Particle dynamics in spherically symmetric electro-vacuum instantons
In this paper, we study the geodesic motion in spherically symmetric electro-vacuum Euclidean solutions of the Einstein equation. There are two kinds of such solutions: the Euclidean Reissner–Nordström (ERN) metrics, and the Bertotti–Robinson-like (BR) metrics, the latter having constant Kretschmann...
        Saved in:
      
    
          | Published in | The European physical journal. C, Particles and fields Vol. 84; no. 4; pp. 374 - 26 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.04.2024
     Springer Springer Nature B.V Springer Verlag (Germany) SpringerOpen  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1434-6052 1434-6044 1434-6052  | 
| DOI | 10.1140/epjc/s10052-024-12719-4 | 
Cover
| Abstract | In this paper, we study the geodesic motion in spherically symmetric electro-vacuum Euclidean solutions of the Einstein equation. There are two kinds of such solutions: the Euclidean Reissner–Nordström (ERN) metrics, and the Bertotti–Robinson-like (BR) metrics, the latter having constant Kretschmann scalar. First, we derive the motion equations for the ERN spacetime and we generalize the results of Battista–Esposito, showing that all orbits in as ERN spacetime are unbounded if and only if it has an event horizon. We also obtain the Weierstrass form of the polar radial motion, providing an efficient tool for numerical computations. We then study the angular deflection of orbits in the Euclidean Schwarzschild spacetime which, in contrast to the Lorentzian background, can be either positive or negative. We observe the presence of a null and a maximal deflection rings for particles with velocity at infinity
v
>
1
and we give approximate values for their size when
v
≳
1
.
For BR spacetimes, we obtain analytic solutions for the radial motion in proper length, involving (hyperbolic) trigonometric functions and we deduce that orbits either exponentially go to the singularity or are periodic. Finally, we apply the previous results and use algorithms related to Weierstrass’ elliptic functions to produce a Python code to plot orbits of the spacetimes ERN and BR, and draw “shadows” of the first ones, as it was already done before for classical black holes. | 
    
|---|---|
| AbstractList | In this paper, we study the geodesic motion in spherically symmetric electro-vacuum Euclidean solutions of the Einstein equation. There are two kinds of such solutions: the Euclidean Reissner-Nordström (ERN) metrics, and the Bertotti-Robinson-like (BR) metrics, the latter having constant Kretschmann scalar. First, we derive the motion equations for the ERN spacetime and we generalize the results of Battista-Esposito, showing that all orbits in as ERN spacetime are unbounded if and only if it has an event horizon. We also obtain the Weierstrass form of the polar radial motion, providing an efficient tool for numerical computations. We then study the angular deflection of orbits in the Euclidean Schwarzschild spacetime which, in contrast to the Lorentzian background, can be either positive or negative. We observe the presence of a null and a maximal deflection rings for particles with velocity at infinity [Formula omitted] and we give approximate values for their size when [Formula omitted] For BR spacetimes, we obtain analytic solutions for the radial motion in proper length, involving (hyperbolic) trigonometric functions and we deduce that orbits either exponentially go to the singularity or are periodic. Finally, we apply the previous results and use algorithms related to Weierstrass' elliptic functions to produce a Python code to plot orbits of the spacetimes ERN and BR, and draw "shadows" of the first ones, as it was already done before for classical black holes. Abstract In this paper, we study the geodesic motion in spherically symmetric electro-vacuum Euclidean solutions of the Einstein equation. There are two kinds of such solutions: the Euclidean Reissner–Nordström (ERN) metrics, and the Bertotti–Robinson-like (BR) metrics, the latter having constant Kretschmann scalar. First, we derive the motion equations for the ERN spacetime and we generalize the results of Battista–Esposito, showing that all orbits in as ERN spacetime are unbounded if and only if it has an event horizon. We also obtain the Weierstrass form of the polar radial motion, providing an efficient tool for numerical computations. We then study the angular deflection of orbits in the Euclidean Schwarzschild spacetime which, in contrast to the Lorentzian background, can be either positive or negative. We observe the presence of a null and a maximal deflection rings for particles with velocity at infinity $$v>1$$ v > 1 and we give approximate values for their size when $$v > rsim 1.$$ v ≳ 1 . For BR spacetimes, we obtain analytic solutions for the radial motion in proper length, involving (hyperbolic) trigonometric functions and we deduce that orbits either exponentially go to the singularity or are periodic. Finally, we apply the previous results and use algorithms related to Weierstrass’ elliptic functions to produce a Python code to plot orbits of the spacetimes ERN and BR, and draw “shadows” of the first ones, as it was already done before for classical black holes. In this paper, we study the geodesic motion in spherically symmetric electro-vacuum Euclidean solutions of the Einstein equation. There are two kinds of such solutions: the Euclidean Reissner–Nordström (ERN) metrics, and the Bertotti–Robinson-like (BR) metrics, the latter having constant Kretschmann scalar. First, we derive the motion equations for the ERN spacetime and we generalize the results of Battista–Esposito, showing that all orbits in as ERN spacetime are unbounded if and only if it has an event horizon. We also obtain the Weierstrass form of the polar radial motion, providing an efficient tool for numerical computations. We then study the angular deflection of orbits in the Euclidean Schwarzschild spacetime which, in contrast to the Lorentzian background, can be either positive or negative. We observe the presence of a null and a maximal deflection rings for particles with velocity at infinity v>1 and we give approximate values for their size when v≳1. For BR spacetimes, we obtain analytic solutions for the radial motion in proper length, involving (hyperbolic) trigonometric functions and we deduce that orbits either exponentially go to the singularity or are periodic. Finally, we apply the previous results and use algorithms related to Weierstrass’ elliptic functions to produce a Python code to plot orbits of the spacetimes ERN and BR, and draw “shadows” of the first ones, as it was already done before for classical black holes. In this paper, we study the geodesic motion in spherically symmetric electro-vacuum Euclidean solutions of the Einstein equation. There are two kinds of such solutions: the Euclidean Reissner–Nordström (ERN) metrics, and the Bertotti–Robinson-like (BR) metrics, the latter having constant Kretschmann scalar. First, we derive the motion equations for the ERN spacetime and we generalize the results of Battista–Esposito, showing that all orbits in as ERN spacetime are unbounded if and only if it has an event horizon. We also obtain the Weierstrass form of the polar radial motion, providing an efficient tool for numerical computations. We then study the angular deflection of orbits in the Euclidean Schwarzschild spacetime which, in contrast to the Lorentzian background, can be either positive or negative. We observe the presence of a null and a maximal deflection rings for particles with velocity at infinity $$v>1$$ v > 1 and we give approximate values for their size when $$v > rsim 1.$$ v ≳ 1 . For BR spacetimes, we obtain analytic solutions for the radial motion in proper length, involving (hyperbolic) trigonometric functions and we deduce that orbits either exponentially go to the singularity or are periodic. Finally, we apply the previous results and use algorithms related to Weierstrass’ elliptic functions to produce a Python code to plot orbits of the spacetimes ERN and BR, and draw “shadows” of the first ones, as it was already done before for classical black holes. In this paper, we study the geodesic motion in spherically symmetric electro-vacuum Euclidean solutions of the Einstein equation. There are two kinds of such solutions: the Euclidean Reissner–Nordström (ERN) metrics, and the Bertotti–Robinson-like (BR) metrics, the latter having constant Kretschmann scalar. First, we derive the motion equations for the ERN spacetime and we generalize the results of Battista–Esposito, showing that all orbits in as ERN spacetime are unbounded if and only if it has an event horizon. We also obtain the Weierstrass form of the polar radial motion, providing an efficient tool for numerical computations. We then study the angular deflection of orbits in the Euclidean Schwarzschild spacetime which, in contrast to the Lorentzian background, can be either positive or negative. We observe the presence of a null and a maximal deflection rings for particles with velocity at infinity v > 1 and we give approximate values for their size when v ≳ 1 . For BR spacetimes, we obtain analytic solutions for the radial motion in proper length, involving (hyperbolic) trigonometric functions and we deduce that orbits either exponentially go to the singularity or are periodic. Finally, we apply the previous results and use algorithms related to Weierstrass’ elliptic functions to produce a Python code to plot orbits of the spacetimes ERN and BR, and draw “shadows” of the first ones, as it was already done before for classical black holes. In this paper, we study the geodesic motion in spherically symmetric electro-vacuum Euclidean solutions of the Einstein equation. There are two kinds of such solutions: the Euclidean Reissner–Nordström (ERN) metrics, and the Bertotti–Robinson-like (BR) metrics, the latter having constant Kretschmann scalar. First, we derive the motion equations for the ERN spacetime and we generalize the results of Battista–Esposito, showing that all orbits in as ERN spacetime are unbounded if and only if it has an event horizon. We also obtain the Weierstrass form of the polar radial motion, providing an efficient tool for numerical computations. We then study the angular deflection of orbits in the Euclidean Schwarzschild spacetime which, in contrast to the Lorentzian background, can be either positive or negative. We observe the presence of a null and a maximal deflection rings for particles with velocity at infinity $$v>1$$ v > 1 and we give approximate values for their size when $$v > rsim 1.$$ v ≳ 1 . For BR spacetimes, we obtain analytic solutions for the radial motion in proper length, involving (hyperbolic) trigonometric functions and we deduce that orbits either exponentially go to the singularity or are periodic. Finally, we apply the previous results and use algorithms related to Weierstrass’ elliptic functions to produce a Python code to plot orbits of the spacetimes ERN and BR, and draw “shadows” of the first ones, as it was already done before for classical black holes.  | 
    
| ArticleNumber | 374 | 
    
| Audience | Academic | 
    
| Author | Garnier, Arthur | 
    
| Author_xml | – sequence: 1 givenname: Arthur orcidid: 0000-0003-4069-3203 surname: Garnier fullname: Garnier, Arthur email: arthur.garnier@math.cnrs.fr organization: Université de Picardie, LAMFA (UMR 7352 du CNRS)  | 
    
| BackLink | https://u-picardie.hal.science/hal-04543504$$DView record in HAL | 
    
| BookMark | eNqNkU1v1DAQhiNUJNrCbyASJw5p7cSJ4wOHVSl0pZVAfJytiTPeepUvbKew_57ZZkUpFyofbI-ed_TOO2fJyTAOmCSvObvgXLBLnHbmMnDGyjxjuch4LrnKxLPklItCZBXVT_56v0jOQtgxRiirT5P3n8FHZzpM2_0AvTMhdUMaplv0zkDX7dOw73uM9EuxQxP9mN2BmeeeuBBhiOMQXibPLXQBXx3v8-T7h-tvVzfZ5tPH9dVqk5myrGJWVgCtyCuwuaxtI4xtoKmwEshLwdqitKKGJm-lsbJoJFaArWqBSUSDRtniPFkvfdsRdnryrge_1yM4fV8Y_VYfp9GtkTLHvG5U3QqlcgW8KqqCFawRzApJveql1zxMsP9Jo_5pyJk-JKsPyeolWU1x6ftktSDp20V6C90jFzerjT7UmChFUTJxx4l9s7CTH3_MGKLejbMfKCVNZkStqrwuibpYqC2QdzfYMXowdFqkldC-raP6StaqFIoMPVg4CoiJ-CtuYQ5Br79-ecy-W1jjxxA8Wm1chOhI4sF1TxhX_qN_elDHjAMphi36h-H_J_0NrRPf5A | 
    
| CitedBy_id | crossref_primary_10_1103_PhysRevD_109_104060 crossref_primary_10_1140_epjc_s10052_025_13957_w crossref_primary_10_1142_S0219887824400346  | 
    
| Cites_doi | 10.1103/PhysRevD.79.064006 10.1103/PhysRevD.13.2188 10.1140/epjc/s10052-024-12746-1 10.1007/JHEP04(2011)087 10.1093/qmath/os-3.1.226 10.1016/j.physletb.2011.07.076 10.1088/1361-6382/ac95f2 10.1007/s11005-021-01475-1 10.1007/BF02198293 10.1088/0004-637X/777/1/13 10.1007/BF01197189 10.1103/PhysRevD.15.2752 10.1088/0264-9381/28/22/225011 10.1093/imanum/10.1.119 10.1140/epjc/s10052-023-11762-x 10.1088/0264-9381/19/21/308 10.1088/0264-9381/20/22/C01 10.1016/S0393-0440(99)00023-6 10.1088/1361-6382/ab0512 10.1016/j.geomphys.2018.05.018 10.1086/339511 10.1140/epjc/s10052-022-11070-w 10.1088/0264-9381/6/10/008 10.1007/978-3-662-14495-4 10.1103/PhysRevD.80.105006 10.1088/0264-9381/33/9/095007 10.1017/S0305004121000463 10.1007/BF01474631 10.1140/epjc/s10052-020-8382-z 10.1103/PhysRevD.65.084035 10.1016/j.chaos.2003.12.001 10.1098/rspa.1959.0015 10.3847/0004-637X/820/2/105 10.1103/PhysRev.116.1331 10.1088/0253-6102/71/10/1219 10.1007/JHEP02(2015)062 10.1016/0370-2693(78)90016-3 10.1088/0264-9381/1/1/007 10.1007/978-1-4613-2955-8_4 10.1088/1361-6382/accbfe 10.1016/0375-9601(77)90386-3 10.1016/0370-1573(80)90130-1 10.1103/PhysRevD.77.103005 10.1016/0370-2693(75)90163-X 10.1088/0264-9381/29/6/065016 10.48550/arXiv.astro-ph/0602427 10.1140/epjc/s10052-022-10054-0 10.1007/978-94-007-5410-2 10.1088/0004-637X/696/2/1616 10.1098/rspa.2011.0616 10.4310/jdg/1214444097  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2024 COPYRIGHT 2024 Springer The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| Copyright_xml | – notice: The Author(s) 2024 – notice: COPYRIGHT 2024 Springer – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| DBID | C6C AAYXX CITATION ISR 7U5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 1XC ADTOC UNPAY DOA  | 
    
| DOI | 10.1140/epjc/s10052-024-12719-4 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science (UHCL Subscription) Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central ProQuest Technology Collection (LUT) ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection (Proquest) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Hyper Article en Ligne (HAL) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea Solid State and Superconductivity Abstracts ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics Mathematics  | 
    
| EISSN | 1434-6052 | 
    
| EndPage | 26 | 
    
| ExternalDocumentID | oai_doaj_org_article_dc772e28b98d49929a16363030b40f47 10.1140/epjc/s10052-024-12719-4 oai:HAL:hal-04543504v1 A789549100 10_1140_epjc_s10052_024_12719_4  | 
    
| GroupedDBID | -5F -5G -A0 -BR -~X .86 0R~ 199 29G 2JY 30V 4.4 408 409 40D 5GY 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95. 95~ AAFWJ AAKKN ABDBF ABEEZ ABMNI ACACY ACGFS ACNCT ACUHS ACULB ADBBV ADINQ ADMLS AENEX AFBBN AFGXO AFKRA AFPKN AFWTZ AGWIL AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF AZFZN B0M BA0 BCNDV BENPR BGLVJ BGNMA C24 C6C CCPQU CS3 CSCUP DL5 DU5 EAD EAP EAS EBS EMK EPL ER. ESX FEDTE GQ6 GQ8 GROUPED_DOAJ GXS HCIFZ HF~ HG5 HG6 HMJXF HVGLF HZ~ I-F I09 IAO IGS IHE ISR IXC IZIGR IZQ I~X KDC KOV LAS M4Y MA- NB0 O9- O93 OK1 P62 P9T PIMPY QOS R89 R9I RED RID RNS ROL RPX RSV S27 S3B SDH SOJ SPH SZN T13 TN5 TSK TSV TUC TUS U2A VC2 WK8 Z45 Z7Y ~8M AAYXX CITATION PUEGO 7U5 8FD ABUWG AZQEC DWQXO H8D L7M PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI 1XC -Y2 1SB 29Q 2P1 ABFSG ABQSL ACSTC ADHKG ADKPE ADTOC AEZWR AFFNX AFHIU AGJBK AGQPQ AHSBF AHWEU AI. AIXLP CAG COF EJD H13 H~9 N2Q NU0 PROAC PT5 RZK S1Z UNPAY VH1  | 
    
| ID | FETCH-LOGICAL-c556t-56aad426af278fb4cfbab6e64e1540d35f48ab2d7cf73b7e6aed9da07eecec9f3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1434-6052 1434-6044  | 
    
| IngestDate | Fri Oct 03 12:27:21 EDT 2025 Sun Oct 26 03:46:02 EDT 2025 Thu Oct 30 07:34:41 EDT 2025 Sat Oct 18 23:52:22 EDT 2025 Mon Oct 20 16:51:20 EDT 2025 Thu Oct 16 15:40:01 EDT 2025 Wed Oct 01 02:12:01 EDT 2025 Thu Apr 24 23:12:18 EDT 2025 Fri Feb 21 02:40:17 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c556t-56aad426af278fb4cfbab6e64e1540d35f48ab2d7cf73b7e6aed9da07eecec9f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-4069-3203 | 
    
| OpenAccessLink | https://www.proquest.com/docview/3034896285?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 3034896285 | 
    
| PQPubID | 2034659 | 
    
| PageCount | 26 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_dc772e28b98d49929a16363030b40f47 unpaywall_primary_10_1140_epjc_s10052_024_12719_4 hal_primary_oai_HAL_hal_04543504v1 proquest_journals_3034896285 gale_infotracacademiconefile_A789549100 gale_incontextgauss_ISR_A789549100 crossref_citationtrail_10_1140_epjc_s10052_024_12719_4 crossref_primary_10_1140_epjc_s10052_024_12719_4 springer_journals_10_1140_epjc_s10052_024_12719_4  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-04-01 | 
    
| PublicationDateYYYYMMDD | 2024-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg  | 
    
| PublicationSubtitle | Particles and Fields | 
    
| PublicationTitle | The European physical journal. C, Particles and fields | 
    
| PublicationTitleAbbrev | Eur. Phys. J. C | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V Springer Verlag (Germany) SpringerOpen  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V – name: Springer Verlag (Germany) – name: SpringerOpen  | 
    
| References | YangYZhangXGeodesics on metrics of Eguchi–Hanson typeEur. Phys. J. C202310.1140/epjc/s10052-023-11762-x MosnaRTavaresGNew self-dual solutions of SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SU(2)$$\end{document} Yang–Mills theory in Euclidean Schwarzschild spacePhys. Rev. D2009802009PhRvD..80j5006M10.1103/PhysRevD.80.105006 PuHOdyssey: a public GPU-based code for general-relativistic radiative transfer in Kerr spacetimeApJ201682021051162016ApJ...820..105P10.3847/0004-637X/820/2/105 MarsMSimonWA proof of uniqueness of the Taub-bolt instantonJ. Geom. Phys.19993222112261999JGP....32..211M172417810.1016/S0393-0440(99)00023-6 N. Straumann, General Relativity, 2nd edn. Graduate Texts in Physics (Springer, Berlin, 2013) DarwinCThe gravity field of a particleProc. R. Soc. Lond. A19592491801941959RSPSA.249..180D9923010.1098/rspa.1959.0015 OhJJParkCYangHSYang–Mills instantons from gravitational instantonsJ. High Energy Phys.2011283323110.1007/JHEP04(2011)087 LindbergARayanSGeodesics on a Kerr–Newman–(anti-)de Sitter instantonJ. Geom. Phys.20181321141302018JGP...132..114L383677210.1016/j.geomphys.2018.05.018 J. McMahon, V. Snyder, Elements of the Differential Calculus. The Cornell Mathematical Series (American Book Company, 1898), New York HartleJBHawkingSWPath-integral derivation of black-hole radiancePhys. Rev. D197613218822031976PhRvD..13.2188H10.1103/PhysRevD.13.2188 D. Viththani et al., Particle motion and tidal force in a non-vacuum-charged naked singularity (2024). arXiv:2402.02069 [gr-qc] BelavinAAPseudoparticle solutions of the Yang–Mills equationsPhys. Lett. B197559185871975PhLB...59...85B43418310.1016/0370-2693(75)90163-X GibbonsGWHawkingSWIsraelWQuantum field theory in curved spacetimeGeneral Relativity—An Einstein Centenary Survey1979CambridgeCambridge University Press BattistaEEspositoGGeodesic motion in Euclidean Schwarzschild geometryEur. Phys. J. C202210.1140/epjc/s10052-022-11070-w MellorFMossIBlack holes and gravitational instantonsClass. Quantum Gravity19896137913851989CQGra...6.1379M101496810.1088/0264-9381/6/10/008 A. Accioly, S. Ragusa, Gravitational deflection of massive particles in classical and semiclassical general relativity. Class. Quantum Gravity 19(21), 5429–5434 (2002). https://doi.org/10.1088/0264-9381/19/21/308. [Corrected in “Corrigendum”. Class. Quantum Gravity 20(22), 4963–4964 (2003). https://doi.org/10.1088/0264-9381/20/22/C01] CarlsonBCNumerical computation of real or complex elliptic integralsNumer. Algorithms199510113261995NuAlg..10...13C134540710.1007/BF02198293 G. Esposito, Quantum Gravity, Quantum Cosmology and Lorentzian Geometries. Lecture Notes in Physics Monographs (Springer, Berlin, 1992). https://doi.org/10.1007/978-3-662-14495-4 KunduriHKLuciettiJExistence and uniqueness of asymptotically flat toric gravitational instantonsLett. Math. Phys.2021432991610.1007/s11005-021-01475-1 Velásquez-CadavidJMOSIRIS: a new code for ray tracing around compact objectsEur. Phys. J. C202210.1140/epjc/s10052-022-10054-0 BeloborodovAMGravitational bending of light near compact objectsApJ200210.1086/339511 J. Briët, D. Hobill, Determining the dimensionality of spacetime by gravitational lensing (2008). arXiv:0801.3859 GergelyLADarázsBWeak gravitational lensing in brane-worldsPubl. Astron. Dep. Eotvos Univ.20061721321910.48550/arXiv.astro-ph/0602427 PageDTaub-NUT instanton with an horizonPhys. Lett. B19787822492511978PhLB...78..249P67885510.1016/0370-2693(78)90016-3 PangXJiaJGravitational lensing of massive particles in Reissner–Nordström black hole spacetimeClass. Quantum Gravity201910.1088/1361-6382/ab0512 LiZGravitational deflection of massive particles by a Schwarzschild black hole in radiation gaugeCommun. Theor. Phys.20197110121912262019CoTPh..71.1219L402545010.1088/0253-6102/71/10/1219 GibbonsGWHawkingSWClassification of gravitational instanton symmetriesCommun. Math. Phys.1979662913101979CMaPh..66..291G53515210.1007/BF01197189 MonteiroRSantosJENegative modes and the thermodynamics of Reissner–Nordström black holesPhys. Rev. D200910.1103/PhysRevD.79.064006 AndersonMTShort geodesics and gravitational instantonsJ. Differ. Geom.1990311265275103067310.4310/jdg/1214444097 HawkingSWLévyMDeserSEuclidean quantum gravityRecent Developments in Gravitation: Carg è se 19781979BerlinSpringer14517310.1007/978-1-4613-2955-8_4 LevinJPerez-GizGA periodic table of black hole orbitsPhys. Rev. D2008244354610.1103/PhysRevD.77.103005 EguchiTGilkeyPBHansonAJGravitation, gauge theories and differential geometryPhys. Rep.19806662133931980PhR....66..213E59858610.1016/0370-1573(80)90130-1 DexterJAgolEA fast new public code for computing photon orbits in a Kerr spacetimeApJ200910.1088/0004-637X/696/2/1616 AtiyahMFFranchettiGSchroersBJTime evolution in a geometric model of a particleJ. High Energy Phys.2015332140110.1007/JHEP02(2015)062 GibbonsGWHawkingSWAction integrals and partition functions in quantum gravityPhys. Rev. D197710.1103/PhysRevD.15.2752 HawkingSWGravitational instantonsPhys. Lett. A19776081831977PhLA...60...81H46505210.1016/0375-9601(77)90386-3 HeGLinWGravitational deflection of light and massive particles by a moving Kerr–Newman black holeClass. Quantum Gravity2016349166210.1088/0264-9381/33/9/095007 CieślikAMachPRevisiting timelike and null geodesics in the Schwarzschild spacetime: general expressions in terms of Weierstrass elliptic functionsClass. Quantum Gravity2022450644410.1088/1361-6382/ac95f2 AtiyahMFMantonNSSchroersBJGeometric models of matterProc. R. Soc. A2012468125212792012RSPSA.468.1252A291034810.1098/rspa.2011.0616 VisinescuMThe geodesic motion on generalized Taub-NUT gravitational instantonsZ. Phys. C Part. Fields19936033734110.1007/BF01474631 CoquereauxRGrossmannALautrupBEIterative method for calculation of the Weierstrass elliptic functionIMA J. Numer. Anal.199010119128103665110.1093/imanum/10.1.119 S. Aksteiner, L. Andersson, Gravitational instantons and special geometry (2021). arXiv:2112.11863 [gr-qc] HagiharaYTheory of the relativistic trajectories in a gravitational field of SchwarzschildJpn. J. Astron. Geophys.1930867176 I. Robinson, A solution of the Maxwell–Einstein equations. Bull. Acad. Pol. Sci 7, 351–352 (1959) GibbonsGWVyskaMThe application of Weierstrass elliptic functions to Schwarzschild null geodesicsClass. Quantum Gravity2012290295310.1088/0264-9381/29/6/065016 BertottiBUniform electromagnetic field in the theory of general relativityPhys. Rev.1959116133113331959PhRv..116.1331B11052310.1103/PhysRev.116.1331 VincentFHGYOTO: a new general relativistic ray-tracing codeClass. Quantum Gravity2011287191410.1088/0264-9381/28/22/225011 HeGGravitational deflection of massive particles in Schwarzschild–de Sitter spacetimeEur. Phys. J. C202010.1140/epjc/s10052-020-8382-z R. Jante, On the spectrum of some gravitational instantons. PhD thesis. Heriot–Watt University (2015). http://hdl.handle.net/10399/3083 ChenYTeoEA new AF gravitational instantonPhys. Lett. B201170333593622011PhLB..703..359C283186610.1016/j.physletb.2011.07.076 B. Hoffmann, On the spherically symmetric field in relativity. Q. J. Math. os-3(1), 226–237 (1932). https://doi.org/10.1093/qmath/os-3.1.226 TekinBYang–Mills solutions on Euclidean Schwarzschild spacePhys. Rev. D2002652002PhRvD..65h4035T189977910.1103/PhysRevD.65.084035 El NaschieMS How gravitational instanton could solve the mass problem of the standard model of high energy particle physicsChaos Solitons Fractals20042112492602004CSF....21..249E10.1016/j.chaos.2003.12.001 ChanCPsaltisDÖzelFGRay: a massively parallel GPU-based code for ray tracing in relativistic spacetimesApJ201310.1088/0004-637X/777/1/13 ElsterTQuantum vacuum energy near a black hole: the Maxwell fieldClass. Quantum Gravity198473098110.1088/0264-9381/1/1/007 GarnierAMotion equations in a Kerr–Newman–de Sitter spacetime: some methods of integration and application to black holes shadowing in ScilabClass. Quantum Gravity202340132023CQGra..40m5011G460738810.1088/1361-6382/accbfe DunajskiMTodPConformal geodesics on gravitational instantonsMath. Proc. Camb. Philos. Soc.20221731123154443833310.1017/S0305004121000463 C Darwin (12719_CR16) 1959; 249 MF Atiyah (12719_CR4) 2015 T Elster (12719_CR20) 1984 JB Hartle (12719_CR29) 1976; 13 12719_CR41 J Dexter (12719_CR17) 2009 GW Gibbons (12719_CR26) 1979; 66 Y Chen (12719_CR13) 2011; 703 X Pang (12719_CR48) 2019 B Bertotti (12719_CR9) 1959; 116 SW Hawking (12719_CR31) 1977; 60 R Mosna (12719_CR44) 2009; 80 M Dunajski (12719_CR18) 2022; 173 GW Gibbons (12719_CR24) 1979 AM Beloborodov (12719_CR8) 2002 D Page (12719_CR47) 1978; 78 12719_CR34 12719_CR35 A Garnier (12719_CR22) 2023; 40 JJ Oh (12719_CR46) 2011 12719_CR2 12719_CR1 BC Carlson (12719_CR11) 1995; 10 C Chan (12719_CR12) 2013 A Cieślik (12719_CR14) 2022 JM Velásquez-Cadavid (12719_CR53) 2022 GW Gibbons (12719_CR25) 1977 G He (12719_CR32) 2016 A Lindberg (12719_CR39) 2018; 132 12719_CR21 G He (12719_CR33) 2020 H Pu (12719_CR49) 2016; 820 T Eguchi (12719_CR19) 1980; 66 LA Gergely (12719_CR23) 2006; 17 GW Gibbons (12719_CR27) 2012 M Visinescu (12719_CR55) 1993; 60 E Battista (12719_CR6) 2022 F Mellor (12719_CR42) 1989; 6 AA Belavin (12719_CR7) 1975; 59 M Mars (12719_CR40) 1999; 32 12719_CR56 Y Hagihara (12719_CR28) 1930; 8 SW Hawking (12719_CR30) 1979 12719_CR51 MF Atiyah (12719_CR5) 2012; 468 R Coquereaux (12719_CR15) 1990; 10 HK Kunduri (12719_CR36) 2021 12719_CR10 R Monteiro (12719_CR43) 2009 12719_CR50 B Tekin (12719_CR52) 2002; 65 FH Vincent (12719_CR54) 2011 MS El Naschie (12719_CR45) 2004; 21 J Levin (12719_CR37) 2008 Z Li (12719_CR38) 2019; 71 Y Yang (12719_CR57) 2023 MT Anderson (12719_CR3) 1990; 31  | 
    
| References_xml | – reference: LevinJPerez-GizGA periodic table of black hole orbitsPhys. Rev. D2008244354610.1103/PhysRevD.77.103005 – reference: DexterJAgolEA fast new public code for computing photon orbits in a Kerr spacetimeApJ200910.1088/0004-637X/696/2/1616 – reference: BattistaEEspositoGGeodesic motion in Euclidean Schwarzschild geometryEur. Phys. J. C202210.1140/epjc/s10052-022-11070-w – reference: B. Hoffmann, On the spherically symmetric field in relativity. Q. J. Math. os-3(1), 226–237 (1932). https://doi.org/10.1093/qmath/os-3.1.226 – reference: Velásquez-CadavidJMOSIRIS: a new code for ray tracing around compact objectsEur. Phys. J. C202210.1140/epjc/s10052-022-10054-0 – reference: AtiyahMFMantonNSSchroersBJGeometric models of matterProc. R. Soc. A2012468125212792012RSPSA.468.1252A291034810.1098/rspa.2011.0616 – reference: El NaschieMS How gravitational instanton could solve the mass problem of the standard model of high energy particle physicsChaos Solitons Fractals20042112492602004CSF....21..249E10.1016/j.chaos.2003.12.001 – reference: VisinescuMThe geodesic motion on generalized Taub-NUT gravitational instantonsZ. Phys. C Part. Fields19936033734110.1007/BF01474631 – reference: AtiyahMFFranchettiGSchroersBJTime evolution in a geometric model of a particleJ. High Energy Phys.2015332140110.1007/JHEP02(2015)062 – reference: DarwinCThe gravity field of a particleProc. R. Soc. Lond. A19592491801941959RSPSA.249..180D9923010.1098/rspa.1959.0015 – reference: AndersonMTShort geodesics and gravitational instantonsJ. Differ. Geom.1990311265275103067310.4310/jdg/1214444097 – reference: BelavinAAPseudoparticle solutions of the Yang–Mills equationsPhys. Lett. B197559185871975PhLB...59...85B43418310.1016/0370-2693(75)90163-X – reference: HawkingSWGravitational instantonsPhys. Lett. A19776081831977PhLA...60...81H46505210.1016/0375-9601(77)90386-3 – reference: YangYZhangXGeodesics on metrics of Eguchi–Hanson typeEur. Phys. J. C202310.1140/epjc/s10052-023-11762-x – reference: BertottiBUniform electromagnetic field in the theory of general relativityPhys. Rev.1959116133113331959PhRv..116.1331B11052310.1103/PhysRev.116.1331 – reference: HagiharaYTheory of the relativistic trajectories in a gravitational field of SchwarzschildJpn. J. Astron. Geophys.1930867176 – reference: PangXJiaJGravitational lensing of massive particles in Reissner–Nordström black hole spacetimeClass. Quantum Gravity201910.1088/1361-6382/ab0512 – reference: LindbergARayanSGeodesics on a Kerr–Newman–(anti-)de Sitter instantonJ. Geom. Phys.20181321141302018JGP...132..114L383677210.1016/j.geomphys.2018.05.018 – reference: CarlsonBCNumerical computation of real or complex elliptic integralsNumer. Algorithms199510113261995NuAlg..10...13C134540710.1007/BF02198293 – reference: GibbonsGWHawkingSWIsraelWQuantum field theory in curved spacetimeGeneral Relativity—An Einstein Centenary Survey1979CambridgeCambridge University Press – reference: GibbonsGWHawkingSWAction integrals and partition functions in quantum gravityPhys. Rev. D197710.1103/PhysRevD.15.2752 – reference: BeloborodovAMGravitational bending of light near compact objectsApJ200210.1086/339511 – reference: VincentFHGYOTO: a new general relativistic ray-tracing codeClass. Quantum Gravity2011287191410.1088/0264-9381/28/22/225011 – reference: A. Accioly, S. Ragusa, Gravitational deflection of massive particles in classical and semiclassical general relativity. Class. Quantum Gravity 19(21), 5429–5434 (2002). https://doi.org/10.1088/0264-9381/19/21/308. [Corrected in “Corrigendum”. Class. Quantum Gravity 20(22), 4963–4964 (2003). https://doi.org/10.1088/0264-9381/20/22/C01] – reference: HawkingSWLévyMDeserSEuclidean quantum gravityRecent Developments in Gravitation: Carg è se 19781979BerlinSpringer14517310.1007/978-1-4613-2955-8_4 – reference: KunduriHKLuciettiJExistence and uniqueness of asymptotically flat toric gravitational instantonsLett. Math. Phys.2021432991610.1007/s11005-021-01475-1 – reference: N. Straumann, General Relativity, 2nd edn. Graduate Texts in Physics (Springer, Berlin, 2013) – reference: J. McMahon, V. Snyder, Elements of the Differential Calculus. The Cornell Mathematical Series (American Book Company, 1898), New York – reference: GergelyLADarázsBWeak gravitational lensing in brane-worldsPubl. Astron. Dep. Eotvos Univ.20061721321910.48550/arXiv.astro-ph/0602427 – reference: ChanCPsaltisDÖzelFGRay: a massively parallel GPU-based code for ray tracing in relativistic spacetimesApJ201310.1088/0004-637X/777/1/13 – reference: S. Aksteiner, L. Andersson, Gravitational instantons and special geometry (2021). arXiv:2112.11863 [gr-qc] – reference: HeGGravitational deflection of massive particles in Schwarzschild–de Sitter spacetimeEur. Phys. J. C202010.1140/epjc/s10052-020-8382-z – reference: CieślikAMachPRevisiting timelike and null geodesics in the Schwarzschild spacetime: general expressions in terms of Weierstrass elliptic functionsClass. Quantum Gravity2022450644410.1088/1361-6382/ac95f2 – reference: CoquereauxRGrossmannALautrupBEIterative method for calculation of the Weierstrass elliptic functionIMA J. Numer. Anal.199010119128103665110.1093/imanum/10.1.119 – reference: GarnierAMotion equations in a Kerr–Newman–de Sitter spacetime: some methods of integration and application to black holes shadowing in ScilabClass. Quantum Gravity202340132023CQGra..40m5011G460738810.1088/1361-6382/accbfe – reference: J. Briët, D. Hobill, Determining the dimensionality of spacetime by gravitational lensing (2008). arXiv:0801.3859 – reference: OhJJParkCYangHSYang–Mills instantons from gravitational instantonsJ. High Energy Phys.2011283323110.1007/JHEP04(2011)087 – reference: HeGLinWGravitational deflection of light and massive particles by a moving Kerr–Newman black holeClass. Quantum Gravity2016349166210.1088/0264-9381/33/9/095007 – reference: MonteiroRSantosJENegative modes and the thermodynamics of Reissner–Nordström black holesPhys. Rev. D200910.1103/PhysRevD.79.064006 – reference: GibbonsGWVyskaMThe application of Weierstrass elliptic functions to Schwarzschild null geodesicsClass. Quantum Gravity2012290295310.1088/0264-9381/29/6/065016 – reference: ElsterTQuantum vacuum energy near a black hole: the Maxwell fieldClass. Quantum Gravity198473098110.1088/0264-9381/1/1/007 – reference: LiZGravitational deflection of massive particles by a Schwarzschild black hole in radiation gaugeCommun. Theor. Phys.20197110121912262019CoTPh..71.1219L402545010.1088/0253-6102/71/10/1219 – reference: G. Esposito, Quantum Gravity, Quantum Cosmology and Lorentzian Geometries. Lecture Notes in Physics Monographs (Springer, Berlin, 1992). https://doi.org/10.1007/978-3-662-14495-4 – reference: MosnaRTavaresGNew self-dual solutions of SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SU(2)$$\end{document} Yang–Mills theory in Euclidean Schwarzschild spacePhys. Rev. D2009802009PhRvD..80j5006M10.1103/PhysRevD.80.105006 – reference: ChenYTeoEA new AF gravitational instantonPhys. Lett. B201170333593622011PhLB..703..359C283186610.1016/j.physletb.2011.07.076 – reference: TekinBYang–Mills solutions on Euclidean Schwarzschild spacePhys. Rev. D2002652002PhRvD..65h4035T189977910.1103/PhysRevD.65.084035 – reference: HartleJBHawkingSWPath-integral derivation of black-hole radiancePhys. Rev. D197613218822031976PhRvD..13.2188H10.1103/PhysRevD.13.2188 – reference: I. Robinson, A solution of the Maxwell–Einstein equations. Bull. Acad. Pol. Sci 7, 351–352 (1959) – reference: MellorFMossIBlack holes and gravitational instantonsClass. Quantum Gravity19896137913851989CQGra...6.1379M101496810.1088/0264-9381/6/10/008 – reference: EguchiTGilkeyPBHansonAJGravitation, gauge theories and differential geometryPhys. Rep.19806662133931980PhR....66..213E59858610.1016/0370-1573(80)90130-1 – reference: DunajskiMTodPConformal geodesics on gravitational instantonsMath. Proc. Camb. Philos. Soc.20221731123154443833310.1017/S0305004121000463 – reference: D. Viththani et al., Particle motion and tidal force in a non-vacuum-charged naked singularity (2024). arXiv:2402.02069 [gr-qc] – reference: PuHOdyssey: a public GPU-based code for general-relativistic radiative transfer in Kerr spacetimeApJ201682021051162016ApJ...820..105P10.3847/0004-637X/820/2/105 – reference: GibbonsGWHawkingSWClassification of gravitational instanton symmetriesCommun. Math. Phys.1979662913101979CMaPh..66..291G53515210.1007/BF01197189 – reference: R. Jante, On the spectrum of some gravitational instantons. PhD thesis. Heriot–Watt University (2015). http://hdl.handle.net/10399/3083 – reference: MarsMSimonWA proof of uniqueness of the Taub-bolt instantonJ. Geom. Phys.19993222112261999JGP....32..211M172417810.1016/S0393-0440(99)00023-6 – reference: PageDTaub-NUT instanton with an horizonPhys. Lett. B19787822492511978PhLB...78..249P67885510.1016/0370-2693(78)90016-3 – year: 2009 ident: 12719_CR43 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.79.064006 – volume: 13 start-page: 2188 year: 1976 ident: 12719_CR29 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.13.2188 – ident: 12719_CR56 doi: 10.1140/epjc/s10052-024-12746-1 – year: 2011 ident: 12719_CR46 publication-title: J. High Energy Phys. doi: 10.1007/JHEP04(2011)087 – ident: 12719_CR34 doi: 10.1093/qmath/os-3.1.226 – volume: 8 start-page: 67 year: 1930 ident: 12719_CR28 publication-title: Jpn. J. Astron. Geophys. – volume: 703 start-page: 359 issue: 3 year: 2011 ident: 12719_CR13 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2011.07.076 – year: 2022 ident: 12719_CR14 publication-title: Class. Quantum Gravity doi: 10.1088/1361-6382/ac95f2 – year: 2021 ident: 12719_CR36 publication-title: Lett. Math. Phys. doi: 10.1007/s11005-021-01475-1 – volume: 10 start-page: 13 issue: 1 year: 1995 ident: 12719_CR11 publication-title: Numer. Algorithms doi: 10.1007/BF02198293 – year: 2013 ident: 12719_CR12 publication-title: ApJ doi: 10.1088/0004-637X/777/1/13 – volume: 66 start-page: 291 year: 1979 ident: 12719_CR26 publication-title: Commun. Math. Phys. doi: 10.1007/BF01197189 – year: 1977 ident: 12719_CR25 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.15.2752 – year: 2011 ident: 12719_CR54 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/28/22/225011 – volume: 10 start-page: 119 year: 1990 ident: 12719_CR15 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/10.1.119 – year: 2023 ident: 12719_CR57 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-023-11762-x – ident: 12719_CR1 doi: 10.1088/0264-9381/19/21/308 10.1088/0264-9381/20/22/C01 – volume: 32 start-page: 211 issue: 2 year: 1999 ident: 12719_CR40 publication-title: J. Geom. Phys. doi: 10.1016/S0393-0440(99)00023-6 – ident: 12719_CR41 – year: 2019 ident: 12719_CR48 publication-title: Class. Quantum Gravity doi: 10.1088/1361-6382/ab0512 – volume: 132 start-page: 114 year: 2018 ident: 12719_CR39 publication-title: J. Geom. Phys. doi: 10.1016/j.geomphys.2018.05.018 – year: 2002 ident: 12719_CR8 publication-title: ApJ doi: 10.1086/339511 – year: 2022 ident: 12719_CR6 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-022-11070-w – volume: 6 start-page: 1379 year: 1989 ident: 12719_CR42 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/6/10/008 – ident: 12719_CR21 doi: 10.1007/978-3-662-14495-4 – volume: 80 year: 2009 ident: 12719_CR44 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.80.105006 – year: 2016 ident: 12719_CR32 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/33/9/095007 – volume: 173 start-page: 123 issue: 1 year: 2022 ident: 12719_CR18 publication-title: Math. Proc. Camb. Philos. Soc. doi: 10.1017/S0305004121000463 – volume: 60 start-page: 337 year: 1993 ident: 12719_CR55 publication-title: Z. Phys. C Part. Fields doi: 10.1007/BF01474631 – year: 2020 ident: 12719_CR33 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-8382-z – volume: 65 year: 2002 ident: 12719_CR52 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.65.084035 – volume: 21 start-page: 249 issue: 1 year: 2004 ident: 12719_CR45 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2003.12.001 – volume-title: General Relativity—An Einstein Centenary Survey year: 1979 ident: 12719_CR24 – volume: 249 start-page: 180 year: 1959 ident: 12719_CR16 publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1959.0015 – volume: 820 start-page: 105 issue: 2 year: 2016 ident: 12719_CR49 publication-title: ApJ doi: 10.3847/0004-637X/820/2/105 – volume: 116 start-page: 1331 year: 1959 ident: 12719_CR9 publication-title: Phys. Rev. doi: 10.1103/PhysRev.116.1331 – volume: 71 start-page: 1219 issue: 10 year: 2019 ident: 12719_CR38 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/71/10/1219 – ident: 12719_CR50 – year: 2015 ident: 12719_CR4 publication-title: J. High Energy Phys. doi: 10.1007/JHEP02(2015)062 – volume: 78 start-page: 249 issue: 2 year: 1978 ident: 12719_CR47 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(78)90016-3 – year: 1984 ident: 12719_CR20 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/1/1/007 – start-page: 145 volume-title: Recent Developments in Gravitation: Carg è se 1978 year: 1979 ident: 12719_CR30 doi: 10.1007/978-1-4613-2955-8_4 – volume: 40 issue: 13 year: 2023 ident: 12719_CR22 publication-title: Class. Quantum Gravity doi: 10.1088/1361-6382/accbfe – ident: 12719_CR2 – volume: 60 start-page: 81 year: 1977 ident: 12719_CR31 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(77)90386-3 – ident: 12719_CR10 – volume: 66 start-page: 213 issue: 6 year: 1980 ident: 12719_CR19 publication-title: Phys. Rep. doi: 10.1016/0370-1573(80)90130-1 – ident: 12719_CR35 – year: 2008 ident: 12719_CR37 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.77.103005 – volume: 59 start-page: 85 issue: 1 year: 1975 ident: 12719_CR7 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(75)90163-X – year: 2012 ident: 12719_CR27 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/29/6/065016 – volume: 17 start-page: 213 year: 2006 ident: 12719_CR23 publication-title: Publ. Astron. Dep. Eotvos Univ. doi: 10.48550/arXiv.astro-ph/0602427 – year: 2022 ident: 12719_CR53 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-022-10054-0 – ident: 12719_CR51 doi: 10.1007/978-94-007-5410-2 – year: 2009 ident: 12719_CR17 publication-title: ApJ doi: 10.1088/0004-637X/696/2/1616 – volume: 468 start-page: 1252 year: 2012 ident: 12719_CR5 publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2011.0616 – volume: 31 start-page: 265 issue: 1 year: 1990 ident: 12719_CR3 publication-title: J. Differ. Geom. doi: 10.4310/jdg/1214444097  | 
    
| SSID | ssj0002408 | 
    
| Score | 2.454571 | 
    
| Snippet | In this paper, we study the geodesic motion in spherically symmetric electro-vacuum Euclidean solutions of the Einstein equation. There are two kinds of such... Abstract In this paper, we study the geodesic motion in spherically symmetric electro-vacuum Euclidean solutions of the Einstein equation. There are two kinds...  | 
    
| SourceID | doaj unpaywall hal proquest gale crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 374 | 
    
| SubjectTerms | Algorithms Astronomy Astrophysics and Cosmology Black holes Deflection Einstein equations Elementary Particles Elliptic functions Equations of motion Event horizon Exact solutions Hadrons Heavy Ions Instantons Mathematics Measurement Science and Instrumentation Nuclear Energy Nuclear Physics Orbits Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Regular Article - Theoretical Physics Singularity (mathematics) Spacetime String Theory Trigonometric functions  | 
    
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgJQQcEE8RWFC0QuJkrZM4TnIsj1VBCCFgpb1ZY8fmoTZb4WZR_z0ziRvaUzlw9UNxPo_tz_LMN4y9sLaRJjOCgzKGSwPATSM8ByLghZEmd4O3xUc1P5fvL8qLnVRf5BM2ygOPwJ22Fvmfy2vT1C2y87wBZBAKN15hpPByiCMXdbO9TMU9mIS7ojcX3iBO3eqnpWg5UeYc63iWV1nD5d5ZNEj2Txvz9e_kF7lDOqd30tvsZt-tYPMbFoudo-jsLrsTOWQ6G8d-j11z3X12Y_DltOEBe_Mp_lXajunmQ_qjSwPpB9CMLDZp2CyXlEnLpjELDr8C2_dLbBfGrMLhITs_e_v19ZzHZAnclqVa81IBtHjcgs-r2htpvQGjnJIOSZJoi9LLGkzekgxRYSqnwLVNC6Jyzjrb-OIRO-ouO_eYpcabzNXWgbAUPIKMQmXKW4vnqQdc3wlTW9i0jUrilNBioccoZ6EJbz3irRFvPeCtZcLE1HE1imkc7vKK5mVqTmrYQwHaiI5o6kM2krATmlVNehcdOdR8gz4E_e7LZz2ranroxO8m7GVs5C_xbyzE-ATEhCSy9lqeoHXsDWk--6CpjAQNi1LIqyxhx1vj0XFbCBqHJOuGolYTlm0N6m_1QSyyyfL-Fb8n_wO_p-xWTstmcFg6ZkfrX717hlxsbZ4Py-4PVnYscQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB21RQg4ID5FoEVRhcTJqpM4TnLcFqoFIYSASr1ZtmMX0G66Ipui_fedSbxh99Iiro4tO89jz1gz8wbgjbWVMInhTEtjmDBaM1NxzzQZ4JkRJnV9tMVnOT0TH8_z8x04WufCbPrv0fY_cotflvLceJ4yVCcsSYukYmIX7qCmkr13Vp6MVy_xdYUgrhsGb6mgnql_vI93f1A45IatObpHH8C9rlno1R89m21ooNNH8DCYjvFk2OvHsOOaJ3C3D-G07VN49yVIQVwPVebb-GcTt0QbQBsxW8Xtaj6nAlo2DsVv2JW2XTfHfu1QTLh9Bmen77-fTFmokcBsnssly6XWNWpZ7dOi9EZYb7SRTgqHthGvs9yLUpu0JvahzBROaldXteaFc9bZymfPYa-5bNwLiI03iSut09xSzggaEjKR3lpUo17jsY5ArmFTNhCIUx2LmRqSm7kivNWAt0K8VY-3EhHwceBi4NC4fcgx7cvYnUiw-waUDRXQVLXFp4FLS1OVNT7c0kqjcSlRJ3MjuBdFBIe0q4poLhqKo7nQXduqD9--qklRkn8T543gbejkL_FvrA5pCYgJMWNt9TxE6dha0nTySVEb8RhmORdXSQT7a-FR4TZoFS5JlBUlq0aQrAXq7-dbsUhGyftX_F7-xzyv4H5Kp6QPS9qHveXvzh2gxbU0r_tTdg2sPCHQ priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RrRD0wLOIQEFRhcTJWydxnOS4PKoFoaoCViony3bsQtnNrppNq-XX40mcpcuBIsQtSsZ5fPnimcgz3wC80LpgKlKUSK4UYUpKogpqicQAPFFMxabNtjji4wl7f5KeeEmhus9275cku5oGVGmqlgeL0nptW3pgFmcaq99oGhPnZEgUZ1FB2NDZbME2T11YPoDtydHx6EtbXZQwwmnb2NVvp7HP9frD2TY8VSvov562t75i1uSVkHS9iroDt5pqIVeXcjq94qgO78JZ_4hdfsr3YbNUQ_3jN_XH_4LBPbjjw9lw1PHvPtww1QO42aaV6vohvDn2zAzLrvN9HX6rwhqlDJAc01VYr2YzbOqlQ9-Qh1xI3TQzZ1d3DY7rXZgcvv38ekx83wai05QvScqlLJ3nlzbOcquYtkoqbjgzLl6jZZJalksVl6iIlKjMcGnKopQ0M0YbXdjkEQyqeWUeQ6isikyujaQa61hccMMjbrV2rt1KN9UEwPt3JLQXNcfeGlPRFVxTgTCJDibhYBItTIIFQNcDF52ux_VDXiEJ1uYozN3umJ-fCo-mKLX7XTFxroq8dD-TcSFdwMtdnEAVo5ZlAewjhQRKb1SY23Mqm7oW7z59FKMsxzVXd90AXnojO3dPo6UvlXCYoFrXhuW-o-LGLY1HHwTuQ23FJKXsIgpgr2eq8DNULdwtsbzAAtoAop5svw5fi0W0pvnf4vfkH8Y8hdsxkrtNldqDwfK8Mc9cFLhUz_33_RMJZFIE priority: 102 providerName: Unpaywall  | 
    
| Title | Particle dynamics in spherically symmetric electro-vacuum instantons | 
    
| URI | https://link.springer.com/article/10.1140/epjc/s10052-024-12719-4 https://www.proquest.com/docview/3034896285 https://u-picardie.hal.science/hal-04543504 https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-12719-4.pdf https://doaj.org/article/dc772e28b98d49929a16363030b40f47  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 84 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1434-6052 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002408 issn: 1434-6044 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1434-6052 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002408 issn: 1434-6044 databaseCode: ABDBF dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1434-6052 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002408 issn: 1434-6044 databaseCode: ADMLS dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1434-6052 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002408 issn: 1434-6044 databaseCode: AFBBN dateStart: 19980201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1434-6052 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002408 issn: 1434-6044 databaseCode: 8FG dateStart: 19980201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1434-6052 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002408 issn: 1434-6044 databaseCode: C6C dateStart: 19980301 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1434-6052 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002408 issn: 1434-6044 databaseCode: C24 dateStart: 19980301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1434-6052 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002408 issn: 1434-6044 databaseCode: U2A dateStart: 19980101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbWVgh4QPyaCIwqmpB4suYkjpM8INSVlYJQVQ0qjSfLduwBatOyNEP97_ElTra-MF4sJbkozvlyPsd334fQG6UyKgNJsGBSYiqFwDIjBgsIwCNJZajrbIsZmy7o54v44gDN2loYSKtsfWLtqPO1gn_kJ9bV0jSDgr_3m98YWKNgd7Wl0BCOWiF_V0OM9dAgBGSsPhqcns3m551vBkCvut4oopgRSl3Gl11lnOjNLwUVdSQOsZXDQZgEGaZ781UN6985794PyJ28FZh2e6kP0f2q2IjdH7Fc3pquJo_RIxdn-qPGMJ6gA108RffqfE9VPkMf5s5k_LyhpC_9n4VfAsYAjNpy55e71QrYtpTvmHLwtVBVtbJyZcM8XD5Hi8nZt_EUO0IFrOKYbXHMhMjtlCxMmKRGUmWkkEwzqm0gRfIoNjQVMswBqiiSiWZC51kuSKK10ioz0SHqF-tCv0C-NDLQqdKCKCgwsVEHC5hRys65Rlgf4CHWqo0rhzYOpBdL3lRCEw765o2-udU3r_XNqYdId-OmAdy4-5ZTGJdOHBCz6xPrq0vutMlzZdcROkxlluZ2lRdmwkaizFoVkZQYmnjoGEaVAyZGAUk3l6IqS_7p6zkfJSlshtrneuitEzJr-zZKuBoGqxOA0dqTPLbWsdel6egLh3MAehjFhF4HHjpqjYc711HyG0P3UNAa1M3lO3URdJb3v_p7-e9uvEIPQvgg6nSlI9TfXlX6tY3EtnKIeunk49B9ZPZoHFJo2XhY_9uw7SK07WAxm4--_wV7MzPD | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELf2ITR4QHyKwIBoAvFkzUkcJ3mYUMc2taxU09ikvXm24wxQm5al3dR_jr-Nu9TJ1hfGy16dS5P-fPbdxXe_I-SDMRnXgWZUCa0p10pRnbGCKnTAI811aOtsi4HonvKvZ_HZCvnT1MJgWmWzJ9YbdT42-I18G7ZanmZY8Pd58pti1yg8XW1aaCjXWiHfqSnGXGHHoZ1fQwhX7fT2YL4_huHB_smXLnVdBqiJYzGlsVAqBzulijBJC81NoZUWVnAL3gXLo7jgqdJhjvw9kU6sUDbPcsUSa401WRHB766SdR7xDIK_9d39wdFxawuQQKyub4o4FYxzl2EGUc22nfwyWMHH4pCCHA3CJMgoX7KPdRuB1lis_sBczVuOcHt2-4hszMqJml-r4fCWeTx4Qh47v9bvLBTxKVmx5TPyoM4vNdVzsnfkVNTP56UawZj_s_Qr5DRALRnO_Wo-GmF3L-O7zjz0SpnZbARy1aLTcfWCnN4LtC_JWjku7Svi60IHNjVWMYMFLeDliEAUxoCNLxTsOR4RDWzSOHZzbLIxlIvKayYRb7nAWwLessZbco-w9sbJguDj7lt2cV5acWTorgfGlxfSoSlzA3GLDVOdpTlElWGmwPMVoMVMc1bwxCNbOKsSOThKTPK5ULOqkr3vx7KTpHj4Cs_1yCcnVIzh3xjlaiYAE6TtWpLcAu1YeqVupy9xDEkWo5jxq8Ajm43ySLdVVfJmYXkkaBTq5vKdWASt5v0vfq___RrvyUb35Ftf9nuDwzfkYYiLo06V2iRr08uZfQte4FS_c0vNJ-f3vbr_Amj2bjo | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa2IW4PiKsIDIgmEE9WncRxkgeECqW0bJomYNLePNuxB6hNy9Ju6l_j13FObltfGC97dZwm_Xxujs_5DiGvjcm4DjSjSmhNuVaK6ow5qjAAjzTXoa2yLfbF6JB_OYqPNsifthYG0ypbm1gZ6nxm8Bt5D0wtTzMs-Ou5Ji3iYDB8P_9NsYMUnrS27TRqEdm1q3PYvpXvxgNY6zdhOPz0_eOINh0GqIljsaCxUCoHH6VcmKROc-O00sIKbiGyYHkUO54qHebI3RPpxApl8yxXLLHWWJO5CH53k9xIkMUdq9SHnzsvgNRhVWVTxKlgnDe5ZbCf6dn5L4O1eywOKcyjQZgEGeVrnrFqINC5ic0fmKV5KQTuTm3vktvLYq5W52oyueQYh_fJvSai9fu1CD4gG7Z4SG5WmaWmfEQGB41w-vmqUFMY838WfolsBigfk5VfrqZT7Otl_KYnDz1TZrmcwryy7nFcPiaH1wLsE7JVzAr7lPja6cCmxipmsJQF4hsRCGcMeHenwNp4RLSwSdPwmmN7jYmsa66ZRLxljbcEvGWFt-QeYd2N85ra4-pbPuC6dNORm7samJ2eyAZNmRvYsdgw1Vmaw34yzBTEvALkl2nOHE88soOrKpF9o0A5PlHLspTjb19lP0nx2BWe65G3zSQ3g39jVFMtAZggYdfazB2QjrVXGvX3JI4hvWIUM34WeGS7FR7ZGKlSXqiUR4JWoC4uX4lF0Ene_-L37N-v8YrcAp2We-P93efkToi6UeVIbZOtxenSvoDwb6FfVnrmk-PrVuy_XwVr1A | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RrRD0wLOIQEFRhcTJWydxnOS4PKoFoaoCViony3bsQtnNrppNq-XX40mcpcuBIsQtSsZ5fPnimcgz3wC80LpgKlKUSK4UYUpKogpqicQAPFFMxabNtjji4wl7f5KeeEmhus9275cku5oGVGmqlgeL0nptW3pgFmcaq99oGhPnZEgUZ1FB2NDZbME2T11YPoDtydHx6EtbXZQwwmnb2NVvp7HP9frD2TY8VSvov562t75i1uSVkHS9iroDt5pqIVeXcjq94qgO78JZ_4hdfsr3YbNUQ_3jN_XH_4LBPbjjw9lw1PHvPtww1QO42aaV6vohvDn2zAzLrvN9HX6rwhqlDJAc01VYr2YzbOqlQ9-Qh1xI3TQzZ1d3DY7rXZgcvv38ekx83wai05QvScqlLJ3nlzbOcquYtkoqbjgzLl6jZZJalksVl6iIlKjMcGnKopQ0M0YbXdjkEQyqeWUeQ6isikyujaQa61hccMMjbrV2rt1KN9UEwPt3JLQXNcfeGlPRFVxTgTCJDibhYBItTIIFQNcDF52ux_VDXiEJ1uYozN3umJ-fCo-mKLX7XTFxroq8dD-TcSFdwMtdnEAVo5ZlAewjhQRKb1SY23Mqm7oW7z59FKMsxzVXd90AXnojO3dPo6UvlXCYoFrXhuW-o-LGLY1HHwTuQ23FJKXsIgpgr2eq8DNULdwtsbzAAtoAop5svw5fi0W0pvnf4vfkH8Y8hdsxkrtNldqDwfK8Mc9cFLhUz_33_RMJZFIE | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+dynamics+in+spherically+symmetric+electro-vacuum+instantons&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Garnier%2C+Arthur&rft.date=2024-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1434-6044&rft.eissn=1434-6052&rft.volume=84&rft.issue=4&rft.spage=374&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-024-12719-4&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6052&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6052&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6052&client=summon |