Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning

Early diagnosis or detection of Alzheimer's disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis (CAD) was not widely used, and the classification performance did not reach the standard of practical use. We proposed a novel CAD system for MR b...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in computational neuroscience Vol. 9; p. 66
Main Authors Zhang, Yudong, Dong, Zhengchao, Phillips, Preetha, Wang, Shuihua, Ji, Genlin, Yang, Jiquan, Yuan, Ti-Fei
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 02.06.2015
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-5188
1662-5188
DOI10.3389/fncom.2015.00066

Cover

Abstract Early diagnosis or detection of Alzheimer's disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis (CAD) was not widely used, and the classification performance did not reach the standard of practical use. We proposed a novel CAD system for MR brain images based on eigenbrains and machine learning with two goals: accurate detection of both AD subjects and AD-related brain regions. First, we used maximum inter-class variance (ICV) to select key slices from 3D volumetric data. Second, we generated an eigenbrain set for each subject. Third, the most important eigenbrain (MIE) was obtained by Welch's t-test (WTT). Finally, kernel support-vector-machines with different kernels that were trained by particle swarm optimization, were used to make an accurate prediction of AD subjects. Coefficients of MIE with values higher than 0.98 quantile were highlighted to obtain the discriminant regions that distinguish AD from NC. The experiments showed that the proposed method can predict AD subjects with a competitive performance with existing methods, especially the accuracy of the polynomial kernel (92.36 ± 0.94) was better than the linear kernel of 91.47 ± 1.02 and the radial basis function (RBF) kernel of 86.71 ± 1.93. The proposed eigenbrain-based CAD system detected 30 AD-related brain regions (Anterior Cingulate, Caudate Nucleus, Cerebellum, Cingulate Gyrus, Claustrum, Inferior Frontal Gyrus, Inferior Parietal Lobule, Insula, Lateral Ventricle, Lentiform Nucleus, Lingual Gyrus, Medial Frontal Gyrus, Middle Frontal Gyrus, Middle Occipital Gyrus, Middle Temporal Gyrus, Paracentral Lobule, Parahippocampal Gyrus, Postcentral Gyrus, Posterial Cingulate, Precentral Gyrus, Precuneus, Subcallosal Gyrus, Sub-Gyral, Superior Frontal Gyrus, Superior Parietal Lobule, Superior Temporal Gyrus, Supramarginal Gyrus, Thalamus, Transverse Temporal Gyrus, and Uncus). The results were coherent with existing literatures. The eigenbrain method was effective in AD subject prediction and discriminant brain-region detection in MRI scanning.
AbstractList (Purpose) Early diagnosis or detection of Alzheimer’s disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis (CAD) was not widely used, and the classification performance did not reach the standard of practical use. We proposed a novel CAD system for MR brain images based on eigenbrains and machine learning with two goals: accurate detection of both AD subjects and AD-related brain regions.(Method) First, we used maximum inter-class variance to select key slices from 3D volumetric data. Second, we generated an eigenbrain set for each subject. Third, the most important eigenbrain (MIE) was obtained by Welch’s t-test. Finally, kernel support-vector-machines with different kernels that were trained by particle swarm optimization, were used to make an accurate prediction of AD subjects. Coefficients of MIE with values higher than 0.98 quantile were highlighted to obtain the discriminant regions that distinguish AD from NC.(Results) The experiments showed that the proposed method can predict AD subjects with a competitive performance with existing methods, especially the accuracy of the polynomial kernel (92.36±0.94) was better than the linear kernel of 91.47±1.02 and the radial basis function (RBF) kernel of 86.71±1.93. The proposed eigenbrain-based CAD system detected 30 AD-related brain regions. The results were coherent with existing literatures.(Conclusion) The eigenbrain method was effective in AD subject prediction and discriminant brain-region detection in MRI scanning.
Early diagnosis or detection of Alzheimer's disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis (CAD) was not widely used, and the classification performance did not reach the standard of practical use. We proposed a novel CAD system for MR brain images based on eigenbrains and machine learning with two goals: accurate detection of both AD subjects and AD-related brain regions.PURPOSEEarly diagnosis or detection of Alzheimer's disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis (CAD) was not widely used, and the classification performance did not reach the standard of practical use. We proposed a novel CAD system for MR brain images based on eigenbrains and machine learning with two goals: accurate detection of both AD subjects and AD-related brain regions.First, we used maximum inter-class variance (ICV) to select key slices from 3D volumetric data. Second, we generated an eigenbrain set for each subject. Third, the most important eigenbrain (MIE) was obtained by Welch's t-test (WTT). Finally, kernel support-vector-machines with different kernels that were trained by particle swarm optimization, were used to make an accurate prediction of AD subjects. Coefficients of MIE with values higher than 0.98 quantile were highlighted to obtain the discriminant regions that distinguish AD from NC.METHODFirst, we used maximum inter-class variance (ICV) to select key slices from 3D volumetric data. Second, we generated an eigenbrain set for each subject. Third, the most important eigenbrain (MIE) was obtained by Welch's t-test (WTT). Finally, kernel support-vector-machines with different kernels that were trained by particle swarm optimization, were used to make an accurate prediction of AD subjects. Coefficients of MIE with values higher than 0.98 quantile were highlighted to obtain the discriminant regions that distinguish AD from NC.The experiments showed that the proposed method can predict AD subjects with a competitive performance with existing methods, especially the accuracy of the polynomial kernel (92.36 ± 0.94) was better than the linear kernel of 91.47 ± 1.02 and the radial basis function (RBF) kernel of 86.71 ± 1.93. The proposed eigenbrain-based CAD system detected 30 AD-related brain regions (Anterior Cingulate, Caudate Nucleus, Cerebellum, Cingulate Gyrus, Claustrum, Inferior Frontal Gyrus, Inferior Parietal Lobule, Insula, Lateral Ventricle, Lentiform Nucleus, Lingual Gyrus, Medial Frontal Gyrus, Middle Frontal Gyrus, Middle Occipital Gyrus, Middle Temporal Gyrus, Paracentral Lobule, Parahippocampal Gyrus, Postcentral Gyrus, Posterial Cingulate, Precentral Gyrus, Precuneus, Subcallosal Gyrus, Sub-Gyral, Superior Frontal Gyrus, Superior Parietal Lobule, Superior Temporal Gyrus, Supramarginal Gyrus, Thalamus, Transverse Temporal Gyrus, and Uncus). The results were coherent with existing literatures.RESULTSThe experiments showed that the proposed method can predict AD subjects with a competitive performance with existing methods, especially the accuracy of the polynomial kernel (92.36 ± 0.94) was better than the linear kernel of 91.47 ± 1.02 and the radial basis function (RBF) kernel of 86.71 ± 1.93. The proposed eigenbrain-based CAD system detected 30 AD-related brain regions (Anterior Cingulate, Caudate Nucleus, Cerebellum, Cingulate Gyrus, Claustrum, Inferior Frontal Gyrus, Inferior Parietal Lobule, Insula, Lateral Ventricle, Lentiform Nucleus, Lingual Gyrus, Medial Frontal Gyrus, Middle Frontal Gyrus, Middle Occipital Gyrus, Middle Temporal Gyrus, Paracentral Lobule, Parahippocampal Gyrus, Postcentral Gyrus, Posterial Cingulate, Precentral Gyrus, Precuneus, Subcallosal Gyrus, Sub-Gyral, Superior Frontal Gyrus, Superior Parietal Lobule, Superior Temporal Gyrus, Supramarginal Gyrus, Thalamus, Transverse Temporal Gyrus, and Uncus). The results were coherent with existing literatures.The eigenbrain method was effective in AD subject prediction and discriminant brain-region detection in MRI scanning.CONCLUSIONThe eigenbrain method was effective in AD subject prediction and discriminant brain-region detection in MRI scanning.
Early diagnosis or detection of Alzheimer's disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis (CAD) was not widely used, and the classification performance did not reach the standard of practical use. We proposed a novel CAD system for MR brain images based on eigenbrains and machine learning with two goals: accurate detection of both AD subjects and AD-related brain regions. First, we used maximum inter-class variance (ICV) to select key slices from 3D volumetric data. Second, we generated an eigenbrain set for each subject. Third, the most important eigenbrain (MIE) was obtained by Welch's t-test (WTT). Finally, kernel support-vector-machines with different kernels that were trained by particle swarm optimization, were used to make an accurate prediction of AD subjects. Coefficients of MIE with values higher than 0.98 quantile were highlighted to obtain the discriminant regions that distinguish AD from NC. The experiments showed that the proposed method can predict AD subjects with a competitive performance with existing methods, especially the accuracy of the polynomial kernel (92.36 ± 0.94) was better than the linear kernel of 91.47 ± 1.02 and the radial basis function (RBF) kernel of 86.71 ± 1.93. The proposed eigenbrain-based CAD system detected 30 AD-related brain regions (Anterior Cingulate, Caudate Nucleus, Cerebellum, Cingulate Gyrus, Claustrum, Inferior Frontal Gyrus, Inferior Parietal Lobule, Insula, Lateral Ventricle, Lentiform Nucleus, Lingual Gyrus, Medial Frontal Gyrus, Middle Frontal Gyrus, Middle Occipital Gyrus, Middle Temporal Gyrus, Paracentral Lobule, Parahippocampal Gyrus, Postcentral Gyrus, Posterial Cingulate, Precentral Gyrus, Precuneus, Subcallosal Gyrus, Sub-Gyral, Superior Frontal Gyrus, Superior Parietal Lobule, Superior Temporal Gyrus, Supramarginal Gyrus, Thalamus, Transverse Temporal Gyrus, and Uncus). The results were coherent with existing literatures. The eigenbrain method was effective in AD subject prediction and discriminant brain-region detection in MRI scanning.
Purpose: Early diagnosis or detection of Alzheimer's disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis (CAD) was not widely used, and the classification performance did not reach the standard of practical use. We proposed a novel CAD system for MR brain images based on eigenbrains and machine learning with two goals: accurate detection of both AD subjects and AD-related brain regions. Method: First, we used maximum inter-class variance (ICV) to select key slices from 3D volumetric data. Second, we generated an eigenbrain set for each subject. Third, the most important eigenbrain (MIE) was obtained by Welch's t-test (WTT). Finally, kernel support-vector-machines with different kernels that were trained by particle swarm optimization, were used to make an accurate prediction of AD subjects. Coefficients of MIE with values higher than 0.98 quantile were highlighted to obtain the discriminant regions that distinguish AD from NC. Results: The experiments showed that the proposed method can predict AD subjects with a competitive performance with existing methods, especially the accuracy of the polynomial kernel (92.36 ± 0.94) was better than the linear kernel of 91.47 ± 1.02 and the radial basis function (RBF) kernel of 86.71 ± 1.93. The proposed eigenbrain-based CAD system detected 30 AD-related brain regions (Anterior Cingulate, Caudate Nucleus, Cerebellum, Cingulate Gyrus, Claustrum, Inferior Frontal Gyrus, Inferior Parietal Lobule, Insula, Lateral Ventricle, Lentiform Nucleus, Lingual Gyrus, Medial Frontal Gyrus, Middle Frontal Gyrus, Middle Occipital Gyrus, Middle Temporal Gyrus, Paracentral Lobule, Parahippocampal Gyrus, Postcentral Gyrus, Posterial Cingulate, Precentral Gyrus, Precuneus, Subcallosal Gyrus, Sub-Gyral, Superior Frontal Gyrus, Superior Parietal Lobule, Superior Temporal Gyrus, Supramarginal Gyrus, Thalamus, Transverse Temporal Gyrus, and Uncus). The results were coherent with existing literatures. Conclusion: The eigenbrain method was effective in AD subject prediction and discriminant brain-region detection in MRI scanning.
Author Zhang, Yudong
Wang, Shuihua
Phillips, Preetha
Ji, Genlin
Dong, Zhengchao
Yang, Jiquan
Yuan, Ti-Fei
AuthorAffiliation 5 Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing Nanjing, China
6 School of Psychology, Nanjing Normal University Nanjing, China
2 Division of Translational Imaging and MRI Unit, New York State Psychiatric Institute, Columbia University New York, NY, USA
3 School of Natural Sciences and Mathematics, Shepherd University Shepherdstown, WV, USA
1 School of Computer Science and Technology, Nanjing Normal University Nanjing, China
4 School of Electronic Science and Engineering, Nanjing University Nanjing, China
AuthorAffiliation_xml – name: 4 School of Electronic Science and Engineering, Nanjing University Nanjing, China
– name: 5 Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing Nanjing, China
– name: 3 School of Natural Sciences and Mathematics, Shepherd University Shepherdstown, WV, USA
– name: 6 School of Psychology, Nanjing Normal University Nanjing, China
– name: 1 School of Computer Science and Technology, Nanjing Normal University Nanjing, China
– name: 2 Division of Translational Imaging and MRI Unit, New York State Psychiatric Institute, Columbia University New York, NY, USA
Author_xml – sequence: 1
  givenname: Yudong
  surname: Zhang
  fullname: Zhang, Yudong
– sequence: 2
  givenname: Zhengchao
  surname: Dong
  fullname: Dong, Zhengchao
– sequence: 3
  givenname: Preetha
  surname: Phillips
  fullname: Phillips, Preetha
– sequence: 4
  givenname: Shuihua
  surname: Wang
  fullname: Wang, Shuihua
– sequence: 5
  givenname: Genlin
  surname: Ji
  fullname: Ji, Genlin
– sequence: 6
  givenname: Jiquan
  surname: Yang
  fullname: Yang, Jiquan
– sequence: 7
  givenname: Ti-Fei
  surname: Yuan
  fullname: Yuan, Ti-Fei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26082713$$D View this record in MEDLINE/PubMed
BookMark eNqFks1vFCEYxiemxn7o3ZMh8aCXXYGZAfZi0rR-bFJjYvRM3oGXXTYzsMKMph79y2V3a9P2oCfg5Xl-PPByWh2FGLCqnjM6r2u1eOOCicOcU9bOKaVCPKpOmBB81jKlju7Mj6vTnDdFwUVLn1THXFDFJatPqt-XOKIZfQwkOpKnblNWmUCwpEvgA0m4Kpu5jD2MaMkYyXn_a41-wPQqE-szQkYyZR9WpL4kn74sSTZQHF2pW1LA6FcYDrQddwCz9gFJj5BCcT2tHjvoMz67Gc-qb-_ffb34OLv6_GF5cX41M20rxlnNpJDAaucUoFWdlNahlQJdW3cd7xw0C9ZyVzuwFtEauZDScQDVUmEsrc-q5YFrI2z0NvkB0rWO4PW-ENNKQxq96VFblA6Ek42hrGk6qxjQVoBxkivkjSosdmBNYQvXP6Hvb4GM6l1v9L43etcbve9N8bw9eLZTN5R8GMYE_b0g93eCX-tV_KGbpmV1Kwvg9Q0gxe8T5lEPPhvsewgYp6yZUAvVcMl3Z718IN3EKYXyvJpz1cia1XvVi7uJbqP8_R5FIA4Ck2LOCZ02foTdbykBff-vu9IHxv8-zx-pj-Jm
CitedBy_id crossref_primary_10_1109_TKDE_2024_3366333
crossref_primary_10_1142_S0129065718500223
crossref_primary_10_1016_j_matpr_2020_07_645
crossref_primary_10_1136_bmjopen_2020_043487
crossref_primary_10_2174_1574893617666220329181607
crossref_primary_10_4103_1673_5374_367840
crossref_primary_10_3389_frdem_2024_1385303
crossref_primary_10_3390_sym12121995
crossref_primary_10_1016_j_bspc_2022_103974
crossref_primary_10_1016_j_artmed_2019_101771
crossref_primary_10_3390_e17127877
crossref_primary_10_1016_j_neulet_2017_07_018
crossref_primary_10_1016_j_bbe_2021_02_006
crossref_primary_10_3233_JAD_170069
crossref_primary_10_3934_mbe_2023086
crossref_primary_10_3390_su9122309
crossref_primary_10_1002_widm_1510
crossref_primary_10_1155_2017_5485080
crossref_primary_10_3934_mbe_2024171
crossref_primary_10_2478_cait_2019_0001
crossref_primary_10_1016_j_patrec_2020_03_014
crossref_primary_10_1016_j_heliyon_2021_e07287
crossref_primary_10_1155_2015_924814
crossref_primary_10_1016_j_ijmedinf_2017_02_004
crossref_primary_10_3390_diagnostics11081473
crossref_primary_10_1109_ACCESS_2025_3533638
crossref_primary_10_1038_s41598_022_06444_9
crossref_primary_10_1007_s13198_023_02180_z
crossref_primary_10_2196_14473
crossref_primary_10_3389_frobt_2016_00054
crossref_primary_10_1088_1757_899X_1022_1_012012
crossref_primary_10_3233_JAD_150988
crossref_primary_10_1016_j_neuroimage_2016_02_079
crossref_primary_10_3389_fnhum_2021_654381
crossref_primary_10_1007_s00521_020_04984_7
crossref_primary_10_3390_biomedinformatics1030012
crossref_primary_10_3389_fnagi_2022_834331
crossref_primary_10_32604_cmes_2023_023544
crossref_primary_10_2174_1573405617666211126154101
crossref_primary_10_3389_fnagi_2022_911220
crossref_primary_10_3389_fninf_2018_00060
crossref_primary_10_3390_diagnostics13010167
crossref_primary_10_1016_j_aej_2022_07_062
crossref_primary_10_1515_bmt_2016_0239
crossref_primary_10_1016_j_eswa_2016_04_029
crossref_primary_10_1088_2053_1583_ab3771
crossref_primary_10_1145_3344998
crossref_primary_10_1016_j_neuroimage_2023_120267
crossref_primary_10_1109_TVCG_2021_3137174
crossref_primary_10_1016_j_bica_2018_04_008
crossref_primary_10_4103_jmp_jmp_128_24
crossref_primary_10_1093_comnet_cny009
crossref_primary_10_1016_j_compbiomed_2019_103527
crossref_primary_10_1155_2019_9108108
crossref_primary_10_1016_j_cmpb_2019_105205
crossref_primary_10_1016_j_jneumeth_2019_108424
crossref_primary_10_3389_fninf_2022_856295
crossref_primary_10_3390_make5020035
crossref_primary_10_1155_2017_8750506
crossref_primary_10_3390_s21165416
crossref_primary_10_62965_tnu_sns_2024_1_4
crossref_primary_10_1587_transinf_2018EDP7393
crossref_primary_10_3390_e21080769
crossref_primary_10_3389_fphys_2016_00136
crossref_primary_10_1109_TNNLS_2021_3118369
crossref_primary_10_1155_2020_8015156
crossref_primary_10_3390_app14052171
crossref_primary_10_3233_IDT_190005
crossref_primary_10_1016_j_knosys_2021_107164
crossref_primary_10_18178_ijmlc_2017_7_1_612
crossref_primary_10_1002_ima_22458
crossref_primary_10_3389_fbioe_2020_00496
crossref_primary_10_1186_s42492_020_00062_w
crossref_primary_10_3390_biom10040503
crossref_primary_10_1155_2023_6330002
crossref_primary_10_33851_JMIS_2022_9_1_21
crossref_primary_10_1167_tvst_9_2_47
crossref_primary_10_1038_s41598_024_56001_9
crossref_primary_10_1007_s11042_023_16928_z
crossref_primary_10_1038_s41598_023_37569_0
crossref_primary_10_1038_s41370_018_0080_7
crossref_primary_10_1016_j_bspc_2024_106023
crossref_primary_10_1109_ACCESS_2020_3038723
crossref_primary_10_2196_59556
crossref_primary_10_3389_fncom_2017_00117
crossref_primary_10_1007_s12021_017_9347_8
crossref_primary_10_1016_j_cmpb_2021_106264
crossref_primary_10_3233_JAD_220666
crossref_primary_10_3389_fgene_2018_00018
crossref_primary_10_1007_s11831_023_10003_4
crossref_primary_10_3390_brainsci9090212
crossref_primary_10_26634_jip_9_4_19282
crossref_primary_10_1016_j_neunet_2022_03_016
crossref_primary_10_3390_diagnostics14121281
crossref_primary_10_3389_fnins_2021_748689
crossref_primary_10_1016_j_ymeth_2025_01_017
crossref_primary_10_3233_JAD_171048
crossref_primary_10_1007_s00521_021_06406_8
crossref_primary_10_1016_j_neuroimage_2021_117889
crossref_primary_10_1016_j_chb_2016_03_031
crossref_primary_10_1111_cns_14188
crossref_primary_10_1155_2017_9060124
crossref_primary_10_1016_j_asoc_2019_105857
crossref_primary_10_3389_fnhum_2017_00643
crossref_primary_10_1016_j_fct_2019_110665
crossref_primary_10_1002_ima_22300
crossref_primary_10_3390_brainsci12010080
crossref_primary_10_1016_j_eswa_2019_06_038
crossref_primary_10_3389_fgene_2019_00976
crossref_primary_10_3389_fncom_2016_00106
crossref_primary_10_2174_0115672050301514240307071217
crossref_primary_10_3390_healthcare10030541
crossref_primary_10_31083_j_jin2204099
crossref_primary_10_1371_journal_pone_0187281
crossref_primary_10_3390_e17106663
crossref_primary_10_1007_s11042_017_4912_6
crossref_primary_10_1155_2015_454076
crossref_primary_10_3390_electronics11121890
crossref_primary_10_1007_s11042_022_12754_x
crossref_primary_10_1007_s11042_023_17288_4
crossref_primary_10_1016_j_ijcce_2021_08_002
crossref_primary_10_1016_j_compbiomed_2023_107392
crossref_primary_10_26794_2587_5671_2023_27_1_103_115
Cites_doi 10.1136/jnnp-2012-303299
10.3389/fnagi.2014.00228
10.1007/s10548-012-0234-1
10.1371/journal.pone.0044195
10.3389/fnagi.2014.00264
10.1109/JSTARS.2014.2307091
10.3390/e170a41795
10.2528/PIER12061410
10.1016/j.apm.2013.10.073
10.1007/s00429-013-0503-0
10.1016/j.neurobiolaging.2014.04.034
10.1016/j.media.2014.05.012
10.1016/j.jalz.2012.01.005
10.1111/ene.12432
10.1007/978-3-642-02478-8_122
10.2528/PIER13121310
10.1016/j.bspc.2013.09.001
10.1016/j.ics.2005.11.104
10.1016/j.ins.2009.12.010
10.2528/PIER13010105
10.1016/j.neuroimage.2011.12.071
10.1007/s00429-013-0681-9
10.3390/s120912489
10.1016/j.eswa.2014.01.021
10.1016/j.jns.2014.08.036
10.1162/jocn.2007.19.9.1498
10.1002/tee.22059
10.1016/j.nbd.2014.05.001
10.1093/brain/awu046
10.1016/j.pscychresns.2014.06.006
10.1016/j.eswa.2012.09.009
10.1016/j.eswa.2011.02.012
10.1016/j.patrec.2013.08.017
10.1016/j.compag.2010.09.002
10.1049/el.2009.3415
10.2337/dc14-1683
10.1007/978-3-642-22555-0_40
10.1016/j.eswa.2012.09.003
10.1001/jamapsychiatry.2014.179
10.1016/j.pscychresns.2012.04.007
10.1016/j.neucom.2011.07.005
10.1093/cercor/bhs253
10.1007/s12013-014-0138-7
10.1016/j.jmva.2011.11.004
10.1016/j.media.2013.05.002
10.1016/j.bspc.2006.05.002
10.1007/s11042-015-2649-7
10.1016/j.jalz.2007.04.381
10.1016/j.neuroimage.2009.11.046
10.1016/j.media.2013.10.016
10.1007/978-3-642-41016-1_21
10.1016/s1876-2018(11)60250-5
10.1007/978-3-642-02478-8_119
10.1016/S0924-9338(11)73068-1
10.3389/fnagi.2014.00159
10.1007/s11682-014-9329-5
10.1016/j.media.2011.05.014
10.1371/journal.pone.0120352
10.1016/j.brainres.2009.12.081
10.1155/2013/130134
10.1007/s00259-013-2458-z
10.1016/j.media.2011.08.006
10.3233/JAD-141230
10.3389/fninf.2013.00050
10.1016/j.compbiomed.2013.07.004
10.1016/S0197-4580(03)00084-8
10.1016/j.jns.2013.07.014
10.1016/j.neuroimage.2013.05.011
10.1109/JBHI.2013.2285378
10.1093/brain/aws327
10.1016/j.bspc.2006.12.001
10.1016/j.dsp.2009.07.002
10.1007/s11704-014-2398-1
ContentType Journal Article
Copyright 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2015 Zhang, Dong, Phillips, Wang, Ji, Yang and Yuan. 2015
Copyright_xml – notice: 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2015 Zhang, Dong, Phillips, Wang, Ji, Yang and Yuan. 2015
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fncom.2015.00066
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5188
ExternalDocumentID oai_doaj_org_article_de7fa6f74c0144bd81a056acf728e248
10.3389/fncom.2015.00066
PMC4451357
26082713
10_3389_fncom_2015_00066
Genre Journal Article
GeographicLocations New York
United States--US
China
GeographicLocations_xml – name: New York
– name: China
– name: United States--US
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R01 AG021910
– fundername: NCRR NIH HHS
  grantid: U24 RR021382
– fundername: NIMH NIH HHS
  grantid: P50 MH071616
– fundername: NIA NIH HHS
  grantid: P50 AG005681
– fundername: NIMH NIH HHS
  grantid: R01 MH056584
– fundername: NIA NIH HHS
  grantid: P01 AG003991
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADBBV
ADMLS
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RNS
RPM
TR2
ACXDI
C1A
IPNFZ
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c556t-31767a13ff8aed8b77dfed76ef53bb2bfa49152f3faddeedc7977f2aa8506cd03
IEDL.DBID M48
ISSN 1662-5188
IngestDate Tue Oct 14 19:09:17 EDT 2025
Sun Oct 26 02:30:46 EDT 2025
Tue Sep 30 16:49:10 EDT 2025
Fri Sep 05 07:26:05 EDT 2025
Fri Jul 25 11:39:10 EDT 2025
Thu Apr 03 06:54:02 EDT 2025
Thu Apr 24 23:01:16 EDT 2025
Wed Oct 01 01:44:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords eigenbrain
magnetic resonance imaging
support vector machine
Welch's t-test
particle swarm optimization
machine learning
Alzheimer's disease
machine vision
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-31767a13ff8aed8b77dfed76ef53bb2bfa49152f3faddeedc7977f2aa8506cd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Tobias Alecio Mattei, Brain and Spine Center - InvisionHealth - Kenmore Mercy Hospital, USA
Reviewed by: Fahad Sultan, University Tübingen, Germany; Petia D. Koprinkova-Hristova, Bulgarian Academy of Sciences, Bulgaria
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fncom.2015.00066
PMID 26082713
PQID 2284731326
PQPubID 4424409
ParticipantIDs doaj_primary_oai_doaj_org_article_de7fa6f74c0144bd81a056acf728e248
unpaywall_primary_10_3389_fncom_2015_00066
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4451357
proquest_miscellaneous_1689842726
proquest_journals_2284731326
pubmed_primary_26082713
crossref_citationtrail_10_3389_fncom_2015_00066
crossref_primary_10_3389_fncom_2015_00066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-02
PublicationDateYYYYMMDD 2015-06-02
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-02
  day: 02
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in computational neuroscience
PublicationTitleAlternate Front Comput Neurosci
PublicationYear 2015
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Eskildsen (B25) 2015; 36
Chaves (B14) 2013; 40
Li (B43) 2010; 74
Williams (B66) 2013; 9
Arbizu (B6) 2013; 40
Álvarez (B3) 2009b
Ardekani (B7) 2014; 219
Nambakhsh (B50) 2013; 17
Ramasamy (B55) 2011
Cohen (B16) 2014; 72
Chaplot (B13) 2006; 1
Zhang (B72) 2014; 144
Yang (B68) 2015
El-Dahshan (B23) 2014; 41
Quiroz (B54) 2013; 84
Lee (B41) 2013; 43
Zhang (B70) 2015a; 17
Angelini (B5) 2012; 16
Kubota (B40) 2006; 1290
Aubry (B9) 2015; 10
Plant (B53) 2010; 50
Paakki (B51) 2010; 1321
Han (B33) 2011; 4
Zhang (B76) 2012b; 130
Dukart (B21) 2013; 212
Zhou (B78) 2015
Khazaee (B38) 2014; 8
Yu (B69) 2014; 6
Hahn (B31) 2013; 81
Goh (B27) 2014; 71
El-Dahshan (B22) 2010; 20
Maitra (B46) 2006; 1
Pennanen (B52) 2004; 25
Hamy (B32) 2014; 18
Lopez (B45) 2009
Alvarez (B2) 2009a; 45
Voevodskaya (B64) 2014; 6
Savio (B58) 2013; 40
Marcus (B47) 2007; 19
Shinohara (B61) 2014; 137
Bin Tufail (B11) 2012
De Reuck (B20) 2014; 21
Collins (B17) 2011; 26
Jeurissen (B35) 2014; 18
Miller (B48) 2012
Hable (B30) 2012; 106
He (B34) 2015; 71
Aich (B1) 2014; 38
Bangen (B10) 2014; 6
Streitburger (B63) 2012; 7
Wang (B65) 2015; 220
Ardekani (B8) 2013; 23
Zhang (B73) 2013; 2013
Gomes (B28) 2012; 75
Das (B19) 2013; 137
Xinyun (B67) 2011
Chen (B15) 2014; 37
Gray (B29) 2012; 60
Smal (B62) 2012; 16
Colloby (B18) 2014; 223
Brookmeyer (B12) 2007; 3
Xue (B77) 2014; 7
Schultz (B59) 2014
Zhang (B71) 2011; 38
Kang (B37) 2013; 334
Kim (B39) 2012; 25
Russell (B56) 2012
Lehmann (B42) 2013; 136
Anagnostopoulos (B4) 2013
Zhang (B74) 2015b; 10
Zhang (B75) 2012a; 12
Shamonin (B60) 2014; 7
Garcia (B26) 2010; 180
Eliasova (B24) 2014; 346
Kalbkhani (B36) 2013; 8
Möller (B49) 2015; 44
Saritha (B57) 2013; 34
Liu (B44) 2014; 18
References_xml – volume: 84
  start-page: 556
  year: 2013
  ident: B54
  article-title: Cortical atrophy in presymptomatic Alzheimer's disease presenilin 1 mutation carriers
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp-2012-303299
– volume: 6
  issue: 228
  year: 2014
  ident: B69
  article-title: Microstructure, length, and connection of limbic tracts in normal human brain development
  publication-title: Front. Aging Neurosci
  doi: 10.3389/fnagi.2014.00228
– volume: 25
  start-page: 461
  year: 2012
  ident: B39
  article-title: Clinical implications of quantitative electroencephalography and current source density in patients with Alzheimer's disease
  publication-title: Brain Topogr
  doi: 10.1007/s10548-012-0234-1
– volume: 7
  start-page: e44195
  year: 2012
  ident: B63
  article-title: Investigating structural brain changes of dehydration using voxel-based morphometry
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0044195
– volume: 6
  issue: 264
  year: 2014
  ident: B64
  article-title: The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer's disease
  publication-title: Front. Aging Neurosci
  doi: 10.3389/fnagi.2014.00264
– volume: 7
  start-page: 2131
  year: 2014
  ident: B77
  article-title: Harmonic analysis for hyperspectral image classification integrated with PSO optimized SVM
  publication-title: J. Select. Topics Appl. Earth Obs. Remote Sens IEEE
  doi: 10.1109/JSTARS.2014.2307091
– volume: 17
  start-page: 1795
  year: 2015a
  ident: B70
  article-title: Preclinical Diagnosis of Magnetic Resonance (MR) Brain Images via Discrete Wavelet Packet Transform with Tsallis Entropy and Generalized Eigenvalue Proximal Support Vector Machine (GEPSVM)
  publication-title: Entropy
  doi: 10.3390/e170a41795
– volume: 130
  start-page: 369
  year: 2012b
  ident: B76
  article-title: An MR brain images classifier via principal component analysis and kernel support vector machine
  publication-title: Prog. Electromagn. Res
  doi: 10.2528/PIER12061410
– volume: 38
  start-page: 2800
  year: 2014
  ident: B1
  article-title: Modeling of EDM responses by support vector machine regression with parameters selected by particle swarm optimization
  publication-title: Appl. Math. Model
  doi: 10.1016/j.apm.2013.10.073
– volume: 219
  start-page: 343
  year: 2014
  ident: B7
  article-title: Corpus callosum shape changes in early Alzheimer's disease: an MRI study using the OASIS brain database
  publication-title: Brain Struct. Funct
  doi: 10.1007/s00429-013-0503-0
– volume: 36
  start-page: S23
  year: 2015
  ident: B25
  article-title: Structural imaging biomarkers of Alzheimer's disease: predicting disease progression
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2014.04.034
– start-page: 1658
  volume-title: Seventh International Conference
  year: 2011
  ident: B67
  article-title: ICA-based classification of MCI vs HC. Natural Computation (ICNC)
– volume: 18
  start-page: 953
  year: 2014
  ident: B35
  article-title: Automated correction of improperly rotated diffusion gradient orientations in diffusion weighted MRI
  publication-title: Med. Image Anal
  doi: 10.1016/j.media.2014.05.012
– volume: 9
  start-page: S39-S44
  year: 2013
  ident: B66
  article-title: Progression of Alzheimer's disease as measured by clinical dementia rating sum of boxes scores
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2012.01.005
– volume: 21
  start-page: 1026
  year: 2014
  ident: B20
  article-title: Iron deposits in post-mortem brains of patients with neurodegenerative and cerebrovascular diseases: a semi-quantitative 7.0 T magnetic resonance imaging study
  publication-title: Eur. J. Neurol
  doi: 10.1111/ene.12432
– start-page: 973
  volume-title: Bio-Inspired Systems: Computational and Ambient Intelligence
  year: 2009b
  ident: B3
  article-title: Alzheimer's diagnosis using eigenbrains and support vector machines
  doi: 10.1007/978-3-642-02478-8_122
– volume: 144
  start-page: 171
  year: 2014
  ident: B72
  article-title: Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree
  publication-title: Prog. Electromagn. Res
  doi: 10.2528/PIER13121310
– volume: 8
  start-page: 909
  year: 2013
  ident: B36
  article-title: Robust algorithm for brain magnetic resonance image (MRI) classification based on GARCH variances series
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2013.09.001
– volume: 1290
  start-page: 128
  year: 2006
  ident: B40
  article-title: A region-of-interest (ROI) template for three-dimensional stereotactic surface projection (3D-SSP) images: initial application to analysis of Alzheimer disease and mild cognitive impairment
  publication-title: Int. Congr. Ser
  doi: 10.1016/j.ics.2005.11.104
– volume: 180
  start-page: 2044
  year: 2010
  ident: B26
  article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power
  publication-title: Inf. Sci
  doi: 10.1016/j.ins.2009.12.010
– volume: 137
  start-page: 1
  year: 2013
  ident: B19
  article-title: Brain MR image classification using multiscale geometric analysis of ripplet
  publication-title: Prog. Electromagn. Res
  doi: 10.2528/PIER13010105
– volume: 60
  start-page: 221
  year: 2012
  ident: B29
  article-title: Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.071
– volume: 220
  start-page: 745
  year: 2015
  ident: B65
  article-title: Differentially disrupted functional connectivity of the subregions of the inferior parietal lobule in Alzheimer's disease
  publication-title: Brain Struct. Funct
  doi: 10.1007/s00429-013-0681-9
– volume: 12
  start-page: 12489
  year: 2012a
  ident: B75
  article-title: Classification of fruits using computer vision and a multiclass support vector machine
  publication-title: Sensors
  doi: 10.3390/s120912489
– volume: 41
  start-page: 5526
  year: 2014
  ident: B23
  article-title: Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm
  publication-title: Expert Syst. Appl
  doi: 10.1016/j.eswa.2014.01.021
– volume: 346
  start-page: 318
  year: 2014
  ident: B24
  article-title: Non-invasive brain stimulation of the right inferior frontal gyrus may improve attention in early Alzheimer's disease: a pilot study
  publication-title: J. Neurol. Sci
  doi: 10.1016/j.jns.2014.08.036
– start-page: 317
  volume-title: Proceedings of the IEEE International Conference in Control System, Computing and Engineering (ICCSCE)
  year: 2012
  ident: B11
  article-title: Multiclass classification of initial stages of Alzheimer's disease using structural MRI phase images
– volume: 19
  start-page: 1498
  year: 2007
  ident: B47
  article-title: Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults
  publication-title: J. Cogn. Neurosci
  doi: 10.1162/jocn.2007.19.9.1498
– volume: 10
  start-page: 116
  year: 2015b
  ident: B74
  article-title: Exponential wavelet iterative shrinkage thresholding algorithm with random shift for compressed sensing magnetic resonance imaging
  publication-title: IEEJ Trans. Electr. Electron. Eng
  doi: 10.1002/tee.22059
– volume: 72
  start-page: 117
  year: 2014
  ident: B16
  article-title: Early detection of Alzheimer's disease using PiB and FDG PET
  publication-title: Neurobiol. Dis
  doi: 10.1016/j.nbd.2014.05.001
– volume: 137
  start-page: 1533
  year: 2014
  ident: B61
  article-title: Regional distribution of synaptic markers and APP correlate with distinct clinicopathological features in sporadic and familial Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awu046
– volume: 223
  start-page: 187
  year: 2014
  ident: B18
  article-title: Patterns of cerebellar volume loss in dementia with Lewy bodies and Alzheimer's disease: A VBM-DARTEL study
  publication-title: Psychiatry Res
  doi: 10.1016/j.pscychresns.2014.06.006
– volume: 40
  start-page: 1619
  year: 2013
  ident: B58
  article-title: Deformation based feature selection for computer aided diagnosis of Alzheimer's Disease
  publication-title: Expert Syst. Appl
  doi: 10.1016/j.eswa.2012.09.009
– volume: 38
  start-page: 10049
  year: 2011
  ident: B71
  article-title: A hybrid method for MRI brain image classification
  publication-title: Expert Syst. Appl
  doi: 10.1016/j.eswa.2011.02.012
– volume: 34
  start-page: 2151
  year: 2013
  ident: B57
  article-title: Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network
  publication-title: Pattern Recognit. Lett
  doi: 10.1016/j.patrec.2013.08.017
– volume: 74
  start-page: 274
  year: 2010
  ident: B43
  article-title: Classification of foreign fibers in cotton lint using machine vision and multi-class support vector machine
  publication-title: Comput. Electron. Agric
  doi: 10.1016/j.compag.2010.09.002
– volume: 45
  start-page: 342
  year: 2009a
  ident: B2
  article-title: Alzheimer's diagnosis using eigenbrains and support vector machines
  publication-title: Electron. Lett
  doi: 10.1049/el.2009.3415
– volume: 37
  start-page: 3157
  year: 2014
  ident: B15
  article-title: Altered brain activation patterns under different working memory loads in patients with Type 2 diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dc14-1683
– start-page: 387
  volume-title: Advances in Computing and Information Technology
  year: 2011
  ident: B55
  article-title: Brain tissue classification of MR images using fast fourier transform based expectation- maximization gaussian mixture model
  doi: 10.1007/978-3-642-22555-0_40
– volume: 40
  start-page: 1571
  year: 2013
  ident: B14
  article-title: Integrating discretization and association rule-based classification for Alzheimer's disease diagnosis
  publication-title: Expert Syst. Appl
  doi: 10.1016/j.eswa.2012.09.003
– volume: 71
  start-page: 665
  year: 2014
  ident: B27
  article-title: Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: evidence from brain imaging
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2014.179
– volume: 212
  start-page: 230
  year: 2013
  ident: B21
  article-title: Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI
  publication-title: Psychiatry Res
  doi: 10.1016/j.pscychresns.2012.04.007
– volume: 75
  start-page: 3
  year: 2012
  ident: B28
  article-title: Combining meta-learning and search techniques to select parameters for support vector machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.07.005
– volume: 23
  start-page: 2514
  year: 2013
  ident: B8
  article-title: Sexual dimorphism in the human corpus callosum: an MRI study using the OASIS brain database
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhs253
– volume: 71
  start-page: 17
  year: 2015
  ident: B34
  article-title: Meta-analytic comparison between PIB-PET and FDG-PET results in Alzheimer's disease and MCI
  publication-title: Cell Biochem. Biophys
  doi: 10.1007/s12013-014-0138-7
– volume: 106
  start-page: 92
  year: 2012
  ident: B30
  article-title: Asymptotic normality of support vector machine variants and other regularized kernel methods
  publication-title: J. Multivar. Anal
  doi: 10.1016/j.jmva.2011.11.004
– volume: 17
  start-page: 1010
  year: 2013
  ident: B50
  article-title: Left ventricle segmentation in MRI via convex relaxed distribution matching
  publication-title: Med. Image Anal
  doi: 10.1016/j.media.2013.05.002
– volume: 1
  start-page: 86
  year: 2006
  ident: B13
  article-title: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2006.05.002
– start-page: 1
  year: 2015
  ident: B68
  article-title: Automated classification of brain images using wavelet-energy and biogeography-based optimization
  publication-title: Multimed. Tools Appl
  doi: 10.1007/s11042-015-2649-7
– volume: 3
  start-page: 186
  year: 2007
  ident: B12
  article-title: Forecasting the global burden of Alzheimer's disease
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2007.04.381
– volume: 50
  start-page: 162
  year: 2010
  ident: B53
  article-title: Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.11.046
– volume: 18
  start-page: 301
  year: 2014
  ident: B32
  article-title: Respiratory motion correction in dynamic MRI using robust data decomposition registration – Application to DCE-MRI
  publication-title: Med. Image Anal
  doi: 10.1016/j.media.2013.10.016
– start-page: 193
  volume-title: Engineering Applications of Neural Networks
  year: 2013
  ident: B4
  article-title: Classification models for Alzheimer's disease Detection
  doi: 10.1007/978-3-642-41016-1_21
– volume: 4
  start-page: S65
  year: 2011
  ident: B33
  article-title: 327 Diagnostic Stability of Mild Cognitive Impairment Subtype
  publication-title: Asian J. Psychiatry
  doi: 10.1016/s1876-2018(11)60250-5
– start-page: 949
  volume-title: Bio-Inspired Systems: Computational and Ambient Intelligence
  year: 2009
  ident: B45
  article-title: Automatic system for Alzheimer's disease diagnosis using eigenbrains and bayesian classification rules
  doi: 10.1007/978-3-642-02478-8_119
– volume: 26
  start-page: 117
  year: 2011
  ident: B17
  article-title: The potential of support vector machine as the diagnostic tool for schizophrenia: a systematic literature review of neuroimaging studies
  publication-title: Eur. Psychiatry
  doi: 10.1016/S0924-9338(11)73068-1
– volume-title: Identifying Dementia in MRI Scans using Machine Learning
  year: 2012
  ident: B48
– volume: 6
  issue: 159
  year: 2014
  ident: B10
  article-title: Interactive effects of vascular risk burden and advanced age on cerebral blood flow
  publication-title: Front. Aging Neurosci
  doi: 10.3389/fnagi.2014.00159
– year: 2014
  ident: B59
  article-title: Participation in cognitively-stimulating activities is associated with brain structure and cognitive function in preclinical Alzheimer's disease
  publication-title: Brain Imaging Behav
  doi: 10.1007/s11682-014-9329-5
– volume: 16
  start-page: 114
  year: 2012
  ident: B5
  article-title: Differential MRI analysis for quantification of low grade glioma growth
  publication-title: Med. Image Anal
  doi: 10.1016/j.media.2011.05.014
– volume: 10
  start-page: 25
  year: 2015
  ident: B9
  article-title: Assembly and interrogation of Alzheimer's disease genetic networks reveal novel regulators of progression
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0120352
– volume: 1321
  start-page: 169
  year: 2010
  ident: B51
  article-title: Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2009.12.081
– volume: 2013
  start-page: 130134
  year: 2013
  ident: B73
  article-title: An MR brain images classifier system via particle swarm optimization and kernel support vector machine
  publication-title: Scientific World Journal
  doi: 10.1155/2013/130134
– volume: 40
  start-page: 1394
  year: 2013
  ident: B6
  article-title: Automated analysis of FDG PET as a tool for single-subject probabilistic prediction and detection of Alzheimer's disease dementia
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-013-2458-z
– volume: 16
  start-page: 301
  year: 2012
  ident: B62
  article-title: Reversible jump MCMC methods for fully automatic motion analysis in tagged MRI
  publication-title: Med. Image Anal
  doi: 10.1016/j.media.2011.08.006
– start-page: 201
  volume-title: Bioinformatics and Biomedical Engineering
  year: 2015
  ident: B78
  article-title: Detection of pathological brain in MRI scanning based on wavelet-entropy and naive bayes classifier
– volume: 44
  start-page: 635
  year: 2015
  ident: B49
  article-title: More atrophy of deep gray matter structures in frontotemporal dementia compared to Alzheimer's disease
  publication-title: J. Alzheimers Dis
  doi: 10.3233/JAD-141230
– volume: 7
  issue: 50
  year: 2014
  ident: B60
  article-title: Fast Parallel Image Registration on CPU and GPU for Diagnostic Classification of Alzheimer's Disease
  publication-title: Front. Neuroinform
  doi: 10.3389/fninf.2013.00050
– volume: 43
  start-page: 1313
  year: 2013
  ident: B41
  article-title: Classification of diffusion tensor images for the early detection of Alzheimer's disease
  publication-title: Comput. Biol. Med
  doi: 10.1016/j.compbiomed.2013.07.004
– volume: 25
  start-page: 303
  year: 2004
  ident: B52
  article-title: Hippocampus and entorhinal cortex in mild cognitive impairment and early AD
  publication-title: Neurobiol. Aging
  doi: 10.1016/S0197-4580(03)00084-8
– volume: 334
  start-page: 55
  year: 2013
  ident: B37
  article-title: Idiopathic normal-pressure hydrocephalus, cortical thinning, and the cerebrospinal fluid tap test
  publication-title: J. Neurol. Sci
  doi: 10.1016/j.jns.2013.07.014
– volume-title: Bessel's Correction
  year: 2012
  ident: B56
– volume: 81
  start-page: 96
  year: 2013
  ident: B31
  article-title: Selectively and progressively disrupted structural connectivity of functional brain networks in Alzheimer's disease—Revealed by a novel framework to analyze edge distributions of networks detecting disruptions with strong statistical evidence
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.011
– volume: 18
  start-page: 984
  year: 2014
  ident: B44
  article-title: Multiple kernel learning in the primal for multimodal Alzheimer's disease classification
  publication-title: IEEE J. Biomed. Health Inform
  doi: 10.1109/JBHI.2013.2285378
– volume: 136
  start-page: 844
  year: 2013
  ident: B42
  article-title: Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/aws327
– volume: 1
  start-page: 299
  year: 2006
  ident: B46
  article-title: A Slantlet transform based intelligent system for magnetic resonance brain image classification
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2006.12.001
– volume: 20
  start-page: 433
  year: 2010
  ident: B22
  article-title: Hybrid intelligent techniques for MRI brain images classification
  publication-title: Digit. Signal Process
  doi: 10.1016/j.dsp.2009.07.002
– volume: 8
  start-page: 217
  year: 2014
  ident: B38
  article-title: ECG beat classification using particle swarm optimization and support vector machine
  publication-title: Front. Comput. Sci
  doi: 10.1007/s11704-014-2398-1
SSID ssj0062650
Score 2.4932625
Snippet Early diagnosis or detection of Alzheimer's disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis (CAD) was...
(Purpose) Early diagnosis or detection of Alzheimer’s disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis...
Purpose: Early diagnosis or detection of Alzheimer's disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 66
SubjectTerms Accuracy
Aging
Alzheimer's disease
Artificial intelligence
Automation
Brain research
Classification
Dementia
Diagnosis
Entropy
Learning algorithms
Machine learning
Machine Vision
Magnetic Resonance Imaging
Methods
Neurodegenerative diseases
Neuroscience
NMR
Nuclear magnetic resonance
prediction
Principal components analysis
Student's t-test
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQL3BBQPnZUtAgISSQok3iJHaOC6UqSHBAVOrNsuNxW2nXWzVZoXLqoS_B6_EkeJxs6ApEL1wTx7Fmxp4Z-_M3jL1sMk2V3jAxlcSQoJg8MSK1iWwyqzknCvAIkP1cHRwWH4_Ko2ulvggT1tMD94KbWhROV04UDcX-xspMB5-tGydyiXkRr_mmsl4nU_0aHKL0Mu0PJUMKVk-dJ2hI8HW0gZJGRsTfTihy9f8twPwTJ3l75c_0xTc9n19zQvv32N0heoRZP-r77Bb6B2x75kPmvLiAVxDxnHGjfJtd7WEXcVYelg7alaEdlxa0t2CoLgRQTYZgcxCvs6CFbgmz-fcTPF3g-c_LHy0MhzdA2Phj4Hvw6csHaIMuWiDnZyF0jcTm2fdHPS8iNhNhKEZx_JAd7r__-u4gGWouJE1ZVl1YkkUldMadkxqtNEJYh1ZU6EpuTG6cLurg8h13tDAG0YgQQLpca2K-a2zKH7Etv_T4hIG1dWqFsShrU0he1TXqIrOF5SFu0AYnbLpWgmoGQnKqizFXITEhtamoNkVqU1FtE_Z6_OKsJ-P4R9u3pNexHdFoxwfBuNRgXOom45qw3bVVqGFutyonj06Ml-EfL8bXYVbSUYv2uFy1KqtkLYtcUJvHvRGNIwkZpMxFxidMbJjXxlA33_jTk8j8TWxyvBQT9mY0xBsFsfM_BPGU3aEeI0Yu32Vb3fkKn4VorDPP48T7BUZvN8I
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Pb9MwFLZGd4ALAsaPwEBGQiCQoiZ2EjsHhDq2aSBRoYlJu1l2bHeTWqc0qdA48pfj5yQdFWhcE8dK_J6f37O_fB9Cr6pUgtKbiVXBjS9QFIkVS3TMq1RLSoECPABkp8XJWfb5PD_fQdPhXxiAVQ4xMQRqXVewRz4mEEeBZ7D4sPweg2oUnK4OEhqyl1bQ7wPF2C20S4AZa4R2D46mX0-H2Oyz9zzpDit9aVaOrQPIiF8DYWMlCUyJ14tT4PD_V-L5N37y9tot5dUPOZ__sTgd30N3-6wSTzo3uI92jHuA9ibOV9SLK_waB5xn2EDfQ78OTRvwVw7XFjdrBTsxDZZOYwV6ERi0Grwv4vCbi9G4rfFk_vPCXC7M6k2D-yMdDIj5GaaH-MvpJ9x4CzUYlkSNfccGOD673qDfRUBsGtxLVMweorPjo28fT-JeiSGu8rxofaBmBZMptZZLo7liTFujWWFsTpUiysqs9ImApRbCpR8Y5tNKS6QEPrxKJ_QRGrnamScIa10mmilteKkyTouyNDJLdaapzyakMhEaDyYQVU9TDmoZc-HLFTCaCEYTYDQRjBaht5snlh1Fxw1tD8Cqm3ZArh0u1KuZ6Oeq0IZZWViWVVBuKs1T6dNEWVlGuCEZj9D-4BOin_GNuPbPCL3c3PZzFQ5gpDP1uhFpwUueEQZtHncutHkTX1dywlIaIbblXFuvun3HXV4EPnDgmKM5i9C7jRv-dyCe3vwNz9AdaBswcWQfjdrV2jz32VerXvRT6jfPzDNr
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwELage4AXBgxGYCAjIRBIXZs4sZ3HwpgGEhNCVIKnyI7traJ1qyXRtD3yy7lz0ojCBEI8Jrk4zvniu7O_fEfIszJWWOnNDjWXFhIUnQy1GJuhLGOjGEMK8ACQPeZH0_T9l2yNJqw6WKXDX_exEPTMt0zBHUQMv3DIqPKR84j0ANeF6yHgM0cr466TLZ5BOD4gW9Pjj5OvmGhxDolWLGW7PXnlrRvuKLD2XxVq_o6YvNH4lbo4V_P5T-7ocJvo9Yu0KJRv-02t98vLXzge_-tNb5NbXbBKJ638HXLN-rtkZ-IhUV9c0Oc0wEfDuvwO-X5g6wDr8nTpaNVoXOCpqPKGaixDQbEEBJg4DX_PWEPrJZ3ML0_tbGHPXlS02ymiCMQ_oeyAfvj0jlYw8BVFT2soNGyROrRtDdtdBCCopV3li5N7ZHr49vObo2FX4GFYZhmvYf4XXKiYOSeVNVILYZw1gluXMa0T7VSaQ3zhmMNZGLQvIFp1iVJIs1eaMbtPBn7p7QNCjcnHRmhjZa5TyXieW5XGJjUMghSlbURG63Euyo79HItwzAvIglDVRVB1gaougqoj8rK_Y9Uyf_xB9jWaTi-HnN3hBAxq0Q1qYaxwijuRlpjFaiNjBdGnKp1IpE1SGZG9teEV3URSFQmGD0ivCc942l-GKQD3dZS3y6YqYi5zmSYCZXZbO-17AumqTETMIiI2LHijq5tX_Ow00IwjdR3LRERe9bb-V0U8_BfhR-QmHgTgXbJHBvVZYx9DiFfrJ91H_APBKlN6
  priority: 102
  providerName: Unpaywall
Title Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning
URI https://www.ncbi.nlm.nih.gov/pubmed/26082713
https://www.proquest.com/docview/2284731326
https://www.proquest.com/docview/1689842726
https://pubmed.ncbi.nlm.nih.gov/PMC4451357
https://www.frontiersin.org/articles/10.3389/fncom.2015.00066/pdf
https://doaj.org/article/de7fa6f74c0144bd81a056acf728e248
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: ADMLS
  dateStart: 20120501
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1662-5188
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: BENPR
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: M48
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELbG9gAvaDB-FEZlJDQEUlgTJ7HzgFDHNgbSqmmiUnmK7NjuJrVJ16Qa5ZG_nDsnjaioxkseYsdJfOfcne_yfYS8yXyJTG_GU7EwEKCowFO8pz2R-VoyhhDgrkB2EJ8Nw2-jaLRFVn-XNBNYbgztkE9qOJ98-Hmz_AQL_iNGnGBvD22OhR9gyXB7BEzowezGQ1opTL82HBv3yA6YrgS5Hc7DNs0AznzUq3OXGwdas1UO0n-TH_pvOeX9RT6Ty1s5mfxlq053ycPGyaT9WisekS2TPyZ7_RwC7OmSHlBX9un20_fI72NTuXKsnBaWlguFGzMllbmmCukjKFI3gGpS99eL0bQqaH_y68pcT838bUmbDA_FAvoxZcf0_PIrLUFgJUULqSkMbBDysx4Nx526Ak5DG8aK8RMyPD35_vnMa4gZvCyK4gq-2zzm0mfWCmm0UJxrazSPjY2YUoGyMkzAL7DM4tcTJoaDl2kDKREeL9M99pRs50VunhOqddLTXGkjEhUKFieJkaGvQ83AuZDKdMjhSgRp1qCWI3nGJIXoBYWWOqGlKLTUCa1D3rVXzGrEjjv6HqFU236Ite1OFPNx2izdVBtuZWx5mGH0qbTwJXiNMrM8ECYIRYfsr3QiXelvGqDZR1hMuMfrthmWLuZjZG6KRZn6sUhEGHDs86xWofZJIMwUAfdZh_A15Vp71PWW_PrKwYMj5ByLeIe8b9XwvxPx4u53eEkeYF9XIhfsk-1qvjCvwBmrVJfsHJ0MLi67bjMDjl9GftctMmgZDi76P_4Ap-g9Ow
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbG9jBeEDAugQFG4iKQojZ2EjsPE-roppZtFZo2aW_Gju1uUpuUpdVUHvlh_DZ83KSjAo2nvcYXJTnH52Iffx9Cb_JIAtObCVXKjUtQFAkVa-uQ55GWlAIEuC-QHaS90_jLWXK2hn41d2GgrLKxid5Q6zKHPfIWATsKOIPpp8n3EFij4HS1odCQNbWC3vEQY_XFjgMzv3IpXLXT7zp5vyVkf-_kcy-sWQbCPEnSqTNCLGUyotZyaTRXjGlrNEuNTahSRFkZZ87JWWrBFBidMxcyWSIlYL3luk3dvHfQRkzjzCV_G7t7g6_HjS9w2ULSXhyOulQwa9kCSlScz4WNnLZHZrx2hp4z4F-B7t_1mpuzYiLnV3I0-sMZ7t9H9-ooFncWavcArZniIdrqFC6DH8_xO-zrSv2G_Rb62TVTX-9V4NLiaqZg56fCstBYAT8FBm4Ip_vYX6sxGk9L3Bn9ODcXY3P5vsL1ERKGCv0hpl18dNzHldOICoML1thNbABTdDEbzDv2FaIG15QYw0fo9FZk8hitF2VhniKsddbWTGnDMxVzmmaZkXGkY01d9CKVCVCrEYHIa1h0YOcYCZcegdCEF5oAoQkvtAB9WI6YLCBBbui7C1Jd9gMwb_-gvByK2jYIbZiVqWVxDumt0jySLiyVuWWEGxLzAG03OiFqC1OJ6_UQoNfLZmcb4MBHFqacVSJKecZjwqDPk4UKLd_E5bGcsIgGiK0o18qrrrYUF-cefxww7WjCAvRxqYb__RHPbv6GV2izd3J0KA77g4Pn6C6M8_V4ZButTy9n5oWL_KbqZb28MPp22yv6Ny5-c1E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJgEvCBiXwAAjcRFIUZs4iZ2HCXV01cqgmiYm7c3Ysd1NapPStJrKIz-PX4WP63RUoPG018Sxkpy7_fk7CL0qIgGd3nQoM6ZtgSLjUNK2ClkRKUEIUIA7gOwgOzhJPp2mpxvoV3MWBmCVjU90jlpVBayRt2Lwo8AzmLWMh0UcdXsfJt9D6CAFO61NOw3h2yyoXUc35g95HOrFhS3n6t1-18r-dRz39r9-PAh9x4GwSNNsZh0SzaiIiDFMaMUkpcpoRTNtUiJlLI1IchvwDDHgFrQqqE2fTCwE8L4Vqk3svDfQFmx-WSextbc_ODpu4oKtHNL2cqPUloV5y5QAV7HxFxZ12o6l8TIwuv4B_0p6_8Zu3pqXE7G4EKPRH4Gxdxfd8Rkt7ixV8B7a0OV9tN0pbTU_XuA32GFM3eL9NvrZ1TOH_SpxZXA9l7AKVGNRKiyhVwWGPhHWDrA7YqMVnlW4M_pxps_Hevq2xn47CQNaf4hJF3857uPaakeNIRwrbCfWwC-6nA3mHTu0qMa-PcbwATq5Fpk8RJtlVerHCCuVtxWVSrNcJoxkea5FEqlEEZvJCKkD1GpEwAtPkQ6dOkbclkogNO6ExkFo3AktQO9WT0yW9CBXjN0Dqa7GAbG3u1BNh9z7Ca40NSIzNCmg1JWKRcKmqKIwNGY6TliAdhqd4N7b1PzSNgL0cnXb-gnY_BGlruY1jzKWsySmMObRUoVWb2JrWhbTiASIrinX2quu3ynPzxwXOfDbkZQG6P1KDf_7I55c_Q0v0E1r2fxzf3D4FN2Gxxw0L95Bm7PpXD-zSeBMPvfWhdG36zbo3w3_d4A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwELage4AXBgxGYCAjIRBIXZs4sZ3HwpgGEhNCVIKnyI7traJ1qyXRtD3yy7lz0ojCBEI8Jrk4zvniu7O_fEfIszJWWOnNDjWXFhIUnQy1GJuhLGOjGEMK8ACQPeZH0_T9l2yNJqw6WKXDX_exEPTMt0zBHUQMv3DIqPKR84j0ANeF6yHgM0cr466TLZ5BOD4gW9Pjj5OvmGhxDolWLGW7PXnlrRvuKLD2XxVq_o6YvNH4lbo4V_P5T-7ocJvo9Yu0KJRv-02t98vLXzge_-tNb5NbXbBKJ638HXLN-rtkZ-IhUV9c0Oc0wEfDuvwO-X5g6wDr8nTpaNVoXOCpqPKGaixDQbEEBJg4DX_PWEPrJZ3ML0_tbGHPXlS02ymiCMQ_oeyAfvj0jlYw8BVFT2soNGyROrRtDdtdBCCopV3li5N7ZHr49vObo2FX4GFYZhmvYf4XXKiYOSeVNVILYZw1gluXMa0T7VSaQ3zhmMNZGLQvIFp1iVJIs1eaMbtPBn7p7QNCjcnHRmhjZa5TyXieW5XGJjUMghSlbURG63Euyo79HItwzAvIglDVRVB1gaougqoj8rK_Y9Uyf_xB9jWaTi-HnN3hBAxq0Q1qYaxwijuRlpjFaiNjBdGnKp1IpE1SGZG9teEV3URSFQmGD0ivCc942l-GKQD3dZS3y6YqYi5zmSYCZXZbO-17AumqTETMIiI2LHijq5tX_Ow00IwjdR3LRERe9bb-V0U8_BfhR-QmHgTgXbJHBvVZYx9DiFfrJ91H_APBKlN6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+subjects+and+brain+regions+related+to+Alzheimer%27s+disease+using+3D+MRI+scans+based+on+eigenbrain+and+machine+learning&rft.jtitle=Frontiers+in+computational+neuroscience&rft.au=Zhang%2C+Yudong&rft.au=Dong%2C+Zhengchao&rft.au=Phillips%2C+Preetha&rft.au=Wang%2C+Shuihua&rft.date=2015-06-02&rft.pub=Frontiers+Research+Foundation&rft.eissn=1662-5188&rft_id=info:doi/10.3389%2Ffncom.2015.00066&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5188&client=summon