An accurate emotion recognition system using ECG and GSR signals and matching pursuit method

The purpose of the current study was to examine the effectiveness of Matching Pursuit (MP) algorithm in emotion recognition. Electrocardiogram (ECG) and galvanic skin responses (GSR) of 11 healthy students were collected while subjects were listening to emotional music clips. Applying three dictiona...

Full description

Saved in:
Bibliographic Details
Published inBiomedical Journal Vol. 40; no. 6; pp. 355 - 368
Main Authors Goshvarpour, Atefeh, Abbasi, Ataollah, Goshvarpour, Ateke
Format Journal Article
LanguageEnglish
Published United States Elsevier Limited 01.12.2017
Chang Gung University
Elsevier
Subjects
Online AccessGet full text
ISSN2319-4170
2320-2890
2320-2890
DOI10.1016/j.bj.2017.11.001

Cover

Abstract The purpose of the current study was to examine the effectiveness of Matching Pursuit (MP) algorithm in emotion recognition. Electrocardiogram (ECG) and galvanic skin responses (GSR) of 11 healthy students were collected while subjects were listening to emotional music clips. Applying three dictionaries, including two wavelet packet dictionaries (Coiflet, and Daubechies) and discrete cosine transform, MP coefficients were extracted from ECG and GSR signals. Next, some statistical indices were calculated from the MP coefficients. Then, three dimensionality reduction methods, including Principal Component Analysis (PCA), Linear Discriminant Analysis, and Kernel PCA were applied. The dimensionality reduced features were fed into the Probabilistic Neural Network in subject-dependent and subject-independent modes. Emotion classes were described by a two-dimensional emotion space, including four quadrants of valence and arousal plane, valence based, and arousal based emotional states. Using PCA, the highest recognition rate of 100% was achieved for sigma = 0.01 in all classification schemes. In addition, the classification performance of ECG features was evidently better than that of GSR features. Similar results were obtained for subject-dependent emotion classification mode. An accurate emotion recognition system was proposed using MP algorithm and wavelet dictionaries.
AbstractList Background: The purpose of the current study was to examine the effectiveness of Matching Pursuit (MP) algorithm in emotion recognition. Methods: Electrocardiogram (ECG) and galvanic skin responses (GSR) of 11 healthy students were collected while subjects were listening to emotional music clips. Applying three dictionaries, including two wavelet packet dictionaries (Coiflet, and Daubechies) and discrete cosine transform, MP coefficients were extracted from ECG and GSR signals. Next, some statistical indices were calculated from the MP coefficients. Then, three dimensionality reduction methods, including Principal Component Analysis (PCA), Linear Discriminant Analysis, and Kernel PCA were applied. The dimensionality reduced features were fed into the Probabilistic Neural Network in subject-dependent and subject-independent modes. Emotion classes were described by a two-dimensional emotion space, including four quadrants of valence and arousal plane, valence based, and arousal based emotional states. Results: Using PCA, the highest recognition rate of 100% was achieved for sigma = 0.01 in all classification schemes. In addition, the classification performance of ECG features was evidently better than that of GSR features. Similar results were obtained for subject-dependent emotion classification mode. Conclusions: An accurate emotion recognition system was proposed using MP algorithm and wavelet dictionaries.
The purpose of the current study was to examine the effectiveness of Matching Pursuit (MP) algorithm in emotion recognition. Electrocardiogram (ECG) and galvanic skin responses (GSR) of 11 healthy students were collected while subjects were listening to emotional music clips. Applying three dictionaries, including two wavelet packet dictionaries (Coiflet, and Daubechies) and discrete cosine transform, MP coefficients were extracted from ECG and GSR signals. Next, some statistical indices were calculated from the MP coefficients. Then, three dimensionality reduction methods, including Principal Component Analysis (PCA), Linear Discriminant Analysis, and Kernel PCA were applied. The dimensionality reduced features were fed into the Probabilistic Neural Network in subject-dependent and subject-independent modes. Emotion classes were described by a two-dimensional emotion space, including four quadrants of valence and arousal plane, valence based, and arousal based emotional states. Using PCA, the highest recognition rate of 100% was achieved for sigma = 0.01 in all classification schemes. In addition, the classification performance of ECG features was evidently better than that of GSR features. Similar results were obtained for subject-dependent emotion classification mode. An accurate emotion recognition system was proposed using MP algorithm and wavelet dictionaries.
The purpose of the current study was to examine the effectiveness of Matching Pursuit (MP) algorithm in emotion recognition.BACKGROUNDThe purpose of the current study was to examine the effectiveness of Matching Pursuit (MP) algorithm in emotion recognition.Electrocardiogram (ECG) and galvanic skin responses (GSR) of 11 healthy students were collected while subjects were listening to emotional music clips. Applying three dictionaries, including two wavelet packet dictionaries (Coiflet, and Daubechies) and discrete cosine transform, MP coefficients were extracted from ECG and GSR signals. Next, some statistical indices were calculated from the MP coefficients. Then, three dimensionality reduction methods, including Principal Component Analysis (PCA), Linear Discriminant Analysis, and Kernel PCA were applied. The dimensionality reduced features were fed into the Probabilistic Neural Network in subject-dependent and subject-independent modes. Emotion classes were described by a two-dimensional emotion space, including four quadrants of valence and arousal plane, valence based, and arousal based emotional states.METHODSElectrocardiogram (ECG) and galvanic skin responses (GSR) of 11 healthy students were collected while subjects were listening to emotional music clips. Applying three dictionaries, including two wavelet packet dictionaries (Coiflet, and Daubechies) and discrete cosine transform, MP coefficients were extracted from ECG and GSR signals. Next, some statistical indices were calculated from the MP coefficients. Then, three dimensionality reduction methods, including Principal Component Analysis (PCA), Linear Discriminant Analysis, and Kernel PCA were applied. The dimensionality reduced features were fed into the Probabilistic Neural Network in subject-dependent and subject-independent modes. Emotion classes were described by a two-dimensional emotion space, including four quadrants of valence and arousal plane, valence based, and arousal based emotional states.Using PCA, the highest recognition rate of 100% was achieved for sigma = 0.01 in all classification schemes. In addition, the classification performance of ECG features was evidently better than that of GSR features. Similar results were obtained for subject-dependent emotion classification mode.RESULTSUsing PCA, the highest recognition rate of 100% was achieved for sigma = 0.01 in all classification schemes. In addition, the classification performance of ECG features was evidently better than that of GSR features. Similar results were obtained for subject-dependent emotion classification mode.An accurate emotion recognition system was proposed using MP algorithm and wavelet dictionaries.CONCLUSIONSAn accurate emotion recognition system was proposed using MP algorithm and wavelet dictionaries.
BackgroundThe purpose of the current study was to examine the effectiveness of Matching Pursuit (MP) algorithm in emotion recognition.MethodsElectrocardiogram (ECG) and galvanic skin responses (GSR) of 11 healthy students were collected while subjects were listening to emotional music clips. Applying three dictionaries, including two wavelet packet dictionaries (Coiflet, and Daubechies) and discrete cosine transform, MP coefficients were extracted from ECG and GSR signals. Next, some statistical indices were calculated from the MP coefficients. Then, three dimensionality reduction methods, including Principal Component Analysis (PCA), Linear Discriminant Analysis, and Kernel PCA were applied. The dimensionality reduced features were fed into the Probabilistic Neural Network in subject-dependent and subject-independent modes. Emotion classes were described by a two-dimensional emotion space, including four quadrants of valence and arousal plane, valence based, and arousal based emotional states.ResultsUsing PCA, the highest recognition rate of 100% was achieved for sigma = 0.01 in all classification schemes. In addition, the classification performance of ECG features was evidently better than that of GSR features. Similar results were obtained for subject-dependent emotion classification mode.ConclusionsAn accurate emotion recognition system was proposed using MP algorithm and wavelet dictionaries.
Author Goshvarpour, Atefeh
Abbasi, Ataollah
Goshvarpour, Ateke
AuthorAffiliation Computational Neuroscience Laboratory, Department of Biomedical Engineering, Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
AuthorAffiliation_xml – name: Computational Neuroscience Laboratory, Department of Biomedical Engineering, Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
Author_xml – sequence: 1
  givenname: Atefeh
  surname: Goshvarpour
  fullname: Goshvarpour, Atefeh
– sequence: 2
  givenname: Ataollah
  surname: Abbasi
  fullname: Abbasi, Ataollah
– sequence: 3
  givenname: Ateke
  surname: Goshvarpour
  fullname: Goshvarpour, Ateke
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29433839$$D View this record in MEDLINE/PubMed
BookMark eNqNkktr3DAUhU1JaR7Nvqti6KabmepKth6bQhjSSSBQ6GNXEJIsz8jY0lSSU-bf155JQxModKUr6ZxP96Hz4sQHb4viDaAlIKAfuqXulhgBWwIsEYIXxRkmGC0wF-hkjkEsKmDotLhMyWlUVYwAxfxVcYpFRQgn4qz4ceVLZcwYVbalHUJ2wZfRmrDx7hCnfcp2KMfk_Ka8Xq1L5Zty_fVLmdzGqz4d9oPKZjsLdmNMo8vlYPM2NK-Ll-0ksZcP60Xx_dP1t9XN4u7z-nZ1dbcwdU3zAjAntgalNVGqtUQrgQQmiLUtZwwLoatGWUoRwpU1CAMXGGhF6pYCMi0hF8XtkdsE1clddIOKexmUk4eDEDdSxexMbyUXjBhUNxwoqZQWyrKGaI41s5XCjE0sOLJGv1P7X6rvH4GA5Nx42UndybnxEkBOjZ88H4-e3agH2xjrc1T9k0Se3ni3lZtwLykQTqGaAO8fADH8HG3KcnDJ2L5X3oYxTY8hEDCVX0_Sd8-kXRjjPAmJoeY1EwLNwLd_Z_SYyp_BTwJ0FJgYUoq2_Z8q6TOLcVnNn2SqyfX_Nv4G5cXSEQ
CitedBy_id crossref_primary_10_1016_j_inffus_2024_102231
crossref_primary_10_1109_ACCESS_2019_2941251
crossref_primary_10_1109_JSEN_2022_3204586
crossref_primary_10_1109_JIOT_2024_3430297
crossref_primary_10_1016_j_bspc_2022_103580
crossref_primary_10_3390_s20010313
crossref_primary_10_3390_s21030770
crossref_primary_10_1155_2020_2909267
crossref_primary_10_3390_ijerph17072499
crossref_primary_10_1038_s41597_024_03887_9
crossref_primary_10_3390_electronics9020310
crossref_primary_10_1155_2022_1566664
crossref_primary_10_1007_s13246_019_00839_1
crossref_primary_10_1016_j_icte_2023_09_001
crossref_primary_10_4103_jmss_jmss_59_22
crossref_primary_10_1016_j_compbiomed_2021_104696
crossref_primary_10_1109_TCDS_2022_3179427
crossref_primary_10_3390_s23115322
crossref_primary_10_5057_ijae_IJAE_D_20_00011
crossref_primary_10_1016_j_bbe_2019_01_004
crossref_primary_10_1007_s11571_021_09735_5
crossref_primary_10_2139_ssrn_3995241
crossref_primary_10_1016_j_ins_2023_119160
crossref_primary_10_3389_fpsyg_2024_1275142
crossref_primary_10_5057_ijae_IJAE_D_21_00023
crossref_primary_10_3389_fpsyg_2022_1075624
crossref_primary_10_1109_TAFFC_2020_2981610
crossref_primary_10_1016_j_cmpb_2022_106646
crossref_primary_10_3390_electronics14061129
crossref_primary_10_3390_app15052850
crossref_primary_10_3390_s25030853
crossref_primary_10_1016_j_trpro_2023_11_489
crossref_primary_10_3390_s20164551
crossref_primary_10_1007_s12652_020_01985_1
crossref_primary_10_3390_app12010527
crossref_primary_10_1007_s40846_020_00526_7
crossref_primary_10_1109_TAFFC_2020_3027720
crossref_primary_10_1109_ACCESS_2021_3103848
crossref_primary_10_1109_ACCESS_2023_3322925
crossref_primary_10_1007_s13246_019_00825_7
crossref_primary_10_3390_su142113938
crossref_primary_10_3390_app11114945
crossref_primary_10_1016_j_measurement_2020_108747
crossref_primary_10_3390_app11031338
crossref_primary_10_1016_j_bj_2017_12_002
crossref_primary_10_3389_fnsys_2021_729707
crossref_primary_10_1016_j_chaos_2018_07_035
crossref_primary_10_1108_MD_02_2022_0208
crossref_primary_10_3390_electronics10030301
crossref_primary_10_1142_S1469026821500231
crossref_primary_10_1016_j_physa_2019_04_198
crossref_primary_10_3389_fnins_2022_985709
crossref_primary_10_1016_j_compbiomed_2023_106938
crossref_primary_10_1109_JBHI_2024_3403188
crossref_primary_10_3390_s19245516
crossref_primary_10_1016_j_bspc_2023_104894
crossref_primary_10_1145_3396249
crossref_primary_10_3390_app142210561
crossref_primary_10_1016_j_cmpb_2019_02_009
crossref_primary_10_3389_frvir_2020_585993
crossref_primary_10_1016_j_bspc_2021_102863
crossref_primary_10_1007_s11760_022_02248_6
crossref_primary_10_1109_ACCESS_2021_3128016
crossref_primary_10_1155_2021_6640527
crossref_primary_10_3390_s23125680
crossref_primary_10_3390_ijerph17196962
crossref_primary_10_3390_s22186813
crossref_primary_10_1038_s41598_024_59147_8
crossref_primary_10_1109_TAFFC_2023_3286351
crossref_primary_10_3390_diagnostics13122097
crossref_primary_10_3390_electronics12132795
crossref_primary_10_1038_s41467_023_44673_2
crossref_primary_10_1088_2058_8585_ad0061
crossref_primary_10_1007_s12559_019_09699_z
crossref_primary_10_3390_s21155135
crossref_primary_10_1007_s11042_021_11304_1
crossref_primary_10_3389_fpsyg_2021_703908
crossref_primary_10_3390_s21155015
crossref_primary_10_1016_j_bbe_2020_02_004
crossref_primary_10_1016_j_cosrev_2021_100399
crossref_primary_10_1109_TIM_2023_3240230
crossref_primary_10_1186_s43067_023_00085_2
crossref_primary_10_1108_JICV_01_2019_0002
crossref_primary_10_1016_j_neucom_2019_05_061
crossref_primary_10_3390_s21144853
crossref_primary_10_1016_j_imu_2020_100363
crossref_primary_10_1016_j_bspc_2025_107749
crossref_primary_10_3389_fphys_2025_1486763
crossref_primary_10_1051_e3sconf_202339907007
crossref_primary_10_1109_TG_2021_3069445
crossref_primary_10_3390_bioengineering10091040
crossref_primary_10_1109_TIM_2022_3199260
crossref_primary_10_3389_fncom_2022_747735
crossref_primary_10_1109_ACCESS_2022_3190967
crossref_primary_10_1016_j_icte_2022_03_008
Cites_doi 10.1109/T-AFFC.2012.4
10.1016/j.neucom.2013.02.041
10.1016/j.ijhcs.2008.06.004
10.1007/s11760-013-0591-6
10.1136/jnnp.47.5.536
10.1016/j.biopsycho.2010.03.010
10.3414/ME12-01-0083
10.1162/089976698300017467
10.1111/j.1469-8986.2005.00312.x
10.1109/T-AFFC.2011.28
10.1016/j.apnu.2011.08.001
10.1016/j.schres.2014.09.003
10.1055/s-0038-1627059
10.1007/BF02584459
10.1038/srep04998
10.1109/TBME.2010.2048568
10.1016/S1005-8885(11)60251-3
10.1109/78.258082
10.1001/jama.2013.281053
10.1109/TPAMI.2008.26
10.1007/s12559-013-9239-7
10.1109/T-AFFC.2011.30
10.3390/s140407120
10.1177/1754073913512003
10.1080/02699930701503567
10.1186/1475-925X-12-44
ContentType Journal Article
Copyright Copyright © 2018 Chang Gung University. Published by Elsevier B.V. All rights reserved.
Copyright Elsevier Limited Dec 2017
2018 Chang Gung University. Publishing services by Elsevier B.V. 2018 Chang Gung University
Copyright_xml – notice: Copyright © 2018 Chang Gung University. Published by Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier Limited Dec 2017
– notice: 2018 Chang Gung University. Publishing services by Elsevier B.V. 2018 Chang Gung University
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M7P
M7S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1016/j.bj.2017.11.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Music
EISSN 2320-2890
EndPage 368
ExternalDocumentID oai_doaj_org_article_8973c05d81634ab9ae7d3b82b7e4a277
10.1016/j.bj.2017.11.001
PMC6138614
29433839
10_1016_j_bj_2017_11_001
Genre Journal Article
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
0R~
0SF
3V.
5VS
6I.
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABJCF
ABMAC
ABUWG
ABXLX
ACGFS
ACIWK
ACPRK
ADBBV
ADVLN
AEXQZ
AFKRA
AFTJW
AGHFR
AHMBA
AITUG
AKRWK
ALIPV
AMRAJ
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CGR
CUY
CVF
EBS
ECM
EIF
EJD
FDB
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
IAO
IHR
IPNFZ
ITC
KQ8
L6V
LK8
M1P
M41
M7P
M7S
NCXOZ
NPM
O9-
OK1
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
RIG
RMW
RNS
ROL
RPM
SSZ
UKHRP
7XB
8FK
AAYWO
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
AZQEC
DWQXO
GNUQQ
K9.
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
PUEGO
5PM
ADTOC
APXCP
UNPAY
ID FETCH-LOGICAL-c556t-1283e51abb3aafe3ba9092307ff877299b4dae660024ec02189216435f610cf33
IEDL.DBID UNPAY
ISSN 2319-4170
2320-2890
IngestDate Wed Aug 27 01:17:40 EDT 2025
Wed Aug 20 00:06:55 EDT 2025
Tue Sep 30 16:41:18 EDT 2025
Thu Sep 04 23:21:08 EDT 2025
Fri Jul 25 11:16:42 EDT 2025
Thu Jan 02 23:02:48 EST 2025
Thu Apr 24 23:08:33 EDT 2025
Tue Jul 01 02:17:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Emotion recognition
Probabilistic neural network
Galvanic skin responses
Electrocardiogram
Matching pursuit
Language English
License Copyright © 2018 Chang Gung University. Published by Elsevier B.V. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-1283e51abb3aafe3ba9092307ff877299b4dae660024ec02189216435f610cf33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.bj.2017.11.001
PMID 29433839
PQID 2158579904
PQPubID 2035637
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_8973c05d81634ab9ae7d3b82b7e4a277
unpaywall_primary_10_1016_j_bj_2017_11_001
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6138614
proquest_miscellaneous_2001910245
proquest_journals_2158579904
pubmed_primary_29433839
crossref_primary_10_1016_j_bj_2017_11_001
crossref_citationtrail_10_1016_j_bj_2017_11_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-00
20171201
2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Philadelphia
PublicationTitle Biomedical Journal
PublicationTitleAlternate Biomed J
PublicationYear 2017
Publisher Elsevier Limited
Chang Gung University
Elsevier
Publisher_xml – name: Elsevier Limited
– name: Chang Gung University
– name: Elsevier
References Hazlett (10.1016/j.bj.2017.11.001_bib7) 2006
Park (10.1016/j.bj.2017.11.001_bib5) 2011; 25
Duda (10.1016/j.bj.2017.11.001_bib34) 2001
Bach (10.1016/j.bj.2017.11.001_bib42) 2014; 84
Sommermeyer (10.1016/j.bj.2017.11.001_bib13) 2009
Kreibig (10.1016/j.bj.2017.11.001_bib2) 2010; 84
Lin (10.1016/j.bj.2017.11.001_bib19) 2007
Naji (10.1016/j.bj.2017.11.001_bib22) 2015; 9
Shawe-Taylor (10.1016/j.bj.2017.11.001_bib37) 2004
Hong-xin (10.1016/j.bj.2017.11.001_bib15) 2012; 19
Naji (10.1016/j.bj.2017.11.001_bib23) 2014
Palanisamy (10.1016/j.bj.2017.11.001_bib40) 2013; 19
Wacker (10.1016/j.bj.2017.11.001_bib9) 2013; 52
Seoane (10.1016/j.bj.2017.11.001_bib39) 2014; 14
Mallat (10.1016/j.bj.2017.11.001_bib33) 1993; 41
World Medical Association (10.1016/j.bj.2017.11.001_bib30) 2013; 310
Shahani (10.1016/j.bj.2017.11.001_bib1) 1984; 47
Naji (10.1016/j.bj.2017.11.001_bib21) 2014; 6
AlZoubi (10.1016/j.bj.2017.11.001_bib25) 2012; 3
Goshvarpour (10.1016/j.bj.2017.11.001_bib32) 2016; 11
Ritz (10.1016/j.bj.2017.11.001_bib4) 2005; 42
Duan (10.1016/j.bj.2017.11.001_bib17) 2012
Bardonova (10.1016/j.bj.2017.11.001_bib12) 2006; 79
Valenza (10.1016/j.bj.2017.11.001_bib28) 2012; 3
Baumgartner (10.1016/j.bj.2017.11.001_bib10) 2013; 52
Lin (10.1016/j.bj.2017.11.001_bib18) 2008
Vieillard (10.1016/j.bj.2017.11.001_bib31) 2008; 22
Maaten Lvd (10.1016/j.bj.2017.11.001_bib35) 2007
Kim (10.1016/j.bj.2017.11.001_bib16) 2008; 30
Jerritta (10.1016/j.bj.2017.11.001_bib27) 2013; 12
Pantelopoulos (10.1016/j.bj.2017.11.001_bib14) 2010
Levenson (10.1016/j.bj.2017.11.001_bib3) 2014; 6
Zhang (10.1016/j.bj.2017.11.001_bib38) 2006
Agrafioti (10.1016/j.bj.2017.11.001_bib24) 2012; 3
Valenza (10.1016/j.bj.2017.11.001_bib29) 2014; 4
Scholkopf (10.1016/j.bj.2017.11.001_bib36) 1998; 10
Drusch (10.1016/j.bj.2017.11.001_bib6) 2014; 159
Lin (10.1016/j.bj.2017.11.001_bib20) 2010; 57
Durka (10.1016/j.bj.2017.11.001_bib11) 1995; 23
Zeraoulia (10.1016/j.bj.2017.11.001_bib41) 2011
Yannakakisa (10.1016/j.bj.2017.11.001_bib8) 2008; 66
Chang (10.1016/j.bj.2017.11.001_bib26) 2013; 122
References_xml – volume: 3
  start-page: 298
  year: 2012
  ident: 10.1016/j.bj.2017.11.001_bib25
  article-title: Detecting naturalistic expressions of nonbasic affect using physiological signals
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/T-AFFC.2012.4
– year: 2004
  ident: 10.1016/j.bj.2017.11.001_bib37
– start-page: 1271
  year: 2009
  ident: 10.1016/j.bj.2017.11.001_bib13
  article-title: Detection of sleep disorders by a modified Matching Pursuit algorithm
– volume: 122
  start-page: 79
  year: 2013
  ident: 10.1016/j.bj.2017.11.001_bib26
  article-title: Physiological emotion analysis using support vector regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.02.041
– volume: 66
  start-page: 741
  year: 2008
  ident: 10.1016/j.bj.2017.11.001_bib8
  article-title: Entertainment modeling through physiology in physical play
  publication-title: Int J Hum Comput Stud
  doi: 10.1016/j.ijhcs.2008.06.004
– volume: 9
  start-page: 1365
  year: 2015
  ident: 10.1016/j.bj.2017.11.001_bib22
  article-title: Emotion classification during music listening from forehead biosignals
  publication-title: SIViP
  doi: 10.1007/s11760-013-0591-6
– volume: 47
  start-page: 536
  year: 1984
  ident: 10.1016/j.bj.2017.11.001_bib1
  article-title: Sympathetic skin response - a method of assessing unmyelinated axon dysfunction in peripheral neuropathies
  publication-title: J Neurol Neurosurg Psychiatr
  doi: 10.1136/jnnp.47.5.536
– volume: 84
  start-page: 394
  year: 2010
  ident: 10.1016/j.bj.2017.11.001_bib2
  article-title: Autonomic nervous system activity in emotion: a review
  publication-title: Biol Psychol
  doi: 10.1016/j.biopsycho.2010.03.010
– year: 2001
  ident: 10.1016/j.bj.2017.11.001_bib34
– volume: 52
  start-page: 279
  year: 2013
  ident: 10.1016/j.bj.2017.11.001_bib9
  article-title: Time-frequency techniques in biomedical signal analysis: a tutorial review of similarities and differences
  publication-title: Methods Inf Med
  doi: 10.3414/ME12-01-0083
– volume: 10
  start-page: 1299
  year: 1998
  ident: 10.1016/j.bj.2017.11.001_bib36
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Comput
  doi: 10.1162/089976698300017467
– volume: 42
  start-page: 568
  year: 2005
  ident: 10.1016/j.bj.2017.11.001_bib4
  article-title: Airways, respiration, and respiratory sinus arrhythmia during picture viewing
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2005.00312.x
– volume: 3
  start-page: 102
  year: 2012
  ident: 10.1016/j.bj.2017.11.001_bib24
  article-title: ECG pattern analysis for emotion detection
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/T-AFFC.2011.28
– year: 2007
  ident: 10.1016/j.bj.2017.11.001_bib35
– start-page: 205
  year: 2014
  ident: 10.1016/j.bj.2017.11.001_bib23
  article-title: A new information fusion approach for recognition of music-induced emotions
– volume: 11
  start-page: 59
  year: 2016
  ident: 10.1016/j.bj.2017.11.001_bib32
  article-title: Evaluating autonomic parameters: the role of sleepduration in emotional responses to music
  publication-title: Iran J Psychiatry
– year: 2006
  ident: 10.1016/j.bj.2017.11.001_bib38
– volume: 79
  start-page: 279
  year: 2006
  ident: 10.1016/j.bj.2017.11.001_bib12
  article-title: Matching pursuit decomposition for detection of frequency changes in experimental data - application to heart signal recording analysis
  publication-title: Scr Medica BRNO
– volume: 25
  start-page: e37
  year: 2011
  ident: 10.1016/j.bj.2017.11.001_bib5
  article-title: Physiological reactivity and facial expression to emotion-inducing films in patients with schizophrenia
  publication-title: Arch Psychiatr Nurs
  doi: 10.1016/j.apnu.2011.08.001
– volume: 159
  start-page: 485
  year: 2014
  ident: 10.1016/j.bj.2017.11.001_bib6
  article-title: Effects of training of affect recognition on the recognition and visual exploration of emotional faces in schizophrenia
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2014.09.003
– start-page: 1023
  year: 2006
  ident: 10.1016/j.bj.2017.11.001_bib7
  article-title: Measuring emotional valence during interactive experiences: Boys at video game play
– start-page: 1
  year: 2007
  ident: 10.1016/j.bj.2017.11.001_bib19
  article-title: Multilayer Perceptron for EEG signal classification during listening to emotional music
– volume: 52
  start-page: 297
  year: 2013
  ident: 10.1016/j.bj.2017.11.001_bib10
  article-title: Discussion of “Time-frequency techniques in biomedical signal analysis: a tutorial review of similarities and differences”
  publication-title: Methods Inf Med
  doi: 10.1055/s-0038-1627059
– volume: 23
  start-page: 608
  year: 1995
  ident: 10.1016/j.bj.2017.11.001_bib11
  article-title: Analysis of EEG transients by means of matching pursuit
  publication-title: Ann Biomed Eng
  doi: 10.1007/BF02584459
– volume: 4
  start-page: 4998
  year: 2014
  ident: 10.1016/j.bj.2017.11.001_bib29
  article-title: Revealing real-time emotional responses: a personalized assessment based on heartbeat dynamics
  publication-title: Sci Rep
  doi: 10.1038/srep04998
– volume: 84
  start-page: 122
  year: 2014
  ident: 10.1016/j.bj.2017.11.001_bib42
  article-title: Sympathetic nerve activity can be estimated from skin conductance responses
  publication-title: Neuro Image
– volume: 57
  start-page: 1798
  year: 2010
  ident: 10.1016/j.bj.2017.11.001_bib20
  article-title: EEG-based emotion recognition in music listening
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2010.2048568
– volume: 19
  start-page: 92
  year: 2012
  ident: 10.1016/j.bj.2017.11.001_bib15
  article-title: Decomposition and compression for ECG and EEG signals with sequence index coding method based on matching pursuit
  publication-title: J China Univ Posts Telecommun
  doi: 10.1016/S1005-8885(11)60251-3
– year: 2011
  ident: 10.1016/j.bj.2017.11.001_bib41
– start-page: 127
  year: 2008
  ident: 10.1016/j.bj.2017.11.001_bib18
  article-title: Support vector machine for EEG signal classification during listening to emotional music
– volume: 41
  start-page: 3397
  year: 1993
  ident: 10.1016/j.bj.2017.11.001_bib33
  article-title: Matching pursuits with time-frequency dictionaries
  publication-title: IEEE Trans Sig Proc
  doi: 10.1109/78.258082
– volume: 310
  start-page: 2191
  year: 2013
  ident: 10.1016/j.bj.2017.11.001_bib30
  article-title: World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects
  publication-title: JAMA
  doi: 10.1001/jama.2013.281053
– start-page: 468
  year: 2012
  ident: 10.1016/j.bj.2017.11.001_bib17
  article-title: EEG-based emotion recognition in listening music by using support vector machine and linear dynamic system
– volume: 30
  start-page: 2067
  year: 2008
  ident: 10.1016/j.bj.2017.11.001_bib16
  article-title: Emotion recognition based on physiological changes in music listening
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.26
– volume: 6
  start-page: 241
  year: 2014
  ident: 10.1016/j.bj.2017.11.001_bib21
  article-title: Classification of music-induced emotions based on information fusion of forehead biosignals and electrocardiogram
  publication-title: Cogn Comput
  doi: 10.1007/s12559-013-9239-7
– volume: 3
  start-page: 237
  year: 2012
  ident: 10.1016/j.bj.2017.11.001_bib28
  article-title: The role of nonlinear dynamics in affective valence and arousal recognition
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/T-AFFC.2011.30
– volume: 19
  start-page: 80
  year: 2013
  ident: 10.1016/j.bj.2017.11.001_bib40
  article-title: Multiple physiological signal-based human stress identification using non-linear classifiers
  publication-title: Electron Electr Eng
– volume: 14
  start-page: 7120
  year: 2014
  ident: 10.1016/j.bj.2017.11.001_bib39
  article-title: Wearable biomedical measurement systems for assessment of mental stress of combatants in real time
  publication-title: Sensors
  doi: 10.3390/s140407120
– volume: 6
  start-page: 100
  year: 2014
  ident: 10.1016/j.bj.2017.11.001_bib3
  article-title: The autonomic nervous system and emotion
  publication-title: Emot Rev
  doi: 10.1177/1754073913512003
– volume: 22
  start-page: 720
  year: 2008
  ident: 10.1016/j.bj.2017.11.001_bib31
  article-title: Happy, sad, scary and peaceful musical excerpts for research on emotions
  publication-title: Cogn Emot
  doi: 10.1080/02699930701503567
– year: 2010
  ident: 10.1016/j.bj.2017.11.001_bib14
  article-title: Efficient single-lead ECG Beat classification using matching pursuit based features and an Artificial neural network
– volume: 12
  start-page: 44
  year: 2013
  ident: 10.1016/j.bj.2017.11.001_bib27
  article-title: Classification of emotional states from electrocardiogram signals: a non-linear approach based on hurst
  publication-title: Biomed Eng Online
  doi: 10.1186/1475-925X-12-44
SSID ssib044731628
ssib020012257
ssj0000816103
Score 2.4433453
Snippet The purpose of the current study was to examine the effectiveness of Matching Pursuit (MP) algorithm in emotion recognition. Electrocardiogram (ECG) and...
BackgroundThe purpose of the current study was to examine the effectiveness of Matching Pursuit (MP) algorithm in emotion recognition.MethodsElectrocardiogram...
The purpose of the current study was to examine the effectiveness of Matching Pursuit (MP) algorithm in emotion recognition.BACKGROUNDThe purpose of the...
Background: The purpose of the current study was to examine the effectiveness of Matching Pursuit (MP) algorithm in emotion recognition. Methods:...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 355
SubjectTerms Accuracy
Adult
Algorithms
Arousal
Classification
Decomposition
Dictionaries
Discrete cosine transform
Discriminant analysis
EKG
Electrocardiogram
Electrocardiography
Electroencephalography
Emotion recognition
Emotions
Entropy
Female
Fourier transforms
Galvanic Skin Response
Galvanic skin responses
Heart
Humans
Matching
Matching pursuit
Music
Neural networks
Neural Networks (Computer)
Original
Physiology
Principal Component Analysis
Principal components analysis
Probabilistic neural network
Quadrants
Respiration
Skin
Sleep
Statistical analysis
Time series
Wavelet transforms
SummonAdditionalLinks – databaseName: Open Access: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB5KLu2lNLRN1KRhC7m0oMSWVl7tMQl5EEgPbQI5FMTsQ22MkU1sUfrvO7MrKzYNyaUny9YDeWaW-Yb5dj6AfXQEG0ZGpV57TwXKkIXcXZlKTZV2jWjR8W7kq6-jixt5eVvcrkh9MScsjgeOhjsstcrtoHAlAQeJRqNXLjdlZpSXmKmwj5zS2EoxRZGUhY7RQz9PShZoCkKrGe_akUM16HqWkexlxszyUgc80LPTh1nmqDDK_zH8-S-N8mXbzPDPb5xMVnLU2Rt43YFLcRT_1Ca88M1b-HHUCLS25ZkQwkfVHtHzhug4DnMWzID_KU5PzgU2Tpx__yaY20HRGb4TsA2sSzFr7-ft3UJE6el3cHN2en1ykXaaCqktitEipXSU-2KIxuSItc8N6oFmMnhdlwy0tZEO_Yi7ddJbBgA6o4oqL2rCWbbO8_ew0Uwbvw1iQI4gcEMfnkCVdYbcqpHyPXm9cMomcLi0YmW7geOsezGplsyycWXGFdud6hAm1yXwub9jFodtPHHtMTumv47HZIcfKHiqLniq54Ingd2lW6tu7c4rAkFloShLywQ-9adp1XErBRs_becs3kmFLretE9iKUdC_SaYl1_06AbUWH2uvun6mufsVJnsTtioJLyXwpY-kZw3x4X8YYgde8SMjT2cXNhb3rf9IaGth9sLC-gv8KiNC
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1dT9swFL1iILG9TAP2kY0hI_HCpIw2cer4aWKIFiGxhwESD5MifwWoqrRrG03797vXccKqTfDUj7iSax_bx77H9wAcKIu0YaBF7KRzuEHpk5G7zWMucaddKmWUpdvIF98GZ9f8_Ca7CQduiyCrbOdEP1HbqaEz8iNcmvJM4NzJv8x-xuQaRdHVYKHxDDb6CSKJbooPRy2eEh83eojqcU42TYFu-5k6R77jzZMTusvD-6IXIpmNBEyPSfslPlOaz-Aa065cPsH__1jpv-LK53U1U79_qcnkr5Vr-ApeBsrJjhuMbMGaq7Zh8yIE1bdhw3s978CP44opY2pKHsFcY-_DOoERvm-yPjOSyt-y05MRU5Vlo8vvjEQgCGP_GRmwl2eyWT1f1PdL1nhUv4br4enVyVkczBdik2WDZYzrVuqyvtI6Vap0qVayJ0k1XpY5MXKpuVVuQGE97gwxBZng1ivNSmxSU6bpG1ivppV7B6wnLKXdwxeH7MtYjf0vFRIDhEdmhYngqG3YwoTM5GSQMSlaCdq40OOCugI3LKTCi-Cw-8WsycrxSNmv1FddOcqn7b-Yzm-LMDyLXIrU9DKLgEi5wto5rLPOEy0cV4kQEey2PV2EQb4oHiAZwX73GIcnxVxU5ab1glw-cUdM8e0I3jbA6GqSSE4HBDICsQKZlaquPqnu73wKcCRhORKrCD514HqyId4__h8-wAsq3Eh1dmF9Oa_dRyRcS73nR9Uf9SQjqg
  priority: 102
  providerName: ProQuest
Title An accurate emotion recognition system using ECG and GSR signals and matching pursuit method
URI https://www.ncbi.nlm.nih.gov/pubmed/29433839
https://www.proquest.com/docview/2158579904
https://www.proquest.com/docview/2001910245
https://pubmed.ncbi.nlm.nih.gov/PMC6138614
https://doi.org/10.1016/j.bj.2017.11.001
https://doaj.org/article/8973c05d81634ab9ae7d3b82b7e4a277
UnpaywallVersion publishedVersion
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2320-2890
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816103
  issn: 2320-2890
  databaseCode: KQ8
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2320-2890
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816103
  issn: 2320-2890
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2320-2890
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816103
  issn: 2320-2890
  databaseCode: DOA
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2320-2890
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044731628
  issn: 2319-4170
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2320-2890
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816103
  issn: 2320-2890
  databaseCode: AKRWK
  dateStart: 20151201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2320-2890
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816103
  issn: 2320-2890
  databaseCode: RPM
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 2320-2890
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816103
  issn: 2320-2890
  databaseCode: 7X7
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2320-2890
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816103
  issn: 2320-2890
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2320-2890
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816103
  issn: 2320-2890
  databaseCode: 8FG
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD6CVoKnwbgGbZWReAEppc2ljh-7qe3E1GoqVBQJKbIdB9ZVWbUmQvDAb985ThqRMXF5ydWJnPhY_o7P5-8AvJIJwoaB4q4RxqCD0qdE7knkBgI97VRKLRNajTydDU4WwbtluKzmO2gtTCN-b3lYakUELN4lrU1aqNUeUCipBe3F7Gz4yeaO61Mw0-aF82hBMMXOqojkba9ojEBWqP82dPk7SfJ-kW3k929yvf5lBBo_KOWQtla4kIgnF90iV13944as47983EPYq2AoG5Z2sw93TPYI7k2rQPtj-DzMmNS6ICEJZspUP6wmG-FxqQDNiDb_hY2OJ0xmCZu8nzMihKBJ23NEw5aqyTbF1bY4z1mZr_oJLMajD8cnbpWIwdVhOMhdHMN8E_alUr6UqfGVFD1BDPI0jQidCxUk0th2CYwm1CA8dMP8MEVwplPffwqt7DIzz4H1eEISfLgziMR0otAWhESQgKYSJlw78HbXOLGuVMopWcY63tHRVrFaxfTT0HkhRp4Dr-snNqVCxx_KHlF71-VIW9tewFaJq64aR4L7uhcmEULVQGLtDNZZRZ7iJpAe5w4c7Kwlrjr8NkbkFIUch_bAgZf1beyqFH-RmbkstpTxE71jinU78Kw0rromnghoskA4wBtm16hq8052_tXKgSMgixBkOfCmNtC__ogX_1P4AFr5VWEOEX3lqgN3-ZLjNhpPOtAens4_nuL-aDQ7m3fsjAZupz9HnaqDXgN3py_p
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VrUS5ICgvQ4FFggNIpom9znoPCJXSNqVND9BKOSCZfbk0ipyQxKr6p_iNzKwfJQKVU0952JbW3tmZb3Y-zwfwSlmEDT0tQiedwwSlS0LuNg25xEw7V8ooS28jD457_VP-eZgMV-BX8y4M0Sobn-gdtZ0Y2iPfwtCUJgJ9J_8w_RmSahRVVxsJjcosDt3lBaZs8_cHn3B-X0fR3u7JTj-sVQVCkyS9RYgOOXZJV2kdK5W7WCvZkUSHzvOUoKbU3CrXo3oVd4ZCoIwwp4iTHJGGyWkDFF3-Go87nHr1i2EbviNfp7qqInJOslA1vPeRIUV85cWaI3p3iHdFp66cVpQzPSKumXhHbUVrlZomUnpBgX-h4L_JnOtlMVWXF2o8_iNS7t2FOzXEZduVTd6DFVdswK1BXcTfgDWvLX0fvm0XTBlTUrMK5io5IdYSmvB71WWaETX_jO3u7DNVWLb_9Qsj0gkuG_8bEbeng7JpOZuX5wtWaWI_gNMbmZaHsFpMCvcYWEdYavOHHw7RnrEa7U0qBCJojokVJoCt5sFmpu6EToIc46yhvI0yPcpoKjBBItZfAG_aK6ZVF5Brzv1Ic9WeR_27_R-T2VlWu4MslSI2ncSiQcRc4egcjlmnkRaOq0iIADabmc5qpzLPrpZAAC_bw-gOqMajCjcp56Qqihk41dMDeFQZRjuSSHLakJABiCWTWRrq8pHi_IdvOY6gL0UgF8Db1rj--yCeXH8PL2C9fzI4yo4Ojg-fwm26sKIJbcLqYla6Zwj2Fvq5X2EMvt_0kv4NZNNfFg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zi9RAEC5kFvTJ-4is0oIvChlnckynH8dlD4RdRB1YQQjVR9Ydh-ywkyD6663q9ASji8dTju6ETrqa_qrr668AnqMl2DDTMnbKOXJQppzI3RZxpsjTrhANWt6NfHwyO1pkb07z07DewXthBvF7z8PSSyZgyTFrbfJGrZ0Zh5JGsLM4eTv_6HPHTTmY6fPCJbwhmGNnISJ51SsGM5AX6r8KXf5OkrzR1mv89hVXq59moINbnRzSxgsXMvHky7ht9Nh8_0XW8V8-7jbcDDBUzDu7uQPXXH0Xrh-HQPs9-DSvBRrTspCEcF2qH9GTjei8U4AWTJs_E_t7hwJrKw7fvxNMCCGT9teEhj1VU6zby0173oguX_V9WBzsf9g7ikMihtjk-ayJaQ5LXT5FrVPEyqUa1UQxg7yqCkbnSmcWne-XzBlGDSohNyzNKwJnpkrTBzCqL2r3CMREWpbgo4MjJGasJltQSCCBTCW30kTwats5pQkq5ZwsY1Vu6WjLUi9L_mnkvDAjL4IX_RPrTqHjD3Vfc3_39Vhb29-gXinDUC0LJVMzyW1BUDVDap2jNusi0dJlmEgZwe7WWsow4DclIacilzS1ZxE864tpqHL8BWt30W444yd5xxzrjuBhZ1x9SxKV8WKBikAOzG7Q1GFJff7Zy4ETICsIZEXwsjfQv_6Ix_9TeRdGzWXrnhD6avTTMPB-AJ4-KLk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+accurate+emotion+recognition+system+using+ECG+and+GSR+signals+and+matching+pursuit+method&rft.jtitle=Biomedical+journal&rft.au=Goshvarpour%2C+Atefeh&rft.au=Abbasi%2C+Ataollah&rft.au=Goshvarpour%2C+Ateke&rft.date=2017-12-01&rft.pub=Elsevier+Limited&rft.issn=2319-4170&rft.eissn=2320-2890&rft.volume=40&rft.issue=6&rft.spage=355&rft_id=info:doi/10.1016%2Fj.bj.2017.11.001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2319-4170&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2319-4170&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2319-4170&client=summon