00342633
10.1162/neco.2006.18.7.1527
10.1007/BF02478259
10.1007/3-540-28438-9_2
10.1093/bioinformatics/btp621
10.1007/s11263-015-0816-y
10.1016/j.neuroimage.2018.08.042
10.1017/CBO9780511812651
10.1111/jgs.14997
10.3389/fnagi.2018.00390
10.1016/j.neunet.2014.09.003
10.1016/j.jalz.2018.02.001
10.3389/fnins.2014.00229
10.1037/h0042519
10.1109/ISBI.2014.6868045
10.1038/323533a0
10.1109/TPAMI.2012.231
10.1080/01431160600746456
10.1145/1390156.1390294
10.1109/TPAMI.2013.50
10.1016/j.media.2017.07.005
10.1126/science.1127647
10.1038/s41598-018-22871-z
10.1371/journal.pcbi.1002822
10.1007/BF00344251
10.1093/oso/9780198538493.001.0001
10.1109/JBHI.2015.2429556
10.1001/jama.2016.17216
10.1016/j.media.2017.10.005
10.1016/j.neuroimage.2017.03.057
10.1097/WAD.0000000000000121
10.1038/nature14539
10.1109/MSP.2012.2205597
10.1016/S0933-3657(01)00077-X
10.1145/1273496.1273556
10.1007/978-3-7908-2604-3_16
10.3389/fnagi.2018.00096
10.1145/3095713.3095749
ContentType Journal Article
Copyright 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2019 Jo, Nho and Saykin. 2019 Jo, Nho and Saykin
Copyright_xml – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2019 Jo, Nho and Saykin. 2019 Jo, Nho and Saykin
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fnagi.2019.00220
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Science Database
Biological science database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1663-4365
ExternalDocumentID oai_doaj_org_article_5f26ad38449340c78a369db479e14806
10.3389/fnagi.2019.00220
PMC6710444
31481890
10_3389_fnagi_2019_00220
Genre Systematic Review
GeographicLocations New York
Indiana
United States--US
Indianapolis Indiana
GeographicLocations_xml – name: New York
– name: Indiana
– name: Indianapolis Indiana
– name: United States--US
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R03 AG054936
– fundername: U.S. National Library of Medicine
  grantid: R01 LM012535
– fundername: National Institutes of Health
  grantid: P30 AG10133; R01 AG19771; R01 AG057739; R01 CA129769
– fundername: National Institute on Aging
  grantid: R03 AG054936
GroupedDBID ---
53G
5VS
7X7
88I
8FE
8FH
8FI
8FJ
9T4
AAFWJ
AAYXX
ABIVO
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
E3Z
EIHBH
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RNS
RPM
TR2
UKHRP
ACXDI
ALIPV
IPNFZ
NPM
RIG
3V.
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c556t-a50b8b4f81ef9424edaed90f7e6cc03be7850352fde7b9c0e45267663a0b24c73
IEDL.DBID UNPAY
ISSN 1663-4365
IngestDate Fri Oct 03 12:52:42 EDT 2025
Sun Oct 26 04:13:25 EDT 2025
Tue Sep 30 16:56:39 EDT 2025
Fri Sep 05 13:30:53 EDT 2025
Tue Oct 07 07:13:35 EDT 2025
Mon Jul 21 05:58:28 EDT 2025
Thu Apr 24 22:56:52 EDT 2025
Wed Oct 01 04:40:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords deep learning
magnetic resonance imaging
classification
machine learning
positron emission tomography
Alzheimer's disease
artificial intelligence
neuroimaging
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-a50b8b4f81ef9424edaed90f7e6cc03be7850352fde7b9c0e45267663a0b24c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
Edited by: James H. Cole, King's College London, United Kingdom
Reviewed by: Donghuan Lu, Simon Fraser University, Canada; Zheng Wang, University of Miami, United States
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3389/fnagi.2019.00220
PMID 31481890
PQID 2278134204
PQPubID 4424411
ParticipantIDs doaj_primary_oai_doaj_org_article_5f26ad38449340c78a369db479e14806
unpaywall_primary_10_3389_fnagi_2019_00220
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6710444
proquest_miscellaneous_2284560663
proquest_journals_2278134204
pubmed_primary_31481890
crossref_primary_10_3389_fnagi_2019_00220
crossref_citationtrail_10_3389_fnagi_2019_00220
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-20
PublicationDateYYYYMMDD 2019-08-20
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-20
  day: 20
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in aging neuroscience
PublicationTitleAlternate Front Aging Neurosci
PublicationYear 2019
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Ivakhnenko (B30) 1971; 1
Goodfellow (B22) 2014
Lecun (B39) 1988
Vu (B82) 2017
Farabet (B15) 2013; 35
Ivakhnenko (B31) 1965
Sutskever (B75) 2013
Moher (B54) 2009; 151
Vincent (B81) 2010; 11
Smialowski (B71) 2009; 26
Riedel (B60) 2018; 10
Bengio (B4) 2013
Kononenko (B33) 2001; 23
Fukushima (B18) 1980; 36
Lu (B48) 2007; 28
Plis (B57) 2014; 8
Rosenblatt (B63) 1958; 65
Sutton (B76) 2018
Schelke (B69) 2018; 10
Fukushima (B17) 1979; 62
Nair (B55) 2010
Ngiam (B56) 2011
Bengio (B5) 2013; 35
Hutson (B28) 2018; 359
Russakovsky (B65) 2015; 115
Hinton (B26) 2006; 313
Ripley (B61) 1996
Li (B41) 2014
Liu (B46) 2014
Goodfellow (B21) 2016
Litjens (B42) 2017; 42
Bush (B9) 2012; 8
Li (B40) 2015; 19
Suk (B74) 2013
Veitch (B79) 2019; 15
Rosenblatt (B62) 1957
Liu (B45) 2015; 62
Fukushima (B16) 1975; 20
Liu (B44); 43
Toga (B77) 2016; 30
Krizhevsky (B36) 2012
Cheng (B11) 2017
Choi (B12) 2018; 344
Marcus (B50) 2018
Werbos (B84) 2006
Mcculloch (B51) 1943; 5
Hinton (B24) 2012; 29
Glorot (B20) 2011
(B2) 2018; 14
Werbos (B83) 1982
Schmidhuber (B70) 2015; 61
König (B32) 2011; 12
Gulshan (B23) 2016; 316
De strooper (B14) 2016; 164
Krizhevsky (B35) 2011
Bengio (B3) 2009; 2
Lecun (B38) 2015; 521
Rathore (B58) 2017; 155
Aderghal (B1) 2017
Hinton (B25) 2006; 18
Bottou (B7) 2010
Suk (B73) 2015; 220
Cheng (B10) 2017
Minsky (B53) 1969
Rumelhart (B64) 1986; 323
Korolev (B34) 2017
Ivakhnenko (B29) 1968; 13
Samper-Gonzalez (B67) 2018; 183
Ciregan (B13) 2012
Larochelle (B37) 2007
B59
Salakhutdinov (B66) 2010
Bishop (B6) 1995
Galvin (B19) 2017; 65
Hinton (B27) 1994
Vaswani (B78) 2018
Liu (B43); 12
Makhzani (B49) 2015
Boureau (B8) 2010
Schalkoff (B68) 1997
Vincent (B80) 2008
Lu (B47) 2018; 8
Suk (B72) 2014; 101
Mikolov (B52) 2013
References_xml – volume: 12
  start-page: 253
  year: 2011
  ident: B32
  article-title: Validation in genetic association studies
  publication-title: Brief. Bioinformatics
  doi: 10.1093/bib/bbq074
– start-page: 193
  volume-title: Proceedings of the 13th Conference of the Association for Machine Translation in the Americas
  year: 2018
  ident: B78
  article-title: Tensor2tensor for neural machine translation
– volume: 164
  start-page: 603
  year: 2016
  ident: B14
  article-title: The cellular phase of Alzheimer's disease
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.056
– start-page: 807
  volume-title: Proceedings of the 27th International Conference on Machine Learning (ICML-10)
  year: 2010
  ident: B55
  article-title: Rectified linear units improve restricted boltzmann machines
– volume: 220
  start-page: 841
  year: 2015
  ident: B73
  article-title: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-013-0687-3
– volume: 15
  start-page: 106
  year: 2019
  ident: B79
  article-title: Understanding disease progression and improving Alzheimer's disease clinical trials: recent highlights from the Alzheimer's disease neuroimaging initiative
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2018.08.005
– volume: 344
  start-page: 103
  year: 2018
  ident: B12
  article-title: Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2018.02.017
– start-page: 2672
  volume-title: Advances in Neural Information Processing Systems 27
  year: 2014
  ident: B22
  article-title: Generative adversarial nets
– volume: 1
  start-page: 364
  year: 1971
  ident: B30
  article-title: Polynomial theory of complex systems
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1971.4308320
– volume-title: The Perceptron, A Perceiving and Recognizing Automaton Project Para.
  year: 1957
  ident: B62
– volume: 2
  start-page: 1
  year: 2009
  ident: B3
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000006
– start-page: 689
  volume-title: Proceedings of the 28th International Conference on Machine Learning (ICML-11)
  year: 2011
  ident: B56
  article-title: Multimodal deep learning
– start-page: 1139
  volume-title: International Conference on Machine Learning
  year: 2013
  ident: B75
  article-title: On the importance of initialization and momentum in deep learning
– start-page: 309
  volume-title: 2017 IEEE International Conference on Big Data and Smart Computing (BigComp)
  year: 2017
  ident: B82
  article-title: Multimodal learning using convolution neural network and Sparse Autoencoder
  doi: 10.1109/BIGCOMP.2017.7881683
– volume: 101
  start-page: 569
  year: 2014
  ident: B72
  article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.06.077
– start-page: 1
  volume-title: International Conference on Statistical Language and Speech Processing
  year: 2013
  ident: B4
  article-title: Deep learning of representations: looking forward
  doi: 10.1007/978-3-642-39593-2_1
– volume-title: Ninth International Conference on Digital Image Processing (ICDIP 2017)
  year: 2017
  ident: B11
  article-title: Classification of MR brain images by combination of multi-CNNs for AD diagnosis
– start-page: 3642
  volume-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition
  year: 2012
  ident: B13
  article-title: Multi-column deep neural networks for image classification
  doi: 10.1109/CVPR.2012.6248110
– start-page: 762
  volume-title: System Modeling and Optimization
  year: 1982
  ident: B83
  article-title: Applications of advances in nonlinear sensitivity analysis
  doi: 10.1007/BFb0006203
– volume: 62
  start-page: 1132
  year: 2015
  ident: B45
  article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's Disease
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2372011
– volume: 12
  start-page: 35
  ident: B43
  article-title: Classification of Alzheimer's disease by combination of convolutional and recurrent neural networks using FDG-PET images
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2018.00035
– volume: 151
  start-page: 264
  year: 2009
  ident: B54
  article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-151-4-200908180-00135
– volume: 359
  start-page: 725
  year: 2018
  ident: B28
  article-title: Artificial intelligence faces reproducibility crisis
  publication-title: Science
  doi: 10.1126/science.359.6377.725
– ident: B59
– start-page: 835
  volume-title: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)
  year: 2017
  ident: B34
  article-title: Residual and plain convolutional neural networks for 3D brain MRI classification
  doi: 10.1109/ISBI.2017.7950647
– volume: 20
  start-page: 121
  year: 1975
  ident: B16
  article-title: Cognitron: a self-organizing multilayered neural network
  publication-title: Biol. Cybernet.
  doi: 10.1007/BF00342633
– volume: 18
  start-page: 1527
  year: 2006
  ident: B25
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 5
  start-page: 115
  year: 1943
  ident: B51
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478259
– start-page: 15
  volume-title: Automatic Differentiation: Applications, Theory, and Implementations
  year: 2006
  ident: B84
  article-title: Backwards differentiation in AD and neural nets: past links and new opportunities
  doi: 10.1007/3-540-28438-9_2
– start-page: 1
  volume-title: 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)
  year: 2017
  ident: B10
  article-title: CNNs based multi-modality classification for AD diagnosis
– volume: 26
  start-page: 440
  year: 2009
  ident: B71
  article-title: Pitfalls of supervised feature selection
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp621
– volume: 115
  start-page: 211
  year: 2015
  ident: B65
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comp. Vision
  doi: 10.1007/s11263-015-0816-y
– volume: 183
  start-page: 504
  year: 2018
  ident: B67
  article-title: Reproducible evaluation of classification methods in Alzheimer's disease: framework and application to MRI and PET data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.08.042
– volume-title: Pattern Recognition and Neural Networks.
  year: 1996
  ident: B61
  doi: 10.1017/CBO9780511812651
– volume: 65
  start-page: 2128
  year: 2017
  ident: B19
  article-title: Prevention of Alzheimer's disease: lessons learned and applied
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/jgs.14997
– volume: 10
  start-page: 390
  year: 2018
  ident: B60
  article-title: Uncovering biologically coherent peripheral signatures of health and risk for Alzheimer's disease in the aging brain
  publication-title: Front. Aging Neurosci
  doi: 10.3389/fnagi.2018.00390
– volume: 61
  start-page: 85
  year: 2015
  ident: B70
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 14
  start-page: 367
  year: 2018
  ident: B2
  article-title: 2018 Alzheimer's disease facts and figures
  publication-title: Alzheimer's Dementia
  doi: 10.1016/j.jalz.2018.02.001
– volume: 8
  start-page: 229
  year: 2014
  ident: B57
  article-title: Deep learning for neuroimaging: a validation study
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00229
– start-page: 111
  volume-title: Proceedings of the 27th International Conference on Machine Learning (ICML-10)
  year: 2010
  ident: B8
  article-title: A theoretical analysis of feature pooling in visual recognition
– start-page: 305
  volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention, Vol 17
  year: 2014
  ident: B41
  article-title: Deep learning based imaging data completion for improved brain disease diagnosis
– volume: 65
  start-page: 386
  year: 1958
  ident: B63
  article-title: The perceptron: a probabilistic model for information storage and organization in the brain
  publication-title: Psychol. Rev.
  doi: 10.1037/h0042519
– start-page: 1015
  volume-title: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)
  year: 2014
  ident: B46
  article-title: Early diagnosis of Alzheimer's disease with deep learning
  doi: 10.1109/ISBI.2014.6868045
– volume: 323
  start-page: 533
  year: 1986
  ident: B64
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– start-page: 2791
  volume-title: Advances in Neural Information Processing Systems 28
  year: 2015
  ident: B49
  article-title: k-sparse autoencoders
– volume: 11
  start-page: 3371
  year: 2010
  ident: B81
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 35
  start-page: 1915
  year: 2013
  ident: B15
  article-title: Learning hierarchical features for scene labeling
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.231
– volume-title: Perceptrons
  year: 1969
  ident: B53
– volume-title: Cybernetic Predicting Devices.
  year: 1965
  ident: B31
– start-page: 2
  volume-title: Proceedings of the 19th European Symposium on Artificial Neural Networks: ESANN 2011
  year: 2011
  ident: B35
  article-title: Using very deep autoencoders for content-based image retrieval
– volume-title: arXiv preprint.
  year: 2018
  ident: B50
  article-title: Deep learning: a critical appraisal
– volume: 28
  start-page: 823
  year: 2007
  ident: B48
  article-title: A survey of image classification methods and techniques for improving classification performance
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160600746456
– volume-title: Reinforcement Learning: An Introduction
  year: 2018
  ident: B76
– start-page: 1096
  volume-title: Proceedings of the 25th International Conference on Machine Learning
  year: 2008
  ident: B80
  article-title: Extracting and composing robust features with denoising autoencoders
  doi: 10.1145/1390156.1390294
– volume: 35
  start-page: 1798
  year: 2013
  ident: B5
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– volume-title: Deep Learning.
  year: 2016
  ident: B21
– volume: 42
  start-page: 60
  year: 2017
  ident: B42
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal
  doi: 10.1016/j.media.2017.07.005
– volume: 313
  start-page: 504
  year: 2006
  ident: B26
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 8
  start-page: 5697
  year: 2018
  ident: B47
  article-title: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer's disease using structural MR and FDG-PET images
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22871-z
– volume: 8
  start-page: e1002822
  year: 2012
  ident: B9
  article-title: Genome-wide association studies
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002822
– start-page: 693
  volume-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
  year: 2010
  ident: B66
  article-title: Efficient learning of deep Boltzmann machines
– volume: 36
  start-page: 193
  year: 1980
  ident: B18
  article-title: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00344251
– volume-title: Neural Networks for Pattern Recognition.
  year: 1995
  ident: B6
  doi: 10.1093/oso/9780198538493.001.0001
– volume: 19
  start-page: 1610
  year: 2015
  ident: B40
  article-title: A robust deep model for improved classification of AD/MCI patients
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2015.2429556
– volume: 62
  start-page: 658
  year: 1979
  ident: B17
  article-title: Neural network model for a mechanism of pattern recognition unaffected by shift in position-Neocognitron
  publication-title: IEICE Tech. Rep. A
– volume: 316
  start-page: 2402
  year: 2016
  ident: B23
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– start-page: 3
  volume-title: Advances in Neural Information Processing Systems 6
  year: 1994
  ident: B27
  article-title: Autoencoders, minimum description length and Helmholtz free energy
– volume: 43
  start-page: 157
  ident: B44
  article-title: Landmark-based deep multi-instance learning for brain disease diagnosis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.10.005
– volume: 155
  start-page: 530
  year: 2017
  ident: B58
  article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.03.057
– volume: 30
  start-page: 160
  year: 2016
  ident: B77
  article-title: Global data sharing in Alzheimer's disease research
  publication-title: Alzheimer Dis. Assoc. Disord.
  doi: 10.1097/WAD.0000000000000121
– start-page: 21
  volume-title: Proceedings of the 1988 Connectionist Models Summer School: CMU
  year: 1988
  ident: B39
  article-title: A theoretical framework for back-propagation
– volume: 521
  start-page: 436
  year: 2015
  ident: B38
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 29
  start-page: 82
  year: 2012
  ident: B24
  article-title: Deep neural networks for acoustic modeling in speech recognition
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2205597
– volume: 23
  start-page: 89
  year: 2001
  ident: B33
  article-title: Machine learning for medical diagnosis: history, state of the art and perspective
  publication-title: Artif. Intell. Med.
  doi: 10.1016/S0933-3657(01)00077-X
– start-page: 473
  volume-title: Proceedings of the 24th International Conference on Machine Learning
  year: 2007
  ident: B37
  article-title: An empirical evaluation of deep architectures on problems with many factors of variation
  doi: 10.1145/1273496.1273556
– start-page: 583
  volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention, Vol 16
  year: 2013
  ident: B74
  article-title: Deep learning-based feature representation for AD/MCI classification
– start-page: 1097
  volume-title: Advances in Neural Information Processing Systems 25
  year: 2012
  ident: B36
  article-title: Imagenet classification with deep convolutional neural networks
– start-page: 3111
  volume-title: Advances in Neural Information Processing Systems 26
  year: 2013
  ident: B52
  article-title: Distributed representations of words and phrases and their compositionality
– volume-title: Artificial Neural Networks.
  year: 1997
  ident: B68
– start-page: 177
  volume-title: Proceedings of COMPSTAT'2010
  year: 2010
  ident: B7
  article-title: Large-scale machine learning with stochastic gradient descent
  doi: 10.1007/978-3-7908-2604-3_16
– volume: 10
  start-page: 96
  year: 2018
  ident: B69
  article-title: Mechanisms of risk reduction in the clinical practice of Alzheimer's disease prevention
  publication-title: Front. Aging Neurosci
  doi: 10.3389/fnagi.2018.00096
– volume: 13
  start-page: 43
  year: 1968
  ident: B29
  article-title: The group method of data of handling; a rival of the method of stochastic approximation
  publication-title: Sov. Autom. Control
– start-page: 315
  volume-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics
  year: 2011
  ident: B20
  article-title: Deep sparse rectifier neural networks
– volume-title: Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing
  year: 2017
  ident: B1
  article-title: FuseMe: classification of sMRI images by fusion of deep CNNs in 2D+ϵ projections
  doi: 10.1145/3095713.3095749
SSID ssj0000330058
Score 2.65468
SecondaryResourceType review_article
Snippet Deep learning, a state-of-the-art machine learning approach, has shown outstanding performance over traditional machine learning in identifying intricate...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 220
SubjectTerms Algorithms
Alzheimer's disease
Artificial intelligence
Back propagation
Bioinformatics
Brain research
Classification
Cognitive ability
Computer vision
Deep learning
International conferences
Learning algorithms
Machine learning
Machine translation
Medical imaging
Neural networks
Neurodegenerative diseases
Neuroimaging
Neuroscience
NMR
Nuclear magnetic resonance
Propagation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9RAFB-kB_UifhtbZQRBFMLOZr69VddShEoPFnoLM8mLXdhmt9tdiv71vjfJhl0Ue_EWMpPJ8D5mfpP38nuMvUXf03XUkI911HhAgZiHAq-cwCUzgK194uk--WaOz9TXc32-VeqLcsI6euBOcCPdFCbU0inlpRKVdUEaX0dlPSCS78i2hfNbh6m0BkuiYXddXBJPYX7UUNUfSuUifsqCyntv7UOJrv9vGPPPVMl763YRft6E2WxrHzp6yB70AJIfdhN_xO5A-5jdPelD5E_Y1QRgwXva1B982vLD2a8LmF7C8t01n3TxmI94kVLscBCe6mJSxlBSEg9tzU-X803r6ZKGTi0pvYAnOo_pZapuxCdhFZ6ys6Mv3z8f531dhbzS2qzyoEV0UTVuDI1XhYI6QO1FY8FUlZARrNNEk9rUYKOvBFAZcovQJIhYqMrKZ2yvnbfwgnHrokVphmiiU5V2MTiDmL2RpjJBe8jYaCPlsupJx6n2xazEwwfppUx6KUkvZdJLxt4PTyw6wo1_9P1Eihv6EVV2uoEGVPYGVN5mQBk72Ki97P33uqQfhMdSFUJl7M3QjJ5H4ZTQwnxNfRyiT4JsGXveWckwE4lDj53HGdod-9mZ6m5LO71I7N4GMZ9S-N4Pg6XdKoiX_0MQ--w-jUgfzAtxwPZWyzW8QsS1iq-Tc_0Ga8An9Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1taxQxEA71CuqX4mvdWiWCIArL5TbvgkjrtRShxyEW-m1JNtn24Lp7vd4h-uvNZF_sodRvyyaXzWVmkklm8jwIvQ22x53lPh1xy8MGxdvUZOFJkTBlGi-djjjdpxNxcsa-nvPzLTTp7sJAWmU3J8aJ2tUFnJEP4crmiLKMsM-L6xRYoyC62lFomJZawX2KEGP30HYGyFgDtH14NJl-609dCAV49ng_Liy1KaOCN7HLsFPTwxKYgSDdCzAsM6AAv7VWRUj_f_mhf6dTPlhXC_Pzh5nPb61Vx4_QTutk4oNGKx6jLV89QfdP2zD6U3Q99n6BW2jVCzyr8MH816WfXfnluxs8bmI2H8NDTMMLjeDInQlZRVGQ2FQOT5d1VzpdQtOxJKYg4Aj5MbuKDEh4bFbmGTo7Pvr-5SRtuRfSgnOxSg0nVllWqpEvNcuYd8Y7TUrpRVEQar1UHKBUS-el1QXxQFUuw5gaYjNWSPocDaq68i8QlsrKMJrGCqtYwZU1SgS_vqSiEIZrn6BhN8p50QKTAz_GPA8bFJBLHuWSg1zyKJcEve9_sWhAOe6oewiC6-sBnHZ8US8v8tY6c15mwjiqGNOUkUIqQ4V2lkntw3aRiATtd2LPWxu_yf9oZILe9MXBOiHkYipfr6GOCh4quHUJ2m20pO8JDU2PlA49lBv6s9HVzZJqdhkRwEXwCxkL3_3Qa9p_B2Lv7v_wEj2EunBcnpF9NFgt1_5V8LdW9nVrRL8Bcg8pCg
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3raxQxEA9SofaL1PfaKhEEUVib2zxXEKmepQgn_eBBvy3JbrY92O5dt3do_eudyT7s4anfwiabDfPIzGwmvyHkJeieLJz08Ug6CQGKd7FNoGUYbJnW6yINON2Tr-p4Kr6cytPf16M7Al5tDO2wntS0qd7-uLz-AAr_HiNOsLcHJRb0wSwthJ5MEgjgb4OdSrGQw6Rz9sO-zBGaPdyNAzMbC65ke265cZIdss0hVBgZ3K1vmKyA7L_JHf0zq_LOql7Y6--2qm6YrKNdcrfzNelhKxz3yC1f3yfbk-40_QG5HHu_oB3C6hmd1fSw-nnuZxe-eXVFx-3RzTtohGw8mISGEpqYXBT4SW1d0JNm3veeNDh16AmZCDQgf8wuQiEkOrZL-5BMjz5_-3QcdyUY4lxKtYytZM44UZqRL1ORCF9YX6Ss1F7lOePOayMRUbUsvHZpzjxWLNdAXstcInLNH5Gtel77J4Rq4zQQ1jrljMilcdYocO9LrnJlZeojctBTOcs7fHIsk1FlEKcgi7LAogxZlAUWReT18Maixeb4x9iPyLhhHKJqhwfz5izrlDSTZaJswY0QKRcs18ZylRZO6NSDKDAVkf2e7VkvqRneJR5xkTARkRdDNygpnrzY2s9XOMaAo4reXUQet1IyrKSXsojoNflZW-p6Tz07D0DgCtxDIeC7bwZJ-y8hnv51AXtkB4fhD_OE7ZOtZbPyz8DjWrrnQZF-Adn0JfQ
  priority: 102
  providerName: Scholars Portal
Title Deep Learning in Alzheimer's Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data
URI https://www.ncbi.nlm.nih.gov/pubmed/31481890
https://www.proquest.com/docview/2278134204
https://www.proquest.com/docview/2284560663
https://pubmed.ncbi.nlm.nih.gov/PMC6710444
https://doi.org/10.3389/fnagi.2019.00220
https://doaj.org/article/5f26ad38449340c78a369db479e14806
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: DIK
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: RPM
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: 7X7
  dateStart: 20090730
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1663-4365
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: BENPR
  dateStart: 20090730
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: M48
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwELeglYAvvGGBURkJCYGULQ-_wreObkxIrSpEpfIpshOHVevS0qZC7K_nzkmjFSYeXyIndhznfBff-S6_I-QVyB7PDbd-yA0HA8UaX0dQUgF8MrWVeeJwuocjcTphH6d82ux34L8wV_z3YDwlhwUm68EILISVjCIwzruCg9bdId3JaNz_gvYULJo-iwWvvZDX3raz6jhw_us0yt8DI29vyqX-8V3P51dWnZN7NQTS2oEVYrDJ-cGmMgfZ5S9Qjv_yQvfJ3Ub1pP2aVx6QG7Z8SG4NG-f6I_JtYO2SNoCrX-mspP355ZmdXdjV6zUd1J6cd1BwwXnQCXUZNTHWyE0v1WVOx6vFtna8wq5djQtMoA4IZHbh8iLRga70YzI5Of78_tRvMjL4Geei8jUPjDKsUKEtEhYxm2ubJ0EhrciyIDZWKo4Aq0VupUmywGICcwnzowMTsUzGT0inXJR2j1CpjIT310YYxTKujFYCtP0iFpnQPLEeOdzOWJo1cOWYNWOegtmClEwdJVOkZOoo6ZE37R3LGqrjD22PkAnadgiy7S7AVKWNzKa8iITOY8VYErMgk0rHIskNk4kFIzIQHtnfslDaSP46xV-Lw5hFAfPIy7YaZBYdMbq0iw22UaC3orLnkac1x7UjiaHrUCUwQrnDiztD3a0pZ2cOF1yAtsgYPPdty7V_JcSz_2n8nNzBE9xSj4J90qlWG_sCdLLK9MhNOZU90j06Ho0_9dzOBhw_TEM4DpnqNeL6E5zrN5Y
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJjFeJu50DDASCIEU1U18C9KENrqpY2tVoU3aW7ATZ6vUpV0vmsaP47dxjpuEVaDxtLcovsTxsY_PsY-_j5B3MPdEZoULWsIKcFCcDUwIT5qByjROZbHH6e72ZOeEfzsVpyvkV3UXBsMqK53oFXU2SnGPvIlXNlsRDxn_Mr4MkDUKT1crCg1TUitk2x5irLzYceiur8CFm24ftEHe78Nwf-_4aycoWQaCVAg5C4xgVlue65bLYx5ylxmXxSxXTqYpi6xTWiBoaJ45ZeOUOSTlVrBQG2ZDnqoI6r1H1njEY3D-1nb3ev3v9S4PixAO3t_HgxIBj6RYnJWCZxg3c2QiwvAyxMwMkXL8xtroKQT-Zff-Hb65Pi_G5vrKDIc31sb9h2SjNGrpzmIUPiIrrnhM7nfLY_sn5LLt3JiWUK5ndFDQneHPcze4cJMPU9penBF9hgcf9geVUM_ViVFMfuBQU2S0PxlVqf0JVu1TfMgD9RAjgwvPuETbZmaekpM7kcIzslqMCveCUKWtgt40VlrNU6Gt0RL8iDySqTQidg3SrHo5SUsgdOTjGCbgEKFcEi-XBOWSeLk0yMe6xHgBAnJL3l0UXJ0P4bv9i9HkLCm1QSLyUJos0pzHEWep0iaScWa5ih24p0w2yFYl9qTUKdPkzwxokLd1MmgDPOIxhRvNMY8GixjNyAZ5vhgldUsiqLqlY2ihWho_S01dTikG5x5xXIIdyjl891M90v7bEZu3_8Mbst457h4lRwe9w5fkAZbDrfqQbZHV2WTuXoGtN7OvywlFyY-7nsO_AeAkZpY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkQoXxJtAASOBEEirOOvnIiFUCFFLaZUDlXrb2rveNlK6SfNQVX4av44Z74NGoHLqbRV7Ha9nPJ6xx99HyGuYezJ30kc96SQEKN5FNoYnw8BkWq_zJOB07-2r7QPx7VAerpFfzV0YTKtsbGIw1Pkkwz3yLl7Z7HERM9Et6rSIYX_waXoWIYMUnrQ2dBqViuz6i3MI3-Yfd_og6zdxPPj648t2VDMMRJmUahFZyZxxojA9XyQiFj63Pk9Yob3KMsad10YiYGiRe-2SjHkk5NawSFvmYpFpDu3eIDc15wmmE-pD3e7vMI5A8OEmHtSPBFeyOiWFmDDpFshBhIlliJYZI9n4pVUxkAf8y-P9O3Hz1rKc2otzOx5fWhUHd8md2p2lW5X-3SNrvrxPNvbqA_sH5Kzv_ZTWIK7HdFTSrfHPEz869bO3c9qvToc-wENI-INGaGDpxPyloDLUljkdziZN6XCGTYeSkOxAA7jI6DRwLdG-XdiH5OBaZPCIrJeT0j8hVBunYTStU86ITBpnjYIIouAqU1YmvkO6zSinWQ2Bjkwc4xRCIZRLGuSSolzSIJcOede-Ma3gP66o-xkF19ZD4O7ww2R2nNZ2IJVFrGzOjRAJFyzTxnKV5E7oxENgylSHbDZiT2trMk__6H6HvGqLwQ7g4Y4t_WSJdQz4wuhAdsjjSkvannBoumcS6KFe0Z-Vrq6WlKOTgDWuwAMVAv73fatp_x2Ip1d_w0uyATM3_b6zv_uM3MbXcI8-ZptkfTFb-ufg5C3cizCbKDm67un7GxA1ZDA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdQJwEv4xsCAxkJCYGUzU38yVuhTBPSpj5QaTxFtuOwii7t-iHE_nrunDRaYeLjLYkdxz7fxXe-8-8IeQWyJ0onQtoXToCBElxqM7jSDH6ZNqjSRJzu4xN5NOafTsVpu9-BZ2Gu-O_BeDIHFSbrwQgshJXMMjDOd6QArbtHdsYno8EXtKdg0Ux5LkXjhbz2ta1VJ4LzX6dR_h4YeWtdz-2P73Y6vbLqHN5pIJCWEawQg02-7a9Xbt9f_gLl-C8Dukt2W9WTDhpeuUduhPo-uXncOtcfkIthCHPaAq5-pZOaDqaXZ2FyHhavl3TYeHLewUUMzoNGaMyoibFGcXqprUs6Wsw2paMFNh1LYmACjUAgk_OYF4kO7co-JOPDj58_HKVtRobUCyFXqRXMaccr3Q-V4RkPpQ2lYZUK0nuWu6C0QIDVqgzKGc8CJjBXMD-WuYx7lT8ivXpWhyeEKu0UjN866TT3QjurJWj7VS69tMKEhBxsZqzwLVw5Zs2YFmC2ICWLSMkCKVlESibkTffGvIHq-EPd98gEXT0E2Y4PYKqKVmYLUWXSlrnm3OSceaVtLk3puDIBjEgmE7K3YaGilfxlgUeL-znPGE_Iy64YZBYdMbYOszXW0aC3orKXkMcNx3U9yaHpvjbQQ7XFi1td3S6pJ2cRF1yCtsg5fPdtx7V_JcTT_6n8jNzGG9xSz9ge6a0W6_AcdLKVe9GK408JwTJV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+in+Alzheimer%27s+Disease%3A+Diagnostic+Classification+and+Prognostic+Prediction+Using+Neuroimaging+Data&rft.jtitle=Frontiers+in+aging+neuroscience&rft.au=Jo%2C+Taeho&rft.au=Nho%2C+Kwangsik&rft.au=Saykin%2C+Andrew+J&rft.date=2019-08-20&rft.issn=1663-4365&rft.eissn=1663-4365&rft.volume=11&rft.spage=220&rft_id=info:doi/10.3389%2Ffnagi.2019.00220&rft_id=info%3Apmid%2F31481890&rft.externalDocID=31481890
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1663-4365&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1663-4365&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1663-4365&client=summon