Upper limb joint dynamics during manual wheelchair propulsion
Inverse dynamic methods have been widely used to estimate joint loads during manual wheelchair propulsion. However, the interpretation of 3D net joint moments and powers is not always straightforward. It has been suggested to use joint coordinate systems (expression of joint moment on anatomical axe...
Saved in:
| Published in | Clinical biomechanics (Bristol) Vol. 25; no. 4; pp. 299 - 306 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Elsevier Ltd
01.05.2010
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0268-0033 1879-1271 1879-1271 |
| DOI | 10.1016/j.clinbiomech.2009.12.011 |
Cover
| Abstract | Inverse dynamic methods have been widely used to estimate joint loads during manual wheelchair propulsion. However, the interpretation of 3D net joint moments and powers is not always straightforward. It has been suggested to use joint coordinate systems (expression of joint moment on anatomical axes) and the 3D angle between joint moment and angular velocity vectors (propulsion, resistance or stabilization joint configuration) for a better understanding of joint dynamics.
Nine spinal cord injured subjects equipped with reflective markers propelled in a wheelchair with an instrumented wheel. Inverse dynamic results were interpreted using joint coordinate systems, 3D joint power and the 3D angle between the joint moment and joint angular velocity vectors at the three upper limb joints. The 3D angle was used to determine if the joints were predominantly driven (angle close to 0 or 180 degrees) or stabilized (angle close to 90°).
The wrist and elbow joints are mainly in a stabilization configuration (angle close to 90°) with a combination of extension and ulnar deviation moments and an adduction moment respectively. The shoulder is in a propulsion configuration, but close to stabilization (angle hardly below 60°) with a combination of flexion and internal rotation moments.
Stabilization configuration at the joints could partly explain the low mechanical efficiency of manual wheelchair propulsion and could give insight about injury risk at the wrist, elbow and shoulder joints. |
|---|---|
| AbstractList | Inverse dynamic methods have been widely used to estimate joint loads during manual wheelchair propulsion. However, the interpretation of 3D net joint moments and powers is not always straightforward. It has been suggested to use joint coordinate systems (expression of joint moment on anatomical axes) and the 3D angle between joint moment and angular velocity vectors (propulsion, resistance or stabilization joint configuration) for a better understanding of joint dynamics.
Nine spinal cord injured subjects equipped with reflective markers propelled in a wheelchair with an instrumented wheel. Inverse dynamic results were interpreted using joint coordinate systems, 3D joint power and the 3D angle between the joint moment and joint angular velocity vectors at the three upper limb joints. The 3D angle was used to determine if the joints were predominantly driven (angle close to 0 or 180 degrees) or stabilized (angle close to 90°).
The wrist and elbow joints are mainly in a stabilization configuration (angle close to 90°) with a combination of extension and ulnar deviation moments and an adduction moment respectively. The shoulder is in a propulsion configuration, but close to stabilization (angle hardly below 60°) with a combination of flexion and internal rotation moments.
Stabilization configuration at the joints could partly explain the low mechanical efficiency of manual wheelchair propulsion and could give insight about injury risk at the wrist, elbow and shoulder joints. Inverse dynamic methods have been widely used to estimate joint loads during manual wheelchair propulsion. However, the interpretation of 3D net joint moments and powers is not always straightforward. It has been suggested to use joint coordinate systems (expression of joint moment on anatomical axes) and the 3D angle between joint moment and angular velocity vectors (propulsion, resistance or stabilization joint configuration) for a better understanding of joint dynamics.BACKGROUNDInverse dynamic methods have been widely used to estimate joint loads during manual wheelchair propulsion. However, the interpretation of 3D net joint moments and powers is not always straightforward. It has been suggested to use joint coordinate systems (expression of joint moment on anatomical axes) and the 3D angle between joint moment and angular velocity vectors (propulsion, resistance or stabilization joint configuration) for a better understanding of joint dynamics.Nine spinal cord injured subjects equipped with reflective markers propelled in a wheelchair with an instrumented wheel. Inverse dynamic results were interpreted using joint coordinate systems, 3D joint power and the 3D angle between the joint moment and joint angular velocity vectors at the three upper limb joints. The 3D angle was used to determine if the joints were predominantly driven (angle close to 0 or 180 degrees) or stabilized (angle close to 90 degrees ).METHODSNine spinal cord injured subjects equipped with reflective markers propelled in a wheelchair with an instrumented wheel. Inverse dynamic results were interpreted using joint coordinate systems, 3D joint power and the 3D angle between the joint moment and joint angular velocity vectors at the three upper limb joints. The 3D angle was used to determine if the joints were predominantly driven (angle close to 0 or 180 degrees) or stabilized (angle close to 90 degrees ).The wrist and elbow joints are mainly in a stabilization configuration (angle close to 90 degrees ) with a combination of extension and ulnar deviation moments and an adduction moment respectively. The shoulder is in a propulsion configuration, but close to stabilization (angle hardly below 60 degrees ) with a combination of flexion and internal rotation moments.FINDINGSThe wrist and elbow joints are mainly in a stabilization configuration (angle close to 90 degrees ) with a combination of extension and ulnar deviation moments and an adduction moment respectively. The shoulder is in a propulsion configuration, but close to stabilization (angle hardly below 60 degrees ) with a combination of flexion and internal rotation moments.Stabilization configuration at the joints could partly explain the low mechanical efficiency of manual wheelchair propulsion and could give insight about injury risk at the wrist, elbow and shoulder joints.INTERPRETATIONStabilization configuration at the joints could partly explain the low mechanical efficiency of manual wheelchair propulsion and could give insight about injury risk at the wrist, elbow and shoulder joints. Inverse dynamic methods have been widely used to estimate joint loads during manual wheelchair propulsion. However, the interpretation of 3D net joint moments and powers is not always straightforward. It has been suggested to use joint coordinate systems (expression of joint moment on anatomical axes) and the 3D angle between joint moment and angular velocity vectors (propulsion, resistance or stabilization joint configuration) for a better understanding of joint dynamics. Nine spinal cord injured subjects equipped with reflective markers propelled in a wheelchair with an instrumented wheel. Inverse dynamic results were interpreted using joint coordinate systems, 3D joint power and the 3D angle between the joint moment and joint angular velocity vectors at the three upper limb joints. The 3D angle was used to determine if the joints were predominantly driven (angle close to 0 or 180 degrees) or stabilized (angle close to 90 degrees ). The wrist and elbow joints are mainly in a stabilization configuration (angle close to 90 degrees ) with a combination of extension and ulnar deviation moments and an adduction moment respectively. The shoulder is in a propulsion configuration, but close to stabilization (angle hardly below 60 degrees ) with a combination of flexion and internal rotation moments. Stabilization configuration at the joints could partly explain the low mechanical efficiency of manual wheelchair propulsion and could give insight about injury risk at the wrist, elbow and shoulder joints. Abstract Background Inverse dynamic methods have been widely used to estimate joint loads during manual wheelchair propulsion. However, the interpretation of 3D net joint moments and powers is not always straightforward. It has been suggested to use joint coordinate systems (expression of joint moment on anatomical axes) and the 3D angle between joint moment and angular velocity vectors (propulsion, resistance or stabilization joint configuration) for a better understanding of joint dynamics. Methods Nine spinal cord injured subjects equipped with reflective markers propelled in a wheelchair with an instrumented wheel. Inverse dynamic results were interpreted using joint coordinate systems, 3D joint power and the 3D angle between the joint moment and joint angular velocity vectors at the three upper limb joints. The 3D angle was used to determine if the joints were predominantly driven (angle close to 0 or 180 degrees) or stabilized (angle close to 90°). Findings The wrist and elbow joints are mainly in a stabilization configuration (angle close to 90°) with a combination of extension and ulnar deviation moments and an adduction moment respectively. The shoulder is in a propulsion configuration, but close to stabilization (angle hardly below 60°) with a combination of flexion and internal rotation moments. Interpretation Stabilization configuration at the joints could partly explain the low mechanical efficiency of manual wheelchair propulsion and could give insight about injury risk at the wrist, elbow and shoulder joints. Background: Inverse dynamic methods have been widely used to estimate joint loads during manual wheelchair propulsion. However, the interpretation of 3D net joint moments and powers is not always straightforward. It has been suggested to use joint coordinate systems (expression of joint moment on anatomical axes) and the 3D angle between joint moment and angular velocity vectors (propulsion, resistance or stabilization joint configuration) for a better understanding of joint dynamics. Methods: Nine spinal cord injured subjects equipped with reflective markers propelled in a wheelchair with an instrumented wheel. Inverse dynamic results were interpreted using joint coordinate systems, 3D joint power and the 3D angle between the joint moment and joint angular velocity vectors at the three upper limb joints. The 3D angle was used to determine if the joints were predominantly driven (angle close to 0 or 180 degrees) or stabilized (angle close to 90). Findings: The wrist and elbow joints are mainly in a stabilization configuration (angle close to 90) with a combination of extension and ulnar deviation moments and an adduction moment respectively. The shoulder is in a propulsion configuration, but close to stabilization (angle hardly below 60) with a combination of flexion and internal rotation moments. Interpretation: Stabilization configuration at the joints could partly explain the low mechanical efficiency of manual wheelchair propulsion and could give insight about injury risk at the wrist, elbow and shoulder joints. |
| Author | Dumas, Raphaël Vaslin, Philippe Lepoutre, François-Xavier Desroches, Guillaume Pradon, Didier Chèze, Laurence |
| Author_xml | – sequence: 1 givenname: Guillaume surname: Desroches fullname: Desroches, Guillaume email: guillaume.desroches@univ-lyonl.fr organization: Université de Lyon, Université Lyon 1, Villeurbanne F-69622, France – sequence: 2 givenname: Raphaël surname: Dumas fullname: Dumas, Raphaël organization: Université de Lyon, Université Lyon 1, Villeurbanne F-69622, France – sequence: 3 givenname: Didier surname: Pradon fullname: Pradon, Didier organization: Laboratoire d’Analyse du Mouvement, CIC-IT 805, AP-HP, CHU Raymond Poincaré, Garches, F-92380, France – sequence: 4 givenname: Philippe surname: Vaslin fullname: Vaslin, Philippe organization: Laboratoire d’Informatique, de Modélisation et d’Optimisation des Systèmes (LIMOS), UMR 6158 CNRS-Université Blaise Pascal – Clermont-Ferrand II, F-63173 Aubière Cédex, France – sequence: 5 givenname: François-Xavier surname: Lepoutre fullname: Lepoutre, François-Xavier organization: Université Lille Nord de France, F-59000 Lille, France – sequence: 6 givenname: Laurence surname: Chèze fullname: Chèze, Laurence organization: Université de Lyon, Université Lyon 1, Villeurbanne F-69622, France |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20106573$$D View this record in MEDLINE/PubMed https://hal.science/hal-00989650$$DView record in HAL |
| BookMark | eNqNktFu0zAUhi00xLrBK6Bwhbho8bHjJL6AqarYhlSJC9i15Tgn1MFxip0M9e1x1A2hSYheWbK-8_no_31BzvzgkZA3QFdAoXjfrYyzvrZDj2a3YpTKFbAVBXhGFlCVcgmshDOyoKyolpRyfk4uYuwopTkT5QtyzijQQpR8QT7c7fcYMmf7OusG68esOXjdWxOzZgrWf8967Sftsl87RGd22oZsH4b95KId_EvyvNUu4quH85LcXX_6trldbr_cfN6st0sjhBiXGmVTaVPUDHNRc8k0cg0MCyPahkkhBYicM2zBcKhaYLVsmloWdVUDzYuaX5J3R-9OO7UPttfhoAZt1e16q-a7FEElC0HvIbFvj2xa8-eEcVS9jQad0x6HKaoKSpEXtMz_S5ac57KqBE_k6wdyqnts_qzwmGMCro6ACUOMAVtl7KjHFNEYtHUKqJqbU536qzk1N6eAqdRcMsgnhsdHTpndHGcxdXBvMahoLHqDjQ1oRtUM9iTLxyeWmbRGux94wNgNU_CpZAUqpgH1df5d8-eiklKWckqC9b8FJy7xGzkd5Ho |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2012_10_065 crossref_primary_10_1038_sc_2010_149 crossref_primary_10_1016_j_clinbiomech_2023_106029 crossref_primary_10_1080_10803548_2017_1294369 crossref_primary_10_1016_j_medengphy_2020_11_008 crossref_primary_10_3389_fresc_2022_827534 crossref_primary_10_1016_j_clinbiomech_2019_03_003 crossref_primary_10_1177_0309364612448807 crossref_primary_10_1371_journal_pone_0104785 crossref_primary_10_1080_10255842_2015_1069627 crossref_primary_10_1016_j_jelekin_2013_06_009 crossref_primary_10_1007_s11044_014_9421_z crossref_primary_10_1016_j_jbiomech_2011_01_007 crossref_primary_10_1179_2045772313Y_0000000110 crossref_primary_10_1016_j_jbiomech_2012_11_016 crossref_primary_10_1016_j_clinbiomech_2021_105545 crossref_primary_10_3109_17483107_2015_1099747 crossref_primary_10_1186_1743_0003_10_9 crossref_primary_10_1016_j_apmr_2022_04_014 crossref_primary_10_1016_j_irbm_2011_01_027 crossref_primary_10_1371_journal_pone_0269657 crossref_primary_10_1016_j_jbiomech_2016_04_035 crossref_primary_10_1016_j_jbiomech_2018_01_043 crossref_primary_10_1080_10255842_2012_688107 crossref_primary_10_3390_s23218659 crossref_primary_10_1177_2055668320907819 crossref_primary_10_3390_medicina59091610 crossref_primary_10_1115_1_4002537 crossref_primary_10_1186_s12984_023_01265_x crossref_primary_10_1080_10255842_2018_1527321 |
| Cites_doi | 10.1016/j.jbiomech.2004.05.042 10.1016/S0021-9290(01)00080-X 10.1016/0021-9290(81)90048-8 10.1016/S0003-9993(97)90227-6 10.1197/j.jht.2006.02.004 10.1016/j.apmr.2007.10.040 10.1016/0966-6362(95)01057-2 10.1016/j.clinbiomech.2005.09.007 10.1016/j.jbiomech.2008.07.032 10.1097/00002060-199909000-00006 10.1080/10255840410001727805 10.1016/j.clinbiomech.2006.04.010 10.1016/j.jbiomech.2006.02.013 10.1016/S1350-4533(01)00083-2 10.1080/10790268.2005.11753816 10.1080/10790268.2005.11753815 10.1016/j.apmr.2007.09.052 10.1682/JRRD.2003.01.0027 10.1016/S0268-0033(02)00008-6 10.1097/00003086-199809000-00016 10.1016/j.jbiomech.2006.10.016 10.1016/S0021-9290(00)00146-9 10.1682/JRRD.2005.12.0178 10.1016/j.apmr.2008.07.013 10.1016/j.jbiomech.2009.07.026 10.2106/00004623-198769050-00006 10.1016/j.gaitpost.2007.12.003 10.1016/S0003-9993(96)90166-5 10.1016/j.ejrad.2008.02.051 10.1016/j.gaitpost.2006.05.018 10.1016/0021-9290(82)90047-1 10.1016/j.apmr.2003.08.090 |
| ContentType | Journal Article |
| Copyright | 2009 Elsevier Ltd Elsevier Ltd Copyright 2009 Elsevier Ltd. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2009 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright 2009 Elsevier Ltd. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC |
| DOI | 10.1016/j.clinbiomech.2009.12.011 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1879-1271 |
| EndPage | 306 |
| ExternalDocumentID | oai:HAL:hal-00989650v1 20106573 10_1016_j_clinbiomech_2009_12_011 S0268003309002988 1_s2_0_S0268003309002988 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6PF 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ H~9 IHE J1W KOM M29 M31 M41 MO0 N9A O-L O9- OAUVE OH. OT. OVD OZT P-8 P-9 P2P PC. Q38 QZG R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K TEORI UAP UPT WH7 WUQ Z5R ~G- ~HD AACTN AFCTW AFKWA AJOXV AMFUW RIG YCJ AAIAV ABLVK ABYKQ AJBFU LCYCR ZA5 AAYXX CITATION AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 1XC |
| ID | FETCH-LOGICAL-c555t-ae9d8ac6b2e45b392ae3a12e6c5fd2959515432ef1c318f12b9ddb96b8b1046b3 |
| IEDL.DBID | AIKHN |
| ISSN | 0268-0033 1879-1271 |
| IngestDate | Tue Oct 14 20:40:39 EDT 2025 Thu Oct 02 06:43:48 EDT 2025 Sat Sep 27 17:03:36 EDT 2025 Mon Jul 21 05:38:05 EDT 2025 Wed Oct 01 02:07:04 EDT 2025 Thu Apr 24 22:54:18 EDT 2025 Fri Feb 23 02:24:01 EST 2024 Sun Feb 23 10:18:50 EST 2025 Tue Oct 14 19:30:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Joint coordinate system Spinal cord injured Wheelchair propulsion Upper limb joints Joint power Joint moment |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright 2009 Elsevier Ltd. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c555t-ae9d8ac6b2e45b392ae3a12e6c5fd2959515432ef1c318f12b9ddb96b8b1046b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| ORCID | 0000-0002-5695-196X |
| PMID | 20106573 |
| PQID | 733498853 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | hal_primary_oai_HAL_hal_00989650v1 proquest_miscellaneous_817546074 proquest_miscellaneous_733498853 pubmed_primary_20106573 crossref_citationtrail_10_1016_j_clinbiomech_2009_12_011 crossref_primary_10_1016_j_clinbiomech_2009_12_011 elsevier_sciencedirect_doi_10_1016_j_clinbiomech_2009_12_011 elsevier_clinicalkeyesjournals_1_s2_0_S0268003309002988 elsevier_clinicalkey_doi_10_1016_j_clinbiomech_2009_12_011 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2010-05-01 |
| PublicationDateYYYYMMDD | 2010-05-01 |
| PublicationDate_xml | – month: 05 year: 2010 text: 2010-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Clinical biomechanics (Bristol) |
| PublicationTitleAlternate | Clin Biomech (Bristol, Avon) |
| PublicationYear | 2010 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | van der Woude, Veeger, Dallmeijer, Janssen, Rozendaal (bib30) 2001; 23 Samson, Desroches, Cheze, Dumas (bib26) 2009; 42 Dubowsky, Rasmussen, Sisto, Langrana (bib10) 2008; 41 Desroches, Aissaoui, Bourbonnais (bib8) 2006; 43 Rodgers, McQuade, Rasch, Keyser, Finley (bib25) 2003; 40 Veeger, Rozendaal, van der Helm (bib32) 2002; 17 Mulroy (bib24) 2005; 28 Wu (bib33) 2005; 38 Desroches, Aissaoui, Bourbonnais (bib9) 2008; 89 Zhang, Wang (bib34) 2001; 34 Gutierrez, Mulroy, Newsam, Gronley, Perry (bib14) 2005; 28 Lugo, Kung, Ma (bib20) 2008; 68 Mulroy, Farrokhi, Newsam, Perry (bib23) 2004; 85 An, Hui, Morrey, Linscheid, Chao (bib1) 1981; 14 Mercer, Boninger, Koontz, Ren, Dyson-Hudson, Cooper (bib21) 2006; 21 Bayley, Cochran, Sledge (bib2) 1987; 69 Lockard (bib19) 2006; 19 Cheze (bib5) 2000; 33 Senk, Cheze (bib28) 2006; 21 Collinger (bib6) 2008; 89 Mulroy, Gronley, Newsam, Perry (bib22) 1996; 77 Dumas, Cheze (bib11) 2008; 28 Kulig (bib17) 1998 Boninger, Cooper, Robertson, Rudy (bib4) 1997; 78 Kwarciak, Sisto, Yarossi, Price, Komaroff, Boninger (bib18) 2009; 90 Dumas, Cheze, Verriest (bib13) 2007; 40 Koontz, Cooper, Boninger, Souza, Fay (bib16) 2002; 39 Hof (bib15) 1996; 4 Cooper, Boninger, Shimada, Lawrence (bib7) 1999; 78 Dumas, Aissaoui, de Guise (bib12) 2004; 7 Sie, Waters, Adkins, Gellman (bib29) 1992; 73 Bober, Kornecki, Lehr, Zawadzki (bib3) 1982; 15 Schache, Baker (bib27) 2007; 25 Veeger, van der Helm (bib31) 2007; 40 Kulig (10.1016/j.clinbiomech.2009.12.011_bib17) 1998 Lockard (10.1016/j.clinbiomech.2009.12.011_bib19) 2006; 19 Dumas (10.1016/j.clinbiomech.2009.12.011_bib13) 2007; 40 Zhang (10.1016/j.clinbiomech.2009.12.011_bib34) 2001; 34 Samson (10.1016/j.clinbiomech.2009.12.011_bib26) 2009; 42 Mulroy (10.1016/j.clinbiomech.2009.12.011_bib22) 1996; 77 Dubowsky (10.1016/j.clinbiomech.2009.12.011_bib10) 2008; 41 van der Woude (10.1016/j.clinbiomech.2009.12.011_bib30) 2001; 23 Gutierrez (10.1016/j.clinbiomech.2009.12.011_bib14) 2005; 28 Mulroy (10.1016/j.clinbiomech.2009.12.011_bib24) 2005; 28 Rodgers (10.1016/j.clinbiomech.2009.12.011_bib25) 2003; 40 Lugo (10.1016/j.clinbiomech.2009.12.011_bib20) 2008; 68 Mercer (10.1016/j.clinbiomech.2009.12.011_bib21) 2006; 21 Collinger (10.1016/j.clinbiomech.2009.12.011_bib6) 2008; 89 Bayley (10.1016/j.clinbiomech.2009.12.011_bib2) 1987; 69 Senk (10.1016/j.clinbiomech.2009.12.011_bib28) 2006; 21 Boninger (10.1016/j.clinbiomech.2009.12.011_bib4) 1997; 78 Cheze (10.1016/j.clinbiomech.2009.12.011_bib5) 2000; 33 Wu (10.1016/j.clinbiomech.2009.12.011_bib33) 2005; 38 Desroches (10.1016/j.clinbiomech.2009.12.011_bib8) 2006; 43 Desroches (10.1016/j.clinbiomech.2009.12.011_bib9) 2008; 89 Veeger (10.1016/j.clinbiomech.2009.12.011_bib31) 2007; 40 Veeger (10.1016/j.clinbiomech.2009.12.011_bib32) 2002; 17 Schache (10.1016/j.clinbiomech.2009.12.011_bib27) 2007; 25 Mulroy (10.1016/j.clinbiomech.2009.12.011_bib23) 2004; 85 Cooper (10.1016/j.clinbiomech.2009.12.011_bib7) 1999; 78 Hof (10.1016/j.clinbiomech.2009.12.011_bib15) 1996; 4 Koontz (10.1016/j.clinbiomech.2009.12.011_bib16) 2002; 39 Bober (10.1016/j.clinbiomech.2009.12.011_bib3) 1982; 15 An (10.1016/j.clinbiomech.2009.12.011_bib1) 1981; 14 Sie (10.1016/j.clinbiomech.2009.12.011_bib29) 1992; 73 Dumas (10.1016/j.clinbiomech.2009.12.011_bib12) 2004; 7 Kwarciak (10.1016/j.clinbiomech.2009.12.011_bib18) 2009; 90 Dumas (10.1016/j.clinbiomech.2009.12.011_bib11) 2008; 28 |
| References_xml | – volume: 73 start-page: 44 year: 1992 end-page: 48 ident: bib29 article-title: Upper extremity pain in the postrehabilitation spinal cord injured patient publication-title: Arch. Phys. Med. Rehabil. – volume: 69 start-page: 676 year: 1987 end-page: 678 ident: bib2 article-title: The weight-bearing shoulder. The impingement syndrome in paraplegics publication-title: J. Bone Joint Surg. Am. – volume: 14 start-page: 659 year: 1981 end-page: 661 ident: bib1 article-title: Muscles across the elbow joint: a biomechanical analysis publication-title: J. Biomech. – volume: 39 start-page: 635 year: 2002 end-page: 650 ident: bib16 article-title: Shoulder kinematics and kinetics during two speeds of wheelchair propulsion publication-title: J. Rehabil. Res. Dev. – volume: 21 start-page: S3 year: 2006 end-page: S8 ident: bib28 article-title: Rotation sequence as an important factor in shoulder kinematics publication-title: Clin. Biomech. (Bristol, Avon) – volume: 15 start-page: 825 year: 1982 end-page: 827 ident: bib3 article-title: Biomechanical analysis of human arm stabilization during force production publication-title: J. Biomech. – volume: 42 start-page: 2447 year: 2009 end-page: 2453 ident: bib26 article-title: 3D joint dynamics analysis of healthy children’s gait publication-title: J. Biomech. – volume: 78 start-page: 364 year: 1997 end-page: 372 ident: bib4 article-title: Wrist biomechanics during two speeds of wheelchair propulsion: an analysis using a local coordinate system publication-title: Arch. Phys. Med. Rehabil. – volume: 41 start-page: 2981 year: 2008 end-page: 2988 ident: bib10 article-title: Validation of a musculoskeletal model of wheelchair propulsion and its application to minimizing shoulder joint forces publication-title: J. Biomech. – volume: 4 start-page: 222 year: 1996 end-page: 223 ident: bib15 article-title: Scaling gait data to body size publication-title: Gait Posture – volume: 17 start-page: 211 year: 2002 end-page: 218 ident: bib32 article-title: Load on the shoulder in low intensity wheelchair propulsion publication-title: Clin. Biomech. (Bristol, Avon) – volume: 23 start-page: 713 year: 2001 end-page: 733 ident: bib30 article-title: Biomechanics and physiology in active manual wheelchair propulsion publication-title: Med. Eng. Phys. – volume: 34 start-page: 1107 year: 2001 end-page: 1115 ident: bib34 article-title: Dynamic and static control of the human knee joint in abduction–adduction publication-title: J. Biomech. – volume: 89 start-page: 667 year: 2008 end-page: 676 ident: bib6 article-title: Shoulder biomechanics during the push phase of wheelchair propulsion: a multisite study of persons with paraplegia publication-title: Arch. Phys. Med. Rehabil. – volume: 33 start-page: 1695 year: 2000 end-page: 1699 ident: bib5 article-title: Comparison of different calculations of three-dimensional joint kinematics from video-based system data publication-title: J. Biomech. – volume: 19 start-page: 72 year: 2006 end-page: 81 ident: bib19 article-title: Clinical biomechanics of the elbow publication-title: J. Hand Ther. – volume: 77 start-page: 187 year: 1996 end-page: 193 ident: bib22 article-title: Electromyographic activity of shoulder muscles during wheelchair propulsion by paraplegic persons publication-title: Arch. Phys. Med. Rehabil. – volume: 25 start-page: 440 year: 2007 end-page: 452 ident: bib27 article-title: On the expression of joint moments during gait publication-title: Gait Posture – start-page: 132 year: 1998 end-page: 143 ident: bib17 article-title: Shoulder joint kinetics during the push phase of wheelchair propulsion publication-title: Clin. Orthop. – volume: 68 start-page: 16 year: 2008 end-page: 24 ident: bib20 article-title: Shoulder biomechanics publication-title: Eur. J. Rad. – volume: 21 start-page: 781 year: 2006 end-page: 789 ident: bib21 article-title: Shoulder joint kinetics and pathology in manual wheelchair users publication-title: Clin. Biomech. (Bristol, Avon). – volume: 78 start-page: 435 year: 1999 end-page: 446 ident: bib7 article-title: Glenohumeral joint kinematics and kinetics for three coordinate system representations during wheelchair propulsion publication-title: Am. J. Phys. Med. Rehabil. – volume: 40 start-page: 2119 year: 2007 end-page: 2129 ident: bib31 article-title: Shoulder function: the perfect compromise between mobility and stability publication-title: J. Biomech. – volume: 90 start-page: 20 year: 2009 end-page: 26 ident: bib18 article-title: Redefining the manual wheelchair stroke cycle: identification and impact of nonpropulsive pushrim contact publication-title: Arch. Phys. Med. Rehabil. – volume: 38 start-page: 981 year: 2005 end-page: 992 ident: bib33 article-title: ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion–Part II: shoulder, elbow, wrist and hand publication-title: J. Biomech. – volume: 28 start-page: 222 year: 2005 end-page: 229 ident: bib14 article-title: Effect of fore-aft seat position on shoulder demands during wheelchair propulsion: part 2. An electromyographic analysis publication-title: J. Spinal Cord Med. – volume: 7 start-page: 159 year: 2004 end-page: 166 ident: bib12 article-title: A 3D generic inverse dynamic method using wrench notation and quaternion algebra publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 85 start-page: 925 year: 2004 end-page: 934 ident: bib23 article-title: Effects of spinal cord injury level on the activity of shoulder muscles during wheelchair propulsion: an electromyographic study publication-title: Arch. Phys. Med. Rehabil. – volume: 40 start-page: 543 year: 2007 end-page: 553 ident: bib13 article-title: Adjustments to McConville et al. and Young et al. body segment inertial parameters publication-title: J. Biomech. – volume: 28 start-page: 214 year: 2005 end-page: 221 ident: bib24 article-title: Effect of fore-aft seat position on shoulder demands during wheelchair propulsion: part 1. A kinetic analysis publication-title: J. Spinal Cord Med. – volume: 40 start-page: 27 year: 2003 end-page: 37 ident: bib25 article-title: Upper-limb fatigue-related joint power shifts in experienced wheelchair users and nonwheelchair users publication-title: J. Rehabil. Res. Dev. – volume: 28 start-page: 243 year: 2008 end-page: 250 ident: bib11 article-title: Hip and knee joints are more stabilized than driven during the stance phase of gait: an analysis of the 3D angle between joint moment and joint angular velocity publication-title: Gait Posture – volume: 89 start-page: 1155 year: 2008 end-page: 1161 ident: bib9 article-title: Relationship between resultant force at the pushrim and the net shoulder joint moments during manual wheelchair propulsion in elderly persons publication-title: Arch. Phys. Med. Rehabil. – volume: 43 start-page: 871 year: 2006 end-page: 882 ident: bib8 article-title: Effect of system tilt and seat-to-backrest angles on load sustained by shoulder during wheelchair propulsion publication-title: J. Rehabil. Res. Dev. – volume: 38 start-page: 981 year: 2005 ident: 10.1016/j.clinbiomech.2009.12.011_bib33 article-title: ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion–Part II: shoulder, elbow, wrist and hand publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.05.042 – volume: 34 start-page: 1107 year: 2001 ident: 10.1016/j.clinbiomech.2009.12.011_bib34 article-title: Dynamic and static control of the human knee joint in abduction–adduction publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00080-X – volume: 14 start-page: 659 year: 1981 ident: 10.1016/j.clinbiomech.2009.12.011_bib1 article-title: Muscles across the elbow joint: a biomechanical analysis publication-title: J. Biomech. doi: 10.1016/0021-9290(81)90048-8 – volume: 78 start-page: 364 year: 1997 ident: 10.1016/j.clinbiomech.2009.12.011_bib4 article-title: Wrist biomechanics during two speeds of wheelchair propulsion: an analysis using a local coordinate system publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/S0003-9993(97)90227-6 – volume: 19 start-page: 72 year: 2006 ident: 10.1016/j.clinbiomech.2009.12.011_bib19 article-title: Clinical biomechanics of the elbow publication-title: J. Hand Ther. doi: 10.1197/j.jht.2006.02.004 – volume: 89 start-page: 1155 year: 2008 ident: 10.1016/j.clinbiomech.2009.12.011_bib9 article-title: Relationship between resultant force at the pushrim and the net shoulder joint moments during manual wheelchair propulsion in elderly persons publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/j.apmr.2007.10.040 – volume: 4 start-page: 222 year: 1996 ident: 10.1016/j.clinbiomech.2009.12.011_bib15 article-title: Scaling gait data to body size publication-title: Gait Posture doi: 10.1016/0966-6362(95)01057-2 – volume: 21 start-page: S3 issue: Suppl. 1 year: 2006 ident: 10.1016/j.clinbiomech.2009.12.011_bib28 article-title: Rotation sequence as an important factor in shoulder kinematics publication-title: Clin. Biomech. (Bristol, Avon) doi: 10.1016/j.clinbiomech.2005.09.007 – volume: 41 start-page: 2981 year: 2008 ident: 10.1016/j.clinbiomech.2009.12.011_bib10 article-title: Validation of a musculoskeletal model of wheelchair propulsion and its application to minimizing shoulder joint forces publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.07.032 – volume: 78 start-page: 435 year: 1999 ident: 10.1016/j.clinbiomech.2009.12.011_bib7 article-title: Glenohumeral joint kinematics and kinetics for three coordinate system representations during wheelchair propulsion publication-title: Am. J. Phys. Med. Rehabil. doi: 10.1097/00002060-199909000-00006 – volume: 7 start-page: 159 year: 2004 ident: 10.1016/j.clinbiomech.2009.12.011_bib12 article-title: A 3D generic inverse dynamic method using wrench notation and quaternion algebra publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255840410001727805 – volume: 21 start-page: 781 year: 2006 ident: 10.1016/j.clinbiomech.2009.12.011_bib21 article-title: Shoulder joint kinetics and pathology in manual wheelchair users publication-title: Clin. Biomech. (Bristol, Avon). doi: 10.1016/j.clinbiomech.2006.04.010 – volume: 40 start-page: 543 year: 2007 ident: 10.1016/j.clinbiomech.2009.12.011_bib13 article-title: Adjustments to McConville et al. and Young et al. body segment inertial parameters publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2006.02.013 – volume: 23 start-page: 713 year: 2001 ident: 10.1016/j.clinbiomech.2009.12.011_bib30 article-title: Biomechanics and physiology in active manual wheelchair propulsion publication-title: Med. Eng. Phys. doi: 10.1016/S1350-4533(01)00083-2 – volume: 28 start-page: 222 year: 2005 ident: 10.1016/j.clinbiomech.2009.12.011_bib14 article-title: Effect of fore-aft seat position on shoulder demands during wheelchair propulsion: part 2. An electromyographic analysis publication-title: J. Spinal Cord Med. doi: 10.1080/10790268.2005.11753816 – volume: 28 start-page: 214 year: 2005 ident: 10.1016/j.clinbiomech.2009.12.011_bib24 article-title: Effect of fore-aft seat position on shoulder demands during wheelchair propulsion: part 1. A kinetic analysis publication-title: J. Spinal Cord Med. doi: 10.1080/10790268.2005.11753815 – volume: 89 start-page: 667 year: 2008 ident: 10.1016/j.clinbiomech.2009.12.011_bib6 article-title: Shoulder biomechanics during the push phase of wheelchair propulsion: a multisite study of persons with paraplegia publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/j.apmr.2007.09.052 – volume: 73 start-page: 44 year: 1992 ident: 10.1016/j.clinbiomech.2009.12.011_bib29 article-title: Upper extremity pain in the postrehabilitation spinal cord injured patient publication-title: Arch. Phys. Med. Rehabil. – volume: 40 start-page: 27 year: 2003 ident: 10.1016/j.clinbiomech.2009.12.011_bib25 article-title: Upper-limb fatigue-related joint power shifts in experienced wheelchair users and nonwheelchair users publication-title: J. Rehabil. Res. Dev. doi: 10.1682/JRRD.2003.01.0027 – volume: 39 start-page: 635 year: 2002 ident: 10.1016/j.clinbiomech.2009.12.011_bib16 article-title: Shoulder kinematics and kinetics during two speeds of wheelchair propulsion publication-title: J. Rehabil. Res. Dev. – volume: 17 start-page: 211 year: 2002 ident: 10.1016/j.clinbiomech.2009.12.011_bib32 article-title: Load on the shoulder in low intensity wheelchair propulsion publication-title: Clin. Biomech. (Bristol, Avon) doi: 10.1016/S0268-0033(02)00008-6 – start-page: 132 year: 1998 ident: 10.1016/j.clinbiomech.2009.12.011_bib17 article-title: Shoulder joint kinetics during the push phase of wheelchair propulsion publication-title: Clin. Orthop. doi: 10.1097/00003086-199809000-00016 – volume: 40 start-page: 2119 year: 2007 ident: 10.1016/j.clinbiomech.2009.12.011_bib31 article-title: Shoulder function: the perfect compromise between mobility and stability publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2006.10.016 – volume: 33 start-page: 1695 year: 2000 ident: 10.1016/j.clinbiomech.2009.12.011_bib5 article-title: Comparison of different calculations of three-dimensional joint kinematics from video-based system data publication-title: J. Biomech. doi: 10.1016/S0021-9290(00)00146-9 – volume: 43 start-page: 871 year: 2006 ident: 10.1016/j.clinbiomech.2009.12.011_bib8 article-title: Effect of system tilt and seat-to-backrest angles on load sustained by shoulder during wheelchair propulsion publication-title: J. Rehabil. Res. Dev. doi: 10.1682/JRRD.2005.12.0178 – volume: 90 start-page: 20 year: 2009 ident: 10.1016/j.clinbiomech.2009.12.011_bib18 article-title: Redefining the manual wheelchair stroke cycle: identification and impact of nonpropulsive pushrim contact publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/j.apmr.2008.07.013 – volume: 42 start-page: 2447 year: 2009 ident: 10.1016/j.clinbiomech.2009.12.011_bib26 article-title: 3D joint dynamics analysis of healthy children’s gait publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.07.026 – volume: 69 start-page: 676 year: 1987 ident: 10.1016/j.clinbiomech.2009.12.011_bib2 article-title: The weight-bearing shoulder. The impingement syndrome in paraplegics publication-title: J. Bone Joint Surg. Am. doi: 10.2106/00004623-198769050-00006 – volume: 28 start-page: 243 year: 2008 ident: 10.1016/j.clinbiomech.2009.12.011_bib11 article-title: Hip and knee joints are more stabilized than driven during the stance phase of gait: an analysis of the 3D angle between joint moment and joint angular velocity publication-title: Gait Posture doi: 10.1016/j.gaitpost.2007.12.003 – volume: 77 start-page: 187 year: 1996 ident: 10.1016/j.clinbiomech.2009.12.011_bib22 article-title: Electromyographic activity of shoulder muscles during wheelchair propulsion by paraplegic persons publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/S0003-9993(96)90166-5 – volume: 68 start-page: 16 year: 2008 ident: 10.1016/j.clinbiomech.2009.12.011_bib20 article-title: Shoulder biomechanics publication-title: Eur. J. Rad. doi: 10.1016/j.ejrad.2008.02.051 – volume: 25 start-page: 440 year: 2007 ident: 10.1016/j.clinbiomech.2009.12.011_bib27 article-title: On the expression of joint moments during gait publication-title: Gait Posture doi: 10.1016/j.gaitpost.2006.05.018 – volume: 15 start-page: 825 year: 1982 ident: 10.1016/j.clinbiomech.2009.12.011_bib3 article-title: Biomechanical analysis of human arm stabilization during force production publication-title: J. Biomech. doi: 10.1016/0021-9290(82)90047-1 – volume: 85 start-page: 925 year: 2004 ident: 10.1016/j.clinbiomech.2009.12.011_bib23 article-title: Effects of spinal cord injury level on the activity of shoulder muscles during wheelchair propulsion: an electromyographic study publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/j.apmr.2003.08.090 |
| SSID | ssj0004257 |
| Score | 2.1169407 |
| Snippet | Inverse dynamic methods have been widely used to estimate joint loads during manual wheelchair propulsion. However, the interpretation of 3D net joint moments... Abstract Background Inverse dynamic methods have been widely used to estimate joint loads during manual wheelchair propulsion. However, the interpretation of... Background: Inverse dynamic methods have been widely used to estimate joint loads during manual wheelchair propulsion. However, the interpretation of 3D net... |
| SourceID | hal proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 299 |
| SubjectTerms | Elbow Joint - physiopathology Engineering Sciences Female Humans Joint coordinate system Joint moment Joint power Male Mechanics Middle Aged Movement Physical Exertion Physical Medicine and Rehabilitation Range of Motion, Articular Shoulder Joint - physiopathology Spinal cord injured Spinal Cord Injuries - physiopathology Spinal Cord Injuries - rehabilitation Torque Upper limb joints Wheelchair propulsion Wheelchairs Wrist Joint - physiopathology |
| Title | Upper limb joint dynamics during manual wheelchair propulsion |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0268003309002988 https://www.clinicalkey.es/playcontent/1-s2.0-S0268003309002988 https://dx.doi.org/10.1016/j.clinbiomech.2009.12.011 https://www.ncbi.nlm.nih.gov/pubmed/20106573 https://www.proquest.com/docview/733498853 https://www.proquest.com/docview/817546074 https://hal.science/hal-00989650 |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-1271 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004257 issn: 0268-0033 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-1271 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004257 issn: 0268-0033 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-1271 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004257 issn: 0268-0033 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1271 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004257 issn: 0268-0033 databaseCode: AKRWK dateStart: 19860201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-tnTTxgmADVj4mgxBvoXUSJw6Ch2piKh_bC1TamxU7FzVTm0ZNt4kX_nbOidOBoFIlXi1fbF_O57Pv7ncAr1Fb1K849sKY7qphhKQHpUk832g-ykZ5LqXNHT6_iCbT8POluNyD0y4XxoZVOt3f6vRGW7uWoePmsCqK4Te6PUhbimyUNDjisgf7dP5I2Yf98acvk4u79EgH-En9PUtwAC_vwrxsAmKT6d66JpLmcZDzbcdUb2bjJbcZo82hdPYA7jtrko3bCT-EPSwP4Whc0k168YO9YU18Z_NwfggH586NfgQfplWFKzYvFppdLYtyzbK2MH3N2rRFtkgtVCm7nSHOzSwtVqxqSn3Zt7VHMD37-P104rk6Cp4RQqy9FJNMpibSPoZCk0GUYpByHyMj8sxPBBlZIgx8zLmhHZ5zXydZppNIS209wDp4DP1yWeIxMJ1KHZqco0kxzHVAX40xI4UaZBzp9jEA2bFNGQcybmtdzFUXTXalfuO4LYKZKO4r4vgA_A1p1SJt7EL0rvs3qkslJeWn6DzYhTj-FzHWbhvXiquaeqq_RG0A7zeUf0jrrgO_IjHarNIifE_GX5Vts_iuCVnNN9SJdVKmaMtbP05a4vK6VnEQhDQJEWzvIskqDCMyDwfwpBXQzWg2_CEScfD0_9bwDO51gRQj_hz669U1viD7bK1PoPf2Jz9xu_AXwhg6YA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw8LQNafCCYINRPg1CvIXWiZ04CB6qialAuxdWaW9W7FzUTG0aNR2IF34753x0IKhUiVfrLrYv5_Od7wvgNRpX9SuKPBGRrSpCJDmobOz51vBBOsgypVzu8OQ8HE3F50t5uQenXS6MC6tsZX8j02tp3Y70W2r2yzzvfyXrQblWZIO4riOu9uGWkH7kLLC3P2_iPERb7pOgPQd-CC9vgrxc-mGd5944JuL6aZDzbZfU_sxFS25TResr6ewe3G11STZslnsf9rA4guNhQXb04gd7w-rozvrZ_AgOJ60T_Rg-TMsSV2yeLwy7WubFmqVNW_qKNUmLbJG4QqXs-wxxbmdJvmJl3ejLvaw9gOnZx4vTkdd2UfCslHLtJRinKrGh8VFIQ-pQgkHCfQytzFI_lqRiSRH4mHFL5zvjvonT1MShUcb5f03wEA6KZYGPgJlEGWEzjjZBkZmAvhphSuI0SDmS7dED1ZFN27bEuOt0MdddLNmV_o3irgVmrLmvieI98DeoZVNnYxekd92_0V0iKYk-TbfBLsjRv5Cxag9xpbmuCFL_xWg9eL_B_INXd534FbHRZpeuvvdoONZuzFV3jUln_kZArOMyTQfeeXGSApfXlY6CQNAiZLAdRJFOKEJSDntw0jDoZjYX_BDKKHj8f3t4AbdHF5OxHn86__IE7nQhFQP-FA7Wq2t8Rpra2jyvT-Ivavs7KA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Upper+limb+joint+dynamics+during+manual+wheelchair+propulsion&rft.jtitle=Clinical+biomechanics+%28Bristol%29&rft.au=Desroches%2C+Guillaume&rft.au=Dumas%2C+Rapha%C3%ABl&rft.au=Pradon%2C+Didier&rft.au=Vaslin%2C+Philippe&rft.date=2010-05-01&rft.pub=Elsevier+Ltd&rft.issn=0268-0033&rft.volume=25&rft.issue=4&rft.spage=299&rft.epage=306&rft_id=info:doi/10.1016%2Fj.clinbiomech.2009.12.011&rft.externalDocID=S0268003309002988 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F02680033%2FS0268003310X00043%2Fcov150h.gif |