Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning
Early diagnosis or detection of Alzheimer's disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis (CAD) was not widely used, and the classification performance did not reach the standard of practical use. We proposed a novel CAD system for MR b...
Saved in:
| Published in | Frontiers in computational neuroscience Vol. 9; p. 66 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
Frontiers Research Foundation
02.06.2015
Frontiers Media S.A |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1662-5188 1662-5188 |
| DOI | 10.3389/fncom.2015.00066 |
Cover
| Abstract | Early diagnosis or detection of Alzheimer's disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis (CAD) was not widely used, and the classification performance did not reach the standard of practical use. We proposed a novel CAD system for MR brain images based on eigenbrains and machine learning with two goals: accurate detection of both AD subjects and AD-related brain regions.
First, we used maximum inter-class variance (ICV) to select key slices from 3D volumetric data. Second, we generated an eigenbrain set for each subject. Third, the most important eigenbrain (MIE) was obtained by Welch's t-test (WTT). Finally, kernel support-vector-machines with different kernels that were trained by particle swarm optimization, were used to make an accurate prediction of AD subjects. Coefficients of MIE with values higher than 0.98 quantile were highlighted to obtain the discriminant regions that distinguish AD from NC.
The experiments showed that the proposed method can predict AD subjects with a competitive performance with existing methods, especially the accuracy of the polynomial kernel (92.36 ± 0.94) was better than the linear kernel of 91.47 ± 1.02 and the radial basis function (RBF) kernel of 86.71 ± 1.93. The proposed eigenbrain-based CAD system detected 30 AD-related brain regions (Anterior Cingulate, Caudate Nucleus, Cerebellum, Cingulate Gyrus, Claustrum, Inferior Frontal Gyrus, Inferior Parietal Lobule, Insula, Lateral Ventricle, Lentiform Nucleus, Lingual Gyrus, Medial Frontal Gyrus, Middle Frontal Gyrus, Middle Occipital Gyrus, Middle Temporal Gyrus, Paracentral Lobule, Parahippocampal Gyrus, Postcentral Gyrus, Posterial Cingulate, Precentral Gyrus, Precuneus, Subcallosal Gyrus, Sub-Gyral, Superior Frontal Gyrus, Superior Parietal Lobule, Superior Temporal Gyrus, Supramarginal Gyrus, Thalamus, Transverse Temporal Gyrus, and Uncus). The results were coherent with existing literatures.
The eigenbrain method was effective in AD subject prediction and discriminant brain-region detection in MRI scanning. |
|---|---|
| AbstractList | (Purpose) Early diagnosis or detection of Alzheimer’s disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis (CAD) was not widely used, and the classification performance did not reach the standard of practical use. We proposed a novel CAD system for MR brain images based on eigenbrains and machine learning with two goals: accurate detection of both AD subjects and AD-related brain regions.(Method) First, we used maximum inter-class variance to select key slices from 3D volumetric data. Second, we generated an eigenbrain set for each subject. Third, the most important eigenbrain (MIE) was obtained by Welch’s t-test. Finally, kernel support-vector-machines with different kernels that were trained by particle swarm optimization, were used to make an accurate prediction of AD subjects. Coefficients of MIE with values higher than 0.98 quantile were highlighted to obtain the discriminant regions that distinguish AD from NC.(Results) The experiments showed that the proposed method can predict AD subjects with a competitive performance with existing methods, especially the accuracy of the polynomial kernel (92.36±0.94) was better than the linear kernel of 91.47±1.02 and the radial basis function (RBF) kernel of 86.71±1.93. The proposed eigenbrain-based CAD system detected 30 AD-related brain regions. The results were coherent with existing literatures.(Conclusion) The eigenbrain method was effective in AD subject prediction and discriminant brain-region detection in MRI scanning. Early diagnosis or detection of Alzheimer's disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis (CAD) was not widely used, and the classification performance did not reach the standard of practical use. We proposed a novel CAD system for MR brain images based on eigenbrains and machine learning with two goals: accurate detection of both AD subjects and AD-related brain regions.PURPOSEEarly diagnosis or detection of Alzheimer's disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis (CAD) was not widely used, and the classification performance did not reach the standard of practical use. We proposed a novel CAD system for MR brain images based on eigenbrains and machine learning with two goals: accurate detection of both AD subjects and AD-related brain regions.First, we used maximum inter-class variance (ICV) to select key slices from 3D volumetric data. Second, we generated an eigenbrain set for each subject. Third, the most important eigenbrain (MIE) was obtained by Welch's t-test (WTT). Finally, kernel support-vector-machines with different kernels that were trained by particle swarm optimization, were used to make an accurate prediction of AD subjects. Coefficients of MIE with values higher than 0.98 quantile were highlighted to obtain the discriminant regions that distinguish AD from NC.METHODFirst, we used maximum inter-class variance (ICV) to select key slices from 3D volumetric data. Second, we generated an eigenbrain set for each subject. Third, the most important eigenbrain (MIE) was obtained by Welch's t-test (WTT). Finally, kernel support-vector-machines with different kernels that were trained by particle swarm optimization, were used to make an accurate prediction of AD subjects. Coefficients of MIE with values higher than 0.98 quantile were highlighted to obtain the discriminant regions that distinguish AD from NC.The experiments showed that the proposed method can predict AD subjects with a competitive performance with existing methods, especially the accuracy of the polynomial kernel (92.36 ± 0.94) was better than the linear kernel of 91.47 ± 1.02 and the radial basis function (RBF) kernel of 86.71 ± 1.93. The proposed eigenbrain-based CAD system detected 30 AD-related brain regions (Anterior Cingulate, Caudate Nucleus, Cerebellum, Cingulate Gyrus, Claustrum, Inferior Frontal Gyrus, Inferior Parietal Lobule, Insula, Lateral Ventricle, Lentiform Nucleus, Lingual Gyrus, Medial Frontal Gyrus, Middle Frontal Gyrus, Middle Occipital Gyrus, Middle Temporal Gyrus, Paracentral Lobule, Parahippocampal Gyrus, Postcentral Gyrus, Posterial Cingulate, Precentral Gyrus, Precuneus, Subcallosal Gyrus, Sub-Gyral, Superior Frontal Gyrus, Superior Parietal Lobule, Superior Temporal Gyrus, Supramarginal Gyrus, Thalamus, Transverse Temporal Gyrus, and Uncus). The results were coherent with existing literatures.RESULTSThe experiments showed that the proposed method can predict AD subjects with a competitive performance with existing methods, especially the accuracy of the polynomial kernel (92.36 ± 0.94) was better than the linear kernel of 91.47 ± 1.02 and the radial basis function (RBF) kernel of 86.71 ± 1.93. The proposed eigenbrain-based CAD system detected 30 AD-related brain regions (Anterior Cingulate, Caudate Nucleus, Cerebellum, Cingulate Gyrus, Claustrum, Inferior Frontal Gyrus, Inferior Parietal Lobule, Insula, Lateral Ventricle, Lentiform Nucleus, Lingual Gyrus, Medial Frontal Gyrus, Middle Frontal Gyrus, Middle Occipital Gyrus, Middle Temporal Gyrus, Paracentral Lobule, Parahippocampal Gyrus, Postcentral Gyrus, Posterial Cingulate, Precentral Gyrus, Precuneus, Subcallosal Gyrus, Sub-Gyral, Superior Frontal Gyrus, Superior Parietal Lobule, Superior Temporal Gyrus, Supramarginal Gyrus, Thalamus, Transverse Temporal Gyrus, and Uncus). The results were coherent with existing literatures.The eigenbrain method was effective in AD subject prediction and discriminant brain-region detection in MRI scanning.CONCLUSIONThe eigenbrain method was effective in AD subject prediction and discriminant brain-region detection in MRI scanning. Early diagnosis or detection of Alzheimer's disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis (CAD) was not widely used, and the classification performance did not reach the standard of practical use. We proposed a novel CAD system for MR brain images based on eigenbrains and machine learning with two goals: accurate detection of both AD subjects and AD-related brain regions. First, we used maximum inter-class variance (ICV) to select key slices from 3D volumetric data. Second, we generated an eigenbrain set for each subject. Third, the most important eigenbrain (MIE) was obtained by Welch's t-test (WTT). Finally, kernel support-vector-machines with different kernels that were trained by particle swarm optimization, were used to make an accurate prediction of AD subjects. Coefficients of MIE with values higher than 0.98 quantile were highlighted to obtain the discriminant regions that distinguish AD from NC. The experiments showed that the proposed method can predict AD subjects with a competitive performance with existing methods, especially the accuracy of the polynomial kernel (92.36 ± 0.94) was better than the linear kernel of 91.47 ± 1.02 and the radial basis function (RBF) kernel of 86.71 ± 1.93. The proposed eigenbrain-based CAD system detected 30 AD-related brain regions (Anterior Cingulate, Caudate Nucleus, Cerebellum, Cingulate Gyrus, Claustrum, Inferior Frontal Gyrus, Inferior Parietal Lobule, Insula, Lateral Ventricle, Lentiform Nucleus, Lingual Gyrus, Medial Frontal Gyrus, Middle Frontal Gyrus, Middle Occipital Gyrus, Middle Temporal Gyrus, Paracentral Lobule, Parahippocampal Gyrus, Postcentral Gyrus, Posterial Cingulate, Precentral Gyrus, Precuneus, Subcallosal Gyrus, Sub-Gyral, Superior Frontal Gyrus, Superior Parietal Lobule, Superior Temporal Gyrus, Supramarginal Gyrus, Thalamus, Transverse Temporal Gyrus, and Uncus). The results were coherent with existing literatures. The eigenbrain method was effective in AD subject prediction and discriminant brain-region detection in MRI scanning. Purpose: Early diagnosis or detection of Alzheimer's disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis (CAD) was not widely used, and the classification performance did not reach the standard of practical use. We proposed a novel CAD system for MR brain images based on eigenbrains and machine learning with two goals: accurate detection of both AD subjects and AD-related brain regions. Method: First, we used maximum inter-class variance (ICV) to select key slices from 3D volumetric data. Second, we generated an eigenbrain set for each subject. Third, the most important eigenbrain (MIE) was obtained by Welch's t-test (WTT). Finally, kernel support-vector-machines with different kernels that were trained by particle swarm optimization, were used to make an accurate prediction of AD subjects. Coefficients of MIE with values higher than 0.98 quantile were highlighted to obtain the discriminant regions that distinguish AD from NC. Results: The experiments showed that the proposed method can predict AD subjects with a competitive performance with existing methods, especially the accuracy of the polynomial kernel (92.36 ± 0.94) was better than the linear kernel of 91.47 ± 1.02 and the radial basis function (RBF) kernel of 86.71 ± 1.93. The proposed eigenbrain-based CAD system detected 30 AD-related brain regions (Anterior Cingulate, Caudate Nucleus, Cerebellum, Cingulate Gyrus, Claustrum, Inferior Frontal Gyrus, Inferior Parietal Lobule, Insula, Lateral Ventricle, Lentiform Nucleus, Lingual Gyrus, Medial Frontal Gyrus, Middle Frontal Gyrus, Middle Occipital Gyrus, Middle Temporal Gyrus, Paracentral Lobule, Parahippocampal Gyrus, Postcentral Gyrus, Posterial Cingulate, Precentral Gyrus, Precuneus, Subcallosal Gyrus, Sub-Gyral, Superior Frontal Gyrus, Superior Parietal Lobule, Superior Temporal Gyrus, Supramarginal Gyrus, Thalamus, Transverse Temporal Gyrus, and Uncus). The results were coherent with existing literatures. Conclusion: The eigenbrain method was effective in AD subject prediction and discriminant brain-region detection in MRI scanning. |
| Author | Zhang, Yudong Wang, Shuihua Phillips, Preetha Ji, Genlin Dong, Zhengchao Yang, Jiquan Yuan, Ti-Fei |
| AuthorAffiliation | 5 Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing Nanjing, China 6 School of Psychology, Nanjing Normal University Nanjing, China 2 Division of Translational Imaging and MRI Unit, New York State Psychiatric Institute, Columbia University New York, NY, USA 3 School of Natural Sciences and Mathematics, Shepherd University Shepherdstown, WV, USA 1 School of Computer Science and Technology, Nanjing Normal University Nanjing, China 4 School of Electronic Science and Engineering, Nanjing University Nanjing, China |
| AuthorAffiliation_xml | – name: 4 School of Electronic Science and Engineering, Nanjing University Nanjing, China – name: 5 Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing Nanjing, China – name: 3 School of Natural Sciences and Mathematics, Shepherd University Shepherdstown, WV, USA – name: 6 School of Psychology, Nanjing Normal University Nanjing, China – name: 1 School of Computer Science and Technology, Nanjing Normal University Nanjing, China – name: 2 Division of Translational Imaging and MRI Unit, New York State Psychiatric Institute, Columbia University New York, NY, USA |
| Author_xml | – sequence: 1 givenname: Yudong surname: Zhang fullname: Zhang, Yudong – sequence: 2 givenname: Zhengchao surname: Dong fullname: Dong, Zhengchao – sequence: 3 givenname: Preetha surname: Phillips fullname: Phillips, Preetha – sequence: 4 givenname: Shuihua surname: Wang fullname: Wang, Shuihua – sequence: 5 givenname: Genlin surname: Ji fullname: Ji, Genlin – sequence: 6 givenname: Jiquan surname: Yang fullname: Yang, Jiquan – sequence: 7 givenname: Ti-Fei surname: Yuan fullname: Yuan, Ti-Fei |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26082713$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFks1vFCEYxiemxn7o3ZMh8aCXXYGZAfZi0rR-bFJjYvRM3oGXXTYzsMKMph79y2V3a9P2oCfg5Xl-PPByWh2FGLCqnjM6r2u1eOOCicOcU9bOKaVCPKpOmBB81jKlju7Mj6vTnDdFwUVLn1THXFDFJatPqt-XOKIZfQwkOpKnblNWmUCwpEvgA0m4Kpu5jD2MaMkYyXn_a41-wPQqE-szQkYyZR9WpL4kn74sSTZQHF2pW1LA6FcYDrQddwCz9gFJj5BCcT2tHjvoMz67Gc-qb-_ffb34OLv6_GF5cX41M20rxlnNpJDAaucUoFWdlNahlQJdW3cd7xw0C9ZyVzuwFtEauZDScQDVUmEsrc-q5YFrI2z0NvkB0rWO4PW-ENNKQxq96VFblA6Ek42hrGk6qxjQVoBxkivkjSosdmBNYQvXP6Hvb4GM6l1v9L43etcbve9N8bw9eLZTN5R8GMYE_b0g93eCX-tV_KGbpmV1Kwvg9Q0gxe8T5lEPPhvsewgYp6yZUAvVcMl3Z718IN3EKYXyvJpz1cia1XvVi7uJbqP8_R5FIA4Ck2LOCZ02foTdbykBff-vu9IHxv8-zx-pj-Jm |
| CitedBy_id | crossref_primary_10_1109_TKDE_2024_3366333 crossref_primary_10_1142_S0129065718500223 crossref_primary_10_1016_j_matpr_2020_07_645 crossref_primary_10_1136_bmjopen_2020_043487 crossref_primary_10_2174_1574893617666220329181607 crossref_primary_10_4103_1673_5374_367840 crossref_primary_10_3389_frdem_2024_1385303 crossref_primary_10_3390_sym12121995 crossref_primary_10_1016_j_bspc_2022_103974 crossref_primary_10_1016_j_artmed_2019_101771 crossref_primary_10_3390_e17127877 crossref_primary_10_1016_j_neulet_2017_07_018 crossref_primary_10_1016_j_bbe_2021_02_006 crossref_primary_10_3233_JAD_170069 crossref_primary_10_3934_mbe_2023086 crossref_primary_10_3390_su9122309 crossref_primary_10_1002_widm_1510 crossref_primary_10_1155_2017_5485080 crossref_primary_10_3934_mbe_2024171 crossref_primary_10_2478_cait_2019_0001 crossref_primary_10_1016_j_patrec_2020_03_014 crossref_primary_10_1016_j_heliyon_2021_e07287 crossref_primary_10_1155_2015_924814 crossref_primary_10_1016_j_ijmedinf_2017_02_004 crossref_primary_10_3390_diagnostics11081473 crossref_primary_10_1109_ACCESS_2025_3533638 crossref_primary_10_1038_s41598_022_06444_9 crossref_primary_10_1007_s13198_023_02180_z crossref_primary_10_2196_14473 crossref_primary_10_3389_frobt_2016_00054 crossref_primary_10_1088_1757_899X_1022_1_012012 crossref_primary_10_3233_JAD_150988 crossref_primary_10_1016_j_neuroimage_2016_02_079 crossref_primary_10_3389_fnhum_2021_654381 crossref_primary_10_1007_s00521_020_04984_7 crossref_primary_10_3390_biomedinformatics1030012 crossref_primary_10_3389_fnagi_2022_834331 crossref_primary_10_32604_cmes_2023_023544 crossref_primary_10_2174_1573405617666211126154101 crossref_primary_10_3389_fnagi_2022_911220 crossref_primary_10_3389_fninf_2018_00060 crossref_primary_10_3390_diagnostics13010167 crossref_primary_10_1016_j_aej_2022_07_062 crossref_primary_10_1515_bmt_2016_0239 crossref_primary_10_1016_j_eswa_2016_04_029 crossref_primary_10_1088_2053_1583_ab3771 crossref_primary_10_1145_3344998 crossref_primary_10_1016_j_neuroimage_2023_120267 crossref_primary_10_1109_TVCG_2021_3137174 crossref_primary_10_1016_j_bica_2018_04_008 crossref_primary_10_4103_jmp_jmp_128_24 crossref_primary_10_1093_comnet_cny009 crossref_primary_10_1016_j_compbiomed_2019_103527 crossref_primary_10_1155_2019_9108108 crossref_primary_10_1016_j_cmpb_2019_105205 crossref_primary_10_1016_j_jneumeth_2019_108424 crossref_primary_10_3389_fninf_2022_856295 crossref_primary_10_3390_make5020035 crossref_primary_10_1155_2017_8750506 crossref_primary_10_3390_s21165416 crossref_primary_10_62965_tnu_sns_2024_1_4 crossref_primary_10_1587_transinf_2018EDP7393 crossref_primary_10_3390_e21080769 crossref_primary_10_3389_fphys_2016_00136 crossref_primary_10_1109_TNNLS_2021_3118369 crossref_primary_10_1155_2020_8015156 crossref_primary_10_3390_app14052171 crossref_primary_10_3233_IDT_190005 crossref_primary_10_1016_j_knosys_2021_107164 crossref_primary_10_18178_ijmlc_2017_7_1_612 crossref_primary_10_1002_ima_22458 crossref_primary_10_3389_fbioe_2020_00496 crossref_primary_10_1186_s42492_020_00062_w crossref_primary_10_3390_biom10040503 crossref_primary_10_1155_2023_6330002 crossref_primary_10_33851_JMIS_2022_9_1_21 crossref_primary_10_1167_tvst_9_2_47 crossref_primary_10_1038_s41598_024_56001_9 crossref_primary_10_1007_s11042_023_16928_z crossref_primary_10_1038_s41598_023_37569_0 crossref_primary_10_1038_s41370_018_0080_7 crossref_primary_10_1016_j_bspc_2024_106023 crossref_primary_10_1109_ACCESS_2020_3038723 crossref_primary_10_2196_59556 crossref_primary_10_3389_fncom_2017_00117 crossref_primary_10_1007_s12021_017_9347_8 crossref_primary_10_1016_j_cmpb_2021_106264 crossref_primary_10_3233_JAD_220666 crossref_primary_10_3389_fgene_2018_00018 crossref_primary_10_1007_s11831_023_10003_4 crossref_primary_10_3390_brainsci9090212 crossref_primary_10_26634_jip_9_4_19282 crossref_primary_10_1016_j_neunet_2022_03_016 crossref_primary_10_3390_diagnostics14121281 crossref_primary_10_3389_fnins_2021_748689 crossref_primary_10_1016_j_ymeth_2025_01_017 crossref_primary_10_3233_JAD_171048 crossref_primary_10_1007_s00521_021_06406_8 crossref_primary_10_1016_j_neuroimage_2021_117889 crossref_primary_10_1016_j_chb_2016_03_031 crossref_primary_10_1111_cns_14188 crossref_primary_10_1155_2017_9060124 crossref_primary_10_1016_j_asoc_2019_105857 crossref_primary_10_3389_fnhum_2017_00643 crossref_primary_10_1016_j_fct_2019_110665 crossref_primary_10_1002_ima_22300 crossref_primary_10_3390_brainsci12010080 crossref_primary_10_1016_j_eswa_2019_06_038 crossref_primary_10_3389_fgene_2019_00976 crossref_primary_10_3389_fncom_2016_00106 crossref_primary_10_2174_0115672050301514240307071217 crossref_primary_10_3390_healthcare10030541 crossref_primary_10_31083_j_jin2204099 crossref_primary_10_1371_journal_pone_0187281 crossref_primary_10_3390_e17106663 crossref_primary_10_1007_s11042_017_4912_6 crossref_primary_10_1155_2015_454076 crossref_primary_10_3390_electronics11121890 crossref_primary_10_1007_s11042_022_12754_x crossref_primary_10_1007_s11042_023_17288_4 crossref_primary_10_1016_j_ijcce_2021_08_002 crossref_primary_10_1016_j_compbiomed_2023_107392 crossref_primary_10_26794_2587_5671_2023_27_1_103_115 |
| Cites_doi | 10.1136/jnnp-2012-303299 10.3389/fnagi.2014.00228 10.1007/s10548-012-0234-1 10.1371/journal.pone.0044195 10.3389/fnagi.2014.00264 10.1109/JSTARS.2014.2307091 10.3390/e170a41795 10.2528/PIER12061410 10.1016/j.apm.2013.10.073 10.1007/s00429-013-0503-0 10.1016/j.neurobiolaging.2014.04.034 10.1016/j.media.2014.05.012 10.1016/j.jalz.2012.01.005 10.1111/ene.12432 10.1007/978-3-642-02478-8_122 10.2528/PIER13121310 10.1016/j.bspc.2013.09.001 10.1016/j.ics.2005.11.104 10.1016/j.ins.2009.12.010 10.2528/PIER13010105 10.1016/j.neuroimage.2011.12.071 10.1007/s00429-013-0681-9 10.3390/s120912489 10.1016/j.eswa.2014.01.021 10.1016/j.jns.2014.08.036 10.1162/jocn.2007.19.9.1498 10.1002/tee.22059 10.1016/j.nbd.2014.05.001 10.1093/brain/awu046 10.1016/j.pscychresns.2014.06.006 10.1016/j.eswa.2012.09.009 10.1016/j.eswa.2011.02.012 10.1016/j.patrec.2013.08.017 10.1016/j.compag.2010.09.002 10.1049/el.2009.3415 10.2337/dc14-1683 10.1007/978-3-642-22555-0_40 10.1016/j.eswa.2012.09.003 10.1001/jamapsychiatry.2014.179 10.1016/j.pscychresns.2012.04.007 10.1016/j.neucom.2011.07.005 10.1093/cercor/bhs253 10.1007/s12013-014-0138-7 10.1016/j.jmva.2011.11.004 10.1016/j.media.2013.05.002 10.1016/j.bspc.2006.05.002 10.1007/s11042-015-2649-7 10.1016/j.jalz.2007.04.381 10.1016/j.neuroimage.2009.11.046 10.1016/j.media.2013.10.016 10.1007/978-3-642-41016-1_21 10.1016/s1876-2018(11)60250-5 10.1007/978-3-642-02478-8_119 10.1016/S0924-9338(11)73068-1 10.3389/fnagi.2014.00159 10.1007/s11682-014-9329-5 10.1016/j.media.2011.05.014 10.1371/journal.pone.0120352 10.1016/j.brainres.2009.12.081 10.1155/2013/130134 10.1007/s00259-013-2458-z 10.1016/j.media.2011.08.006 10.3233/JAD-141230 10.3389/fninf.2013.00050 10.1016/j.compbiomed.2013.07.004 10.1016/S0197-4580(03)00084-8 10.1016/j.jns.2013.07.014 10.1016/j.neuroimage.2013.05.011 10.1109/JBHI.2013.2285378 10.1093/brain/aws327 10.1016/j.bspc.2006.12.001 10.1016/j.dsp.2009.07.002 10.1007/s11704-014-2398-1 |
| ContentType | Journal Article |
| Copyright | 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2015 Zhang, Dong, Phillips, Wang, Ji, Yang and Yuan. 2015 |
| Copyright_xml | – notice: 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2015 Zhang, Dong, Phillips, Wang, Ji, Yang and Yuan. 2015 |
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3389/fncom.2015.00066 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1662-5188 |
| ExternalDocumentID | oai_doaj_org_article_de7fa6f74c0144bd81a056acf728e248 10.3389/fncom.2015.00066 PMC4451357 26082713 10_3389_fncom_2015_00066 |
| Genre | Journal Article |
| GeographicLocations | New York United States--US China |
| GeographicLocations_xml | – name: New York – name: China – name: United States--US |
| GrantInformation_xml | – fundername: NIA NIH HHS grantid: R01 AG021910 – fundername: NCRR NIH HHS grantid: U24 RR021382 – fundername: NIMH NIH HHS grantid: P50 MH071616 – fundername: NIA NIH HHS grantid: P50 AG005681 – fundername: NIMH NIH HHS grantid: R01 MH056584 – fundername: NIA NIH HHS grantid: P01 AG003991 |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ADBBV ADMLS ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RNS RPM TR2 ACXDI C1A IPNFZ NPM RIG 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c556t-31767a13ff8aed8b77dfed76ef53bb2bfa49152f3faddeedc7977f2aa8506cd03 |
| IEDL.DBID | M48 |
| ISSN | 1662-5188 |
| IngestDate | Tue Oct 14 19:09:17 EDT 2025 Sun Oct 26 02:30:46 EDT 2025 Tue Sep 30 16:49:10 EDT 2025 Fri Sep 05 07:26:05 EDT 2025 Fri Jul 25 11:39:10 EDT 2025 Thu Apr 03 06:54:02 EDT 2025 Thu Apr 24 23:01:16 EDT 2025 Wed Oct 01 01:44:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | eigenbrain magnetic resonance imaging support vector machine Welch's t-test particle swarm optimization machine learning Alzheimer's disease machine vision |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c556t-31767a13ff8aed8b77dfed76ef53bb2bfa49152f3faddeedc7977f2aa8506cd03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: Tobias Alecio Mattei, Brain and Spine Center - InvisionHealth - Kenmore Mercy Hospital, USA Reviewed by: Fahad Sultan, University Tübingen, Germany; Petia D. Koprinkova-Hristova, Bulgarian Academy of Sciences, Bulgaria |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fncom.2015.00066 |
| PMID | 26082713 |
| PQID | 2284731326 |
| PQPubID | 4424409 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_de7fa6f74c0144bd81a056acf728e248 unpaywall_primary_10_3389_fncom_2015_00066 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4451357 proquest_miscellaneous_1689842726 proquest_journals_2284731326 pubmed_primary_26082713 crossref_citationtrail_10_3389_fncom_2015_00066 crossref_primary_10_3389_fncom_2015_00066 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-06-02 |
| PublicationDateYYYYMMDD | 2015-06-02 |
| PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in computational neuroscience |
| PublicationTitleAlternate | Front Comput Neurosci |
| PublicationYear | 2015 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Eskildsen (B25) 2015; 36 Chaves (B14) 2013; 40 Li (B43) 2010; 74 Williams (B66) 2013; 9 Arbizu (B6) 2013; 40 Ãlvarez (B3) 2009b Ardekani (B7) 2014; 219 Nambakhsh (B50) 2013; 17 Ramasamy (B55) 2011 Cohen (B16) 2014; 72 Chaplot (B13) 2006; 1 Zhang (B72) 2014; 144 Yang (B68) 2015 El-Dahshan (B23) 2014; 41 Quiroz (B54) 2013; 84 Lee (B41) 2013; 43 Zhang (B70) 2015a; 17 Angelini (B5) 2012; 16 Kubota (B40) 2006; 1290 Aubry (B9) 2015; 10 Plant (B53) 2010; 50 Paakki (B51) 2010; 1321 Han (B33) 2011; 4 Zhang (B76) 2012b; 130 Dukart (B21) 2013; 212 Zhou (B78) 2015 Khazaee (B38) 2014; 8 Yu (B69) 2014; 6 Hahn (B31) 2013; 81 Goh (B27) 2014; 71 El-Dahshan (B22) 2010; 20 Maitra (B46) 2006; 1 Pennanen (B52) 2004; 25 Hamy (B32) 2014; 18 Lopez (B45) 2009 Alvarez (B2) 2009a; 45 Voevodskaya (B64) 2014; 6 Savio (B58) 2013; 40 Marcus (B47) 2007; 19 Shinohara (B61) 2014; 137 Bin Tufail (B11) 2012 De Reuck (B20) 2014; 21 Collins (B17) 2011; 26 Jeurissen (B35) 2014; 18 Miller (B48) 2012 Hable (B30) 2012; 106 He (B34) 2015; 71 Aich (B1) 2014; 38 Bangen (B10) 2014; 6 Streitburger (B63) 2012; 7 Wang (B65) 2015; 220 Ardekani (B8) 2013; 23 Zhang (B73) 2013; 2013 Gomes (B28) 2012; 75 Das (B19) 2013; 137 Xinyun (B67) 2011 Chen (B15) 2014; 37 Gray (B29) 2012; 60 Smal (B62) 2012; 16 Colloby (B18) 2014; 223 Brookmeyer (B12) 2007; 3 Xue (B77) 2014; 7 Schultz (B59) 2014 Zhang (B71) 2011; 38 Kang (B37) 2013; 334 Kim (B39) 2012; 25 Russell (B56) 2012 Lehmann (B42) 2013; 136 Anagnostopoulos (B4) 2013 Zhang (B74) 2015b; 10 Zhang (B75) 2012a; 12 Shamonin (B60) 2014; 7 Garcia (B26) 2010; 180 Eliasova (B24) 2014; 346 Kalbkhani (B36) 2013; 8 Möller (B49) 2015; 44 Saritha (B57) 2013; 34 Liu (B44) 2014; 18 |
| References_xml | – volume: 84 start-page: 556 year: 2013 ident: B54 article-title: Cortical atrophy in presymptomatic Alzheimer's disease presenilin 1 mutation carriers publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp-2012-303299 – volume: 6 issue: 228 year: 2014 ident: B69 article-title: Microstructure, length, and connection of limbic tracts in normal human brain development publication-title: Front. Aging Neurosci doi: 10.3389/fnagi.2014.00228 – volume: 25 start-page: 461 year: 2012 ident: B39 article-title: Clinical implications of quantitative electroencephalography and current source density in patients with Alzheimer's disease publication-title: Brain Topogr doi: 10.1007/s10548-012-0234-1 – volume: 7 start-page: e44195 year: 2012 ident: B63 article-title: Investigating structural brain changes of dehydration using voxel-based morphometry publication-title: PLoS ONE doi: 10.1371/journal.pone.0044195 – volume: 6 issue: 264 year: 2014 ident: B64 article-title: The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer's disease publication-title: Front. Aging Neurosci doi: 10.3389/fnagi.2014.00264 – volume: 7 start-page: 2131 year: 2014 ident: B77 article-title: Harmonic analysis for hyperspectral image classification integrated with PSO optimized SVM publication-title: J. Select. Topics Appl. Earth Obs. Remote Sens IEEE doi: 10.1109/JSTARS.2014.2307091 – volume: 17 start-page: 1795 year: 2015a ident: B70 article-title: Preclinical Diagnosis of Magnetic Resonance (MR) Brain Images via Discrete Wavelet Packet Transform with Tsallis Entropy and Generalized Eigenvalue Proximal Support Vector Machine (GEPSVM) publication-title: Entropy doi: 10.3390/e170a41795 – volume: 130 start-page: 369 year: 2012b ident: B76 article-title: An MR brain images classifier via principal component analysis and kernel support vector machine publication-title: Prog. Electromagn. Res doi: 10.2528/PIER12061410 – volume: 38 start-page: 2800 year: 2014 ident: B1 article-title: Modeling of EDM responses by support vector machine regression with parameters selected by particle swarm optimization publication-title: Appl. Math. Model doi: 10.1016/j.apm.2013.10.073 – volume: 219 start-page: 343 year: 2014 ident: B7 article-title: Corpus callosum shape changes in early Alzheimer's disease: an MRI study using the OASIS brain database publication-title: Brain Struct. Funct doi: 10.1007/s00429-013-0503-0 – volume: 36 start-page: S23 year: 2015 ident: B25 article-title: Structural imaging biomarkers of Alzheimer's disease: predicting disease progression publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2014.04.034 – start-page: 1658 volume-title: Seventh International Conference year: 2011 ident: B67 article-title: ICA-based classification of MCI vs HC. Natural Computation (ICNC) – volume: 18 start-page: 953 year: 2014 ident: B35 article-title: Automated correction of improperly rotated diffusion gradient orientations in diffusion weighted MRI publication-title: Med. Image Anal doi: 10.1016/j.media.2014.05.012 – volume: 9 start-page: S39-S44 year: 2013 ident: B66 article-title: Progression of Alzheimer's disease as measured by clinical dementia rating sum of boxes scores publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2012.01.005 – volume: 21 start-page: 1026 year: 2014 ident: B20 article-title: Iron deposits in post-mortem brains of patients with neurodegenerative and cerebrovascular diseases: a semi-quantitative 7.0 T magnetic resonance imaging study publication-title: Eur. J. Neurol doi: 10.1111/ene.12432 – start-page: 973 volume-title: Bio-Inspired Systems: Computational and Ambient Intelligence year: 2009b ident: B3 article-title: Alzheimer's diagnosis using eigenbrains and support vector machines doi: 10.1007/978-3-642-02478-8_122 – volume: 144 start-page: 171 year: 2014 ident: B72 article-title: Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree publication-title: Prog. Electromagn. Res doi: 10.2528/PIER13121310 – volume: 8 start-page: 909 year: 2013 ident: B36 article-title: Robust algorithm for brain magnetic resonance image (MRI) classification based on GARCH variances series publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2013.09.001 – volume: 1290 start-page: 128 year: 2006 ident: B40 article-title: A region-of-interest (ROI) template for three-dimensional stereotactic surface projection (3D-SSP) images: initial application to analysis of Alzheimer disease and mild cognitive impairment publication-title: Int. Congr. Ser doi: 10.1016/j.ics.2005.11.104 – volume: 180 start-page: 2044 year: 2010 ident: B26 article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power publication-title: Inf. Sci doi: 10.1016/j.ins.2009.12.010 – volume: 137 start-page: 1 year: 2013 ident: B19 article-title: Brain MR image classification using multiscale geometric analysis of ripplet publication-title: Prog. Electromagn. Res doi: 10.2528/PIER13010105 – volume: 60 start-page: 221 year: 2012 ident: B29 article-title: Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.071 – volume: 220 start-page: 745 year: 2015 ident: B65 article-title: Differentially disrupted functional connectivity of the subregions of the inferior parietal lobule in Alzheimer's disease publication-title: Brain Struct. Funct doi: 10.1007/s00429-013-0681-9 – volume: 12 start-page: 12489 year: 2012a ident: B75 article-title: Classification of fruits using computer vision and a multiclass support vector machine publication-title: Sensors doi: 10.3390/s120912489 – volume: 41 start-page: 5526 year: 2014 ident: B23 article-title: Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm publication-title: Expert Syst. Appl doi: 10.1016/j.eswa.2014.01.021 – volume: 346 start-page: 318 year: 2014 ident: B24 article-title: Non-invasive brain stimulation of the right inferior frontal gyrus may improve attention in early Alzheimer's disease: a pilot study publication-title: J. Neurol. Sci doi: 10.1016/j.jns.2014.08.036 – start-page: 317 volume-title: Proceedings of the IEEE International Conference in Control System, Computing and Engineering (ICCSCE) year: 2012 ident: B11 article-title: Multiclass classification of initial stages of Alzheimer's disease using structural MRI phase images – volume: 19 start-page: 1498 year: 2007 ident: B47 article-title: Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults publication-title: J. Cogn. Neurosci doi: 10.1162/jocn.2007.19.9.1498 – volume: 10 start-page: 116 year: 2015b ident: B74 article-title: Exponential wavelet iterative shrinkage thresholding algorithm with random shift for compressed sensing magnetic resonance imaging publication-title: IEEJ Trans. Electr. Electron. Eng doi: 10.1002/tee.22059 – volume: 72 start-page: 117 year: 2014 ident: B16 article-title: Early detection of Alzheimer's disease using PiB and FDG PET publication-title: Neurobiol. Dis doi: 10.1016/j.nbd.2014.05.001 – volume: 137 start-page: 1533 year: 2014 ident: B61 article-title: Regional distribution of synaptic markers and APP correlate with distinct clinicopathological features in sporadic and familial Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awu046 – volume: 223 start-page: 187 year: 2014 ident: B18 article-title: Patterns of cerebellar volume loss in dementia with Lewy bodies and Alzheimer's disease: A VBM-DARTEL study publication-title: Psychiatry Res doi: 10.1016/j.pscychresns.2014.06.006 – volume: 40 start-page: 1619 year: 2013 ident: B58 article-title: Deformation based feature selection for computer aided diagnosis of Alzheimer's Disease publication-title: Expert Syst. Appl doi: 10.1016/j.eswa.2012.09.009 – volume: 38 start-page: 10049 year: 2011 ident: B71 article-title: A hybrid method for MRI brain image classification publication-title: Expert Syst. Appl doi: 10.1016/j.eswa.2011.02.012 – volume: 34 start-page: 2151 year: 2013 ident: B57 article-title: Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network publication-title: Pattern Recognit. Lett doi: 10.1016/j.patrec.2013.08.017 – volume: 74 start-page: 274 year: 2010 ident: B43 article-title: Classification of foreign fibers in cotton lint using machine vision and multi-class support vector machine publication-title: Comput. Electron. Agric doi: 10.1016/j.compag.2010.09.002 – volume: 45 start-page: 342 year: 2009a ident: B2 article-title: Alzheimer's diagnosis using eigenbrains and support vector machines publication-title: Electron. Lett doi: 10.1049/el.2009.3415 – volume: 37 start-page: 3157 year: 2014 ident: B15 article-title: Altered brain activation patterns under different working memory loads in patients with Type 2 diabetes publication-title: Diabetes Care doi: 10.2337/dc14-1683 – start-page: 387 volume-title: Advances in Computing and Information Technology year: 2011 ident: B55 article-title: Brain tissue classification of MR images using fast fourier transform based expectation- maximization gaussian mixture model doi: 10.1007/978-3-642-22555-0_40 – volume: 40 start-page: 1571 year: 2013 ident: B14 article-title: Integrating discretization and association rule-based classification for Alzheimer's disease diagnosis publication-title: Expert Syst. Appl doi: 10.1016/j.eswa.2012.09.003 – volume: 71 start-page: 665 year: 2014 ident: B27 article-title: Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: evidence from brain imaging publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2014.179 – volume: 212 start-page: 230 year: 2013 ident: B21 article-title: Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI publication-title: Psychiatry Res doi: 10.1016/j.pscychresns.2012.04.007 – volume: 75 start-page: 3 year: 2012 ident: B28 article-title: Combining meta-learning and search techniques to select parameters for support vector machines publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.07.005 – volume: 23 start-page: 2514 year: 2013 ident: B8 article-title: Sexual dimorphism in the human corpus callosum: an MRI study using the OASIS brain database publication-title: Cereb. Cortex doi: 10.1093/cercor/bhs253 – volume: 71 start-page: 17 year: 2015 ident: B34 article-title: Meta-analytic comparison between PIB-PET and FDG-PET results in Alzheimer's disease and MCI publication-title: Cell Biochem. Biophys doi: 10.1007/s12013-014-0138-7 – volume: 106 start-page: 92 year: 2012 ident: B30 article-title: Asymptotic normality of support vector machine variants and other regularized kernel methods publication-title: J. Multivar. Anal doi: 10.1016/j.jmva.2011.11.004 – volume: 17 start-page: 1010 year: 2013 ident: B50 article-title: Left ventricle segmentation in MRI via convex relaxed distribution matching publication-title: Med. Image Anal doi: 10.1016/j.media.2013.05.002 – volume: 1 start-page: 86 year: 2006 ident: B13 article-title: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2006.05.002 – start-page: 1 year: 2015 ident: B68 article-title: Automated classification of brain images using wavelet-energy and biogeography-based optimization publication-title: Multimed. Tools Appl doi: 10.1007/s11042-015-2649-7 – volume: 3 start-page: 186 year: 2007 ident: B12 article-title: Forecasting the global burden of Alzheimer's disease publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2007.04.381 – volume: 50 start-page: 162 year: 2010 ident: B53 article-title: Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.11.046 – volume: 18 start-page: 301 year: 2014 ident: B32 article-title: Respiratory motion correction in dynamic MRI using robust data decomposition registration – Application to DCE-MRI publication-title: Med. Image Anal doi: 10.1016/j.media.2013.10.016 – start-page: 193 volume-title: Engineering Applications of Neural Networks year: 2013 ident: B4 article-title: Classification models for Alzheimer's disease Detection doi: 10.1007/978-3-642-41016-1_21 – volume: 4 start-page: S65 year: 2011 ident: B33 article-title: 327 Diagnostic Stability of Mild Cognitive Impairment Subtype publication-title: Asian J. Psychiatry doi: 10.1016/s1876-2018(11)60250-5 – start-page: 949 volume-title: Bio-Inspired Systems: Computational and Ambient Intelligence year: 2009 ident: B45 article-title: Automatic system for Alzheimer's disease diagnosis using eigenbrains and bayesian classification rules doi: 10.1007/978-3-642-02478-8_119 – volume: 26 start-page: 117 year: 2011 ident: B17 article-title: The potential of support vector machine as the diagnostic tool for schizophrenia: a systematic literature review of neuroimaging studies publication-title: Eur. Psychiatry doi: 10.1016/S0924-9338(11)73068-1 – volume-title: Identifying Dementia in MRI Scans using Machine Learning year: 2012 ident: B48 – volume: 6 issue: 159 year: 2014 ident: B10 article-title: Interactive effects of vascular risk burden and advanced age on cerebral blood flow publication-title: Front. Aging Neurosci doi: 10.3389/fnagi.2014.00159 – year: 2014 ident: B59 article-title: Participation in cognitively-stimulating activities is associated with brain structure and cognitive function in preclinical Alzheimer's disease publication-title: Brain Imaging Behav doi: 10.1007/s11682-014-9329-5 – volume: 16 start-page: 114 year: 2012 ident: B5 article-title: Differential MRI analysis for quantification of low grade glioma growth publication-title: Med. Image Anal doi: 10.1016/j.media.2011.05.014 – volume: 10 start-page: 25 year: 2015 ident: B9 article-title: Assembly and interrogation of Alzheimer's disease genetic networks reveal novel regulators of progression publication-title: PLoS ONE doi: 10.1371/journal.pone.0120352 – volume: 1321 start-page: 169 year: 2010 ident: B51 article-title: Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders publication-title: Brain Res doi: 10.1016/j.brainres.2009.12.081 – volume: 2013 start-page: 130134 year: 2013 ident: B73 article-title: An MR brain images classifier system via particle swarm optimization and kernel support vector machine publication-title: Scientific World Journal doi: 10.1155/2013/130134 – volume: 40 start-page: 1394 year: 2013 ident: B6 article-title: Automated analysis of FDG PET as a tool for single-subject probabilistic prediction and detection of Alzheimer's disease dementia publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-013-2458-z – volume: 16 start-page: 301 year: 2012 ident: B62 article-title: Reversible jump MCMC methods for fully automatic motion analysis in tagged MRI publication-title: Med. Image Anal doi: 10.1016/j.media.2011.08.006 – start-page: 201 volume-title: Bioinformatics and Biomedical Engineering year: 2015 ident: B78 article-title: Detection of pathological brain in MRI scanning based on wavelet-entropy and naive bayes classifier – volume: 44 start-page: 635 year: 2015 ident: B49 article-title: More atrophy of deep gray matter structures in frontotemporal dementia compared to Alzheimer's disease publication-title: J. Alzheimers Dis doi: 10.3233/JAD-141230 – volume: 7 issue: 50 year: 2014 ident: B60 article-title: Fast Parallel Image Registration on CPU and GPU for Diagnostic Classification of Alzheimer's Disease publication-title: Front. Neuroinform doi: 10.3389/fninf.2013.00050 – volume: 43 start-page: 1313 year: 2013 ident: B41 article-title: Classification of diffusion tensor images for the early detection of Alzheimer's disease publication-title: Comput. Biol. Med doi: 10.1016/j.compbiomed.2013.07.004 – volume: 25 start-page: 303 year: 2004 ident: B52 article-title: Hippocampus and entorhinal cortex in mild cognitive impairment and early AD publication-title: Neurobiol. Aging doi: 10.1016/S0197-4580(03)00084-8 – volume: 334 start-page: 55 year: 2013 ident: B37 article-title: Idiopathic normal-pressure hydrocephalus, cortical thinning, and the cerebrospinal fluid tap test publication-title: J. Neurol. Sci doi: 10.1016/j.jns.2013.07.014 – volume-title: Bessel's Correction year: 2012 ident: B56 – volume: 81 start-page: 96 year: 2013 ident: B31 article-title: Selectively and progressively disrupted structural connectivity of functional brain networks in Alzheimer's disease—Revealed by a novel framework to analyze edge distributions of networks detecting disruptions with strong statistical evidence publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.011 – volume: 18 start-page: 984 year: 2014 ident: B44 article-title: Multiple kernel learning in the primal for multimodal Alzheimer's disease classification publication-title: IEEE J. Biomed. Health Inform doi: 10.1109/JBHI.2013.2285378 – volume: 136 start-page: 844 year: 2013 ident: B42 article-title: Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer's disease publication-title: Brain doi: 10.1093/brain/aws327 – volume: 1 start-page: 299 year: 2006 ident: B46 article-title: A Slantlet transform based intelligent system for magnetic resonance brain image classification publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2006.12.001 – volume: 20 start-page: 433 year: 2010 ident: B22 article-title: Hybrid intelligent techniques for MRI brain images classification publication-title: Digit. Signal Process doi: 10.1016/j.dsp.2009.07.002 – volume: 8 start-page: 217 year: 2014 ident: B38 article-title: ECG beat classification using particle swarm optimization and support vector machine publication-title: Front. Comput. Sci doi: 10.1007/s11704-014-2398-1 |
| SSID | ssj0062650 |
| Score | 2.4932625 |
| Snippet | Early diagnosis or detection of Alzheimer's disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis (CAD) was... (Purpose) Early diagnosis or detection of Alzheimer’s disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis... Purpose: Early diagnosis or detection of Alzheimer's disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 66 |
| SubjectTerms | Accuracy Aging Alzheimer's disease Artificial intelligence Automation Brain research Classification Dementia Diagnosis Entropy Learning algorithms Machine learning Machine Vision Magnetic Resonance Imaging Methods Neurodegenerative diseases Neuroscience NMR Nuclear magnetic resonance prediction Principal components analysis Student's t-test |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQL3BBQPnZUtAgISSQok3iJHaOC6UqSHBAVOrNsuNxW2nXWzVZoXLqoS_B6_EkeJxs6ApEL1wTx7Fmxp4Z-_M3jL1sMk2V3jAxlcSQoJg8MSK1iWwyqzknCvAIkP1cHRwWH4_Ko2ulvggT1tMD94KbWhROV04UDcX-xspMB5-tGydyiXkRr_mmsl4nU_0aHKL0Mu0PJUMKVk-dJ2hI8HW0gZJGRsTfTihy9f8twPwTJ3l75c_0xTc9n19zQvv32N0heoRZP-r77Bb6B2x75kPmvLiAVxDxnHGjfJtd7WEXcVYelg7alaEdlxa0t2CoLgRQTYZgcxCvs6CFbgmz-fcTPF3g-c_LHy0MhzdA2Phj4Hvw6csHaIMuWiDnZyF0jcTm2fdHPS8iNhNhKEZx_JAd7r__-u4gGWouJE1ZVl1YkkUldMadkxqtNEJYh1ZU6EpuTG6cLurg8h13tDAG0YgQQLpca2K-a2zKH7Etv_T4hIG1dWqFsShrU0he1TXqIrOF5SFu0AYnbLpWgmoGQnKqizFXITEhtamoNkVqU1FtE_Z6_OKsJ-P4R9u3pNexHdFoxwfBuNRgXOom45qw3bVVqGFutyonj06Ml-EfL8bXYVbSUYv2uFy1KqtkLYtcUJvHvRGNIwkZpMxFxidMbJjXxlA33_jTk8j8TWxyvBQT9mY0xBsFsfM_BPGU3aEeI0Yu32Vb3fkKn4VorDPP48T7BUZvN8I priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Pb9MwFLZGd4ALAsaPwEBGQiCQoiZ2EjsHhDq2aSBRoYlJu1l2bHeTWqc0qdA48pfj5yQdFWhcE8dK_J6f37O_fB9Cr6pUgtKbiVXBjS9QFIkVS3TMq1RLSoECPABkp8XJWfb5PD_fQdPhXxiAVQ4xMQRqXVewRz4mEEeBZ7D4sPweg2oUnK4OEhqyl1bQ7wPF2C20S4AZa4R2D46mX0-H2Oyz9zzpDit9aVaOrQPIiF8DYWMlCUyJ14tT4PD_V-L5N37y9tot5dUPOZ__sTgd30N3-6wSTzo3uI92jHuA9ibOV9SLK_waB5xn2EDfQ78OTRvwVw7XFjdrBTsxDZZOYwV6ERi0Grwv4vCbi9G4rfFk_vPCXC7M6k2D-yMdDIj5GaaH-MvpJ9x4CzUYlkSNfccGOD673qDfRUBsGtxLVMweorPjo28fT-JeiSGu8rxofaBmBZMptZZLo7liTFujWWFsTpUiysqs9ImApRbCpR8Y5tNKS6QEPrxKJ_QRGrnamScIa10mmilteKkyTouyNDJLdaapzyakMhEaDyYQVU9TDmoZc-HLFTCaCEYTYDQRjBaht5snlh1Fxw1tD8Cqm3ZArh0u1KuZ6Oeq0IZZWViWVVBuKs1T6dNEWVlGuCEZj9D-4BOin_GNuPbPCL3c3PZzFQ5gpDP1uhFpwUueEQZtHncutHkTX1dywlIaIbblXFuvun3HXV4EPnDgmKM5i9C7jRv-dyCe3vwNz9AdaBswcWQfjdrV2jz32VerXvRT6jfPzDNr priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwELage4AXBgxGYCAjIRBIXZs4sZ3HwpgGEhNCVIKnyI7traJ1qyXRtD3yy7lz0ojCBEI8Jrk4zvniu7O_fEfIszJWWOnNDjWXFhIUnQy1GJuhLGOjGEMK8ACQPeZH0_T9l2yNJqw6WKXDX_exEPTMt0zBHUQMv3DIqPKR84j0ANeF6yHgM0cr466TLZ5BOD4gW9Pjj5OvmGhxDolWLGW7PXnlrRvuKLD2XxVq_o6YvNH4lbo4V_P5T-7ocJvo9Yu0KJRv-02t98vLXzge_-tNb5NbXbBKJ638HXLN-rtkZ-IhUV9c0Oc0wEfDuvwO-X5g6wDr8nTpaNVoXOCpqPKGaixDQbEEBJg4DX_PWEPrJZ3ML0_tbGHPXlS02ymiCMQ_oeyAfvj0jlYw8BVFT2soNGyROrRtDdtdBCCopV3li5N7ZHr49vObo2FX4GFYZhmvYf4XXKiYOSeVNVILYZw1gluXMa0T7VSaQ3zhmMNZGLQvIFp1iVJIs1eaMbtPBn7p7QNCjcnHRmhjZa5TyXieW5XGJjUMghSlbURG63Euyo79HItwzAvIglDVRVB1gaougqoj8rK_Y9Uyf_xB9jWaTi-HnN3hBAxq0Q1qYaxwijuRlpjFaiNjBdGnKp1IpE1SGZG9teEV3URSFQmGD0ivCc942l-GKQD3dZS3y6YqYi5zmSYCZXZbO-17AumqTETMIiI2LHijq5tX_Ow00IwjdR3LRERe9bb-V0U8_BfhR-QmHgTgXbJHBvVZYx9DiFfrJ91H_APBKlN6 priority: 102 providerName: Unpaywall |
| Title | Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26082713 https://www.proquest.com/docview/2284731326 https://www.proquest.com/docview/1689842726 https://pubmed.ncbi.nlm.nih.gov/PMC4451357 https://www.frontiersin.org/articles/10.3389/fncom.2015.00066/pdf https://doaj.org/article/de7fa6f74c0144bd81a056acf728e248 |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1662-5188 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062650 issn: 1662-5188 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-5188 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062650 issn: 1662-5188 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1662-5188 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062650 issn: 1662-5188 databaseCode: ADMLS dateStart: 20120501 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1662-5188 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062650 issn: 1662-5188 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1662-5188 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062650 issn: 1662-5188 databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1662-5188 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062650 issn: 1662-5188 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1662-5188 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062650 issn: 1662-5188 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1662-5188 dateEnd: 20211231 omitProxy: true ssIdentifier: ssj0062650 issn: 1662-5188 databaseCode: BENPR dateStart: 20071102 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1662-5188 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0062650 issn: 1662-5188 databaseCode: M48 dateStart: 20100101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELbG9gAvaDB-FEZlJDQEUlgTJ7HzgFDHNgbSqmmiUnmK7NjuJrVJ16Qa5ZG_nDsnjaioxkseYsdJfOfcne_yfYS8yXyJTG_GU7EwEKCowFO8pz2R-VoyhhDgrkB2EJ8Nw2-jaLRFVn-XNBNYbgztkE9qOJ98-Hmz_AQL_iNGnGBvD22OhR9gyXB7BEzowezGQ1opTL82HBv3yA6YrgS5Hc7DNs0AznzUq3OXGwdas1UO0n-TH_pvOeX9RT6Ty1s5mfxlq053ycPGyaT9WisekS2TPyZ7_RwC7OmSHlBX9un20_fI72NTuXKsnBaWlguFGzMllbmmCukjKFI3gGpS99eL0bQqaH_y68pcT838bUmbDA_FAvoxZcf0_PIrLUFgJUULqSkMbBDysx4Nx526Ak5DG8aK8RMyPD35_vnMa4gZvCyK4gq-2zzm0mfWCmm0UJxrazSPjY2YUoGyMkzAL7DM4tcTJoaDl2kDKREeL9M99pRs50VunhOqddLTXGkjEhUKFieJkaGvQ83AuZDKdMjhSgRp1qCWI3nGJIXoBYWWOqGlKLTUCa1D3rVXzGrEjjv6HqFU236Ite1OFPNx2izdVBtuZWx5mGH0qbTwJXiNMrM8ECYIRYfsr3QiXelvGqDZR1hMuMfrthmWLuZjZG6KRZn6sUhEGHDs86xWofZJIMwUAfdZh_A15Vp71PWW_PrKwYMj5ByLeIe8b9XwvxPx4u53eEkeYF9XIhfsk-1qvjCvwBmrVJfsHJ0MLi67bjMDjl9GftctMmgZDi76P_4Ap-g9Ow |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbG9jBeEDAugQFG4iKQojZ2EjsPE-roppZtFZo2aW_Gju1uUpuUpdVUHvlh_DZ83KSjAo2nvcYXJTnH52Iffx9Cb_JIAtObCVXKjUtQFAkVa-uQ55GWlAIEuC-QHaS90_jLWXK2hn41d2GgrLKxid5Q6zKHPfIWATsKOIPpp8n3EFij4HS1odCQNbWC3vEQY_XFjgMzv3IpXLXT7zp5vyVkf-_kcy-sWQbCPEnSqTNCLGUyotZyaTRXjGlrNEuNTahSRFkZZ87JWWrBFBidMxcyWSIlYL3luk3dvHfQRkzjzCV_G7t7g6_HjS9w2ULSXhyOulQwa9kCSlScz4WNnLZHZrx2hp4z4F-B7t_1mpuzYiLnV3I0-sMZ7t9H9-ooFncWavcArZniIdrqFC6DH8_xO-zrSv2G_Rb62TVTX-9V4NLiaqZg56fCstBYAT8FBm4Ip_vYX6sxGk9L3Bn9ODcXY3P5vsL1ERKGCv0hpl18dNzHldOICoML1thNbABTdDEbzDv2FaIG15QYw0fo9FZk8hitF2VhniKsddbWTGnDMxVzmmaZkXGkY01d9CKVCVCrEYHIa1h0YOcYCZcegdCEF5oAoQkvtAB9WI6YLCBBbui7C1Jd9gMwb_-gvByK2jYIbZiVqWVxDumt0jySLiyVuWWEGxLzAG03OiFqC1OJ6_UQoNfLZmcb4MBHFqacVSJKecZjwqDPk4UKLd_E5bGcsIgGiK0o18qrrrYUF-cefxww7WjCAvRxqYb__RHPbv6GV2izd3J0KA77g4Pn6C6M8_V4ZButTy9n5oWL_KbqZb28MPp22yv6Ny5-c1E |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJgEvCBiXwAAjcRFIUZs4iZ2HCXV01cqgmiYm7c3Ysd1NapPStJrKIz-PX4WP63RUoPG018Sxkpy7_fk7CL0qIgGd3nQoM6ZtgSLjUNK2ClkRKUEIUIA7gOwgOzhJPp2mpxvoV3MWBmCVjU90jlpVBayRt2Lwo8AzmLWMh0UcdXsfJt9D6CAFO61NOw3h2yyoXUc35g95HOrFhS3n6t1-18r-dRz39r9-PAh9x4GwSNNsZh0SzaiIiDFMaMUkpcpoRTNtUiJlLI1IchvwDDHgFrQqqE2fTCwE8L4Vqk3svDfQFmx-WSextbc_ODpu4oKtHNL2cqPUloV5y5QAV7HxFxZ12o6l8TIwuv4B_0p6_8Zu3pqXE7G4EKPRH4Gxdxfd8Rkt7ixV8B7a0OV9tN0pbTU_XuA32GFM3eL9NvrZ1TOH_SpxZXA9l7AKVGNRKiyhVwWGPhHWDrA7YqMVnlW4M_pxps_Hevq2xn47CQNaf4hJF3857uPaakeNIRwrbCfWwC-6nA3mHTu0qMa-PcbwATq5Fpk8RJtlVerHCCuVtxWVSrNcJoxkea5FEqlEEZvJCKkD1GpEwAtPkQ6dOkbclkogNO6ExkFo3AktQO9WT0yW9CBXjN0Dqa7GAbG3u1BNh9z7Ca40NSIzNCmg1JWKRcKmqKIwNGY6TliAdhqd4N7b1PzSNgL0cnXb-gnY_BGlruY1jzKWsySmMObRUoVWb2JrWhbTiASIrinX2quu3ynPzxwXOfDbkZQG6P1KDf_7I55c_Q0v0E1r2fxzf3D4FN2Gxxw0L95Bm7PpXD-zSeBMPvfWhdG36zbo3w3_d4A |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwELage4AXBgxGYCAjIRBIXZs4sZ3HwpgGEhNCVIKnyI7traJ1qyXRtD3yy7lz0ojCBEI8Jrk4zvniu7O_fEfIszJWWOnNDjWXFhIUnQy1GJuhLGOjGEMK8ACQPeZH0_T9l2yNJqw6WKXDX_exEPTMt0zBHUQMv3DIqPKR84j0ANeF6yHgM0cr466TLZ5BOD4gW9Pjj5OvmGhxDolWLGW7PXnlrRvuKLD2XxVq_o6YvNH4lbo4V_P5T-7ocJvo9Yu0KJRv-02t98vLXzge_-tNb5NbXbBKJ638HXLN-rtkZ-IhUV9c0Oc0wEfDuvwO-X5g6wDr8nTpaNVoXOCpqPKGaixDQbEEBJg4DX_PWEPrJZ3ML0_tbGHPXlS02ymiCMQ_oeyAfvj0jlYw8BVFT2soNGyROrRtDdtdBCCopV3li5N7ZHr49vObo2FX4GFYZhmvYf4XXKiYOSeVNVILYZw1gluXMa0T7VSaQ3zhmMNZGLQvIFp1iVJIs1eaMbtPBn7p7QNCjcnHRmhjZa5TyXieW5XGJjUMghSlbURG63Euyo79HItwzAvIglDVRVB1gaougqoj8rK_Y9Uyf_xB9jWaTi-HnN3hBAxq0Q1qYaxwijuRlpjFaiNjBdGnKp1IpE1SGZG9teEV3URSFQmGD0ivCc942l-GKQD3dZS3y6YqYi5zmSYCZXZbO-17AumqTETMIiI2LHijq5tX_Ow00IwjdR3LRERe9bb-V0U8_BfhR-QmHgTgXbJHBvVZYx9DiFfrJ91H_APBKlN6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+subjects+and+brain+regions+related+to+Alzheimer%27s+disease+using+3D+MRI+scans+based+on+eigenbrain+and+machine+learning&rft.jtitle=Frontiers+in+computational+neuroscience&rft.au=Zhang%2C+Yudong&rft.au=Dong%2C+Zhengchao&rft.au=Phillips%2C+Preetha&rft.au=Wang%2C+Shuihua&rft.date=2015-06-02&rft.pub=Frontiers+Research+Foundation&rft.eissn=1662-5188&rft_id=info:doi/10.3389%2Ffncom.2015.00066&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5188&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5188&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5188&client=summon |