Importance of Glu53 in the C-terminal region of brazzein, a sweet-tasting protein

BACKGROUND The sweetness of brazzein, one of the known sweet proteins, is dependent on charges and/or structures of its specific amino acid side chains. As the residues in the C‐terminus of brazzein are known to play a critical role in sweetness, the currently unknown function of Glu53 requires furt...

Full description

Saved in:
Bibliographic Details
Published inJournal of the science of food and agriculture Vol. 96; no. 9; pp. 3202 - 3206
Main Authors Lim, Jin-Kyung, Jang, Jin-Chul, Kong, Ji-Na, Kim, Myung-Chul, Kong, Kwang-Hoon
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.07.2016
John Wiley and Sons, Limited
Subjects
Online AccessGet full text
ISSN0022-5142
1097-0010
DOI10.1002/jsfa.7501

Cover

Abstract BACKGROUND The sweetness of brazzein, one of the known sweet proteins, is dependent on charges and/or structures of its specific amino acid side chains. As the residues in the C‐terminus of brazzein are known to play a critical role in sweetness, the currently unknown function of Glu53 requires further study. RESULTS To identify important residues responsible for the sweetness of the protein brazzein, four mutants of the Glu53 residue in the C‐terminal region of des‐pE1M‐brazzein, which lacks the N‐terminal pyroglutamate, were constructed using site‐directed mutagenesis. Mutations of Glu53 substitution to Ala or Asp significantly decreased the sweetness. On the other hand, a Lys mutation resulted in a molecule with sweetness similar to that of des‐pE1M‐brazzein. Mutation of Glu53 to Arg resulted in a molecule significantly sweeter than des‐pE1M‐brazzein, which agrees with previous findings showing that mutation with positively charged residues results in a sweeter protein. CONCLUSION Our results suggest that the residue at position 53 is crucial for the sweetness of brazzein, which may be interacting with the sweet‐taste receptor. © 2015 Society of Chemical Industry
AbstractList BACKGROUND The sweetness of brazzein, one of the known sweet proteins, is dependent on charges and/or structures of its specific amino acid side chains. As the residues in the C-terminus of brazzein are known to play a critical role in sweetness, the currently unknown function of Glu53 requires further study. RESULTS To identify important residues responsible for the sweetness of the protein brazzein, four mutants of the Glu53 residue in the C-terminal region of des-pE1M-brazzein, which lacks the N-terminal pyroglutamate, were constructed using site-directed mutagenesis. Mutations of Glu53 substitution to Ala or Asp significantly decreased the sweetness. On the other hand, a Lys mutation resulted in a molecule with sweetness similar to that of des-pE1M-brazzein. Mutation of Glu53 to Arg resulted in a molecule significantly sweeter than des-pE1M-brazzein, which agrees with previous findings showing that mutation with positively charged residues results in a sweeter protein. CONCLUSION Our results suggest that the residue at position 53 is crucial for the sweetness of brazzein, which may be interacting with the sweet-taste receptor.
BACKGROUND The sweetness of brazzein, one of the known sweet proteins, is dependent on charges and/or structures of its specific amino acid side chains. As the residues in the C‐terminus of brazzein are known to play a critical role in sweetness, the currently unknown function of Glu53 requires further study. RESULTS To identify important residues responsible for the sweetness of the protein brazzein, four mutants of the Glu53 residue in the C‐terminal region of des‐pE1M‐brazzein, which lacks the N‐terminal pyroglutamate, were constructed using site‐directed mutagenesis. Mutations of Glu53 substitution to Ala or Asp significantly decreased the sweetness. On the other hand, a Lys mutation resulted in a molecule with sweetness similar to that of des‐pE1M‐brazzein. Mutation of Glu53 to Arg resulted in a molecule significantly sweeter than des‐pE1M‐brazzein, which agrees with previous findings showing that mutation with positively charged residues results in a sweeter protein. CONCLUSION Our results suggest that the residue at position 53 is crucial for the sweetness of brazzein, which may be interacting with the sweet‐taste receptor. © 2015 Society of Chemical Industry
The sweetness of brazzein, one of the known sweet proteins, is dependent on charges and/or structures of its specific amino acid side chains. As the residues in the C-terminus of brazzein are known to play a critical role in sweetness, the currently unknown function of Glu53 requires further study. To identify important residues responsible for the sweetness of the protein brazzein, four mutants of the Glu53 residue in the C-terminal region of des-pE1M-brazzein, which lacks the N-terminal pyroglutamate, were constructed using site-directed mutagenesis. Mutations of Glu53 substitution to Ala or Asp significantly decreased the sweetness. On the other hand, a Lys mutation resulted in a molecule with sweetness similar to that of des-pE1M-brazzein. Mutation of Glu53 to Arg resulted in a molecule significantly sweeter than des-pE1M-brazzein, which agrees with previous findings showing that mutation with positively charged residues results in a sweeter protein. Our results suggest that the residue at position 53 is crucial for the sweetness of brazzein, which may be interacting with the sweet-taste receptor. © 2015 Society of Chemical Industry.
BACKGROUND The sweetness of brazzein, one of the known sweet proteins, is dependent on charges and/or structures of its specific amino acid side chains. As the residues in the C-terminus of brazzein are known to play a critical role in sweetness, the currently unknown function of Glu53 requires further study. RESULTS To identify important residues responsible for the sweetness of the protein brazzein, four mutants of the Glu53 residue in the C-terminal region of des-pE1M-brazzein, which lacks the N-terminal pyroglutamate, were constructed using site-directed mutagenesis. Mutations of Glu53 substitution to Ala or Asp significantly decreased the sweetness. On the other hand, a Lys mutation resulted in a molecule with sweetness similar to that of des-pE1M-brazzein. Mutation of Glu53 to Arg resulted in a molecule significantly sweeter than des-pE1M-brazzein, which agrees with previous findings showing that mutation with positively charged residues results in a sweeter protein. CONCLUSION Our results suggest that the residue at position 53 is crucial for the sweetness of brazzein, which may be interacting with the sweet-taste receptor. © 2015 Society of Chemical Industry
Author Kong, Ji-Na
Jang, Jin-Chul
Kong, Kwang-Hoon
Lim, Jin-Kyung
Kim, Myung-Chul
Author_xml – sequence: 1
  givenname: Jin-Kyung
  surname: Lim
  fullname: Lim, Jin-Kyung
  organization: Biomolecular Chemistry Laboratory, Department of Chemistry, College of Natural Sciences, Chung-Ang University, 221 Huksuk-Dong, Seoul, 156-756, Dongjak-Ku, Korea
– sequence: 2
  givenname: Jin-Chul
  surname: Jang
  fullname: Jang, Jin-Chul
  organization: Biomolecular Chemistry Laboratory, Department of Chemistry, College of Natural Sciences, Chung-Ang University, 221 Huksuk-Dong, Seoul, 156-756, Dongjak-Ku, Korea
– sequence: 3
  givenname: Ji-Na
  surname: Kong
  fullname: Kong, Ji-Na
  organization: Biomolecular Chemistry Laboratory, Department of Chemistry, College of Natural Sciences, Chung-Ang University, 221 Huksuk-Dong, Seoul, 156-756, Dongjak-Ku, Korea
– sequence: 4
  givenname: Myung-Chul
  surname: Kim
  fullname: Kim, Myung-Chul
  organization: Biomolecular Chemistry Laboratory, Department of Chemistry, College of Natural Sciences, Chung-Ang University, 221 Huksuk-Dong, Seoul, 156-756, Dongjak-Ku, Korea
– sequence: 5
  givenname: Kwang-Hoon
  surname: Kong
  fullname: Kong, Kwang-Hoon
  email: khkong@cau.ac.kr
  organization: Biomolecular Chemistry Laboratory, Department of Chemistry, College of Natural Sciences, Chung-Ang University, 221 Huksuk-Dong, Seoul, 156-756, Dongjak-Ku, Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26478244$$D View this record in MEDLINE/PubMed
BookMark eNqN0ctuEzEUBmALtaJpYcELoJHYgNRpbY8vM8s2IqFVVBQuQmJjeTzHxWEuwfaol6fHUdIuKhCsvPD3H8vnP0R7_dADQq8IPiEY09NVsPpEckyeoQnBlcwxJngPTdIdzTlh9AAdhrDCGFeVEM_RARVMlpSxCVpedOvBR90byAabzduRF5nrs_gDsmkewXeu123m4doN_UbUXt_fg-uPM52FG4CYRx2i66-ztR9iuniB9q1uA7zcnUfo6-z9l-mHfPFxfjE9W-SGc0Hypqnr2lSF4JbYUlRSVo0kVlABnGNqaC1KURjGqC0t1raGRhspjakNraSG4gi93c5N7_4aIUTVuWCgbXUPwxgUTd8ljBWc_pOSknImC1bJ_6C4lERIyhN984SuhtGnbSUlK8qk4KxM6vVOjXUHjVp712l_px4qSOB0C4wfQvBglXFRx7Tu6LVrFcFqU7LalKw2JafEuyeJh6F_srvpN66Fu79Ddfl5drZL5NuECxFuHxPa_1RCFpKrb1dzxZazT9-Xi3Mlit9bBcM3
CODEN JSFAAE
CitedBy_id crossref_primary_10_1021_acs_jmedchem_3c02055
crossref_primary_10_1016_j_foodchem_2023_136580
crossref_primary_10_1016_j_foodres_2022_111853
crossref_primary_10_1177_23978473231151258
crossref_primary_10_3389_fnut_2021_691368
crossref_primary_10_1016_j_foodchem_2020_128750
crossref_primary_10_1093_chemse_bjz057
crossref_primary_10_3389_fmolb_2018_00010
crossref_primary_10_1186_s13568_025_01864_y
crossref_primary_10_1002_2211_5463_13411
Cites_doi 10.1074/jbc.M302663200
10.1016/S0014-5793(02)03155-1
10.1021/jf062359y
10.1016/j.foodchem.2011.06.054
10.1271/bbb.65.409
10.1016/j.foodchem.2012.10.140
10.1093/chemse/bjh128
10.1016/j.jmb.2006.05.020
10.1016/S0014-5793(03)00383-1
10.1002/jcc.20084
10.1016/j.plantsci.2011.06.009
10.1016/0014-5793(94)01184-2
10.5012/bkcs.2010.31.12.3830
10.1016/j.bbamem.2009.07.021
10.1093/chemse/bjp048
10.1093/chemse/bjr057
10.1006/abbi.2000.1726
10.1111/j.1742-4658.2008.06509.x
10.1016/0003-2697(74)90034-7
10.1038/nsb0698-427
10.5012/bkcs.2011.32.11.4106
10.1007/s00018-006-6077-8
ContentType Journal Article
Copyright 2015 Society of Chemical Industry
2015 Society of Chemical Industry.
2016 Society of Chemical Industry
Copyright_xml – notice: 2015 Society of Chemical Industry
– notice: 2015 Society of Chemical Industry.
– notice: 2016 Society of Chemical Industry
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QL
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7ST
7T5
7T7
7TA
7TB
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
M7N
P64
SOI
7S9
L.6
DOI 10.1002/jsfa.7501
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Bacteriology Abstracts (Microbiology B)
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Immunology Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Chemoreception Abstracts

AGRICOLA
MEDLINE
Technology Research Database
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Agriculture
Diet & Clinical Nutrition
EISSN 1097-0010
EndPage 3206
ExternalDocumentID 4072478251
26478244
10_1002_jsfa_7501
JSFA7501
ark_67375_WNG_4QFRZQLB_6
Genre article
Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea Grant funded by the Korean Government
  funderid: 2012R1A1B3000478
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29L
3-9
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAIKC
AAMMB
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACKIV
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DROCM
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M64
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
UB1
V2E
V8K
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XOL
XPP
XV2
Y6R
ZCG
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAHHS
ABTAH
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RIG
RWI
WRC
WWF
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QL
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7ST
7T5
7T7
7TA
7TB
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
M7N
P64
SOI
7S9
L.6
ID FETCH-LOGICAL-c5561-ddbbbc9365f1f869779d71f626e5502c2b6863c442f8f0afbedac77ccbc297ae3
IEDL.DBID DR2
ISSN 0022-5142
IngestDate Fri Jul 11 18:27:22 EDT 2025
Sun Sep 28 15:01:30 EDT 2025
Sun Sep 28 01:07:28 EDT 2025
Fri Jul 25 08:20:48 EDT 2025
Mon Jul 21 05:55:17 EDT 2025
Tue Jul 01 04:14:52 EDT 2025
Thu Apr 24 23:09:17 EDT 2025
Wed Jan 22 16:55:03 EST 2025
Sun Sep 21 06:17:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Glu53
mutagenesis
brazzein
sweetness determinant
Language English
License 2015 Society of Chemical Industry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5561-ddbbbc9365f1f869779d71f626e5502c2b6863c442f8f0afbedac77ccbc297ae3
Notes ArticleID:JSFA7501
National Research Foundation of Korea Grant funded by the Korean Government - No. 2012R1A1B3000478
istex:5B64612E1194B8FF58123E8CE56CAD17365B74AE
ark:/67375/WNG-4QFRZQLB-6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26478244
PQID 1792476548
PQPubID 37930
PageCount 5
ParticipantIDs proquest_miscellaneous_2000144352
proquest_miscellaneous_1825473497
proquest_miscellaneous_1808716725
proquest_journals_1792476548
pubmed_primary_26478244
crossref_citationtrail_10_1002_jsfa_7501
crossref_primary_10_1002_jsfa_7501
wiley_primary_10_1002_jsfa_7501_JSFA7501
istex_primary_ark_67375_WNG_4QFRZQLB_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2016
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: July 2016
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: London
PublicationTitle Journal of the science of food and agriculture
PublicationTitleAlternate J. Sci. Food Agric
PublicationYear 2016
Publisher John Wiley & Sons, Ltd
John Wiley and Sons, Limited
Publisher_xml – name: John Wiley & Sons, Ltd
– name: John Wiley and Sons, Limited
References Dittli SM, Rao H, Tonelli M, Quijada J, Markley JL, Max M et al., Structural role of the terminal disulfide bond in the sweetness of brazzein. Chem Senses 36:821-830 (2011).
Lee JW, Cha JE, Jo HJ and Kong KH, Multiple mutations of the critical amino acid residues for the sweetness of the sweet-tasting protein, brazzein. Food Chem 138:1370-1373 (2013).
Caldwell JE, Abildgaard F, Dzakula Z, Ming D, Hellekant G and Markley JL, Solution structure of the thermostable sweet-tasting protein brazzein. Nat Struct Mol Biol 5:427-431 (1998).
Kaneko R and Kitabatake N, Sweetness of sweet protein thaumatin is more thermoresistant under acid conditions than under neutral or alkaline conditions. Biosci Biotechnol Biochem 65:409-413 (2001).
Temussi PA, Why are sweet proteins sweet? Interaction of brazzein, monellin and thaumatin with the T1R2-T1R3 receptor. FEBS Lett 526:1-4 (2002).
Jin Z, Danilova V, Assadi-Porter FM, Aceti DJ, Markley JL and Hellekant G, Critical regions for the sweetness of brazzein. FEBS Lett 544:33-37 (2003).
Yoon SY, Kong JN, Jo DH and Kong KH, Residue mutations in the sweetness loops for the sweet-tasting protein brazzein. Food Chem 129:1327-1330 (2011).
Walters DE and Hellekant G, Interactions of the sweet protein brazzein with the sweet taste receptor. J Agric Food Chem 54:10129-10133 (2006).
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC et al., UCSF Chimera: a visualization system for exploratory research and analysis. J Comput Chem 25:1605-1612 (2004).
Nagata K, Hongo N, Kameda Y, Yamamura A, Sasaki H, Lee WC et al., The structure of brazzein, a sweet-tasting protein from the wild African plant Pentadiplandra brazzeana. Acta Cryst D69:642-647 (2013).
Do HD, Jo HJ, Jo DH and Kong KH, Mutagenesis of critical amino acid residues in α-helix and β-sheet structures of brazzein. Bull Korean Chem Soc 32:4106-4108 (2011).
Ohta K, Masuda T, Ide N and Kitabatake N, Critical molecular regions for elicitation of the sweetness of the sweet-tasting protein, thaumatin I. FEBS J 275:3644-3652 (2008).
Assadi-Porter FM, Aceti DJ and Markley JL, Sweetness determinant sites of brazzein, a small, heat-stable, sweet-tasting protein. Arch Biochem Biophys 376:259-265 (2000).
Lee JJ, Kong JN, Do HD, Jo DH and Kong KH, Design and efficient soluble expression of a sweet protein, brazzein and minor-form mutant. Bull Korean Chem Soc 31:3830-3833 (2010).
Walters DE, Cragin T, Jin Z, Rumbley JN and Hellekant G, Design and evaluation of new analogs of the sweet protein brazzein. Chem Senses 34:679-683 (2009).
Temussi PA, Natural sweet macromolecules: how sweet proteins work. Cell Mol Life Sci 63:1876-1888 (2006).
Wintjens R, Viet TMVN, Mbosso E and Huet J, Hypothesis/review: the structural basis of sweetness perception of sweet-tasting plant proteins can be deduced from sequence analysis. Plant Sci 181:347-354 (2011).
Esposito V, Gallucci R, Picone D, Saviano G, Tancredi T and Temussi PA, The importance of electrostatic potential in the interaction of sweet proteins with the sweet taste receptor. J Mol Biol 360:448-456 (2006).
Ming D and Hellekant G, Brazzein, a new high-potency thermostable sweet protein from Pentadiplandra brazzeana B. FEBS Lett 355:106-108 (1994).
Ming D, Hellekant G and Zhong H, Characterization and chemical modification of brazzein, a high potency thermostable sweet protein from Pentadiplandra brazzeana. Acta Bot Yunnancia 18:123-133 (1996).
Assadi-Porter FM, Abildgaard F, Blad H, Cornilescu CC and Markely JL, Brazzein, a small, sweet protein: effect of mutation on its structure, dynamics and functional properties. Chem Senses 30(Suppl 1):i90-i91 (2005).
Assadi-Porter FM, Tonelli M, Maillet EL, Markely JL and Max M, Interactions between the human sweet-sensing T1R2-T1R3 receptor and sweeteners detected by saturation transfer difference NMR spectroscopy. Biochim Biophys Acta 1798:82-86 (2010).
Assadi-Porter FM, Abildgaard F, Blad H and Markley JL, Correlation of the sweetness of variants of the protein brazzein with patterns of hydrogen bonds detected by NMR spectroscopy. J Biol Chem 278:31331-31339 (2003).
Scopes RK, Measurement of protein by spectrophotometry at 205 nm. Anal Biochem 59:277-282 (1974).
2009; 34
1994; 355
1974; 59
2010; 31
2006; 63
1996; 18
2011; 129
2006; 54
2013; 138
2004; 25
2005; 30
2006; 360
2011; 32
2011; 181
2002; 526
2000; 376
2011; 36
2003; 544
1998; 5
2003; 278
2008; 275
2010; 1798
2013; D69
2001; 65
e_1_2_6_21_1
e_1_2_6_10_1
e_1_2_6_20_1
Ming D (e_1_2_6_6_1) 1996; 18
e_1_2_6_8_1
e_1_2_6_19_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_13_1
e_1_2_6_25_1
Nagata K (e_1_2_6_9_1) 2013; 69
e_1_2_6_14_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_11_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_12_1
e_1_2_6_22_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
References_xml – reference: Nagata K, Hongo N, Kameda Y, Yamamura A, Sasaki H, Lee WC et al., The structure of brazzein, a sweet-tasting protein from the wild African plant Pentadiplandra brazzeana. Acta Cryst D69:642-647 (2013).
– reference: Yoon SY, Kong JN, Jo DH and Kong KH, Residue mutations in the sweetness loops for the sweet-tasting protein brazzein. Food Chem 129:1327-1330 (2011).
– reference: Lee JW, Cha JE, Jo HJ and Kong KH, Multiple mutations of the critical amino acid residues for the sweetness of the sweet-tasting protein, brazzein. Food Chem 138:1370-1373 (2013).
– reference: Ming D, Hellekant G and Zhong H, Characterization and chemical modification of brazzein, a high potency thermostable sweet protein from Pentadiplandra brazzeana. Acta Bot Yunnancia 18:123-133 (1996).
– reference: Assadi-Porter FM, Tonelli M, Maillet EL, Markely JL and Max M, Interactions between the human sweet-sensing T1R2-T1R3 receptor and sweeteners detected by saturation transfer difference NMR spectroscopy. Biochim Biophys Acta 1798:82-86 (2010).
– reference: Lee JJ, Kong JN, Do HD, Jo DH and Kong KH, Design and efficient soluble expression of a sweet protein, brazzein and minor-form mutant. Bull Korean Chem Soc 31:3830-3833 (2010).
– reference: Temussi PA, Why are sweet proteins sweet? Interaction of brazzein, monellin and thaumatin with the T1R2-T1R3 receptor. FEBS Lett 526:1-4 (2002).
– reference: Assadi-Porter FM, Abildgaard F, Blad H, Cornilescu CC and Markely JL, Brazzein, a small, sweet protein: effect of mutation on its structure, dynamics and functional properties. Chem Senses 30(Suppl 1):i90-i91 (2005).
– reference: Wintjens R, Viet TMVN, Mbosso E and Huet J, Hypothesis/review: the structural basis of sweetness perception of sweet-tasting plant proteins can be deduced from sequence analysis. Plant Sci 181:347-354 (2011).
– reference: Assadi-Porter FM, Abildgaard F, Blad H and Markley JL, Correlation of the sweetness of variants of the protein brazzein with patterns of hydrogen bonds detected by NMR spectroscopy. J Biol Chem 278:31331-31339 (2003).
– reference: Walters DE and Hellekant G, Interactions of the sweet protein brazzein with the sweet taste receptor. J Agric Food Chem 54:10129-10133 (2006).
– reference: Temussi PA, Natural sweet macromolecules: how sweet proteins work. Cell Mol Life Sci 63:1876-1888 (2006).
– reference: Esposito V, Gallucci R, Picone D, Saviano G, Tancredi T and Temussi PA, The importance of electrostatic potential in the interaction of sweet proteins with the sweet taste receptor. J Mol Biol 360:448-456 (2006).
– reference: Kaneko R and Kitabatake N, Sweetness of sweet protein thaumatin is more thermoresistant under acid conditions than under neutral or alkaline conditions. Biosci Biotechnol Biochem 65:409-413 (2001).
– reference: Ohta K, Masuda T, Ide N and Kitabatake N, Critical molecular regions for elicitation of the sweetness of the sweet-tasting protein, thaumatin I. FEBS J 275:3644-3652 (2008).
– reference: Assadi-Porter FM, Aceti DJ and Markley JL, Sweetness determinant sites of brazzein, a small, heat-stable, sweet-tasting protein. Arch Biochem Biophys 376:259-265 (2000).
– reference: Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC et al., UCSF Chimera: a visualization system for exploratory research and analysis. J Comput Chem 25:1605-1612 (2004).
– reference: Caldwell JE, Abildgaard F, Dzakula Z, Ming D, Hellekant G and Markley JL, Solution structure of the thermostable sweet-tasting protein brazzein. Nat Struct Mol Biol 5:427-431 (1998).
– reference: Ming D and Hellekant G, Brazzein, a new high-potency thermostable sweet protein from Pentadiplandra brazzeana B. FEBS Lett 355:106-108 (1994).
– reference: Dittli SM, Rao H, Tonelli M, Quijada J, Markley JL, Max M et al., Structural role of the terminal disulfide bond in the sweetness of brazzein. Chem Senses 36:821-830 (2011).
– reference: Jin Z, Danilova V, Assadi-Porter FM, Aceti DJ, Markley JL and Hellekant G, Critical regions for the sweetness of brazzein. FEBS Lett 544:33-37 (2003).
– reference: Scopes RK, Measurement of protein by spectrophotometry at 205 nm. Anal Biochem 59:277-282 (1974).
– reference: Do HD, Jo HJ, Jo DH and Kong KH, Mutagenesis of critical amino acid residues in α-helix and β-sheet structures of brazzein. Bull Korean Chem Soc 32:4106-4108 (2011).
– reference: Walters DE, Cragin T, Jin Z, Rumbley JN and Hellekant G, Design and evaluation of new analogs of the sweet protein brazzein. Chem Senses 34:679-683 (2009).
– volume: 181
  start-page: 347
  year: 2011
  end-page: 354
  article-title: Hypothesis/review: the structural basis of sweetness perception of sweet‐tasting plant proteins can be deduced from sequence analysis
  publication-title: Plant Sci
– volume: D69
  start-page: 642
  year: 2013
  end-page: 647
  article-title: The structure of brazzein, a sweet‐tasting protein from the wild African plant
  publication-title: Acta Cryst
– volume: 34
  start-page: 679
  year: 2009
  end-page: 683
  article-title: Design and evaluation of new analogs of the sweet protein brazzein
  publication-title: Chem Senses
– volume: 32
  start-page: 4106
  year: 2011
  end-page: 4108
  article-title: Mutagenesis of critical amino acid residues in α‐helix and β‐sheet structures of brazzein
  publication-title: Bull Korean Chem Soc
– volume: 5
  start-page: 427
  year: 1998
  end-page: 431
  article-title: Solution structure of the thermostable sweet‐tasting protein brazzein
  publication-title: Nat Struct Mol Biol
– volume: 275
  start-page: 3644
  year: 2008
  end-page: 3652
  article-title: Critical molecular regions for elicitation of the sweetness of the sweet‐tasting protein, thaumatin I
  publication-title: FEBS J
– volume: 63
  start-page: 1876
  year: 2006
  end-page: 1888
  article-title: Natural sweet macromolecules: how sweet proteins work
  publication-title: Cell Mol Life Sci
– volume: 129
  start-page: 1327
  year: 2011
  end-page: 1330
  article-title: Residue mutations in the sweetness loops for the sweet‐tasting protein brazzein
  publication-title: Food Chem
– volume: 1798
  start-page: 82
  year: 2010
  end-page: 86
  article-title: Interactions between the human sweet‐sensing T1R2‐T1R3 receptor and sweeteners detected by saturation transfer difference NMR spectroscopy
  publication-title: Biochim Biophys Acta
– volume: 278
  start-page: 31331
  year: 2003
  end-page: 31339
  article-title: Correlation of the sweetness of variants of the protein brazzein with patterns of hydrogen bonds detected by NMR spectroscopy
  publication-title: J Biol Chem
– volume: 30
  start-page: i90
  issue: Suppl 1
  year: 2005
  end-page: i91
  article-title: Brazzein, a small, sweet protein: effect of mutation on its structure, dynamics and functional properties
  publication-title: Chem Senses
– volume: 355
  start-page: 106
  year: 1994
  end-page: 108
  article-title: Brazzein, a new high‐potency thermostable sweet protein from B
  publication-title: FEBS Lett
– volume: 54
  start-page: 10129
  year: 2006
  end-page: 10133
  article-title: Interactions of the sweet protein brazzein with the sweet taste receptor
  publication-title: J Agric Food Chem
– volume: 31
  start-page: 3830
  year: 2010
  end-page: 3833
  article-title: Design and efficient soluble expression of a sweet protein, brazzein and minor‐form mutant
  publication-title: Bull Korean Chem Soc
– volume: 138
  start-page: 1370
  year: 2013
  end-page: 1373
  article-title: Multiple mutations of the critical amino acid residues for the sweetness of the sweet‐tasting protein, brazzein
  publication-title: Food Chem
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  article-title: UCSF Chimera: a visualization system for exploratory research and analysis
  publication-title: J Comput Chem
– volume: 36
  start-page: 821
  year: 2011
  end-page: 830
  article-title: Structural role of the terminal disulfide bond in the sweetness of brazzein
  publication-title: Chem Senses
– volume: 360
  start-page: 448
  year: 2006
  end-page: 456
  article-title: The importance of electrostatic potential in the interaction of sweet proteins with the sweet taste receptor
  publication-title: J Mol Biol
– volume: 376
  start-page: 259
  year: 2000
  end-page: 265
  article-title: Sweetness determinant sites of brazzein, a small, heat‐stable, sweet‐tasting protein
  publication-title: Arch Biochem Biophys
– volume: 526
  start-page: 1
  year: 2002
  end-page: 4
  article-title: Why are sweet proteins sweet? Interaction of brazzein, monellin and thaumatin with the T1R2–T1R3 receptor
  publication-title: FEBS Lett
– volume: 59
  start-page: 277
  year: 1974
  end-page: 282
  article-title: Measurement of protein by spectrophotometry at 205 nm
  publication-title: Anal Biochem
– volume: 18
  start-page: 123
  year: 1996
  end-page: 133
  article-title: Characterization and chemical modification of brazzein, a high potency thermostable sweet protein from
  publication-title: Acta Bot Yunnancia
– volume: 65
  start-page: 409
  year: 2001
  end-page: 413
  article-title: Sweetness of sweet protein thaumatin is more thermoresistant under acid conditions than under neutral or alkaline conditions
  publication-title: Biosci Biotechnol Biochem
– volume: 544
  start-page: 33
  year: 2003
  end-page: 37
  article-title: Critical regions for the sweetness of brazzein
  publication-title: FEBS Lett
– ident: e_1_2_6_10_1
  doi: 10.1074/jbc.M302663200
– ident: e_1_2_6_20_1
  doi: 10.1016/S0014-5793(02)03155-1
– volume: 69
  start-page: 642
  year: 2013
  ident: e_1_2_6_9_1
  article-title: The structure of brazzein, a sweet‐tasting protein from the wild African plant Pentadiplandra brazzeana
  publication-title: Acta Cryst
– ident: e_1_2_6_15_1
  doi: 10.1021/jf062359y
– ident: e_1_2_6_14_1
  doi: 10.1016/j.foodchem.2011.06.054
– ident: e_1_2_6_22_1
  doi: 10.1271/bbb.65.409
– ident: e_1_2_6_19_1
  doi: 10.1016/j.foodchem.2012.10.140
– ident: e_1_2_6_12_1
  doi: 10.1093/chemse/bjh128
– ident: e_1_2_6_23_1
  doi: 10.1016/j.jmb.2006.05.020
– ident: e_1_2_6_11_1
  doi: 10.1016/S0014-5793(03)00383-1
– ident: e_1_2_6_25_1
  doi: 10.1002/jcc.20084
– ident: e_1_2_6_3_1
  doi: 10.1016/j.plantsci.2011.06.009
– ident: e_1_2_6_4_1
  doi: 10.1016/0014-5793(94)01184-2
– volume: 18
  start-page: 123
  year: 1996
  ident: e_1_2_6_6_1
  article-title: Characterization and chemical modification of brazzein, a high potency thermostable sweet protein from Pentadiplandra brazzeana
  publication-title: Acta Bot Yunnancia
– ident: e_1_2_6_17_1
  doi: 10.5012/bkcs.2010.31.12.3830
– ident: e_1_2_6_8_1
  doi: 10.1016/j.bbamem.2009.07.021
– ident: e_1_2_6_21_1
  doi: 10.1093/chemse/bjp048
– ident: e_1_2_6_16_1
  doi: 10.1093/chemse/bjr057
– ident: e_1_2_6_7_1
  doi: 10.1006/abbi.2000.1726
– ident: e_1_2_6_24_1
  doi: 10.1111/j.1742-4658.2008.06509.x
– ident: e_1_2_6_18_1
  doi: 10.1016/0003-2697(74)90034-7
– ident: e_1_2_6_5_1
  doi: 10.1038/nsb0698-427
– ident: e_1_2_6_13_1
  doi: 10.5012/bkcs.2011.32.11.4106
– ident: e_1_2_6_2_1
  doi: 10.1007/s00018-006-6077-8
SSID ssj0009966
Score 2.2219324
Snippet BACKGROUND The sweetness of brazzein, one of the known sweet proteins, is dependent on charges and/or structures of its specific amino acid side chains. As the...
The sweetness of brazzein, one of the known sweet proteins, is dependent on charges and/or structures of its specific amino acid side chains. As the residues...
BACKGROUND The sweetness of brazzein, one of the known sweet proteins, is dependent on charges and/or structures of its specific amino acid side chains. As the...
BACKGROUND: The sweetness of brazzein, one of the known sweet proteins, is dependent on charges and/or structures of its specific amino acid side chains. As...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3202
SubjectTerms Amino Acid Motifs
Amino Acid Substitution - genetics
Amino acids
Arginine - chemistry
brazzein
Construction
Escherichia coli - genetics
Food science
Foods
Gene Expression Regulation
Glu53
Glutamine - chemistry
Models, Molecular
mutagenesis
Mutagenesis, Site-Directed
mutants
Mutations
Plant Proteins - chemistry
Plant Proteins - genetics
Protein Conformation
protein sweeteners
Proteins
Receptors
Residues
Sensory perception
Sequence Analysis, Protein
site-directed mutagenesis
Structure-Activity Relationship
Sweetening Agents - chemistry
sweetness
sweetness determinant
Sweets
Taste
Title Importance of Glu53 in the C-terminal region of brazzein, a sweet-tasting protein
URI https://api.istex.fr/ark:/67375/WNG-4QFRZQLB-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjsfa.7501
https://www.ncbi.nlm.nih.gov/pubmed/26478244
https://www.proquest.com/docview/1792476548
https://www.proquest.com/docview/1808716725
https://www.proquest.com/docview/1825473497
https://www.proquest.com/docview/2000144352
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0022-5142
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0010
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009966
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB1V5QF44LLcAgUZhCoeyHbjJHYinpbCtlSwUgsrKoQU2Y6Dtt1m0SYr0D7xCXwjX8JMblVRixBvkXIiOeOZ-Ew8PgPw1PNS5L3WupwbTFA8P3VVHGlXxNIoYQLLU_o18G4sdifB3mF4uAYv2rMwtT5E98ONIqP6XlOAK11snYqGHhWZ6uN6R6mP54fVFu3BqXQU8fhWKRxJAW9VhQZ8q3vyzFp0icz6_TyieZa3VgvP6Dp8bodc15sc95el7pvVH2qO__lON-BaQ0jZsPagm7Bm8x5cHX5ZNKIctgfOq6kt2SZrNERnbNxK-PfgcnuyubgFkzcnFZtHP2LzjO3MlqHPpjlDjsm2f_342RTezBh1g5jnhMHBrlZ2mj9nihXfrC0JpgqqxWaVhMQ0vw2T0esP27tu07bBNdRr001TrbWJfRFmXhbhpMs4lV6GmZNFt-CGaxEJ3wQBz6JsoDJtU2WkNEYbHktl_Tuwns9zew9YLDwrMOkyaagDrv0osoFFxoNPypT70oFn7QQmptE0p9Yas6RWY-YJWTQhizrwpIN-rYU8zgNtVl7QIdTimCrfZJh8HO8kwf7o4NP-25eJcGCjdZOkCfoiwW8bD6TAHNCBx91tDFfag1G5nS8REw0oRZU8_BuGU0foIJYXY3iV3CLX5Q7crd20GzSn88NI29A6lbNd_L7J3vvRkC7u_zv0AVxB0ijqkuUNWC8XS_sQiVmpH1UR-BvyFDSy
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLam7WHwwKXcAgMMQhMPpGucxE4kXspG142u0saqTUjIsh0HlZUUtalAfeIn8Bv5JZyT2zS0IcRbpHyRbOcc-zv28XcIeeF5CfBea13GDAQonp-4Ko60y2NhFDeBZQluDRwMeX8U7J-GpyvkdX0XptSHaDbc0DOK-RodHDekt85VQz_PU9WGBQ9inzU8n0O33Dk6F49CJl9rhQMtYLWuUIdtNZ9eWI3WcGC_X0Y1LzLXYunp3SQf60aXGSdn7UWu22b5h57j__bqFrlRcVLaLY3oNlmxWYtc736aVboctkWcnbHN6SatZEQndFir-LfIen25eX6HjPa-FIQeTIlOU7o7WYQ-HWcUaCbd_vXjZ5V7M6FYEGKaIQZau1zacfaKKjr_Zm2OMDXHdGxaqEiMs7tk1Ht7vN13q8oNrsFym26SaK1N7PMw9dII_ruIE-GlEDxZsAxmmOYR900QsDRKOyrVNlFGCGO0YbFQ1r9HVrNpZh8QGnPPcoi7TBLqgGk_imxggfTAlyJhvnDIy_oPSlPJmmN1jYksBZmZxBGVOKIOed5Av5ZaHpeBNgszaBBqdobJbyKUJ8NdGRz2jj4cDt5I7pCN2k5k5fdzCdMbCwSHMNAhz5rX4LF4DKMyO10AJupglCpY-DcMw6LQQSyuxrAivgW6yxxyv7TTptEMrxADc4PRKazt6v7K_fe9Lj48_HfoU7LePz4YyMHe8N0jcg04JC8zmDfIaj5b2MfA03L9pHDH3xrFOM4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB1VrcTlgctyCxQwCFU8kO3GcexEPC0t6YWyoi0rKoRkxY6Dli7Zajcr0D7xCXwjX8I4t6qoRYi3SDmWfJmxzyTjMwDPPC9F3muMS6nGAMXzUzeJQuXySOiEa2Zoaj8NvB3w7SHbPQqOluBlcxem0odoP7hZzyj3a-vgJ2m2fioa-mWWJV087zD0WWEcoyvLiA5OtaMskW-kwpEV0EZWqEfX26ZnDqMVO6_fz2OaZ4lrefLE1-FT0-cq4eS4Oy9UVy_-kHP8z0HdgGs1IyX9yoRuwpLJO3C1_3laq3KYDjibI1OQNVKLiI7JoNHw78Dl5mrz7BYMd76WdB4NiUwysjWeBz4Z5QRJJtn49eNnnXkzJrYcxCS3GOzsYmFG-QuSkNk3YwoLS2Y2GZuUGhKj_DYM49fvN7bdum6Dq22xTTdNlVI68nmQeVmIqy6iVHgZhk4G7YJqqnjIfc0YzcKsl2TKpIkWQmulaSQS49-B5XySm3tAIu4ZjlGXTgPFqPLD0DCDlAdbipT6woHnzQJKXYua29oaY1nJMVNpZ1TaGXXgaQs9qZQ8zgOtlVbQIpLpsU19E4H8MNiSbD8--Li_90pyB1YbM5G1188kbm6UCY5BoANP2tfor_YnTJKbyRwxYc_GqIIGf8NQWxKaReJiDC2jWyS71IG7lZm2nab2AjHyNpyd0tguHq_cPYz79uH-v0Mfw6V3m7Hc2xm8eQBXkEDyKn15FZaL6dw8RJJWqEelM_4GSGY3fQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Importance+of+Glu53+in+the+C-terminal+region+of+brazzein%2C+a+sweet-tasting+protein&rft.jtitle=Journal+of+the+science+of+food+and+agriculture&rft.au=Lim%2C+Jin-Kyung&rft.au=Jang%2C+Jin-Chul&rft.au=Kong%2C+Ji-Na&rft.au=Kim%2C+Myung-Chul&rft.date=2016-07-01&rft.eissn=1097-0010&rft.volume=96&rft.issue=9&rft.spage=3202&rft_id=info:doi/10.1002%2Fjsfa.7501&rft_id=info%3Apmid%2F26478244&rft.externalDocID=26478244
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5142&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5142&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5142&client=summon