Optimized models and deep learning methods for drug response prediction in cancer treatments: a review
Recent advancements in deep learning (DL) have played a crucial role in aiding experts to develop personalized healthcare services, particularly in drug response prediction (DRP) for cancer patients. The DL’s techniques contribution to this field is significant, and they have proven indispensable in...
Saved in:
| Published in | PeerJ. Computer science Vol. 10; p. e1903 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
PeerJ. Ltd
25.03.2024
PeerJ Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2376-5992 2376-5992 |
| DOI | 10.7717/peerj-cs.1903 |
Cover
| Abstract | Recent advancements in deep learning (DL) have played a crucial role in aiding experts to develop personalized healthcare services, particularly in drug response prediction (DRP) for cancer patients. The DL’s techniques contribution to this field is significant, and they have proven indispensable in the medical field. This review aims to analyze the diverse effectiveness of various DL models in making these predictions, drawing on research published from 2017 to 2023. We utilized the VOS-Viewer 1.6.18 software to create a word cloud from the titles and abstracts of the selected studies. This study offers insights into the focus areas within DL models used for drug response. The word cloud revealed a strong link between certain keywords and grouped themes, highlighting terms such as deep learning, machine learning, precision medicine, precision oncology, drug response prediction, and personalized medicine. In order to achieve an advance in DRP using DL, the researchers need to work on enhancing the models’ generalizability and interoperability. It is also crucial to develop models that not only accurately represent various architectures but also simplify these architectures, balancing the complexity with the predictive capabilities. In the future, researchers should try to combine methods that make DL models easier to understand; this will make DRP reviews more open and help doctors trust the decisions made by DL models in cancer DRP. |
|---|---|
| AbstractList | Recent advancements in deep learning (DL) have played a crucial role in aiding experts to develop personalized healthcare services, particularly in drug response prediction (DRP) for cancer patients. The DL's techniques contribution to this field is significant, and they have proven indispensable in the medical field. This review aims to analyze the diverse effectiveness of various DL models in making these predictions, drawing on research published from 2017 to 2023. We utilized the VOS-Viewer 1.6.18 software to create a word cloud from the titles and abstracts of the selected studies. This study offers insights into the focus areas within DL models used for drug response. The word cloud revealed a strong link between certain keywords and grouped themes, highlighting terms such as deep learning, machine learning, precision medicine, precision oncology, drug response prediction, and personalized medicine. In order to achieve an advance in DRP using DL, the researchers need to work on enhancing the models' generalizability and interoperability. It is also crucial to develop models that not only accurately represent various architectures but also simplify these architectures, balancing the complexity with the predictive capabilities. In the future, researchers should try to combine methods that make DL models easier to understand; this will make DRP reviews more open and help doctors trust the decisions made by DL models in cancer DRP.Recent advancements in deep learning (DL) have played a crucial role in aiding experts to develop personalized healthcare services, particularly in drug response prediction (DRP) for cancer patients. The DL's techniques contribution to this field is significant, and they have proven indispensable in the medical field. This review aims to analyze the diverse effectiveness of various DL models in making these predictions, drawing on research published from 2017 to 2023. We utilized the VOS-Viewer 1.6.18 software to create a word cloud from the titles and abstracts of the selected studies. This study offers insights into the focus areas within DL models used for drug response. The word cloud revealed a strong link between certain keywords and grouped themes, highlighting terms such as deep learning, machine learning, precision medicine, precision oncology, drug response prediction, and personalized medicine. In order to achieve an advance in DRP using DL, the researchers need to work on enhancing the models' generalizability and interoperability. It is also crucial to develop models that not only accurately represent various architectures but also simplify these architectures, balancing the complexity with the predictive capabilities. In the future, researchers should try to combine methods that make DL models easier to understand; this will make DRP reviews more open and help doctors trust the decisions made by DL models in cancer DRP. Recent advancements in deep learning (DL) have played a crucial role in aiding experts to develop personalized healthcare services, particularly in drug response prediction (DRP) for cancer patients. The DL’s techniques contribution to this field is significant, and they have proven indispensable in the medical field. This review aims to analyze the diverse effectiveness of various DL models in making these predictions, drawing on research published from 2017 to 2023. We utilized the VOS-Viewer 1.6.18 software to create a word cloud from the titles and abstracts of the selected studies. This study offers insights into the focus areas within DL models used for drug response. The word cloud revealed a strong link between certain keywords and grouped themes, highlighting terms such as deep learning, machine learning, precision medicine, precision oncology, drug response prediction, and personalized medicine. In order to achieve an advance in DRP using DL, the researchers need to work on enhancing the models’ generalizability and interoperability. It is also crucial to develop models that not only accurately represent various architectures but also simplify these architectures, balancing the complexity with the predictive capabilities. In the future, researchers should try to combine methods that make DL models easier to understand; this will make DRP reviews more open and help doctors trust the decisions made by DL models in cancer DRP. |
| ArticleNumber | e1903 |
| Audience | Academic |
| Author | Zainudin, Suhaila Hajim, Wesam Ibrahim Alheeti, Khattab Mohd Daud, Kauthar |
| Author_xml | – sequence: 1 givenname: Wesam Ibrahim orcidid: 0000-0003-3011-9072 surname: Hajim fullname: Hajim, Wesam Ibrahim organization: Department of Applied Geology, College of Sciences, Tirkit University, Tikrit, Salah ad Din, Iraq, Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia – sequence: 2 givenname: Suhaila surname: Zainudin fullname: Zainudin, Suhaila organization: Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia – sequence: 3 givenname: Kauthar surname: Mohd Daud fullname: Mohd Daud, Kauthar organization: Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia – sequence: 4 givenname: Khattab surname: Alheeti fullname: Alheeti, Khattab organization: Department of Computer Networking Systems, College of Computer Sciences and Information Technology, University of Anbar, Al Anbar, Ramadi, Iraq |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38660174$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1DAUhSNUREvpki2yxAYWGew4jhM2qKp4jFSpEo-15djXU48SO9hOS_n1eDqlNEjgLGzdfOfE9-Q-LQ6cd1AUzwlecU74mwkgbEsVV6TD9FFxVFHelKzrqoMH58PiJMYtxpgwklf3pDikbdNgwuujwlxMyY72J2g0eg1DRNJppAEmNIAMzroNGiFdeh2R8QHpMG9QgDh5FwFNAbRVyXqHrENKOgUBpQAyjeBSfItkZq8sXD8rHhs5RDi524-Lbx_efz37VJ5ffFyfnZ6XijGWSqBtb1rV1BWpmVaV5IwyU8mGq563PVYtMaZn2EjNKTa0phyA87o1XNWU9PS4WO99tZdbMQU7ynAjvLTituDDRsiQrBpAYNkz3VOlZdfVsqu6FmtguFMVl7XSVfZa7b1mN8mbazkM94YEi13-4jZ_oaLY5Z8F7_aCae5H0CpHEOSwuMXyjbOXYuOvBCG4rjBm2eHVnUPw32eISYw2KhgG6cDPUVBcN2z3rTqjL_foRuZmrDM-W6odLk5bkn8w4x3_08OCyo-G0ao8TMbm-kLweiHITIIfaSPnGMX6y-cl--Jhv_eN_p6uDNA9oIKPMYARyia5G5d8Czv8M8byL9X_Y_8Fgmv17Q |
| CitedBy_id | crossref_primary_10_1007_s10142_024_01462_4 crossref_primary_10_7717_peerj_cs_2520 crossref_primary_10_1016_j_sleep_2025_02_045 |
| Cites_doi | 10.1371/journal.pone.0233112 10.1109/ACCESS.2020.3030787 10.1016/j.compbiomed.2021.105111 10.1016/J.MATPR.2017.07.055 10.1186/s12859-021-03974-3 10.1371/journal.pone.0265351 10.1016/j.icte.2022.04.005 10.1186/s12859-021-04352-9 10.3390/cancers15153837 10.1016/j.ijmedinf.2021.104669 10.1186/s12859-018-2060-2 10.1093/biostatistics/kxaa047 10.1016/j.neucom.2021.12.002 10.1001/jamahealthforum.2022.2334 10.1007/s10462-022-10222-4 10.1016/j.artmed.2019.01.006 10.3390/molecules25225277 10.1038/s41540-019-0086-3 10.1109/TCBB.2021.3060430 10.1109/21.256541 10.1158/0008-5472.CAN-18-1126 10.1007/s00521-022-08062-y 10.1038/s43018-020-00169-2 10.3389/fpubh.2022.925901 10.1016/j.jpha.2023.04.015 10.1007/s40305-020-00309-6 10.1038/s41467-022-34277-7 10.1088/1742-6596/1804/1/012169 10.1186/s40537-021-00444-8 10.1016/j.ccell.2020.09.014 10.1109/JPROC.2017.2761740 10.1109/CVPR.2018.00907 10.1016/j.aej.2021.09.013 10.1109/TNNLS.2020.3027314 10.1016/j.zemedi.2018.11.002 10.1016/j.drup.2023.101037 10.3390/genes11050532 10.1038/s41598-023-42465-8 10.1016/j.neucom.2021.01.072 10.3390/e22030362 10.1007/s00366-021-01412-9 10.1039/c7ra12259d 10.3389/fbioe.2023.1156372 10.1007/s40747-021-00324-x 10.1016/j.jbi.2018.07.024 10.1016/j.engappai.2019.103249 10.1016/j.knosys.2022.108752 10.1101/326470 10.1371/journal.pcbi.1005308 10.3390/su151310543 10.1093/bib/bbab450 10.3389/fonc.2019.00977 10.1002/sim.9491 10.1109/TCBB.2019.2919581 10.21203/rs.3.rs-2869061/v1 10.1038/s41698-022-00252-0 10.1016/j.powtec.2022.117527 10.1007/s42979-020-00320-x 10.3390/ijms21165847 10.3390/e22111192 10.1016/j.heliyon.2023.e20133 10.1016/j.energy.2018.09.118 10.1109/CVPR46437.2021.01601 10.1038/s41598-022-12364-5 10.1186/s12859-018-2509-3 10.3390/math9070772 10.1007/s12551-018-0446-z 10.3390/cancers11091235 10.1007/s12652-018-0794-3 10.1016/j.cie.2020.107050 10.1016/j.cie.2019.106191 10.1016/j.pharmthera.2019.107395 10.1155/2021/9107547 10.1093/bioinformatics/btaa822 10.1016/j.jpdc.2019.07.008 10.1093/bioinformatics/btz318 10.1016/j.tips.2020.10.004 10.48550/arXiv.1703.01513 10.1093/bib/bbz164 10.5772/intechopen.75575 10.1093/bib/bbz171 10.1016/j.cmpb.2017.09.005 10.48550/arXiv.1603.02754 10.3389/fbinf.2023.1164482 10.1109/NABIC.2009.5393690 10.1007/s42979-021-00815-1 10.1016/j.patrec.2020.03.011 10.1016/j.jmir.2019.09.005 10.1007/s10462-017-9610-2 10.1093/bib/bbz153 10.1007/s00366-021-01438-z 10.1016/j.ymeth.2020.02.010 10.1016/j.measurement.2020.107571 10.1371/journal.pcbi.1007084 10.1371/journal.pcbi.1010200 10.1155/2022/7210928 10.1111/exsy.12759 10.3389/frai.2022.780405 10.1162/neco.2006.18.7.1527 10.1016/j.neucom.2021.12.014 10.1016/j.ijrobp.2019.06.2535 10.1038/s41598-018-21622-4 10.1002/mrm.28733 10.1093/bioinformatics/btz158 10.1016/j.ygeno.2018.07.002 10.2174/1567201817999200728142023 10.1007/978-1-0716-2095-3_7 10.1186/s12859-019-2910-6 10.1016/j.aei.2023.102024 10.1186/s12920-018-0460-9 10.3389/fphar.2023.1085765 10.1186/s12859-019-2823-4 10.3389/fphar.2019.01586 10.1109/TNNLS.2021.3100554 10.1051/matecconf/201815006003 10.1101/2023.11.16.567479 10.1016/j.ijpsycho.2020.08.015 10.1007/s10462-022-10188-3 10.1007/s00521-019-04196-8 10.1038/s41598-018-27214-6 10.1016/j.eswa.2017.08.026 10.3389/fphar.2022.1032875 10.3389/fbinf.2021.639349 10.3390/diagnostics12010061 10.1186/s12920-019-0628-y 10.1016/j.ctrv.2020.102019 10.1016/j.future.2019.02.028 10.1186/s12864-021-07524-2 10.1371/journal.pone.0237478 10.1186/s12859-021-04440-w 10.1038/s41598-023-39179-2 10.1002/minf.201700053 10.1002/widm.1312 10.1371/journal.pone.0186906 10.1007/s12652-018-1160-1 10.1186/s12859-021-04331-0 10.3390/math10193487 10.1093/bioinformatics/btx806 10.1016/j.smhl.2019.03.002 10.1016/j.ymeth.2019.02.009 10.1016/j.asoc.2021.107439 10.1016/j.apacoust.2020.107399 10.3390/math10010102 10.1038/s41598-023-29644-3 10.1016/j.artmed.2020.101901 10.1016/j.artint.2019.06.001 10.1016/j.tele.2018.11.007 10.1007/s12652-020-02570-2 10.1371/journal.pone.0260497 10.1038/s41598-020-74921-0 10.1038/s41698-020-0122-1 |
| ContentType | Journal Article |
| Copyright | 2024 Hajim et al. COPYRIGHT 2024 PeerJ. Ltd. 2024 Hajim et al. 2024 Hajim et al. |
| Copyright_xml | – notice: 2024 Hajim et al. – notice: COPYRIGHT 2024 PeerJ. Ltd. – notice: 2024 Hajim et al. 2024 Hajim et al. |
| DBID | AAYXX CITATION NPM ISR 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.7717/peerj-cs.1903 |
| DatabaseName | CrossRef PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2376-5992 |
| ExternalDocumentID | oai_doaj_org_article_0ab5db3cda994a92980de509c27a4cd2 10.7717/peerj-cs.1903 PMC11042005 A813865797 38660174 10_7717_peerj_cs_1903 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Universiti Kebangsaan Malaysia – fundername: Ministry of Higher Education and Fundamental Research grantid: FRGS/1/2022/ICT02/UKM/02/7 – fundername: Centre for Artificial Intelligence Technology – fundername: Faculty of Information Science & Technology – fundername: Ministry of Higher Education – fundername: Research University Grant grantid: GUP-2020-089 |
| GroupedDBID | 53G 5VS 8FE 8FG AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ HCIFZ IAO ICD IEA ISR ITC K6V K7- M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RPM H13 NPM 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c555t-e38bf8c642145dc2a7535f2a67cb78b0c81ffb50fad730f3437ee7748f7c431b3 |
| IEDL.DBID | DOA |
| ISSN | 2376-5992 |
| IngestDate | Fri Oct 03 12:44:22 EDT 2025 Sun Oct 26 04:17:08 EDT 2025 Tue Sep 30 17:09:16 EDT 2025 Fri Sep 05 11:43:37 EDT 2025 Mon Oct 20 22:47:33 EDT 2025 Mon Oct 20 16:55:33 EDT 2025 Thu Oct 16 15:51:23 EDT 2025 Mon Jul 21 05:57:17 EDT 2025 Wed Oct 01 04:49:34 EDT 2025 Thu Apr 24 23:11:37 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cancer diagnostic Deep learning Precision medicine Drug response prediction Machine learning |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 2024 Hajim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c555t-e38bf8c642145dc2a7535f2a67cb78b0c81ffb50fad730f3437ee7748f7c431b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3011-9072 |
| OpenAccessLink | https://doaj.org/article/0ab5db3cda994a92980de509c27a4cd2 |
| PMID | 38660174 |
| PQID | 3046519034 |
| PQPubID | 23479 |
| PageCount | e1903 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0ab5db3cda994a92980de509c27a4cd2 unpaywall_primary_10_7717_peerj_cs_1903 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11042005 proquest_miscellaneous_3046519034 gale_infotracmisc_A813865797 gale_infotracacademiconefile_A813865797 gale_incontextgauss_ISR_A813865797 pubmed_primary_38660174 crossref_citationtrail_10_7717_peerj_cs_1903 crossref_primary_10_7717_peerj_cs_1903 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-25 |
| PublicationDateYYYYMMDD | 2024-03-25 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Diego, USA |
| PublicationTitle | PeerJ. Computer science |
| PublicationTitleAlternate | PeerJ Comput Sci |
| PublicationYear | 2024 |
| Publisher | PeerJ. Ltd PeerJ Inc |
| Publisher_xml | – name: PeerJ. Ltd – name: PeerJ Inc |
| References | Adam (10.7717/peerj-cs.1903/ref-2) 2020; 4 Zamani (10.7717/peerj-cs.1903/ref-147) 2020; 8 Li (10.7717/peerj-cs.1903/ref-66) 2020; 15 Emdadi (10.7717/peerj-cs.1903/ref-37) 2021; 22 Hadjicharalambous (10.7717/peerj-cs.1903/ref-46) 2021; 185 Peraza-Vázquez (10.7717/peerj-cs.1903/ref-94) 2021; 2021 Zhou (10.7717/peerj-cs.1903/ref-155) 2019; 275 Alzubaidi (10.7717/peerj-cs.1903/ref-8) 2021; 8 Cole (10.7717/peerj-cs.1903/ref-31) 2021; 86 Wang (10.7717/peerj-cs.1903/ref-132) 2019; 10 Holzinger (10.7717/peerj-cs.1903/ref-51) 2019; 9 Claywell (10.7717/peerj-cs.1903/ref-30) 2020; 22 Mohamed (10.7717/peerj-cs.1903/ref-83) 2017; 90 Baptista (10.7717/peerj-cs.1903/ref-15) 2021; 22 Talpur (10.7717/peerj-cs.1903/ref-120) 2023; 56 Chen (10.7717/peerj-cs.1903/ref-23) 2018; 85 Jin (10.7717/peerj-cs.1903/ref-54) 2022 Xie (10.7717/peerj-cs.1903/ref-139) 2017 Gadekallu (10.7717/peerj-cs.1903/ref-41) 2021; 7 Baymurzina (10.7717/peerj-cs.1903/ref-17) 2022; 474 Ploug (10.7717/peerj-cs.1903/ref-96) 2020; 107 Tjoa (10.7717/peerj-cs.1903/ref-124) 2021; 32 Zhao (10.7717/peerj-cs.1903/ref-154) 2021; 438 Liu (10.7717/peerj-cs.1903/ref-74) 2021; 34 Shi (10.7717/peerj-cs.1903/ref-110) 2022; 247 Sharifi-Noghabi (10.7717/peerj-cs.1903/ref-107) 2019; 35 Zhang (10.7717/peerj-cs.1903/ref-152) 2021 Abdelhafiz (10.7717/peerj-cs.1903/ref-1) 2019; 20 Farhadi (10.7717/peerj-cs.1903/ref-38) 2020; 15 Albadr (10.7717/peerj-cs.1903/ref-4) 2022; 10 Gao (10.7717/peerj-cs.1903/ref-42) 2020; 21 Goldman (10.7717/peerj-cs.1903/ref-44) 2018; 5 Liu (10.7717/peerj-cs.1903/ref-72) 2022; 41 Wang (10.7717/peerj-cs.1903/ref-130) 2018; 165 Love (10.7717/peerj-cs.1903/ref-75) 2023; 57 Liu (10.7717/peerj-cs.1903/ref-71) 2023; 11 Xia (10.7717/peerj-cs.1903/ref-137) 2018; 19 Sun (10.7717/peerj-cs.1903/ref-116) 2020; 8 Taj (10.7717/peerj-cs.1903/ref-119) 2023; 5 Ardalan (10.7717/peerj-cs.1903/ref-12) 2022; 5 Preuer (10.7717/peerj-cs.1903/ref-97) 2018; 34 Chang (10.7717/peerj-cs.1903/ref-22) 2018; 8 Liu (10.7717/peerj-cs.1903/ref-70) 2019; 20 Gayvert (10.7717/peerj-cs.1903/ref-43) 2017; 13 Baptista (10.7717/peerj-cs.1903/ref-16) 2023; 19 Bernard (10.7717/peerj-cs.1903/ref-18) 2017; 36 Sarker (10.7717/peerj-cs.1903/ref-105) 2021; 2 Spirov (10.7717/peerj-cs.1903/ref-113) 2022; 17 Ballester (10.7717/peerj-cs.1903/ref-14) 2022; 23 Xue (10.7717/peerj-cs.1903/ref-140) 2019; 13 Anwar Lashari (10.7717/peerj-cs.1903/ref-11) 2018; 150 Mun (10.7717/peerj-cs.1903/ref-85) 2022; 9 Anagaw (10.7717/peerj-cs.1903/ref-10) 2019; 10 Ma (10.7717/peerj-cs.1903/ref-77) 2021; 2 Naruei (10.7717/peerj-cs.1903/ref-88) 2022; 38 Shaban (10.7717/peerj-cs.1903/ref-106) 2023; 35 Wang (10.7717/peerj-cs.1903/ref-129) 2020; 10 Currie (10.7717/peerj-cs.1903/ref-32) 2019; 50 Nayak (10.7717/peerj-cs.1903/ref-89) 2020; 1 Naruei (10.7717/peerj-cs.1903/ref-87) 2021; 38 Zhang (10.7717/peerj-cs.1903/ref-150) 2021; 1 Sahu (10.7717/peerj-cs.1903/ref-102) 2023 Baker (10.7717/peerj-cs.1903/ref-13) 2016 Xia (10.7717/peerj-cs.1903/ref-136) 2021 Roger Jang (10.7717/peerj-cs.1903/ref-101) 1993; 23 Güvenç Paltun (10.7717/peerj-cs.1903/ref-45) 2021; 22 Kather (10.7717/peerj-cs.1903/ref-59) 2018; 78 Wu (10.7717/peerj-cs.1903/ref-135) 2020; 41 Tsimberidou (10.7717/peerj-cs.1903/ref-126) 2020; 86 Lundervold (10.7717/peerj-cs.1903/ref-76) 2019; 29 Hayyolalam (10.7717/peerj-cs.1903/ref-47) 2020; 87 Rezaei (10.7717/peerj-cs.1903/ref-100) 2022; 38 Sharma (10.7717/peerj-cs.1903/ref-108) 2023; 13 Ahmad (10.7717/peerj-cs.1903/ref-3) 2022; 61 Liu (10.7717/peerj-cs.1903/ref-73) 2023; 14 Spadea (10.7717/peerj-cs.1903/ref-112) 2019; 105 Manica (10.7717/peerj-cs.1903/ref-79) 2019; 5 Yang (10.7717/peerj-cs.1903/ref-143) 2009 Tansey (10.7717/peerj-cs.1903/ref-123) 2022; 23 Malik (10.7717/peerj-cs.1903/ref-78) 2021; 22 Park (10.7717/peerj-cs.1903/ref-91) 2023; 13 Zhu (10.7717/peerj-cs.1903/ref-156) 2020; 10 Pepe (10.7717/peerj-cs.1903/ref-93) 2022; 2449 Chiu (10.7717/peerj-cs.1903/ref-28) 2019; 12 Boldrini (10.7717/peerj-cs.1903/ref-20) 2019; 9 Hosseinzadeh Kassani (10.7717/peerj-cs.1903/ref-52) 2022; 159 Daoud (10.7717/peerj-cs.1903/ref-34) 2019; 97 Qaddoura (10.7717/peerj-cs.1903/ref-98) 2021; 12 Kang (10.7717/peerj-cs.1903/ref-57) 2018; 8 Yousaf (10.7717/peerj-cs.1903/ref-145) 2022; 2022 Amin (10.7717/peerj-cs.1903/ref-9) 2019; 36 Mohammadi-Balani (10.7717/peerj-cs.1903/ref-84) 2021; 152 Young (10.7717/peerj-cs.1903/ref-144) 2020; 139 Bien (10.7717/peerj-cs.1903/ref-19) 2021; 12 Miriyala (10.7717/peerj-cs.1903/ref-81) 2022; 405 Kim (10.7717/peerj-cs.1903/ref-61) 2021; 9 Chriskos (10.7717/peerj-cs.1903/ref-29) 2021; 159 Wang (10.7717/peerj-cs.1903/ref-133) 2023; 3 Dai (10.7717/peerj-cs.1903/ref-33) 2020 Wang (10.7717/peerj-cs.1903/ref-128) 2021; 107 Zhao (10.7717/peerj-cs.1903/ref-153) 2023; 13 Tahmouresi (10.7717/peerj-cs.1903/ref-118) 2022; 17 Heidari (10.7717/peerj-cs.1903/ref-49) 2019; 97 Munir (10.7717/peerj-cs.1903/ref-86) 2019; 11 Alyasseri (10.7717/peerj-cs.1903/ref-7) 2022; 39 Kuninti (10.7717/peerj-cs.1903/ref-65) 2021; 1804 Zemouri (10.7717/peerj-cs.1903/ref-149) 2020; 32 Sze (10.7717/peerj-cs.1903/ref-117) 2017; 105 Su (10.7717/peerj-cs.1903/ref-115) 2019; 166 Zhang (10.7717/peerj-cs.1903/ref-151) 2018; 8 Cheng (10.7717/peerj-cs.1903/ref-26) 2023; 56 Celik (10.7717/peerj-cs.1903/ref-21) 2020; 133 Fu (10.7717/peerj-cs.1903/ref-40) 2022; 22 Wang (10.7717/peerj-cs.1903/ref-131) 2023; 15 Hinton (10.7717/peerj-cs.1903/ref-50) 2006; 18 Li (10.7717/peerj-cs.1903/ref-67) 2021; 18 Tanebe (10.7717/peerj-cs.1903/ref-122) 2021; 22 He (10.7717/peerj-cs.1903/ref-48) 2023; 13 Lima-Junior (10.7717/peerj-cs.1903/ref-68) 2020; 139 Patel (10.7717/peerj-cs.1903/ref-92) 2020; 25 Huang (10.7717/peerj-cs.1903/ref-53) 2017; 12 Su (10.7717/peerj-cs.1903/ref-114) 2022; 6 Ding (10.7717/peerj-cs.1903/ref-35) 2022; 477 Kaya (10.7717/peerj-cs.1903/ref-60) 2022; 10 Rampášek (10.7717/peerj-cs.1903/ref-99) 2019; 35 Zuo (10.7717/peerj-cs.1903/ref-159) 2021; 22 Kuenzi (10.7717/peerj-cs.1903/ref-62) 2020; 38 Salahuddin (10.7717/peerj-cs.1903/ref-103) 2022; 140 Xue (10.7717/peerj-cs.1903/ref-141) 2020; 156 Nguyen (10.7717/peerj-cs.1903/ref-90) 2022; 19 Liu (10.7717/peerj-cs.1903/ref-69) 2020; 36 Alweshah (10.7717/peerj-cs.1903/ref-6) 2023; 9 Karaboga (10.7717/peerj-cs.1903/ref-58) 2019; 52 Chen (10.7717/peerj-cs.1903/ref-24) 2022; 13 Ali (10.7717/peerj-cs.1903/ref-5) 2019; 11 Peraza-Vázquez (10.7717/peerj-cs.1903/ref-95) 2022; 10 She (10.7717/peerj-cs.1903/ref-109) 2022; 13 Joshi (10.7717/peerj-cs.1903/ref-55) 2017; 4 Kumar (10.7717/peerj-cs.1903/ref-63) 2023; 15 Wu (10.7717/peerj-cs.1903/ref-134) 2019; 17 Zoph (10.7717/peerj-cs.1903/ref-157) 2016 Yue (10.7717/peerj-cs.1903/ref-146) 2023 Freitas (10.7717/peerj-cs.1903/ref-39) 2020; 22 Salleh (10.7717/peerj-cs.1903/ref-104) 2018 Tan (10.7717/peerj-cs.1903/ref-121) 2019; 111 Matlock (10.7717/peerj-cs.1903/ref-80) 2018; 19 Tranchevent (10.7717/peerj-cs.1903/ref-125) 2019; 12 Xiao (10.7717/peerj-cs.1903/ref-138) 2018; 153 Chen (10.7717/peerj-cs.1903/ref-25) 2021; 22 Vougas (10.7717/peerj-cs.1903/ref-127) 2019; 203 Snow (10.7717/peerj-cs.1903/ref-111) 2020; 21 Kahkoska (10.7717/peerj-cs.1903/ref-56) 2022; 3 Mirjebreili (10.7717/peerj-cs.1903/ref-82) 2023 D’Orazio (10.7717/peerj-cs.1903/ref-36) 2022; 12 Zampieri (10.7717/peerj-cs.1903/ref-148) 2019; 15 Zoph (10.7717/peerj-cs.1903/ref-158) 2018 Chi (10.7717/peerj-cs.1903/ref-27) 2020; 11 Kumar (10.7717/peerj-cs.1903/ref-64) 2020; 167 Yan (10.7717/peerj-cs.1903/ref-142) 2023; 101037 |
| References_xml | – year: 2021 ident: 10.7717/peerj-cs.1903/ref-152 article-title: Synergistic drug combination prediction by integrating multi-omics data in deep learning models – volume: 15 start-page: e0233112 issue: 6 year: 2020 ident: 10.7717/peerj-cs.1903/ref-66 article-title: A novel drug repurposing approach for non-small cell lung cancer using deep learning publication-title: PLOS ONE doi: 10.1371/journal.pone.0233112 – volume: 8 year: 2020 ident: 10.7717/peerj-cs.1903/ref-147 article-title: Automated pterygium detection using deep neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3030787 – volume: 140 start-page: 105111 year: 2022 ident: 10.7717/peerj-cs.1903/ref-103 article-title: Transparency of deep neural networks for medical image analysis: a review of interpretability methods publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2021.105111 – volume: 4 start-page: 7262 issue: 8 year: 2017 ident: 10.7717/peerj-cs.1903/ref-55 article-title: Cuckoo search optimization-a review publication-title: Materials Today: Proceedings doi: 10.1016/J.MATPR.2017.07.055 – year: 2016 ident: 10.7717/peerj-cs.1903/ref-13 article-title: Designing neural network architectures using reinforcement learning – volume: 22 start-page: 955 issue: 1 year: 2021 ident: 10.7717/peerj-cs.1903/ref-37 article-title: Auto-HMM-LMF: feature selection based method for prediction of drug response via autoencoder and hidden Markov model publication-title: BMC Bioinformatics doi: 10.1186/s12859-021-03974-3 – volume: 17 start-page: e0265351 issue: 3 year: 2022 ident: 10.7717/peerj-cs.1903/ref-118 article-title: Gene selection using pyramid gravitational search algorithm publication-title: PLOS ONE doi: 10.1371/journal.pone.0265351 – volume: 9 start-page: 379 issue: 3 year: 2022 ident: 10.7717/peerj-cs.1903/ref-85 article-title: DE-DARTS: neural architecture search with dynamic exploration publication-title: ICT Express doi: 10.1016/j.icte.2022.04.005 – volume: 22 start-page: 603 issue: 1 year: 2021 ident: 10.7717/peerj-cs.1903/ref-159 article-title: SWnet: a deep learning model for drug response prediction from cancer genomic signatures and compound chemical structures publication-title: BMC Bioinformatics doi: 10.1186/s12859-021-04352-9 – volume: 15 start-page: 3837 issue: 15 year: 2023 ident: 10.7717/peerj-cs.1903/ref-131 article-title: Precision medicine: disease subtyping and tailored treatment publication-title: Cancers doi: 10.3390/cancers15153837 – volume: 159 start-page: 104669 issue: 1 year: 2022 ident: 10.7717/peerj-cs.1903/ref-52 article-title: Deep transfer learning based model for colorectal cancer histopathology segmentation: a comparative study of deep pre-trained models publication-title: International Journal of Medical Informatics doi: 10.1016/j.ijmedinf.2021.104669 – volume: 19 start-page: 101183 issue: S3 year: 2018 ident: 10.7717/peerj-cs.1903/ref-80 article-title: Investigation of model stacking for drug sensitivity prediction publication-title: BMC Bioinformatics doi: 10.1186/s12859-018-2060-2 – volume: 23 start-page: 643 issue: 2 year: 2022 ident: 10.7717/peerj-cs.1903/ref-123 article-title: Dose-response modeling in high-throughput cancer drug screenings: an end-to-end approach publication-title: Biostatistics doi: 10.1093/biostatistics/kxaa047 – volume: 477 start-page: 85 year: 2022 ident: 10.7717/peerj-cs.1903/ref-35 article-title: NAP: neural architecture search with pruning publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.12.002 – volume: 3 start-page: E222334 issue: 7 year: 2022 ident: 10.7717/peerj-cs.1903/ref-56 article-title: Systems-aligned precision medicine-building an evidence base for individuals within complex systems publication-title: JAMA Health Forum doi: 10.1001/jamahealthforum.2022.2334 – volume: 56 start-page: 2031 issue: 3 year: 2023 ident: 10.7717/peerj-cs.1903/ref-26 article-title: Multi-strategy adaptive cuckoo search algorithm for numerical optimization publication-title: Artificial Intelligence Review doi: 10.1007/s10462-022-10222-4 – volume: 97 start-page: 204 year: 2019 ident: 10.7717/peerj-cs.1903/ref-34 article-title: A survey of neural network-based cancer prediction models from microarray data publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2019.01.006 – volume: 25 start-page: 5277 issue: 22 year: 2020 ident: 10.7717/peerj-cs.1903/ref-92 article-title: Machine learning methods in drug discovery publication-title: Molecules (Basel, Switzerland) doi: 10.3390/molecules25225277 – volume: 5 start-page: D362 issue: 1 year: 2019 ident: 10.7717/peerj-cs.1903/ref-79 article-title: PIMKL: pathway-induced multiple kernel learning publication-title: NPJ Systems Biology and Applications doi: 10.1038/s41540-019-0086-3 – volume: 19 start-page: 146 issue: 1 year: 2022 ident: 10.7717/peerj-cs.1903/ref-90 article-title: Graph convolutional networks for drug response prediction publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics doi: 10.1109/TCBB.2021.3060430 – volume: 23 start-page: 665 year: 1993 ident: 10.7717/peerj-cs.1903/ref-101 article-title: ANFIS: adaptive-network-based fuzzy inference system publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/21.256541 – volume: 78 start-page: 5155 issue: 17 year: 2018 ident: 10.7717/peerj-cs.1903/ref-59 article-title: High-throughput screening of combinatorial immunotherapies with patient-specific in silico models of metastatic colorectal cancer publication-title: Cancer Research doi: 10.1158/0008-5472.CAN-18-1126 – volume: 35 start-page: 6831 issue: 9 year: 2023 ident: 10.7717/peerj-cs.1903/ref-106 article-title: Insight into breast cancer detection: new hybrid feature selection method publication-title: Neural Computing and Applications doi: 10.1007/s00521-022-08062-y – volume: 2 start-page: 233 issue: 2 year: 2021 ident: 10.7717/peerj-cs.1903/ref-77 article-title: Few-shot learning creates predictive models of drug response that translate from high-throughput screens to individual patients publication-title: Nature Cancer doi: 10.1038/s43018-020-00169-2 – volume: 10 start-page: 107 year: 2022 ident: 10.7717/peerj-cs.1903/ref-4 article-title: Gray wolf optimization-extreme learning machine approach for diabetic retinopathy detection publication-title: Frontiers in Public Health doi: 10.3389/fpubh.2022.925901 – volume: 13 start-page: 673 issue: 6 year: 2023 ident: 10.7717/peerj-cs.1903/ref-153 article-title: Tumor cell membrane-coated continuous electrochemical sensor for GLUT1 inhibitor screening publication-title: Journal of Pharmaceutical Analysis doi: 10.1016/j.jpha.2023.04.015 – volume: 8 start-page: 249 issue: 2 year: 2020 ident: 10.7717/peerj-cs.1903/ref-116 article-title: Optimization for deep learning: an overview publication-title: Journal of the Operations Research Society of China doi: 10.1007/s40305-020-00309-6 – volume: 13 start-page: 2993 issue: 1 year: 2022 ident: 10.7717/peerj-cs.1903/ref-24 article-title: Deep transfer learning of cancer drug responses by integrating bulk and single-cell RNA-seq data publication-title: Nature Communications doi: 10.1038/s41467-022-34277-7 – volume: 1804 start-page: 012169 issue: 1 year: 2021 ident: 10.7717/peerj-cs.1903/ref-65 article-title: Backpropagation algorithm and its hardware implementations: a review publication-title: Journal of Physics: Conference Series doi: 10.1088/1742-6596/1804/1/012169 – volume: 8 start-page: 307 issue: 1 year: 2021 ident: 10.7717/peerj-cs.1903/ref-8 article-title: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions publication-title: Journal of Big Data doi: 10.1186/s40537-021-00444-8 – volume: 38 start-page: 672 issue: 5 year: 2020 ident: 10.7717/peerj-cs.1903/ref-62 article-title: Predicting drug response and synergy using a deep learning model of human cancer cells publication-title: Cancer Cell doi: 10.1016/j.ccell.2020.09.014 – volume: 105 start-page: 2295 year: 2017 ident: 10.7717/peerj-cs.1903/ref-117 article-title: Efficient processing of deep neural networks: a tutorial and survey publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2017.2761740 – start-page: 8697 year: 2018 ident: 10.7717/peerj-cs.1903/ref-158 article-title: Learning transferable architectures for scalable image recognition doi: 10.1109/CVPR.2018.00907 – volume: 61 start-page: 3831 issue: 5 year: 2022 ident: 10.7717/peerj-cs.1903/ref-3 article-title: Differential evolution: a recent review based on state-of-the-art works publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2021.09.013 – volume: 32 start-page: 4793 issue: 11 year: 2021 ident: 10.7717/peerj-cs.1903/ref-124 article-title: A survey on explainable artificial intelligence (XAI): toward medical XAI publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2020.3027314 – volume: 29 start-page: 102 year: 2019 ident: 10.7717/peerj-cs.1903/ref-76 article-title: An overview of deep learning in medical imaging focusing on MRI publication-title: Zeitschrift fur Medizinische Physik doi: 10.1016/j.zemedi.2018.11.002 – volume: 101037 start-page: 101037 year: 2023 ident: 10.7717/peerj-cs.1903/ref-142 article-title: Rewiring chaperone-mediated autophagy in cancer by a prion-like chemical inducer of proximity to counteract adaptive immune resistance publication-title: Drug Resistance Updates doi: 10.1016/j.drup.2023.101037 – volume: 11 start-page: 532 issue: 5 year: 2020 ident: 10.7717/peerj-cs.1903/ref-27 article-title: Sparsity-penalized stacked denoising autoencoders for imputing single-cell RNA-seq data publication-title: Genes doi: 10.3390/genes11050532 – volume: 13 start-page: 106 issue: 1 year: 2023 ident: 10.7717/peerj-cs.1903/ref-48 article-title: A cross-cohort computational framework to trace tumor tissue-of-origin based on RNA sequencing publication-title: Scientific Reports doi: 10.1038/s41598-023-42465-8 – volume: 438 start-page: 184 issue: 1 year: 2021 ident: 10.7717/peerj-cs.1903/ref-154 article-title: A neural architecture search method based on gradient descent for remaining useful life estimation publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.01.072 – volume: 22 start-page: 362 issue: 3 year: 2020 ident: 10.7717/peerj-cs.1903/ref-39 article-title: Particle swarm optimisation: a historical review up to the current developments publication-title: Entropy doi: 10.3390/e22030362 – volume: 38 start-page: 3793 issue: 4 year: 2022 ident: 10.7717/peerj-cs.1903/ref-100 article-title: An improved firefly algorithm for numerical optimization problems and it’s application in constrained optimization publication-title: Engineering with Computers doi: 10.1007/s00366-021-01412-9 – volume: 8 start-page: 5286 issue: 10 year: 2018 ident: 10.7717/peerj-cs.1903/ref-57 article-title: Discovery of VEGFR2 inhibitors by integrating naïve Bayesian classification, molecular docking and drug screening approaches publication-title: RSC Advances doi: 10.1039/c7ra12259d – volume: 11 start-page: e0250620 year: 2023 ident: 10.7717/peerj-cs.1903/ref-71 article-title: Prediction of drug sensitivity based on multi-omics data using deep learning and similarity network fusion approaches publication-title: Frontiers in Bioengineering and Biotechnology doi: 10.3389/fbioe.2023.1156372 – volume: 7 start-page: 1855 issue: 4 year: 2021 ident: 10.7717/peerj-cs.1903/ref-41 article-title: Hand gesture classification using a novel CNN-crow search algorithm publication-title: Complex and Intelligent Systems doi: 10.1007/s40747-021-00324-x – volume: 85 start-page: 149 issue: 9 year: 2018 ident: 10.7717/peerj-cs.1903/ref-23 article-title: Predict effective drug combination by deep belief network and ontology fingerprints publication-title: Journal of Biomedical Informatics doi: 10.1016/j.jbi.2018.07.024 – volume: 87 start-page: 103249 issue: 1 year: 2020 ident: 10.7717/peerj-cs.1903/ref-47 article-title: Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2019.103249 – volume: 247 start-page: 108752 year: 2022 ident: 10.7717/peerj-cs.1903/ref-110 article-title: Genetic-GNN: evolutionary architecture search for graph neural networks publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2022.108752 – volume: 5 start-page: 401 year: 2018 ident: 10.7717/peerj-cs.1903/ref-44 article-title: The UCSC Xena Platform for cancer genomics data visualization and interpretation publication-title: BioRxiv doi: 10.1101/326470 – volume: 13 start-page: e1005308 issue: 1 year: 2017 ident: 10.7717/peerj-cs.1903/ref-43 article-title: A computational approach for identifying synergistic drug combinations publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1005308 – volume: 15 start-page: 10543 issue: 13 year: 2023 ident: 10.7717/peerj-cs.1903/ref-63 article-title: The state of the art in deep learning applications, challenges, and future prospects: a comprehensive review of flood forecasting and management publication-title: Sustainability (Switzerland) doi: 10.3390/su151310543 – volume: 23 start-page: bbab450 year: 2022 ident: 10.7717/peerj-cs.1903/ref-14 article-title: Artificial intelligence for drug response prediction in disease models publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbab450 – volume: 9 start-page: 997 year: 2019 ident: 10.7717/peerj-cs.1903/ref-20 article-title: Deep learning: a review for the radiation oncologist publication-title: Frontiers in Oncology doi: 10.3389/fonc.2019.00977 – year: 2021 ident: 10.7717/peerj-cs.1903/ref-136 article-title: A cross-study analysis of drug response prediction in cancer cell lines – volume: 41 start-page: 4034 year: 2022 ident: 10.7717/peerj-cs.1903/ref-72 article-title: Deep reinforcement learning for personalized treatment recommendation publication-title: Statistics in Medicine doi: 10.1002/sim.9491 – volume: 18 start-page: 575 issue: 2 year: 2021 ident: 10.7717/peerj-cs.1903/ref-67 article-title: DeepDSC: a deep learning method to predict drug sensitivity of cancer cell lines publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics doi: 10.1109/TCBB.2019.2919581 – year: 2023 ident: 10.7717/peerj-cs.1903/ref-82 article-title: Prediction of treatment response in major depressive disorder using a hybrid of convolutional recurrent deep neural networks and effective connectivity based on EEG signal doi: 10.21203/rs.3.rs-2869061/v1 – volume: 6 start-page: 134 issue: 1 year: 2022 ident: 10.7717/peerj-cs.1903/ref-114 article-title: A deep learning model for molecular label transfer that enables cancer cell identification from histopathology images publication-title: NPJ Precision Oncology doi: 10.1038/s41698-022-00252-0 – volume: 405 start-page: 117527 year: 2022 ident: 10.7717/peerj-cs.1903/ref-81 article-title: Evolutionary neural architecture search for surrogate models to enable optimization of industrial continuous crystallization process publication-title: Powder Technology doi: 10.1016/j.powtec.2022.117527 – volume: 1 start-page: 311 issue: 6 year: 2020 ident: 10.7717/peerj-cs.1903/ref-89 article-title: Firefly algorithm in biomedical and health care: advances, issues and challenges publication-title: SN Computer Science doi: 10.1007/s42979-020-00320-x – volume: 21 start-page: 1 issue: 16 year: 2020 ident: 10.7717/peerj-cs.1903/ref-111 article-title: Deep learning modeling of androgen receptor responses to prostate cancer therapies publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms21165847 – volume: 22 start-page: 1 issue: 11 year: 2020 ident: 10.7717/peerj-cs.1903/ref-30 article-title: Adaptive neuro-fuzzy inference system and a multilayer perceptron model trained with grey wolf optimizer for predicting solar diffuse fraction publication-title: Entropy doi: 10.3390/e22111192 – volume: 9 start-page: e20133 issue: 9 year: 2023 ident: 10.7717/peerj-cs.1903/ref-6 article-title: Hybrid black widow optimization with iterated greedy algorithm for gene selection problems publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e20133 – volume: 165 start-page: 840 issue: 5 year: 2018 ident: 10.7717/peerj-cs.1903/ref-130 article-title: Deep belief network based k-means cluster approach for short-term wind power forecasting publication-title: Energy doi: 10.1016/j.energy.2018.09.118 – start-page: 16276 year: 2020 ident: 10.7717/peerj-cs.1903/ref-33 article-title: FBNetV3: joint architecture-recipe search using predictor pretraining doi: 10.1109/CVPR46437.2021.01601 – volume: 12 start-page: 1 issue: 1 year: 2022 ident: 10.7717/peerj-cs.1903/ref-36 article-title: Machine learning phenomics (MLP) combining deep learning with time-lapse-microscopy for monitoring colorectal adenocarcinoma cells gene expression and drug-response publication-title: Scientific Reports doi: 10.1038/s41598-022-12364-5 – volume: 19 start-page: 3564 issue: S18 year: 2018 ident: 10.7717/peerj-cs.1903/ref-137 article-title: Predicting tumor cell line response to drug pairs with deep learning publication-title: BMC Bioinformatics doi: 10.1186/s12859-018-2509-3 – year: 2022 ident: 10.7717/peerj-cs.1903/ref-54 article-title: Guidelines and evaluation for clinical explainable AI on medical image analysis – volume: 9 start-page: 772 issue: 7 year: 2021 ident: 10.7717/peerj-cs.1903/ref-61 article-title: Graph convolutional network for drug response prediction using gene expression data publication-title: Mathematics doi: 10.3390/math9070772 – volume: 11 start-page: 31 issue: 1 year: 2019 ident: 10.7717/peerj-cs.1903/ref-5 article-title: Machine learning and feature selection for drug response prediction in precision oncology applications publication-title: Biophysical Reviews doi: 10.1007/s12551-018-0446-z – volume: 11 start-page: 1235 issue: 9 year: 2019 ident: 10.7717/peerj-cs.1903/ref-86 article-title: Cancer diagnosis using deep learning: a bibliographic review publication-title: Cancers doi: 10.3390/cancers11091235 – volume: 10 start-page: 851 issue: 3 year: 2019 ident: 10.7717/peerj-cs.1903/ref-132 article-title: Deep Boltzmann machine based condition prediction for smart manufacturing publication-title: Journal of Ambient Intelligence and Humanized Computing doi: 10.1007/s12652-018-0794-3 – volume: 152 start-page: 107050 year: 2021 ident: 10.7717/peerj-cs.1903/ref-84 article-title: Golden eagle optimizer: a nature-inspired metaheuristic algorithm publication-title: Computers and Industrial Engineering doi: 10.1016/j.cie.2020.107050 – volume: 139 start-page: 106191 issue: 4 year: 2020 ident: 10.7717/peerj-cs.1903/ref-68 article-title: An adaptive network-based fuzzy inference system to supply chain performance evaluation based on SCOR® metrics publication-title: Computers and Industrial Engineering doi: 10.1016/j.cie.2019.106191 – volume: 203 start-page: 107395 year: 2019 ident: 10.7717/peerj-cs.1903/ref-127 article-title: Machine learning and data mining frameworks for predicting drug response in cancer: an overview and a novel in silico screening process based on association rule mining publication-title: Pharmacology and Therapeutics doi: 10.1016/j.pharmthera.2019.107395 – volume: 2021 start-page: 1 year: 2021 ident: 10.7717/peerj-cs.1903/ref-94 article-title: A bio-inspired method for engineering design optimization inspired by dingoes hunting strategies publication-title: Mathematical Problems in Engineering doi: 10.1155/2021/9107547 – volume: 36 start-page: I911 year: 2020 ident: 10.7717/peerj-cs.1903/ref-69 article-title: DeepCDR: a hybrid graph convolutional network for predicting cancer drug response publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa822 – volume: 139 start-page: 43 issue: 7587 year: 2020 ident: 10.7717/peerj-cs.1903/ref-144 article-title: Distributed bayesian optimization of deep reinforcement learning algorithms publication-title: Journal of Parallel and Distributed Computing doi: 10.1016/j.jpdc.2019.07.008 – volume: 35 start-page: i501 issue: 14 year: 2019 ident: 10.7717/peerj-cs.1903/ref-107 article-title: MOLI: multi-omics late integration with deep neural networks for drug response prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz318 – volume: 41 start-page: 1050 issue: 12 year: 2020 ident: 10.7717/peerj-cs.1903/ref-135 article-title: Single-cell techniques and deep learning in predicting drug response publication-title: Trends in Pharmacological Sciences doi: 10.1016/j.tips.2020.10.004 – year: 2017 ident: 10.7717/peerj-cs.1903/ref-139 article-title: Genetic CNN doi: 10.48550/arXiv.1703.01513 – volume: 22 start-page: 232 year: 2021 ident: 10.7717/peerj-cs.1903/ref-25 article-title: A survey and systematic assessment of computational methods for drug response prediction publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbz164 – start-page: 29 volume-title: Artificial Intelligence-Emerging Trends and Applications year: 2018 ident: 10.7717/peerj-cs.1903/ref-104 article-title: A modified neuro-fuzzy system using metaheuristic approaches for data classification doi: 10.5772/intechopen.75575 – volume: 22 start-page: 360 year: 2021 ident: 10.7717/peerj-cs.1903/ref-15 article-title: Deep learning for drug response prediction in cancer publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbz171 – volume: 153 start-page: 1 issue: 5 year: 2018 ident: 10.7717/peerj-cs.1903/ref-138 article-title: A deep learning-based multi-model ensemble method for cancer prediction publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2017.09.005 – year: 2016 ident: 10.7717/peerj-cs.1903/ref-157 article-title: Neural architecture search with reinforcement learning doi: 10.48550/arXiv.1603.02754 – volume: 3 start-page: 93 year: 2023 ident: 10.7717/peerj-cs.1903/ref-133 article-title: XMR: an explainable multimodal neural network for drug response prediction publication-title: Frontiers in Bioinformatics doi: 10.3389/fbinf.2023.1164482 – start-page: 210 year: 2009 ident: 10.7717/peerj-cs.1903/ref-143 article-title: Cuckoo search via Lévy flights doi: 10.1109/NABIC.2009.5393690 – volume: 2 start-page: 420 issue: 6 year: 2021 ident: 10.7717/peerj-cs.1903/ref-105 article-title: Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions publication-title: SN Computer Science doi: 10.1007/s42979-021-00815-1 – volume: 133 start-page: 232 issue: 7 year: 2020 ident: 10.7717/peerj-cs.1903/ref-21 article-title: Automated invasive ductal carcinoma detection based using deep transfer learning with whole-slide images publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2020.03.011 – volume: 50 start-page: 477 issue: 4 year: 2019 ident: 10.7717/peerj-cs.1903/ref-32 article-title: Machine learning and deep learning in medical imaging: intelligent imaging publication-title: Journal of Medical Imaging and Radiation Sciences doi: 10.1016/j.jmir.2019.09.005 – volume: 52 start-page: 2263 year: 2019 ident: 10.7717/peerj-cs.1903/ref-58 article-title: Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey publication-title: Artificial Intelligence Review doi: 10.1007/s10462-017-9610-2 – volume: 22 start-page: 346 year: 2021 ident: 10.7717/peerj-cs.1903/ref-45 article-title: Improving drug response prediction by integrating multiple data sources: matrix factorization, kernel and network-based approaches publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbz153 – volume: 38 start-page: 3025 issue: S4 year: 2021 ident: 10.7717/peerj-cs.1903/ref-87 article-title: Wild horse optimizer: a new meta-heuristic algorithm for solving engineering optimization problems publication-title: Engineering with Computers doi: 10.1007/s00366-021-01438-z – volume: 185 start-page: 82 year: 2021 ident: 10.7717/peerj-cs.1903/ref-46 article-title: From tumour perfusion to drug delivery and clinical translation of in silico cancer models publication-title: Methods doi: 10.1016/j.ymeth.2020.02.010 – volume: 156 start-page: 107571 issue: 2 year: 2020 ident: 10.7717/peerj-cs.1903/ref-141 article-title: Multi-fault diagnosis of rotating machinery based on deep convolution neural network and support vector machine publication-title: Measurement: Journal of the International Measurement Confederation doi: 10.1016/j.measurement.2020.107571 – volume: 15 start-page: e1007084 issue: 7 year: 2019 ident: 10.7717/peerj-cs.1903/ref-148 article-title: Machine and deep learning meet genome-scale metabolic modeling publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1007084 – volume: 19 start-page: e1010200 issue: 3 year: 2023 ident: 10.7717/peerj-cs.1903/ref-16 article-title: A systematic evaluation of deep learning methods for the prediction of drug synergy in cancer publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1010200 – volume: 2022 start-page: 1 year: 2022 ident: 10.7717/peerj-cs.1903/ref-145 article-title: An optimized hyperparameter of convolutional neural network algorithm for bug severity prediction in Alzheimer’s-based IoT system publication-title: Computational Intelligence and Neuroscience doi: 10.1155/2022/7210928 – volume: 39 start-page: 1 issue: 3 year: 2022 ident: 10.7717/peerj-cs.1903/ref-7 article-title: Review on COVID-19 diagnosis models based on machine learning and deep learning approaches publication-title: Expert Systems doi: 10.1111/exsy.12759 – volume: 5 start-page: 780405 year: 2022 ident: 10.7717/peerj-cs.1903/ref-12 article-title: Transfer learning approaches for neuroimaging analysis: a scoping review publication-title: Frontiers in Artificial Intelligence doi: 10.3389/frai.2022.780405 – volume: 18 start-page: 1527 year: 2006 ident: 10.7717/peerj-cs.1903/ref-50 article-title: A fast learning algorithm for deep belief nets yee-whye teh publication-title: Neural Computing doi: 10.1162/neco.2006.18.7.1527 – volume: 474 start-page: 82 year: 2022 ident: 10.7717/peerj-cs.1903/ref-17 article-title: A review of neural architecture search publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.12.014 – volume: 105 start-page: 495 issue: 3 year: 2019 ident: 10.7717/peerj-cs.1903/ref-112 article-title: Deep convolution neural network (DCNN) multiplane approach to synthetic CT generation from MR images—application in brain proton therapy publication-title: International Journal of Radiation Oncology Biology Physics doi: 10.1016/j.ijrobp.2019.06.2535 – volume: 8 start-page: S8 issue: 1 year: 2018 ident: 10.7717/peerj-cs.1903/ref-151 article-title: A novel heterogeneous network-based method for drug response prediction in cancer cell lines publication-title: Scientific Reports doi: 10.1038/s41598-018-21622-4 – volume: 86 start-page: 1093 issue: 2 year: 2021 ident: 10.7717/peerj-cs.1903/ref-31 article-title: Analysis of deep complex-valued convolutional neural networks for MRI reconstruction and phase-focused applications publication-title: Magnetic Resonance in Medicine doi: 10.1002/mrm.28733 – volume: 35 start-page: 3743 issue: 19 year: 2019 ident: 10.7717/peerj-cs.1903/ref-99 article-title: Dr.VAE: improving drug response prediction via modeling of drug perturbation effects publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz158 – volume: 111 start-page: 1078 issue: 5 year: 2019 ident: 10.7717/peerj-cs.1903/ref-121 article-title: Drug response prediction by ensemble learning and drug-induced gene expression signatures publication-title: Genomics doi: 10.1016/j.ygeno.2018.07.002 – volume: 21 start-page: 790 issue: 10 year: 2020 ident: 10.7717/peerj-cs.1903/ref-42 article-title: Applications of machine learning in drug target discovery publication-title: Current Drug Metabolism doi: 10.2174/1567201817999200728142023 – volume: 2449 start-page: 187 year: 2022 ident: 10.7717/peerj-cs.1903/ref-93 article-title: Dissecting the genome for drug response prediction publication-title: Methods in Molecular Biology doi: 10.1007/978-1-0716-2095-3_7 – volume: 20 start-page: 61318 issue: 1 year: 2019 ident: 10.7717/peerj-cs.1903/ref-70 article-title: Improving prediction of phenotypic drug response on cancer cell lines using deep convolutional network publication-title: BMC Bioinformatics doi: 10.1186/s12859-019-2910-6 – volume: 57 start-page: 102024 issue: 1 year: 2023 ident: 10.7717/peerj-cs.1903/ref-75 article-title: Explainable artificial intelligence (XAI): precepts, models, and opportunities for research in construction publication-title: Advanced Engineering Informatics doi: 10.1016/j.aei.2023.102024 – volume: 12 start-page: 646 issue: S1 year: 2019 ident: 10.7717/peerj-cs.1903/ref-28 article-title: Predicting drug response of tumors from integrated genomic profiles by deep neural networks publication-title: BMC Medical Genomics doi: 10.1186/s12920-018-0460-9 – volume: 14 start-page: 603 year: 2023 ident: 10.7717/peerj-cs.1903/ref-73 article-title: A comprehensive tool for tumor precision medicine with pharmaco-omics data analysis publication-title: Frontiers in Pharmacology doi: 10.3389/fphar.2023.1085765 – volume: 20 start-page: 7 issue: S11 year: 2019 ident: 10.7717/peerj-cs.1903/ref-1 article-title: Deep convolutional neural networks for mammography: advances, challenges and applications publication-title: BMC Bioinformatics doi: 10.1186/s12859-019-2823-4 – volume: 10 start-page: 1877 year: 2020 ident: 10.7717/peerj-cs.1903/ref-129 article-title: Deep learning based drug metabolites prediction publication-title: Frontiers in Pharmacology doi: 10.3389/fphar.2019.01586 – volume: 34 start-page: 550 issue: 2 year: 2021 ident: 10.7717/peerj-cs.1903/ref-74 article-title: A survey on evolutionary neural architecture search publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2021.3100554 – volume: 150 start-page: 06003 issue: 4 year: 2018 ident: 10.7717/peerj-cs.1903/ref-11 article-title: Application of data mining techniques for medical data classification: a review publication-title: MATEC Web of Conferences doi: 10.1051/matecconf/201815006003 – volume: 5 start-page: 463 year: 2023 ident: 10.7717/peerj-cs.1903/ref-119 article-title: Drug response prediction and biomarker discovery using multi-modal deep learning publication-title: BioRxiv doi: 10.1101/2023.11.16.567479 – volume: 159 start-page: 1 issue: 4 year: 2021 ident: 10.7717/peerj-cs.1903/ref-29 article-title: Applications of convolutional neural networks in neurodegeneration and physiological aging publication-title: International Journal of Psychophysiology doi: 10.1016/j.ijpsycho.2020.08.015 – volume: 56 start-page: 865 issue: 2 year: 2023 ident: 10.7717/peerj-cs.1903/ref-120 article-title: Deep neuro-fuzzy system application trends, challenges, and future perspectives: a systematic survey publication-title: Artificial Intelligence Review doi: 10.1007/s10462-022-10188-3 – volume: 32 start-page: 18143 issue: 24 year: 2020 ident: 10.7717/peerj-cs.1903/ref-149 article-title: A new growing pruning deep learning neural network algorithm (GP-DLNN) publication-title: Neural Computing and Applications doi: 10.1007/s00521-019-04196-8 – year: 2023 ident: 10.7717/peerj-cs.1903/ref-146 article-title: OPEN ACCESS EDITED BY Shuxing Zhang shuxing@imdlab.net † PRESENT ADDRESS Development and evaluation of a java-based deep neural network method for drug response predictions – volume: 8 start-page: 777 issue: 1 year: 2018 ident: 10.7717/peerj-cs.1903/ref-22 article-title: Cancer drug response profile scan (CDRscan): a deep learning model that predicts drug effectiveness from cancer genomic signature publication-title: Scientific Reports doi: 10.1038/s41598-018-27214-6 – start-page: 1 year: 2023 ident: 10.7717/peerj-cs.1903/ref-102 article-title: Hybrid multifilter ensemble based feature selection model from microarray cancer datasets using GWO with deep learning – volume: 90 start-page: 224 issue: 3 year: 2017 ident: 10.7717/peerj-cs.1903/ref-83 article-title: Metaheuristic approach for an enhanced mRMR filter method for classification using drug response microarray data publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.08.026 – volume: 13 start-page: 13 year: 2022 ident: 10.7717/peerj-cs.1903/ref-109 article-title: Deep learning-based multi-drug synergy prediction model for individually tailored anti-cancer therapies publication-title: Frontiers in Pharmacology doi: 10.3389/fphar.2022.1032875 – volume: 1 start-page: 25 year: 2021 ident: 10.7717/peerj-cs.1903/ref-150 article-title: Predicting anticancer drug response with deep learning constrained by signaling pathways publication-title: Frontiers in Bioinformatics doi: 10.3389/fbinf.2021.639349 – volume: 12 start-page: 61 issue: 1 year: 2021 ident: 10.7717/peerj-cs.1903/ref-19 article-title: Subgroup-specific diagnostic, prognostic, and predictive markers influencing pediatric medulloblastoma treatment publication-title: Diagnostics doi: 10.3390/diagnostics12010061 – volume: 12 start-page: 28 issue: S8 year: 2019 ident: 10.7717/peerj-cs.1903/ref-125 article-title: A deep neural network approach to predicting clinical outcomes of neuroblastoma patients publication-title: BMC Medical Genomics doi: 10.1186/s12920-019-0628-y – volume: 86 start-page: 102019 year: 2020 ident: 10.7717/peerj-cs.1903/ref-126 article-title: Review of precision cancer medicine: evolution of the treatment paradigm publication-title: Cancer Treatment Reviews doi: 10.1016/j.ctrv.2020.102019 – volume: 17 start-page: 26 issue: 1 year: 2019 ident: 10.7717/peerj-cs.1903/ref-134 article-title: Hyperparameter optimization for machine learning models based on Bayesian optimization publication-title: Journal of Electronic Science and Technology – volume: 97 start-page: 849 year: 2019 ident: 10.7717/peerj-cs.1903/ref-49 article-title: Harris hawks optimization: algorithm and applications publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.02.028 – volume: 22 start-page: E359 issue: 1 year: 2021 ident: 10.7717/peerj-cs.1903/ref-78 article-title: Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer publication-title: BMC Genomics doi: 10.1186/s12864-021-07524-2 – volume: 15 start-page: e0237478 issue: 8 year: 2020 ident: 10.7717/peerj-cs.1903/ref-38 article-title: Modeling of paclitaxel biosynthesis elicitation in Corylus avellana cell culture using adaptive neuro-fuzzy inference system-genetic algorithm (ANFIS-GA) and multiple regression methods publication-title: PLOS ONE doi: 10.1371/journal.pone.0237478 – volume: 22 start-page: 877 issue: S3 year: 2021 ident: 10.7717/peerj-cs.1903/ref-122 article-title: End-to-end learning for compound activity prediction based on binding pocket information publication-title: BMC Bioinformatics doi: 10.1186/s12859-021-04440-w – volume: 13 start-page: 1929 issue: 1 year: 2023 ident: 10.7717/peerj-cs.1903/ref-91 article-title: A performance evaluation of drug response prediction models for individual drugs publication-title: Scientific Reports doi: 10.1038/s41598-023-39179-2 – volume: 36 start-page: 146 issue: 10 year: 2017 ident: 10.7717/peerj-cs.1903/ref-18 article-title: Kernel multitask regression for toxicogenetics publication-title: Molecular Informatics doi: 10.1002/minf.201700053 – volume: 9 start-page: 2672 issue: 4 year: 2019 ident: 10.7717/peerj-cs.1903/ref-51 article-title: Causability and explainability of artificial intelligence in medicine publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery doi: 10.1002/widm.1312 – volume: 12 start-page: e0186906 issue: 10 year: 2017 ident: 10.7717/peerj-cs.1903/ref-53 article-title: Open source machine-learning algorithms for the prediction of optimal cancer drug therapies publication-title: PLOS ONE doi: 10.1371/journal.pone.0186906 – volume: 10 start-page: 3889 issue: 10 year: 2019 ident: 10.7717/peerj-cs.1903/ref-10 article-title: A new complement naïve Bayesian approach for biomedical data classification publication-title: Journal of Ambient Intelligence and Humanized Computing doi: 10.1007/s12652-018-1160-1 – volume: 22 start-page: 1 issue: S12 year: 2022 ident: 10.7717/peerj-cs.1903/ref-40 article-title: Using entropy-driven amplifier circuit response to build nonlinear model under the influence of Lévy jump publication-title: BMC Bioinformatics doi: 10.1186/s12859-021-04331-0 – volume: 10 start-page: 3487 issue: 19 year: 2022 ident: 10.7717/peerj-cs.1903/ref-60 article-title: A new neural network training algorithm based on artificial bee colony algorithm for nonlinear system identification publication-title: Mathematics doi: 10.3390/math10193487 – volume: 34 start-page: 1538 issue: 9 year: 2018 ident: 10.7717/peerj-cs.1903/ref-97 article-title: DeepSynergy: predicting anti-cancer drug synergy with deep learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx806 – volume: 13 start-page: 100068 issue: 3 year: 2019 ident: 10.7717/peerj-cs.1903/ref-140 article-title: Explainable deep learning based medical diagnostic system publication-title: Smart Health doi: 10.1016/j.smhl.2019.03.002 – volume: 166 start-page: 91 issue: 7 year: 2019 ident: 10.7717/peerj-cs.1903/ref-115 article-title: Deep-resp-forest: a deep forest model to predict anti-cancer drug response publication-title: Methods doi: 10.1016/j.ymeth.2019.02.009 – volume: 107 start-page: 107439 issue: 2 year: 2021 ident: 10.7717/peerj-cs.1903/ref-128 article-title: Ant colony optimization for traveling salesman problem based on parameters optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2021.107439 – volume: 167 start-page: 107399 year: 2020 ident: 10.7717/peerj-cs.1903/ref-64 article-title: Improved deep convolution neural network (CNN) for the identification of defects in the centrifugal pump using acoustic images publication-title: Applied Acoustics doi: 10.1016/j.apacoust.2020.107399 – volume: 10 start-page: 102 issue: 1 year: 2022 ident: 10.7717/peerj-cs.1903/ref-95 article-title: A bio-inspired method for mathematical optimization inspired by arachnida salticidade publication-title: Mathematics doi: 10.3390/math10010102 – volume: 13 start-page: 1093 issue: 1 year: 2023 ident: 10.7717/peerj-cs.1903/ref-108 article-title: DeepInsight-3D architecture for anti-cancer drug response prediction with deep-learning on multi-omics publication-title: Scientific Reports doi: 10.1038/s41598-023-29644-3 – volume: 107 start-page: 101901 year: 2020 ident: 10.7717/peerj-cs.1903/ref-96 article-title: The four dimensions of contestable AI diagnostics—a patient-centric approach to explainable AI publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2020.101901 – volume: 275 start-page: 310 issue: 10 year: 2019 ident: 10.7717/peerj-cs.1903/ref-155 article-title: A deep learning framework for hybrid heterogeneous transfer learning publication-title: Artificial Intelligence doi: 10.1016/j.artint.2019.06.001 – volume: 36 start-page: 82 issue: 1 year: 2019 ident: 10.7717/peerj-cs.1903/ref-9 article-title: Identification of significant features and data mining techniques in predicting heart disease publication-title: Telematics and Informatics doi: 10.1016/j.tele.2018.11.007 – volume: 12 start-page: 8387 issue: 8 year: 2021 ident: 10.7717/peerj-cs.1903/ref-98 article-title: An efficient evolutionary algorithm with a nearest neighbor search technique for clustering analysis publication-title: Journal of Ambient Intelligence and Humanized Computing doi: 10.1007/s12652-020-02570-2 – volume: 38 start-page: 3025 issue: S4 year: 2022 ident: 10.7717/peerj-cs.1903/ref-88 article-title: Wild horse optimizer: a new meta-heuristic algorithm for solving engineering optimization problems publication-title: Engineering with Computers doi: 10.1007/s00366-021-01438-z – volume: 17 start-page: e0260497 year: 2022 ident: 10.7717/peerj-cs.1903/ref-113 article-title: Heuristic algorithms in evolutionary computation and modular organization of biological macromolecules: applications to in vitro evolution publication-title: PLOS ONE doi: 10.1371/journal.pone.0260497 – volume: 10 start-page: 13 issue: 1 year: 2020 ident: 10.7717/peerj-cs.1903/ref-156 article-title: Ensemble transfer learning for the prediction of anti-cancer drug response publication-title: Scientific Reports doi: 10.1038/s41598-020-74921-0 – volume: 4 start-page: 19 year: 2020 ident: 10.7717/peerj-cs.1903/ref-2 article-title: Machine learning approaches to drug response prediction: challenges and recent progress publication-title: NPJ Precision Oncology doi: 10.1038/s41698-020-0122-1 |
| SSID | ssj0001511119 |
| Score | 2.2936254 |
| SecondaryResourceType | review_article |
| Snippet | Recent advancements in deep learning (DL) have played a crucial role in aiding experts to develop personalized healthcare services, particularly in drug... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e1903 |
| SubjectTerms | Algorithms and Analysis of Algorithms Artificial Intelligence Bioinformatics Cancer diagnostic Data Mining and Machine Learning Deep learning Drug response prediction Health care industry Machine learning Optimization Theory and Computation Precision medicine |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELage4ALy5vCggxCcCElm3jihFtBVAsSCwIqLSfLr5RCSaukEWJ_PTNJWjW74nGNx5LHHtvfxDPfMPYYLGVbChc4BzIQBh1WbaUN0HPwQssoTlJKTn53nBxNxdsTOOmCaCgXZuf9XqL885X35bfAViO8uOKLbC8BhNwDtjc9_jD-0hSOk0kAWRa1_Jnn-_Tum4aW__zhu3P7nI2MvFQXK_3rp14sdq6dyT6bbAbcRpt8H9VrM7KnZ7gc_6nRVXalA5583FrKNXbBF9fZ_qaoA-_2-A2Wv8dD5Mf81DveVMmpuC4cd96veFdhYsbbstMVR8DLXVnPeNlG2nq-KunhhxabzwtuyaRKvg1mr15wzdtkmZtsOnn9-dVR0BVjCCwArAMfpyZPLeXFCnA20ujnQB7pRFojUxPa9DDPDYS5dnho5LGIpfeILdNcWgQpJr7FBsWy8HcYd3kG2mmAxFgBGowJUxG7yPnEO3AwZM82S6Zsx1ROBTMWCj0WmkPVzKGylaI5HLInW_FVS9HxJ8GXtP5bIWLWbj7g8qhuo6pQG3Amtk5nmdAIHtPQeURVNpJaWBcN2SOyHkXcGQUF58x0XVXqzaePapweUgVVmckhe9oJ5UscudVdrgPqT3RbPcmDniRubttrfrgxUkVNFBFX-GVdKXrRBtJKDNnt1mi3imFn9LMltqQ9c-5p3m8p5l8bbnFEg4J-NKIGW8v_-6ze_W_Je-xyhJCQIvgiOGCDdVn7-wjp1uZBt6F_A5J5TxA priority: 102 providerName: Unpaywall |
| Title | Optimized models and deep learning methods for drug response prediction in cancer treatments: a review |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38660174 https://www.proquest.com/docview/3046519034 https://pubmed.ncbi.nlm.nih.gov/PMC11042005 https://doi.org/10.7717/peerj-cs.1903 https://doaj.org/article/0ab5db3cda994a92980de509c27a4cd2 |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: RPM dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: BENPR dateStart: 20150527 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: 8FG dateStart: 20150527 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgOcCF9yOwVAYhuBA2m9ixw62LtixIlNVCpeVk-ZVSVNIoaYTg1zOTpFUDAi4cG0_UjGc8j2TmG0KecIvdlsyFznERMgMJq7bChpA5eKZFnKQSm5PfTdOTGXt7zs93Rn1hTVgHD9xt3EGkDXcmsU5nGdPgzGXkPHg5GwvNrGutbySznWSq6w9GU5B1oJoC_vig9L76Etr6BXjAZOCEWqz-3y3yjkv6tVzyclOU-vs3vVzu-KLJdXK1DyLpuHv4G-SCL26Sa5sBDbQ_r7dI_h4MwtfFD-9oO_Gmprpw1Hlf0n5axJx2I6RrCsErdVUzp1VXNetpWeFHHBQcXRTUonpUdFuYXr-kmnaNL7fJbHL88dVJ2A9WCC3nfB36RJpcWuxxZdzZWEPOwvNYp8IaIU1k5WGeGx7l2oEByBOWCO8hTpS5sBBwmOQO2StWhb9HqMszrp3mPDWWcc2NiSRLXOx86h13PCDPNzutbI86jsMvlgqyDxSMagWjbK1QMAF5uiUvO7iNPxEeodi2RIiS3V4A3VG97qh_6U5AHqPQFeJgFFhoM9dNXas3H87UWB7iNFSRiYA864nyFTy51X3fAvCP0FkDyv0BJRxUO1h-tNEthUtY3Vb4VVMr_DrNkSsWkLudrm0Zg5shZxawIgdaOOB8uFIsPrc44RDZMXxpCBxsFfbvu3r_f-zqA3IlhsgPC_Vivk_21lXjH0LktjYjclFOXo_IpaPj6enZqD2y8Gs2PR1_-gklxksf |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELage4ALy5vCggxCcCElm3jihFtBVAsSCwIqLSfLr5RCSaukEWJ_PTNJWjW74nGNx5LHHtvfxDPfMPYYLGVbChc4BzIQBh1WbaUN0HPwQssoTlJKTn53nBxNxdsTOOmCaCgXZuf9XqL885X35bfAViO8uOKLbC8BhNwDtjc9_jD-0hSOk0kAWRa1_Jnn-_Tum4aW__zhu3P7nI2MvFQXK_3rp14sdq6dyT6bbAbcRpt8H9VrM7KnZ7gc_6nRVXalA5583FrKNXbBF9fZ_qaoA-_2-A2Wv8dD5Mf81DveVMmpuC4cd96veFdhYsbbstMVR8DLXVnPeNlG2nq-KunhhxabzwtuyaRKvg1mr15wzdtkmZtsOnn9-dVR0BVjCCwArAMfpyZPLeXFCnA20ujnQB7pRFojUxPa9DDPDYS5dnho5LGIpfeILdNcWgQpJr7FBsWy8HcYd3kG2mmAxFgBGowJUxG7yPnEO3AwZM82S6Zsx1ROBTMWCj0WmkPVzKGylaI5HLInW_FVS9HxJ8GXtP5bIWLWbj7g8qhuo6pQG3Amtk5nmdAIHtPQeURVNpJaWBcN2SOyHkXcGQUF58x0XVXqzaePapweUgVVmckhe9oJ5UscudVdrgPqT3RbPcmDniRubttrfrgxUkVNFBFX-GVdKXrRBtJKDNnt1mi3imFn9LMltqQ9c-5p3m8p5l8bbnFEg4J-NKIGW8v_-6ze_W_Je-xyhJCQIvgiOGCDdVn7-wjp1uZBt6F_A5J5TxA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+models+and+deep+learning+methods+for+drug+response+prediction+in+cancer+treatments%3A+a+review&rft.jtitle=PeerJ.+Computer+science&rft.au=Hajim%2C+Wesam+Ibrahim&rft.au=Zainudin%2C+Suhaila&rft.au=Mohd+Daud%2C+Kauthar&rft.au=Alheeti%2C+Khattab&rft.date=2024-03-25&rft.pub=PeerJ+Inc&rft.eissn=2376-5992&rft.volume=10&rft_id=info:doi/10.7717%2Fpeerj-cs.1903&rft.externalDocID=PMC11042005 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |