Atrial fibrillation in the presence and absence of heart failure enhances expression of genes involved in cardiomyocyte structure, conduction properties, fibrosis, inflammation, and endothelial dysfunction

Little is known about genome-wide changes in the atrial transcriptome as a cause or consequence of atrial fibrillation (AF), and the effect of its common and clinically relevant comorbidity—heart failure (HF). The purpose of this study was to explore candidate disease processes for AF by investigati...

Full description

Saved in:
Bibliographic Details
Published inHeart rhythm Vol. 19; no. 12; pp. 2115 - 2124
Main Authors Zeemering, Stef, Isaacs, Aaron, Winters, Joris, Maesen, Bart, Bidar, Elham, Dimopoulou, Christina, Guasch, Eduard, Batlle, Montserrat, Haase, Doreen, Hatem, Stéphane N., Kara, Mansour, Kääb, Stefan, Mont, Lluis, Sinner, Moritz F., Wakili, Reza, Maessen, Jos, Crijns, Harry J.G.M., Fabritz, Larissa, Kirchhof, Paulus, Stoll, Monika, Schotten, Ulrich
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2022
Elsevier
Subjects
Online AccessGet full text
ISSN1547-5271
1556-3871
1556-3871
DOI10.1016/j.hrthm.2022.08.019

Cover

Abstract Little is known about genome-wide changes in the atrial transcriptome as a cause or consequence of atrial fibrillation (AF), and the effect of its common and clinically relevant comorbidity—heart failure (HF). The purpose of this study was to explore candidate disease processes for AF by investigating gene expression changes in atrial tissue samples from patients with and without AF, stratified by HF. RNA sequencing was performed in right and left atrial appendage tissue in 195 patients undergoing open heart surgery from centers participating in the CATCH-ME consortium (no history of AF, n = 91; paroxysmal AF, n = 53; persistent/permanent AF, n = 51). Analyses were stratified into patients with/without HF (n = 75/120) and adjusted for age, sex, atrial side, and a combination of clinical characteristics. We identified 35 genes associated with persistent AF compared to patients without a history of AF, both in the presence or absence of HF (false discovery rate <0.05). These were mostly novel associations, including 13 long noncoding RNAs. Genes were involved in regulation of cardiomyocyte structure, conduction properties, fibrosis, inflammation, and endothelial dysfunction. Gene set enrichment analysis identified mainly inflammatory gene sets to be enriched in AF patients without HF, and gene sets involved in cellular respiration in AF patients with HF. Analysis of atrial gene expression profiles identified numerous novel genes associated with persistent AF, in the presence or absence of HF. Interestingly, no consistent transcriptional changes were associated with paroxysmal AF, suggesting that AF-induced changes in gene expression predominate other changes.
AbstractList Background: Little is known about genome-wide changes in the atrial transcriptome as a cause or consequence of atrial fibrillation (AF), and the effect of its common and clinically relevant comorbidity-heart failure (HF).Objective: The purpose of this study was to explore candidate disease processes for AF by investigating gene expression changes in atrial tissue samples from patients with and without AF, stratified by HF.Methods: RNA sequencing was performed in right and left atrial appendage tissue in 195 patients undergoing open heart surgery from centers participating in the CATCH-ME consortium (no history of AF, n = 91; paroxysmal AF, n = 53; persistent/permanent AF, n = 51). Analyses were stratified into patients with/without HF (n = 75/120) and adjusted for age, sex, atrial side, and a combination of clinical characteristics.Results: We identified 35 genes associated with persistent AF compared to patients without a history of AF, both in the presence or absence of HF (false discovery rate <0.05). These were mostly novel associations, including 13 long noncoding RNAs. Genes were involved in regulation of cardiomyocyte structure, conduction properties, fibrosis, inflammation, and endothelial dysfunction. Gene set enrichment analysis identified mainly inflammatory gene sets to be enriched in AF patients without HF, and gene sets involved in cellular respiration in AF patients with HF.Conclusion: Analysis of atrial gene expression profiles identified numerous novel genes associated with persistent AF, in the presence or absence of HF. Interestingly, no consistent transcriptional changes were associated with paroxysmal AF, suggesting that AF-induced changes in gene expression predominate other changes.
Little is known about genome-wide changes in the atrial transcriptome as a cause or consequence of atrial fibrillation (AF), and the effect of its common and clinically relevant comorbidity—heart failure (HF). The purpose of this study was to explore candidate disease processes for AF by investigating gene expression changes in atrial tissue samples from patients with and without AF, stratified by HF. RNA sequencing was performed in right and left atrial appendage tissue in 195 patients undergoing open heart surgery from centers participating in the CATCH-ME consortium (no history of AF, n = 91; paroxysmal AF, n = 53; persistent/permanent AF, n = 51). Analyses were stratified into patients with/without HF (n = 75/120) and adjusted for age, sex, atrial side, and a combination of clinical characteristics. We identified 35 genes associated with persistent AF compared to patients without a history of AF, both in the presence or absence of HF (false discovery rate <0.05). These were mostly novel associations, including 13 long noncoding RNAs. Genes were involved in regulation of cardiomyocyte structure, conduction properties, fibrosis, inflammation, and endothelial dysfunction. Gene set enrichment analysis identified mainly inflammatory gene sets to be enriched in AF patients without HF, and gene sets involved in cellular respiration in AF patients with HF. Analysis of atrial gene expression profiles identified numerous novel genes associated with persistent AF, in the presence or absence of HF. Interestingly, no consistent transcriptional changes were associated with paroxysmal AF, suggesting that AF-induced changes in gene expression predominate other changes.
Little is known about genome-wide changes in the atrial transcriptome as a cause or consequence of atrial fibrillation (AF), and the effect of its common and clinically relevant comorbidity-heart failure (HF).BACKGROUNDLittle is known about genome-wide changes in the atrial transcriptome as a cause or consequence of atrial fibrillation (AF), and the effect of its common and clinically relevant comorbidity-heart failure (HF).The purpose of this study was to explore candidate disease processes for AF by investigating gene expression changes in atrial tissue samples from patients with and without AF, stratified by HF.OBJECTIVEThe purpose of this study was to explore candidate disease processes for AF by investigating gene expression changes in atrial tissue samples from patients with and without AF, stratified by HF.RNA sequencing was performed in right and left atrial appendage tissue in 195 patients undergoing open heart surgery from centers participating in the CATCH-ME consortium (no history of AF, n = 91; paroxysmal AF, n = 53; persistent/permanent AF, n = 51). Analyses were stratified into patients with/without HF (n = 75/120) and adjusted for age, sex, atrial side, and a combination of clinical characteristics.METHODSRNA sequencing was performed in right and left atrial appendage tissue in 195 patients undergoing open heart surgery from centers participating in the CATCH-ME consortium (no history of AF, n = 91; paroxysmal AF, n = 53; persistent/permanent AF, n = 51). Analyses were stratified into patients with/without HF (n = 75/120) and adjusted for age, sex, atrial side, and a combination of clinical characteristics.We identified 35 genes associated with persistent AF compared to patients without a history of AF, both in the presence or absence of HF (false discovery rate <0.05). These were mostly novel associations, including 13 long noncoding RNAs. Genes were involved in regulation of cardiomyocyte structure, conduction properties, fibrosis, inflammation, and endothelial dysfunction. Gene set enrichment analysis identified mainly inflammatory gene sets to be enriched in AF patients without HF, and gene sets involved in cellular respiration in AF patients with HF.RESULTSWe identified 35 genes associated with persistent AF compared to patients without a history of AF, both in the presence or absence of HF (false discovery rate <0.05). These were mostly novel associations, including 13 long noncoding RNAs. Genes were involved in regulation of cardiomyocyte structure, conduction properties, fibrosis, inflammation, and endothelial dysfunction. Gene set enrichment analysis identified mainly inflammatory gene sets to be enriched in AF patients without HF, and gene sets involved in cellular respiration in AF patients with HF.Analysis of atrial gene expression profiles identified numerous novel genes associated with persistent AF, in the presence or absence of HF. Interestingly, no consistent transcriptional changes were associated with paroxysmal AF, suggesting that AF-induced changes in gene expression predominate other changes.CONCLUSIONAnalysis of atrial gene expression profiles identified numerous novel genes associated with persistent AF, in the presence or absence of HF. Interestingly, no consistent transcriptional changes were associated with paroxysmal AF, suggesting that AF-induced changes in gene expression predominate other changes.
Author Guasch, Eduard
Crijns, Harry J.G.M.
Bidar, Elham
Mont, Lluis
Zeemering, Stef
Wakili, Reza
Kirchhof, Paulus
Maesen, Bart
Hatem, Stéphane N.
Kara, Mansour
Batlle, Montserrat
Haase, Doreen
Isaacs, Aaron
Winters, Joris
Sinner, Moritz F.
Fabritz, Larissa
Schotten, Ulrich
Maessen, Jos
Stoll, Monika
Dimopoulou, Christina
Kääb, Stefan
Author_xml – sequence: 1
  givenname: Stef
  surname: Zeemering
  fullname: Zeemering, Stef
  organization: Department of Physiology, Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, the Netherlands
– sequence: 2
  givenname: Aaron
  surname: Isaacs
  fullname: Isaacs, Aaron
  organization: Department of Physiology, Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, the Netherlands
– sequence: 3
  givenname: Joris
  surname: Winters
  fullname: Winters, Joris
  organization: Department of Physiology, Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, the Netherlands
– sequence: 4
  givenname: Bart
  surname: Maesen
  fullname: Maesen, Bart
  organization: Department of Cardiothoracic Surgery, Maastricht University Medical Centre, University Maastricht, Maastricht, the Netherlands
– sequence: 5
  givenname: Elham
  surname: Bidar
  fullname: Bidar, Elham
  organization: Department of Cardiothoracic Surgery, Maastricht University Medical Centre, University Maastricht, Maastricht, the Netherlands
– sequence: 6
  givenname: Christina
  surname: Dimopoulou
  fullname: Dimopoulou, Christina
  organization: European Society of Cardiology, Sophia Antipolis, France
– sequence: 7
  givenname: Eduard
  surname: Guasch
  fullname: Guasch, Eduard
  organization: Cardiovascular Institute, Hospital Clinic Barcelona, Barcelona, Spain
– sequence: 8
  givenname: Montserrat
  surname: Batlle
  fullname: Batlle, Montserrat
  organization: Institut d’Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain
– sequence: 9
  givenname: Doreen
  surname: Haase
  fullname: Haase, Doreen
  organization: Atrial Fibrillation NETwork, Muenster, Germany
– sequence: 10
  givenname: Stéphane N.
  surname: Hatem
  fullname: Hatem, Stéphane N.
  organization: INSERM UMRS1166, Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France
– sequence: 11
  givenname: Mansour
  surname: Kara
  fullname: Kara, Mansour
  organization: Institut de Cardiologie, Hôpital Pitié-Salpêtrière, Paris, France
– sequence: 12
  givenname: Stefan
  surname: Kääb
  fullname: Kääb, Stefan
  organization: Department of Medicine I, University Hospital, Munich, Germany
– sequence: 13
  givenname: Lluis
  surname: Mont
  fullname: Mont, Lluis
  organization: European Society of Cardiology, Sophia Antipolis, France
– sequence: 14
  givenname: Moritz F.
  surname: Sinner
  fullname: Sinner, Moritz F.
  organization: Department of Medicine I, University Hospital, Munich, Germany
– sequence: 15
  givenname: Reza
  surname: Wakili
  fullname: Wakili, Reza
  organization: German Centre for Cardiovascular Research, partner site Munich Heart, Munich, Germany
– sequence: 16
  givenname: Jos
  surname: Maessen
  fullname: Maessen, Jos
  organization: Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands
– sequence: 17
  givenname: Harry J.G.M.
  surname: Crijns
  fullname: Crijns, Harry J.G.M.
  organization: Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
– sequence: 18
  givenname: Larissa
  surname: Fabritz
  fullname: Fabritz, Larissa
  organization: Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
– sequence: 19
  givenname: Paulus
  surname: Kirchhof
  fullname: Kirchhof, Paulus
  organization: INSERM UMRS1166, Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France
– sequence: 20
  givenname: Monika
  surname: Stoll
  fullname: Stoll, Monika
  organization: Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands
– sequence: 21
  givenname: Ulrich
  surname: Schotten
  fullname: Schotten, Ulrich
  email: schotten@maastrichtuniversity.nl
  organization: Department of Physiology, Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36007727$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03984845$$DView record in HAL
BookMark eNqFUs2OFCEY7Jg17o8-gYnhqMnMCM3Q0DEeJht1TSbxomfCwNc2YzeMQE-ch_SdhJ51D3vZE18-qipFUdfVhfMOquo1wSuCSfN-v-pD6sdVjet6hcUKk_ZZdUUYa5ZUcHJR5jVfspqTy-o6xj3Gddtg-qK6pA3GnNf8qvq7ScGqAXV2F-wwqGS9Q9ah1AM6BIjgNCDlDFK78-w71IMKCXXKDlMABK5X-SIi-FMIsQhk0E9weWfd0Q9HMEVSq2CsH09enxKgmMKkUxZYIO2dyXMhHoI_QEgW4mK25KPNk3XdoMZxNreY3YAzPlscinVzit3kZv7L6nmnhgiv7s-b6sfnT99v75bbb1--3m62S53TSUtBgKwZV5rtDNWMCiMIxYxhxTWrsWoFbbkWjaZ5C8Jwo-uGdfWOgzI6R3hTvTvr9mqQh2BHFU7SKyvvNltZdpi2Yi3W7Egy9u0Zm9_2e4KY5Gijhpy1Az9FWXPMG9JSUWTf3EOn3QjmQfn_d2UAPQN0TiYG6B4gBMtSCrmXcylkKYXEQuZSZFb7iKVtmsNMIX_iE9yPZy7kOI8WgozaliIYG0Anabx9gv_hEV8P1lmthl9wepL9D7Ln7Ok
CitedBy_id crossref_primary_10_3389_fcvm_2023_1110707
crossref_primary_10_1038_s44161_024_00532_x
crossref_primary_10_1093_cvr_cvae169
crossref_primary_10_3390_cells12182242
crossref_primary_10_1161_JAHA_123_031220
crossref_primary_10_1161_CIRCGEN_124_004594
crossref_primary_10_1093_europace_euae204
crossref_primary_10_1111_acel_13910
crossref_primary_10_1016_j_yjmcc_2023_09_010
crossref_primary_10_1007_s00380_024_02362_0
crossref_primary_10_1002_iid3_70161
crossref_primary_10_1002_joa3_12847
crossref_primary_10_1038_s44161_025_00626_0
crossref_primary_10_1186_s13287_024_03814_0
crossref_primary_10_1007_s11033_024_10024_7
Cites_doi 10.1016/j.hrthm.2021.07.059
10.1101/gr.133744.111
10.1038/nature20149
10.1161/01.CIR.96.4.1180
10.1016/j.ajhg.2017.12.003
10.1007/s00395-017-0635-0
10.1093/cvr/cvx004
10.1172/JCI92171
10.1038/s41467-019-11982-4
10.1093/bioinformatics/btu684
10.1093/nar/gky1131
10.1186/s12915-015-0138-0
10.3389/fphys.2018.01383
10.1093/nar/gku864
10.1080/03610910701855005
10.1038/nrcardio.2015.194
10.1161/01.RES.0000197783.70106.4a
10.1161/CIRCULATIONAHA.118.035202
10.1161/CIRCULATIONAHA.115.018614
10.1089/omi.2011.0118
10.1161/CIRCRESAHA.120.316710
10.1091/mbc.E18-08-0486
10.1161/hc4601.099402
10.1016/j.hrthm.2008.12.028
10.1172/JCI46315
10.1091/mbc.E15-04-0235
10.1186/s13059-014-0550-8
10.1161/CIRCEP.121.009887
10.1242/dev.086157
10.1161/01.RES.0000258428.09589.1a
10.1161/CIRCULATIONAHA.113.006641
ContentType Journal Article
Copyright 2022
Crown Copyright © 2022. Published by Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022
– notice: Crown Copyright © 2022. Published by Elsevier Inc. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
DOI 10.1016/j.hrthm.2022.08.019
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1556-3871
EndPage 2124
ExternalDocumentID oai_HAL_hal_03984845v1
36007727
10_1016_j_hrthm_2022_08_019
S1547527122023153
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Union
  funderid: https://doi.org/10.13039/501100000780
– fundername: ITN
  funderid: https://doi.org/10.13039/100007913
– fundername: Medical Research Council
  funderid: https://doi.org/10.13039/501100000265
– fundername: DFG
  funderid: https://doi.org/10.13039/501100001659
– fundername: Gilead
  funderid: https://doi.org/10.13039/100016016
– fundername: Leducq Foundation
  funderid: https://doi.org/10.13039/501100001674
– fundername: FS
  funderid: https://doi.org/10.13039/100006959
– fundername: UK
– fundername: Heart Foundation
  funderid: https://doi.org/10.13039/100002129
– fundername: British Heart Foundation
  funderid: https://doi.org/10.13039/501100000274
– fundername: British Heart Foundation
  grantid: PG/17/30/32961
– fundername: British Heart Foundation
  grantid: FS/13/43/30324
GroupedDBID ---
--K
.1-
.FO
0R~
1B1
1P~
4.4
457
53G
5GY
5VS
AAEDT
AAEDW
AALRI
AAQFI
AAQQT
AAWTL
AAXUO
ABJNI
ABLJU
ABMAC
ABWVN
ACGFS
ACRPL
ADBBV
ADMUD
ADNMO
AENEX
AEVXI
AFJKZ
AFRHN
AFTJW
AGCQF
AIGII
AITUG
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BELOY
CS3
DU5
EBS
EFJIC
EFKBS
EJD
F5P
FDB
G-Q
GBLVA
HZ~
IHE
J1W
K-O
M41
NQ-
O9-
OA.
OL~
P2P
ROL
RPZ
SEL
SES
SEW
XH2
Z5R
6I.
AAFTH
ADPAM
AFCTW
RIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
ID FETCH-LOGICAL-c556t-81e1457ac5bd3c538d8130550a7c520a98397c86c3305e8d7dc265f2b7eadc603
ISSN 1547-5271
1556-3871
IngestDate Wed Sep 24 08:24:07 EDT 2025
Thu Sep 04 17:04:21 EDT 2025
Thu Apr 03 07:07:01 EDT 2025
Tue Jul 01 04:01:42 EDT 2025
Thu Apr 24 23:03:26 EDT 2025
Tue Dec 03 03:45:03 EST 2024
Tue Aug 26 16:34:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Heart failure
RNA sequencing
Atrial tissue samples
Gene expression
Atrial fibrillation
Language English
License This is an open access article under the CC BY license.
Crown Copyright © 2022. Published by Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c556t-81e1457ac5bd3c538d8130550a7c520a98397c86c3305e8d7dc265f2b7eadc603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9790-0755
OpenAccessLink https://www.clinicalkey.com/#!/content/1-s2.0-S1547527122023153
PMID 36007727
PQID 2707619380
PQPubID 23479
PageCount 10
ParticipantIDs hal_primary_oai_HAL_hal_03984845v1
proquest_miscellaneous_2707619380
pubmed_primary_36007727
crossref_primary_10_1016_j_hrthm_2022_08_019
crossref_citationtrail_10_1016_j_hrthm_2022_08_019
elsevier_sciencedirect_doi_10_1016_j_hrthm_2022_08_019
elsevier_clinicalkey_doi_10_1016_j_hrthm_2022_08_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
2022-12
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Heart rhythm
PublicationTitleAlternate Heart Rhythm
PublicationYear 2022
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Nielsen, Fritsche, Zhou (bib1) 2018; 102
Van de Mark, Kong, Loncarek, Stearns, Chang (bib20) 2015; 26
Cardin, Libby, Pelletier (bib7) 2007; 100
Meyer-Roxlau, Lämmle, Opitz (bib24) 2017; 112
Online (bib15) 2020
Engreitz, Haines, Perez (bib33) 2016; 539
Frustaci, Chimenti, Bellocci, Morgante, Russo, Maseri (bib35) 1997; 96
Schmidt, Wiedmann, Zhou (bib4) 2017; 38
Anders, Reyes, Huber (bib11) 2012; 22
Chen, Surinkaew, Naud (bib28) 2017; 113
van den Berg, Neefs, Kawasaki (bib32) 2021; 18
Leek (bib9) 2014; 42
Boscher, Gaonac'h-Lovejoy, Delisle, Gratton (bib29) 2019; 30
Santhanakrishnan, Wang, Larson (bib6) 2016; 133
Molina, Abu-Taha, Wang (bib5) 2018; 9
Workman, Pau, Redpath (bib3) 2009; 6
Revelle (bib17) 2019
Heijman, Muna, Veleva (bib27) 2020; 127
Harrell (bib16) 2020
Szklarczyk, Gable, Lyon (bib14) 2019; 47
Yu, Wang, Yan, He (bib13) 2015; 31
Kant, Craige, Chen (bib30) 2019; 10
Voigt, Heijman, Wang (bib19) 2014; 129
Wakili, Voigt, Kääb, Dobrev, Nattel (bib23) 2011; 121
Nakajima, Nakajima, Dembowsky, Pasumarthi, Field (bib21) 2006; 98
Leblanc, Hassani, Liesinger (bib18) 2021; 14
Auer, Gervini (bib8) 2008; 37
Li, Shinagawa, Pang (bib25) 2001; 104
Yu, Wang, Han, He (bib12) 2012; 16
Love, Huber, Anders (bib10) 2014; 15
Yao, Veleva, Scott (bib26) 2018; 138
Lessel, Wu, Trujillo (bib22) 2017; 127
Fabritz, Guasch, Antoniades (bib2) 2015; 13
Aguirre, Alonso, Badía-Careaga (bib34) 2015; 13
Liu, Zhang, Xie (bib31) 2013; 140
Cardin (10.1016/j.hrthm.2022.08.019_bib7) 2007; 100
Aguirre (10.1016/j.hrthm.2022.08.019_bib34) 2015; 13
Boscher (10.1016/j.hrthm.2022.08.019_bib29) 2019; 30
Meyer-Roxlau (10.1016/j.hrthm.2022.08.019_bib24) 2017; 112
Liu (10.1016/j.hrthm.2022.08.019_bib31) 2013; 140
Nielsen (10.1016/j.hrthm.2022.08.019_bib1) 2018; 102
Harrell (10.1016/j.hrthm.2022.08.019_bib16)
Leblanc (10.1016/j.hrthm.2022.08.019_bib18) 2021; 14
Kant (10.1016/j.hrthm.2022.08.019_bib30) 2019; 10
Revelle (10.1016/j.hrthm.2022.08.019_bib17)
Workman (10.1016/j.hrthm.2022.08.019_bib3) 2009; 6
Molina (10.1016/j.hrthm.2022.08.019_bib5) 2018; 9
Auer (10.1016/j.hrthm.2022.08.019_bib8) 2008; 37
Love (10.1016/j.hrthm.2022.08.019_bib10) 2014; 15
Lessel (10.1016/j.hrthm.2022.08.019_bib22) 2017; 127
Yu (10.1016/j.hrthm.2022.08.019_bib13) 2015; 31
Schmidt (10.1016/j.hrthm.2022.08.019_bib4) 2017; 38
Leek (10.1016/j.hrthm.2022.08.019_bib9) 2014; 42
van den Berg (10.1016/j.hrthm.2022.08.019_bib32) 2021; 18
Yao (10.1016/j.hrthm.2022.08.019_bib26) 2018; 138
Yu (10.1016/j.hrthm.2022.08.019_bib12) 2012; 16
Online (10.1016/j.hrthm.2022.08.019_bib15)
Fabritz (10.1016/j.hrthm.2022.08.019_bib2) 2015; 13
Santhanakrishnan (10.1016/j.hrthm.2022.08.019_bib6) 2016; 133
Nakajima (10.1016/j.hrthm.2022.08.019_bib21) 2006; 98
Van de Mark (10.1016/j.hrthm.2022.08.019_bib20) 2015; 26
Wakili (10.1016/j.hrthm.2022.08.019_bib23) 2011; 121
Voigt (10.1016/j.hrthm.2022.08.019_bib19) 2014; 129
Li (10.1016/j.hrthm.2022.08.019_bib25) 2001; 104
Engreitz (10.1016/j.hrthm.2022.08.019_bib33) 2016; 539
Frustaci (10.1016/j.hrthm.2022.08.019_bib35) 1997; 96
Anders (10.1016/j.hrthm.2022.08.019_bib11) 2012; 22
Heijman (10.1016/j.hrthm.2022.08.019_bib27) 2020; 127
Szklarczyk (10.1016/j.hrthm.2022.08.019_bib14) 2019; 47
Chen (10.1016/j.hrthm.2022.08.019_bib28) 2017; 113
References_xml – volume: 38
  start-page: 1764
  year: 2017
  end-page: 1774
  ident: bib4
  article-title: Inverse remodelling of K2P3.1 K+ channel expression and action potential duration in left ventricular dysfunction and atrial fibrillation: implications for patient-specific antiarrhythmic drug therapy
  publication-title: Eur Heart J
– volume: 539
  start-page: 452
  year: 2016
  end-page: 455
  ident: bib33
  article-title: Local regulation of gene expression by lncRNA promoters, transcription and splicing
  publication-title: Nature
– year: 2020
  ident: bib15
  article-title: Mendelian Inheritance in Man
– volume: 31
  start-page: 608
  year: 2015
  end-page: 609
  ident: bib13
  article-title: DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis
  publication-title: Bioinformatics
– year: 2020
  ident: bib16
  article-title: Hmisc: Harrell Miscellaneous. R package version 4.4-0
– volume: 13
  start-page: 36
  year: 2015
  ident: bib34
  article-title: Long-range regulatory interactions at the 4q25 atrial fibrillation risk locus involve PITX2c and ENPEP
  publication-title: BMC Biol
– volume: 16
  start-page: 284
  year: 2012
  end-page: 287
  ident: bib12
  article-title: clusterProfiler: an R package for comparing biological themes among gene clusters
  publication-title: OMICS
– volume: 22
  start-page: 2008
  year: 2012
  end-page: 2017
  ident: bib11
  article-title: Detecting differential usage of exons from RNA-seq data
  publication-title: Genome Res
– volume: 121
  start-page: 2955
  year: 2011
  end-page: 2968
  ident: bib23
  article-title: Recent advances in the molecular pathophysiology of atrial fibrillation
  publication-title: J Clin Invest
– volume: 102
  start-page: 103
  year: 2018
  end-page: 115
  ident: bib1
  article-title: Genome-wide study of atrial fibrillation identifies seven risk loci and highlights biological pathways and regulatory elements involved in cardiac development
  publication-title: Am J Hum Genet
– volume: 26
  start-page: 3788
  year: 2015
  end-page: 3802
  ident: bib20
  article-title: MDM1 is a microtubule-binding protein that negatively regulates centriole duplication
  publication-title: Mol Biol Cell
– volume: 98
  start-page: 141
  year: 2006
  end-page: 148
  ident: bib21
  article-title: Cardiomyocyte cell cycle activation ameliorates fibrosis in the atrium
  publication-title: Circ Res
– volume: 129
  start-page: 145
  year: 2014
  end-page: 156
  ident: bib19
  article-title: Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation
  publication-title: Circulation
– volume: 112
  start-page: 43
  year: 2017
  ident: bib24
  article-title: Differential regulation of protein phosphatase 1 (PP1) isoforms in human heart failure and atrial fibrillation
  publication-title: Bas Res Cardiol
– volume: 14
  year: 2021
  ident: bib18
  article-title: Transcriptomic profiling of canine atrial fibrillation models after one week of sustained arrhythmia
  publication-title: Circ Arrhythm Electrophysiol
– volume: 100
  start-page: 425
  year: 2007
  end-page: 433
  ident: bib7
  article-title: Contrasting gene expression profiles in two canine models of atrial fibrillation
  publication-title: Circ Res
– volume: 104
  start-page: 2608
  year: 2001
  end-page: 2614
  ident: bib25
  article-title: Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure
  publication-title: Circulation
– volume: 10
  start-page: 4223
  year: 2019
  ident: bib30
  article-title: Neural JNK3 regulates blood flow recovery after hindlimb ischemia in mice via an Egr1/Creb1 axis
  publication-title: Nat Commun
– year: 2019
  ident: bib17
  article-title: psych: Procedures for Psychological, Psychometric, and Personality Research. R package version 1.9.12
– volume: 127
  start-page: 3598
  year: 2017
  end-page: 3608
  ident: bib22
  article-title: Dysfunction of the MDM2/p53 axis is linked to premature aging
  publication-title: J Clin Invest
– volume: 133
  start-page: 484
  year: 2016
  end-page: 492
  ident: bib6
  article-title: Atrial fibrillation begets heart failure and vice versa
  publication-title: Circulation
– volume: 96
  start-page: 1180
  year: 1997
  end-page: 1184
  ident: bib35
  article-title: Histological substrate of atrial biopsies in patients with lone atrial fibrillation
  publication-title: Circulation
– volume: 42
  start-page: e161
  year: 2014
  ident: bib9
  article-title: svaseq: removing batch effects and other unwanted noise from sequencing data
  publication-title: Nucleic Acids Res
– volume: 30
  start-page: 2227
  year: 2019
  end-page: 2239
  ident: bib29
  article-title: Polarization and sprouting of endothelial cells by angiopoietin-1 require PAK2 and paxillin-dependent Cdc42 activation
  publication-title: Mol Biol Cell
– volume: 127
  start-page: 1036
  year: 2020
  end-page: 1055
  ident: bib27
  article-title: Atrial myocyte NLRP3/CaMKII nexus forms a substrate for postoperative atrial fibrillation
  publication-title: Circ Res
– volume: 37
  start-page: 962
  year: 2008
  end-page: 977
  ident: bib8
  article-title: Choosing principal components: a new graphical method based on Bayesian model selection
  publication-title: Commun Stat Simul Comput
– volume: 6
  start-page: 445
  year: 2009
  end-page: 451
  ident: bib3
  article-title: Atrial cellular electrophysiological changes in patients with ventricular dysfunction may predispose to AF
  publication-title: Heart Rhythm
– volume: 47
  start-page: D607
  year: 2019
  end-page: D613
  ident: bib14
  article-title: STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets
  publication-title: Nucleic Acids Res
– volume: 113
  start-page: 310
  year: 2017
  end-page: 320
  ident: bib28
  article-title: JAK-STAT signalling and the atrial fibrillation promoting fibrotic substrate
  publication-title: Cardiovasc Res
– volume: 18
  start-page: 2115
  year: 2021
  end-page: 2125
  ident: bib32
  article-title: Extracellular matrix remodeling precedes atrial fibrillation: results of the PREDICT-AF trial
  publication-title: Heart Rhythm
– volume: 13
  start-page: 230
  year: 2015
  end-page: 237
  ident: bib2
  article-title: Defining the major health modifiers causing atrial fibrillation: a roadmap to underpin personalized prevention and treatment
  publication-title: Nat Rev Cardiol
– volume: 15
  start-page: 550
  year: 2014
  ident: bib10
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol
– volume: 140
  start-page: 1067
  year: 2013
  end-page: 1078
  ident: bib31
  article-title: Eaf1 and Eaf2 negatively regulate canonical Wnt/β-catenin signaling
  publication-title: Development
– volume: 9
  start-page: 1383
  year: 2018
  ident: bib5
  article-title: Profibrotic, electrical, and calcium-handling remodeling of the atria in heart failure patients with and without atrial fibrillation
  publication-title: Front Physiol
– volume: 138
  start-page: 2227
  year: 2018
  end-page: 2242
  ident: bib26
  article-title: Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation
  publication-title: Circulation
– volume: 18
  start-page: 2115
  year: 2021
  ident: 10.1016/j.hrthm.2022.08.019_bib32
  article-title: Extracellular matrix remodeling precedes atrial fibrillation: results of the PREDICT-AF trial
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2021.07.059
– volume: 22
  start-page: 2008
  year: 2012
  ident: 10.1016/j.hrthm.2022.08.019_bib11
  article-title: Detecting differential usage of exons from RNA-seq data
  publication-title: Genome Res
  doi: 10.1101/gr.133744.111
– volume: 539
  start-page: 452
  year: 2016
  ident: 10.1016/j.hrthm.2022.08.019_bib33
  article-title: Local regulation of gene expression by lncRNA promoters, transcription and splicing
  publication-title: Nature
  doi: 10.1038/nature20149
– volume: 96
  start-page: 1180
  year: 1997
  ident: 10.1016/j.hrthm.2022.08.019_bib35
  article-title: Histological substrate of atrial biopsies in patients with lone atrial fibrillation
  publication-title: Circulation
  doi: 10.1161/01.CIR.96.4.1180
– volume: 102
  start-page: 103
  year: 2018
  ident: 10.1016/j.hrthm.2022.08.019_bib1
  article-title: Genome-wide study of atrial fibrillation identifies seven risk loci and highlights biological pathways and regulatory elements involved in cardiac development
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2017.12.003
– ident: 10.1016/j.hrthm.2022.08.019_bib16
– volume: 112
  start-page: 43
  year: 2017
  ident: 10.1016/j.hrthm.2022.08.019_bib24
  article-title: Differential regulation of protein phosphatase 1 (PP1) isoforms in human heart failure and atrial fibrillation
  publication-title: Bas Res Cardiol
  doi: 10.1007/s00395-017-0635-0
– volume: 113
  start-page: 310
  year: 2017
  ident: 10.1016/j.hrthm.2022.08.019_bib28
  article-title: JAK-STAT signalling and the atrial fibrillation promoting fibrotic substrate
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvx004
– volume: 127
  start-page: 3598
  year: 2017
  ident: 10.1016/j.hrthm.2022.08.019_bib22
  article-title: Dysfunction of the MDM2/p53 axis is linked to premature aging
  publication-title: J Clin Invest
  doi: 10.1172/JCI92171
– volume: 10
  start-page: 4223
  year: 2019
  ident: 10.1016/j.hrthm.2022.08.019_bib30
  article-title: Neural JNK3 regulates blood flow recovery after hindlimb ischemia in mice via an Egr1/Creb1 axis
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-11982-4
– volume: 31
  start-page: 608
  year: 2015
  ident: 10.1016/j.hrthm.2022.08.019_bib13
  article-title: DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu684
– volume: 47
  start-page: D607
  year: 2019
  ident: 10.1016/j.hrthm.2022.08.019_bib14
  article-title: STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1131
– volume: 13
  start-page: 36
  year: 2015
  ident: 10.1016/j.hrthm.2022.08.019_bib34
  article-title: Long-range regulatory interactions at the 4q25 atrial fibrillation risk locus involve PITX2c and ENPEP
  publication-title: BMC Biol
  doi: 10.1186/s12915-015-0138-0
– volume: 9
  start-page: 1383
  year: 2018
  ident: 10.1016/j.hrthm.2022.08.019_bib5
  article-title: Profibrotic, electrical, and calcium-handling remodeling of the atria in heart failure patients with and without atrial fibrillation
  publication-title: Front Physiol
  doi: 10.3389/fphys.2018.01383
– volume: 42
  start-page: e161
  year: 2014
  ident: 10.1016/j.hrthm.2022.08.019_bib9
  article-title: svaseq: removing batch effects and other unwanted noise from sequencing data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku864
– volume: 37
  start-page: 962
  year: 2008
  ident: 10.1016/j.hrthm.2022.08.019_bib8
  article-title: Choosing principal components: a new graphical method based on Bayesian model selection
  publication-title: Commun Stat Simul Comput
  doi: 10.1080/03610910701855005
– ident: 10.1016/j.hrthm.2022.08.019_bib15
– volume: 13
  start-page: 230
  year: 2015
  ident: 10.1016/j.hrthm.2022.08.019_bib2
  article-title: Defining the major health modifiers causing atrial fibrillation: a roadmap to underpin personalized prevention and treatment
  publication-title: Nat Rev Cardiol
  doi: 10.1038/nrcardio.2015.194
– volume: 98
  start-page: 141
  year: 2006
  ident: 10.1016/j.hrthm.2022.08.019_bib21
  article-title: Cardiomyocyte cell cycle activation ameliorates fibrosis in the atrium
  publication-title: Circ Res
  doi: 10.1161/01.RES.0000197783.70106.4a
– ident: 10.1016/j.hrthm.2022.08.019_bib17
– volume: 138
  start-page: 2227
  year: 2018
  ident: 10.1016/j.hrthm.2022.08.019_bib26
  article-title: Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.118.035202
– volume: 133
  start-page: 484
  year: 2016
  ident: 10.1016/j.hrthm.2022.08.019_bib6
  article-title: Atrial fibrillation begets heart failure and vice versa
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.018614
– volume: 16
  start-page: 284
  year: 2012
  ident: 10.1016/j.hrthm.2022.08.019_bib12
  article-title: clusterProfiler: an R package for comparing biological themes among gene clusters
  publication-title: OMICS
  doi: 10.1089/omi.2011.0118
– volume: 127
  start-page: 1036
  year: 2020
  ident: 10.1016/j.hrthm.2022.08.019_bib27
  article-title: Atrial myocyte NLRP3/CaMKII nexus forms a substrate for postoperative atrial fibrillation
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.120.316710
– volume: 30
  start-page: 2227
  year: 2019
  ident: 10.1016/j.hrthm.2022.08.019_bib29
  article-title: Polarization and sprouting of endothelial cells by angiopoietin-1 require PAK2 and paxillin-dependent Cdc42 activation
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E18-08-0486
– volume: 104
  start-page: 2608
  year: 2001
  ident: 10.1016/j.hrthm.2022.08.019_bib25
  article-title: Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure
  publication-title: Circulation
  doi: 10.1161/hc4601.099402
– volume: 6
  start-page: 445
  year: 2009
  ident: 10.1016/j.hrthm.2022.08.019_bib3
  article-title: Atrial cellular electrophysiological changes in patients with ventricular dysfunction may predispose to AF
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2008.12.028
– volume: 121
  start-page: 2955
  year: 2011
  ident: 10.1016/j.hrthm.2022.08.019_bib23
  article-title: Recent advances in the molecular pathophysiology of atrial fibrillation
  publication-title: J Clin Invest
  doi: 10.1172/JCI46315
– volume: 26
  start-page: 3788
  year: 2015
  ident: 10.1016/j.hrthm.2022.08.019_bib20
  article-title: MDM1 is a microtubule-binding protein that negatively regulates centriole duplication
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E15-04-0235
– volume: 15
  start-page: 550
  year: 2014
  ident: 10.1016/j.hrthm.2022.08.019_bib10
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– volume: 14
  year: 2021
  ident: 10.1016/j.hrthm.2022.08.019_bib18
  article-title: Transcriptomic profiling of canine atrial fibrillation models after one week of sustained arrhythmia
  publication-title: Circ Arrhythm Electrophysiol
  doi: 10.1161/CIRCEP.121.009887
– volume: 140
  start-page: 1067
  year: 2013
  ident: 10.1016/j.hrthm.2022.08.019_bib31
  article-title: Eaf1 and Eaf2 negatively regulate canonical Wnt/β-catenin signaling
  publication-title: Development
  doi: 10.1242/dev.086157
– volume: 100
  start-page: 425
  year: 2007
  ident: 10.1016/j.hrthm.2022.08.019_bib7
  article-title: Contrasting gene expression profiles in two canine models of atrial fibrillation
  publication-title: Circ Res
  doi: 10.1161/01.RES.0000258428.09589.1a
– volume: 38
  start-page: 1764
  year: 2017
  ident: 10.1016/j.hrthm.2022.08.019_bib4
  article-title: Inverse remodelling of K2P3.1 K+ channel expression and action potential duration in left ventricular dysfunction and atrial fibrillation: implications for patient-specific antiarrhythmic drug therapy
  publication-title: Eur Heart J
– volume: 129
  start-page: 145
  year: 2014
  ident: 10.1016/j.hrthm.2022.08.019_bib19
  article-title: Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.113.006641
SSID ssj0029603
Score 2.4711993
Snippet Little is known about genome-wide changes in the atrial transcriptome as a cause or consequence of atrial fibrillation (AF), and the effect of its common and...
Background: Little is known about genome-wide changes in the atrial transcriptome as a cause or consequence of atrial fibrillation (AF), and the effect of its...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2115
SubjectTerms Atrial Fibrillation
Atrial tissue samples
Fibrosis
Gene expression
Heart Failure
Humans
Inflammation - complications
Inflammation - genetics
Life Sciences
Myocytes, Cardiac
RNA sequencing
Title Atrial fibrillation in the presence and absence of heart failure enhances expression of genes involved in cardiomyocyte structure, conduction properties, fibrosis, inflammation, and endothelial dysfunction
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1547527122023153
https://dx.doi.org/10.1016/j.hrthm.2022.08.019
https://www.ncbi.nlm.nih.gov/pubmed/36007727
https://www.proquest.com/docview/2707619380
https://hal.science/hal-03984845
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9pAEF4RIlW9VH2XvrStegtEftscSZUUVSQ9FFpuq_V6KUTERmAi0b9Y9T91Zh_GKI-mvVjWyrusmc_jmfU33xLyIcqElwiHd_zAkZ1ggo8UBM6dVKYi9L0kk0IRZM-i_ij4PA7HjcavGmtpXaaH4ue1dSX_Y1VoA7tilew_WLYaFBrgHOwLR7AwHO9k457ec2OCtP25JrVZ3uJClRWZagCe6nMdGC7LgwmfIR39QOZTtPoKhf41IVZFjz_QAcJI4LouJYozoYB1NisuNoXYlKhJi6Kza718DQl1piVokey1QJ62dj04rWKlNQzgbgF6ukzSEkZlnmH51xxvIdus8A1bocSEy3012-V0U04vqiVuiTXNZiuWr6WcbNHNuWY99fhyyy74jooYS_O5YzmrcohTLs3q05EVejKrH55XY5IYhx1GqA-sm-Q1bdbLd-to9nZ8ti4ovfIy0esa54fTJdzkIf66Uns1I-1Id599YSejwYANj8fDPbLvxRDINcn-p6PBt16V_0OyqOo97PSsCJaiG175kZsCpb0pMnZvSodUWDR8SB6YfIb2NDgfkYbMH5N7p4ax8YT81hildYzSWU7B8NRilAIaqMEoLSZUYZQajFKLUbrFKF6kMEotRnHIHYzSCqNtukUo3SK0TS0-27SOzraaTQ2btIbNp2R0cjz82O-YLUQ6Av7lspO40g3CmIswzXxwPkmWuKhx5_BYhJ7Du5AfxCKJhA-tMslicF1ROPHSGDysAHs9I828yOULQqEDhNYchovSgDtpl0fCy5zICYXbTWW3RTxrLyaMvj5u8zJnlkh5zpSRGRqZ4eavLnRqV50WWl7m9ssDCwRmK6fhXc8Asbd3i6puJrDWAfPfO74HtFUzQyn6fm_AsM3xu0mQBOGl2yLvLBgZvJvwgyPPZbFeMS9Wq6R-4rTIc43SaiwfN8aA5OnlHXq_Ive3z_5r0gQAyTeQC5TpW_OM_QEDxxYy
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atrial+fibrillation+in+the+presence+and+absence+of+heart+failure+enhances+expression+of+genes+involved+in+cardiomyocyte+structure%2C+conduction+properties%2C+fibrosis%2C+inflammation%2C+and+endothelial+dysfunction&rft.jtitle=Heart+rhythm&rft.au=Zeemering%2C+Stef&rft.au=Isaacs%2C+Aaron&rft.au=Winters%2C+Joris&rft.au=Maesen%2C+Bart&rft.date=2022-12-01&rft.issn=1556-3871&rft.eissn=1556-3871&rft.volume=19&rft.issue=12&rft.spage=2115&rft_id=info:doi/10.1016%2Fj.hrthm.2022.08.019&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1547-5271&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1547-5271&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1547-5271&client=summon