Deep Learning in Alzheimer's Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data
Deep learning, a state-of-the-art machine learning approach, has shown outstanding performance over traditional machine learning in identifying intricate structures in complex high-dimensional data, especially in the domain of computer vision. The application of deep learning to early detection and...
Saved in:
| Published in | Frontiers in aging neuroscience Vol. 11; p. 220 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
Frontiers Research Foundation
20.08.2019
Frontiers Media S.A |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1663-4365 1663-4365 |
| DOI | 10.3389/fnagi.2019.00220 |
Cover
| Abstract | Deep learning, a state-of-the-art machine learning approach, has shown outstanding performance over traditional machine learning in identifying intricate structures in complex high-dimensional data, especially in the domain of computer vision. The application of deep learning to early detection and automated classification of Alzheimer's disease (AD) has recently gained considerable attention, as rapid progress in neuroimaging techniques has generated large-scale multimodal neuroimaging data. A systematic review of publications using deep learning approaches and neuroimaging data for diagnostic classification of AD was performed. A PubMed and Google Scholar search was used to identify deep learning papers on AD published between January 2013 and July 2018. These papers were reviewed, evaluated, and classified by algorithm and neuroimaging type, and the findings were summarized. Of 16 studies meeting full inclusion criteria, 4 used a combination of deep learning and traditional machine learning approaches, and 12 used only deep learning approaches. The combination of traditional machine learning for classification and stacked auto-encoder (SAE) for feature selection produced accuracies of up to 98.8% for AD classification and 83.7% for prediction of conversion from mild cognitive impairment (MCI), a prodromal stage of AD, to AD. Deep learning approaches, such as convolutional neural network (CNN) or recurrent neural network (RNN), that use neuroimaging data without pre-processing for feature selection have yielded accuracies of up to 96.0% for AD classification and 84.2% for MCI conversion prediction. The best classification performance was obtained when multimodal neuroimaging and fluid biomarkers were combined. Deep learning approaches continue to improve in performance and appear to hold promise for diagnostic classification of AD using multimodal neuroimaging data. AD research that uses deep learning is still evolving, improving performance by incorporating additional hybrid data types, such as-omics data, increasing transparency with explainable approaches that add knowledge of specific disease-related features and mechanisms. |
|---|---|
| AbstractList | Deep learning, a state-of-the-art machine learning approach, has shown outstanding performance over traditional machine learning in identifying intricate structures in complex high-dimensional data, especially in the domain of computer vision. The application of deep learning to early detection and automated classification of Alzheimer's disease (AD) has recently gained considerable attention, as rapid progress in neuroimaging techniques has generated large-scale multimodal neuroimaging data. A systematic review of publications using deep learning approaches and neuroimaging data for diagnostic classification of AD was performed. A PubMed and Google Scholar search was used to identify deep learning papers on AD published between January 2013 and July 2018. These papers were reviewed, evaluated, and classified by algorithm and neuroimaging type, and the findings were summarized. Of 16 studies meeting full inclusion criteria, 4 used a combination of deep learning and traditional machine learning approaches, and 12 used only deep learning approaches. The combination of traditional machine learning for classification and stacked auto-encoder (SAE) for feature selection produced accuracies of up to 98.8% for AD classification and 83.7% for prediction of conversion from mild cognitive impairment (MCI), a prodromal stage of AD, to AD. Deep learning approaches, such as convolutional neural network (CNN) or recurrent neural network (RNN), that use neuroimaging data without pre-processing for feature selection have yielded accuracies of up to 96.0% for AD classification and 84.2% for MCI conversion prediction. The best classification performance was obtained when multimodal neuroimaging and fluid biomarkers were combined. Deep learning approaches continue to improve in performance and appear to hold promise for diagnostic classification of AD using multimodal neuroimaging data. AD research that uses deep learning is still evolving, improving performance by incorporating additional hybrid data types, such as—omics data, increasing transparency with explainable approaches that add knowledge of specific disease-related features and mechanisms. Deep learning, a state-of-the-art machine learning approach, has shown outstanding performance over traditional machine learning in identifying intricate structures in complex high-dimensional data, especially in the domain of computer vision. The application of deep learning to early detection and automated classification of Alzheimer's disease (AD) has recently gained considerable attention, as rapid progress in neuroimaging techniques has generated large-scale multimodal neuroimaging data. A systematic review of publications using deep learning approaches and neuroimaging data for diagnostic classification of AD was performed. A PubMed and Google Scholar search was used to identify deep learning papers on AD published between January 2013 and July 2018. These papers were reviewed, evaluated, and classified by algorithm and neuroimaging type, and the findings were summarized. Of 16 studies meeting full inclusion criteria, 4 used a combination of deep learning and traditional machine learning approaches, and 12 used only deep learning approaches. The combination of traditional machine learning for classification and stacked auto-encoder (SAE) for feature selection produced accuracies of up to 98.8% for AD classification and 83.7% for prediction of conversion from mild cognitive impairment (MCI), a prodromal stage of AD, to AD. Deep learning approaches, such as convolutional neural network (CNN) or recurrent neural network (RNN), that use neuroimaging data without pre-processing for feature selection have yielded accuracies of up to 96.0% for AD classification and 84.2% for MCI conversion prediction. The best classification performance was obtained when multimodal neuroimaging and fluid biomarkers were combined. Deep learning approaches continue to improve in performance and appear to hold promise for diagnostic classification of AD using multimodal neuroimaging data. AD research that uses deep learning is still evolving, improving performance by incorporating additional hybrid data types, such as-omics data, increasing transparency with explainable approaches that add knowledge of specific disease-related features and mechanisms.Deep learning, a state-of-the-art machine learning approach, has shown outstanding performance over traditional machine learning in identifying intricate structures in complex high-dimensional data, especially in the domain of computer vision. The application of deep learning to early detection and automated classification of Alzheimer's disease (AD) has recently gained considerable attention, as rapid progress in neuroimaging techniques has generated large-scale multimodal neuroimaging data. A systematic review of publications using deep learning approaches and neuroimaging data for diagnostic classification of AD was performed. A PubMed and Google Scholar search was used to identify deep learning papers on AD published between January 2013 and July 2018. These papers were reviewed, evaluated, and classified by algorithm and neuroimaging type, and the findings were summarized. Of 16 studies meeting full inclusion criteria, 4 used a combination of deep learning and traditional machine learning approaches, and 12 used only deep learning approaches. The combination of traditional machine learning for classification and stacked auto-encoder (SAE) for feature selection produced accuracies of up to 98.8% for AD classification and 83.7% for prediction of conversion from mild cognitive impairment (MCI), a prodromal stage of AD, to AD. Deep learning approaches, such as convolutional neural network (CNN) or recurrent neural network (RNN), that use neuroimaging data without pre-processing for feature selection have yielded accuracies of up to 96.0% for AD classification and 84.2% for MCI conversion prediction. The best classification performance was obtained when multimodal neuroimaging and fluid biomarkers were combined. Deep learning approaches continue to improve in performance and appear to hold promise for diagnostic classification of AD using multimodal neuroimaging data. AD research that uses deep learning is still evolving, improving performance by incorporating additional hybrid data types, such as-omics data, increasing transparency with explainable approaches that add knowledge of specific disease-related features and mechanisms. Deep learning, a state-of-the-art machine learning approach, has shown outstanding performance over traditional machine learning in identifying intricate structures in complex high-dimensional data, especially in the domain of computer vision. The application of deep learning to early detection and automated classification of Alzheimer’s disease (AD) has recently gained considerable attention, as rapid progress in neuroimaging techniques has generated large-scale multimodal neuroimaging data. A systematic review of publications using deep learning approaches and neuroimaging data for diagnostic classification of AD was performed. A PubMed and Google Scholar search was used to identify deep learning papers on AD published between January 2013 and July 2018. These papers were reviewed, evaluated, and classified by algorithm and neuroimaging type, and the findings were summarized. Of 16 studies meeting full inclusion criteria, 4 used a combination of deep learning and traditional machine learning approaches, and 12 used only deep learning approaches. The combination of traditional machine learning for classification and stacked auto-encoder (SAE) for feature selection produced accuracies of up to 98.8% for AD classification and 83.7% for prediction of conversion from mild cognitive impairment (MCI), a prodromal stage of AD, to AD. Deep learning approaches, such as convolutional neural network (CNN) or recurrent neural network (RNN), that use neuroimaging data without preprocessing for feature selection have yielded accuracies of up to 96.0% for AD classification and 84.2% for MCI conversion prediction. The best classification performance was obtained when multimodal neuroimaging and fluid biomarkers were combined. Deep learning approaches continue to improve in performance and appear to hold promise for diagnostic classification of AD using multimodal neuroimaging data. AD research that uses deep learning is still evolving, improving performance by incorporating additional hybrid data types, such as –omics data, increasing transparency with explainable approaches that add knowledge of specific disease-related features and mechanisms. |
| Author | Nho, Kwangsik Saykin, Andrew J. Jo, Taeho |
| AuthorAffiliation | 2 Indiana Alzheimer Disease Center, Indiana University School of Medicine , Indianapolis, IN , United States 3 Indiana University Network Science Institute , Bloomington, IN , United States 1 Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine , Indianapolis, IN , United States |
| AuthorAffiliation_xml | – name: 1 Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine , Indianapolis, IN , United States – name: 3 Indiana University Network Science Institute , Bloomington, IN , United States – name: 2 Indiana Alzheimer Disease Center, Indiana University School of Medicine , Indianapolis, IN , United States |
| Author_xml | – sequence: 1 givenname: Taeho surname: Jo fullname: Jo, Taeho – sequence: 2 givenname: Kwangsik surname: Nho fullname: Nho, Kwangsik – sequence: 3 givenname: Andrew J. surname: Saykin fullname: Saykin, Andrew J. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31481890$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUk1v1DAQjVARLaV3TigSB3rZZWI7jsMBqdrlo9IKeqBna-JMtl5l7a2dgNpfj3e3rdpKSPjisee9pzcfr7MD5x1l2dsCppyr-mPncGmnDIp6CsAYvMiOCin5RHBZHjyKD7OTGFeQDucApXqVHfJCqELVcJRdz4k2-YIwOOuWuXX5WX97RXZN4UPM5zYSRvqUAlw6Hwdr8lmPMdrOGhysdzm6Nr8I_j57Eai1Zpe5jFvFHzQGb9fJanrMccA32csO-0gnd_dxdvn1y6_Z98ni57fz2dliYspSDhMsoVGN6FRBXS2YoBapraGrSBoDvKFKlcBL1rVUNbUBEiWTVaoZoWHCVPw4O9_rth5XehOSh3CjPVq9-_BhqTEkyz3psmMSW66EqLkAUynksm4bUdWUGgUyaRV7rdFt8OYP9v2DYAF6Ow29m4beTkPvppE4n_eczdisqTXkhoD9EyNPM85e6aX_rWVVgBAiCZzeCQR_PVIc9NpGQ32PjvwYNWNKlBJSyQn6_hl05cfgUnsTqlIFFwy2gu8eO3qwcr8NCQB7gAk-xkDd_1Qpn1GMHXabkWqy_b-JfwFTiNsO |
| CitedBy_id | crossref_primary_10_1142_S0219649222500782 crossref_primary_10_1111_acel_13280 crossref_primary_10_1093_cercor_bhad381 crossref_primary_10_1093_jnen_nlac127 crossref_primary_10_7717_peerj_15351 crossref_primary_10_1155_2022_8680737 crossref_primary_10_1007_s13369_023_07973_9 crossref_primary_10_1002_ima_22657 crossref_primary_10_1016_j_neunet_2024_106778 crossref_primary_10_3390_bdcc5030041 crossref_primary_10_1007_s10462_021_10016_0 crossref_primary_10_1038_s41684_023_01286_y crossref_primary_10_3233_JAD_201438 crossref_primary_10_3233_JIFS_230090 crossref_primary_10_1055_s_0044_1788657 crossref_primary_10_1016_j_cej_2025_160780 crossref_primary_10_3233_ADR_230083 crossref_primary_10_1007_s10462_024_10948_3 crossref_primary_10_1055_s_0042_1759863 crossref_primary_10_1016_j_jksuci_2024_101940 crossref_primary_10_1109_ACCESS_2025_3540567 crossref_primary_10_1016_j_acra_2023_05_036 crossref_primary_10_32604_cmc_2023_032752 crossref_primary_10_1016_j_bbe_2021_02_006 crossref_primary_10_1007_s44196_025_00780_0 crossref_primary_10_1088_1361_6560_ac8f10 crossref_primary_10_1177_02841851231218384 crossref_primary_10_1186_s40537_022_00650_y crossref_primary_10_3390_diagnostics12010134 crossref_primary_10_3390_diagnostics12071543 crossref_primary_10_36548_jaicn_2022_1_005 crossref_primary_10_1001_jamanetworkopen_2023_42203 crossref_primary_10_31202_ecjse_728049 crossref_primary_10_1016_j_nicl_2023_103533 crossref_primary_10_1557_s43578_022_00591_5 crossref_primary_10_3389_fncom_2024_1402689 crossref_primary_10_1007_s40199_024_00548_5 crossref_primary_10_1016_j_ejrad_2023_111081 crossref_primary_10_1124_pharmrev_122_000622 crossref_primary_10_1016_j_transproceed_2023_09_032 crossref_primary_10_1038_s44222_023_00114_9 crossref_primary_10_3390_app10030934 crossref_primary_10_1109_ACCESS_2021_3127394 crossref_primary_10_1007_s13042_022_01570_2 crossref_primary_10_1007_s10619_021_07345_y crossref_primary_10_1016_j_compbiomed_2023_107050 crossref_primary_10_1007_s00500_023_08615_w crossref_primary_10_1109_JBHI_2020_3030853 crossref_primary_10_1038_s41746_021_00544_y crossref_primary_10_1111_bpa_12974 crossref_primary_10_1080_23279095_2023_2169886 crossref_primary_10_1002_alz_12948 crossref_primary_10_1080_10494820_2021_1984255 crossref_primary_10_3389_fpubh_2024_1449798 crossref_primary_10_3390_ijms25147641 crossref_primary_10_1007_s40596_020_01243_8 crossref_primary_10_1016_j_inffus_2022_11_007 crossref_primary_10_1186_s13195_021_00900_w crossref_primary_10_1016_j_neucom_2020_07_102 crossref_primary_10_2174_1573405617666211126154101 crossref_primary_10_3389_fneur_2024_1510729 crossref_primary_10_3390_pr9020264 crossref_primary_10_1007_s42979_023_02560_z crossref_primary_10_1007_s42979_023_01853_7 crossref_primary_10_1016_j_ymeth_2020_09_007 crossref_primary_10_1097_RLI_0000000000000735 crossref_primary_10_3390_ijms22052761 crossref_primary_10_1016_j_banm_2021_06_021 crossref_primary_10_1007_s10462_023_10644_8 crossref_primary_10_1049_iet_ipr_2019_1526 crossref_primary_10_1002_ima_22622 crossref_primary_10_1038_s41598_024_74508_z crossref_primary_10_21923_jesd_887327 crossref_primary_10_1080_03155986_2023_2287996 crossref_primary_10_1007_s11063_024_11600_5 crossref_primary_10_1093_jnen_nlab122 crossref_primary_10_7717_peerj_10549 crossref_primary_10_1007_s12561_024_09459_0 crossref_primary_10_1016_j_bspc_2022_103527 crossref_primary_10_1016_j_neumar_2024_100034 crossref_primary_10_3389_fnsys_2021_595507 crossref_primary_10_1007_s10462_024_10914_z crossref_primary_10_3233_JAD_221250 crossref_primary_10_3389_fmed_2025_1540297 crossref_primary_10_1007_s43681_025_00673_0 crossref_primary_10_32628_CSEIT2390530 crossref_primary_10_1016_j_arr_2021_101404 crossref_primary_10_3390_app11135961 crossref_primary_10_3389_fbioe_2019_00485 crossref_primary_10_1007_s11042_022_11925_0 crossref_primary_10_32628_IJSRSET229242 crossref_primary_10_3390_app11052187 crossref_primary_10_1109_ACCESS_2020_2979969 crossref_primary_10_1155_2022_5261942 crossref_primary_10_3390_jimaging6060052 crossref_primary_10_3389_fnins_2024_1388391 crossref_primary_10_1007_s40998_023_00622_9 crossref_primary_10_3390_diagnostics15060710 crossref_primary_10_1007_s13735_023_00271_y crossref_primary_10_1166_jmihi_2021_3708 crossref_primary_10_1007_s00521_021_06105_4 crossref_primary_10_52589_AJMSS_4WNIT6F9 crossref_primary_10_3390_biomedicines13010167 crossref_primary_10_1016_j_bspc_2024_106023 crossref_primary_10_1177_14777509221138750 crossref_primary_10_1016_j_compbiomed_2025_109785 crossref_primary_10_1145_3502433 crossref_primary_10_1007_s13139_022_00767_1 crossref_primary_10_1002_gps_6007 crossref_primary_10_1002_alz_12422 crossref_primary_10_3389_fninf_2024_1346723 crossref_primary_10_1007_s00062_022_01226_2 crossref_primary_10_1007_s00521_021_05758_5 crossref_primary_10_4108_eetpht_9_3966 crossref_primary_10_1088_1742_6596_1631_1_012168 crossref_primary_10_1016_j_cmpb_2020_105348 crossref_primary_10_1016_j_neuroimage_2024_120530 crossref_primary_10_1016_j_compbiomed_2024_108000 crossref_primary_10_1016_j_media_2023_102913 crossref_primary_10_3390_jpm11111213 crossref_primary_10_1007_s00330_023_09708_8 crossref_primary_10_1007_s00415_020_10040_0 crossref_primary_10_1109_ACCESS_2024_3487114 crossref_primary_10_3390_diagnostics12010166 crossref_primary_10_3390_jmmp8010008 crossref_primary_10_3390_diagnostics13040664 crossref_primary_10_1177_19714009251313511 crossref_primary_10_31083_j_fbl2810248 crossref_primary_10_1016_j_phymed_2023_155231 crossref_primary_10_3390_app12157355 crossref_primary_10_3390_diagnostics11030440 crossref_primary_10_3934_mbe_2023366 crossref_primary_10_1038_s41598_022_20674_x crossref_primary_10_1016_j_teac_2022_e00160 crossref_primary_10_1016_j_expneurol_2021_113608 crossref_primary_10_3390_sci5010013 crossref_primary_10_3233_JAD_221261 crossref_primary_10_36306_konjes_731624 crossref_primary_10_1038_s41598_023_33055_9 crossref_primary_10_1109_ACCESS_2022_3216393 crossref_primary_10_1007_s00259_019_04593_0 crossref_primary_10_1016_j_jneumeth_2020_108795 crossref_primary_10_1038_s41598_020_79243_9 crossref_primary_10_1007_s11042_024_19677_9 crossref_primary_10_1109_JBHI_2022_3197331 crossref_primary_10_3389_fnagi_2022_810873 crossref_primary_10_1007_s11831_024_10176_6 crossref_primary_10_1007_s11042_024_19446_8 crossref_primary_10_1016_j_eswa_2023_119541 crossref_primary_10_1016_j_compbiomed_2022_105634 crossref_primary_10_1016_j_nicl_2021_102584 crossref_primary_10_1007_s42452_024_06440_w crossref_primary_10_1016_j_ebiom_2023_104540 crossref_primary_10_1093_braincomms_fcaa057 crossref_primary_10_32604_cmes_2021_016728 crossref_primary_10_1007_s10462_025_11146_5 crossref_primary_10_1080_14756366_2019_1680659 crossref_primary_10_1142_S1793962322500088 crossref_primary_10_3389_fpubh_2022_860396 crossref_primary_10_2174_1573405618666220823115848 crossref_primary_10_3390_make6010024 crossref_primary_10_1016_j_jns_2024_123319 crossref_primary_10_3390_jcm11226844 crossref_primary_10_4108_eetpht_9_4334 crossref_primary_10_1007_s10115_022_01756_8 crossref_primary_10_1080_02648725_2023_2196476 crossref_primary_10_22159_ajpcr_2023_v16i11_48193 crossref_primary_10_1007_s10439_023_03365_0 crossref_primary_10_3390_brainsci13020260 crossref_primary_10_1016_j_pscychresns_2022_111576 crossref_primary_10_1007_s11042_023_16858_w crossref_primary_10_1109_ACCESS_2020_3028600 crossref_primary_10_1016_j_arr_2023_102013 crossref_primary_10_3390_math11122664 crossref_primary_10_1016_j_fmre_2024_04_021 crossref_primary_10_1371_journal_pone_0240513 crossref_primary_10_3390_diagnostics11081402 crossref_primary_10_1109_TMI_2023_3314507 crossref_primary_10_3390_brainsci13020254 crossref_primary_10_1007_s00259_023_06440_9 crossref_primary_10_1016_j_bspc_2021_103293 crossref_primary_10_1016_j_inffus_2020_09_002 crossref_primary_10_1111_pcn_13557 crossref_primary_10_1016_j_nbd_2023_106310 crossref_primary_10_1186_s40035_022_00315_z crossref_primary_10_1111_ejn_16332 crossref_primary_10_1016_j_compbiomed_2023_107339 crossref_primary_10_3390_info16030160 crossref_primary_10_1007_s00521_021_05799_w crossref_primary_10_47164_ijngc_v13i3_711 crossref_primary_10_3233_JAD_231271 crossref_primary_10_1109_JBHI_2024_3386801 crossref_primary_10_1016_j_ailsci_2021_100018 crossref_primary_10_1016_j_imu_2024_101551 crossref_primary_10_2186_ajps_12_135 crossref_primary_10_3390_math11051136 crossref_primary_10_3389_fpsyt_2021_706695 crossref_primary_10_1145_3656174 crossref_primary_10_3390_s24206658 crossref_primary_10_3389_fnins_2022_1050777 crossref_primary_10_3390_brainsci12030319 crossref_primary_10_2147_NDT_S337814 crossref_primary_10_1002_hbm_25850 crossref_primary_10_1371_journal_pone_0297996 crossref_primary_10_1007_s00521_021_06430_8 crossref_primary_10_1007_s12559_021_09946_2 crossref_primary_10_1016_j_compmedimag_2022_102171 crossref_primary_10_1007_s11042_022_13809_9 crossref_primary_10_26599_BSA_2021_9050005 crossref_primary_10_1038_s41598_023_30904_5 crossref_primary_10_3390_electronics11193229 crossref_primary_10_3389_fnins_2022_695888 crossref_primary_10_1016_j_wneu_2020_06_172 crossref_primary_10_1007_s10044_024_01297_6 crossref_primary_10_1007_s13139_025_00908_2 crossref_primary_10_1016_j_ebiom_2024_105047 crossref_primary_10_3390_diagnostics11112103 crossref_primary_10_1007_s11227_023_05655_9 crossref_primary_10_3389_fgene_2021_784814 crossref_primary_10_3390_app13137833 crossref_primary_10_3390_diagnostics13010167 crossref_primary_10_1007_s00521_024_09468_6 crossref_primary_10_2196_57830 crossref_primary_10_1016_j_compmedimag_2024_102400 crossref_primary_10_3390_brainsci12111517 crossref_primary_10_3390_cells11111744 crossref_primary_10_1186_s40708_023_00195_7 crossref_primary_10_1186_s12859_020_03848_0 crossref_primary_10_1007_s11831_022_09870_0 crossref_primary_10_3389_fnagi_2022_945274 crossref_primary_10_1186_s13195_021_00941_1 crossref_primary_10_3390_ijms21165895 crossref_primary_10_1167_tvst_9_2_6 crossref_primary_10_3389_fnagi_2022_854733 crossref_primary_10_3390_bioengineering10080950 crossref_primary_10_1002_dad2_12246 crossref_primary_10_1016_j_neuroscience_2022_03_026 crossref_primary_10_4103_1673_5374_355982 crossref_primary_10_1093_braincomms_fcac155 crossref_primary_10_1515_revneuro_2024_0088 crossref_primary_10_47164_ijngc_v15i1_1242 crossref_primary_10_1038_s41598_024_80938_6 crossref_primary_10_1142_S0218339024500438 crossref_primary_10_1177_17562864221138154 crossref_primary_10_1016_j_neucom_2020_05_113 crossref_primary_10_1093_bib_bbac022 crossref_primary_10_3389_fcell_2020_605734 crossref_primary_10_1080_01932691_2021_1880927 crossref_primary_10_1016_j_bspc_2024_106895 crossref_primary_10_1016_j_csbj_2023_02_021 crossref_primary_10_1186_s42492_020_00062_w crossref_primary_10_1007_s11042_024_19104_z crossref_primary_10_3389_fnins_2021_630747 crossref_primary_10_1007_s10072_024_07649_8 crossref_primary_10_1016_j_compmedimag_2022_102158 crossref_primary_10_1016_j_neunet_2024_106296 crossref_primary_10_31083_j_rcm2505184 crossref_primary_10_1016_j_imu_2024_101584 crossref_primary_10_1007_s11227_022_04668_0 crossref_primary_10_3389_fnins_2024_1352129 crossref_primary_10_1186_s40478_023_01574_1 crossref_primary_10_3389_fbioe_2022_985692 crossref_primary_10_1007_s11042_023_16026_0 crossref_primary_10_1186_s13195_021_00879_4 crossref_primary_10_3390_brainsci14121266 crossref_primary_10_1016_j_asoc_2024_112374 crossref_primary_10_1007_s00521_023_09301_6 crossref_primary_10_1016_j_neucom_2023_126436 crossref_primary_10_3389_fnagi_2020_603179 crossref_primary_10_1155_2022_7593750 crossref_primary_10_1007_s13721_022_00366_2 crossref_primary_10_3390_app12136507 crossref_primary_10_3390_healthcare10101842 crossref_primary_10_1097_MS9_0000000000001700 crossref_primary_10_1142_S021946782140012X crossref_primary_10_1002_hbm_26344 crossref_primary_10_1155_2022_1854718 crossref_primary_10_1111_ggi_14670 crossref_primary_10_3389_fsufs_2023_1172543 crossref_primary_10_1016_j_tins_2022_12_004 crossref_primary_10_3390_diagnostics11050887 crossref_primary_10_1186_s12911_023_02122_6 crossref_primary_10_1007_s11831_023_09957_2 crossref_primary_10_1097_RMR_0000000000000224 crossref_primary_10_3390_cells10112924 crossref_primary_10_1063_5_0079602 crossref_primary_10_3389_fpubh_2020_584430 crossref_primary_10_3389_fmed_2020_592924 crossref_primary_10_12677_AP_2024_143139 crossref_primary_10_1016_j_ebiom_2023_104820 crossref_primary_10_1109_ACCESS_2021_3066213 crossref_primary_10_1007_s10462_023_10415_5 crossref_primary_10_3233_JAD_201033 crossref_primary_10_1016_j_wneu_2024_01_076 crossref_primary_10_13104_imri_2022_26_1_1 crossref_primary_10_1007_s12652_021_03612_z crossref_primary_10_1016_j_brainres_2025_149549 crossref_primary_10_3390_diagnostics11030393 crossref_primary_10_1007_s11936_020_00814_0 crossref_primary_10_1016_j_media_2022_102585 crossref_primary_10_1007_s42979_024_02743_2 crossref_primary_10_1007_s44174_023_00078_9 crossref_primary_10_1016_j_artmed_2022_102332 crossref_primary_10_1109_TMTT_2023_3245665 crossref_primary_10_1007_s00234_021_02774_z crossref_primary_10_1016_j_scib_2024_03_006 crossref_primary_10_3389_fnhum_2021_700627 |
| Cites_doi | 10.1093/bib/bbq074 10.1016/j.cell.2015.12.056 10.1007/s00429-013-0687-3 10.1016/j.jalz.2018.08.005 10.1016/j.bbr.2018.02.017 10.1109/TSMC.1971.4308320 10.1561/2200000006 10.1109/BIGCOMP.2017.7881683 10.1016/j.neuroimage.2014.06.077 10.1007/978-3-642-39593-2_1 10.1109/CVPR.2012.6248110 10.1007/BFb0006203 10.1109/TBME.2014.2372011 10.3389/fninf.2018.00035 10.7326/0003-4819-151-4-200908180-00135 10.1126/science.359.6377.725 10.1109/ISBI.2017.7950647 10.1007/BF00342633 10.1162/neco.2006.18.7.1527 10.1007/BF02478259 10.1007/3-540-28438-9_2 10.1093/bioinformatics/btp621 10.1007/s11263-015-0816-y 10.1016/j.neuroimage.2018.08.042 10.1017/CBO9780511812651 10.1111/jgs.14997 10.3389/fnagi.2018.00390 10.1016/j.neunet.2014.09.003 10.1016/j.jalz.2018.02.001 10.3389/fnins.2014.00229 10.1037/h0042519 10.1109/ISBI.2014.6868045 10.1038/323533a0 10.1109/TPAMI.2012.231 10.1080/01431160600746456 10.1145/1390156.1390294 10.1109/TPAMI.2013.50 10.1016/j.media.2017.07.005 10.1126/science.1127647 10.1038/s41598-018-22871-z 10.1371/journal.pcbi.1002822 10.1007/BF00344251 10.1093/oso/9780198538493.001.0001 10.1109/JBHI.2015.2429556 10.1001/jama.2016.17216 10.1016/j.media.2017.10.005 10.1016/j.neuroimage.2017.03.057 10.1097/WAD.0000000000000121 10.1038/nature14539 10.1109/MSP.2012.2205597 10.1016/S0933-3657(01)00077-X 10.1145/1273496.1273556 10.1007/978-3-7908-2604-3_16 10.3389/fnagi.2018.00096 10.1145/3095713.3095749 |
| ContentType | Journal Article |
| Copyright | 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2019 Jo, Nho and Saykin. 2019 Jo, Nho and Saykin |
| Copyright_xml | – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2019 Jo, Nho and Saykin. 2019 Jo, Nho and Saykin |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3389/fnagi.2019.00220 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Science Database Biological science database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1663-4365 |
| ExternalDocumentID | oai_doaj_org_article_5f26ad38449340c78a369db479e14806 10.3389/fnagi.2019.00220 PMC6710444 31481890 10_3389_fnagi_2019_00220 |
| Genre | Systematic Review |
| GeographicLocations | New York Indiana United States--US Indianapolis Indiana |
| GeographicLocations_xml | – name: New York – name: Indiana – name: Indianapolis Indiana – name: United States--US |
| GrantInformation_xml | – fundername: NIA NIH HHS grantid: R03 AG054936 – fundername: U.S. National Library of Medicine grantid: R01 LM012535 – fundername: National Institutes of Health grantid: P30 AG10133; R01 AG19771; R01 AG057739; R01 CA129769 – fundername: National Institute on Aging grantid: R03 AG054936 |
| GroupedDBID | --- 53G 5VS 7X7 88I 8FE 8FH 8FI 8FJ 9T4 AAFWJ AAYXX ABIVO ABUWG ACGFO ACGFS ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO E3Z EIHBH F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RNS RPM TR2 UKHRP ACXDI ALIPV IPNFZ NPM RIG 3V. 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c556t-a50b8b4f81ef9424edaed90f7e6cc03be7850352fde7b9c0e45267663a0b24c73 |
| IEDL.DBID | UNPAY |
| ISSN | 1663-4365 |
| IngestDate | Fri Oct 03 12:52:42 EDT 2025 Sun Oct 26 04:13:25 EDT 2025 Tue Sep 30 16:56:39 EDT 2025 Fri Sep 05 13:30:53 EDT 2025 Tue Oct 07 07:13:35 EDT 2025 Mon Jul 21 05:58:28 EDT 2025 Thu Apr 24 22:56:52 EDT 2025 Wed Oct 01 04:40:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | deep learning magnetic resonance imaging classification machine learning positron emission tomography Alzheimer's disease artificial intelligence neuroimaging |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c556t-a50b8b4f81ef9424edaed90f7e6cc03be7850352fde7b9c0e45267663a0b24c73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 Edited by: James H. Cole, King's College London, United Kingdom Reviewed by: Donghuan Lu, Simon Fraser University, Canada; Zheng Wang, University of Miami, United States |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3389/fnagi.2019.00220 |
| PMID | 31481890 |
| PQID | 2278134204 |
| PQPubID | 4424411 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5f26ad38449340c78a369db479e14806 unpaywall_primary_10_3389_fnagi_2019_00220 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6710444 proquest_miscellaneous_2284560663 proquest_journals_2278134204 pubmed_primary_31481890 crossref_primary_10_3389_fnagi_2019_00220 crossref_citationtrail_10_3389_fnagi_2019_00220 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-20 |
| PublicationDateYYYYMMDD | 2019-08-20 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in aging neuroscience |
| PublicationTitleAlternate | Front Aging Neurosci |
| PublicationYear | 2019 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Ivakhnenko (B30) 1971; 1 Goodfellow (B22) 2014 Lecun (B39) 1988 Vu (B82) 2017 Farabet (B15) 2013; 35 Ivakhnenko (B31) 1965 Sutskever (B75) 2013 Moher (B54) 2009; 151 Vincent (B81) 2010; 11 Smialowski (B71) 2009; 26 Riedel (B60) 2018; 10 Bengio (B4) 2013 Kononenko (B33) 2001; 23 Fukushima (B18) 1980; 36 Lu (B48) 2007; 28 Plis (B57) 2014; 8 Rosenblatt (B63) 1958; 65 Sutton (B76) 2018 Schelke (B69) 2018; 10 Fukushima (B17) 1979; 62 Nair (B55) 2010 Ngiam (B56) 2011 Bengio (B5) 2013; 35 Hutson (B28) 2018; 359 Russakovsky (B65) 2015; 115 Hinton (B26) 2006; 313 Ripley (B61) 1996 Li (B41) 2014 Liu (B46) 2014 Goodfellow (B21) 2016 Litjens (B42) 2017; 42 Bush (B9) 2012; 8 Li (B40) 2015; 19 Suk (B74) 2013 Veitch (B79) 2019; 15 Rosenblatt (B62) 1957 Liu (B45) 2015; 62 Fukushima (B16) 1975; 20 Liu (B44); 43 Toga (B77) 2016; 30 Krizhevsky (B36) 2012 Cheng (B11) 2017 Choi (B12) 2018; 344 Marcus (B50) 2018 Werbos (B84) 2006 Mcculloch (B51) 1943; 5 Hinton (B24) 2012; 29 Glorot (B20) 2011 (B2) 2018; 14 Werbos (B83) 1982 Schmidhuber (B70) 2015; 61 König (B32) 2011; 12 Gulshan (B23) 2016; 316 De strooper (B14) 2016; 164 Krizhevsky (B35) 2011 Bengio (B3) 2009; 2 Lecun (B38) 2015; 521 Rathore (B58) 2017; 155 Aderghal (B1) 2017 Hinton (B25) 2006; 18 Bottou (B7) 2010 Suk (B73) 2015; 220 Cheng (B10) 2017 Minsky (B53) 1969 Rumelhart (B64) 1986; 323 Korolev (B34) 2017 Ivakhnenko (B29) 1968; 13 Samper-Gonzalez (B67) 2018; 183 Ciregan (B13) 2012 Larochelle (B37) 2007 B59 Salakhutdinov (B66) 2010 Bishop (B6) 1995 Galvin (B19) 2017; 65 Hinton (B27) 1994 Vaswani (B78) 2018 Liu (B43); 12 Makhzani (B49) 2015 Boureau (B8) 2010 Schalkoff (B68) 1997 Vincent (B80) 2008 Lu (B47) 2018; 8 Suk (B72) 2014; 101 Mikolov (B52) 2013 |
| References_xml | – volume: 12 start-page: 253 year: 2011 ident: B32 article-title: Validation in genetic association studies publication-title: Brief. Bioinformatics doi: 10.1093/bib/bbq074 – start-page: 193 volume-title: Proceedings of the 13th Conference of the Association for Machine Translation in the Americas year: 2018 ident: B78 article-title: Tensor2tensor for neural machine translation – volume: 164 start-page: 603 year: 2016 ident: B14 article-title: The cellular phase of Alzheimer's disease publication-title: Cell doi: 10.1016/j.cell.2015.12.056 – start-page: 807 volume-title: Proceedings of the 27th International Conference on Machine Learning (ICML-10) year: 2010 ident: B55 article-title: Rectified linear units improve restricted boltzmann machines – volume: 220 start-page: 841 year: 2015 ident: B73 article-title: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis publication-title: Brain Struct. Funct. doi: 10.1007/s00429-013-0687-3 – volume: 15 start-page: 106 year: 2019 ident: B79 article-title: Understanding disease progression and improving Alzheimer's disease clinical trials: recent highlights from the Alzheimer's disease neuroimaging initiative publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2018.08.005 – volume: 344 start-page: 103 year: 2018 ident: B12 article-title: Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2018.02.017 – start-page: 2672 volume-title: Advances in Neural Information Processing Systems 27 year: 2014 ident: B22 article-title: Generative adversarial nets – volume: 1 start-page: 364 year: 1971 ident: B30 article-title: Polynomial theory of complex systems publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1971.4308320 – volume-title: The Perceptron, A Perceiving and Recognizing Automaton Project Para. year: 1957 ident: B62 – volume: 2 start-page: 1 year: 2009 ident: B3 article-title: Learning deep architectures for AI publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000006 – start-page: 689 volume-title: Proceedings of the 28th International Conference on Machine Learning (ICML-11) year: 2011 ident: B56 article-title: Multimodal deep learning – start-page: 1139 volume-title: International Conference on Machine Learning year: 2013 ident: B75 article-title: On the importance of initialization and momentum in deep learning – start-page: 309 volume-title: 2017 IEEE International Conference on Big Data and Smart Computing (BigComp) year: 2017 ident: B82 article-title: Multimodal learning using convolution neural network and Sparse Autoencoder doi: 10.1109/BIGCOMP.2017.7881683 – volume: 101 start-page: 569 year: 2014 ident: B72 article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.06.077 – start-page: 1 volume-title: International Conference on Statistical Language and Speech Processing year: 2013 ident: B4 article-title: Deep learning of representations: looking forward doi: 10.1007/978-3-642-39593-2_1 – volume-title: Ninth International Conference on Digital Image Processing (ICDIP 2017) year: 2017 ident: B11 article-title: Classification of MR brain images by combination of multi-CNNs for AD diagnosis – start-page: 3642 volume-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition year: 2012 ident: B13 article-title: Multi-column deep neural networks for image classification doi: 10.1109/CVPR.2012.6248110 – start-page: 762 volume-title: System Modeling and Optimization year: 1982 ident: B83 article-title: Applications of advances in nonlinear sensitivity analysis doi: 10.1007/BFb0006203 – volume: 62 start-page: 1132 year: 2015 ident: B45 article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's Disease publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2372011 – volume: 12 start-page: 35 ident: B43 article-title: Classification of Alzheimer's disease by combination of convolutional and recurrent neural networks using FDG-PET images publication-title: Front. Neuroinform. doi: 10.3389/fninf.2018.00035 – volume: 151 start-page: 264 year: 2009 ident: B54 article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-151-4-200908180-00135 – volume: 359 start-page: 725 year: 2018 ident: B28 article-title: Artificial intelligence faces reproducibility crisis publication-title: Science doi: 10.1126/science.359.6377.725 – ident: B59 – start-page: 835 volume-title: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) year: 2017 ident: B34 article-title: Residual and plain convolutional neural networks for 3D brain MRI classification doi: 10.1109/ISBI.2017.7950647 – volume: 20 start-page: 121 year: 1975 ident: B16 article-title: Cognitron: a self-organizing multilayered neural network publication-title: Biol. Cybernet. doi: 10.1007/BF00342633 – volume: 18 start-page: 1527 year: 2006 ident: B25 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 5 start-page: 115 year: 1943 ident: B51 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull. Math. Biophys. doi: 10.1007/BF02478259 – start-page: 15 volume-title: Automatic Differentiation: Applications, Theory, and Implementations year: 2006 ident: B84 article-title: Backwards differentiation in AD and neural nets: past links and new opportunities doi: 10.1007/3-540-28438-9_2 – start-page: 1 volume-title: 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) year: 2017 ident: B10 article-title: CNNs based multi-modality classification for AD diagnosis – volume: 26 start-page: 440 year: 2009 ident: B71 article-title: Pitfalls of supervised feature selection publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp621 – volume: 115 start-page: 211 year: 2015 ident: B65 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comp. Vision doi: 10.1007/s11263-015-0816-y – volume: 183 start-page: 504 year: 2018 ident: B67 article-title: Reproducible evaluation of classification methods in Alzheimer's disease: framework and application to MRI and PET data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.08.042 – volume-title: Pattern Recognition and Neural Networks. year: 1996 ident: B61 doi: 10.1017/CBO9780511812651 – volume: 65 start-page: 2128 year: 2017 ident: B19 article-title: Prevention of Alzheimer's disease: lessons learned and applied publication-title: J. Am. Geriatr. Soc. doi: 10.1111/jgs.14997 – volume: 10 start-page: 390 year: 2018 ident: B60 article-title: Uncovering biologically coherent peripheral signatures of health and risk for Alzheimer's disease in the aging brain publication-title: Front. Aging Neurosci doi: 10.3389/fnagi.2018.00390 – volume: 61 start-page: 85 year: 2015 ident: B70 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 14 start-page: 367 year: 2018 ident: B2 article-title: 2018 Alzheimer's disease facts and figures publication-title: Alzheimer's Dementia doi: 10.1016/j.jalz.2018.02.001 – volume: 8 start-page: 229 year: 2014 ident: B57 article-title: Deep learning for neuroimaging: a validation study publication-title: Front. Neurosci. doi: 10.3389/fnins.2014.00229 – start-page: 111 volume-title: Proceedings of the 27th International Conference on Machine Learning (ICML-10) year: 2010 ident: B8 article-title: A theoretical analysis of feature pooling in visual recognition – start-page: 305 volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention, Vol 17 year: 2014 ident: B41 article-title: Deep learning based imaging data completion for improved brain disease diagnosis – volume: 65 start-page: 386 year: 1958 ident: B63 article-title: The perceptron: a probabilistic model for information storage and organization in the brain publication-title: Psychol. Rev. doi: 10.1037/h0042519 – start-page: 1015 volume-title: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI) year: 2014 ident: B46 article-title: Early diagnosis of Alzheimer's disease with deep learning doi: 10.1109/ISBI.2014.6868045 – volume: 323 start-page: 533 year: 1986 ident: B64 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – start-page: 2791 volume-title: Advances in Neural Information Processing Systems 28 year: 2015 ident: B49 article-title: k-sparse autoencoders – volume: 11 start-page: 3371 year: 2010 ident: B81 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 35 start-page: 1915 year: 2013 ident: B15 article-title: Learning hierarchical features for scene labeling publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.231 – volume-title: Perceptrons year: 1969 ident: B53 – volume-title: Cybernetic Predicting Devices. year: 1965 ident: B31 – start-page: 2 volume-title: Proceedings of the 19th European Symposium on Artificial Neural Networks: ESANN 2011 year: 2011 ident: B35 article-title: Using very deep autoencoders for content-based image retrieval – volume-title: arXiv preprint. year: 2018 ident: B50 article-title: Deep learning: a critical appraisal – volume: 28 start-page: 823 year: 2007 ident: B48 article-title: A survey of image classification methods and techniques for improving classification performance publication-title: Int. J. Remote Sens. doi: 10.1080/01431160600746456 – volume-title: Reinforcement Learning: An Introduction year: 2018 ident: B76 – start-page: 1096 volume-title: Proceedings of the 25th International Conference on Machine Learning year: 2008 ident: B80 article-title: Extracting and composing robust features with denoising autoencoders doi: 10.1145/1390156.1390294 – volume: 35 start-page: 1798 year: 2013 ident: B5 article-title: Representation learning: a review and new perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 – volume-title: Deep Learning. year: 2016 ident: B21 – volume: 42 start-page: 60 year: 2017 ident: B42 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal doi: 10.1016/j.media.2017.07.005 – volume: 313 start-page: 504 year: 2006 ident: B26 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 8 start-page: 5697 year: 2018 ident: B47 article-title: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer's disease using structural MR and FDG-PET images publication-title: Sci. Rep. doi: 10.1038/s41598-018-22871-z – volume: 8 start-page: e1002822 year: 2012 ident: B9 article-title: Genome-wide association studies publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002822 – start-page: 693 volume-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics year: 2010 ident: B66 article-title: Efficient learning of deep Boltzmann machines – volume: 36 start-page: 193 year: 1980 ident: B18 article-title: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biol. Cybern. doi: 10.1007/BF00344251 – volume-title: Neural Networks for Pattern Recognition. year: 1995 ident: B6 doi: 10.1093/oso/9780198538493.001.0001 – volume: 19 start-page: 1610 year: 2015 ident: B40 article-title: A robust deep model for improved classification of AD/MCI patients publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2015.2429556 – volume: 62 start-page: 658 year: 1979 ident: B17 article-title: Neural network model for a mechanism of pattern recognition unaffected by shift in position-Neocognitron publication-title: IEICE Tech. Rep. A – volume: 316 start-page: 2402 year: 2016 ident: B23 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA doi: 10.1001/jama.2016.17216 – start-page: 3 volume-title: Advances in Neural Information Processing Systems 6 year: 1994 ident: B27 article-title: Autoencoders, minimum description length and Helmholtz free energy – volume: 43 start-page: 157 ident: B44 article-title: Landmark-based deep multi-instance learning for brain disease diagnosis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.10.005 – volume: 155 start-page: 530 year: 2017 ident: B58 article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.03.057 – volume: 30 start-page: 160 year: 2016 ident: B77 article-title: Global data sharing in Alzheimer's disease research publication-title: Alzheimer Dis. Assoc. Disord. doi: 10.1097/WAD.0000000000000121 – start-page: 21 volume-title: Proceedings of the 1988 Connectionist Models Summer School: CMU year: 1988 ident: B39 article-title: A theoretical framework for back-propagation – volume: 521 start-page: 436 year: 2015 ident: B38 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 29 start-page: 82 year: 2012 ident: B24 article-title: Deep neural networks for acoustic modeling in speech recognition publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2205597 – volume: 23 start-page: 89 year: 2001 ident: B33 article-title: Machine learning for medical diagnosis: history, state of the art and perspective publication-title: Artif. Intell. Med. doi: 10.1016/S0933-3657(01)00077-X – start-page: 473 volume-title: Proceedings of the 24th International Conference on Machine Learning year: 2007 ident: B37 article-title: An empirical evaluation of deep architectures on problems with many factors of variation doi: 10.1145/1273496.1273556 – start-page: 583 volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention, Vol 16 year: 2013 ident: B74 article-title: Deep learning-based feature representation for AD/MCI classification – start-page: 1097 volume-title: Advances in Neural Information Processing Systems 25 year: 2012 ident: B36 article-title: Imagenet classification with deep convolutional neural networks – start-page: 3111 volume-title: Advances in Neural Information Processing Systems 26 year: 2013 ident: B52 article-title: Distributed representations of words and phrases and their compositionality – volume-title: Artificial Neural Networks. year: 1997 ident: B68 – start-page: 177 volume-title: Proceedings of COMPSTAT'2010 year: 2010 ident: B7 article-title: Large-scale machine learning with stochastic gradient descent doi: 10.1007/978-3-7908-2604-3_16 – volume: 10 start-page: 96 year: 2018 ident: B69 article-title: Mechanisms of risk reduction in the clinical practice of Alzheimer's disease prevention publication-title: Front. Aging Neurosci doi: 10.3389/fnagi.2018.00096 – volume: 13 start-page: 43 year: 1968 ident: B29 article-title: The group method of data of handling; a rival of the method of stochastic approximation publication-title: Sov. Autom. Control – start-page: 315 volume-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics year: 2011 ident: B20 article-title: Deep sparse rectifier neural networks – volume-title: Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing year: 2017 ident: B1 article-title: FuseMe: classification of sMRI images by fusion of deep CNNs in 2D+ϵ projections doi: 10.1145/3095713.3095749 |
| SSID | ssj0000330058 |
| Score | 2.65468 |
| SecondaryResourceType | review_article |
| Snippet | Deep learning, a state-of-the-art machine learning approach, has shown outstanding performance over traditional machine learning in identifying intricate... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 220 |
| SubjectTerms | Algorithms Alzheimer's disease Artificial intelligence Back propagation Bioinformatics Brain research Classification Cognitive ability Computer vision Deep learning International conferences Learning algorithms Machine learning Machine translation Medical imaging Neural networks Neurodegenerative diseases Neuroimaging Neuroscience NMR Nuclear magnetic resonance Propagation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9RAFB-kB_UifhtbZQRBFMLOZr69VddShEoPFnoLM8mLXdhmt9tdiv71vjfJhl0Ue_EWMpPJ8D5mfpP38nuMvUXf03XUkI911HhAgZiHAq-cwCUzgK194uk--WaOz9TXc32-VeqLcsI6euBOcCPdFCbU0inlpRKVdUEaX0dlPSCS78i2hfNbh6m0BkuiYXddXBJPYX7UUNUfSuUifsqCyntv7UOJrv9vGPPPVMl763YRft6E2WxrHzp6yB70AJIfdhN_xO5A-5jdPelD5E_Y1QRgwXva1B982vLD2a8LmF7C8t01n3TxmI94kVLscBCe6mJSxlBSEg9tzU-X803r6ZKGTi0pvYAnOo_pZapuxCdhFZ6ys6Mv3z8f531dhbzS2qzyoEV0UTVuDI1XhYI6QO1FY8FUlZARrNNEk9rUYKOvBFAZcovQJIhYqMrKZ2yvnbfwgnHrokVphmiiU5V2MTiDmL2RpjJBe8jYaCPlsupJx6n2xazEwwfppUx6KUkvZdJLxt4PTyw6wo1_9P1Eihv6EVV2uoEGVPYGVN5mQBk72Ki97P33uqQfhMdSFUJl7M3QjJ5H4ZTQwnxNfRyiT4JsGXveWckwE4lDj53HGdod-9mZ6m5LO71I7N4GMZ9S-N4Pg6XdKoiX_0MQ--w-jUgfzAtxwPZWyzW8QsS1iq-Tc_0Ga8An9Q priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1taxQxEA71CuqX4mvdWiWCIArL5TbvgkjrtRShxyEW-m1JNtn24Lp7vd4h-uvNZF_sodRvyyaXzWVmkklm8jwIvQ22x53lPh1xy8MGxdvUZOFJkTBlGi-djjjdpxNxcsa-nvPzLTTp7sJAWmU3J8aJ2tUFnJEP4crmiLKMsM-L6xRYoyC62lFomJZawX2KEGP30HYGyFgDtH14NJl-609dCAV49ng_Liy1KaOCN7HLsFPTwxKYgSDdCzAsM6AAv7VWRUj_f_mhf6dTPlhXC_Pzh5nPb61Vx4_QTutk4oNGKx6jLV89QfdP2zD6U3Q99n6BW2jVCzyr8MH816WfXfnluxs8bmI2H8NDTMMLjeDInQlZRVGQ2FQOT5d1VzpdQtOxJKYg4Aj5MbuKDEh4bFbmGTo7Pvr-5SRtuRfSgnOxSg0nVllWqpEvNcuYd8Y7TUrpRVEQar1UHKBUS-el1QXxQFUuw5gaYjNWSPocDaq68i8QlsrKMJrGCqtYwZU1SgS_vqSiEIZrn6BhN8p50QKTAz_GPA8bFJBLHuWSg1zyKJcEve9_sWhAOe6oewiC6-sBnHZ8US8v8tY6c15mwjiqGNOUkUIqQ4V2lkntw3aRiATtd2LPWxu_yf9oZILe9MXBOiHkYipfr6GOCh4quHUJ2m20pO8JDU2PlA49lBv6s9HVzZJqdhkRwEXwCxkL3_3Qa9p_B2Lv7v_wEj2EunBcnpF9NFgt1_5V8LdW9nVrRL8Bcg8pCg priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3raxQxEA9SofaL1PfaKhEEUVib2zxXEKmepQgn_eBBvy3JbrY92O5dt3do_eudyT7s4anfwiabDfPIzGwmvyHkJeieLJz08Ug6CQGKd7FNoGUYbJnW6yINON2Tr-p4Kr6cytPf16M7Al5tDO2wntS0qd7-uLz-AAr_HiNOsLcHJRb0wSwthJ5MEgjgb4OdSrGQw6Rz9sO-zBGaPdyNAzMbC65ke265cZIdss0hVBgZ3K1vmKyA7L_JHf0zq_LOql7Y6--2qm6YrKNdcrfzNelhKxz3yC1f3yfbk-40_QG5HHu_oB3C6hmd1fSw-nnuZxe-eXVFx-3RzTtohGw8mISGEpqYXBT4SW1d0JNm3veeNDh16AmZCDQgf8wuQiEkOrZL-5BMjz5_-3QcdyUY4lxKtYytZM44UZqRL1ORCF9YX6Ss1F7lOePOayMRUbUsvHZpzjxWLNdAXstcInLNH5Gtel77J4Rq4zQQ1jrljMilcdYocO9LrnJlZeojctBTOcs7fHIsk1FlEKcgi7LAogxZlAUWReT18Maixeb4x9iPyLhhHKJqhwfz5izrlDSTZaJswY0QKRcs18ZylRZO6NSDKDAVkf2e7VkvqRneJR5xkTARkRdDNygpnrzY2s9XOMaAo4reXUQet1IyrKSXsojoNflZW-p6Tz07D0DgCtxDIeC7bwZJ-y8hnv51AXtkB4fhD_OE7ZOtZbPyz8DjWrrnQZF-Adn0JfQ priority: 102 providerName: Scholars Portal |
| Title | Deep Learning in Alzheimer's Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31481890 https://www.proquest.com/docview/2278134204 https://www.proquest.com/docview/2284560663 https://pubmed.ncbi.nlm.nih.gov/PMC6710444 https://doi.org/10.3389/fnagi.2019.00220 https://doaj.org/article/5f26ad38449340c78a369db479e14806 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1663-4365 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000330058 issn: 1663-4365 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1663-4365 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000330058 issn: 1663-4365 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1663-4365 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000330058 issn: 1663-4365 databaseCode: DIK dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1663-4365 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000330058 issn: 1663-4365 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1663-4365 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000330058 issn: 1663-4365 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1663-4365 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000330058 issn: 1663-4365 databaseCode: RPM dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1663-4365 dateEnd: 20211231 omitProxy: true ssIdentifier: ssj0000330058 issn: 1663-4365 databaseCode: 7X7 dateStart: 20090730 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1663-4365 dateEnd: 20211231 omitProxy: true ssIdentifier: ssj0000330058 issn: 1663-4365 databaseCode: BENPR dateStart: 20090730 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1663-4365 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000330058 issn: 1663-4365 databaseCode: M48 dateStart: 20100101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwELeglYAvvGGBURkJCYGULQ-_wreObkxIrSpEpfIpshOHVevS0qZC7K_nzkmjFSYeXyIndhznfBff-S6_I-QVyB7PDbd-yA0HA8UaX0dQUgF8MrWVeeJwuocjcTphH6d82ux34L8wV_z3YDwlhwUm68EILISVjCIwzruCg9bdId3JaNz_gvYULJo-iwWvvZDX3raz6jhw_us0yt8DI29vyqX-8V3P51dWnZN7NQTS2oEVYrDJ-cGmMgfZ5S9Qjv_yQvfJ3Ub1pP2aVx6QG7Z8SG4NG-f6I_JtYO2SNoCrX-mspP355ZmdXdjV6zUd1J6cd1BwwXnQCXUZNTHWyE0v1WVOx6vFtna8wq5djQtMoA4IZHbh8iLRga70YzI5Of78_tRvMjL4Geei8jUPjDKsUKEtEhYxm2ubJ0EhrciyIDZWKo4Aq0VupUmywGICcwnzowMTsUzGT0inXJR2j1CpjIT310YYxTKujFYCtP0iFpnQPLEeOdzOWJo1cOWYNWOegtmClEwdJVOkZOoo6ZE37R3LGqrjD22PkAnadgiy7S7AVKWNzKa8iITOY8VYErMgk0rHIskNk4kFIzIQHtnfslDaSP46xV-Lw5hFAfPIy7YaZBYdMbq0iw22UaC3orLnkac1x7UjiaHrUCUwQrnDiztD3a0pZ2cOF1yAtsgYPPdty7V_JcSz_2n8nNzBE9xSj4J90qlWG_sCdLLK9MhNOZU90j06Ho0_9dzOBhw_TEM4DpnqNeL6E5zrN5Y |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJjFeJu50DDASCIEU1U18C9KENrqpY2tVoU3aW7ATZ6vUpV0vmsaP47dxjpuEVaDxtLcovsTxsY_PsY-_j5B3MPdEZoULWsIKcFCcDUwIT5qByjROZbHH6e72ZOeEfzsVpyvkV3UXBsMqK53oFXU2SnGPvIlXNlsRDxn_Mr4MkDUKT1crCg1TUitk2x5irLzYceiur8CFm24ftEHe78Nwf-_4aycoWQaCVAg5C4xgVlue65bLYx5ylxmXxSxXTqYpi6xTWiBoaJ45ZeOUOSTlVrBQG2ZDnqoI6r1H1njEY3D-1nb3ev3v9S4PixAO3t_HgxIBj6RYnJWCZxg3c2QiwvAyxMwMkXL8xtroKQT-Zff-Hb65Pi_G5vrKDIc31sb9h2SjNGrpzmIUPiIrrnhM7nfLY_sn5LLt3JiWUK5ndFDQneHPcze4cJMPU9penBF9hgcf9geVUM_ViVFMfuBQU2S0PxlVqf0JVu1TfMgD9RAjgwvPuETbZmaekpM7kcIzslqMCveCUKWtgt40VlrNU6Gt0RL8iDySqTQidg3SrHo5SUsgdOTjGCbgEKFcEi-XBOWSeLk0yMe6xHgBAnJL3l0UXJ0P4bv9i9HkLCm1QSLyUJos0pzHEWep0iaScWa5ih24p0w2yFYl9qTUKdPkzwxokLd1MmgDPOIxhRvNMY8GixjNyAZ5vhgldUsiqLqlY2ihWho_S01dTikG5x5xXIIdyjl891M90v7bEZu3_8Mbst457h4lRwe9w5fkAZbDrfqQbZHV2WTuXoGtN7OvywlFyY-7nsO_AeAkZpY |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkQoXxJtAASOBEEirOOvnIiFUCFFLaZUDlXrb2rveNlK6SfNQVX4av44Z74NGoHLqbRV7Ha9nPJ6xx99HyGuYezJ30kc96SQEKN5FNoYnw8BkWq_zJOB07-2r7QPx7VAerpFfzV0YTKtsbGIw1Pkkwz3yLl7Z7HERM9Et6rSIYX_waXoWIYMUnrQ2dBqViuz6i3MI3-Yfd_og6zdxPPj648t2VDMMRJmUahFZyZxxojA9XyQiFj63Pk9Yob3KMsad10YiYGiRe-2SjHkk5NawSFvmYpFpDu3eIDc15wmmE-pD3e7vMI5A8OEmHtSPBFeyOiWFmDDpFshBhIlliJYZI9n4pVUxkAf8y-P9O3Hz1rKc2otzOx5fWhUHd8md2p2lW5X-3SNrvrxPNvbqA_sH5Kzv_ZTWIK7HdFTSrfHPEz869bO3c9qvToc-wENI-INGaGDpxPyloDLUljkdziZN6XCGTYeSkOxAA7jI6DRwLdG-XdiH5OBaZPCIrJeT0j8hVBunYTStU86ITBpnjYIIouAqU1YmvkO6zSinWQ2Bjkwc4xRCIZRLGuSSolzSIJcOede-Ma3gP66o-xkF19ZD4O7ww2R2nNZ2IJVFrGzOjRAJFyzTxnKV5E7oxENgylSHbDZiT2trMk__6H6HvGqLwQ7g4Y4t_WSJdQz4wuhAdsjjSkvannBoumcS6KFe0Z-Vrq6WlKOTgDWuwAMVAv73fatp_x2Ip1d_w0uyATM3_b6zv_uM3MbXcI8-ZptkfTFb-ufg5C3cizCbKDm67un7GxA1ZDA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdQJwEv4xsCAxkJCYGUzU38yVuhTBPSpj5QaTxFtuOwii7t-iHE_nrunDRaYeLjLYkdxz7fxXe-8-8IeQWyJ0onQtoXToCBElxqM7jSDH6ZNqjSRJzu4xN5NOafTsVpu9-BZ2Gu-O_BeDIHFSbrwQgshJXMMjDOd6QArbtHdsYno8EXtKdg0Ux5LkXjhbz2ta1VJ4LzX6dR_h4YeWtdz-2P73Y6vbLqHN5pIJCWEawQg02-7a9Xbt9f_gLl-C8Dukt2W9WTDhpeuUduhPo-uXncOtcfkIthCHPaAq5-pZOaDqaXZ2FyHhavl3TYeHLewUUMzoNGaMyoibFGcXqprUs6Wsw2paMFNh1LYmACjUAgk_OYF4kO7co-JOPDj58_HKVtRobUCyFXqRXMaccr3Q-V4RkPpQ2lYZUK0nuWu6C0QIDVqgzKGc8CJjBXMD-WuYx7lT8ivXpWhyeEKu0UjN866TT3QjurJWj7VS69tMKEhBxsZqzwLVw5Zs2YFmC2ICWLSMkCKVlESibkTffGvIHq-EPd98gEXT0E2Y4PYKqKVmYLUWXSlrnm3OSceaVtLk3puDIBjEgmE7K3YaGilfxlgUeL-znPGE_Iy64YZBYdMbYOszXW0aC3orKXkMcNx3U9yaHpvjbQQ7XFi1td3S6pJ2cRF1yCtsg5fPdtx7V_JcTT_6n8jNzGG9xSz9ge6a0W6_AcdLKVe9GK408JwTJV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+in+Alzheimer%27s+Disease%3A+Diagnostic+Classification+and+Prognostic+Prediction+Using+Neuroimaging+Data&rft.jtitle=Frontiers+in+aging+neuroscience&rft.au=Jo%2C+Taeho&rft.au=Nho%2C+Kwangsik&rft.au=Saykin%2C+Andrew+J&rft.date=2019-08-20&rft.issn=1663-4365&rft.eissn=1663-4365&rft.volume=11&rft.spage=220&rft_id=info:doi/10.3389%2Ffnagi.2019.00220&rft_id=info%3Apmid%2F31481890&rft.externalDocID=31481890 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1663-4365&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1663-4365&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1663-4365&client=summon |