Particle dynamics in spherically symmetric electro-vacuum instantons

In this paper, we study the geodesic motion in spherically symmetric electro-vacuum Euclidean solutions of the Einstein equation. There are two kinds of such solutions: the Euclidean Reissner–Nordström (ERN) metrics, and the Bertotti–Robinson-like (BR) metrics, the latter having constant Kretschmann...

Full description

Saved in:
Bibliographic Details
Published inThe European physical journal. C, Particles and fields Vol. 84; no. 4; pp. 374 - 26
Main Author Garnier, Arthur
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2024
Springer
Springer Nature B.V
Springer Verlag (Germany)
SpringerOpen
Subjects
Online AccessGet full text
ISSN1434-6052
1434-6044
1434-6052
DOI10.1140/epjc/s10052-024-12719-4

Cover

Abstract In this paper, we study the geodesic motion in spherically symmetric electro-vacuum Euclidean solutions of the Einstein equation. There are two kinds of such solutions: the Euclidean Reissner–Nordström (ERN) metrics, and the Bertotti–Robinson-like (BR) metrics, the latter having constant Kretschmann scalar. First, we derive the motion equations for the ERN spacetime and we generalize the results of Battista–Esposito, showing that all orbits in as ERN spacetime are unbounded if and only if it has an event horizon. We also obtain the Weierstrass form of the polar radial motion, providing an efficient tool for numerical computations. We then study the angular deflection of orbits in the Euclidean Schwarzschild spacetime which, in contrast to the Lorentzian background, can be either positive or negative. We observe the presence of a null and a maximal deflection rings for particles with velocity at infinity v > 1 and we give approximate values for their size when v ≳ 1 . For BR spacetimes, we obtain analytic solutions for the radial motion in proper length, involving (hyperbolic) trigonometric functions and we deduce that orbits either exponentially go to the singularity or are periodic. Finally, we apply the previous results and use algorithms related to Weierstrass’ elliptic functions to produce a Python code to plot orbits of the spacetimes ERN and BR, and draw “shadows” of the first ones, as it was already done before for classical black holes.
AbstractList In this paper, we study the geodesic motion in spherically symmetric electro-vacuum Euclidean solutions of the Einstein equation. There are two kinds of such solutions: the Euclidean Reissner-Nordström (ERN) metrics, and the Bertotti-Robinson-like (BR) metrics, the latter having constant Kretschmann scalar. First, we derive the motion equations for the ERN spacetime and we generalize the results of Battista-Esposito, showing that all orbits in as ERN spacetime are unbounded if and only if it has an event horizon. We also obtain the Weierstrass form of the polar radial motion, providing an efficient tool for numerical computations. We then study the angular deflection of orbits in the Euclidean Schwarzschild spacetime which, in contrast to the Lorentzian background, can be either positive or negative. We observe the presence of a null and a maximal deflection rings for particles with velocity at infinity [Formula omitted] and we give approximate values for their size when [Formula omitted] For BR spacetimes, we obtain analytic solutions for the radial motion in proper length, involving (hyperbolic) trigonometric functions and we deduce that orbits either exponentially go to the singularity or are periodic. Finally, we apply the previous results and use algorithms related to Weierstrass' elliptic functions to produce a Python code to plot orbits of the spacetimes ERN and BR, and draw "shadows" of the first ones, as it was already done before for classical black holes.
Abstract In this paper, we study the geodesic motion in spherically symmetric electro-vacuum Euclidean solutions of the Einstein equation. There are two kinds of such solutions: the Euclidean Reissner–Nordström (ERN) metrics, and the Bertotti–Robinson-like (BR) metrics, the latter having constant Kretschmann scalar. First, we derive the motion equations for the ERN spacetime and we generalize the results of Battista–Esposito, showing that all orbits in as ERN spacetime are unbounded if and only if it has an event horizon. We also obtain the Weierstrass form of the polar radial motion, providing an efficient tool for numerical computations. We then study the angular deflection of orbits in the Euclidean Schwarzschild spacetime which, in contrast to the Lorentzian background, can be either positive or negative. We observe the presence of a null and a maximal deflection rings for particles with velocity at infinity $$v>1$$ v > 1 and we give approximate values for their size when $$v > rsim 1.$$ v ≳ 1 . For BR spacetimes, we obtain analytic solutions for the radial motion in proper length, involving (hyperbolic) trigonometric functions and we deduce that orbits either exponentially go to the singularity or are periodic. Finally, we apply the previous results and use algorithms related to Weierstrass’ elliptic functions to produce a Python code to plot orbits of the spacetimes ERN and BR, and draw “shadows” of the first ones, as it was already done before for classical black holes.
In this paper, we study the geodesic motion in spherically symmetric electro-vacuum Euclidean solutions of the Einstein equation. There are two kinds of such solutions: the Euclidean Reissner–Nordström (ERN) metrics, and the Bertotti–Robinson-like (BR) metrics, the latter having constant Kretschmann scalar. First, we derive the motion equations for the ERN spacetime and we generalize the results of Battista–Esposito, showing that all orbits in as ERN spacetime are unbounded if and only if it has an event horizon. We also obtain the Weierstrass form of the polar radial motion, providing an efficient tool for numerical computations. We then study the angular deflection of orbits in the Euclidean Schwarzschild spacetime which, in contrast to the Lorentzian background, can be either positive or negative. We observe the presence of a null and a maximal deflection rings for particles with velocity at infinity v>1 and we give approximate values for their size when v≳1. For BR spacetimes, we obtain analytic solutions for the radial motion in proper length, involving (hyperbolic) trigonometric functions and we deduce that orbits either exponentially go to the singularity or are periodic. Finally, we apply the previous results and use algorithms related to Weierstrass’ elliptic functions to produce a Python code to plot orbits of the spacetimes ERN and BR, and draw “shadows” of the first ones, as it was already done before for classical black holes.
In this paper, we study the geodesic motion in spherically symmetric electro-vacuum Euclidean solutions of the Einstein equation. There are two kinds of such solutions: the Euclidean Reissner–Nordström (ERN) metrics, and the Bertotti–Robinson-like (BR) metrics, the latter having constant Kretschmann scalar. First, we derive the motion equations for the ERN spacetime and we generalize the results of Battista–Esposito, showing that all orbits in as ERN spacetime are unbounded if and only if it has an event horizon. We also obtain the Weierstrass form of the polar radial motion, providing an efficient tool for numerical computations. We then study the angular deflection of orbits in the Euclidean Schwarzschild spacetime which, in contrast to the Lorentzian background, can be either positive or negative. We observe the presence of a null and a maximal deflection rings for particles with velocity at infinity $$v>1$$ v > 1 and we give approximate values for their size when $$v > rsim 1.$$ v ≳ 1 . For BR spacetimes, we obtain analytic solutions for the radial motion in proper length, involving (hyperbolic) trigonometric functions and we deduce that orbits either exponentially go to the singularity or are periodic. Finally, we apply the previous results and use algorithms related to Weierstrass’ elliptic functions to produce a Python code to plot orbits of the spacetimes ERN and BR, and draw “shadows” of the first ones, as it was already done before for classical black holes.
In this paper, we study the geodesic motion in spherically symmetric electro-vacuum Euclidean solutions of the Einstein equation. There are two kinds of such solutions: the Euclidean Reissner–Nordström (ERN) metrics, and the Bertotti–Robinson-like (BR) metrics, the latter having constant Kretschmann scalar. First, we derive the motion equations for the ERN spacetime and we generalize the results of Battista–Esposito, showing that all orbits in as ERN spacetime are unbounded if and only if it has an event horizon. We also obtain the Weierstrass form of the polar radial motion, providing an efficient tool for numerical computations. We then study the angular deflection of orbits in the Euclidean Schwarzschild spacetime which, in contrast to the Lorentzian background, can be either positive or negative. We observe the presence of a null and a maximal deflection rings for particles with velocity at infinity v > 1 and we give approximate values for their size when v ≳ 1 . For BR spacetimes, we obtain analytic solutions for the radial motion in proper length, involving (hyperbolic) trigonometric functions and we deduce that orbits either exponentially go to the singularity or are periodic. Finally, we apply the previous results and use algorithms related to Weierstrass’ elliptic functions to produce a Python code to plot orbits of the spacetimes ERN and BR, and draw “shadows” of the first ones, as it was already done before for classical black holes.
In this paper, we study the geodesic motion in spherically symmetric electro-vacuum Euclidean solutions of the Einstein equation. There are two kinds of such solutions: the Euclidean Reissner–Nordström (ERN) metrics, and the Bertotti–Robinson-like (BR) metrics, the latter having constant Kretschmann scalar. First, we derive the motion equations for the ERN spacetime and we generalize the results of Battista–Esposito, showing that all orbits in as ERN spacetime are unbounded if and only if it has an event horizon. We also obtain the Weierstrass form of the polar radial motion, providing an efficient tool for numerical computations. We then study the angular deflection of orbits in the Euclidean Schwarzschild spacetime which, in contrast to the Lorentzian background, can be either positive or negative. We observe the presence of a null and a maximal deflection rings for particles with velocity at infinity $$v>1$$ v > 1 and we give approximate values for their size when $$v > rsim 1.$$ v ≳ 1 . For BR spacetimes, we obtain analytic solutions for the radial motion in proper length, involving (hyperbolic) trigonometric functions and we deduce that orbits either exponentially go to the singularity or are periodic. Finally, we apply the previous results and use algorithms related to Weierstrass’ elliptic functions to produce a Python code to plot orbits of the spacetimes ERN and BR, and draw “shadows” of the first ones, as it was already done before for classical black holes.
ArticleNumber 374
Audience Academic
Author Garnier, Arthur
Author_xml – sequence: 1
  givenname: Arthur
  orcidid: 0000-0003-4069-3203
  surname: Garnier
  fullname: Garnier, Arthur
  email: arthur.garnier@math.cnrs.fr
  organization: Université de Picardie, LAMFA (UMR 7352 du CNRS)
BackLink https://u-picardie.hal.science/hal-04543504$$DView record in HAL
BookMark eNqNkU1v1DAQhiNUJNrCbyASJw5p7cSJ4wOHVSl0pZVAfJytiTPeepUvbKew_57ZZkUpFyofbI-ed_TOO2fJyTAOmCSvObvgXLBLnHbmMnDGyjxjuch4LrnKxLPklItCZBXVT_56v0jOQtgxRiirT5P3n8FHZzpM2_0AvTMhdUMaplv0zkDX7dOw73uM9EuxQxP9mN2BmeeeuBBhiOMQXibPLXQBXx3v8-T7h-tvVzfZ5tPH9dVqk5myrGJWVgCtyCuwuaxtI4xtoKmwEshLwdqitKKGJm-lsbJoJFaArWqBSUSDRtniPFkvfdsRdnryrge_1yM4fV8Y_VYfp9GtkTLHvG5U3QqlcgW8KqqCFawRzApJveql1zxMsP9Jo_5pyJk-JKsPyeolWU1x6ftktSDp20V6C90jFzerjT7UmChFUTJxx4l9s7CTH3_MGKLejbMfKCVNZkStqrwuibpYqC2QdzfYMXowdFqkldC-raP6StaqFIoMPVg4CoiJ-CtuYQ5Br79-ecy-W1jjxxA8Wm1chOhI4sF1TxhX_qN_elDHjAMphi36h-H_J_0NrRPf5A
CitedBy_id crossref_primary_10_1103_PhysRevD_109_104060
crossref_primary_10_1140_epjc_s10052_025_13957_w
crossref_primary_10_1142_S0219887824400346
Cites_doi 10.1103/PhysRevD.79.064006
10.1103/PhysRevD.13.2188
10.1140/epjc/s10052-024-12746-1
10.1007/JHEP04(2011)087
10.1093/qmath/os-3.1.226
10.1016/j.physletb.2011.07.076
10.1088/1361-6382/ac95f2
10.1007/s11005-021-01475-1
10.1007/BF02198293
10.1088/0004-637X/777/1/13
10.1007/BF01197189
10.1103/PhysRevD.15.2752
10.1088/0264-9381/28/22/225011
10.1093/imanum/10.1.119
10.1140/epjc/s10052-023-11762-x
10.1088/0264-9381/19/21/308 10.1088/0264-9381/20/22/C01
10.1016/S0393-0440(99)00023-6
10.1088/1361-6382/ab0512
10.1016/j.geomphys.2018.05.018
10.1086/339511
10.1140/epjc/s10052-022-11070-w
10.1088/0264-9381/6/10/008
10.1007/978-3-662-14495-4
10.1103/PhysRevD.80.105006
10.1088/0264-9381/33/9/095007
10.1017/S0305004121000463
10.1007/BF01474631
10.1140/epjc/s10052-020-8382-z
10.1103/PhysRevD.65.084035
10.1016/j.chaos.2003.12.001
10.1098/rspa.1959.0015
10.3847/0004-637X/820/2/105
10.1103/PhysRev.116.1331
10.1088/0253-6102/71/10/1219
10.1007/JHEP02(2015)062
10.1016/0370-2693(78)90016-3
10.1088/0264-9381/1/1/007
10.1007/978-1-4613-2955-8_4
10.1088/1361-6382/accbfe
10.1016/0375-9601(77)90386-3
10.1016/0370-1573(80)90130-1
10.1103/PhysRevD.77.103005
10.1016/0370-2693(75)90163-X
10.1088/0264-9381/29/6/065016
10.48550/arXiv.astro-ph/0602427
10.1140/epjc/s10052-022-10054-0
10.1007/978-94-007-5410-2
10.1088/0004-637X/696/2/1616
10.1098/rspa.2011.0616
10.4310/jdg/1214444097
ContentType Journal Article
Copyright The Author(s) 2024
COPYRIGHT 2024 Springer
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2024
– notice: COPYRIGHT 2024 Springer
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
AAYXX
CITATION
ISR
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
1XC
ADTOC
UNPAY
DOA
DOI 10.1140/epjc/s10052-024-12719-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Gale In Context: Science (UHCL Subscription)
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One Community College
ProQuest Central
Aerospace Database
SciTech Premium Collection (Proquest)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Hyper Article en Ligne (HAL)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
Solid State and Superconductivity Abstracts
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Mathematics
EISSN 1434-6052
EndPage 26
ExternalDocumentID oai_doaj_org_article_dc772e28b98d49929a16363030b40f47
10.1140/epjc/s10052-024-12719-4
oai:HAL:hal-04543504v1
A789549100
10_1140_epjc_s10052_024_12719_4
GroupedDBID -5F
-5G
-A0
-BR
-~X
.86
0R~
199
29G
2JY
30V
4.4
408
409
40D
5GY
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95.
95~
AAFWJ
AAKKN
ABDBF
ABEEZ
ABMNI
ACACY
ACGFS
ACNCT
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AENEX
AFBBN
AFGXO
AFKRA
AFPKN
AFWTZ
AGWIL
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
AZFZN
B0M
BA0
BCNDV
BENPR
BGLVJ
BGNMA
C24
C6C
CCPQU
CS3
CSCUP
DL5
DU5
EAD
EAP
EAS
EBS
EMK
EPL
ER.
ESX
FEDTE
GQ6
GQ8
GROUPED_DOAJ
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HVGLF
HZ~
I-F
I09
IAO
IGS
IHE
ISR
IXC
IZIGR
IZQ
I~X
KDC
KOV
LAS
M4Y
MA-
NB0
O9-
O93
OK1
P62
P9T
PIMPY
QOS
R89
R9I
RED
RID
RNS
ROL
RPX
RSV
S27
S3B
SDH
SOJ
SPH
SZN
T13
TN5
TSK
TSV
TUC
TUS
U2A
VC2
WK8
Z45
Z7Y
~8M
AAYXX
CITATION
PUEGO
7U5
8FD
ABUWG
AZQEC
DWQXO
H8D
L7M
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
1XC
-Y2
1SB
29Q
2P1
ABFSG
ABQSL
ACSTC
ADHKG
ADKPE
ADTOC
AEZWR
AFFNX
AFHIU
AGJBK
AGQPQ
AHSBF
AHWEU
AI.
AIXLP
CAG
COF
EJD
H13
H~9
N2Q
NU0
PROAC
PT5
RZK
S1Z
UNPAY
VH1
ID FETCH-LOGICAL-c556t-56aad426af278fb4cfbab6e64e1540d35f48ab2d7cf73b7e6aed9da07eecec9f3
IEDL.DBID BENPR
ISSN 1434-6052
1434-6044
IngestDate Fri Oct 03 12:27:21 EDT 2025
Sun Oct 26 03:46:02 EDT 2025
Thu Oct 30 07:34:41 EDT 2025
Sat Oct 18 23:52:22 EDT 2025
Mon Oct 20 16:51:20 EDT 2025
Thu Oct 16 15:40:01 EDT 2025
Wed Oct 01 02:12:01 EDT 2025
Thu Apr 24 23:12:18 EDT 2025
Fri Feb 21 02:40:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-56aad426af278fb4cfbab6e64e1540d35f48ab2d7cf73b7e6aed9da07eecec9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4069-3203
OpenAccessLink https://www.proquest.com/docview/3034896285?pq-origsite=%requestingapplication%&accountid=15518
PQID 3034896285
PQPubID 2034659
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_dc772e28b98d49929a16363030b40f47
unpaywall_primary_10_1140_epjc_s10052_024_12719_4
hal_primary_oai_HAL_hal_04543504v1
proquest_journals_3034896285
gale_infotracacademiconefile_A789549100
gale_incontextgauss_ISR_A789549100
crossref_citationtrail_10_1140_epjc_s10052_024_12719_4
crossref_primary_10_1140_epjc_s10052_024_12719_4
springer_journals_10_1140_epjc_s10052_024_12719_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Particles and Fields
PublicationTitle The European physical journal. C, Particles and fields
PublicationTitleAbbrev Eur. Phys. J. C
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Springer Verlag (Germany)
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
– name: Springer Verlag (Germany)
– name: SpringerOpen
References YangYZhangXGeodesics on metrics of Eguchi–Hanson typeEur. Phys. J. C202310.1140/epjc/s10052-023-11762-x
MosnaRTavaresGNew self-dual solutions of SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SU(2)$$\end{document} Yang–Mills theory in Euclidean Schwarzschild spacePhys. Rev. D2009802009PhRvD..80j5006M10.1103/PhysRevD.80.105006
PuHOdyssey: a public GPU-based code for general-relativistic radiative transfer in Kerr spacetimeApJ201682021051162016ApJ...820..105P10.3847/0004-637X/820/2/105
MarsMSimonWA proof of uniqueness of the Taub-bolt instantonJ. Geom. Phys.19993222112261999JGP....32..211M172417810.1016/S0393-0440(99)00023-6
N. Straumann, General Relativity, 2nd edn. Graduate Texts in Physics (Springer, Berlin, 2013)
DarwinCThe gravity field of a particleProc. R. Soc. Lond. A19592491801941959RSPSA.249..180D9923010.1098/rspa.1959.0015
OhJJParkCYangHSYang–Mills instantons from gravitational instantonsJ. High Energy Phys.2011283323110.1007/JHEP04(2011)087
LindbergARayanSGeodesics on a Kerr–Newman–(anti-)de Sitter instantonJ. Geom. Phys.20181321141302018JGP...132..114L383677210.1016/j.geomphys.2018.05.018
J. McMahon, V. Snyder, Elements of the Differential Calculus. The Cornell Mathematical Series (American Book Company, 1898), New York
HartleJBHawkingSWPath-integral derivation of black-hole radiancePhys. Rev. D197613218822031976PhRvD..13.2188H10.1103/PhysRevD.13.2188
D. Viththani et al., Particle motion and tidal force in a non-vacuum-charged naked singularity (2024). arXiv:2402.02069 [gr-qc]
BelavinAAPseudoparticle solutions of the Yang–Mills equationsPhys. Lett. B197559185871975PhLB...59...85B43418310.1016/0370-2693(75)90163-X
GibbonsGWHawkingSWIsraelWQuantum field theory in curved spacetimeGeneral Relativity—An Einstein Centenary Survey1979CambridgeCambridge University Press
BattistaEEspositoGGeodesic motion in Euclidean Schwarzschild geometryEur. Phys. J. C202210.1140/epjc/s10052-022-11070-w
MellorFMossIBlack holes and gravitational instantonsClass. Quantum Gravity19896137913851989CQGra...6.1379M101496810.1088/0264-9381/6/10/008
A. Accioly, S. Ragusa, Gravitational deflection of massive particles in classical and semiclassical general relativity. Class. Quantum Gravity 19(21), 5429–5434 (2002). https://doi.org/10.1088/0264-9381/19/21/308. [Corrected in “Corrigendum”. Class. Quantum Gravity 20(22), 4963–4964 (2003). https://doi.org/10.1088/0264-9381/20/22/C01]
CarlsonBCNumerical computation of real or complex elliptic integralsNumer. Algorithms199510113261995NuAlg..10...13C134540710.1007/BF02198293
G. Esposito, Quantum Gravity, Quantum Cosmology and Lorentzian Geometries. Lecture Notes in Physics Monographs (Springer, Berlin, 1992). https://doi.org/10.1007/978-3-662-14495-4
KunduriHKLuciettiJExistence and uniqueness of asymptotically flat toric gravitational instantonsLett. Math. Phys.2021432991610.1007/s11005-021-01475-1
Velásquez-CadavidJMOSIRIS: a new code for ray tracing around compact objectsEur. Phys. J. C202210.1140/epjc/s10052-022-10054-0
BeloborodovAMGravitational bending of light near compact objectsApJ200210.1086/339511
J. Briët, D. Hobill, Determining the dimensionality of spacetime by gravitational lensing (2008). arXiv:0801.3859
GergelyLADarázsBWeak gravitational lensing in brane-worldsPubl. Astron. Dep. Eotvos Univ.20061721321910.48550/arXiv.astro-ph/0602427
PageDTaub-NUT instanton with an horizonPhys. Lett. B19787822492511978PhLB...78..249P67885510.1016/0370-2693(78)90016-3
PangXJiaJGravitational lensing of massive particles in Reissner–Nordström black hole spacetimeClass. Quantum Gravity201910.1088/1361-6382/ab0512
LiZGravitational deflection of massive particles by a Schwarzschild black hole in radiation gaugeCommun. Theor. Phys.20197110121912262019CoTPh..71.1219L402545010.1088/0253-6102/71/10/1219
GibbonsGWHawkingSWClassification of gravitational instanton symmetriesCommun. Math. Phys.1979662913101979CMaPh..66..291G53515210.1007/BF01197189
MonteiroRSantosJENegative modes and the thermodynamics of Reissner–Nordström black holesPhys. Rev. D200910.1103/PhysRevD.79.064006
AndersonMTShort geodesics and gravitational instantonsJ. Differ. Geom.1990311265275103067310.4310/jdg/1214444097
HawkingSWLévyMDeserSEuclidean quantum gravityRecent Developments in Gravitation: Carg è se 19781979BerlinSpringer14517310.1007/978-1-4613-2955-8_4
LevinJPerez-GizGA periodic table of black hole orbitsPhys. Rev. D2008244354610.1103/PhysRevD.77.103005
EguchiTGilkeyPBHansonAJGravitation, gauge theories and differential geometryPhys. Rep.19806662133931980PhR....66..213E59858610.1016/0370-1573(80)90130-1
DexterJAgolEA fast new public code for computing photon orbits in a Kerr spacetimeApJ200910.1088/0004-637X/696/2/1616
AtiyahMFFranchettiGSchroersBJTime evolution in a geometric model of a particleJ. High Energy Phys.2015332140110.1007/JHEP02(2015)062
GibbonsGWHawkingSWAction integrals and partition functions in quantum gravityPhys. Rev. D197710.1103/PhysRevD.15.2752
HawkingSWGravitational instantonsPhys. Lett. A19776081831977PhLA...60...81H46505210.1016/0375-9601(77)90386-3
HeGLinWGravitational deflection of light and massive particles by a moving Kerr–Newman black holeClass. Quantum Gravity2016349166210.1088/0264-9381/33/9/095007
CieślikAMachPRevisiting timelike and null geodesics in the Schwarzschild spacetime: general expressions in terms of Weierstrass elliptic functionsClass. Quantum Gravity2022450644410.1088/1361-6382/ac95f2
AtiyahMFMantonNSSchroersBJGeometric models of matterProc. R. Soc. A2012468125212792012RSPSA.468.1252A291034810.1098/rspa.2011.0616
VisinescuMThe geodesic motion on generalized Taub-NUT gravitational instantonsZ. Phys. C Part. Fields19936033734110.1007/BF01474631
CoquereauxRGrossmannALautrupBEIterative method for calculation of the Weierstrass elliptic functionIMA J. Numer. Anal.199010119128103665110.1093/imanum/10.1.119
S. Aksteiner, L. Andersson, Gravitational instantons and special geometry (2021). arXiv:2112.11863 [gr-qc]
HagiharaYTheory of the relativistic trajectories in a gravitational field of SchwarzschildJpn. J. Astron. Geophys.1930867176
I. Robinson, A solution of the Maxwell–Einstein equations. Bull. Acad. Pol. Sci 7, 351–352 (1959)
GibbonsGWVyskaMThe application of Weierstrass elliptic functions to Schwarzschild null geodesicsClass. Quantum Gravity2012290295310.1088/0264-9381/29/6/065016
BertottiBUniform electromagnetic field in the theory of general relativityPhys. Rev.1959116133113331959PhRv..116.1331B11052310.1103/PhysRev.116.1331
VincentFHGYOTO: a new general relativistic ray-tracing codeClass. Quantum Gravity2011287191410.1088/0264-9381/28/22/225011
HeGGravitational deflection of massive particles in Schwarzschild–de Sitter spacetimeEur. Phys. J. C202010.1140/epjc/s10052-020-8382-z
R. Jante, On the spectrum of some gravitational instantons. PhD thesis. Heriot–Watt University (2015). http://hdl.handle.net/10399/3083
ChenYTeoEA new AF gravitational instantonPhys. Lett. B201170333593622011PhLB..703..359C283186610.1016/j.physletb.2011.07.076
B. Hoffmann, On the spherically symmetric field in relativity. Q. J. Math. os-3(1), 226–237 (1932). https://doi.org/10.1093/qmath/os-3.1.226
TekinBYang–Mills solutions on Euclidean Schwarzschild spacePhys. Rev. D2002652002PhRvD..65h4035T189977910.1103/PhysRevD.65.084035
El NaschieMS How gravitational instanton could solve the mass problem of the standard model of high energy particle physicsChaos Solitons Fractals20042112492602004CSF....21..249E10.1016/j.chaos.2003.12.001
ChanCPsaltisDÖzelFGRay: a massively parallel GPU-based code for ray tracing in relativistic spacetimesApJ201310.1088/0004-637X/777/1/13
ElsterTQuantum vacuum energy near a black hole: the Maxwell fieldClass. Quantum Gravity198473098110.1088/0264-9381/1/1/007
GarnierAMotion equations in a Kerr–Newman–de Sitter spacetime: some methods of integration and application to black holes shadowing in ScilabClass. Quantum Gravity202340132023CQGra..40m5011G460738810.1088/1361-6382/accbfe
DunajskiMTodPConformal geodesics on gravitational instantonsMath. Proc. Camb. Philos. Soc.20221731123154443833310.1017/S0305004121000463
C Darwin (12719_CR16) 1959; 249
MF Atiyah (12719_CR4) 2015
T Elster (12719_CR20) 1984
JB Hartle (12719_CR29) 1976; 13
12719_CR41
J Dexter (12719_CR17) 2009
GW Gibbons (12719_CR26) 1979; 66
Y Chen (12719_CR13) 2011; 703
X Pang (12719_CR48) 2019
B Bertotti (12719_CR9) 1959; 116
SW Hawking (12719_CR31) 1977; 60
R Mosna (12719_CR44) 2009; 80
M Dunajski (12719_CR18) 2022; 173
GW Gibbons (12719_CR24) 1979
AM Beloborodov (12719_CR8) 2002
D Page (12719_CR47) 1978; 78
12719_CR34
12719_CR35
A Garnier (12719_CR22) 2023; 40
JJ Oh (12719_CR46) 2011
12719_CR2
12719_CR1
BC Carlson (12719_CR11) 1995; 10
C Chan (12719_CR12) 2013
A Cieślik (12719_CR14) 2022
JM Velásquez-Cadavid (12719_CR53) 2022
GW Gibbons (12719_CR25) 1977
G He (12719_CR32) 2016
A Lindberg (12719_CR39) 2018; 132
12719_CR21
G He (12719_CR33) 2020
H Pu (12719_CR49) 2016; 820
T Eguchi (12719_CR19) 1980; 66
LA Gergely (12719_CR23) 2006; 17
GW Gibbons (12719_CR27) 2012
M Visinescu (12719_CR55) 1993; 60
E Battista (12719_CR6) 2022
F Mellor (12719_CR42) 1989; 6
AA Belavin (12719_CR7) 1975; 59
M Mars (12719_CR40) 1999; 32
12719_CR56
Y Hagihara (12719_CR28) 1930; 8
SW Hawking (12719_CR30) 1979
12719_CR51
MF Atiyah (12719_CR5) 2012; 468
R Coquereaux (12719_CR15) 1990; 10
HK Kunduri (12719_CR36) 2021
12719_CR10
R Monteiro (12719_CR43) 2009
12719_CR50
B Tekin (12719_CR52) 2002; 65
FH Vincent (12719_CR54) 2011
MS El Naschie (12719_CR45) 2004; 21
J Levin (12719_CR37) 2008
Z Li (12719_CR38) 2019; 71
Y Yang (12719_CR57) 2023
MT Anderson (12719_CR3) 1990; 31
References_xml – reference: LevinJPerez-GizGA periodic table of black hole orbitsPhys. Rev. D2008244354610.1103/PhysRevD.77.103005
– reference: DexterJAgolEA fast new public code for computing photon orbits in a Kerr spacetimeApJ200910.1088/0004-637X/696/2/1616
– reference: BattistaEEspositoGGeodesic motion in Euclidean Schwarzschild geometryEur. Phys. J. C202210.1140/epjc/s10052-022-11070-w
– reference: B. Hoffmann, On the spherically symmetric field in relativity. Q. J. Math. os-3(1), 226–237 (1932). https://doi.org/10.1093/qmath/os-3.1.226
– reference: Velásquez-CadavidJMOSIRIS: a new code for ray tracing around compact objectsEur. Phys. J. C202210.1140/epjc/s10052-022-10054-0
– reference: AtiyahMFMantonNSSchroersBJGeometric models of matterProc. R. Soc. A2012468125212792012RSPSA.468.1252A291034810.1098/rspa.2011.0616
– reference: El NaschieMS How gravitational instanton could solve the mass problem of the standard model of high energy particle physicsChaos Solitons Fractals20042112492602004CSF....21..249E10.1016/j.chaos.2003.12.001
– reference: VisinescuMThe geodesic motion on generalized Taub-NUT gravitational instantonsZ. Phys. C Part. Fields19936033734110.1007/BF01474631
– reference: AtiyahMFFranchettiGSchroersBJTime evolution in a geometric model of a particleJ. High Energy Phys.2015332140110.1007/JHEP02(2015)062
– reference: DarwinCThe gravity field of a particleProc. R. Soc. Lond. A19592491801941959RSPSA.249..180D9923010.1098/rspa.1959.0015
– reference: AndersonMTShort geodesics and gravitational instantonsJ. Differ. Geom.1990311265275103067310.4310/jdg/1214444097
– reference: BelavinAAPseudoparticle solutions of the Yang–Mills equationsPhys. Lett. B197559185871975PhLB...59...85B43418310.1016/0370-2693(75)90163-X
– reference: HawkingSWGravitational instantonsPhys. Lett. A19776081831977PhLA...60...81H46505210.1016/0375-9601(77)90386-3
– reference: YangYZhangXGeodesics on metrics of Eguchi–Hanson typeEur. Phys. J. C202310.1140/epjc/s10052-023-11762-x
– reference: BertottiBUniform electromagnetic field in the theory of general relativityPhys. Rev.1959116133113331959PhRv..116.1331B11052310.1103/PhysRev.116.1331
– reference: HagiharaYTheory of the relativistic trajectories in a gravitational field of SchwarzschildJpn. J. Astron. Geophys.1930867176
– reference: PangXJiaJGravitational lensing of massive particles in Reissner–Nordström black hole spacetimeClass. Quantum Gravity201910.1088/1361-6382/ab0512
– reference: LindbergARayanSGeodesics on a Kerr–Newman–(anti-)de Sitter instantonJ. Geom. Phys.20181321141302018JGP...132..114L383677210.1016/j.geomphys.2018.05.018
– reference: CarlsonBCNumerical computation of real or complex elliptic integralsNumer. Algorithms199510113261995NuAlg..10...13C134540710.1007/BF02198293
– reference: GibbonsGWHawkingSWIsraelWQuantum field theory in curved spacetimeGeneral Relativity—An Einstein Centenary Survey1979CambridgeCambridge University Press
– reference: GibbonsGWHawkingSWAction integrals and partition functions in quantum gravityPhys. Rev. D197710.1103/PhysRevD.15.2752
– reference: BeloborodovAMGravitational bending of light near compact objectsApJ200210.1086/339511
– reference: VincentFHGYOTO: a new general relativistic ray-tracing codeClass. Quantum Gravity2011287191410.1088/0264-9381/28/22/225011
– reference: A. Accioly, S. Ragusa, Gravitational deflection of massive particles in classical and semiclassical general relativity. Class. Quantum Gravity 19(21), 5429–5434 (2002). https://doi.org/10.1088/0264-9381/19/21/308. [Corrected in “Corrigendum”. Class. Quantum Gravity 20(22), 4963–4964 (2003). https://doi.org/10.1088/0264-9381/20/22/C01]
– reference: HawkingSWLévyMDeserSEuclidean quantum gravityRecent Developments in Gravitation: Carg è se 19781979BerlinSpringer14517310.1007/978-1-4613-2955-8_4
– reference: KunduriHKLuciettiJExistence and uniqueness of asymptotically flat toric gravitational instantonsLett. Math. Phys.2021432991610.1007/s11005-021-01475-1
– reference: N. Straumann, General Relativity, 2nd edn. Graduate Texts in Physics (Springer, Berlin, 2013)
– reference: J. McMahon, V. Snyder, Elements of the Differential Calculus. The Cornell Mathematical Series (American Book Company, 1898), New York
– reference: GergelyLADarázsBWeak gravitational lensing in brane-worldsPubl. Astron. Dep. Eotvos Univ.20061721321910.48550/arXiv.astro-ph/0602427
– reference: ChanCPsaltisDÖzelFGRay: a massively parallel GPU-based code for ray tracing in relativistic spacetimesApJ201310.1088/0004-637X/777/1/13
– reference: S. Aksteiner, L. Andersson, Gravitational instantons and special geometry (2021). arXiv:2112.11863 [gr-qc]
– reference: HeGGravitational deflection of massive particles in Schwarzschild–de Sitter spacetimeEur. Phys. J. C202010.1140/epjc/s10052-020-8382-z
– reference: CieślikAMachPRevisiting timelike and null geodesics in the Schwarzschild spacetime: general expressions in terms of Weierstrass elliptic functionsClass. Quantum Gravity2022450644410.1088/1361-6382/ac95f2
– reference: CoquereauxRGrossmannALautrupBEIterative method for calculation of the Weierstrass elliptic functionIMA J. Numer. Anal.199010119128103665110.1093/imanum/10.1.119
– reference: GarnierAMotion equations in a Kerr–Newman–de Sitter spacetime: some methods of integration and application to black holes shadowing in ScilabClass. Quantum Gravity202340132023CQGra..40m5011G460738810.1088/1361-6382/accbfe
– reference: J. Briët, D. Hobill, Determining the dimensionality of spacetime by gravitational lensing (2008). arXiv:0801.3859
– reference: OhJJParkCYangHSYang–Mills instantons from gravitational instantonsJ. High Energy Phys.2011283323110.1007/JHEP04(2011)087
– reference: HeGLinWGravitational deflection of light and massive particles by a moving Kerr–Newman black holeClass. Quantum Gravity2016349166210.1088/0264-9381/33/9/095007
– reference: MonteiroRSantosJENegative modes and the thermodynamics of Reissner–Nordström black holesPhys. Rev. D200910.1103/PhysRevD.79.064006
– reference: GibbonsGWVyskaMThe application of Weierstrass elliptic functions to Schwarzschild null geodesicsClass. Quantum Gravity2012290295310.1088/0264-9381/29/6/065016
– reference: ElsterTQuantum vacuum energy near a black hole: the Maxwell fieldClass. Quantum Gravity198473098110.1088/0264-9381/1/1/007
– reference: LiZGravitational deflection of massive particles by a Schwarzschild black hole in radiation gaugeCommun. Theor. Phys.20197110121912262019CoTPh..71.1219L402545010.1088/0253-6102/71/10/1219
– reference: G. Esposito, Quantum Gravity, Quantum Cosmology and Lorentzian Geometries. Lecture Notes in Physics Monographs (Springer, Berlin, 1992). https://doi.org/10.1007/978-3-662-14495-4
– reference: MosnaRTavaresGNew self-dual solutions of SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SU(2)$$\end{document} Yang–Mills theory in Euclidean Schwarzschild spacePhys. Rev. D2009802009PhRvD..80j5006M10.1103/PhysRevD.80.105006
– reference: ChenYTeoEA new AF gravitational instantonPhys. Lett. B201170333593622011PhLB..703..359C283186610.1016/j.physletb.2011.07.076
– reference: TekinBYang–Mills solutions on Euclidean Schwarzschild spacePhys. Rev. D2002652002PhRvD..65h4035T189977910.1103/PhysRevD.65.084035
– reference: HartleJBHawkingSWPath-integral derivation of black-hole radiancePhys. Rev. D197613218822031976PhRvD..13.2188H10.1103/PhysRevD.13.2188
– reference: I. Robinson, A solution of the Maxwell–Einstein equations. Bull. Acad. Pol. Sci 7, 351–352 (1959)
– reference: MellorFMossIBlack holes and gravitational instantonsClass. Quantum Gravity19896137913851989CQGra...6.1379M101496810.1088/0264-9381/6/10/008
– reference: EguchiTGilkeyPBHansonAJGravitation, gauge theories and differential geometryPhys. Rep.19806662133931980PhR....66..213E59858610.1016/0370-1573(80)90130-1
– reference: DunajskiMTodPConformal geodesics on gravitational instantonsMath. Proc. Camb. Philos. Soc.20221731123154443833310.1017/S0305004121000463
– reference: D. Viththani et al., Particle motion and tidal force in a non-vacuum-charged naked singularity (2024). arXiv:2402.02069 [gr-qc]
– reference: PuHOdyssey: a public GPU-based code for general-relativistic radiative transfer in Kerr spacetimeApJ201682021051162016ApJ...820..105P10.3847/0004-637X/820/2/105
– reference: GibbonsGWHawkingSWClassification of gravitational instanton symmetriesCommun. Math. Phys.1979662913101979CMaPh..66..291G53515210.1007/BF01197189
– reference: R. Jante, On the spectrum of some gravitational instantons. PhD thesis. Heriot–Watt University (2015). http://hdl.handle.net/10399/3083
– reference: MarsMSimonWA proof of uniqueness of the Taub-bolt instantonJ. Geom. Phys.19993222112261999JGP....32..211M172417810.1016/S0393-0440(99)00023-6
– reference: PageDTaub-NUT instanton with an horizonPhys. Lett. B19787822492511978PhLB...78..249P67885510.1016/0370-2693(78)90016-3
– year: 2009
  ident: 12719_CR43
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.79.064006
– volume: 13
  start-page: 2188
  year: 1976
  ident: 12719_CR29
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.13.2188
– ident: 12719_CR56
  doi: 10.1140/epjc/s10052-024-12746-1
– year: 2011
  ident: 12719_CR46
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP04(2011)087
– ident: 12719_CR34
  doi: 10.1093/qmath/os-3.1.226
– volume: 8
  start-page: 67
  year: 1930
  ident: 12719_CR28
  publication-title: Jpn. J. Astron. Geophys.
– volume: 703
  start-page: 359
  issue: 3
  year: 2011
  ident: 12719_CR13
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2011.07.076
– year: 2022
  ident: 12719_CR14
  publication-title: Class. Quantum Gravity
  doi: 10.1088/1361-6382/ac95f2
– year: 2021
  ident: 12719_CR36
  publication-title: Lett. Math. Phys.
  doi: 10.1007/s11005-021-01475-1
– volume: 10
  start-page: 13
  issue: 1
  year: 1995
  ident: 12719_CR11
  publication-title: Numer. Algorithms
  doi: 10.1007/BF02198293
– year: 2013
  ident: 12719_CR12
  publication-title: ApJ
  doi: 10.1088/0004-637X/777/1/13
– volume: 66
  start-page: 291
  year: 1979
  ident: 12719_CR26
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01197189
– year: 1977
  ident: 12719_CR25
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.15.2752
– year: 2011
  ident: 12719_CR54
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/28/22/225011
– volume: 10
  start-page: 119
  year: 1990
  ident: 12719_CR15
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/10.1.119
– year: 2023
  ident: 12719_CR57
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-023-11762-x
– ident: 12719_CR1
  doi: 10.1088/0264-9381/19/21/308 10.1088/0264-9381/20/22/C01
– volume: 32
  start-page: 211
  issue: 2
  year: 1999
  ident: 12719_CR40
  publication-title: J. Geom. Phys.
  doi: 10.1016/S0393-0440(99)00023-6
– ident: 12719_CR41
– year: 2019
  ident: 12719_CR48
  publication-title: Class. Quantum Gravity
  doi: 10.1088/1361-6382/ab0512
– volume: 132
  start-page: 114
  year: 2018
  ident: 12719_CR39
  publication-title: J. Geom. Phys.
  doi: 10.1016/j.geomphys.2018.05.018
– year: 2002
  ident: 12719_CR8
  publication-title: ApJ
  doi: 10.1086/339511
– year: 2022
  ident: 12719_CR6
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-022-11070-w
– volume: 6
  start-page: 1379
  year: 1989
  ident: 12719_CR42
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/6/10/008
– ident: 12719_CR21
  doi: 10.1007/978-3-662-14495-4
– volume: 80
  year: 2009
  ident: 12719_CR44
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.80.105006
– year: 2016
  ident: 12719_CR32
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/33/9/095007
– volume: 173
  start-page: 123
  issue: 1
  year: 2022
  ident: 12719_CR18
  publication-title: Math. Proc. Camb. Philos. Soc.
  doi: 10.1017/S0305004121000463
– volume: 60
  start-page: 337
  year: 1993
  ident: 12719_CR55
  publication-title: Z. Phys. C Part. Fields
  doi: 10.1007/BF01474631
– year: 2020
  ident: 12719_CR33
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-8382-z
– volume: 65
  year: 2002
  ident: 12719_CR52
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.65.084035
– volume: 21
  start-page: 249
  issue: 1
  year: 2004
  ident: 12719_CR45
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2003.12.001
– volume-title: General Relativity—An Einstein Centenary Survey
  year: 1979
  ident: 12719_CR24
– volume: 249
  start-page: 180
  year: 1959
  ident: 12719_CR16
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1959.0015
– volume: 820
  start-page: 105
  issue: 2
  year: 2016
  ident: 12719_CR49
  publication-title: ApJ
  doi: 10.3847/0004-637X/820/2/105
– volume: 116
  start-page: 1331
  year: 1959
  ident: 12719_CR9
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.116.1331
– volume: 71
  start-page: 1219
  issue: 10
  year: 2019
  ident: 12719_CR38
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/71/10/1219
– ident: 12719_CR50
– year: 2015
  ident: 12719_CR4
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP02(2015)062
– volume: 78
  start-page: 249
  issue: 2
  year: 1978
  ident: 12719_CR47
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(78)90016-3
– year: 1984
  ident: 12719_CR20
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/1/1/007
– start-page: 145
  volume-title: Recent Developments in Gravitation: Carg è se 1978
  year: 1979
  ident: 12719_CR30
  doi: 10.1007/978-1-4613-2955-8_4
– volume: 40
  issue: 13
  year: 2023
  ident: 12719_CR22
  publication-title: Class. Quantum Gravity
  doi: 10.1088/1361-6382/accbfe
– ident: 12719_CR2
– volume: 60
  start-page: 81
  year: 1977
  ident: 12719_CR31
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(77)90386-3
– ident: 12719_CR10
– volume: 66
  start-page: 213
  issue: 6
  year: 1980
  ident: 12719_CR19
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(80)90130-1
– ident: 12719_CR35
– year: 2008
  ident: 12719_CR37
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.77.103005
– volume: 59
  start-page: 85
  issue: 1
  year: 1975
  ident: 12719_CR7
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(75)90163-X
– year: 2012
  ident: 12719_CR27
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/29/6/065016
– volume: 17
  start-page: 213
  year: 2006
  ident: 12719_CR23
  publication-title: Publ. Astron. Dep. Eotvos Univ.
  doi: 10.48550/arXiv.astro-ph/0602427
– year: 2022
  ident: 12719_CR53
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-022-10054-0
– ident: 12719_CR51
  doi: 10.1007/978-94-007-5410-2
– year: 2009
  ident: 12719_CR17
  publication-title: ApJ
  doi: 10.1088/0004-637X/696/2/1616
– volume: 468
  start-page: 1252
  year: 2012
  ident: 12719_CR5
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2011.0616
– volume: 31
  start-page: 265
  issue: 1
  year: 1990
  ident: 12719_CR3
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1214444097
SSID ssj0002408
Score 2.454571
Snippet In this paper, we study the geodesic motion in spherically symmetric electro-vacuum Euclidean solutions of the Einstein equation. There are two kinds of such...
Abstract In this paper, we study the geodesic motion in spherically symmetric electro-vacuum Euclidean solutions of the Einstein equation. There are two kinds...
SourceID doaj
unpaywall
hal
proquest
gale
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 374
SubjectTerms Algorithms
Astronomy
Astrophysics and Cosmology
Black holes
Deflection
Einstein equations
Elementary Particles
Elliptic functions
Equations of motion
Event horizon
Exact solutions
Hadrons
Heavy Ions
Instantons
Mathematics
Measurement Science and Instrumentation
Nuclear Energy
Nuclear Physics
Orbits
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Regular Article - Theoretical Physics
Singularity (mathematics)
Spacetime
String Theory
Trigonometric functions
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgJQQcEE8RWFC0QuJkrZM4TnIsj1VBCCFgpb1ZY8fmoTZb4WZR_z0ziRvaUzlw9UNxPo_tz_LMN4y9sLaRJjOCgzKGSwPATSM8ByLghZEmd4O3xUc1P5fvL8qLnVRf5BM2ygOPwJ22Fvmfy2vT1C2y87wBZBAKN15hpPByiCMXdbO9TMU9mIS7ojcX3iBO3eqnpWg5UeYc63iWV1nD5d5ZNEj2Txvz9e_kF7lDOqd30tvsZt-tYPMbFoudo-jsLrsTOWQ6G8d-j11z3X12Y_DltOEBe_Mp_lXajunmQ_qjSwPpB9CMLDZp2CyXlEnLpjELDr8C2_dLbBfGrMLhITs_e_v19ZzHZAnclqVa81IBtHjcgs-r2htpvQGjnJIOSZJoi9LLGkzekgxRYSqnwLVNC6Jyzjrb-OIRO-ouO_eYpcabzNXWgbAUPIKMQmXKW4vnqQdc3wlTW9i0jUrilNBioccoZ6EJbz3irRFvPeCtZcLE1HE1imkc7vKK5mVqTmrYQwHaiI5o6kM2krATmlVNehcdOdR8gz4E_e7LZz2ranroxO8m7GVs5C_xbyzE-ATEhCSy9lqeoHXsDWk--6CpjAQNi1LIqyxhx1vj0XFbCBqHJOuGolYTlm0N6m_1QSyyyfL-Fb8n_wO_p-xWTstmcFg6ZkfrX717hlxsbZ4Py-4PVnYscQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB21RQg4ID5FoEVRhcTJqpM4TnLcFqoFIYSASr1ZtmMX0G66Ipui_fedSbxh99Iiro4tO89jz1gz8wbgjbWVMInhTEtjmDBaM1NxzzQZ4JkRJnV9tMVnOT0TH8_z8x04WufCbPrv0fY_cotflvLceJ4yVCcsSYukYmIX7qCmkr13Vp6MVy_xdYUgrhsGb6mgnql_vI93f1A45IatObpHH8C9rlno1R89m21ooNNH8DCYjvFk2OvHsOOaJ3C3D-G07VN49yVIQVwPVebb-GcTt0QbQBsxW8Xtaj6nAlo2DsVv2JW2XTfHfu1QTLh9Bmen77-fTFmokcBsnssly6XWNWpZ7dOi9EZYb7SRTgqHthGvs9yLUpu0JvahzBROaldXteaFc9bZymfPYa-5bNwLiI03iSut09xSzggaEjKR3lpUo17jsY5ArmFTNhCIUx2LmRqSm7kivNWAt0K8VY-3EhHwceBi4NC4fcgx7cvYnUiw-waUDRXQVLXFp4FLS1OVNT7c0kqjcSlRJ3MjuBdFBIe0q4poLhqKo7nQXduqD9--qklRkn8T543gbejkL_FvrA5pCYgJMWNt9TxE6dha0nTySVEb8RhmORdXSQT7a-FR4TZoFS5JlBUlq0aQrAXq7-dbsUhGyftX_F7-xzyv4H5Kp6QPS9qHveXvzh2gxbU0r_tTdg2sPCHQ
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RrRD0wLOIQEFRhcTJWydxnOS4PKoFoaoCViony3bsQtnNrppNq-XX40mcpcuBIsQtSsZ5fPnimcgz3wC80LpgKlKUSK4UYUpKogpqicQAPFFMxabNtjji4wl7f5KeeEmhus9275cku5oGVGmqlgeL0nptW3pgFmcaq99oGhPnZEgUZ1FB2NDZbME2T11YPoDtydHx6EtbXZQwwmnb2NVvp7HP9frD2TY8VSvov562t75i1uSVkHS9iroDt5pqIVeXcjq94qgO78JZ_4hdfsr3YbNUQ_3jN_XH_4LBPbjjw9lw1PHvPtww1QO42aaV6vohvDn2zAzLrvN9HX6rwhqlDJAc01VYr2YzbOqlQ9-Qh1xI3TQzZ1d3DY7rXZgcvv38ekx83wai05QvScqlLJ3nlzbOcquYtkoqbjgzLl6jZZJalksVl6iIlKjMcGnKopQ0M0YbXdjkEQyqeWUeQ6isikyujaQa61hccMMjbrV2rt1KN9UEwPt3JLQXNcfeGlPRFVxTgTCJDibhYBItTIIFQNcDF52ux_VDXiEJ1uYozN3umJ-fCo-mKLX7XTFxroq8dD-TcSFdwMtdnEAVo5ZlAewjhQRKb1SY23Mqm7oW7z59FKMsxzVXd90AXnojO3dPo6UvlXCYoFrXhuW-o-LGLY1HHwTuQ23FJKXsIgpgr2eq8DNULdwtsbzAAtoAop5svw5fi0W0pvnf4vfkH8Y8hdsxkrtNldqDwfK8Mc9cFLhUz_33_RMJZFIE
  priority: 102
  providerName: Unpaywall
Title Particle dynamics in spherically symmetric electro-vacuum instantons
URI https://link.springer.com/article/10.1140/epjc/s10052-024-12719-4
https://www.proquest.com/docview/3034896285
https://u-picardie.hal.science/hal-04543504
https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-12719-4.pdf
https://doaj.org/article/dc772e28b98d49929a16363030b40f47
UnpaywallVersion publishedVersion
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1434-6052
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002408
  issn: 1434-6044
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1434-6052
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002408
  issn: 1434-6044
  databaseCode: ABDBF
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1434-6052
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002408
  issn: 1434-6044
  databaseCode: ADMLS
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1434-6052
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002408
  issn: 1434-6044
  databaseCode: AFBBN
  dateStart: 19980201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1434-6052
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002408
  issn: 1434-6044
  databaseCode: 8FG
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1434-6052
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002408
  issn: 1434-6044
  databaseCode: C6C
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1434-6052
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002408
  issn: 1434-6044
  databaseCode: C24
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1434-6052
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002408
  issn: 1434-6044
  databaseCode: U2A
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbWVgh4QPyaCIwqmpB4suYkjpM8INSVlYJQVQ0qjSfLduwBatOyNEP97_ElTra-MF4sJbkozvlyPsd334fQG6UyKgNJsGBSYiqFwDIjBgsIwCNJZajrbIsZmy7o54v44gDN2loYSKtsfWLtqPO1gn_kJ9bV0jSDgr_3m98YWKNgd7Wl0BCOWiF_V0OM9dAgBGSsPhqcns3m551vBkCvut4oopgRSl3Gl11lnOjNLwUVdSQOsZXDQZgEGaZ781UN6985794PyJ28FZh2e6kP0f2q2IjdH7Fc3pquJo_RIxdn-qPGMJ6gA108RffqfE9VPkMf5s5k_LyhpC_9n4VfAsYAjNpy55e71QrYtpTvmHLwtVBVtbJyZcM8XD5Hi8nZt_EUO0IFrOKYbXHMhMjtlCxMmKRGUmWkkEwzqm0gRfIoNjQVMswBqiiSiWZC51kuSKK10ioz0SHqF-tCv0C-NDLQqdKCKCgwsVEHC5hRys65Rlgf4CHWqo0rhzYOpBdL3lRCEw765o2-udU3r_XNqYdId-OmAdy4-5ZTGJdOHBCz6xPrq0vutMlzZdcROkxlluZ2lRdmwkaizFoVkZQYmnjoGEaVAyZGAUk3l6IqS_7p6zkfJSlshtrneuitEzJr-zZKuBoGqxOA0dqTPLbWsdel6egLh3MAehjFhF4HHjpqjYc711HyG0P3UNAa1M3lO3URdJb3v_p7-e9uvEIPQvgg6nSlI9TfXlX6tY3EtnKIeunk49B9ZPZoHFJo2XhY_9uw7SK07WAxm4--_wV7MzPD
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELf2ITR4QHyKwIBoAvFkzUkcJ3mYUMc2taxU09ikvXm24wxQm5al3dR_jr-Nu9TJ1hfGy16dS5P-fPbdxXe_I-SDMRnXgWZUCa0p10pRnbGCKnTAI811aOtsi4HonvKvZ_HZCvnT1MJgWmWzJ9YbdT42-I18G7ZanmZY8Pd58pti1yg8XW1aaCjXWiHfqSnGXGHHoZ1fQwhX7fT2YL4_huHB_smXLnVdBqiJYzGlsVAqBzulijBJC81NoZUWVnAL3gXLo7jgqdJhjvw9kU6sUDbPcsUSa401WRHB766SdR7xDIK_9d39wdFxawuQQKyub4o4FYxzl2EGUc22nfwyWMHH4pCCHA3CJMgoX7KPdRuB1lis_sBczVuOcHt2-4hszMqJml-r4fCWeTx4Qh47v9bvLBTxKVmx5TPyoM4vNdVzsnfkVNTP56UawZj_s_Qr5DRALRnO_Wo-GmF3L-O7zjz0SpnZbARy1aLTcfWCnN4LtC_JWjku7Svi60IHNjVWMYMFLeDliEAUxoCNLxTsOR4RDWzSOHZzbLIxlIvKayYRb7nAWwLessZbco-w9sbJguDj7lt2cV5acWTorgfGlxfSoSlzA3GLDVOdpTlElWGmwPMVoMVMc1bwxCNbOKsSOThKTPK5ULOqkr3vx7KTpHj4Cs_1yCcnVIzh3xjlaiYAE6TtWpLcAu1YeqVupy9xDEkWo5jxq8Ajm43ySLdVVfJmYXkkaBTq5vKdWASt5v0vfq___RrvyUb35Ftf9nuDwzfkYYiLo06V2iRr08uZfQte4FS_c0vNJ-f3vbr_Amj2bjo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa2IW4PiKsIDIgmEE9WncRxkgeECqW0bJomYNLePNuxB6hNy9Ju6l_j13FObltfGC97dZwm_Xxujs_5DiGvjcm4DjSjSmhNuVaK6ow5qjAAjzTXoa2yLfbF6JB_OYqPNsifthYG0ypbm1gZ6nxm8Bt5D0wtTzMs-Ou5Ji3iYDB8P_9NsYMUnrS27TRqEdm1q3PYvpXvxgNY6zdhOPz0_eOINh0GqIljsaCxUCoHH6VcmKROc-O00sIKbiGyYHkUO54qHebI3RPpxApl8yxXLLHWWJO5CH53k9xIkMUdq9SHnzsvgNRhVWVTxKlgnDe5ZbCf6dn5L4O1eywOKcyjQZgEGeVrnrFqINC5ic0fmKV5KQTuTm3vktvLYq5W52oyueQYh_fJvSai9fu1CD4gG7Z4SG5WmaWmfEQGB41w-vmqUFMY838WfolsBigfk5VfrqZT7Otl_KYnDz1TZrmcwryy7nFcPiaH1wLsE7JVzAr7lPja6cCmxipmsJQF4hsRCGcMeHenwNp4RLSwSdPwmmN7jYmsa66ZRLxljbcEvGWFt-QeYd2N85ra4-pbPuC6dNORm7samJ2eyAZNmRvYsdgw1Vmaw34yzBTEvALkl2nOHE88soOrKpF9o0A5PlHLspTjb19lP0nx2BWe65G3zSQ3g39jVFMtAZggYdfazB2QjrVXGvX3JI4hvWIUM34WeGS7FR7ZGKlSXqiUR4JWoC4uX4lF0Ene_-L37N-v8YrcAp2We-P93efkToi6UeVIbZOtxenSvoDwb6FfVnrmk-PrVuy_XwVr1A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RrRD0wLOIQEFRhcTJWydxnOS4PKoFoaoCViony3bsQtnNrppNq-XX40mcpcuBIsQtSsZ5fPnimcgz3wC80LpgKlKUSK4UYUpKogpqicQAPFFMxabNtjji4wl7f5KeeEmhus9275cku5oGVGmqlgeL0nptW3pgFmcaq99oGhPnZEgUZ1FB2NDZbME2T11YPoDtydHx6EtbXZQwwmnb2NVvp7HP9frD2TY8VSvov562t75i1uSVkHS9iroDt5pqIVeXcjq94qgO78JZ_4hdfsr3YbNUQ_3jN_XH_4LBPbjjw9lw1PHvPtww1QO42aaV6vohvDn2zAzLrvN9HX6rwhqlDJAc01VYr2YzbOqlQ9-Qh1xI3TQzZ1d3DY7rXZgcvv38ekx83wai05QvScqlLJ3nlzbOcquYtkoqbjgzLl6jZZJalksVl6iIlKjMcGnKopQ0M0YbXdjkEQyqeWUeQ6isikyujaQa61hccMMjbrV2rt1KN9UEwPt3JLQXNcfeGlPRFVxTgTCJDibhYBItTIIFQNcDF52ux_VDXiEJ1uYozN3umJ-fCo-mKLX7XTFxroq8dD-TcSFdwMtdnEAVo5ZlAewjhQRKb1SY23Mqm7oW7z59FKMsxzVXd90AXnojO3dPo6UvlXCYoFrXhuW-o-LGLY1HHwTuQ23FJKXsIgpgr2eq8DNULdwtsbzAAtoAop5svw5fi0W0pvnf4vfkH8Y8hdsxkrtNldqDwfK8Mc9cFLhUz_33_RMJZFIE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+dynamics+in+spherically+symmetric+electro-vacuum+instantons&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Garnier%2C+Arthur&rft.date=2024-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1434-6044&rft.eissn=1434-6052&rft.volume=84&rft.issue=4&rft.spage=374&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-024-12719-4&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6052&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6052&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6052&client=summon