Optimized models and deep learning methods for drug response prediction in cancer treatments: a review

Recent advancements in deep learning (DL) have played a crucial role in aiding experts to develop personalized healthcare services, particularly in drug response prediction (DRP) for cancer patients. The DL’s techniques contribution to this field is significant, and they have proven indispensable in...

Full description

Saved in:
Bibliographic Details
Published inPeerJ. Computer science Vol. 10; p. e1903
Main Authors Hajim, Wesam Ibrahim, Zainudin, Suhaila, Mohd Daud, Kauthar, Alheeti, Khattab
Format Journal Article
LanguageEnglish
Published United States PeerJ. Ltd 25.03.2024
PeerJ Inc
Subjects
Online AccessGet full text
ISSN2376-5992
2376-5992
DOI10.7717/peerj-cs.1903

Cover

Abstract Recent advancements in deep learning (DL) have played a crucial role in aiding experts to develop personalized healthcare services, particularly in drug response prediction (DRP) for cancer patients. The DL’s techniques contribution to this field is significant, and they have proven indispensable in the medical field. This review aims to analyze the diverse effectiveness of various DL models in making these predictions, drawing on research published from 2017 to 2023. We utilized the VOS-Viewer 1.6.18 software to create a word cloud from the titles and abstracts of the selected studies. This study offers insights into the focus areas within DL models used for drug response. The word cloud revealed a strong link between certain keywords and grouped themes, highlighting terms such as deep learning, machine learning, precision medicine, precision oncology, drug response prediction, and personalized medicine. In order to achieve an advance in DRP using DL, the researchers need to work on enhancing the models’ generalizability and interoperability. It is also crucial to develop models that not only accurately represent various architectures but also simplify these architectures, balancing the complexity with the predictive capabilities. In the future, researchers should try to combine methods that make DL models easier to understand; this will make DRP reviews more open and help doctors trust the decisions made by DL models in cancer DRP.
AbstractList Recent advancements in deep learning (DL) have played a crucial role in aiding experts to develop personalized healthcare services, particularly in drug response prediction (DRP) for cancer patients. The DL's techniques contribution to this field is significant, and they have proven indispensable in the medical field. This review aims to analyze the diverse effectiveness of various DL models in making these predictions, drawing on research published from 2017 to 2023. We utilized the VOS-Viewer 1.6.18 software to create a word cloud from the titles and abstracts of the selected studies. This study offers insights into the focus areas within DL models used for drug response. The word cloud revealed a strong link between certain keywords and grouped themes, highlighting terms such as deep learning, machine learning, precision medicine, precision oncology, drug response prediction, and personalized medicine. In order to achieve an advance in DRP using DL, the researchers need to work on enhancing the models' generalizability and interoperability. It is also crucial to develop models that not only accurately represent various architectures but also simplify these architectures, balancing the complexity with the predictive capabilities. In the future, researchers should try to combine methods that make DL models easier to understand; this will make DRP reviews more open and help doctors trust the decisions made by DL models in cancer DRP.Recent advancements in deep learning (DL) have played a crucial role in aiding experts to develop personalized healthcare services, particularly in drug response prediction (DRP) for cancer patients. The DL's techniques contribution to this field is significant, and they have proven indispensable in the medical field. This review aims to analyze the diverse effectiveness of various DL models in making these predictions, drawing on research published from 2017 to 2023. We utilized the VOS-Viewer 1.6.18 software to create a word cloud from the titles and abstracts of the selected studies. This study offers insights into the focus areas within DL models used for drug response. The word cloud revealed a strong link between certain keywords and grouped themes, highlighting terms such as deep learning, machine learning, precision medicine, precision oncology, drug response prediction, and personalized medicine. In order to achieve an advance in DRP using DL, the researchers need to work on enhancing the models' generalizability and interoperability. It is also crucial to develop models that not only accurately represent various architectures but also simplify these architectures, balancing the complexity with the predictive capabilities. In the future, researchers should try to combine methods that make DL models easier to understand; this will make DRP reviews more open and help doctors trust the decisions made by DL models in cancer DRP.
Recent advancements in deep learning (DL) have played a crucial role in aiding experts to develop personalized healthcare services, particularly in drug response prediction (DRP) for cancer patients. The DL’s techniques contribution to this field is significant, and they have proven indispensable in the medical field. This review aims to analyze the diverse effectiveness of various DL models in making these predictions, drawing on research published from 2017 to 2023. We utilized the VOS-Viewer 1.6.18 software to create a word cloud from the titles and abstracts of the selected studies. This study offers insights into the focus areas within DL models used for drug response. The word cloud revealed a strong link between certain keywords and grouped themes, highlighting terms such as deep learning, machine learning, precision medicine, precision oncology, drug response prediction, and personalized medicine. In order to achieve an advance in DRP using DL, the researchers need to work on enhancing the models’ generalizability and interoperability. It is also crucial to develop models that not only accurately represent various architectures but also simplify these architectures, balancing the complexity with the predictive capabilities. In the future, researchers should try to combine methods that make DL models easier to understand; this will make DRP reviews more open and help doctors trust the decisions made by DL models in cancer DRP.
ArticleNumber e1903
Audience Academic
Author Zainudin, Suhaila
Hajim, Wesam Ibrahim
Alheeti, Khattab
Mohd Daud, Kauthar
Author_xml – sequence: 1
  givenname: Wesam Ibrahim
  orcidid: 0000-0003-3011-9072
  surname: Hajim
  fullname: Hajim, Wesam Ibrahim
  organization: Department of Applied Geology, College of Sciences, Tirkit University, Tikrit, Salah ad Din, Iraq, Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
– sequence: 2
  givenname: Suhaila
  surname: Zainudin
  fullname: Zainudin, Suhaila
  organization: Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
– sequence: 3
  givenname: Kauthar
  surname: Mohd Daud
  fullname: Mohd Daud, Kauthar
  organization: Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
– sequence: 4
  givenname: Khattab
  surname: Alheeti
  fullname: Alheeti, Khattab
  organization: Department of Computer Networking Systems, College of Computer Sciences and Information Technology, University of Anbar, Al Anbar, Ramadi, Iraq
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38660174$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNUREvpki2yxAYWGew4jhM2qKp4jFSpEo-15djXU48SO9hOS_n1eDqlNEjgLGzdfOfE9-Q-LQ6cd1AUzwlecU74mwkgbEsVV6TD9FFxVFHelKzrqoMH58PiJMYtxpgwklf3pDikbdNgwuujwlxMyY72J2g0eg1DRNJppAEmNIAMzroNGiFdeh2R8QHpMG9QgDh5FwFNAbRVyXqHrENKOgUBpQAyjeBSfItkZq8sXD8rHhs5RDi524-Lbx_efz37VJ5ffFyfnZ6XijGWSqBtb1rV1BWpmVaV5IwyU8mGq563PVYtMaZn2EjNKTa0phyA87o1XNWU9PS4WO99tZdbMQU7ynAjvLTituDDRsiQrBpAYNkz3VOlZdfVsqu6FmtguFMVl7XSVfZa7b1mN8mbazkM94YEi13-4jZ_oaLY5Z8F7_aCae5H0CpHEOSwuMXyjbOXYuOvBCG4rjBm2eHVnUPw32eISYw2KhgG6cDPUVBcN2z3rTqjL_foRuZmrDM-W6odLk5bkn8w4x3_08OCyo-G0ao8TMbm-kLweiHITIIfaSPnGMX6y-cl--Jhv_eN_p6uDNA9oIKPMYARyia5G5d8Czv8M8byL9X_Y_8Fgmv17Q
CitedBy_id crossref_primary_10_1007_s10142_024_01462_4
crossref_primary_10_7717_peerj_cs_2520
crossref_primary_10_1016_j_sleep_2025_02_045
Cites_doi 10.1371/journal.pone.0233112
10.1109/ACCESS.2020.3030787
10.1016/j.compbiomed.2021.105111
10.1016/J.MATPR.2017.07.055
10.1186/s12859-021-03974-3
10.1371/journal.pone.0265351
10.1016/j.icte.2022.04.005
10.1186/s12859-021-04352-9
10.3390/cancers15153837
10.1016/j.ijmedinf.2021.104669
10.1186/s12859-018-2060-2
10.1093/biostatistics/kxaa047
10.1016/j.neucom.2021.12.002
10.1001/jamahealthforum.2022.2334
10.1007/s10462-022-10222-4
10.1016/j.artmed.2019.01.006
10.3390/molecules25225277
10.1038/s41540-019-0086-3
10.1109/TCBB.2021.3060430
10.1109/21.256541
10.1158/0008-5472.CAN-18-1126
10.1007/s00521-022-08062-y
10.1038/s43018-020-00169-2
10.3389/fpubh.2022.925901
10.1016/j.jpha.2023.04.015
10.1007/s40305-020-00309-6
10.1038/s41467-022-34277-7
10.1088/1742-6596/1804/1/012169
10.1186/s40537-021-00444-8
10.1016/j.ccell.2020.09.014
10.1109/JPROC.2017.2761740
10.1109/CVPR.2018.00907
10.1016/j.aej.2021.09.013
10.1109/TNNLS.2020.3027314
10.1016/j.zemedi.2018.11.002
10.1016/j.drup.2023.101037
10.3390/genes11050532
10.1038/s41598-023-42465-8
10.1016/j.neucom.2021.01.072
10.3390/e22030362
10.1007/s00366-021-01412-9
10.1039/c7ra12259d
10.3389/fbioe.2023.1156372
10.1007/s40747-021-00324-x
10.1016/j.jbi.2018.07.024
10.1016/j.engappai.2019.103249
10.1016/j.knosys.2022.108752
10.1101/326470
10.1371/journal.pcbi.1005308
10.3390/su151310543
10.1093/bib/bbab450
10.3389/fonc.2019.00977
10.1002/sim.9491
10.1109/TCBB.2019.2919581
10.21203/rs.3.rs-2869061/v1
10.1038/s41698-022-00252-0
10.1016/j.powtec.2022.117527
10.1007/s42979-020-00320-x
10.3390/ijms21165847
10.3390/e22111192
10.1016/j.heliyon.2023.e20133
10.1016/j.energy.2018.09.118
10.1109/CVPR46437.2021.01601
10.1038/s41598-022-12364-5
10.1186/s12859-018-2509-3
10.3390/math9070772
10.1007/s12551-018-0446-z
10.3390/cancers11091235
10.1007/s12652-018-0794-3
10.1016/j.cie.2020.107050
10.1016/j.cie.2019.106191
10.1016/j.pharmthera.2019.107395
10.1155/2021/9107547
10.1093/bioinformatics/btaa822
10.1016/j.jpdc.2019.07.008
10.1093/bioinformatics/btz318
10.1016/j.tips.2020.10.004
10.48550/arXiv.1703.01513
10.1093/bib/bbz164
10.5772/intechopen.75575
10.1093/bib/bbz171
10.1016/j.cmpb.2017.09.005
10.48550/arXiv.1603.02754
10.3389/fbinf.2023.1164482
10.1109/NABIC.2009.5393690
10.1007/s42979-021-00815-1
10.1016/j.patrec.2020.03.011
10.1016/j.jmir.2019.09.005
10.1007/s10462-017-9610-2
10.1093/bib/bbz153
10.1007/s00366-021-01438-z
10.1016/j.ymeth.2020.02.010
10.1016/j.measurement.2020.107571
10.1371/journal.pcbi.1007084
10.1371/journal.pcbi.1010200
10.1155/2022/7210928
10.1111/exsy.12759
10.3389/frai.2022.780405
10.1162/neco.2006.18.7.1527
10.1016/j.neucom.2021.12.014
10.1016/j.ijrobp.2019.06.2535
10.1038/s41598-018-21622-4
10.1002/mrm.28733
10.1093/bioinformatics/btz158
10.1016/j.ygeno.2018.07.002
10.2174/1567201817999200728142023
10.1007/978-1-0716-2095-3_7
10.1186/s12859-019-2910-6
10.1016/j.aei.2023.102024
10.1186/s12920-018-0460-9
10.3389/fphar.2023.1085765
10.1186/s12859-019-2823-4
10.3389/fphar.2019.01586
10.1109/TNNLS.2021.3100554
10.1051/matecconf/201815006003
10.1101/2023.11.16.567479
10.1016/j.ijpsycho.2020.08.015
10.1007/s10462-022-10188-3
10.1007/s00521-019-04196-8
10.1038/s41598-018-27214-6
10.1016/j.eswa.2017.08.026
10.3389/fphar.2022.1032875
10.3389/fbinf.2021.639349
10.3390/diagnostics12010061
10.1186/s12920-019-0628-y
10.1016/j.ctrv.2020.102019
10.1016/j.future.2019.02.028
10.1186/s12864-021-07524-2
10.1371/journal.pone.0237478
10.1186/s12859-021-04440-w
10.1038/s41598-023-39179-2
10.1002/minf.201700053
10.1002/widm.1312
10.1371/journal.pone.0186906
10.1007/s12652-018-1160-1
10.1186/s12859-021-04331-0
10.3390/math10193487
10.1093/bioinformatics/btx806
10.1016/j.smhl.2019.03.002
10.1016/j.ymeth.2019.02.009
10.1016/j.asoc.2021.107439
10.1016/j.apacoust.2020.107399
10.3390/math10010102
10.1038/s41598-023-29644-3
10.1016/j.artmed.2020.101901
10.1016/j.artint.2019.06.001
10.1016/j.tele.2018.11.007
10.1007/s12652-020-02570-2
10.1371/journal.pone.0260497
10.1038/s41598-020-74921-0
10.1038/s41698-020-0122-1
ContentType Journal Article
Copyright 2024 Hajim et al.
COPYRIGHT 2024 PeerJ. Ltd.
2024 Hajim et al. 2024 Hajim et al.
Copyright_xml – notice: 2024 Hajim et al.
– notice: COPYRIGHT 2024 PeerJ. Ltd.
– notice: 2024 Hajim et al. 2024 Hajim et al.
DBID AAYXX
CITATION
NPM
ISR
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.7717/peerj-cs.1903
DatabaseName CrossRef
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_0ab5db3cda994a92980de509c27a4cd2
10.7717/peerj-cs.1903
PMC11042005
A813865797
38660174
10_7717_peerj_cs_1903
Genre Journal Article
GrantInformation_xml – fundername: Universiti Kebangsaan Malaysia
– fundername: Ministry of Higher Education and Fundamental Research
  grantid: FRGS/1/2022/ICT02/UKM/02/7
– fundername: Centre for Artificial Intelligence Technology
– fundername: Faculty of Information Science & Technology
– fundername: Ministry of Higher Education
– fundername: Research University Grant
  grantid: GUP-2020-089
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RPM
H13
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c555t-e38bf8c642145dc2a7535f2a67cb78b0c81ffb50fad730f3437ee7748f7c431b3
IEDL.DBID DOA
ISSN 2376-5992
IngestDate Fri Oct 03 12:44:22 EDT 2025
Sun Oct 26 04:17:08 EDT 2025
Tue Sep 30 17:09:16 EDT 2025
Fri Sep 05 11:43:37 EDT 2025
Mon Oct 20 22:47:33 EDT 2025
Mon Oct 20 16:55:33 EDT 2025
Thu Oct 16 15:51:23 EDT 2025
Mon Jul 21 05:57:17 EDT 2025
Wed Oct 01 04:49:34 EDT 2025
Thu Apr 24 23:11:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cancer diagnostic
Deep learning
Precision medicine
Drug response prediction
Machine learning
Language English
License https://creativecommons.org/licenses/by/4.0
2024 Hajim et al.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c555t-e38bf8c642145dc2a7535f2a67cb78b0c81ffb50fad730f3437ee7748f7c431b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3011-9072
OpenAccessLink https://doaj.org/article/0ab5db3cda994a92980de509c27a4cd2
PMID 38660174
PQID 3046519034
PQPubID 23479
PageCount e1903
ParticipantIDs doaj_primary_oai_doaj_org_article_0ab5db3cda994a92980de509c27a4cd2
unpaywall_primary_10_7717_peerj_cs_1903
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11042005
proquest_miscellaneous_3046519034
gale_infotracmisc_A813865797
gale_infotracacademiconefile_A813865797
gale_incontextgauss_ISR_A813865797
pubmed_primary_38660174
crossref_citationtrail_10_7717_peerj_cs_1903
crossref_primary_10_7717_peerj_cs_1903
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-25
PublicationDateYYYYMMDD 2024-03-25
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego, USA
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2024
Publisher PeerJ. Ltd
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ Inc
References Adam (10.7717/peerj-cs.1903/ref-2) 2020; 4
Zamani (10.7717/peerj-cs.1903/ref-147) 2020; 8
Li (10.7717/peerj-cs.1903/ref-66) 2020; 15
Emdadi (10.7717/peerj-cs.1903/ref-37) 2021; 22
Hadjicharalambous (10.7717/peerj-cs.1903/ref-46) 2021; 185
Peraza-Vázquez (10.7717/peerj-cs.1903/ref-94) 2021; 2021
Zhou (10.7717/peerj-cs.1903/ref-155) 2019; 275
Alzubaidi (10.7717/peerj-cs.1903/ref-8) 2021; 8
Cole (10.7717/peerj-cs.1903/ref-31) 2021; 86
Wang (10.7717/peerj-cs.1903/ref-132) 2019; 10
Holzinger (10.7717/peerj-cs.1903/ref-51) 2019; 9
Claywell (10.7717/peerj-cs.1903/ref-30) 2020; 22
Mohamed (10.7717/peerj-cs.1903/ref-83) 2017; 90
Baptista (10.7717/peerj-cs.1903/ref-15) 2021; 22
Talpur (10.7717/peerj-cs.1903/ref-120) 2023; 56
Chen (10.7717/peerj-cs.1903/ref-23) 2018; 85
Jin (10.7717/peerj-cs.1903/ref-54) 2022
Xie (10.7717/peerj-cs.1903/ref-139) 2017
Gadekallu (10.7717/peerj-cs.1903/ref-41) 2021; 7
Baymurzina (10.7717/peerj-cs.1903/ref-17) 2022; 474
Ploug (10.7717/peerj-cs.1903/ref-96) 2020; 107
Tjoa (10.7717/peerj-cs.1903/ref-124) 2021; 32
Zhao (10.7717/peerj-cs.1903/ref-154) 2021; 438
Liu (10.7717/peerj-cs.1903/ref-74) 2021; 34
Shi (10.7717/peerj-cs.1903/ref-110) 2022; 247
Sharifi-Noghabi (10.7717/peerj-cs.1903/ref-107) 2019; 35
Zhang (10.7717/peerj-cs.1903/ref-152) 2021
Abdelhafiz (10.7717/peerj-cs.1903/ref-1) 2019; 20
Farhadi (10.7717/peerj-cs.1903/ref-38) 2020; 15
Albadr (10.7717/peerj-cs.1903/ref-4) 2022; 10
Gao (10.7717/peerj-cs.1903/ref-42) 2020; 21
Goldman (10.7717/peerj-cs.1903/ref-44) 2018; 5
Liu (10.7717/peerj-cs.1903/ref-72) 2022; 41
Wang (10.7717/peerj-cs.1903/ref-130) 2018; 165
Love (10.7717/peerj-cs.1903/ref-75) 2023; 57
Liu (10.7717/peerj-cs.1903/ref-71) 2023; 11
Xia (10.7717/peerj-cs.1903/ref-137) 2018; 19
Sun (10.7717/peerj-cs.1903/ref-116) 2020; 8
Taj (10.7717/peerj-cs.1903/ref-119) 2023; 5
Ardalan (10.7717/peerj-cs.1903/ref-12) 2022; 5
Preuer (10.7717/peerj-cs.1903/ref-97) 2018; 34
Chang (10.7717/peerj-cs.1903/ref-22) 2018; 8
Liu (10.7717/peerj-cs.1903/ref-70) 2019; 20
Gayvert (10.7717/peerj-cs.1903/ref-43) 2017; 13
Baptista (10.7717/peerj-cs.1903/ref-16) 2023; 19
Bernard (10.7717/peerj-cs.1903/ref-18) 2017; 36
Sarker (10.7717/peerj-cs.1903/ref-105) 2021; 2
Spirov (10.7717/peerj-cs.1903/ref-113) 2022; 17
Ballester (10.7717/peerj-cs.1903/ref-14) 2022; 23
Xue (10.7717/peerj-cs.1903/ref-140) 2019; 13
Anwar Lashari (10.7717/peerj-cs.1903/ref-11) 2018; 150
Mun (10.7717/peerj-cs.1903/ref-85) 2022; 9
Anagaw (10.7717/peerj-cs.1903/ref-10) 2019; 10
Ma (10.7717/peerj-cs.1903/ref-77) 2021; 2
Naruei (10.7717/peerj-cs.1903/ref-88) 2022; 38
Shaban (10.7717/peerj-cs.1903/ref-106) 2023; 35
Wang (10.7717/peerj-cs.1903/ref-129) 2020; 10
Currie (10.7717/peerj-cs.1903/ref-32) 2019; 50
Nayak (10.7717/peerj-cs.1903/ref-89) 2020; 1
Naruei (10.7717/peerj-cs.1903/ref-87) 2021; 38
Zhang (10.7717/peerj-cs.1903/ref-150) 2021; 1
Sahu (10.7717/peerj-cs.1903/ref-102) 2023
Baker (10.7717/peerj-cs.1903/ref-13) 2016
Xia (10.7717/peerj-cs.1903/ref-136) 2021
Roger Jang (10.7717/peerj-cs.1903/ref-101) 1993; 23
Güvenç Paltun (10.7717/peerj-cs.1903/ref-45) 2021; 22
Kather (10.7717/peerj-cs.1903/ref-59) 2018; 78
Wu (10.7717/peerj-cs.1903/ref-135) 2020; 41
Tsimberidou (10.7717/peerj-cs.1903/ref-126) 2020; 86
Lundervold (10.7717/peerj-cs.1903/ref-76) 2019; 29
Hayyolalam (10.7717/peerj-cs.1903/ref-47) 2020; 87
Rezaei (10.7717/peerj-cs.1903/ref-100) 2022; 38
Sharma (10.7717/peerj-cs.1903/ref-108) 2023; 13
Ahmad (10.7717/peerj-cs.1903/ref-3) 2022; 61
Liu (10.7717/peerj-cs.1903/ref-73) 2023; 14
Spadea (10.7717/peerj-cs.1903/ref-112) 2019; 105
Manica (10.7717/peerj-cs.1903/ref-79) 2019; 5
Yang (10.7717/peerj-cs.1903/ref-143) 2009
Tansey (10.7717/peerj-cs.1903/ref-123) 2022; 23
Malik (10.7717/peerj-cs.1903/ref-78) 2021; 22
Park (10.7717/peerj-cs.1903/ref-91) 2023; 13
Zhu (10.7717/peerj-cs.1903/ref-156) 2020; 10
Pepe (10.7717/peerj-cs.1903/ref-93) 2022; 2449
Chiu (10.7717/peerj-cs.1903/ref-28) 2019; 12
Boldrini (10.7717/peerj-cs.1903/ref-20) 2019; 9
Hosseinzadeh Kassani (10.7717/peerj-cs.1903/ref-52) 2022; 159
Daoud (10.7717/peerj-cs.1903/ref-34) 2019; 97
Qaddoura (10.7717/peerj-cs.1903/ref-98) 2021; 12
Kang (10.7717/peerj-cs.1903/ref-57) 2018; 8
Yousaf (10.7717/peerj-cs.1903/ref-145) 2022; 2022
Amin (10.7717/peerj-cs.1903/ref-9) 2019; 36
Mohammadi-Balani (10.7717/peerj-cs.1903/ref-84) 2021; 152
Young (10.7717/peerj-cs.1903/ref-144) 2020; 139
Bien (10.7717/peerj-cs.1903/ref-19) 2021; 12
Miriyala (10.7717/peerj-cs.1903/ref-81) 2022; 405
Kim (10.7717/peerj-cs.1903/ref-61) 2021; 9
Chriskos (10.7717/peerj-cs.1903/ref-29) 2021; 159
Wang (10.7717/peerj-cs.1903/ref-133) 2023; 3
Dai (10.7717/peerj-cs.1903/ref-33) 2020
Wang (10.7717/peerj-cs.1903/ref-128) 2021; 107
Zhao (10.7717/peerj-cs.1903/ref-153) 2023; 13
Tahmouresi (10.7717/peerj-cs.1903/ref-118) 2022; 17
Heidari (10.7717/peerj-cs.1903/ref-49) 2019; 97
Munir (10.7717/peerj-cs.1903/ref-86) 2019; 11
Alyasseri (10.7717/peerj-cs.1903/ref-7) 2022; 39
Kuninti (10.7717/peerj-cs.1903/ref-65) 2021; 1804
Zemouri (10.7717/peerj-cs.1903/ref-149) 2020; 32
Sze (10.7717/peerj-cs.1903/ref-117) 2017; 105
Su (10.7717/peerj-cs.1903/ref-115) 2019; 166
Zhang (10.7717/peerj-cs.1903/ref-151) 2018; 8
Cheng (10.7717/peerj-cs.1903/ref-26) 2023; 56
Celik (10.7717/peerj-cs.1903/ref-21) 2020; 133
Fu (10.7717/peerj-cs.1903/ref-40) 2022; 22
Wang (10.7717/peerj-cs.1903/ref-131) 2023; 15
Hinton (10.7717/peerj-cs.1903/ref-50) 2006; 18
Li (10.7717/peerj-cs.1903/ref-67) 2021; 18
Tanebe (10.7717/peerj-cs.1903/ref-122) 2021; 22
He (10.7717/peerj-cs.1903/ref-48) 2023; 13
Lima-Junior (10.7717/peerj-cs.1903/ref-68) 2020; 139
Patel (10.7717/peerj-cs.1903/ref-92) 2020; 25
Huang (10.7717/peerj-cs.1903/ref-53) 2017; 12
Su (10.7717/peerj-cs.1903/ref-114) 2022; 6
Ding (10.7717/peerj-cs.1903/ref-35) 2022; 477
Kaya (10.7717/peerj-cs.1903/ref-60) 2022; 10
Rampášek (10.7717/peerj-cs.1903/ref-99) 2019; 35
Zuo (10.7717/peerj-cs.1903/ref-159) 2021; 22
Kuenzi (10.7717/peerj-cs.1903/ref-62) 2020; 38
Salahuddin (10.7717/peerj-cs.1903/ref-103) 2022; 140
Xue (10.7717/peerj-cs.1903/ref-141) 2020; 156
Nguyen (10.7717/peerj-cs.1903/ref-90) 2022; 19
Liu (10.7717/peerj-cs.1903/ref-69) 2020; 36
Alweshah (10.7717/peerj-cs.1903/ref-6) 2023; 9
Karaboga (10.7717/peerj-cs.1903/ref-58) 2019; 52
Chen (10.7717/peerj-cs.1903/ref-24) 2022; 13
Ali (10.7717/peerj-cs.1903/ref-5) 2019; 11
Peraza-Vázquez (10.7717/peerj-cs.1903/ref-95) 2022; 10
She (10.7717/peerj-cs.1903/ref-109) 2022; 13
Joshi (10.7717/peerj-cs.1903/ref-55) 2017; 4
Kumar (10.7717/peerj-cs.1903/ref-63) 2023; 15
Wu (10.7717/peerj-cs.1903/ref-134) 2019; 17
Zoph (10.7717/peerj-cs.1903/ref-157) 2016
Yue (10.7717/peerj-cs.1903/ref-146) 2023
Freitas (10.7717/peerj-cs.1903/ref-39) 2020; 22
Salleh (10.7717/peerj-cs.1903/ref-104) 2018
Tan (10.7717/peerj-cs.1903/ref-121) 2019; 111
Matlock (10.7717/peerj-cs.1903/ref-80) 2018; 19
Tranchevent (10.7717/peerj-cs.1903/ref-125) 2019; 12
Xiao (10.7717/peerj-cs.1903/ref-138) 2018; 153
Chen (10.7717/peerj-cs.1903/ref-25) 2021; 22
Vougas (10.7717/peerj-cs.1903/ref-127) 2019; 203
Snow (10.7717/peerj-cs.1903/ref-111) 2020; 21
Kahkoska (10.7717/peerj-cs.1903/ref-56) 2022; 3
Mirjebreili (10.7717/peerj-cs.1903/ref-82) 2023
D’Orazio (10.7717/peerj-cs.1903/ref-36) 2022; 12
Zampieri (10.7717/peerj-cs.1903/ref-148) 2019; 15
Zoph (10.7717/peerj-cs.1903/ref-158) 2018
Chi (10.7717/peerj-cs.1903/ref-27) 2020; 11
Kumar (10.7717/peerj-cs.1903/ref-64) 2020; 167
Yan (10.7717/peerj-cs.1903/ref-142) 2023; 101037
References_xml – year: 2021
  ident: 10.7717/peerj-cs.1903/ref-152
  article-title: Synergistic drug combination prediction by integrating multi-omics data in deep learning models
– volume: 15
  start-page: e0233112
  issue: 6
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-66
  article-title: A novel drug repurposing approach for non-small cell lung cancer using deep learning
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0233112
– volume: 8
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-147
  article-title: Automated pterygium detection using deep neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3030787
– volume: 140
  start-page: 105111
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-103
  article-title: Transparency of deep neural networks for medical image analysis: a review of interpretability methods
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2021.105111
– volume: 4
  start-page: 7262
  issue: 8
  year: 2017
  ident: 10.7717/peerj-cs.1903/ref-55
  article-title: Cuckoo search optimization-a review
  publication-title: Materials Today: Proceedings
  doi: 10.1016/J.MATPR.2017.07.055
– year: 2016
  ident: 10.7717/peerj-cs.1903/ref-13
  article-title: Designing neural network architectures using reinforcement learning
– volume: 22
  start-page: 955
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-37
  article-title: Auto-HMM-LMF: feature selection based method for prediction of drug response via autoencoder and hidden Markov model
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-021-03974-3
– volume: 17
  start-page: e0265351
  issue: 3
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-118
  article-title: Gene selection using pyramid gravitational search algorithm
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0265351
– volume: 9
  start-page: 379
  issue: 3
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-85
  article-title: DE-DARTS: neural architecture search with dynamic exploration
  publication-title: ICT Express
  doi: 10.1016/j.icte.2022.04.005
– volume: 22
  start-page: 603
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-159
  article-title: SWnet: a deep learning model for drug response prediction from cancer genomic signatures and compound chemical structures
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-021-04352-9
– volume: 15
  start-page: 3837
  issue: 15
  year: 2023
  ident: 10.7717/peerj-cs.1903/ref-131
  article-title: Precision medicine: disease subtyping and tailored treatment
  publication-title: Cancers
  doi: 10.3390/cancers15153837
– volume: 159
  start-page: 104669
  issue: 1
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-52
  article-title: Deep transfer learning based model for colorectal cancer histopathology segmentation: a comparative study of deep pre-trained models
  publication-title: International Journal of Medical Informatics
  doi: 10.1016/j.ijmedinf.2021.104669
– volume: 19
  start-page: 101183
  issue: S3
  year: 2018
  ident: 10.7717/peerj-cs.1903/ref-80
  article-title: Investigation of model stacking for drug sensitivity prediction
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-018-2060-2
– volume: 23
  start-page: 643
  issue: 2
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-123
  article-title: Dose-response modeling in high-throughput cancer drug screenings: an end-to-end approach
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxaa047
– volume: 477
  start-page: 85
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-35
  article-title: NAP: neural architecture search with pruning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.12.002
– volume: 3
  start-page: E222334
  issue: 7
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-56
  article-title: Systems-aligned precision medicine-building an evidence base for individuals within complex systems
  publication-title: JAMA Health Forum
  doi: 10.1001/jamahealthforum.2022.2334
– volume: 56
  start-page: 2031
  issue: 3
  year: 2023
  ident: 10.7717/peerj-cs.1903/ref-26
  article-title: Multi-strategy adaptive cuckoo search algorithm for numerical optimization
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-022-10222-4
– volume: 97
  start-page: 204
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-34
  article-title: A survey of neural network-based cancer prediction models from microarray data
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2019.01.006
– volume: 25
  start-page: 5277
  issue: 22
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-92
  article-title: Machine learning methods in drug discovery
  publication-title: Molecules (Basel, Switzerland)
  doi: 10.3390/molecules25225277
– volume: 5
  start-page: D362
  issue: 1
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-79
  article-title: PIMKL: pathway-induced multiple kernel learning
  publication-title: NPJ Systems Biology and Applications
  doi: 10.1038/s41540-019-0086-3
– volume: 19
  start-page: 146
  issue: 1
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-90
  article-title: Graph convolutional networks for drug response prediction
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
  doi: 10.1109/TCBB.2021.3060430
– volume: 23
  start-page: 665
  year: 1993
  ident: 10.7717/peerj-cs.1903/ref-101
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/21.256541
– volume: 78
  start-page: 5155
  issue: 17
  year: 2018
  ident: 10.7717/peerj-cs.1903/ref-59
  article-title: High-throughput screening of combinatorial immunotherapies with patient-specific in silico models of metastatic colorectal cancer
  publication-title: Cancer Research
  doi: 10.1158/0008-5472.CAN-18-1126
– volume: 35
  start-page: 6831
  issue: 9
  year: 2023
  ident: 10.7717/peerj-cs.1903/ref-106
  article-title: Insight into breast cancer detection: new hybrid feature selection method
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-022-08062-y
– volume: 2
  start-page: 233
  issue: 2
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-77
  article-title: Few-shot learning creates predictive models of drug response that translate from high-throughput screens to individual patients
  publication-title: Nature Cancer
  doi: 10.1038/s43018-020-00169-2
– volume: 10
  start-page: 107
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-4
  article-title: Gray wolf optimization-extreme learning machine approach for diabetic retinopathy detection
  publication-title: Frontiers in Public Health
  doi: 10.3389/fpubh.2022.925901
– volume: 13
  start-page: 673
  issue: 6
  year: 2023
  ident: 10.7717/peerj-cs.1903/ref-153
  article-title: Tumor cell membrane-coated continuous electrochemical sensor for GLUT1 inhibitor screening
  publication-title: Journal of Pharmaceutical Analysis
  doi: 10.1016/j.jpha.2023.04.015
– volume: 8
  start-page: 249
  issue: 2
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-116
  article-title: Optimization for deep learning: an overview
  publication-title: Journal of the Operations Research Society of China
  doi: 10.1007/s40305-020-00309-6
– volume: 13
  start-page: 2993
  issue: 1
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-24
  article-title: Deep transfer learning of cancer drug responses by integrating bulk and single-cell RNA-seq data
  publication-title: Nature Communications
  doi: 10.1038/s41467-022-34277-7
– volume: 1804
  start-page: 012169
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-65
  article-title: Backpropagation algorithm and its hardware implementations: a review
  publication-title: Journal of Physics: Conference Series
  doi: 10.1088/1742-6596/1804/1/012169
– volume: 8
  start-page: 307
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-8
  article-title: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-021-00444-8
– volume: 38
  start-page: 672
  issue: 5
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-62
  article-title: Predicting drug response and synergy using a deep learning model of human cancer cells
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2020.09.014
– volume: 105
  start-page: 2295
  year: 2017
  ident: 10.7717/peerj-cs.1903/ref-117
  article-title: Efficient processing of deep neural networks: a tutorial and survey
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2017.2761740
– start-page: 8697
  year: 2018
  ident: 10.7717/peerj-cs.1903/ref-158
  article-title: Learning transferable architectures for scalable image recognition
  doi: 10.1109/CVPR.2018.00907
– volume: 61
  start-page: 3831
  issue: 5
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-3
  article-title: Differential evolution: a recent review based on state-of-the-art works
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2021.09.013
– volume: 32
  start-page: 4793
  issue: 11
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-124
  article-title: A survey on explainable artificial intelligence (XAI): toward medical XAI
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.3027314
– volume: 29
  start-page: 102
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-76
  article-title: An overview of deep learning in medical imaging focusing on MRI
  publication-title: Zeitschrift fur Medizinische Physik
  doi: 10.1016/j.zemedi.2018.11.002
– volume: 101037
  start-page: 101037
  year: 2023
  ident: 10.7717/peerj-cs.1903/ref-142
  article-title: Rewiring chaperone-mediated autophagy in cancer by a prion-like chemical inducer of proximity to counteract adaptive immune resistance
  publication-title: Drug Resistance Updates
  doi: 10.1016/j.drup.2023.101037
– volume: 11
  start-page: 532
  issue: 5
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-27
  article-title: Sparsity-penalized stacked denoising autoencoders for imputing single-cell RNA-seq data
  publication-title: Genes
  doi: 10.3390/genes11050532
– volume: 13
  start-page: 106
  issue: 1
  year: 2023
  ident: 10.7717/peerj-cs.1903/ref-48
  article-title: A cross-cohort computational framework to trace tumor tissue-of-origin based on RNA sequencing
  publication-title: Scientific Reports
  doi: 10.1038/s41598-023-42465-8
– volume: 438
  start-page: 184
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-154
  article-title: A neural architecture search method based on gradient descent for remaining useful life estimation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.01.072
– volume: 22
  start-page: 362
  issue: 3
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-39
  article-title: Particle swarm optimisation: a historical review up to the current developments
  publication-title: Entropy
  doi: 10.3390/e22030362
– volume: 38
  start-page: 3793
  issue: 4
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-100
  article-title: An improved firefly algorithm for numerical optimization problems and it’s application in constrained optimization
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-021-01412-9
– volume: 8
  start-page: 5286
  issue: 10
  year: 2018
  ident: 10.7717/peerj-cs.1903/ref-57
  article-title: Discovery of VEGFR2 inhibitors by integrating naïve Bayesian classification, molecular docking and drug screening approaches
  publication-title: RSC Advances
  doi: 10.1039/c7ra12259d
– volume: 11
  start-page: e0250620
  year: 2023
  ident: 10.7717/peerj-cs.1903/ref-71
  article-title: Prediction of drug sensitivity based on multi-omics data using deep learning and similarity network fusion approaches
  publication-title: Frontiers in Bioengineering and Biotechnology
  doi: 10.3389/fbioe.2023.1156372
– volume: 7
  start-page: 1855
  issue: 4
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-41
  article-title: Hand gesture classification using a novel CNN-crow search algorithm
  publication-title: Complex and Intelligent Systems
  doi: 10.1007/s40747-021-00324-x
– volume: 85
  start-page: 149
  issue: 9
  year: 2018
  ident: 10.7717/peerj-cs.1903/ref-23
  article-title: Predict effective drug combination by deep belief network and ontology fingerprints
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.jbi.2018.07.024
– volume: 87
  start-page: 103249
  issue: 1
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-47
  article-title: Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2019.103249
– volume: 247
  start-page: 108752
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-110
  article-title: Genetic-GNN: evolutionary architecture search for graph neural networks
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2022.108752
– volume: 5
  start-page: 401
  year: 2018
  ident: 10.7717/peerj-cs.1903/ref-44
  article-title: The UCSC Xena Platform for cancer genomics data visualization and interpretation
  publication-title: BioRxiv
  doi: 10.1101/326470
– volume: 13
  start-page: e1005308
  issue: 1
  year: 2017
  ident: 10.7717/peerj-cs.1903/ref-43
  article-title: A computational approach for identifying synergistic drug combinations
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1005308
– volume: 15
  start-page: 10543
  issue: 13
  year: 2023
  ident: 10.7717/peerj-cs.1903/ref-63
  article-title: The state of the art in deep learning applications, challenges, and future prospects: a comprehensive review of flood forecasting and management
  publication-title: Sustainability (Switzerland)
  doi: 10.3390/su151310543
– volume: 23
  start-page: bbab450
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-14
  article-title: Artificial intelligence for drug response prediction in disease models
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbab450
– volume: 9
  start-page: 997
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-20
  article-title: Deep learning: a review for the radiation oncologist
  publication-title: Frontiers in Oncology
  doi: 10.3389/fonc.2019.00977
– year: 2021
  ident: 10.7717/peerj-cs.1903/ref-136
  article-title: A cross-study analysis of drug response prediction in cancer cell lines
– volume: 41
  start-page: 4034
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-72
  article-title: Deep reinforcement learning for personalized treatment recommendation
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.9491
– volume: 18
  start-page: 575
  issue: 2
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-67
  article-title: DeepDSC: a deep learning method to predict drug sensitivity of cancer cell lines
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
  doi: 10.1109/TCBB.2019.2919581
– year: 2023
  ident: 10.7717/peerj-cs.1903/ref-82
  article-title: Prediction of treatment response in major depressive disorder using a hybrid of convolutional recurrent deep neural networks and effective connectivity based on EEG signal
  doi: 10.21203/rs.3.rs-2869061/v1
– volume: 6
  start-page: 134
  issue: 1
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-114
  article-title: A deep learning model for molecular label transfer that enables cancer cell identification from histopathology images
  publication-title: NPJ Precision Oncology
  doi: 10.1038/s41698-022-00252-0
– volume: 405
  start-page: 117527
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-81
  article-title: Evolutionary neural architecture search for surrogate models to enable optimization of industrial continuous crystallization process
  publication-title: Powder Technology
  doi: 10.1016/j.powtec.2022.117527
– volume: 1
  start-page: 311
  issue: 6
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-89
  article-title: Firefly algorithm in biomedical and health care: advances, issues and challenges
  publication-title: SN Computer Science
  doi: 10.1007/s42979-020-00320-x
– volume: 21
  start-page: 1
  issue: 16
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-111
  article-title: Deep learning modeling of androgen receptor responses to prostate cancer therapies
  publication-title: International Journal of Molecular Sciences
  doi: 10.3390/ijms21165847
– volume: 22
  start-page: 1
  issue: 11
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-30
  article-title: Adaptive neuro-fuzzy inference system and a multilayer perceptron model trained with grey wolf optimizer for predicting solar diffuse fraction
  publication-title: Entropy
  doi: 10.3390/e22111192
– volume: 9
  start-page: e20133
  issue: 9
  year: 2023
  ident: 10.7717/peerj-cs.1903/ref-6
  article-title: Hybrid black widow optimization with iterated greedy algorithm for gene selection problems
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e20133
– volume: 165
  start-page: 840
  issue: 5
  year: 2018
  ident: 10.7717/peerj-cs.1903/ref-130
  article-title: Deep belief network based k-means cluster approach for short-term wind power forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.118
– start-page: 16276
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-33
  article-title: FBNetV3: joint architecture-recipe search using predictor pretraining
  doi: 10.1109/CVPR46437.2021.01601
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-36
  article-title: Machine learning phenomics (MLP) combining deep learning with time-lapse-microscopy for monitoring colorectal adenocarcinoma cells gene expression and drug-response
  publication-title: Scientific Reports
  doi: 10.1038/s41598-022-12364-5
– volume: 19
  start-page: 3564
  issue: S18
  year: 2018
  ident: 10.7717/peerj-cs.1903/ref-137
  article-title: Predicting tumor cell line response to drug pairs with deep learning
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-018-2509-3
– year: 2022
  ident: 10.7717/peerj-cs.1903/ref-54
  article-title: Guidelines and evaluation for clinical explainable AI on medical image analysis
– volume: 9
  start-page: 772
  issue: 7
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-61
  article-title: Graph convolutional network for drug response prediction using gene expression data
  publication-title: Mathematics
  doi: 10.3390/math9070772
– volume: 11
  start-page: 31
  issue: 1
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-5
  article-title: Machine learning and feature selection for drug response prediction in precision oncology applications
  publication-title: Biophysical Reviews
  doi: 10.1007/s12551-018-0446-z
– volume: 11
  start-page: 1235
  issue: 9
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-86
  article-title: Cancer diagnosis using deep learning: a bibliographic review
  publication-title: Cancers
  doi: 10.3390/cancers11091235
– volume: 10
  start-page: 851
  issue: 3
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-132
  article-title: Deep Boltzmann machine based condition prediction for smart manufacturing
  publication-title: Journal of Ambient Intelligence and Humanized Computing
  doi: 10.1007/s12652-018-0794-3
– volume: 152
  start-page: 107050
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-84
  article-title: Golden eagle optimizer: a nature-inspired metaheuristic algorithm
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2020.107050
– volume: 139
  start-page: 106191
  issue: 4
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-68
  article-title: An adaptive network-based fuzzy inference system to supply chain performance evaluation based on SCOR® metrics
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2019.106191
– volume: 203
  start-page: 107395
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-127
  article-title: Machine learning and data mining frameworks for predicting drug response in cancer: an overview and a novel in silico screening process based on association rule mining
  publication-title: Pharmacology and Therapeutics
  doi: 10.1016/j.pharmthera.2019.107395
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-94
  article-title: A bio-inspired method for engineering design optimization inspired by dingoes hunting strategies
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2021/9107547
– volume: 36
  start-page: I911
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-69
  article-title: DeepCDR: a hybrid graph convolutional network for predicting cancer drug response
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa822
– volume: 139
  start-page: 43
  issue: 7587
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-144
  article-title: Distributed bayesian optimization of deep reinforcement learning algorithms
  publication-title: Journal of Parallel and Distributed Computing
  doi: 10.1016/j.jpdc.2019.07.008
– volume: 35
  start-page: i501
  issue: 14
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-107
  article-title: MOLI: multi-omics late integration with deep neural networks for drug response prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz318
– volume: 41
  start-page: 1050
  issue: 12
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-135
  article-title: Single-cell techniques and deep learning in predicting drug response
  publication-title: Trends in Pharmacological Sciences
  doi: 10.1016/j.tips.2020.10.004
– year: 2017
  ident: 10.7717/peerj-cs.1903/ref-139
  article-title: Genetic CNN
  doi: 10.48550/arXiv.1703.01513
– volume: 22
  start-page: 232
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-25
  article-title: A survey and systematic assessment of computational methods for drug response prediction
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbz164
– start-page: 29
  volume-title: Artificial Intelligence-Emerging Trends and Applications
  year: 2018
  ident: 10.7717/peerj-cs.1903/ref-104
  article-title: A modified neuro-fuzzy system using metaheuristic approaches for data classification
  doi: 10.5772/intechopen.75575
– volume: 22
  start-page: 360
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-15
  article-title: Deep learning for drug response prediction in cancer
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbz171
– volume: 153
  start-page: 1
  issue: 5
  year: 2018
  ident: 10.7717/peerj-cs.1903/ref-138
  article-title: A deep learning-based multi-model ensemble method for cancer prediction
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2017.09.005
– year: 2016
  ident: 10.7717/peerj-cs.1903/ref-157
  article-title: Neural architecture search with reinforcement learning
  doi: 10.48550/arXiv.1603.02754
– volume: 3
  start-page: 93
  year: 2023
  ident: 10.7717/peerj-cs.1903/ref-133
  article-title: XMR: an explainable multimodal neural network for drug response prediction
  publication-title: Frontiers in Bioinformatics
  doi: 10.3389/fbinf.2023.1164482
– start-page: 210
  year: 2009
  ident: 10.7717/peerj-cs.1903/ref-143
  article-title: Cuckoo search via Lévy flights
  doi: 10.1109/NABIC.2009.5393690
– volume: 2
  start-page: 420
  issue: 6
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-105
  article-title: Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions
  publication-title: SN Computer Science
  doi: 10.1007/s42979-021-00815-1
– volume: 133
  start-page: 232
  issue: 7
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-21
  article-title: Automated invasive ductal carcinoma detection based using deep transfer learning with whole-slide images
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2020.03.011
– volume: 50
  start-page: 477
  issue: 4
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-32
  article-title: Machine learning and deep learning in medical imaging: intelligent imaging
  publication-title: Journal of Medical Imaging and Radiation Sciences
  doi: 10.1016/j.jmir.2019.09.005
– volume: 52
  start-page: 2263
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-58
  article-title: Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-017-9610-2
– volume: 22
  start-page: 346
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-45
  article-title: Improving drug response prediction by integrating multiple data sources: matrix factorization, kernel and network-based approaches
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbz153
– volume: 38
  start-page: 3025
  issue: S4
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-87
  article-title: Wild horse optimizer: a new meta-heuristic algorithm for solving engineering optimization problems
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-021-01438-z
– volume: 185
  start-page: 82
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-46
  article-title: From tumour perfusion to drug delivery and clinical translation of in silico cancer models
  publication-title: Methods
  doi: 10.1016/j.ymeth.2020.02.010
– volume: 156
  start-page: 107571
  issue: 2
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-141
  article-title: Multi-fault diagnosis of rotating machinery based on deep convolution neural network and support vector machine
  publication-title: Measurement: Journal of the International Measurement Confederation
  doi: 10.1016/j.measurement.2020.107571
– volume: 15
  start-page: e1007084
  issue: 7
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-148
  article-title: Machine and deep learning meet genome-scale metabolic modeling
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1007084
– volume: 19
  start-page: e1010200
  issue: 3
  year: 2023
  ident: 10.7717/peerj-cs.1903/ref-16
  article-title: A systematic evaluation of deep learning methods for the prediction of drug synergy in cancer
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1010200
– volume: 2022
  start-page: 1
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-145
  article-title: An optimized hyperparameter of convolutional neural network algorithm for bug severity prediction in Alzheimer’s-based IoT system
  publication-title: Computational Intelligence and Neuroscience
  doi: 10.1155/2022/7210928
– volume: 39
  start-page: 1
  issue: 3
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-7
  article-title: Review on COVID-19 diagnosis models based on machine learning and deep learning approaches
  publication-title: Expert Systems
  doi: 10.1111/exsy.12759
– volume: 5
  start-page: 780405
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-12
  article-title: Transfer learning approaches for neuroimaging analysis: a scoping review
  publication-title: Frontiers in Artificial Intelligence
  doi: 10.3389/frai.2022.780405
– volume: 18
  start-page: 1527
  year: 2006
  ident: 10.7717/peerj-cs.1903/ref-50
  article-title: A fast learning algorithm for deep belief nets yee-whye teh
  publication-title: Neural Computing
  doi: 10.1162/neco.2006.18.7.1527
– volume: 474
  start-page: 82
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-17
  article-title: A review of neural architecture search
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.12.014
– volume: 105
  start-page: 495
  issue: 3
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-112
  article-title: Deep convolution neural network (DCNN) multiplane approach to synthetic CT generation from MR images—application in brain proton therapy
  publication-title: International Journal of Radiation Oncology Biology Physics
  doi: 10.1016/j.ijrobp.2019.06.2535
– volume: 8
  start-page: S8
  issue: 1
  year: 2018
  ident: 10.7717/peerj-cs.1903/ref-151
  article-title: A novel heterogeneous network-based method for drug response prediction in cancer cell lines
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-21622-4
– volume: 86
  start-page: 1093
  issue: 2
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-31
  article-title: Analysis of deep complex-valued convolutional neural networks for MRI reconstruction and phase-focused applications
  publication-title: Magnetic Resonance in Medicine
  doi: 10.1002/mrm.28733
– volume: 35
  start-page: 3743
  issue: 19
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-99
  article-title: Dr.VAE: improving drug response prediction via modeling of drug perturbation effects
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz158
– volume: 111
  start-page: 1078
  issue: 5
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-121
  article-title: Drug response prediction by ensemble learning and drug-induced gene expression signatures
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2018.07.002
– volume: 21
  start-page: 790
  issue: 10
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-42
  article-title: Applications of machine learning in drug target discovery
  publication-title: Current Drug Metabolism
  doi: 10.2174/1567201817999200728142023
– volume: 2449
  start-page: 187
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-93
  article-title: Dissecting the genome for drug response prediction
  publication-title: Methods in Molecular Biology
  doi: 10.1007/978-1-0716-2095-3_7
– volume: 20
  start-page: 61318
  issue: 1
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-70
  article-title: Improving prediction of phenotypic drug response on cancer cell lines using deep convolutional network
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-2910-6
– volume: 57
  start-page: 102024
  issue: 1
  year: 2023
  ident: 10.7717/peerj-cs.1903/ref-75
  article-title: Explainable artificial intelligence (XAI): precepts, models, and opportunities for research in construction
  publication-title: Advanced Engineering Informatics
  doi: 10.1016/j.aei.2023.102024
– volume: 12
  start-page: 646
  issue: S1
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-28
  article-title: Predicting drug response of tumors from integrated genomic profiles by deep neural networks
  publication-title: BMC Medical Genomics
  doi: 10.1186/s12920-018-0460-9
– volume: 14
  start-page: 603
  year: 2023
  ident: 10.7717/peerj-cs.1903/ref-73
  article-title: A comprehensive tool for tumor precision medicine with pharmaco-omics data analysis
  publication-title: Frontiers in Pharmacology
  doi: 10.3389/fphar.2023.1085765
– volume: 20
  start-page: 7
  issue: S11
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-1
  article-title: Deep convolutional neural networks for mammography: advances, challenges and applications
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-2823-4
– volume: 10
  start-page: 1877
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-129
  article-title: Deep learning based drug metabolites prediction
  publication-title: Frontiers in Pharmacology
  doi: 10.3389/fphar.2019.01586
– volume: 34
  start-page: 550
  issue: 2
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-74
  article-title: A survey on evolutionary neural architecture search
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2021.3100554
– volume: 150
  start-page: 06003
  issue: 4
  year: 2018
  ident: 10.7717/peerj-cs.1903/ref-11
  article-title: Application of data mining techniques for medical data classification: a review
  publication-title: MATEC Web of Conferences
  doi: 10.1051/matecconf/201815006003
– volume: 5
  start-page: 463
  year: 2023
  ident: 10.7717/peerj-cs.1903/ref-119
  article-title: Drug response prediction and biomarker discovery using multi-modal deep learning
  publication-title: BioRxiv
  doi: 10.1101/2023.11.16.567479
– volume: 159
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-29
  article-title: Applications of convolutional neural networks in neurodegeneration and physiological aging
  publication-title: International Journal of Psychophysiology
  doi: 10.1016/j.ijpsycho.2020.08.015
– volume: 56
  start-page: 865
  issue: 2
  year: 2023
  ident: 10.7717/peerj-cs.1903/ref-120
  article-title: Deep neuro-fuzzy system application trends, challenges, and future perspectives: a systematic survey
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-022-10188-3
– volume: 32
  start-page: 18143
  issue: 24
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-149
  article-title: A new growing pruning deep learning neural network algorithm (GP-DLNN)
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-019-04196-8
– year: 2023
  ident: 10.7717/peerj-cs.1903/ref-146
  article-title: OPEN ACCESS EDITED BY Shuxing Zhang shuxing@imdlab.net † PRESENT ADDRESS Development and evaluation of a java-based deep neural network method for drug response predictions
– volume: 8
  start-page: 777
  issue: 1
  year: 2018
  ident: 10.7717/peerj-cs.1903/ref-22
  article-title: Cancer drug response profile scan (CDRscan): a deep learning model that predicts drug effectiveness from cancer genomic signature
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-27214-6
– start-page: 1
  year: 2023
  ident: 10.7717/peerj-cs.1903/ref-102
  article-title: Hybrid multifilter ensemble based feature selection model from microarray cancer datasets using GWO with deep learning
– volume: 90
  start-page: 224
  issue: 3
  year: 2017
  ident: 10.7717/peerj-cs.1903/ref-83
  article-title: Metaheuristic approach for an enhanced mRMR filter method for classification using drug response microarray data
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.08.026
– volume: 13
  start-page: 13
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-109
  article-title: Deep learning-based multi-drug synergy prediction model for individually tailored anti-cancer therapies
  publication-title: Frontiers in Pharmacology
  doi: 10.3389/fphar.2022.1032875
– volume: 1
  start-page: 25
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-150
  article-title: Predicting anticancer drug response with deep learning constrained by signaling pathways
  publication-title: Frontiers in Bioinformatics
  doi: 10.3389/fbinf.2021.639349
– volume: 12
  start-page: 61
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-19
  article-title: Subgroup-specific diagnostic, prognostic, and predictive markers influencing pediatric medulloblastoma treatment
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12010061
– volume: 12
  start-page: 28
  issue: S8
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-125
  article-title: A deep neural network approach to predicting clinical outcomes of neuroblastoma patients
  publication-title: BMC Medical Genomics
  doi: 10.1186/s12920-019-0628-y
– volume: 86
  start-page: 102019
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-126
  article-title: Review of precision cancer medicine: evolution of the treatment paradigm
  publication-title: Cancer Treatment Reviews
  doi: 10.1016/j.ctrv.2020.102019
– volume: 17
  start-page: 26
  issue: 1
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-134
  article-title: Hyperparameter optimization for machine learning models based on Bayesian optimization
  publication-title: Journal of Electronic Science and Technology
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-49
  article-title: Harris hawks optimization: algorithm and applications
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.02.028
– volume: 22
  start-page: E359
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-78
  article-title: Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer
  publication-title: BMC Genomics
  doi: 10.1186/s12864-021-07524-2
– volume: 15
  start-page: e0237478
  issue: 8
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-38
  article-title: Modeling of paclitaxel biosynthesis elicitation in Corylus avellana cell culture using adaptive neuro-fuzzy inference system-genetic algorithm (ANFIS-GA) and multiple regression methods
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0237478
– volume: 22
  start-page: 877
  issue: S3
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-122
  article-title: End-to-end learning for compound activity prediction based on binding pocket information
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-021-04440-w
– volume: 13
  start-page: 1929
  issue: 1
  year: 2023
  ident: 10.7717/peerj-cs.1903/ref-91
  article-title: A performance evaluation of drug response prediction models for individual drugs
  publication-title: Scientific Reports
  doi: 10.1038/s41598-023-39179-2
– volume: 36
  start-page: 146
  issue: 10
  year: 2017
  ident: 10.7717/peerj-cs.1903/ref-18
  article-title: Kernel multitask regression for toxicogenetics
  publication-title: Molecular Informatics
  doi: 10.1002/minf.201700053
– volume: 9
  start-page: 2672
  issue: 4
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-51
  article-title: Causability and explainability of artificial intelligence in medicine
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
  doi: 10.1002/widm.1312
– volume: 12
  start-page: e0186906
  issue: 10
  year: 2017
  ident: 10.7717/peerj-cs.1903/ref-53
  article-title: Open source machine-learning algorithms for the prediction of optimal cancer drug therapies
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0186906
– volume: 10
  start-page: 3889
  issue: 10
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-10
  article-title: A new complement naïve Bayesian approach for biomedical data classification
  publication-title: Journal of Ambient Intelligence and Humanized Computing
  doi: 10.1007/s12652-018-1160-1
– volume: 22
  start-page: 1
  issue: S12
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-40
  article-title: Using entropy-driven amplifier circuit response to build nonlinear model under the influence of Lévy jump
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-021-04331-0
– volume: 10
  start-page: 3487
  issue: 19
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-60
  article-title: A new neural network training algorithm based on artificial bee colony algorithm for nonlinear system identification
  publication-title: Mathematics
  doi: 10.3390/math10193487
– volume: 34
  start-page: 1538
  issue: 9
  year: 2018
  ident: 10.7717/peerj-cs.1903/ref-97
  article-title: DeepSynergy: predicting anti-cancer drug synergy with deep learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx806
– volume: 13
  start-page: 100068
  issue: 3
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-140
  article-title: Explainable deep learning based medical diagnostic system
  publication-title: Smart Health
  doi: 10.1016/j.smhl.2019.03.002
– volume: 166
  start-page: 91
  issue: 7
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-115
  article-title: Deep-resp-forest: a deep forest model to predict anti-cancer drug response
  publication-title: Methods
  doi: 10.1016/j.ymeth.2019.02.009
– volume: 107
  start-page: 107439
  issue: 2
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-128
  article-title: Ant colony optimization for traveling salesman problem based on parameters optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.107439
– volume: 167
  start-page: 107399
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-64
  article-title: Improved deep convolution neural network (CNN) for the identification of defects in the centrifugal pump using acoustic images
  publication-title: Applied Acoustics
  doi: 10.1016/j.apacoust.2020.107399
– volume: 10
  start-page: 102
  issue: 1
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-95
  article-title: A bio-inspired method for mathematical optimization inspired by arachnida salticidade
  publication-title: Mathematics
  doi: 10.3390/math10010102
– volume: 13
  start-page: 1093
  issue: 1
  year: 2023
  ident: 10.7717/peerj-cs.1903/ref-108
  article-title: DeepInsight-3D architecture for anti-cancer drug response prediction with deep-learning on multi-omics
  publication-title: Scientific Reports
  doi: 10.1038/s41598-023-29644-3
– volume: 107
  start-page: 101901
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-96
  article-title: The four dimensions of contestable AI diagnostics—a patient-centric approach to explainable AI
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2020.101901
– volume: 275
  start-page: 310
  issue: 10
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-155
  article-title: A deep learning framework for hybrid heterogeneous transfer learning
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2019.06.001
– volume: 36
  start-page: 82
  issue: 1
  year: 2019
  ident: 10.7717/peerj-cs.1903/ref-9
  article-title: Identification of significant features and data mining techniques in predicting heart disease
  publication-title: Telematics and Informatics
  doi: 10.1016/j.tele.2018.11.007
– volume: 12
  start-page: 8387
  issue: 8
  year: 2021
  ident: 10.7717/peerj-cs.1903/ref-98
  article-title: An efficient evolutionary algorithm with a nearest neighbor search technique for clustering analysis
  publication-title: Journal of Ambient Intelligence and Humanized Computing
  doi: 10.1007/s12652-020-02570-2
– volume: 38
  start-page: 3025
  issue: S4
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-88
  article-title: Wild horse optimizer: a new meta-heuristic algorithm for solving engineering optimization problems
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-021-01438-z
– volume: 17
  start-page: e0260497
  year: 2022
  ident: 10.7717/peerj-cs.1903/ref-113
  article-title: Heuristic algorithms in evolutionary computation and modular organization of biological macromolecules: applications to in vitro evolution
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0260497
– volume: 10
  start-page: 13
  issue: 1
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-156
  article-title: Ensemble transfer learning for the prediction of anti-cancer drug response
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-74921-0
– volume: 4
  start-page: 19
  year: 2020
  ident: 10.7717/peerj-cs.1903/ref-2
  article-title: Machine learning approaches to drug response prediction: challenges and recent progress
  publication-title: NPJ Precision Oncology
  doi: 10.1038/s41698-020-0122-1
SSID ssj0001511119
Score 2.2936254
SecondaryResourceType review_article
Snippet Recent advancements in deep learning (DL) have played a crucial role in aiding experts to develop personalized healthcare services, particularly in drug...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1903
SubjectTerms Algorithms and Analysis of Algorithms
Artificial Intelligence
Bioinformatics
Cancer diagnostic
Data Mining and Machine Learning
Deep learning
Drug response prediction
Health care industry
Machine learning
Optimization Theory and Computation
Precision medicine
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELage4ALy5vCggxCcCElm3jihFtBVAsSCwIqLSfLr5RCSaukEWJ_PTNJWjW74nGNx5LHHtvfxDPfMPYYLGVbChc4BzIQBh1WbaUN0HPwQssoTlJKTn53nBxNxdsTOOmCaCgXZuf9XqL885X35bfAViO8uOKLbC8BhNwDtjc9_jD-0hSOk0kAWRa1_Jnn-_Tum4aW__zhu3P7nI2MvFQXK_3rp14sdq6dyT6bbAbcRpt8H9VrM7KnZ7gc_6nRVXalA5583FrKNXbBF9fZ_qaoA-_2-A2Wv8dD5Mf81DveVMmpuC4cd96veFdhYsbbstMVR8DLXVnPeNlG2nq-KunhhxabzwtuyaRKvg1mr15wzdtkmZtsOnn9-dVR0BVjCCwArAMfpyZPLeXFCnA20ujnQB7pRFojUxPa9DDPDYS5dnho5LGIpfeILdNcWgQpJr7FBsWy8HcYd3kG2mmAxFgBGowJUxG7yPnEO3AwZM82S6Zsx1ROBTMWCj0WmkPVzKGylaI5HLInW_FVS9HxJ8GXtP5bIWLWbj7g8qhuo6pQG3Amtk5nmdAIHtPQeURVNpJaWBcN2SOyHkXcGQUF58x0XVXqzaePapweUgVVmckhe9oJ5UscudVdrgPqT3RbPcmDniRubttrfrgxUkVNFBFX-GVdKXrRBtJKDNnt1mi3imFn9LMltqQ9c-5p3m8p5l8bbnFEg4J-NKIGW8v_-6ze_W_Je-xyhJCQIvgiOGCDdVn7-wjp1uZBt6F_A5J5TxA
  priority: 102
  providerName: Unpaywall
Title Optimized models and deep learning methods for drug response prediction in cancer treatments: a review
URI https://www.ncbi.nlm.nih.gov/pubmed/38660174
https://www.proquest.com/docview/3046519034
https://pubmed.ncbi.nlm.nih.gov/PMC11042005
https://doi.org/10.7717/peerj-cs.1903
https://doaj.org/article/0ab5db3cda994a92980de509c27a4cd2
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: RPM
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: BENPR
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: 8FG
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgOcCF9yOwVAYhuBA2m9ixw62LtixIlNVCpeVk-ZVSVNIoaYTg1zOTpFUDAi4cG0_UjGc8j2TmG0KecIvdlsyFznERMgMJq7bChpA5eKZFnKQSm5PfTdOTGXt7zs93Rn1hTVgHD9xt3EGkDXcmsU5nGdPgzGXkPHg5GwvNrGutbySznWSq6w9GU5B1oJoC_vig9L76Etr6BXjAZOCEWqz-3y3yjkv6tVzyclOU-vs3vVzu-KLJdXK1DyLpuHv4G-SCL26Sa5sBDbQ_r7dI_h4MwtfFD-9oO_Gmprpw1Hlf0n5axJx2I6RrCsErdVUzp1VXNetpWeFHHBQcXRTUonpUdFuYXr-kmnaNL7fJbHL88dVJ2A9WCC3nfB36RJpcWuxxZdzZWEPOwvNYp8IaIU1k5WGeGx7l2oEByBOWCO8hTpS5sBBwmOQO2StWhb9HqMszrp3mPDWWcc2NiSRLXOx86h13PCDPNzutbI86jsMvlgqyDxSMagWjbK1QMAF5uiUvO7iNPxEeodi2RIiS3V4A3VG97qh_6U5AHqPQFeJgFFhoM9dNXas3H87UWB7iNFSRiYA864nyFTy51X3fAvCP0FkDyv0BJRxUO1h-tNEthUtY3Vb4VVMr_DrNkSsWkLudrm0Zg5shZxawIgdaOOB8uFIsPrc44RDZMXxpCBxsFfbvu3r_f-zqA3IlhsgPC_Vivk_21lXjH0LktjYjclFOXo_IpaPj6enZqD2y8Gs2PR1_-gklxksf
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELage4ALy5vCggxCcCElm3jihFtBVAsSCwIqLSfLr5RCSaukEWJ_PTNJWjW74nGNx5LHHtvfxDPfMPYYLGVbChc4BzIQBh1WbaUN0HPwQssoTlJKTn53nBxNxdsTOOmCaCgXZuf9XqL885X35bfAViO8uOKLbC8BhNwDtjc9_jD-0hSOk0kAWRa1_Jnn-_Tum4aW__zhu3P7nI2MvFQXK_3rp14sdq6dyT6bbAbcRpt8H9VrM7KnZ7gc_6nRVXalA5583FrKNXbBF9fZ_qaoA-_2-A2Wv8dD5Mf81DveVMmpuC4cd96veFdhYsbbstMVR8DLXVnPeNlG2nq-KunhhxabzwtuyaRKvg1mr15wzdtkmZtsOnn9-dVR0BVjCCwArAMfpyZPLeXFCnA20ujnQB7pRFojUxPa9DDPDYS5dnho5LGIpfeILdNcWgQpJr7FBsWy8HcYd3kG2mmAxFgBGowJUxG7yPnEO3AwZM82S6Zsx1ROBTMWCj0WmkPVzKGylaI5HLInW_FVS9HxJ8GXtP5bIWLWbj7g8qhuo6pQG3Amtk5nmdAIHtPQeURVNpJaWBcN2SOyHkXcGQUF58x0XVXqzaePapweUgVVmckhe9oJ5UscudVdrgPqT3RbPcmDniRubttrfrgxUkVNFBFX-GVdKXrRBtJKDNnt1mi3imFn9LMltqQ9c-5p3m8p5l8bbnFEg4J-NKIGW8v_-6ze_W_Je-xyhJCQIvgiOGCDdVn7-wjp1uZBt6F_A5J5TxA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+models+and+deep+learning+methods+for+drug+response+prediction+in+cancer+treatments%3A+a+review&rft.jtitle=PeerJ.+Computer+science&rft.au=Hajim%2C+Wesam+Ibrahim&rft.au=Zainudin%2C+Suhaila&rft.au=Mohd+Daud%2C+Kauthar&rft.au=Alheeti%2C+Khattab&rft.date=2024-03-25&rft.pub=PeerJ+Inc&rft.eissn=2376-5992&rft.volume=10&rft_id=info:doi/10.7717%2Fpeerj-cs.1903&rft.externalDocID=PMC11042005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon