An accurate emotion recognition system using ECG and GSR signals and matching pursuit method
The purpose of the current study was to examine the effectiveness of Matching Pursuit (MP) algorithm in emotion recognition. Electrocardiogram (ECG) and galvanic skin responses (GSR) of 11 healthy students were collected while subjects were listening to emotional music clips. Applying three dictiona...
Saved in:
Published in | Biomedical Journal Vol. 40; no. 6; pp. 355 - 368 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Limited
01.12.2017
Chang Gung University Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2319-4170 2320-2890 2320-2890 |
DOI | 10.1016/j.bj.2017.11.001 |
Cover
Abstract | The purpose of the current study was to examine the effectiveness of Matching Pursuit (MP) algorithm in emotion recognition.
Electrocardiogram (ECG) and galvanic skin responses (GSR) of 11 healthy students were collected while subjects were listening to emotional music clips. Applying three dictionaries, including two wavelet packet dictionaries (Coiflet, and Daubechies) and discrete cosine transform, MP coefficients were extracted from ECG and GSR signals. Next, some statistical indices were calculated from the MP coefficients. Then, three dimensionality reduction methods, including Principal Component Analysis (PCA), Linear Discriminant Analysis, and Kernel PCA were applied. The dimensionality reduced features were fed into the Probabilistic Neural Network in subject-dependent and subject-independent modes. Emotion classes were described by a two-dimensional emotion space, including four quadrants of valence and arousal plane, valence based, and arousal based emotional states.
Using PCA, the highest recognition rate of 100% was achieved for sigma = 0.01 in all classification schemes. In addition, the classification performance of ECG features was evidently better than that of GSR features. Similar results were obtained for subject-dependent emotion classification mode.
An accurate emotion recognition system was proposed using MP algorithm and wavelet dictionaries. |
---|---|
AbstractList | Background: The purpose of the current study was to examine the effectiveness of Matching Pursuit (MP) algorithm in emotion recognition. Methods: Electrocardiogram (ECG) and galvanic skin responses (GSR) of 11 healthy students were collected while subjects were listening to emotional music clips. Applying three dictionaries, including two wavelet packet dictionaries (Coiflet, and Daubechies) and discrete cosine transform, MP coefficients were extracted from ECG and GSR signals. Next, some statistical indices were calculated from the MP coefficients. Then, three dimensionality reduction methods, including Principal Component Analysis (PCA), Linear Discriminant Analysis, and Kernel PCA were applied. The dimensionality reduced features were fed into the Probabilistic Neural Network in subject-dependent and subject-independent modes. Emotion classes were described by a two-dimensional emotion space, including four quadrants of valence and arousal plane, valence based, and arousal based emotional states. Results: Using PCA, the highest recognition rate of 100% was achieved for sigma = 0.01 in all classification schemes. In addition, the classification performance of ECG features was evidently better than that of GSR features. Similar results were obtained for subject-dependent emotion classification mode. Conclusions: An accurate emotion recognition system was proposed using MP algorithm and wavelet dictionaries. The purpose of the current study was to examine the effectiveness of Matching Pursuit (MP) algorithm in emotion recognition. Electrocardiogram (ECG) and galvanic skin responses (GSR) of 11 healthy students were collected while subjects were listening to emotional music clips. Applying three dictionaries, including two wavelet packet dictionaries (Coiflet, and Daubechies) and discrete cosine transform, MP coefficients were extracted from ECG and GSR signals. Next, some statistical indices were calculated from the MP coefficients. Then, three dimensionality reduction methods, including Principal Component Analysis (PCA), Linear Discriminant Analysis, and Kernel PCA were applied. The dimensionality reduced features were fed into the Probabilistic Neural Network in subject-dependent and subject-independent modes. Emotion classes were described by a two-dimensional emotion space, including four quadrants of valence and arousal plane, valence based, and arousal based emotional states. Using PCA, the highest recognition rate of 100% was achieved for sigma = 0.01 in all classification schemes. In addition, the classification performance of ECG features was evidently better than that of GSR features. Similar results were obtained for subject-dependent emotion classification mode. An accurate emotion recognition system was proposed using MP algorithm and wavelet dictionaries. The purpose of the current study was to examine the effectiveness of Matching Pursuit (MP) algorithm in emotion recognition.BACKGROUNDThe purpose of the current study was to examine the effectiveness of Matching Pursuit (MP) algorithm in emotion recognition.Electrocardiogram (ECG) and galvanic skin responses (GSR) of 11 healthy students were collected while subjects were listening to emotional music clips. Applying three dictionaries, including two wavelet packet dictionaries (Coiflet, and Daubechies) and discrete cosine transform, MP coefficients were extracted from ECG and GSR signals. Next, some statistical indices were calculated from the MP coefficients. Then, three dimensionality reduction methods, including Principal Component Analysis (PCA), Linear Discriminant Analysis, and Kernel PCA were applied. The dimensionality reduced features were fed into the Probabilistic Neural Network in subject-dependent and subject-independent modes. Emotion classes were described by a two-dimensional emotion space, including four quadrants of valence and arousal plane, valence based, and arousal based emotional states.METHODSElectrocardiogram (ECG) and galvanic skin responses (GSR) of 11 healthy students were collected while subjects were listening to emotional music clips. Applying three dictionaries, including two wavelet packet dictionaries (Coiflet, and Daubechies) and discrete cosine transform, MP coefficients were extracted from ECG and GSR signals. Next, some statistical indices were calculated from the MP coefficients. Then, three dimensionality reduction methods, including Principal Component Analysis (PCA), Linear Discriminant Analysis, and Kernel PCA were applied. The dimensionality reduced features were fed into the Probabilistic Neural Network in subject-dependent and subject-independent modes. Emotion classes were described by a two-dimensional emotion space, including four quadrants of valence and arousal plane, valence based, and arousal based emotional states.Using PCA, the highest recognition rate of 100% was achieved for sigma = 0.01 in all classification schemes. In addition, the classification performance of ECG features was evidently better than that of GSR features. Similar results were obtained for subject-dependent emotion classification mode.RESULTSUsing PCA, the highest recognition rate of 100% was achieved for sigma = 0.01 in all classification schemes. In addition, the classification performance of ECG features was evidently better than that of GSR features. Similar results were obtained for subject-dependent emotion classification mode.An accurate emotion recognition system was proposed using MP algorithm and wavelet dictionaries.CONCLUSIONSAn accurate emotion recognition system was proposed using MP algorithm and wavelet dictionaries. BackgroundThe purpose of the current study was to examine the effectiveness of Matching Pursuit (MP) algorithm in emotion recognition.MethodsElectrocardiogram (ECG) and galvanic skin responses (GSR) of 11 healthy students were collected while subjects were listening to emotional music clips. Applying three dictionaries, including two wavelet packet dictionaries (Coiflet, and Daubechies) and discrete cosine transform, MP coefficients were extracted from ECG and GSR signals. Next, some statistical indices were calculated from the MP coefficients. Then, three dimensionality reduction methods, including Principal Component Analysis (PCA), Linear Discriminant Analysis, and Kernel PCA were applied. The dimensionality reduced features were fed into the Probabilistic Neural Network in subject-dependent and subject-independent modes. Emotion classes were described by a two-dimensional emotion space, including four quadrants of valence and arousal plane, valence based, and arousal based emotional states.ResultsUsing PCA, the highest recognition rate of 100% was achieved for sigma = 0.01 in all classification schemes. In addition, the classification performance of ECG features was evidently better than that of GSR features. Similar results were obtained for subject-dependent emotion classification mode.ConclusionsAn accurate emotion recognition system was proposed using MP algorithm and wavelet dictionaries. |
Author | Goshvarpour, Atefeh Abbasi, Ataollah Goshvarpour, Ateke |
AuthorAffiliation | Computational Neuroscience Laboratory, Department of Biomedical Engineering, Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran |
AuthorAffiliation_xml | – name: Computational Neuroscience Laboratory, Department of Biomedical Engineering, Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran |
Author_xml | – sequence: 1 givenname: Atefeh surname: Goshvarpour fullname: Goshvarpour, Atefeh – sequence: 2 givenname: Ataollah surname: Abbasi fullname: Abbasi, Ataollah – sequence: 3 givenname: Ateke surname: Goshvarpour fullname: Goshvarpour, Ateke |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29433839$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktr3DAUhU1JaR7Nvqti6KabmepKth6bQhjSSSBQ6GNXEJIsz8jY0lSSU-bf155JQxModKUr6ZxP96Hz4sQHb4viDaAlIKAfuqXulhgBWwIsEYIXxRkmGC0wF-hkjkEsKmDotLhMyWlUVYwAxfxVcYpFRQgn4qz4ceVLZcwYVbalHUJ2wZfRmrDx7hCnfcp2KMfk_Ka8Xq1L5Zty_fVLmdzGqz4d9oPKZjsLdmNMo8vlYPM2NK-Ll-0ksZcP60Xx_dP1t9XN4u7z-nZ1dbcwdU3zAjAntgalNVGqtUQrgQQmiLUtZwwLoatGWUoRwpU1CAMXGGhF6pYCMi0hF8XtkdsE1clddIOKexmUk4eDEDdSxexMbyUXjBhUNxwoqZQWyrKGaI41s5XCjE0sOLJGv1P7X6rvH4GA5Nx42UndybnxEkBOjZ88H4-e3agH2xjrc1T9k0Se3ni3lZtwLykQTqGaAO8fADH8HG3KcnDJ2L5X3oYxTY8hEDCVX0_Sd8-kXRjjPAmJoeY1EwLNwLd_Z_SYyp_BTwJ0FJgYUoq2_Z8q6TOLcVnNn2SqyfX_Nv4G5cXSEQ |
CitedBy_id | crossref_primary_10_1016_j_inffus_2024_102231 crossref_primary_10_1109_ACCESS_2019_2941251 crossref_primary_10_1109_JSEN_2022_3204586 crossref_primary_10_1109_JIOT_2024_3430297 crossref_primary_10_1016_j_bspc_2022_103580 crossref_primary_10_3390_s20010313 crossref_primary_10_3390_s21030770 crossref_primary_10_1155_2020_2909267 crossref_primary_10_3390_ijerph17072499 crossref_primary_10_1038_s41597_024_03887_9 crossref_primary_10_3390_electronics9020310 crossref_primary_10_1155_2022_1566664 crossref_primary_10_1007_s13246_019_00839_1 crossref_primary_10_1016_j_icte_2023_09_001 crossref_primary_10_4103_jmss_jmss_59_22 crossref_primary_10_1016_j_compbiomed_2021_104696 crossref_primary_10_1109_TCDS_2022_3179427 crossref_primary_10_3390_s23115322 crossref_primary_10_5057_ijae_IJAE_D_20_00011 crossref_primary_10_1016_j_bbe_2019_01_004 crossref_primary_10_1007_s11571_021_09735_5 crossref_primary_10_2139_ssrn_3995241 crossref_primary_10_1016_j_ins_2023_119160 crossref_primary_10_3389_fpsyg_2024_1275142 crossref_primary_10_5057_ijae_IJAE_D_21_00023 crossref_primary_10_3389_fpsyg_2022_1075624 crossref_primary_10_1109_TAFFC_2020_2981610 crossref_primary_10_1016_j_cmpb_2022_106646 crossref_primary_10_3390_electronics14061129 crossref_primary_10_3390_app15052850 crossref_primary_10_3390_s25030853 crossref_primary_10_1016_j_trpro_2023_11_489 crossref_primary_10_3390_s20164551 crossref_primary_10_1007_s12652_020_01985_1 crossref_primary_10_3390_app12010527 crossref_primary_10_1007_s40846_020_00526_7 crossref_primary_10_1109_TAFFC_2020_3027720 crossref_primary_10_1109_ACCESS_2021_3103848 crossref_primary_10_1109_ACCESS_2023_3322925 crossref_primary_10_1007_s13246_019_00825_7 crossref_primary_10_3390_su142113938 crossref_primary_10_3390_app11114945 crossref_primary_10_1016_j_measurement_2020_108747 crossref_primary_10_3390_app11031338 crossref_primary_10_1016_j_bj_2017_12_002 crossref_primary_10_3389_fnsys_2021_729707 crossref_primary_10_1016_j_chaos_2018_07_035 crossref_primary_10_1108_MD_02_2022_0208 crossref_primary_10_3390_electronics10030301 crossref_primary_10_1142_S1469026821500231 crossref_primary_10_1016_j_physa_2019_04_198 crossref_primary_10_3389_fnins_2022_985709 crossref_primary_10_1016_j_compbiomed_2023_106938 crossref_primary_10_1109_JBHI_2024_3403188 crossref_primary_10_3390_s19245516 crossref_primary_10_1016_j_bspc_2023_104894 crossref_primary_10_1145_3396249 crossref_primary_10_3390_app142210561 crossref_primary_10_1016_j_cmpb_2019_02_009 crossref_primary_10_3389_frvir_2020_585993 crossref_primary_10_1016_j_bspc_2021_102863 crossref_primary_10_1007_s11760_022_02248_6 crossref_primary_10_1109_ACCESS_2021_3128016 crossref_primary_10_1155_2021_6640527 crossref_primary_10_3390_s23125680 crossref_primary_10_3390_ijerph17196962 crossref_primary_10_3390_s22186813 crossref_primary_10_1038_s41598_024_59147_8 crossref_primary_10_1109_TAFFC_2023_3286351 crossref_primary_10_3390_diagnostics13122097 crossref_primary_10_3390_electronics12132795 crossref_primary_10_1038_s41467_023_44673_2 crossref_primary_10_1088_2058_8585_ad0061 crossref_primary_10_1007_s12559_019_09699_z crossref_primary_10_3390_s21155135 crossref_primary_10_1007_s11042_021_11304_1 crossref_primary_10_3389_fpsyg_2021_703908 crossref_primary_10_3390_s21155015 crossref_primary_10_1016_j_bbe_2020_02_004 crossref_primary_10_1016_j_cosrev_2021_100399 crossref_primary_10_1109_TIM_2023_3240230 crossref_primary_10_1186_s43067_023_00085_2 crossref_primary_10_1108_JICV_01_2019_0002 crossref_primary_10_1016_j_neucom_2019_05_061 crossref_primary_10_3390_s21144853 crossref_primary_10_1016_j_imu_2020_100363 crossref_primary_10_1016_j_bspc_2025_107749 crossref_primary_10_3389_fphys_2025_1486763 crossref_primary_10_1051_e3sconf_202339907007 crossref_primary_10_1109_TG_2021_3069445 crossref_primary_10_3390_bioengineering10091040 crossref_primary_10_1109_TIM_2022_3199260 crossref_primary_10_3389_fncom_2022_747735 crossref_primary_10_1109_ACCESS_2022_3190967 crossref_primary_10_1016_j_icte_2022_03_008 |
Cites_doi | 10.1109/T-AFFC.2012.4 10.1016/j.neucom.2013.02.041 10.1016/j.ijhcs.2008.06.004 10.1007/s11760-013-0591-6 10.1136/jnnp.47.5.536 10.1016/j.biopsycho.2010.03.010 10.3414/ME12-01-0083 10.1162/089976698300017467 10.1111/j.1469-8986.2005.00312.x 10.1109/T-AFFC.2011.28 10.1016/j.apnu.2011.08.001 10.1016/j.schres.2014.09.003 10.1055/s-0038-1627059 10.1007/BF02584459 10.1038/srep04998 10.1109/TBME.2010.2048568 10.1016/S1005-8885(11)60251-3 10.1109/78.258082 10.1001/jama.2013.281053 10.1109/TPAMI.2008.26 10.1007/s12559-013-9239-7 10.1109/T-AFFC.2011.30 10.3390/s140407120 10.1177/1754073913512003 10.1080/02699930701503567 10.1186/1475-925X-12-44 |
ContentType | Journal Article |
Copyright | Copyright © 2018 Chang Gung University. Published by Elsevier B.V. All rights reserved. Copyright Elsevier Limited Dec 2017 2018 Chang Gung University. Publishing services by Elsevier B.V. 2018 Chang Gung University |
Copyright_xml | – notice: Copyright © 2018 Chang Gung University. Published by Elsevier B.V. All rights reserved. – notice: Copyright Elsevier Limited Dec 2017 – notice: 2018 Chang Gung University. Publishing services by Elsevier B.V. 2018 Chang Gung University |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M1P M7P M7S PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM ADTOC UNPAY DOA |
DOI | 10.1016/j.bj.2017.11.001 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Open Access: DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Music |
EISSN | 2320-2890 |
EndPage | 368 |
ExternalDocumentID | oai_doaj_org_article_8973c05d81634ab9ae7d3b82b7e4a277 10.1016/j.bj.2017.11.001 PMC6138614 29433839 10_1016_j_bj_2017_11_001 |
Genre | Journal Article |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E 0R~ 0SF 3V. 5VS 6I. 7X7 88E 8FE 8FG 8FH 8FI 8FJ AACTN AAEDW AAFTH AALRI AAXUO ABJCF ABMAC ABUWG ABXLX ACGFS ACIWK ACPRK ADBBV ADVLN AEXQZ AFKRA AFTJW AGHFR AHMBA AITUG AKRWK ALIPV AMRAJ AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CGR CUY CVF EBS ECM EIF EJD FDB FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE IAO IHR IPNFZ ITC KQ8 L6V LK8 M1P M41 M7P M7S NCXOZ NPM O9- OK1 PIMPY PQQKQ PROAC PSQYO PTHSS RIG RMW RNS ROL RPM SSZ UKHRP 7XB 8FK AAYWO ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP AZQEC DWQXO GNUQQ K9. PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 PUEGO 5PM ADTOC APXCP UNPAY |
ID | FETCH-LOGICAL-c556t-1283e51abb3aafe3ba9092307ff877299b4dae660024ec02189216435f610cf33 |
IEDL.DBID | UNPAY |
ISSN | 2319-4170 2320-2890 |
IngestDate | Wed Aug 27 01:17:40 EDT 2025 Wed Aug 20 00:06:55 EDT 2025 Tue Sep 30 16:41:18 EDT 2025 Thu Sep 04 23:21:08 EDT 2025 Fri Jul 25 11:16:42 EDT 2025 Thu Jan 02 23:02:48 EST 2025 Thu Apr 24 23:08:33 EDT 2025 Tue Jul 01 02:17:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Emotion recognition Probabilistic neural network Galvanic skin responses Electrocardiogram Matching pursuit |
Language | English |
License | Copyright © 2018 Chang Gung University. Published by Elsevier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). cc-by-nc-nd |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c556t-1283e51abb3aafe3ba9092307ff877299b4dae660024ec02189216435f610cf33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.bj.2017.11.001 |
PMID | 29433839 |
PQID | 2158579904 |
PQPubID | 2035637 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8973c05d81634ab9ae7d3b82b7e4a277 unpaywall_primary_10_1016_j_bj_2017_11_001 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6138614 proquest_miscellaneous_2001910245 proquest_journals_2158579904 pubmed_primary_29433839 crossref_primary_10_1016_j_bj_2017_11_001 crossref_citationtrail_10_1016_j_bj_2017_11_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-00 20171201 2017-12-01 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-00 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Philadelphia |
PublicationTitle | Biomedical Journal |
PublicationTitleAlternate | Biomed J |
PublicationYear | 2017 |
Publisher | Elsevier Limited Chang Gung University Elsevier |
Publisher_xml | – name: Elsevier Limited – name: Chang Gung University – name: Elsevier |
References | Hazlett (10.1016/j.bj.2017.11.001_bib7) 2006 Park (10.1016/j.bj.2017.11.001_bib5) 2011; 25 Duda (10.1016/j.bj.2017.11.001_bib34) 2001 Bach (10.1016/j.bj.2017.11.001_bib42) 2014; 84 Sommermeyer (10.1016/j.bj.2017.11.001_bib13) 2009 Kreibig (10.1016/j.bj.2017.11.001_bib2) 2010; 84 Lin (10.1016/j.bj.2017.11.001_bib19) 2007 Naji (10.1016/j.bj.2017.11.001_bib22) 2015; 9 Shawe-Taylor (10.1016/j.bj.2017.11.001_bib37) 2004 Hong-xin (10.1016/j.bj.2017.11.001_bib15) 2012; 19 Naji (10.1016/j.bj.2017.11.001_bib23) 2014 Palanisamy (10.1016/j.bj.2017.11.001_bib40) 2013; 19 Wacker (10.1016/j.bj.2017.11.001_bib9) 2013; 52 Seoane (10.1016/j.bj.2017.11.001_bib39) 2014; 14 Mallat (10.1016/j.bj.2017.11.001_bib33) 1993; 41 World Medical Association (10.1016/j.bj.2017.11.001_bib30) 2013; 310 Shahani (10.1016/j.bj.2017.11.001_bib1) 1984; 47 Naji (10.1016/j.bj.2017.11.001_bib21) 2014; 6 AlZoubi (10.1016/j.bj.2017.11.001_bib25) 2012; 3 Goshvarpour (10.1016/j.bj.2017.11.001_bib32) 2016; 11 Ritz (10.1016/j.bj.2017.11.001_bib4) 2005; 42 Duan (10.1016/j.bj.2017.11.001_bib17) 2012 Bardonova (10.1016/j.bj.2017.11.001_bib12) 2006; 79 Valenza (10.1016/j.bj.2017.11.001_bib28) 2012; 3 Baumgartner (10.1016/j.bj.2017.11.001_bib10) 2013; 52 Lin (10.1016/j.bj.2017.11.001_bib18) 2008 Vieillard (10.1016/j.bj.2017.11.001_bib31) 2008; 22 Maaten Lvd (10.1016/j.bj.2017.11.001_bib35) 2007 Kim (10.1016/j.bj.2017.11.001_bib16) 2008; 30 Jerritta (10.1016/j.bj.2017.11.001_bib27) 2013; 12 Pantelopoulos (10.1016/j.bj.2017.11.001_bib14) 2010 Levenson (10.1016/j.bj.2017.11.001_bib3) 2014; 6 Zhang (10.1016/j.bj.2017.11.001_bib38) 2006 Agrafioti (10.1016/j.bj.2017.11.001_bib24) 2012; 3 Valenza (10.1016/j.bj.2017.11.001_bib29) 2014; 4 Scholkopf (10.1016/j.bj.2017.11.001_bib36) 1998; 10 Drusch (10.1016/j.bj.2017.11.001_bib6) 2014; 159 Lin (10.1016/j.bj.2017.11.001_bib20) 2010; 57 Durka (10.1016/j.bj.2017.11.001_bib11) 1995; 23 Zeraoulia (10.1016/j.bj.2017.11.001_bib41) 2011 Yannakakisa (10.1016/j.bj.2017.11.001_bib8) 2008; 66 Chang (10.1016/j.bj.2017.11.001_bib26) 2013; 122 |
References_xml | – volume: 3 start-page: 298 year: 2012 ident: 10.1016/j.bj.2017.11.001_bib25 article-title: Detecting naturalistic expressions of nonbasic affect using physiological signals publication-title: IEEE Trans Affect Comput doi: 10.1109/T-AFFC.2012.4 – year: 2004 ident: 10.1016/j.bj.2017.11.001_bib37 – start-page: 1271 year: 2009 ident: 10.1016/j.bj.2017.11.001_bib13 article-title: Detection of sleep disorders by a modified Matching Pursuit algorithm – volume: 122 start-page: 79 year: 2013 ident: 10.1016/j.bj.2017.11.001_bib26 article-title: Physiological emotion analysis using support vector regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.02.041 – volume: 66 start-page: 741 year: 2008 ident: 10.1016/j.bj.2017.11.001_bib8 article-title: Entertainment modeling through physiology in physical play publication-title: Int J Hum Comput Stud doi: 10.1016/j.ijhcs.2008.06.004 – volume: 9 start-page: 1365 year: 2015 ident: 10.1016/j.bj.2017.11.001_bib22 article-title: Emotion classification during music listening from forehead biosignals publication-title: SIViP doi: 10.1007/s11760-013-0591-6 – volume: 47 start-page: 536 year: 1984 ident: 10.1016/j.bj.2017.11.001_bib1 article-title: Sympathetic skin response - a method of assessing unmyelinated axon dysfunction in peripheral neuropathies publication-title: J Neurol Neurosurg Psychiatr doi: 10.1136/jnnp.47.5.536 – volume: 84 start-page: 394 year: 2010 ident: 10.1016/j.bj.2017.11.001_bib2 article-title: Autonomic nervous system activity in emotion: a review publication-title: Biol Psychol doi: 10.1016/j.biopsycho.2010.03.010 – year: 2001 ident: 10.1016/j.bj.2017.11.001_bib34 – volume: 52 start-page: 279 year: 2013 ident: 10.1016/j.bj.2017.11.001_bib9 article-title: Time-frequency techniques in biomedical signal analysis: a tutorial review of similarities and differences publication-title: Methods Inf Med doi: 10.3414/ME12-01-0083 – volume: 10 start-page: 1299 year: 1998 ident: 10.1016/j.bj.2017.11.001_bib36 article-title: Nonlinear component analysis as a kernel eigenvalue problem publication-title: Neural Comput doi: 10.1162/089976698300017467 – volume: 42 start-page: 568 year: 2005 ident: 10.1016/j.bj.2017.11.001_bib4 article-title: Airways, respiration, and respiratory sinus arrhythmia during picture viewing publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2005.00312.x – volume: 3 start-page: 102 year: 2012 ident: 10.1016/j.bj.2017.11.001_bib24 article-title: ECG pattern analysis for emotion detection publication-title: IEEE Trans Affect Comput doi: 10.1109/T-AFFC.2011.28 – year: 2007 ident: 10.1016/j.bj.2017.11.001_bib35 – start-page: 205 year: 2014 ident: 10.1016/j.bj.2017.11.001_bib23 article-title: A new information fusion approach for recognition of music-induced emotions – volume: 11 start-page: 59 year: 2016 ident: 10.1016/j.bj.2017.11.001_bib32 article-title: Evaluating autonomic parameters: the role of sleepduration in emotional responses to music publication-title: Iran J Psychiatry – year: 2006 ident: 10.1016/j.bj.2017.11.001_bib38 – volume: 79 start-page: 279 year: 2006 ident: 10.1016/j.bj.2017.11.001_bib12 article-title: Matching pursuit decomposition for detection of frequency changes in experimental data - application to heart signal recording analysis publication-title: Scr Medica BRNO – volume: 25 start-page: e37 year: 2011 ident: 10.1016/j.bj.2017.11.001_bib5 article-title: Physiological reactivity and facial expression to emotion-inducing films in patients with schizophrenia publication-title: Arch Psychiatr Nurs doi: 10.1016/j.apnu.2011.08.001 – volume: 159 start-page: 485 year: 2014 ident: 10.1016/j.bj.2017.11.001_bib6 article-title: Effects of training of affect recognition on the recognition and visual exploration of emotional faces in schizophrenia publication-title: Schizophr Res doi: 10.1016/j.schres.2014.09.003 – start-page: 1023 year: 2006 ident: 10.1016/j.bj.2017.11.001_bib7 article-title: Measuring emotional valence during interactive experiences: Boys at video game play – start-page: 1 year: 2007 ident: 10.1016/j.bj.2017.11.001_bib19 article-title: Multilayer Perceptron for EEG signal classification during listening to emotional music – volume: 52 start-page: 297 year: 2013 ident: 10.1016/j.bj.2017.11.001_bib10 article-title: Discussion of “Time-frequency techniques in biomedical signal analysis: a tutorial review of similarities and differences” publication-title: Methods Inf Med doi: 10.1055/s-0038-1627059 – volume: 23 start-page: 608 year: 1995 ident: 10.1016/j.bj.2017.11.001_bib11 article-title: Analysis of EEG transients by means of matching pursuit publication-title: Ann Biomed Eng doi: 10.1007/BF02584459 – volume: 4 start-page: 4998 year: 2014 ident: 10.1016/j.bj.2017.11.001_bib29 article-title: Revealing real-time emotional responses: a personalized assessment based on heartbeat dynamics publication-title: Sci Rep doi: 10.1038/srep04998 – volume: 84 start-page: 122 year: 2014 ident: 10.1016/j.bj.2017.11.001_bib42 article-title: Sympathetic nerve activity can be estimated from skin conductance responses publication-title: Neuro Image – volume: 57 start-page: 1798 year: 2010 ident: 10.1016/j.bj.2017.11.001_bib20 article-title: EEG-based emotion recognition in music listening publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2010.2048568 – volume: 19 start-page: 92 year: 2012 ident: 10.1016/j.bj.2017.11.001_bib15 article-title: Decomposition and compression for ECG and EEG signals with sequence index coding method based on matching pursuit publication-title: J China Univ Posts Telecommun doi: 10.1016/S1005-8885(11)60251-3 – year: 2011 ident: 10.1016/j.bj.2017.11.001_bib41 – start-page: 127 year: 2008 ident: 10.1016/j.bj.2017.11.001_bib18 article-title: Support vector machine for EEG signal classification during listening to emotional music – volume: 41 start-page: 3397 year: 1993 ident: 10.1016/j.bj.2017.11.001_bib33 article-title: Matching pursuits with time-frequency dictionaries publication-title: IEEE Trans Sig Proc doi: 10.1109/78.258082 – volume: 310 start-page: 2191 year: 2013 ident: 10.1016/j.bj.2017.11.001_bib30 article-title: World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects publication-title: JAMA doi: 10.1001/jama.2013.281053 – start-page: 468 year: 2012 ident: 10.1016/j.bj.2017.11.001_bib17 article-title: EEG-based emotion recognition in listening music by using support vector machine and linear dynamic system – volume: 30 start-page: 2067 year: 2008 ident: 10.1016/j.bj.2017.11.001_bib16 article-title: Emotion recognition based on physiological changes in music listening publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.26 – volume: 6 start-page: 241 year: 2014 ident: 10.1016/j.bj.2017.11.001_bib21 article-title: Classification of music-induced emotions based on information fusion of forehead biosignals and electrocardiogram publication-title: Cogn Comput doi: 10.1007/s12559-013-9239-7 – volume: 3 start-page: 237 year: 2012 ident: 10.1016/j.bj.2017.11.001_bib28 article-title: The role of nonlinear dynamics in affective valence and arousal recognition publication-title: IEEE Trans Affect Comput doi: 10.1109/T-AFFC.2011.30 – volume: 19 start-page: 80 year: 2013 ident: 10.1016/j.bj.2017.11.001_bib40 article-title: Multiple physiological signal-based human stress identification using non-linear classifiers publication-title: Electron Electr Eng – volume: 14 start-page: 7120 year: 2014 ident: 10.1016/j.bj.2017.11.001_bib39 article-title: Wearable biomedical measurement systems for assessment of mental stress of combatants in real time publication-title: Sensors doi: 10.3390/s140407120 – volume: 6 start-page: 100 year: 2014 ident: 10.1016/j.bj.2017.11.001_bib3 article-title: The autonomic nervous system and emotion publication-title: Emot Rev doi: 10.1177/1754073913512003 – volume: 22 start-page: 720 year: 2008 ident: 10.1016/j.bj.2017.11.001_bib31 article-title: Happy, sad, scary and peaceful musical excerpts for research on emotions publication-title: Cogn Emot doi: 10.1080/02699930701503567 – year: 2010 ident: 10.1016/j.bj.2017.11.001_bib14 article-title: Efficient single-lead ECG Beat classification using matching pursuit based features and an Artificial neural network – volume: 12 start-page: 44 year: 2013 ident: 10.1016/j.bj.2017.11.001_bib27 article-title: Classification of emotional states from electrocardiogram signals: a non-linear approach based on hurst publication-title: Biomed Eng Online doi: 10.1186/1475-925X-12-44 |
SSID | ssib044731628 ssib020012257 ssj0000816103 |
Score | 2.4433453 |
Snippet | The purpose of the current study was to examine the effectiveness of Matching Pursuit (MP) algorithm in emotion recognition.
Electrocardiogram (ECG) and... BackgroundThe purpose of the current study was to examine the effectiveness of Matching Pursuit (MP) algorithm in emotion recognition.MethodsElectrocardiogram... The purpose of the current study was to examine the effectiveness of Matching Pursuit (MP) algorithm in emotion recognition.BACKGROUNDThe purpose of the... Background: The purpose of the current study was to examine the effectiveness of Matching Pursuit (MP) algorithm in emotion recognition. Methods:... |
SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 355 |
SubjectTerms | Accuracy Adult Algorithms Arousal Classification Decomposition Dictionaries Discrete cosine transform Discriminant analysis EKG Electrocardiogram Electrocardiography Electroencephalography Emotion recognition Emotions Entropy Female Fourier transforms Galvanic Skin Response Galvanic skin responses Heart Humans Matching Matching pursuit Music Neural networks Neural Networks (Computer) Original Physiology Principal Component Analysis Principal components analysis Probabilistic neural network Quadrants Respiration Skin Sleep Statistical analysis Time series Wavelet transforms |
SummonAdditionalLinks | – databaseName: Open Access: DOAJ - Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB5KLu2lNLRN1KRhC7m0oMSWVl7tMQl5EEgPbQI5FMTsQ22MkU1sUfrvO7MrKzYNyaUny9YDeWaW-Yb5dj6AfXQEG0ZGpV57TwXKkIXcXZlKTZV2jWjR8W7kq6-jixt5eVvcrkh9MScsjgeOhjsstcrtoHAlAQeJRqNXLjdlZpSXmKmwj5zS2EoxRZGUhY7RQz9PShZoCkKrGe_akUM16HqWkexlxszyUgc80LPTh1nmqDDK_zH8-S-N8mXbzPDPb5xMVnLU2Rt43YFLcRT_1Ca88M1b-HHUCLS25ZkQwkfVHtHzhug4DnMWzID_KU5PzgU2Tpx__yaY20HRGb4TsA2sSzFr7-ft3UJE6el3cHN2en1ykXaaCqktitEipXSU-2KIxuSItc8N6oFmMnhdlwy0tZEO_Yi7ddJbBgA6o4oqL2rCWbbO8_ew0Uwbvw1iQI4gcEMfnkCVdYbcqpHyPXm9cMomcLi0YmW7geOsezGplsyycWXGFdud6hAm1yXwub9jFodtPHHtMTumv47HZIcfKHiqLniq54Ingd2lW6tu7c4rAkFloShLywQ-9adp1XErBRs_becs3kmFLretE9iKUdC_SaYl1_06AbUWH2uvun6mufsVJnsTtioJLyXwpY-kZw3x4X8YYgde8SMjT2cXNhb3rf9IaGth9sLC-gv8KiNC priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1dT9swFL1iILG9TAP2kY0hI_HCpIw2cer4aWKIFiGxhwESD5MifwWoqrRrG03797vXccKqTfDUj7iSax_bx77H9wAcKIu0YaBF7KRzuEHpk5G7zWMucaddKmWUpdvIF98GZ9f8_Ca7CQduiyCrbOdEP1HbqaEz8iNcmvJM4NzJv8x-xuQaRdHVYKHxDDb6CSKJbooPRy2eEh83eojqcU42TYFu-5k6R77jzZMTusvD-6IXIpmNBEyPSfslPlOaz-Aa065cPsH__1jpv-LK53U1U79_qcnkr5Vr-ApeBsrJjhuMbMGaq7Zh8yIE1bdhw3s978CP44opY2pKHsFcY-_DOoERvm-yPjOSyt-y05MRU5Vlo8vvjEQgCGP_GRmwl2eyWT1f1PdL1nhUv4br4enVyVkczBdik2WDZYzrVuqyvtI6Vap0qVayJ0k1XpY5MXKpuVVuQGE97gwxBZng1ivNSmxSU6bpG1ivppV7B6wnLKXdwxeH7MtYjf0vFRIDhEdmhYngqG3YwoTM5GSQMSlaCdq40OOCugI3LKTCi-Cw-8WsycrxSNmv1FddOcqn7b-Yzm-LMDyLXIrU9DKLgEi5wto5rLPOEy0cV4kQEey2PV2EQb4oHiAZwX73GIcnxVxU5ab1glw-cUdM8e0I3jbA6GqSSE4HBDICsQKZlaquPqnu73wKcCRhORKrCD514HqyId4__h8-wAsq3Eh1dmF9Oa_dRyRcS73nR9Uf9SQjqg priority: 102 providerName: ProQuest |
Title | An accurate emotion recognition system using ECG and GSR signals and matching pursuit method |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29433839 https://www.proquest.com/docview/2158579904 https://www.proquest.com/docview/2001910245 https://pubmed.ncbi.nlm.nih.gov/PMC6138614 https://doi.org/10.1016/j.bj.2017.11.001 https://doaj.org/article/8973c05d81634ab9ae7d3b82b7e4a277 |
UnpaywallVersion | publishedVersion |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2320-2890 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816103 issn: 2320-2890 databaseCode: KQ8 dateStart: 20151201 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2320-2890 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816103 issn: 2320-2890 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2320-2890 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816103 issn: 2320-2890 databaseCode: DOA dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2320-2890 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044731628 issn: 2319-4170 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2320-2890 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816103 issn: 2320-2890 databaseCode: AKRWK dateStart: 20151201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2320-2890 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816103 issn: 2320-2890 databaseCode: RPM dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 2320-2890 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816103 issn: 2320-2890 databaseCode: 7X7 dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2320-2890 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816103 issn: 2320-2890 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2320-2890 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816103 issn: 2320-2890 databaseCode: 8FG dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD6CVoKnwbgGbZWReAEppc2ljh-7qe3E1GoqVBQJKbIdB9ZVWbUmQvDAb985ThqRMXF5ydWJnPhY_o7P5-8AvJIJwoaB4q4RxqCD0qdE7knkBgI97VRKLRNajTydDU4WwbtluKzmO2gtTCN-b3lYakUELN4lrU1aqNUeUCipBe3F7Gz4yeaO61Mw0-aF82hBMMXOqojkba9ojEBWqP82dPk7SfJ-kW3k929yvf5lBBo_KOWQtla4kIgnF90iV13944as47983EPYq2AoG5Z2sw93TPYI7k2rQPtj-DzMmNS6ICEJZspUP6wmG-FxqQDNiDb_hY2OJ0xmCZu8nzMihKBJ23NEw5aqyTbF1bY4z1mZr_oJLMajD8cnbpWIwdVhOMhdHMN8E_alUr6UqfGVFD1BDPI0jQidCxUk0th2CYwm1CA8dMP8MEVwplPffwqt7DIzz4H1eEISfLgziMR0otAWhESQgKYSJlw78HbXOLGuVMopWcY63tHRVrFaxfTT0HkhRp4Dr-snNqVCxx_KHlF71-VIW9tewFaJq64aR4L7uhcmEULVQGLtDNZZRZ7iJpAe5w4c7Kwlrjr8NkbkFIUch_bAgZf1beyqFH-RmbkstpTxE71jinU78Kw0rromnghoskA4wBtm16hq8052_tXKgSMgixBkOfCmNtC__ogX_1P4AFr5VWEOEX3lqgN3-ZLjNhpPOtAens4_nuL-aDQ7m3fsjAZupz9HnaqDXgN3py_p |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VrUS5ICgvQ4FFggNIpom9znoPCJXSNqVND9BKOSCZfbk0ipyQxKr6p_iNzKwfJQKVU0952JbW3tmZb3Y-zwfwSlmEDT0tQiedwwSlS0LuNg25xEw7V8ooS28jD457_VP-eZgMV-BX8y4M0Sobn-gdtZ0Y2iPfwtCUJgJ9J_8w_RmSahRVVxsJjcosDt3lBaZs8_cHn3B-X0fR3u7JTj-sVQVCkyS9RYgOOXZJV2kdK5W7WCvZkUSHzvOUoKbU3CrXo3oVd4ZCoIwwp4iTHJGGyWkDFF3-Go87nHr1i2EbviNfp7qqInJOslA1vPeRIUV85cWaI3p3iHdFp66cVpQzPSKumXhHbUVrlZomUnpBgX-h4L_JnOtlMVWXF2o8_iNS7t2FOzXEZduVTd6DFVdswK1BXcTfgDWvLX0fvm0XTBlTUrMK5io5IdYSmvB71WWaETX_jO3u7DNVWLb_9Qsj0gkuG_8bEbeng7JpOZuX5wtWaWI_gNMbmZaHsFpMCvcYWEdYavOHHw7RnrEa7U0qBCJojokVJoCt5sFmpu6EToIc46yhvI0yPcpoKjBBItZfAG_aK6ZVF5Brzv1Ic9WeR_27_R-T2VlWu4MslSI2ncSiQcRc4egcjlmnkRaOq0iIADabmc5qpzLPrpZAAC_bw-gOqMajCjcp56Qqihk41dMDeFQZRjuSSHLakJABiCWTWRrq8pHi_IdvOY6gL0UgF8Db1rj--yCeXH8PL2C9fzI4yo4Ojg-fwm26sKIJbcLqYla6Zwj2Fvq5X2EMvt_0kv4NZNNfFg |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zi9RAEC5kFvTJ-4is0oIvChlnckynH8dlD4RdRB1YQQjVR9Ydh-ywkyD6663q9ASji8dTju6ETrqa_qrr668AnqMl2DDTMnbKOXJQppzI3RZxpsjTrhANWt6NfHwyO1pkb07z07DewXthBvF7z8PSSyZgyTFrbfJGrZ0Zh5JGsLM4eTv_6HPHTTmY6fPCJbwhmGNnISJ51SsGM5AX6r8KXf5OkrzR1mv89hVXq59moINbnRzSxgsXMvHky7ht9Nh8_0XW8V8-7jbcDDBUzDu7uQPXXH0Xrh-HQPs9-DSvBRrTspCEcF2qH9GTjei8U4AWTJs_E_t7hwJrKw7fvxNMCCGT9teEhj1VU6zby0173oguX_V9WBzsf9g7ikMihtjk-ayJaQ5LXT5FrVPEyqUa1UQxg7yqCkbnSmcWne-XzBlGDSohNyzNKwJnpkrTBzCqL2r3CMREWpbgo4MjJGasJltQSCCBTCW30kTwats5pQkq5ZwsY1Vu6WjLUi9L_mnkvDAjL4IX_RPrTqHjD3Vfc3_39Vhb29-gXinDUC0LJVMzyW1BUDVDap2jNusi0dJlmEgZwe7WWsow4DclIacilzS1ZxE864tpqHL8BWt30W444yd5xxzrjuBhZ1x9SxKV8WKBikAOzG7Q1GFJff7Zy4ETICsIZEXwsjfQv_6Ix_9TeRdGzWXrnhD6avTTMPB-AJ4-KLk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+accurate+emotion+recognition+system+using+ECG+and+GSR+signals+and+matching+pursuit+method&rft.jtitle=Biomedical+journal&rft.au=Goshvarpour%2C+Atefeh&rft.au=Abbasi%2C+Ataollah&rft.au=Goshvarpour%2C+Ateke&rft.date=2017-12-01&rft.pub=Elsevier+Limited&rft.issn=2319-4170&rft.eissn=2320-2890&rft.volume=40&rft.issue=6&rft.spage=355&rft_id=info:doi/10.1016%2Fj.bj.2017.11.001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2319-4170&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2319-4170&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2319-4170&client=summon |