Susceptibility to winter vomiting disease: a sweet matter

SUMMARY Norovirus, the cause of winter vomiting disease, has emerged in recent years to be a major cause of sporadic and epidemic gastroenteritis worldwide. The virus has been estimated to cause >200 000 deaths each year in developing countries. Although the virus is highly contagious, volunteer...

Full description

Saved in:
Bibliographic Details
Published inReviews in medical virology Vol. 21; no. 6; pp. 370 - 382
Main Authors Rydell, Gustaf E., Kindberg, Elin, Larson, Göran, Svensson, Lennart
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.11.2011
Wiley Periodicals Inc
Subjects
Online AccessGet full text
ISSN1052-9276
1099-1654
1099-1654
DOI10.1002/rmv.704

Cover

Abstract SUMMARY Norovirus, the cause of winter vomiting disease, has emerged in recent years to be a major cause of sporadic and epidemic gastroenteritis worldwide. The virus has been estimated to cause >200 000 deaths each year in developing countries. Although the virus is highly contagious, volunteer and field studies have shown that a subset of individuals appears resistant to infections. A single nucleotide mutation (G428A) in the fucosyltransferase gene (FUT2) on chromosome 19 provides strong protection from infection in 20% of the white population. Histo‐blood group ABO(H) antigens with terminal fucose are believed to function as receptors for human norovirus in the gastrointestinal tract, but also negatively charged potential receptors have been identified. Norovirus infection is a unique example where a single nucleotide mutation in a fucosyltransferase gene plays a crucial role in susceptibility to one of the most common viral diseases. This review discusses the role of host genetics and carbohydrate structures in susceptibility to winter vomiting disease. Copyright © 2011 John Wiley & Sons, Ltd.
AbstractList SUMMARY Norovirus, the cause of winter vomiting disease, has emerged in recent years to be a major cause of sporadic and epidemic gastroenteritis worldwide. The virus has been estimated to cause >200000 deaths each year in developing countries. Although the virus is highly contagious, volunteer and field studies have shown that a subset of individuals appears resistant to infections. A single nucleotide mutation (G428A) in the fucosyltransferase gene (FUT2) on chromosome 19 provides strong protection from infection in 20% of the white population. Histo-blood group ABO(H) antigens with terminal fucose are believed to function as receptors for human norovirus in the gastrointestinal tract, but also negatively charged potential receptors have been identified. Norovirus infection is a unique example where a single nucleotide mutation in a fucosyltransferase gene plays a crucial role in susceptibility to one of the most common viral diseases. This review discusses the role of host genetics and carbohydrate structures in susceptibility to winter vomiting disease.
Norovirus, the cause of winter vomiting disease, has emerged in recent years to be a major cause of sporadic and epidemic gastroenteritis worldwide. The virus has been estimated to cause >200,000 deaths each year in developing countries. Although the virus is highly contagious, volunteer and field studies have shown that a subset of individuals appears resistant to infections. A single nucleotide mutation (G428A) in the fucosyltransferase gene (FUT2) on chromosome 19 provides strong protection from infection in 20% of the white population. Histo-blood group ABO(H) antigens with terminal fucose are believed to function as receptors for human norovirus in the gastrointestinal tract, but also negatively charged potential receptors have been identified. Norovirus infection is a unique example where a single nucleotide mutation in a fucosyltransferase gene plays a crucial role in susceptibility to one of the most common viral diseases. This review discusses the role of host genetics and carbohydrate structures in susceptibility to winter vomiting disease.Norovirus, the cause of winter vomiting disease, has emerged in recent years to be a major cause of sporadic and epidemic gastroenteritis worldwide. The virus has been estimated to cause >200,000 deaths each year in developing countries. Although the virus is highly contagious, volunteer and field studies have shown that a subset of individuals appears resistant to infections. A single nucleotide mutation (G428A) in the fucosyltransferase gene (FUT2) on chromosome 19 provides strong protection from infection in 20% of the white population. Histo-blood group ABO(H) antigens with terminal fucose are believed to function as receptors for human norovirus in the gastrointestinal tract, but also negatively charged potential receptors have been identified. Norovirus infection is a unique example where a single nucleotide mutation in a fucosyltransferase gene plays a crucial role in susceptibility to one of the most common viral diseases. This review discusses the role of host genetics and carbohydrate structures in susceptibility to winter vomiting disease.
SUMMARY Norovirus, the cause of winter vomiting disease, has emerged in recent years to be a major cause of sporadic and epidemic gastroenteritis worldwide. The virus has been estimated to cause >200 000 deaths each year in developing countries. Although the virus is highly contagious, volunteer and field studies have shown that a subset of individuals appears resistant to infections. A single nucleotide mutation (G428A) in the fucosyltransferase gene (FUT2) on chromosome 19 provides strong protection from infection in 20% of the white population. Histo‐blood group ABO(H) antigens with terminal fucose are believed to function as receptors for human norovirus in the gastrointestinal tract, but also negatively charged potential receptors have been identified. Norovirus infection is a unique example where a single nucleotide mutation in a fucosyltransferase gene plays a crucial role in susceptibility to one of the most common viral diseases. This review discusses the role of host genetics and carbohydrate structures in susceptibility to winter vomiting disease. Copyright © 2011 John Wiley & Sons, Ltd.
Norovirus, the cause of winter vomiting disease, has emerged in recent years to be a major cause of sporadic and epidemic gastroenteritis worldwide. The virus has been estimated to cause >200,000 deaths each year in developing countries. Although the virus is highly contagious, volunteer and field studies have shown that a subset of individuals appears resistant to infections. A single nucleotide mutation (G428A) in the fucosyltransferase gene (FUT2) on chromosome 19 provides strong protection from infection in 20% of the white population. Histo-blood group ABO(H) antigens with terminal fucose are believed to function as receptors for human norovirus in the gastrointestinal tract, but also negatively charged potential receptors have been identified. Norovirus infection is a unique example where a single nucleotide mutation in a fucosyltransferase gene plays a crucial role in susceptibility to one of the most common viral diseases. This review discusses the role of host genetics and carbohydrate structures in susceptibility to winter vomiting disease.
Norovirus, the cause of winter vomiting disease, has emerged in recent years to be a major cause of sporadic and epidemic gastroenteritis worldwide. The virus has been estimated to cause >200 000 deaths each year in developing countries. Although the virus is highly contagious, volunteer and field studies have shown that a subset of individuals appears resistant to infections. A single nucleotide mutation (G428A) in the fucosyltransferase gene ( FUT2 ) on chromosome 19 provides strong protection from infection in 20% of the white population. Histo‐blood group ABO(H) antigens with terminal fucose are believed to function as receptors for human norovirus in the gastrointestinal tract, but also negatively charged potential receptors have been identified. Norovirus infection is a unique example where a single nucleotide mutation in a fucosyltransferase gene plays a crucial role in susceptibility to one of the most common viral diseases. This review discusses the role of host genetics and carbohydrate structures in susceptibility to winter vomiting disease. Copyright © 2011 John Wiley & Sons, Ltd.
SUMMARY Norovirus, the cause of winter vomiting disease, has emerged in recent years to be a major cause of sporadic and epidemic gastroenteritis worldwide. The virus has been estimated to cause >200000 deaths each year in developing countries. Although the virus is highly contagious, volunteer and field studies have shown that a subset of individuals appears resistant to infections. A single nucleotide mutation (G428A) in the fucosyltransferase gene (FUT2) on chromosome 19 provides strong protection from infection in 20% of the white population. Histo-blood group ABO(H) antigens with terminal fucose are believed to function as receptors for human norovirus in the gastrointestinal tract, but also negatively charged potential receptors have been identified. Norovirus infection is a unique example where a single nucleotide mutation in a fucosyltransferase gene plays a crucial role in susceptibility to one of the most common viral diseases. This review discusses the role of host genetics and carbohydrate structures in susceptibility to winter vomiting disease. Copyright © 2011 John Wiley & Sons, Ltd.
Norovirus, the cause of winter vomiting disease, has emerged in recent years to be a major cause of sporadic and epidemic gastroenteritis worldwide. The virus has been estimated to cause andgt;200 000 deaths each year in developing countries. Although the virus is highly contagious, volunteer and field studies have shown that a subset of individuals appears resistant to infections. A single nucleotide mutation (G428A) in the fucosyltransferase gene (FUT2) on chromosome 19 provides strong protection from infection in 20% of the white population. Histo-blood group ABO(H) antigens with terminal fucose are believed to function as receptors for human norovirus in the gastrointestinal tract, but also negatively charged potential receptors have been identified. Norovirus infection is a unique example where a single nucleotide mutation in a fucosyltransferase gene plays a crucial role in susceptibility to one of the most common viral diseases. This review discusses the role of host genetics and carbohydrate structures in susceptibility to winter vomiting disease.
Author Svensson, Lennart
Larson, Göran
Kindberg, Elin
Rydell, Gustaf E.
Author_xml – sequence: 1
  givenname: Gustaf E.
  surname: Rydell
  fullname: Rydell, Gustaf E.
  organization: Dept. of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
– sequence: 2
  givenname: Elin
  surname: Kindberg
  fullname: Kindberg, Elin
  organization: Div. of Molecular Virology, Medical Faculty, University of Linköping, Linköping, Sweden
– sequence: 3
  givenname: Göran
  surname: Larson
  fullname: Larson, Göran
  organization: Dept. of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
– sequence: 4
  givenname: Lennart
  surname: Svensson
  fullname: Svensson, Lennart
  email: lennart.t.svensson@liu.se, L. Svensson, Molecular Virology, Clinical and Experimental medicine, University of Linköping, Sweden., lennart.t.svensson@liu.se
  organization: Div. of Molecular Virology, Medical Faculty, University of Linköping, Linköping, Sweden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22025362$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-72820$$DView record from Swedish Publication Index
https://gup.ub.gu.se/publication/150133$$DView record from Swedish Publication Index
BookMark eNp90VtrFDEUB_AgFXtR_AYy4IOCTs1tkkzfSmsvUCu2Wh8PmZnMkjozGZNM1_32zbLbLSiVPCSEH-ck57-LtgY3GIReE7xPMKaffH-3LzF_hnYILsuciIJvLc8FzUsqxTbaDeEWY5IWf4G2KcW0YILuoPJ6CrUZo61sZ-Miiy6b2yEan9253kY7zLLGBqODOch0FubGxKzXMYGX6Hmru2Berfc99OPk8_ejs_zi6-n50eFFXheF4LkqG6GEqjlndStpaypNaVMpXQmKlWIVM5Rh0TDaatEYxnRdFg3VdUMazBVjeyhf1U3Nx6mC0dte-wU4bWE2jZCuZhMEA6TAhC39xyf9sb05BOdn0NkJJFUUJ_5uxUfvfk8mROhtmkjX6cG4KUCJseCUM5Lk-__KNFxZSio5TfTtX_TWTX5IYwIihVA8ZaKSerNWU9WbZvPSh3Qev157F4I3LdQ26mjdEL22XeoIy_QhpQ8p_ce_bPxDyX_lh5Wc284snmJw9eVmpdfvsCGaPxut_S8QkskCfl6egvomjq8vryRIdg_9pcqw
CitedBy_id crossref_primary_10_1016_j_virusres_2015_10_005
crossref_primary_10_1002_ange_201205972
crossref_primary_10_1016_j_vaccine_2015_09_043
crossref_primary_10_1021_acs_jpcb_5b04160
crossref_primary_10_5937_sanamed0_51776
crossref_primary_10_1016_j_pt_2016_09_010
crossref_primary_10_1111_j_1469_0691_2012_03968_x
crossref_primary_10_1088_1478_3975_9_2_026011
crossref_primary_10_1128_CMR_00075_14
crossref_primary_10_1371_journal_pone_0069557
crossref_primary_10_1186_s12879_016_1455_9
crossref_primary_10_3390_molecules24061004
crossref_primary_10_1371_journal_pone_0179839
crossref_primary_10_1099_vir_0_000194
crossref_primary_10_1016_j_bbagen_2015_12_026
crossref_primary_10_7717_peerj_8013
crossref_primary_10_1002_jmv_28028
crossref_primary_10_1038_nature11551
crossref_primary_10_1093_glycob_cws115
crossref_primary_10_1002_eji_201545512
crossref_primary_10_1186_1746_6148_8_107
crossref_primary_10_1097_TP_0000000000002015
crossref_primary_10_1002_anie_201205972
crossref_primary_10_1016_j_bbamem_2013_03_016
crossref_primary_10_1021_acschembio_7b00152
crossref_primary_10_1016_j_carres_2013_03_012
crossref_primary_10_1093_infdis_jiz693
crossref_primary_10_3390_molecules25184084
crossref_primary_10_1021_acs_biomac_8b00829
crossref_primary_10_1093_cid_ciu633
crossref_primary_10_1093_infdis_jiu362
crossref_primary_10_1186_s12879_023_08592_3
crossref_primary_10_1016_j_antiviral_2016_07_006
crossref_primary_10_3201_eid1811_111581
crossref_primary_10_1038_srep45559
crossref_primary_10_1016_j_cmi_2015_05_015
crossref_primary_10_1016_j_watres_2014_01_060
crossref_primary_10_1128_mmbr_00094_23
crossref_primary_10_1586_erv_12_78
crossref_primary_10_1371_journal_ppat_1005385
crossref_primary_10_1002_rmv_1705
crossref_primary_10_1038_s41467_024_52890_6
crossref_primary_10_1186_1559_4106_8_4
crossref_primary_10_1007_s00216_021_03510_5
crossref_primary_10_1111_trf_17170
crossref_primary_10_1128_JVI_00567_17
Cites_doi 10.1016/j.cell.2006.02.007
10.1128/JVI.78.6.3035-3045.2004
10.1128/JVI.00135-08
10.3390/v2041011
10.1126/science.1098801
10.1016/j.femsle.2005.08.031
10.1016/S0016-5085(75)80077-1
10.1128/JVI.02245-08
10.1128/JCM.43.9.4391-4401.2005
10.1038/nature05996
10.1128/JVI.79.11.6714-6722.2005
10.1128/JCM.00499-08
10.1128/JVI.00674-07
10.1007/s10096-005-1310-1
10.1128/jvi.10.5.1075-1081.1972
10.1016/j.tvjl.2007.11.012
10.1074/jbc.270.9.4640
10.1128/JVI.00802-08
10.1128/JVI.76.23.12335-12343.2002
10.1371/journal.pmed.0050031
10.1136/gut.2003.033563
10.1056/NEJM197707142970204
10.1016/j.virol.2008.12.021
10.1080/07853890510007340
10.1016/0014-5793(84)81359-9
10.1086/605127
10.1136/gut.2008.160150
10.1086/375742
10.1128/JVI.77.24.13117-13124.2003
10.1093/infdis/170.1.34
10.1126/science.287.5452.491
10.1093/infdis/129.6.709
10.1034/j.1600-0463.2000.d01-1.x
10.1128/JCM.44.2.327-333.2006
10.1086/339883
10.1099/vir.0.19478-0
10.1093/infdis/123.3.307
10.1016/S0300-9084(01)01321-9
10.1097/01.MPG.0000155182.54001.48
10.3201/eid1301.060800
10.1126/science.286.5438.287
10.1002/jmv.21237
10.1002/jmv.21426
10.1371/journal.ppat.1000504
10.1007/BF01053194
10.1038/ncb1999
10.1086/508430
10.7326/0003-4819-92-3-370
10.11150/kansenshogakuzasshi1970.79.664
10.1128/jvi.66.11.6527-6532.1992
10.1086/375829
10.1007/s10719-009-9237-x
10.1016/j.virol.2008.06.041
10.1073/pnas.0803275105
10.1128/JVI.00864-09
10.1093/glycob/cwn139
10.1093/oxfordjournals.aje.a113288
10.1038/nm860
10.3201/eid1601.090633
10.1128/JVI.79.5.2900-2909.2005
10.1016/j.virol.2005.11.015
10.1128/JVI.00219-07
10.3201/eid1112.050485
10.7326/0003-4819-79-1-18
10.1016/0076-6879(87)38019-X
10.1111/j.1423-0410.1996.tb00991.x
10.1128/JVI.79.24.15351-15355.2005
10.1099/vir.0.005082-0
10.1002/jmv.21217
10.3201/eid1410.080188
10.1093/infdis/161.1.18
10.1016/S1246-7820(05)80089-8
10.1086/591627
10.3201/eid1410.080117
10.1002/jmv.21200
10.1016/j.jcv.2003.10.007
10.1002/jmv.21344
10.1128/jcm.31.8.2185-2191.1993
10.1007/s10822-010-9353-5
10.1086/432546
10.1056/NEJM197306212882503
10.1056/NEJM199404283301704
10.1128/JCM.00505-08
10.1515/BC.2009.072
10.3201/eid1408.071114
10.1128/JVI.76.6.3023-3030.2002
10.1128/JVI.02179-09
10.1128/JVI.74.14.6581-6591.2000
10.1128/AEM.00148-10
10.1128/JCM.42.5.2271-2274.2004
10.1053/gast.2002.33661
10.1093/ndt/gfn693
10.1128/JVI.02393-05
10.1086/314783
10.1111/j.1600-065X.2008.00680.x
10.1086/427779
10.1086/524145
10.1007/s10719-009-9229-x
10.1002/jmv.20423
10.1093/molbev/msp108
10.1016/S0195-6701(03)00296-2
10.1097/01.qco.0000244053.69253.3d
10.1128/JCM.00162-07
10.1093/glycob/cwp103
10.1073/pnas.88.20.9340
10.1371/journal.pone.0005593
10.1128/JVI.78.8.3817-3826.2004
10.1128/JCM.01516-07
10.1128/JVI.78.12.6469-6479.2004
10.1007/s00705-009-0528-0
10.1371/journal.pone.0005058
10.1128/JVI.77.1.405-415.2003
10.1093/infdis/129.6.705
10.1006/viro.1993.1345
10.1128/JVI.02518-08
ContentType Journal Article
Copyright Copyright © 2011 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2011 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7U9
8FD
FR3
H94
K9.
P64
RC3
7X8
ADTPV
AOWAS
DG8
F1U
DOI 10.1002/rmv.704
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Linköpings universitet
SWEPUB Göteborgs universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList AIDS and Cancer Research Abstracts
MEDLINE - Academic

MEDLINE
CrossRef
Genetics Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1099-1654
EndPage 382
ExternalDocumentID oai_gup_ub_gu_se_150133
oai_DiVA_org_liu_72820
3958286421
22025362
10_1002_rmv_704
RMV704
ark_67375_WNG_8Q6DSNR7_7
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Swedish Research Council
  funderid: 10392 (LS) 8266 (GL); 2010‐878 (GR)
– fundername: Sahlgrenska University Hospital (GL)
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
29P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
8CJ
8FE
8FH
8FI
8FJ
8R4
8R5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABQWH
ABUWG
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFKRA
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BMXJE
BPHCQ
BROTX
BRXPI
BSCLL
BVXVI
BY8
C45
CCPQU
CS3
D-6
D-7
D-E
D-F
D1J
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
ELTNK
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
FYUFA
G-S
G.N
GNP
GODZA
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HMCUK
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M65
M7P
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XV2
ZZTAW
~IA
~WT
3V.
88A
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALIPV
M0L
RGB
RWI
WRC
WUP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7U9
8FD
FR3
H94
K9.
P64
RC3
7X8
ADTPV
AOWAS
DG8
F1U
ID FETCH-LOGICAL-c5564-89d6868c443cf72feba22db8ab620883b3e2306d32fa6de33ac95d2acd1d04833
IEDL.DBID DR2
ISSN 1052-9276
1099-1654
IngestDate Tue Sep 09 23:39:22 EDT 2025
Tue Sep 09 23:15:38 EDT 2025
Fri Sep 05 07:55:37 EDT 2025
Thu Sep 04 15:58:04 EDT 2025
Fri Jul 25 10:56:08 EDT 2025
Mon Jul 21 06:07:18 EDT 2025
Tue Jul 01 01:06:52 EDT 2025
Thu Apr 24 23:07:00 EDT 2025
Wed Jan 22 17:12:49 EST 2025
Sun Sep 21 06:18:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2011 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5564-89d6868c443cf72feba22db8ab620883b3e2306d32fa6de33ac95d2acd1d04833
Notes istex:1EE86C8132CC478B4EA55C2C3DBA00DCFE3C1373
ArticleID:RMV704
Sahlgrenska University Hospital (GL)
Swedish Research Council - No. 10392 (LS) 8266 (GL); No. 2010-878 (GR)
ark:/67375/WNG-8Q6DSNR7-7
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Review-3
PMID 22025362
PQID 1766842768
PQPubID 30417
PageCount 13
ParticipantIDs swepub_primary_oai_gup_ub_gu_se_150133
swepub_primary_oai_DiVA_org_liu_72820
proquest_miscellaneous_900642431
proquest_miscellaneous_1017972742
proquest_journals_1766842768
pubmed_primary_22025362
crossref_citationtrail_10_1002_rmv_704
crossref_primary_10_1002_rmv_704
wiley_primary_10_1002_rmv_704_RMV704
istex_primary_ark_67375_WNG_8Q6DSNR7_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2011
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: November 2011
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: Chichester
PublicationTitle Reviews in medical virology
PublicationTitleAlternate Rev. Med. Virol
PublicationYear 2011
Publisher John Wiley & Sons, Ltd
Wiley Periodicals Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Periodicals Inc
References Koopman JS, Eckert EA, Greenberg HB, et al. Norwalk virus enteric illness acquired by swimming exposure. American Journal of Epidemiology 1982; 115: 173-177.
Patel MM, Widdowson MA, Glass RI, et al. Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerging Infectious Diseases 2008; 14: 1224-1231.
Westhoff TH, Vergoulidou M, Loddenkemper C, et al. Chronic norovirus infection in renal transplant recipients. Nephrology, Dialysis, Transplantation 2009; 24: 1051-1053.
Ravn V, Dabelsteen E. Tissue distribution of histo-blood group antigens. APMIS 2000; 108: 1-28.
Karlsson KA, Stromberg N. Overlay and solid-phase analysis of glycolipid receptors for bacteria and viruses. Methods in Enzymology 1987; 138: 220-232.
Dolin R, Blacklow NR, DuPont H, et al. Transmission of acute infectious nonbacterial gastroenteritis to volunteers by oral administration of stool filtrates. Journal of Infectious Diseases 1971; 123: 307-312.
Lindesmith L, Moe C, Lependu J, et al. Cellular and humoral immunity following Snow Mountain virus challenge. Journal of Virology 2005; 79: 2900-2909.
Zheng DP, Ando T, Fankhauser RL, et al. Norovirus classification and proposed strain nomenclature. Virology 2006; 346: 312-323.
Tan M, Jin M, Xie H, et al. Outbreak studies of a GII-3 and a GII-4 norovirus revealed an association between HBGA phenotypes and viral infection. Journal of Medical Virology 2008; 80: 1296-1301.
Miyoshi M, Yoshizumi S, Sato C, et al. [Relationship between ABO histo-blood group type and an outbreak of norovirus gastroenteritis among primary and junior high school students: results of questionnaire-based study]. Kansenshōgaku Zasshi 2005; 79: 664-671.
Marionneau S, Cailleau-Thomas A, Rocher J, et al. ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world. Biochimie 2001; 83: 565-573.
Atmar RL, Opekun AR, Gilger MA, et al. Norwalk virus shedding after experimental human infection. Emerging Infectious Diseases 2008; 14: 1553-1557.
Glass PJ, White LJ, Ball JM, et al. Norwalk virus open reading frame 3 encodes a minor structural protein. Journal of Virology 2000; 74: 6581-6591.
Harris JP, Edmunds WJ, Pebody R, et al. Deaths from norovirus among the elderly, England and Wales. Emerging Infectious Diseases 2008; 14: 1546-1552.
Marionneau S, Airaud F, Bovin NV, et al. Influence of the combined ABO, FUT2, and FUT3 polymorphism on susceptibility to Norwalk virus attachment. Journal of Infectious Diseases 2005; 192: 1071-1077.
Taube S, Jiang M, Wobus CE. Glycosphingolipids as receptors for non-enveloped viruses. Viruses 2010; 2: 1011-1049.
Hansson GC, Karlsson KA, Larson G, et al. A novel approach to the study of glycolipid receptors for viruses. Binding of Sendai virus to thin-layer chromatograms. FEBS Letters 1984; 170: 15-18.
Gallimore CI, Cubitt D, du Plessis N, et al. Asymptomatic and symptomatic excretion of noroviruses during a hospital outbreak of gastroenteritis. Journal of Clinical Microbiology 2004; 42: 2271-2274.
Rockx BH, Vennema H, Hoebe CJ, et al. Association of histo-blood group antigens and susceptibility to norovirus infections. Journal of Infectious Diseases 2005; 191: 749-754.
Zakhour M, Ruvoen-Clouet N, Charpilienne A, et al. The alphaGal epitope of the histo-blood group antigen family is a ligand for bovine norovirus Newbury2 expected to prevent cross-species transmission. PLoS Pathogens 2009; 5: e1000504.
Graham DY, Jiang X, Tanaka T, et al. Norwalk virus infection of volunteers: new insights based on improved assays. Journal of Infectious Diseases 1994; 170: 34-43.
Huang P, Morrow AL, Jiang X. The carbohydrate moiety and high molecular weight carrier of histo-blood group antigens are both required for norovirus-receptor recognition. Glycoconjugate Journal 2009; 26: 1085-1096.
Noel JS, Fankhauser RL, Ando T, et al. Identification of a distinct common strain of "Norwalk-like viruses" having a global distribution. Journal of Infectious Diseases 1999; 179: 1334-1344.
Hutson AM, Atmar RL, Graham DY, et al. Norwalk virus infection and disease is associated with ABO histo-blood group type. Journal of Infectious Diseases 2002; 185: 1335-1337.
Kapikian AZ, Wyatt RG, Dolin R, et al. Visualization by immune electron microscopy of a 27-nm particle associated with acute infectious nonbacterial gastroenteritis. Journal of Virology 1972; 10: 1075-1081.
Maalouf H, Zakhour M, Le Pendu J, et al. Distribution in tissue and seasonal variation of norovirus genogroup I and II ligands in oysters. Applied and Environmental Microbiology 2010; 76: 5621-5630.
Tan M, Xia M, Cao S, et al. Elucidation of strain-specific interaction of a GII-4 norovirus with HBGA receptors by site-directed mutagenesis study. Virology 2008; 379: 324-334.
Carlsson B, Kindberg E, Buesa J, et al. The G428A nonsense mutation in FUT2 provides strong but not absolute protection against symptomatic GII.4 Norovirus infection. PloS One 2009; 4: e5593.
Tamura M, Natori K, Kobayashi M, et al. Genogroup II noroviruses efficiently bind to heparan sulfate proteoglycan associated with the cellular membrane. Journal of Virology 2004; 78: 3817-3826.
Carlsson B, Lindberg AM, Rodriguez-Diaz J, et al. Quasispecies dynamics and molecular evolution of human norovirus capsid P region during chronic infection. Journal of General Virology 2009; 90: 432-441.
Schmidt M, Chiorini JA. Gangliosides are essential for bovine adeno-associated virus entry. Journal of Virology 2006; 80: 5516-5522.
Prasad BV, Hardy ME, Dokland T, et al. X-ray crystallographic structure of the Norwalk virus capsid. Science 1999; 286: 287-290.
Ramirez S, Giammanco GM, De Grazia S, et al. Emerging GII.4 norovirus variants affect children with diarrhea in Palermo, Italy in 2006. Journal of Medical Virology 2009; 81: 139-145.
Hennessy EP, Green AD, Connor MP, et al. Norwalk virus infection and disease is associated with ABO histo-blood group type. Journal of Infectious Diseases 2003; 188: 176-177.
Agus SG, Dolin R, Wyatt RG, et al. Acute infectious nonbacterial gastroenteritis: intestinal histopathology. Histologic and enzymatic alterations during illness produced by the Norwalk agent in man. Annals of Internal Medicine 1973; 79: 18-25.
Donaldson EF, Lindesmith LC, Lobue AD, et al. Norovirus pathogenesis: mechanisms of persistence and immune evasion in human populations. Immunological Reviews 2008; 225: 190-211.
Kelly RJ, Rouquier S, Giorgi D, et al. Sequence and expression of a candidate for the human secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. Journal of Biological Chemistry 1995; 270: 4640-4649.
Troeger H, Loddenkemper C, Schneider T, et al. Structural and functional changes of the duodenum in human norovirus infection. Gut 2009; 58: 1070-1077.
Siebenga JJ, Vennema H, Renckens B, et al. Epochal evolution of GGII.4 norovirus capsid proteins from 1995 to 2006. Journal of Virology 2007; 81: 9932-9941.
Romer W, Berland L, Chambon V, et al. Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 2007; 450: 670-675.
Lundgren O, Peregrin AT, Persson K, et al. Role of the enteric nervous system in the fluid and electrolyte secretion of rotavirus diarrhea. Science 2000; 287: 491-495.
Green KY, Lew JF, Jiang X, et al. Comparison of the reactivities of baculovirus-expressed recombinant Norwalk virus capsid antigen with those of the native Norwalk virus antigen in serologic assays and some epidemiologic observations. Journal of Clinical Microbiology 1993; 31: 2185-2191.
Huang P, Farkas T, Marionneau S, et al. Noroviruses bind to human ABO, Lewis, and secretor histo-blood group antigens: identification of 4 distinct strain-specific patterns. Journal of Infectious Diseases 2003; 188: 19-31.
Henry S, Mollicone R, Lowe JB, et al. A second nonsecretor allele of the blood group alpha(1,2)fucosyl-transferase gene (FUT2). Vox Sanguinis 1996; 70: 21-25.
Kroneman A, Verhoef L, Harris J, et al. Analysis of integrated virological and epidemiological reports of norovirus outbreaks collected within the Foodborne Viruses in Europe network from 1 July 2001 to 30 June 2006. Journal of Clinical Microbiology 2008; 46: 2959-2965.
Lindesmith L, Moe C, Marionneau S, et al. Human susceptibility and resistance to Norwalk virus infection. Nature Medicine 2003; 9: 548-553.
Nilsson M, Hedlund KO, Thorhagen M, et al. Evolution of human calicivirus RNA in vivo: accumulation of mutations in the protruding P2 domain of the capsid leads to structural changes and possibly a new phenotype. Journal of Virology 2003; 77: 13117-13124.
Lindesmith LC, Donaldson EF, Lobue AD, et al. Mechanisms of GII.4 norovirus persistence in human populations. PLoS Medicine 2008; 5: e31.
Scipioni A, Mauroy A, Vinje J, et al. Animal noroviruses. Veterinary Journal 2008; 178: 32-45.
Bu W, Mamedova A, Tan M, et al. Structural basis for the receptor binding specificity of Norwalk virus. Journal of Virology 2008; 82: 5340-5347.
Olofsson S, Bergstrom T. Glycoconjugate glycans as viral receptors. Annals of Medicine 2005; 37: 154-172.
Siebenga JJ, Vennema H, Zheng DP, et al. Norovirus illness is a global problem: emergence and spread of norovirus GII.4 variants, 2001-2007. Journal of Infectious Diseases 2009; 200: 802-812.
Gallimore CI, Lewis D, Taylor C, et al. Chronic excretion of a norovirus in a child with cartilage hair hypoplasia (CHH). Journal of Clinical Virology 2004; 30: 196-204.
Bull RA, Tu ET, McIver CJ, et al. Emergence of a new norovirus genotype II.4 variant associated with global outbreaks of gastroenteritis. Journal of Clinical Microbiology 2006; 44: 327-333.
Harrington PR, Vinje J, Moe CL, et al. Norovirus capture with histo-blood group antigens reveals novel virus-ligand interactions. Journal of Virology 2004; 78: 3035-3045.
Andre S, Kozar T, Kojima S, et al. From structural to functional glycomics: core substitutions as molecular switches for shape and lectin affinity
2010; 12
1994; 330
2010; 16
2005; 253
2009; 81
1994; 170
2009; 83
1999; 286
2008; 5
2008; 105
1971; 123
2008; 225
1980; 92
1996; 70
2005; 24
2004; 30
2009; 58
2010; 24
1991; 88
2002; 185
2009; 90
1993; 31
2004; 78
2003; 9
2007; 450
2010; 155
2009; 200
1972; 10
1999; 179
2000; 287
2005; 37
2010; 2
2009; 19
2008; 198
2008; 197
2005; 77
2005; 79
1977; 297
2006; 124
2005; 191
1973; 288
2004; 85
2005; 192
2010; 76
2009; 24
2004; 42
1973; 79
2002; 76
2008; 14
2005; 40
2006; 19
2005; 43
1974; 129
1993
2006; 194
1995; 2
1996; 13
2004; 305
2007; 13
1995; 270
2009; 26
2010; 84
2003; 77
1990; 161
1984; 170
2001; 83
2006; 80
2004; 53
1987; 138
2009; 390
2006; 44
2000; 74
2002; 122
2000; 108
2004; 56
1975; 68
1993; 195
2008; 46
2007; 81
1982; 115
2008; 379
2009; 5
2009; 4
2009; 384
2008; 178
2006; 346
1992; 66
2007; 45
2008; 82
2005; 11
2003; 188
2008; 80
e_1_2_16_23_1
e_1_2_16_46_1
e_1_2_16_27_1
e_1_2_16_117_1
e_1_2_16_42_1
e_1_2_16_88_1
e_1_2_16_65_1
e_1_2_16_113_1
e_1_2_16_84_1
e_1_2_16_61_1
e_1_2_16_80_1
e_1_2_16_101_1
e_1_2_16_15_1
e_1_2_16_38_1
e_1_2_16_19_1
e_1_2_16_34_1
e_1_2_16_57_1
e_1_2_16_30_1
e_1_2_16_53_1
e_1_2_16_76_1
e_1_2_16_99_1
e_1_2_16_105_1
e_1_2_16_11_1
e_1_2_16_109_1
e_1_2_16_95_1
e_1_2_16_72_1
e_1_2_16_91_1
e_1_2_16_9_1
e_1_2_16_112_1
e_1_2_16_5_1
e_1_2_16_26_1
e_1_2_16_49_1
e_1_2_16_45_1
e_1_2_16_68_1
e_1_2_16_41_1
e_1_2_16_64_1
e_1_2_16_87_1
e_1_2_16_22_1
e_1_2_16_60_1
e_1_2_16_83_1
e_1_2_16_114_1
Mollison PL (e_1_2_16_56_1) 1993
e_1_2_16_14_1
e_1_2_16_18_1
e_1_2_16_37_1
e_1_2_16_79_1
e_1_2_16_98_1
e_1_2_16_52_1
e_1_2_16_33_1
e_1_2_16_75_1
e_1_2_16_102_1
e_1_2_16_71_1
e_1_2_16_94_1
e_1_2_16_10_1
e_1_2_16_106_1
e_1_2_16_8_1
e_1_2_16_90_1
e_1_2_16_25_1
e_1_2_16_29_1
e_1_2_16_67_1
e_1_2_16_48_1
e_1_2_16_63_1
e_1_2_16_44_1
e_1_2_16_86_1
e_1_2_16_21_1
e_1_2_16_115_1
e_1_2_16_40_1
e_1_2_16_82_1
Jiang X (e_1_2_16_20_1) 1992; 66
Kapikian AZ (e_1_2_16_4_1) 1972; 10
Green KY (e_1_2_16_69_1) 1993; 31
e_1_2_16_13_1
e_1_2_16_17_1
e_1_2_16_36_1
e_1_2_16_59_1
e_1_2_16_78_1
e_1_2_16_32_1
e_1_2_16_55_1
e_1_2_16_74_1
e_1_2_16_103_1
e_1_2_16_97_1
e_1_2_16_70_1
e_1_2_16_51_1
e_1_2_16_107_1
e_1_2_16_93_1
e_1_2_16_7_1
e_1_2_16_110_1
e_1_2_16_3_1
e_1_2_16_24_1
e_1_2_16_28_1
e_1_2_16_47_1
e_1_2_16_89_1
e_1_2_16_2_1
e_1_2_16_43_1
e_1_2_16_66_1
e_1_2_16_85_1
e_1_2_16_62_1
e_1_2_16_81_1
e_1_2_16_116_1
e_1_2_16_100_1
e_1_2_16_39_1
e_1_2_16_12_1
e_1_2_16_35_1
e_1_2_16_16_1
e_1_2_16_58_1
e_1_2_16_31_1
e_1_2_16_77_1
e_1_2_16_104_1
e_1_2_16_96_1
e_1_2_16_54_1
e_1_2_16_73_1
e_1_2_16_108_1
e_1_2_16_92_1
e_1_2_16_50_1
e_1_2_16_111_1
e_1_2_16_6_1
References_xml – reference: Gallimore CI, Lewis D, Taylor C, et al. Chronic excretion of a norovirus in a child with cartilage hair hypoplasia (CHH). Journal of Clinical Virology 2004; 30: 196-204.
– reference: Bu W, Mamedova A, Tan M, et al. Structural basis for the receptor binding specificity of Norwalk virus. Journal of Virology 2008; 82: 5340-5347.
– reference: Jiang X, Wang M, Wang K, et al. Sequence and genomic organization of Norwalk virus. Virology 1993; 195: 51-61.
– reference: Choi JM, Hutson AM, Estes MK, et al. Atomic resolution structural characterization of recognition of histo-blood group antigens by Norwalk virus. Proceedings of the National Academy of Sciences of the United States of America 2008; 105: 9175-9180.
– reference: Siebenga JJ, Beersma MF, Vennema H, et al. High prevalence of prolonged norovirus shedding and illness among hospitalized patients: a model for in vivo molecular evolution. Journal of Infectious Diseases 2008; 198: 994-1001.
– reference: Troeger H, Loddenkemper C, Schneider T, et al. Structural and functional changes of the duodenum in human norovirus infection. Gut 2009; 58: 1070-1077.
– reference: Jiang X, Wang M, Graham DY, et al. Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. Journal of Virology 1992; 66: 6527-6532.
– reference: Carlsson B, Kindberg E, Buesa J, et al. The G428A nonsense mutation in FUT2 provides strong but not absolute protection against symptomatic GII.4 Norovirus infection. PloS One 2009; 4: e5593.
– reference: Maalouf H, Zakhour M, Le Pendu J, et al. Distribution in tissue and seasonal variation of norovirus genogroup I and II ligands in oysters. Applied and Environmental Microbiology 2010; 76: 5621-5630.
– reference: Hennessy EP, Green AD, Connor MP, et al. Norwalk virus infection and disease is associated with ABO histo-blood group type. Journal of Infectious Diseases 2003; 188: 176-177.
– reference: Marionneau S, Cailleau-Thomas A, Rocher J, et al. ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world. Biochimie 2001; 83: 565-573.
– reference: Kapikian AZ, Wyatt RG, Dolin R, et al. Visualization by immune electron microscopy of a 27-nm particle associated with acute infectious nonbacterial gastroenteritis. Journal of Virology 1972; 10: 1075-1081.
– reference: Huang P, Farkas T, Marionneau S, et al. Noroviruses bind to human ABO, Lewis, and secretor histo-blood group antigens: identification of 4 distinct strain-specific patterns. Journal of Infectious Diseases 2003; 188: 19-31.
– reference: Nilsson M, Hedlund KO, Thorhagen M, et al. Evolution of human calicivirus RNA in vivo: accumulation of mutations in the protruding P2 domain of the capsid leads to structural changes and possibly a new phenotype. Journal of Virology 2003; 77: 13117-13124.
– reference: Huang P, Farkas T, Zhong W, et al. Norovirus and histo-blood group antigens: demonstration of a wide spectrum of strain specificities and classification of two major binding groups among multiple binding patterns. Journal of Virology 2005; 79: 6714-6722.
– reference: Cao S, Lou Z, Tan M, et al. Structural basis for the recognition of blood group trisaccharides by norovirus. Journal of Virology 2007; 81: 5949-5957.
– reference: Widerlite L, Trier JS, Blacklow NR, et al. Structure of the gastric mucosa in acute infectious bacterial gastroenteritis. Gastroenterology 1975; 68: 425-430.
– reference: Bucardo F, Kindberg E, Paniagua M, et al. Genetic susceptibility to symptomatic norovirus infection in Nicaragua. Journal of Medical Virology 2009; 81: 728-735.
– reference: Taube S, Jiang M, Wobus CE. Glycosphingolipids as receptors for non-enveloped viruses. Viruses 2010; 2: 1011-1049.
– reference: Mollicone R, Cailleau A, Oriol R. Molecular genetics of H, Se, Lewis and other fucosyltransferase genes. Transfusion Clinique et Biologique 1995; 2: 235-242.
– reference: Glass PJ, White LJ, Ball JM, et al. Norwalk virus open reading frame 3 encodes a minor structural protein. Journal of Virology 2000; 74: 6581-6591.
– reference: Green KY, Lew JF, Jiang X, et al. Comparison of the reactivities of baculovirus-expressed recombinant Norwalk virus capsid antigen with those of the native Norwalk virus antigen in serologic assays and some epidemiologic observations. Journal of Clinical Microbiology 1993; 31: 2185-2191.
– reference: Huang P, Morrow AL, Jiang X. The carbohydrate moiety and high molecular weight carrier of histo-blood group antigens are both required for norovirus-receptor recognition. Glycoconjugate Journal 2009; 26: 1085-1096.
– reference: Cannon JL, Lindesmith LC, Donaldson EF, et al. Herd immunity to GII.4 noroviruses is supported by outbreak patient sera. Journal of Virology 2009; 83: 5363-5374.
– reference: Chen R, Neill JD, Noel JS, et al. Inter- and intragenus structural variations in caliciviruses and their functional implications. Journal of Virology 2004; 78: 6469-6479.
– reference: Brown KE, Hibbs JR, Gallinella G, et al. Resistance to parvovirus B19 infection due to lack of virus receptor (erythrocyte P antigen). The New England Journal of Medicine 1994; 330: 1192-1196.
– reference: Hutson AM, Atmar RL, Graham DY, et al. Norwalk virus infection and disease is associated with ABO histo-blood group type. Journal of Infectious Diseases 2002; 185: 1335-1337.
– reference: Ozawa K, Oka T, Takeda N, et al. Norovirus infections in symptomatic and asymptomatic food handlers in Japan. Journal of Clinical Microbiology 2007; 45: 3996-4005.
– reference: Nordgren J, Kindberg E, Lindgren PE, et al. Norovirus gastroenteritis outbreak with a secretor-independent susceptibility pattern, Sweden. Emerging Infectious Diseases 2010; 16: 81-87.
– reference: Meyer E, Ebner W, Scholz R, et al. Nosocomial outbreak of norovirus gastroenteritis and investigation of ABO histo-blood group type in infected staff and patients. Journal of Hospital Infection 2004; 56: 64-66.
– reference: Patel MM, Widdowson MA, Glass RI, et al. Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerging Infectious Diseases 2008; 14: 1224-1231.
– reference: Harrington PR, Lindesmith L, Yount B, et al. Binding of Norwalk virus-like particles to ABH histo-blood group antigens is blocked by antisera from infected human volunteers or experimentally vaccinated mice. Journal of Virology 2002; 76: 12335-12343.
– reference: Tan M, Xia M, Chen Y, et al. Conservation of carbohydrate binding interfaces: evidence of human BGA selection in norovirus evolution. PloS One 2009; 4: e5058.
– reference: Henry S, Mollicone R, Fernandez P, et al. Molecular basis for erythrocyte Le(a + b+) and salivary ABH partial-secretor phenotypes: expression of a FUT2 secretor allele with an A-- > T mutation at nucleotide 385 correlates with reduced alpha(1,2) fucosyltransferase activity. Glycoconjugate Journal 1996; 13: 985-993.
– reference: Kordasti S, Sjovall H, Lundgren O, et al. Serotonin and vasoactive intestinal peptide antagonists attenuate rotavirus diarrhoea. Gut 2004; 53: 952-957.
– reference: Graham DY, Jiang X, Tanaka T, et al. Norwalk virus infection of volunteers: new insights based on improved assays. Journal of Infectious Diseases 1994; 170: 34-43.
– reference: Nilsson J, Rydell GE, Le Pendu J, et al. Norwalk virus-like particles bind specifically to A, H and difucosylated Lewis but not to B histo-blood group active glycosphingolipids. Glycoconjugate Journal 2009; 26: 1171-1180.
– reference: Romer W, Berland L, Chambon V, et al. Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 2007; 450: 670-675.
– reference: Parrino TA, Schreiber DS, Trier JS, et al. Clinical immunity in acute gastroenteritis caused by Norwalk agent. The New England Journal of Medicine 1977; 297: 86-89.
– reference: Stromberg N, Nyholm PG, Pascher I, et al. Saccharide orientation at the cell surface affects glycolipid receptor function. Proceedings of the National Academy of Sciences of the United States of America 1991; 88: 9340-9344.
– reference: Neu U, Stehle T, Atwood WJ. The Polyomaviridae: contributions of virus structure to our understanding of virus receptors and infectious entry. Virology 2009; 384: 389-399.
– reference: Zakhour M, Ruvoen-Clouet N, Charpilienne A, et al. The alphaGal epitope of the histo-blood group antigen family is a ligand for bovine norovirus Newbury2 expected to prevent cross-species transmission. PLoS Pathogens 2009; 5: e1000504.
– reference: Ludwig A, Adams O, Laws HJ, et al. Quantitative detection of norovirus excretion in pediatric patients with cancer and prolonged gastroenteritis and shedding of norovirus. Journal of Medical Virology 2008; 80: 1461-1467.
– reference: Schreiber DS, Blacklow NR, Trier JS. The small intestinal lesion induced by Hawaii agent acute infectious nonbacterial gastroenteritis. Journal of Infectious Diseases 1974; 129: 705-708.
– reference: Miyoshi M, Yoshizumi S, Sato C, et al. [Relationship between ABO histo-blood group type and an outbreak of norovirus gastroenteritis among primary and junior high school students: results of questionnaire-based study]. Kansenshōgaku Zasshi 2005; 79: 664-671.
– reference: Scipioni A, Mauroy A, Vinje J, et al. Animal noroviruses. Veterinary Journal 2008; 178: 32-45.
– reference: Rydell GE, Dahlin AB, Hook F, et al. QCM-D studies of human norovirus VLPs binding to glycosphingolipids in supported lipid bilayers reveal strain-specific characteristics. Glycobiology 2009; 19: 1176-1184.
– reference: Lindesmith L, Moe C, Marionneau S, et al. Human susceptibility and resistance to Norwalk virus infection. Nature Medicine 2003; 9: 548-553.
– reference: Henry S, Mollicone R, Lowe JB, et al. A second nonsecretor allele of the blood group alpha(1,2)fucosyl-transferase gene (FUT2). Vox Sanguinis 1996; 70: 21-25.
– reference: Kroneman A, Verhoef L, Harris J, et al. Analysis of integrated virological and epidemiological reports of norovirus outbreaks collected within the Foodborne Viruses in Europe network from 1 July 2001 to 30 June 2006. Journal of Clinical Microbiology 2008; 46: 2959-2965.
– reference: Ravn V, Dabelsteen E. Tissue distribution of histo-blood group antigens. APMIS 2000; 108: 1-28.
– reference: Teunis PF, Moe CL, Liu P, et al. Norwalk virus: how infectious is it? Journal of Medical Virology 2008; 80: 1468-1476.
– reference: Tan M, Xia M, Cao S, et al. Elucidation of strain-specific interaction of a GII-4 norovirus with HBGA receptors by site-directed mutagenesis study. Virology 2008; 379: 324-334.
– reference: Rydell GE, Nilsson J, Rodriguez-Diaz J, et al. Human noroviruses recognize sialyl Lewis x neoglycoprotein. Glycobiology 2009; 19: 309-320.
– reference: Larsson MM, Rydell GE, Grahn A, et al. Antibody prevalence and titer to norovirus (genogroup II) correlate with secretor (FUT2) but not with ABO phenotype or Lewis (FUT3) genotype. Journal of Infectious Diseases 2006; 194: 1422-1427.
– reference: Koopman JS, Eckert EA, Greenberg HB, et al. Norwalk virus enteric illness acquired by swimming exposure. American Journal of Epidemiology 1982; 115: 173-177.
– reference: Thorven M, Grahn A, Hedlund KO, et al. A homozygous nonsense mutation (428 G-- > A) in the human secretor (FUT2) gene provides resistance to symptomatic norovirus (GGII) infections. Journal of Virology 2005; 79: 15351-15355.
– reference: Siebenga JJ, Vennema H, Duizer E, et al. Gastroenteritis caused by norovirus GGII.4, The Netherlands, 1994-2005. Emerging Infectious Diseases 2007; 13: 144-146.
– reference: Rockx BH, Vennema H, Hoebe CJ, et al. Association of histo-blood group antigens and susceptibility to norovirus infections. Journal of Infectious Diseases 2005; 191: 749-754.
– reference: Marionneau S, Airaud F, Bovin NV, et al. Influence of the combined ABO, FUT2, and FUT3 polymorphism on susceptibility to Norwalk virus attachment. Journal of Infectious Diseases 2005; 192: 1071-1077.
– reference: Lundgren O, Peregrin AT, Persson K, et al. Role of the enteric nervous system in the fluid and electrolyte secretion of rotavirus diarrhea. Science 2000; 287: 491-495.
– reference: Siebenga JJ, Vennema H, Renckens B, et al. Epochal evolution of GGII.4 norovirus capsid proteins from 1995 to 2006. Journal of Virology 2007; 81: 9932-9941.
– reference: Tan M, Jin M, Xie H, et al. Outbreak studies of a GII-3 and a GII-4 norovirus revealed an association between HBGA phenotypes and viral infection. Journal of Medical Virology 2008; 80: 1296-1301.
– reference: Dolin R, Blacklow NR, DuPont H, et al. Transmission of acute infectious nonbacterial gastroenteritis to volunteers by oral administration of stool filtrates. Journal of Infectious Diseases 1971; 123: 307-312.
– reference: Duizer E, Schwab KJ, Neill FH, et al. Laboratory efforts to cultivate noroviruses. Journal of General Virology 2004; 85: 79-87.
– reference: Schmidt M, Chiorini JA. Gangliosides are essential for bovine adeno-associated virus entry. Journal of Virology 2006; 80: 5516-5522.
– reference: Harrington PR, Vinje J, Moe CL, et al. Norovirus capture with histo-blood group antigens reveals novel virus-ligand interactions. Journal of Virology 2004; 78: 3035-3045.
– reference: Marionneau S, RuvoÎn N, Le Moullac-Vaidye B, et al. Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology 2002; 122: 1967-1977.
– reference: Aspholm-Hurtig M, Dailide G, Lahmann M, et al. Functional adaptation of BabA, the H. pylori ABO blood group antigen binding adhesin. Science 2004; 305: 519-522.
– reference: Karlsson KA, Stromberg N. Overlay and solid-phase analysis of glycolipid receptors for bacteria and viruses. Methods in Enzymology 1987; 138: 220-232.
– reference: Halperin T, Vennema H, Koopmans M, et al. No association between histo-blood group antigens and susceptibility to clinical infections with genogroup II norovirus. Journal of Infectious Diseases 2008; 197: 63-65.
– reference: Lindesmith L, Moe C, Lependu J, et al. Cellular and humoral immunity following Snow Mountain virus challenge. Journal of Virology 2005; 79: 2900-2909.
– reference: Gallimore CI, Cubitt D, du Plessis N, et al. Asymptomatic and symptomatic excretion of noroviruses during a hospital outbreak of gastroenteritis. Journal of Clinical Microbiology 2004; 42: 2271-2274.
– reference: Tamura M, Natori K, Kobayashi M, et al. Genogroup II noroviruses efficiently bind to heparan sulfate proteoglycan associated with the cellular membrane. Journal of Virology 2004; 78: 3817-3826.
– reference: Ferrer-Admetlla A, Sikora M, Laayouni H, et al. A natural history of FUT2 polymorphism in humans. Molecular Biology and Evolution 2009; 26: 1993-2003.
– reference: Bucardo F, Nordgren J, Carlsson B, et al. Pediatric norovirus diarrhea in Nicaragua. Journal of Clinical Microbiology 2008; 46: 2573-2580.
– reference: Kelly RJ, Rouquier S, Giorgi D, et al. Sequence and expression of a candidate for the human secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. Journal of Biological Chemistry 1995; 270: 4640-4649.
– reference: Lindesmith LC, Donaldson E, Leon J, et al. Heterotypic humoral and cellular immune responses following Norwalk virus infection. Journal of Virology. 2010; 84(4): 1800-1815.
– reference: Hutson AM, Atmar RL, Marcus DM, et al. Norwalk virus-like particle hemagglutination by binding to H histo-blood group antigens. Journal of Virology 2003; 77: 405-415.
– reference: Ramirez S, Giammanco GM, De Grazia S, et al. Emerging GII.4 norovirus variants affect children with diarrhea in Palermo, Italy in 2006. Journal of Medical Virology 2009; 81: 139-145.
– reference: Fukuda S, Takao S, Shigemoto N, et al. Transition of genotypes associated with norovirus gastroenteritis outbreaks in a limited area of Japan, Hiroshima Prefecture, during eight epidemic seasons. Archives of Virology 2010; 155(1): 111-115.
– reference: Kaufman SS, Chatterjee NK, Fuschino ME, et al. Characteristics of human calicivirus enteritis in intestinal transplant recipients. Journal of Pediatric Gastroenterology and Nutrition 2005; 40: 328-333.
– reference: Harris JP, Edmunds WJ, Pebody R, et al. Deaths from norovirus among the elderly, England and Wales. Emerging Infectious Diseases 2008; 14: 1546-1552.
– reference: Carlsson B, Lindberg AM, Rodriguez-Diaz J, et al. Quasispecies dynamics and molecular evolution of human norovirus capsid P region during chronic infection. Journal of General Virology 2009; 90: 432-441.
– reference: Olofsson S, Bergstrom T. Glycoconjugate glycans as viral receptors. Annals of Medicine 2005; 37: 154-172.
– reference: Hutson AM, Airaud F, LePendu J, et al. Norwalk virus infection associates with secretor status genotyped from sera. Journal of Medical Virology 2005; 77: 116-120.
– reference: Fretz R, Svoboda P, Schorr D, et al. Risk factors for infections with norovirus gastrointestinal illness in Switzerland. European Journal of Clinical Microbiology and Infectious Diseases 2005; 24: 256-261.
– reference: Lindesmith LC, Donaldson EF, Lobue AD, et al. Mechanisms of GII.4 norovirus persistence in human populations. PLoS Medicine 2008; 5: e31.
– reference: Atmar RL, Opekun AR, Gilger MA, et al. Norwalk virus shedding after experimental human infection. Emerging Infectious Diseases 2008; 14: 1553-1557.
– reference: Estes MK, Prasad BV, Atmar RL. Noroviruses everywhere: has something changed? Current Opinion in Infectious Diseases 2006; 19: 467-474.
– reference: Kindberg E, Akerlind B, Johnsen C, et al. Host genetic resistance to symptomatic norovirus (GGII.4) infections in Denmark. Journal of Clinical Microbiology 2007; 45: 2720-2722.
– reference: Hardy ME. Norovirus protein structure and function. FEMS Microbiology Letters 2005; 253: 1-8.
– reference: Andre S, Kozar T, Kojima S, et al. From structural to functional glycomics: core substitutions as molecular switches for shape and lectin affinity of N-glycans. Biological Chemistry 2009; 390: 557-565.
– reference: Noel JS, Fankhauser RL, Ando T, et al. Identification of a distinct common strain of "Norwalk-like viruses" having a global distribution. Journal of Infectious Diseases 1999; 179: 1334-1344.
– reference: Siebenga JJ, Vennema H, Zheng DP, et al. Norovirus illness is a global problem: emergence and spread of norovirus GII.4 variants, 2001-2007. Journal of Infectious Diseases 2009; 200: 802-812.
– reference: Bok K, Abente EJ, Realpe-Quintero M, et al. Evolutionary dynamics of GII.4 noroviruses over a 34-year period. Journal of Virology 2009; 83: 11890-11901.
– reference: Prasad BV, Hardy ME, Dokland T, et al. X-ray crystallographic structure of the Norwalk virus capsid. Science 1999; 286: 287-290.
– reference: Marsh M, Helenius A. Virus entry: open sesame. Cell 2006; 124: 729-740.
– reference: Okada M, Ogawa T, Kaiho I, et al. Genetic analysis of noroviruses in Chiba Prefecture, Japan, between 1999 and 2004. Journal of Clinical Microbiology 2005; 43: 4391-4401.
– reference: Wyatt RG, Dolin R, Blacklow NR, et al. Comparison of three agents of acute infectious nonbacterial gastroenteritis by cross-challenge in volunteers. Journal of Infectious Diseases 1974; 129: 709-714.
– reference: Mollison PL, Engelfriet CP, Contreras M. Blood Transfusion in Clinical Medicine. 1993: Blackwell Scientific Publications: Oxford.
– reference: Westhoff TH, Vergoulidou M, Loddenkemper C, et al. Chronic norovirus infection in renal transplant recipients. Nephrology, Dialysis, Transplantation 2009; 24: 1051-1053.
– reference: Johnson PC, Mathewson JJ, DuPont HL, et al. Multiple-challenge study of host susceptibility to Norwalk gastroenteritis in US adults. Journal of Infectious Diseases 1990; 161: 18-21.
– reference: Schreiber DS, Blacklow NR, Trier JS. The mucosal lesion of the proximal small intestine in acute infectious nonbacterial gastroenteritis. The New England Journal of Medicine 1973; 288: 1318-1323.
– reference: Shirato H, Ogawa S, Ito H, et al. Noroviruses distinguish between type 1 and type 2 histo-blood group antigens for binding. Journal of Virology 2008; 82: 10756-10767.
– reference: Zheng DP, Ando T, Fankhauser RL, et al. Norovirus classification and proposed strain nomenclature. Virology 2006; 346: 312-323.
– reference: Ewers H, Romer W, Smith AE, et al. GM1 structure determines SV40-induced membrane invagination and infection. Nature Cell Biology 2010; 12: 11-18; sup pp 11-12.
– reference: Hansson GC, Karlsson KA, Larson G, et al. A novel approach to the study of glycolipid receptors for viruses. Binding of Sendai virus to thin-layer chromatograms. FEBS Letters 1984; 170: 15-18.
– reference: Donaldson EF, Lindesmith LC, Lobue AD, et al. Norovirus pathogenesis: mechanisms of persistence and immune evasion in human populations. Immunological Reviews 2008; 225: 190-211.
– reference: Meeroff JC, Schreiber DS, Trier JS, et al. Abnormal gastric motor function in viral gastroenteritis. Annals of Internal Medicine 1980; 92: 370-373.
– reference: Wang QH, Han MG, Cheetham S, et al. Porcine noroviruses related to human noroviruses. Emerging Infectious Diseases 2005; 11: 1874-1881.
– reference: Agus SG, Dolin R, Wyatt RG, et al. Acute infectious nonbacterial gastroenteritis: intestinal histopathology. Histologic and enzymatic alterations during illness produced by the Norwalk agent in man. Annals of Internal Medicine 1973; 79: 18-25.
– reference: Koppisetty CA, Nasir W, Strino F, et al. Computational studies on the interaction of ABO-active saccharides with the norovirus VA387 capsid protein can explain experimental binding data. Journal of Computer-Aided Molecular Design 2010; 24: 423-431.
– reference: Bull RA, Tu ET, McIver CJ, et al. Emergence of a new norovirus genotype II.4 variant associated with global outbreaks of gastroenteritis. Journal of Clinical Microbiology 2006; 44: 327-333.
– reference: Baric RS, Yount B, Lindesmith L, et al. Expression and self-assembly of Norwalk virus capsid protein from Venezuelan equine encephalitis virus replicons. Journal of Virology 2002; 76: 3023-3030.
– reference: Taube S, Perry JW, Yetming K, et al. Ganglioside-linked terminal sialic acid moieties on murine macrophages function as attachment receptors for murine noroviruses (MNV). Journal of Virology 2009; 83: 4092-4101.
– volume: 40
  start-page: 328
  year: 2005
  end-page: 333
  article-title: Characteristics of human calicivirus enteritis in intestinal transplant recipients
  publication-title: Journal of Pediatric Gastroenterology and Nutrition
– volume: 14
  start-page: 1553
  year: 2008
  end-page: 1557
  article-title: Norwalk virus shedding after experimental human infection
  publication-title: Emerging Infectious Diseases
– volume: 76
  start-page: 3023
  year: 2002
  end-page: 3030
  article-title: Expression and self‐assembly of Norwalk virus capsid protein from Venezuelan equine encephalitis virus replicons
  publication-title: Journal of Virology
– volume: 76
  start-page: 5621
  year: 2010
  end-page: 5630
  article-title: Distribution in tissue and seasonal variation of norovirus genogroup I and II ligands in oysters
  publication-title: Applied and Environmental Microbiology
– volume: 80
  start-page: 1468
  year: 2008
  end-page: 1476
  article-title: Norwalk virus: how infectious is it?
  publication-title: Journal of Medical Virology
– volume: 90
  start-page: 432
  year: 2009
  end-page: 441
  article-title: Quasispecies dynamics and molecular evolution of human norovirus capsid P region during chronic infection
  publication-title: Journal of General Virology
– volume: 78
  start-page: 3817
  year: 2004
  end-page: 3826
  article-title: Genogroup II noroviruses efficiently bind to heparan sulfate proteoglycan associated with the cellular membrane
  publication-title: Journal of Virology
– volume: 178
  start-page: 32
  year: 2008
  end-page: 45
  article-title: Animal noroviruses
  publication-title: Veterinary Journal
– volume: 197
  start-page: 63
  year: 2008
  end-page: 65
  article-title: No association between histo‐blood group antigens and susceptibility to clinical infections with genogroup II norovirus
  publication-title: Journal of Infectious Diseases
– volume: 384
  start-page: 389
  year: 2009
  end-page: 399
  article-title: The : contributions of virus structure to our understanding of virus receptors and infectious entry
  publication-title: Virology
– volume: 79
  start-page: 2900
  year: 2005
  end-page: 2909
  article-title: Cellular and humoral immunity following Snow Mountain virus challenge
  publication-title: Journal of Virology
– volume: 170
  start-page: 34
  year: 1994
  end-page: 43
  article-title: Norwalk virus infection of volunteers: new insights based on improved assays
  publication-title: Journal of Infectious Diseases
– volume: 138
  start-page: 220
  year: 1987
  end-page: 232
  article-title: Overlay and solid‐phase analysis of glycolipid receptors for bacteria and viruses
  publication-title: Methods in Enzymology
– volume: 83
  start-page: 11890
  year: 2009
  end-page: 11901
  article-title: Evolutionary dynamics of GII.4 noroviruses over a 34‐year period
  publication-title: Journal of Virology
– volume: 81
  start-page: 728
  year: 2009
  end-page: 735
  article-title: Genetic susceptibility to symptomatic norovirus infection in Nicaragua
  publication-title: Journal of Medical Virology
– volume: 2
  start-page: 235
  year: 1995
  end-page: 242
  article-title: Molecular genetics of H, Se, Lewis and other fucosyltransferase genes
  publication-title: Transfusion Clinique et Biologique
– volume: 192
  start-page: 1071
  year: 2005
  end-page: 1077
  article-title: Influence of the combined ABO, FUT2, and FUT3 polymorphism on susceptibility to Norwalk virus attachment
  publication-title: Journal of Infectious Diseases
– volume: 78
  start-page: 3035
  year: 2004
  end-page: 3045
  article-title: Norovirus capture with histo‐blood group antigens reveals novel virus–ligand interactions
  publication-title: Journal of Virology
– volume: 191
  start-page: 749
  year: 2005
  end-page: 754
  article-title: Association of histo‐blood group antigens and susceptibility to norovirus infections
  publication-title: Journal of Infectious Diseases
– volume: 26
  start-page: 1085
  year: 2009
  end-page: 1096
  article-title: The carbohydrate moiety and high molecular weight carrier of histo‐blood group antigens are both required for norovirus‐receptor recognition
  publication-title: Glycoconjugate Journal
– volume: 129
  start-page: 709
  year: 1974
  end-page: 714
  article-title: Comparison of three agents of acute infectious nonbacterial gastroenteritis by cross‐challenge in volunteers
  publication-title: Journal of Infectious Diseases
– year: 1993
– volume: 80
  start-page: 1296
  year: 2008
  end-page: 1301
  article-title: Outbreak studies of a GII‐3 and a GII‐4 norovirus revealed an association between HBGA phenotypes and viral infection
  publication-title: Journal of Medical Virology
– volume: 297
  start-page: 86
  year: 1977
  end-page: 89
  article-title: Clinical immunity in acute gastroenteritis caused by Norwalk agent
  publication-title: The New England Journal of Medicine
– volume: 80
  start-page: 1461
  year: 2008
  end-page: 1467
  article-title: Quantitative detection of norovirus excretion in pediatric patients with cancer and prolonged gastroenteritis and shedding of norovirus
  publication-title: Journal of Medical Virology
– volume: 45
  start-page: 3996
  year: 2007
  end-page: 4005
  article-title: Norovirus infections in symptomatic and asymptomatic food handlers in Japan
  publication-title: Journal of Clinical Microbiology
– volume: 24
  start-page: 423
  year: 2010
  end-page: 431
  article-title: Computational studies on the interaction of ABO‐active saccharides with the norovirus VA387 capsid protein can explain experimental binding data
  publication-title: Journal of Computer‐Aided Molecular Design
– volume: 450
  start-page: 670
  year: 2007
  end-page: 675
  article-title: Shiga toxin induces tubular membrane invaginations for its uptake into cells
  publication-title: Nature
– volume: 19
  start-page: 1176
  year: 2009
  end-page: 1184
  article-title: QCM‐D studies of human norovirus VLPs binding to glycosphingolipids in supported lipid bilayers reveal strain‐specific characteristics
  publication-title: Glycobiology
– volume: 161
  start-page: 18
  year: 1990
  end-page: 21
  article-title: Multiple‐challenge study of host susceptibility to Norwalk gastroenteritis in US adults
  publication-title: Journal of Infectious Diseases
– volume: 76
  start-page: 12335
  year: 2002
  end-page: 12343
  article-title: Binding of Norwalk virus‐like particles to ABH histo‐blood group antigens is blocked by antisera from infected human volunteers or experimentally vaccinated mice
  publication-title: Journal of Virology
– volume: 198
  start-page: 994
  year: 2008
  end-page: 1001
  article-title: High prevalence of prolonged norovirus shedding and illness among hospitalized patients: a model for in vivo molecular evolution
  publication-title: Journal of Infectious Diseases
– volume: 79
  start-page: 15351
  year: 2005
  end-page: 15355
  article-title: A homozygous nonsense mutation (428 G‐‐ > A) in the human secretor (FUT2) gene provides resistance to symptomatic norovirus (GGII) infections
  publication-title: Journal of Virology
– volume: 77
  start-page: 116
  year: 2005
  end-page: 120
  article-title: Norwalk virus infection associates with secretor status genotyped from sera
  publication-title: Journal of Medical Virology
– volume: 46
  start-page: 2573
  year: 2008
  end-page: 2580
  article-title: Pediatric norovirus diarrhea in Nicaragua
  publication-title: Journal of Clinical Microbiology
– volume: 74
  start-page: 6581
  year: 2000
  end-page: 6591
  article-title: Norwalk virus open reading frame 3 encodes a minor structural protein
  publication-title: Journal of Virology
– volume: 115
  start-page: 173
  year: 1982
  end-page: 177
  article-title: Norwalk virus enteric illness acquired by swimming exposure
  publication-title: American Journal of Epidemiology
– volume: 188
  start-page: 176
  year: 2003
  end-page: 177
  article-title: Norwalk virus infection and disease is associated with ABO histo‐blood group type
  publication-title: Journal of Infectious Diseases
– volume: 81
  start-page: 139
  year: 2009
  end-page: 145
  article-title: Emerging GII.4 norovirus variants affect children with diarrhea in Palermo, Italy in 2006
  publication-title: Journal of Medical Virology
– volume: 12
  start-page: 11
  year: 2010
  end-page: 18
  article-title: GM1 structure determines SV40‐induced membrane invagination and infection
  publication-title: Nature Cell Biology
– volume: 122
  start-page: 1967
  year: 2002
  end-page: 1977
  article-title: Norwalk virus binds to histo‐blood group antigens present on gastroduodenal epithelial cells of secretor individuals
  publication-title: Gastroenterology
– volume: 286
  start-page: 287
  year: 1999
  end-page: 290
  article-title: X‐ray crystallographic structure of the Norwalk virus capsid
  publication-title: Science
– volume: 5
  start-page: e31
  year: 2008
  article-title: Mechanisms of GII.4 norovirus persistence in human populations
  publication-title: PLoS Medicine
– volume: 79
  start-page: 18
  year: 1973
  end-page: 25
  article-title: Acute infectious nonbacterial gastroenteritis: intestinal histopathology. Histologic and enzymatic alterations during illness produced by the Norwalk agent in man
  publication-title: Annals of Internal Medicine
– volume: 31
  start-page: 2185
  year: 1993
  end-page: 2191
  article-title: Comparison of the reactivities of baculovirus‐expressed recombinant Norwalk virus capsid antigen with those of the native Norwalk virus antigen in serologic assays and some epidemiologic observations
  publication-title: Journal of Clinical Microbiology
– volume: 188
  start-page: 19
  year: 2003
  end-page: 31
  article-title: Noroviruses bind to human ABO, Lewis, and secretor histo‐blood group antigens: identification of 4 distinct strain‐specific patterns
  publication-title: Journal of Infectious Diseases
– volume: 123
  start-page: 307
  year: 1971
  end-page: 312
  article-title: Transmission of acute infectious nonbacterial gastroenteritis to volunteers by oral administration of stool filtrates
  publication-title: Journal of Infectious Diseases
– volume: 170
  start-page: 15
  year: 1984
  end-page: 18
  article-title: A novel approach to the study of glycolipid receptors for viruses. Binding of Sendai virus to thin‐layer chromatograms
  publication-title: FEBS Letters
– volume: 85
  start-page: 79
  year: 2004
  end-page: 87
  article-title: Laboratory efforts to cultivate noroviruses
  publication-title: Journal of General Virology
– volume: 5
  start-page: e1000504
  year: 2009
  article-title: The alphaGal epitope of the histo‐blood group antigen family is a ligand for bovine norovirus Newbury2 expected to prevent cross‐species transmission
  publication-title: PLoS Pathogens
– volume: 92
  start-page: 370
  year: 1980
  end-page: 373
  article-title: Abnormal gastric motor function in viral gastroenteritis
  publication-title: Annals of Internal Medicine
– volume: 2
  start-page: 1011
  year: 2010
  end-page: 1049
  article-title: Glycosphingolipids as receptors for non‐enveloped viruses
  publication-title: Viruses
– volume: 11
  start-page: 1874
  year: 2005
  end-page: 1881
  article-title: Porcine noroviruses related to human noroviruses
  publication-title: Emerging Infectious Diseases
– volume: 66
  start-page: 6527
  year: 1992
  end-page: 6532
  article-title: Expression, self‐assembly, and antigenicity of the Norwalk virus capsid protein
  publication-title: Journal of Virology
– volume: 13
  start-page: 985
  year: 1996
  end-page: 993
  article-title: Molecular basis for erythrocyte Le(a + b+) and salivary ABH partial‐secretor phenotypes: expression of a FUT2 secretor allele with an A‐‐ > T mutation at nucleotide 385 correlates with reduced alpha(1,2) fucosyltransferase activity
  publication-title: Glycoconjugate Journal
– volume: 287
  start-page: 491
  year: 2000
  end-page: 495
  article-title: Role of the enteric nervous system in the fluid and electrolyte secretion of rotavirus diarrhea
  publication-title: Science
– volume: 77
  start-page: 405
  year: 2003
  end-page: 415
  article-title: Norwalk virus‐like particle hemagglutination by binding to H histo‐blood group antigens
  publication-title: Journal of Virology
– volume: 53
  start-page: 952
  year: 2004
  end-page: 957
  article-title: Serotonin and vasoactive intestinal peptide antagonists attenuate rotavirus diarrhoea
  publication-title: Gut
– volume: 43
  start-page: 4391
  year: 2005
  end-page: 4401
  article-title: Genetic analysis of noroviruses in Chiba Prefecture, Japan, between 1999 and 2004
  publication-title: Journal of Clinical Microbiology
– volume: 270
  start-page: 4640
  year: 1995
  end-page: 4649
  article-title: Sequence and expression of a candidate for the human secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme‐inactivating nonsense mutation commonly correlates with the non‐secretor phenotype
  publication-title: Journal of Biological Chemistry
– volume: 225
  start-page: 190
  year: 2008
  end-page: 211
  article-title: Norovirus pathogenesis: mechanisms of persistence and immune evasion in human populations
  publication-title: Immunological Reviews
– volume: 4
  start-page: e5593
  year: 2009
  article-title: The G428A nonsense mutation in FUT2 provides strong but not absolute protection against symptomatic GII.4 Norovirus infection
  publication-title: PloS One
– volume: 24
  start-page: 256
  year: 2005
  end-page: 261
  article-title: Risk factors for infections with norovirus gastrointestinal illness in Switzerland
  publication-title: European Journal of Clinical Microbiology and Infectious Diseases
– volume: 330
  start-page: 1192
  year: 1994
  end-page: 1196
  article-title: Resistance to parvovirus B19 infection due to lack of virus receptor (erythrocyte P antigen)
  publication-title: The New England Journal of Medicine
– volume: 81
  start-page: 9932
  year: 2007
  end-page: 9941
  article-title: Epochal evolution of GGII.4 norovirus capsid proteins from 1995 to 2006
  publication-title: Journal of Virology
– volume: 379
  start-page: 324
  year: 2008
  end-page: 334
  article-title: Elucidation of strain‐specific interaction of a GII‐4 norovirus with HBGA receptors by site‐directed mutagenesis study
  publication-title: Virology
– volume: 77
  start-page: 13117
  year: 2003
  end-page: 13124
  article-title: Evolution of human calicivirus RNA in vivo: accumulation of mutations in the protruding P2 domain of the capsid leads to structural changes and possibly a new phenotype
  publication-title: Journal of Virology
– volume: 78
  start-page: 6469
  year: 2004
  end-page: 6479
  article-title: Inter‐ and intragenus structural variations in caliciviruses and their functional implications
  publication-title: Journal of Virology
– volume: 10
  start-page: 1075
  year: 1972
  end-page: 1081
  article-title: Visualization by immune electron microscopy of a 27‐nm particle associated with acute infectious nonbacterial gastroenteritis
  publication-title: Journal of Virology
– volume: 105
  start-page: 9175
  year: 2008
  end-page: 9180
  article-title: Atomic resolution structural characterization of recognition of histo‐blood group antigens by Norwalk virus
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 83
  start-page: 5363
  year: 2009
  end-page: 5374
  article-title: Herd immunity to GII.4 noroviruses is supported by outbreak patient sera
  publication-title: Journal of Virology
– volume: 83
  start-page: 4092
  year: 2009
  end-page: 4101
  article-title: Ganglioside‐linked terminal sialic acid moieties on murine macrophages function as attachment receptors for murine noroviruses (MNV)
  publication-title: Journal of Virology
– volume: 179
  start-page: 1334
  year: 1999
  end-page: 1344
  article-title: Identification of a distinct common strain of “Norwalk‐like viruses” having a global distribution
  publication-title: Journal of Infectious Diseases
– volume: 129
  start-page: 705
  year: 1974
  end-page: 708
  article-title: The small intestinal lesion induced by Hawaii agent acute infectious nonbacterial gastroenteritis
  publication-title: Journal of Infectious Diseases
– volume: 14
  start-page: 1546
  year: 2008
  end-page: 1552
  article-title: Deaths from norovirus among the elderly, England and Wales
  publication-title: Emerging Infectious Diseases
– volume: 185
  start-page: 1335
  year: 2002
  end-page: 1337
  article-title: Norwalk virus infection and disease is associated with ABO histo‐blood group type
  publication-title: Journal of Infectious Diseases
– volume: 82
  start-page: 5340
  year: 2008
  end-page: 5347
  article-title: Structural basis for the receptor binding specificity of Norwalk virus
  publication-title: Journal of Virology
– volume: 14
  start-page: 1224
  year: 2008
  end-page: 1231
  article-title: Systematic literature review of role of noroviruses in sporadic gastroenteritis
  publication-title: Emerging Infectious Diseases
– volume: 24
  start-page: 1051
  year: 2009
  end-page: 1053
  article-title: Chronic norovirus infection in renal transplant recipients
  publication-title: Nephrology, Dialysis, Transplantation
– volume: 79
  start-page: 6714
  year: 2005
  end-page: 6722
  article-title: Norovirus and histo‐blood group antigens: demonstration of a wide spectrum of strain specificities and classification of two major binding groups among multiple binding patterns
  publication-title: Journal of Virology
– volume: 288
  start-page: 1318
  year: 1973
  end-page: 1323
  article-title: The mucosal lesion of the proximal small intestine in acute infectious nonbacterial gastroenteritis
  publication-title: The New England Journal of Medicine
– volume: 155
  start-page: 111
  issue: 1
  year: 2010
  end-page: 115
  article-title: Transition of genotypes associated with norovirus gastroenteritis outbreaks in a limited area of Japan, Hiroshima Prefecture, during eight epidemic seasons
  publication-title: Archives of Virology
– volume: 346
  start-page: 312
  year: 2006
  end-page: 323
  article-title: Norovirus classification and proposed strain nomenclature
  publication-title: Virology
– volume: 19
  start-page: 309
  year: 2009
  end-page: 320
  article-title: Human noroviruses recognize sialyl Lewis x neoglycoprotein
  publication-title: Glycobiology
– volume: 45
  start-page: 2720
  year: 2007
  end-page: 2722
  article-title: Host genetic resistance to symptomatic norovirus (GGII.4) infections in Denmark
  publication-title: Journal of Clinical Microbiology
– volume: 81
  start-page: 5949
  year: 2007
  end-page: 5957
  article-title: Structural basis for the recognition of blood group trisaccharides by norovirus
  publication-title: Journal of Virology
– volume: 13
  start-page: 144
  year: 2007
  end-page: 146
  article-title: Gastroenteritis caused by norovirus GGII.4, The Netherlands, 1994–2005
  publication-title: Emerging Infectious Diseases
– volume: 390
  start-page: 557
  year: 2009
  end-page: 565
  article-title: From structural to functional glycomics: core substitutions as molecular switches for shape and lectin affinity of N‐glycans
  publication-title: Biological Chemistry
– volume: 80
  start-page: 5516
  year: 2006
  end-page: 5522
  article-title: Gangliosides are essential for bovine adeno‐associated virus entry
  publication-title: Journal of Virology
– volume: 195
  start-page: 51
  year: 1993
  end-page: 61
  article-title: Sequence and genomic organization of Norwalk virus
  publication-title: Virology
– volume: 82
  start-page: 10756
  year: 2008
  end-page: 10767
  article-title: Noroviruses distinguish between type 1 and type 2 histo‐blood group antigens for binding
  publication-title: Journal of Virology
– volume: 46
  start-page: 2959
  year: 2008
  end-page: 2965
  article-title: Analysis of integrated virological and epidemiological reports of norovirus outbreaks collected within the Foodborne Viruses in Europe network from 1 July 2001 to 30 June 2006
  publication-title: Journal of Clinical Microbiology
– volume: 44
  start-page: 327
  year: 2006
  end-page: 333
  article-title: Emergence of a new norovirus genotype II.4 variant associated with global outbreaks of gastroenteritis
  publication-title: Journal of Clinical Microbiology
– volume: 30
  start-page: 196
  year: 2004
  end-page: 204
  article-title: Chronic excretion of a norovirus in a child with cartilage hair hypoplasia (CHH)
  publication-title: Journal of Clinical Virology
– volume: 124
  start-page: 729
  year: 2006
  end-page: 740
  article-title: Virus entry: open sesame
  publication-title: Cell
– volume: 37
  start-page: 154
  year: 2005
  end-page: 172
  article-title: Glycoconjugate glycans as viral receptors
  publication-title: Annals of Medicine
– volume: 58
  start-page: 1070
  year: 2009
  end-page: 1077
  article-title: Structural and functional changes of the duodenum in human norovirus infection
  publication-title: Gut
– volume: 42
  start-page: 2271
  year: 2004
  end-page: 2274
  article-title: Asymptomatic and symptomatic excretion of noroviruses during a hospital outbreak of gastroenteritis
  publication-title: Journal of Clinical Microbiology
– volume: 70
  start-page: 21
  year: 1996
  end-page: 25
  article-title: A second nonsecretor allele of the blood group alpha(1,2)fucosyl‐transferase gene (FUT2)
  publication-title: Vox Sanguinis
– volume: 83
  start-page: 565
  year: 2001
  end-page: 573
  article-title: ABH and Lewis histo‐blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world
  publication-title: Biochimie
– volume: 84
  start-page: 1800
  issue: 4
  year: 2010
  end-page: 1815
  article-title: Heterotypic humoral and cellular immune responses following Norwalk virus infection
  publication-title: Journal of Virology
– volume: 9
  start-page: 548
  year: 2003
  end-page: 553
  article-title: Human susceptibility and resistance to Norwalk virus infection
  publication-title: Nature Medicine
– volume: 56
  start-page: 64
  year: 2004
  end-page: 66
  article-title: Nosocomial outbreak of norovirus gastroenteritis and investigation of ABO histo‐blood group type in infected staff and patients
  publication-title: Journal of Hospital Infection
– volume: 68
  start-page: 425
  year: 1975
  end-page: 430
  article-title: Structure of the gastric mucosa in acute infectious bacterial gastroenteritis
  publication-title: Gastroenterology
– volume: 16
  start-page: 81
  year: 2010
  end-page: 87
  article-title: Norovirus gastroenteritis outbreak with a secretor‐independent susceptibility pattern, Sweden
  publication-title: Emerging Infectious Diseases
– volume: 19
  start-page: 467
  year: 2006
  end-page: 474
  article-title: Noroviruses everywhere: has something changed?
  publication-title: Current Opinion in Infectious Diseases
– volume: 88
  start-page: 9340
  year: 1991
  end-page: 9344
  article-title: Saccharide orientation at the cell surface affects glycolipid receptor function
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 4
  start-page: e5058
  year: 2009
  article-title: Conservation of carbohydrate binding interfaces: evidence of human BGA selection in norovirus evolution
  publication-title: PloS One
– volume: 305
  start-page: 519
  year: 2004
  end-page: 522
  article-title: Functional adaptation of BabA, the ABO blood group antigen binding adhesin
  publication-title: Science
– volume: 26
  start-page: 1993
  year: 2009
  end-page: 2003
  article-title: A natural history of FUT2 polymorphism in humans
  publication-title: Molecular Biology and Evolution
– volume: 194
  start-page: 1422
  year: 2006
  end-page: 1427
  article-title: Antibody prevalence and titer to norovirus (genogroup II) correlate with secretor (FUT2) but not with ABO phenotype or Lewis (FUT3) genotype
  publication-title: Journal of Infectious Diseases
– volume: 79
  start-page: 664
  year: 2005
  end-page: 671
  article-title: Relationship between ABO histo‐blood group type and an outbreak of norovirus gastroenteritis among primary and junior high school students: results of questionnaire‐based study
  publication-title: Kansenshōgaku Zasshi
– volume: 26
  start-page: 1171
  year: 2009
  end-page: 1180
  article-title: Norwalk virus‐like particles bind specifically to A, H and difucosylated Lewis but not to B histo‐blood group active glycosphingolipids
  publication-title: Glycoconjugate Journal
– volume: 200
  start-page: 802
  year: 2009
  end-page: 812
  article-title: Norovirus illness is a global problem: emergence and spread of norovirus GII.4 variants, 2001–2007
  publication-title: Journal of Infectious Diseases
– volume: 108
  start-page: 1
  year: 2000
  end-page: 28
  article-title: Tissue distribution of histo‐blood group antigens
  publication-title: APMIS
– volume: 253
  start-page: 1
  year: 2005
  end-page: 8
  article-title: Norovirus protein structure and function
  publication-title: FEMS Microbiology Letters
– ident: e_1_2_16_47_1
  doi: 10.1016/j.cell.2006.02.007
– ident: e_1_2_16_77_1
  doi: 10.1128/JVI.78.6.3035-3045.2004
– ident: e_1_2_16_92_1
  doi: 10.1128/JVI.00135-08
– ident: e_1_2_16_48_1
  doi: 10.3390/v2041011
– ident: e_1_2_16_100_1
  doi: 10.1126/science.1098801
– ident: e_1_2_16_19_1
  doi: 10.1016/j.femsle.2005.08.031
– ident: e_1_2_16_107_1
  doi: 10.1016/S0016-5085(75)80077-1
– ident: e_1_2_16_96_1
  doi: 10.1128/JVI.02245-08
– ident: e_1_2_16_31_1
  doi: 10.1128/JCM.43.9.4391-4401.2005
– ident: e_1_2_16_86_1
  doi: 10.1038/nature05996
– ident: e_1_2_16_73_1
  doi: 10.1128/JVI.79.11.6714-6722.2005
– ident: e_1_2_16_30_1
  doi: 10.1128/JCM.00499-08
– ident: e_1_2_16_39_1
  doi: 10.1128/JVI.00674-07
– ident: e_1_2_16_116_1
  doi: 10.1007/s10096-005-1310-1
– volume: 10
  start-page: 1075
  year: 1972
  ident: e_1_2_16_4_1
  article-title: Visualization by immune electron microscopy of a 27‐nm particle associated with acute infectious nonbacterial gastroenteritis
  publication-title: Journal of Virology
  doi: 10.1128/jvi.10.5.1075-1081.1972
– ident: e_1_2_16_23_1
  doi: 10.1016/j.tvjl.2007.11.012
– ident: e_1_2_16_51_1
  doi: 10.1074/jbc.270.9.4640
– ident: e_1_2_16_72_1
  doi: 10.1128/JVI.00802-08
– ident: e_1_2_16_75_1
  doi: 10.1128/JVI.76.23.12335-12343.2002
– ident: e_1_2_16_25_1
  doi: 10.1371/journal.pmed.0050031
– ident: e_1_2_16_111_1
  doi: 10.1136/gut.2003.033563
– ident: e_1_2_16_42_1
  doi: 10.1056/NEJM197707142970204
– ident: e_1_2_16_84_1
  doi: 10.1016/j.virol.2008.12.021
– ident: e_1_2_16_46_1
  doi: 10.1080/07853890510007340
– ident: e_1_2_16_81_1
  doi: 10.1016/0014-5793(84)81359-9
– ident: e_1_2_16_28_1
  doi: 10.1086/605127
– ident: e_1_2_16_109_1
  doi: 10.1136/gut.2008.160150
– ident: e_1_2_16_97_1
  doi: 10.1086/375742
– ident: e_1_2_16_10_1
  doi: 10.1128/JVI.77.24.13117-13124.2003
– ident: e_1_2_16_113_1
  doi: 10.1093/infdis/170.1.34
– volume-title: Blood Transfusion in Clinical Medicine
  year: 1993
  ident: e_1_2_16_56_1
– ident: e_1_2_16_110_1
  doi: 10.1126/science.287.5452.491
– ident: e_1_2_16_104_1
  doi: 10.1093/infdis/129.6.709
– ident: e_1_2_16_49_1
  doi: 10.1034/j.1600-0463.2000.d01-1.x
– ident: e_1_2_16_29_1
  doi: 10.1128/JCM.44.2.327-333.2006
– ident: e_1_2_16_99_1
  doi: 10.1086/339883
– ident: e_1_2_16_67_1
  doi: 10.1099/vir.0.19478-0
– ident: e_1_2_16_102_1
  doi: 10.1093/infdis/123.3.307
– ident: e_1_2_16_55_1
  doi: 10.1016/S0300-9084(01)01321-9
– ident: e_1_2_16_13_1
  doi: 10.1097/01.MPG.0000155182.54001.48
– ident: e_1_2_16_33_1
  doi: 10.3201/eid1301.060800
– ident: e_1_2_16_70_1
  doi: 10.1126/science.286.5438.287
– ident: e_1_2_16_17_1
  doi: 10.1002/jmv.21237
– ident: e_1_2_16_62_1
  doi: 10.1002/jmv.21426
– ident: e_1_2_16_101_1
  doi: 10.1371/journal.ppat.1000504
– ident: e_1_2_16_52_1
  doi: 10.1007/BF01053194
– ident: e_1_2_16_85_1
  doi: 10.1038/ncb1999
– ident: e_1_2_16_66_1
  doi: 10.1086/508430
– ident: e_1_2_16_108_1
  doi: 10.7326/0003-4819-92-3-370
– ident: e_1_2_16_117_1
  doi: 10.11150/kansenshogakuzasshi1970.79.664
– volume: 66
  start-page: 6527
  year: 1992
  ident: e_1_2_16_20_1
  article-title: Expression, self‐assembly, and antigenicity of the Norwalk virus capsid protein
  publication-title: Journal of Virology
  doi: 10.1128/jvi.66.11.6527-6532.1992
– ident: e_1_2_16_114_1
  doi: 10.1086/375829
– ident: e_1_2_16_78_1
  doi: 10.1007/s10719-009-9237-x
– ident: e_1_2_16_37_1
  doi: 10.1016/j.virol.2008.06.041
– ident: e_1_2_16_91_1
  doi: 10.1073/pnas.0803275105
– ident: e_1_2_16_35_1
  doi: 10.1128/JVI.00864-09
– ident: e_1_2_16_74_1
  doi: 10.1093/glycob/cwn139
– ident: e_1_2_16_43_1
  doi: 10.1093/oxfordjournals.aje.a113288
– ident: e_1_2_16_57_1
  doi: 10.1038/nm860
– ident: e_1_2_16_8_1
  doi: 10.3201/eid1601.090633
– ident: e_1_2_16_65_1
  doi: 10.1128/JVI.79.5.2900-2909.2005
– ident: e_1_2_16_22_1
  doi: 10.1016/j.virol.2005.11.015
– ident: e_1_2_16_90_1
  doi: 10.1128/JVI.00219-07
– ident: e_1_2_16_24_1
  doi: 10.3201/eid1112.050485
– ident: e_1_2_16_105_1
  doi: 10.7326/0003-4819-79-1-18
– ident: e_1_2_16_80_1
  doi: 10.1016/0076-6879(87)38019-X
– ident: e_1_2_16_53_1
  doi: 10.1111/j.1423-0410.1996.tb00991.x
– ident: e_1_2_16_59_1
  doi: 10.1128/JVI.79.24.15351-15355.2005
– ident: e_1_2_16_38_1
  doi: 10.1099/vir.0.005082-0
– ident: e_1_2_16_9_1
  doi: 10.1002/jmv.21217
– ident: e_1_2_16_3_1
  doi: 10.3201/eid1410.080188
– ident: e_1_2_16_44_1
  doi: 10.1093/infdis/161.1.18
– ident: e_1_2_16_50_1
  doi: 10.1016/S1246-7820(05)80089-8
– ident: e_1_2_16_41_1
  doi: 10.1086/591627
– ident: e_1_2_16_14_1
  doi: 10.3201/eid1410.080117
– ident: e_1_2_16_61_1
  doi: 10.1002/jmv.21200
– ident: e_1_2_16_11_1
  doi: 10.1016/j.jcv.2003.10.007
– ident: e_1_2_16_34_1
  doi: 10.1002/jmv.21344
– volume: 31
  start-page: 2185
  year: 1993
  ident: e_1_2_16_69_1
  article-title: Comparison of the reactivities of baculovirus‐expressed recombinant Norwalk virus capsid antigen with those of the native Norwalk virus antigen in serologic assays and some epidemiologic observations
  publication-title: Journal of Clinical Microbiology
  doi: 10.1128/jcm.31.8.2185-2191.1993
– ident: e_1_2_16_36_1
  doi: 10.1007/s10822-010-9353-5
– ident: e_1_2_16_76_1
  doi: 10.1086/432546
– ident: e_1_2_16_106_1
  doi: 10.1056/NEJM197306212882503
– ident: e_1_2_16_83_1
  doi: 10.1056/NEJM199404283301704
– ident: e_1_2_16_32_1
  doi: 10.1128/JCM.00505-08
– ident: e_1_2_16_87_1
  doi: 10.1515/BC.2009.072
– ident: e_1_2_16_2_1
  doi: 10.3201/eid1408.071114
– ident: e_1_2_16_68_1
  doi: 10.1128/JVI.76.6.3023-3030.2002
– ident: e_1_2_16_112_1
  doi: 10.1128/JVI.02179-09
– ident: e_1_2_16_21_1
  doi: 10.1128/JVI.74.14.6581-6591.2000
– ident: e_1_2_16_95_1
  doi: 10.1128/AEM.00148-10
– ident: e_1_2_16_15_1
  doi: 10.1128/JCM.42.5.2271-2274.2004
– ident: e_1_2_16_45_1
  doi: 10.1053/gast.2002.33661
– ident: e_1_2_16_12_1
  doi: 10.1093/ndt/gfn693
– ident: e_1_2_16_82_1
  doi: 10.1128/JVI.02393-05
– ident: e_1_2_16_26_1
  doi: 10.1086/314783
– ident: e_1_2_16_6_1
  doi: 10.1111/j.1600-065X.2008.00680.x
– ident: e_1_2_16_63_1
  doi: 10.1086/427779
– ident: e_1_2_16_7_1
  doi: 10.1086/524145
– ident: e_1_2_16_88_1
  doi: 10.1007/s10719-009-9229-x
– ident: e_1_2_16_58_1
  doi: 10.1002/jmv.20423
– ident: e_1_2_16_54_1
  doi: 10.1093/molbev/msp108
– ident: e_1_2_16_115_1
  doi: 10.1016/S0195-6701(03)00296-2
– ident: e_1_2_16_5_1
  doi: 10.1097/01.qco.0000244053.69253.3d
– ident: e_1_2_16_60_1
  doi: 10.1128/JCM.00162-07
– ident: e_1_2_16_79_1
  doi: 10.1093/glycob/cwp103
– ident: e_1_2_16_89_1
  doi: 10.1073/pnas.88.20.9340
– ident: e_1_2_16_64_1
  doi: 10.1371/journal.pone.0005593
– ident: e_1_2_16_94_1
  doi: 10.1128/JVI.78.8.3817-3826.2004
– ident: e_1_2_16_16_1
  doi: 10.1128/JCM.01516-07
– ident: e_1_2_16_71_1
  doi: 10.1128/JVI.78.12.6469-6479.2004
– ident: e_1_2_16_27_1
  doi: 10.1007/s00705-009-0528-0
– ident: e_1_2_16_93_1
  doi: 10.1371/journal.pone.0005058
– ident: e_1_2_16_98_1
  doi: 10.1128/JVI.77.1.405-415.2003
– ident: e_1_2_16_103_1
  doi: 10.1093/infdis/129.6.705
– ident: e_1_2_16_18_1
  doi: 10.1006/viro.1993.1345
– ident: e_1_2_16_40_1
  doi: 10.1128/JVI.02518-08
SSID ssj0010104
Score 2.2020686
SecondaryResourceType review_article
Snippet SUMMARY Norovirus, the cause of winter vomiting disease, has emerged in recent years to be a major cause of sporadic and epidemic gastroenteritis worldwide....
Norovirus, the cause of winter vomiting disease, has emerged in recent years to be a major cause of sporadic and epidemic gastroenteritis worldwide. The virus...
SUMMARY Norovirus, the cause of winter vomiting disease, has emerged in recent years to be a major cause of sporadic and epidemic gastroenteritis worldwide....
SourceID swepub
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 370
SubjectTerms Annan klinisk medicin
Blood Group Antigens - chemistry
Blood Group Antigens - metabolism
Caliciviridae Infections - epidemiology
Caliciviridae Infections - genetics
Caliciviridae Infections - virology
Carbohydrates
chromosome 19
Developing countries
Epidemics
fucose
Fucosyltransferases - genetics
Galactoside 2-alpha-L-fucosyltransferase
Gastroenteritis
Gastroenteritis - epidemiology
Gastroenteritis - genetics
Gastroenteritis - virology
Gastrointestinal tract
Genetic Predisposition to Disease
Humans
Infection
Medical Biotechnology (Focus on Cell Biology (incl. Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
MEDICIN
MEDICINE
Medicinsk bioteknologi (Inriktn. mot cellbiologi (inkl. stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci)
Microbiology in the Medical Area
Mikrobiologi inom det medicinska området
Mutation
Norovirus
Norovirus - pathogenicity
Nucleotides
Other Clinical Medicine
Polymorphism, Single Nucleotide
Receptor mechanisms
Receptors, Virus - chemistry
Receptors, Virus - metabolism
Seasons
Sweet taste
Vomiting
Vomiting - epidemiology
Vomiting - etiology
Vomiting - virology
Title Susceptibility to winter vomiting disease: a sweet matter
URI https://api.istex.fr/ark:/67375/WNG-8Q6DSNR7-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frmv.704
https://www.ncbi.nlm.nih.gov/pubmed/22025362
https://www.proquest.com/docview/1766842768
https://www.proquest.com/docview/1017972742
https://www.proquest.com/docview/900642431
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-72820
https://gup.ub.gu.se/publication/150133
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQKxAXHgVKoKAgld6yTWzHcbhVLKVC2pXY0lJxsfzKatXuptokLeXXM3aygUIrIU6R4rHlx4z92TP-jNA2jSXTcawjmWIdUZuTSBUkiRJlYkoMh0XeXRQejdnBEf10kp789tRXyw_RH7g5y_DztTNwqardX6Shy_nFIPNMoAlhjjV_OOmJoxK3y_B-zhRHOc5Ye13W5dzt8l1bh9Zdl36_CWT2DKLXwatfffYfom-rerdBJ6eDplYD_eMPSsf_atgj9KDDpOFeq0SP0R272EB321cqrzbQvVHnf3-C8sOm8nEwPqT2KqzL8NIRTizDi3I-cxHUYefxeRfKEJpk63DuGTyfoqP9D1_eH0Td4wuRTlNGI54bxhnXlBJdZLiwSmJsFJeKYZiZiCLW7V4MwYVkxhIidZ4aLLVJjKOpJ8_Q2qJc2Oco1Lm1caZ4CnI0L6CgFBucFMbwWFlOA7SzGgqhO2Zy90DGmWg5lbGALhHQJQGUtRI8b8k4_hbZ8WPZp8vlqYtdy1LxdfxR8M9seDieZCIL0NZqsEVntpVwbJmcgr7wAL3pk8HgnBdFLmzZVMLPYZnzcEN1bpHJHdLDgM0CtNnqUV8fjAFlAmoI0NtWsfoUR_Q9nB3viXI5FWezRmSwHY6hQTfITZtzAb-mjaisAEyfEBKgba9Vt_WMmIyO4fPi38Reovv-9NzfutxCa_Wysa8AftXqtbe0nwlbLTc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZQK44XjnIFCgSp9C3bxHYSh7eKUhborsT2oBIPVnxktWp3U-0mhfLrmXGyQYVWQjxFiseWjxn7s2f8mZANHuaJDkMd5DHVAbcZC1TBoiBSJuTMCFjk8aLwYJj0D_mn4_i4jarEuzANP0R34IaW4eZrNHA8kN76zRo6n573UqQCXXXeOQREo446KsJ9hvN0xjTIaJo0F2Yx61ab8dJKtIqd-uMqmNlxiF6Gr2792b1Hvi1r3oSdnPTqSvX0zz9IHf-vaffJ3RaW-tuNHj0gN-xsjdxsHqq8WCO3Bq0L_iHJ9uuFC4VxUbUXflX635FzYu6fl9MJBlH7rdPnrZ_70CZb-VNH4vmIHO6-P3jXD9r3FwIdxwkPRGYSkQjNOdNFSgurckqNErlKKExOTDGLGxjDaJEnxjKW6yw2NNcmMshUzx6TlVk5s0-JrzNrw1SJGOR4VkBBMTU0KowRobKCe2RzORZSt-Tk-EbGqWxolamELpHQJR6UtRQ8a_g4_hbZdIPZpefzEwxfS2P5dfhBii_Jzv5wlMrUI-vL0Zat5S4kEmYKDgojPPK6SwabQ0dKPrNlvZBuGkvRyQ3VuUYmQ7BHAZ555EmjSF19KAWgCcDBI28azepSkOt7Z3K0Lcv5WJ5OapnCjjiEBl0hN67PJPwa13JhJcD6iDGPbDi1uq5n5GhwBJ9n_yb2itzuHwz25N7H4efn5I47THeXMNfJSjWv7QtAY5V66czuF79pMVU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQJiZeuIxbYECQxt7SJbaTOLxNlDIuraBjY-LF8i1VtbWp0mQwfj3HThoYbBLiKVJ8bPlyjv3Z5_gzQts0FIkKQxWIGKuAmowEMidREEkdUqIZLPL2ovBwlOwf0nfH8fFvT301_BDdgZu1DDdfWwNf6Hz3F2loOTvrpZYJdJ0msEhaPDTumKMiu81wjs4YBxlOk-a-rM2622a8sBCt2z79fhnK7ChEL6JXt_wMbqGvq4o3UScnvbqSPfXjD07H_2rZbXSzBaX-XqNFd9A1M99E15tnKs830cawdcDfRdlBvXSBMC6m9tyvCv-bZZwo_bNiNrUh1H7r8nnpCx-aZCp_5ig876HDwevPr_aD9vWFQMVxQgOW6YQlTFFKVJ7i3EiBsZZMyATD1EQkMXb7ognORaINIUJlscZC6UhbnnpyH63Ni7l5iHyVGROmksUgR7McCoqxxlGuNQulYdRDO6uh4KqlJrcvZJzyhlQZc-gSDl3iQVkrwUXDxvG3yI4byy5dlCc2eC2N-ZfRG84-Jf2D0TjlqYe2VoPNW7tdckuXySjoC_PQ8y4ZLM66UcTcFPWSu0kstS5uqM4VMpmFehjAmYceNHrU1QdjgJkAGzz0olGsLsUyffenR3u8KCf8dFrzFPbDITToErlJveDwa1LzpeEA6iNCPLTttOqqnuHj4RF8Hv2b2DO08bE_4B_ejt4_RjfcSbq7gbmF1qqyNk8AilXyqTO6nw5OMAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Susceptibility+to+winter+vomiting+disease%3A+a+sweet+matter&rft.jtitle=Reviews+in+medical+virology&rft.au=Rydell%2C+Gustaf+E&rft.au=Kindberg%2C+Elin&rft.au=Larson%2C+G%C3%B6ran&rft.au=Svensson%2C+Lennart&rft.date=2011-11-01&rft.issn=1099-1654&rft.eissn=1099-1654&rft.volume=21&rft.issue=6&rft.spage=370&rft_id=info:doi/10.1002%2Frmv.704&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1052-9276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1052-9276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1052-9276&client=summon