Upper limb joint dynamics during manual wheelchair propulsion

Inverse dynamic methods have been widely used to estimate joint loads during manual wheelchair propulsion. However, the interpretation of 3D net joint moments and powers is not always straightforward. It has been suggested to use joint coordinate systems (expression of joint moment on anatomical axe...

Full description

Saved in:
Bibliographic Details
Published inClinical biomechanics (Bristol) Vol. 25; no. 4; pp. 299 - 306
Main Authors Desroches, Guillaume, Dumas, Raphaël, Pradon, Didier, Vaslin, Philippe, Lepoutre, François-Xavier, Chèze, Laurence
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.05.2010
Elsevier
Subjects
Online AccessGet full text
ISSN0268-0033
1879-1271
1879-1271
DOI10.1016/j.clinbiomech.2009.12.011

Cover

Abstract Inverse dynamic methods have been widely used to estimate joint loads during manual wheelchair propulsion. However, the interpretation of 3D net joint moments and powers is not always straightforward. It has been suggested to use joint coordinate systems (expression of joint moment on anatomical axes) and the 3D angle between joint moment and angular velocity vectors (propulsion, resistance or stabilization joint configuration) for a better understanding of joint dynamics. Nine spinal cord injured subjects equipped with reflective markers propelled in a wheelchair with an instrumented wheel. Inverse dynamic results were interpreted using joint coordinate systems, 3D joint power and the 3D angle between the joint moment and joint angular velocity vectors at the three upper limb joints. The 3D angle was used to determine if the joints were predominantly driven (angle close to 0 or 180 degrees) or stabilized (angle close to 90°). The wrist and elbow joints are mainly in a stabilization configuration (angle close to 90°) with a combination of extension and ulnar deviation moments and an adduction moment respectively. The shoulder is in a propulsion configuration, but close to stabilization (angle hardly below 60°) with a combination of flexion and internal rotation moments. Stabilization configuration at the joints could partly explain the low mechanical efficiency of manual wheelchair propulsion and could give insight about injury risk at the wrist, elbow and shoulder joints.
AbstractList Inverse dynamic methods have been widely used to estimate joint loads during manual wheelchair propulsion. However, the interpretation of 3D net joint moments and powers is not always straightforward. It has been suggested to use joint coordinate systems (expression of joint moment on anatomical axes) and the 3D angle between joint moment and angular velocity vectors (propulsion, resistance or stabilization joint configuration) for a better understanding of joint dynamics. Nine spinal cord injured subjects equipped with reflective markers propelled in a wheelchair with an instrumented wheel. Inverse dynamic results were interpreted using joint coordinate systems, 3D joint power and the 3D angle between the joint moment and joint angular velocity vectors at the three upper limb joints. The 3D angle was used to determine if the joints were predominantly driven (angle close to 0 or 180 degrees) or stabilized (angle close to 90°). The wrist and elbow joints are mainly in a stabilization configuration (angle close to 90°) with a combination of extension and ulnar deviation moments and an adduction moment respectively. The shoulder is in a propulsion configuration, but close to stabilization (angle hardly below 60°) with a combination of flexion and internal rotation moments. Stabilization configuration at the joints could partly explain the low mechanical efficiency of manual wheelchair propulsion and could give insight about injury risk at the wrist, elbow and shoulder joints.
Inverse dynamic methods have been widely used to estimate joint loads during manual wheelchair propulsion. However, the interpretation of 3D net joint moments and powers is not always straightforward. It has been suggested to use joint coordinate systems (expression of joint moment on anatomical axes) and the 3D angle between joint moment and angular velocity vectors (propulsion, resistance or stabilization joint configuration) for a better understanding of joint dynamics.BACKGROUNDInverse dynamic methods have been widely used to estimate joint loads during manual wheelchair propulsion. However, the interpretation of 3D net joint moments and powers is not always straightforward. It has been suggested to use joint coordinate systems (expression of joint moment on anatomical axes) and the 3D angle between joint moment and angular velocity vectors (propulsion, resistance or stabilization joint configuration) for a better understanding of joint dynamics.Nine spinal cord injured subjects equipped with reflective markers propelled in a wheelchair with an instrumented wheel. Inverse dynamic results were interpreted using joint coordinate systems, 3D joint power and the 3D angle between the joint moment and joint angular velocity vectors at the three upper limb joints. The 3D angle was used to determine if the joints were predominantly driven (angle close to 0 or 180 degrees) or stabilized (angle close to 90 degrees ).METHODSNine spinal cord injured subjects equipped with reflective markers propelled in a wheelchair with an instrumented wheel. Inverse dynamic results were interpreted using joint coordinate systems, 3D joint power and the 3D angle between the joint moment and joint angular velocity vectors at the three upper limb joints. The 3D angle was used to determine if the joints were predominantly driven (angle close to 0 or 180 degrees) or stabilized (angle close to 90 degrees ).The wrist and elbow joints are mainly in a stabilization configuration (angle close to 90 degrees ) with a combination of extension and ulnar deviation moments and an adduction moment respectively. The shoulder is in a propulsion configuration, but close to stabilization (angle hardly below 60 degrees ) with a combination of flexion and internal rotation moments.FINDINGSThe wrist and elbow joints are mainly in a stabilization configuration (angle close to 90 degrees ) with a combination of extension and ulnar deviation moments and an adduction moment respectively. The shoulder is in a propulsion configuration, but close to stabilization (angle hardly below 60 degrees ) with a combination of flexion and internal rotation moments.Stabilization configuration at the joints could partly explain the low mechanical efficiency of manual wheelchair propulsion and could give insight about injury risk at the wrist, elbow and shoulder joints.INTERPRETATIONStabilization configuration at the joints could partly explain the low mechanical efficiency of manual wheelchair propulsion and could give insight about injury risk at the wrist, elbow and shoulder joints.
Inverse dynamic methods have been widely used to estimate joint loads during manual wheelchair propulsion. However, the interpretation of 3D net joint moments and powers is not always straightforward. It has been suggested to use joint coordinate systems (expression of joint moment on anatomical axes) and the 3D angle between joint moment and angular velocity vectors (propulsion, resistance or stabilization joint configuration) for a better understanding of joint dynamics. Nine spinal cord injured subjects equipped with reflective markers propelled in a wheelchair with an instrumented wheel. Inverse dynamic results were interpreted using joint coordinate systems, 3D joint power and the 3D angle between the joint moment and joint angular velocity vectors at the three upper limb joints. The 3D angle was used to determine if the joints were predominantly driven (angle close to 0 or 180 degrees) or stabilized (angle close to 90 degrees ). The wrist and elbow joints are mainly in a stabilization configuration (angle close to 90 degrees ) with a combination of extension and ulnar deviation moments and an adduction moment respectively. The shoulder is in a propulsion configuration, but close to stabilization (angle hardly below 60 degrees ) with a combination of flexion and internal rotation moments. Stabilization configuration at the joints could partly explain the low mechanical efficiency of manual wheelchair propulsion and could give insight about injury risk at the wrist, elbow and shoulder joints.
Abstract Background Inverse dynamic methods have been widely used to estimate joint loads during manual wheelchair propulsion. However, the interpretation of 3D net joint moments and powers is not always straightforward. It has been suggested to use joint coordinate systems (expression of joint moment on anatomical axes) and the 3D angle between joint moment and angular velocity vectors (propulsion, resistance or stabilization joint configuration) for a better understanding of joint dynamics. Methods Nine spinal cord injured subjects equipped with reflective markers propelled in a wheelchair with an instrumented wheel. Inverse dynamic results were interpreted using joint coordinate systems, 3D joint power and the 3D angle between the joint moment and joint angular velocity vectors at the three upper limb joints. The 3D angle was used to determine if the joints were predominantly driven (angle close to 0 or 180 degrees) or stabilized (angle close to 90°). Findings The wrist and elbow joints are mainly in a stabilization configuration (angle close to 90°) with a combination of extension and ulnar deviation moments and an adduction moment respectively. The shoulder is in a propulsion configuration, but close to stabilization (angle hardly below 60°) with a combination of flexion and internal rotation moments. Interpretation Stabilization configuration at the joints could partly explain the low mechanical efficiency of manual wheelchair propulsion and could give insight about injury risk at the wrist, elbow and shoulder joints.
Background: Inverse dynamic methods have been widely used to estimate joint loads during manual wheelchair propulsion. However, the interpretation of 3D net joint moments and powers is not always straightforward. It has been suggested to use joint coordinate systems (expression of joint moment on anatomical axes) and the 3D angle between joint moment and angular velocity vectors (propulsion, resistance or stabilization joint configuration) for a better understanding of joint dynamics. Methods: Nine spinal cord injured subjects equipped with reflective markers propelled in a wheelchair with an instrumented wheel. Inverse dynamic results were interpreted using joint coordinate systems, 3D joint power and the 3D angle between the joint moment and joint angular velocity vectors at the three upper limb joints. The 3D angle was used to determine if the joints were predominantly driven (angle close to 0 or 180 degrees) or stabilized (angle close to 90). Findings: The wrist and elbow joints are mainly in a stabilization configuration (angle close to 90) with a combination of extension and ulnar deviation moments and an adduction moment respectively. The shoulder is in a propulsion configuration, but close to stabilization (angle hardly below 60) with a combination of flexion and internal rotation moments. Interpretation: Stabilization configuration at the joints could partly explain the low mechanical efficiency of manual wheelchair propulsion and could give insight about injury risk at the wrist, elbow and shoulder joints.
Author Dumas, Raphaël
Vaslin, Philippe
Lepoutre, François-Xavier
Desroches, Guillaume
Pradon, Didier
Chèze, Laurence
Author_xml – sequence: 1
  givenname: Guillaume
  surname: Desroches
  fullname: Desroches, Guillaume
  email: guillaume.desroches@univ-lyonl.fr
  organization: Université de Lyon, Université Lyon 1, Villeurbanne F-69622, France
– sequence: 2
  givenname: Raphaël
  surname: Dumas
  fullname: Dumas, Raphaël
  organization: Université de Lyon, Université Lyon 1, Villeurbanne F-69622, France
– sequence: 3
  givenname: Didier
  surname: Pradon
  fullname: Pradon, Didier
  organization: Laboratoire d’Analyse du Mouvement, CIC-IT 805, AP-HP, CHU Raymond Poincaré, Garches, F-92380, France
– sequence: 4
  givenname: Philippe
  surname: Vaslin
  fullname: Vaslin, Philippe
  organization: Laboratoire d’Informatique, de Modélisation et d’Optimisation des Systèmes (LIMOS), UMR 6158 CNRS-Université Blaise Pascal – Clermont-Ferrand II, F-63173 Aubière Cédex, France
– sequence: 5
  givenname: François-Xavier
  surname: Lepoutre
  fullname: Lepoutre, François-Xavier
  organization: Université Lille Nord de France, F-59000 Lille, France
– sequence: 6
  givenname: Laurence
  surname: Chèze
  fullname: Chèze, Laurence
  organization: Université de Lyon, Université Lyon 1, Villeurbanne F-69622, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20106573$$D View this record in MEDLINE/PubMed
https://hal.science/hal-00989650$$DView record in HAL
BookMark eNqNktFu0zAUhi00xLrBK6Bwhbho8bHjJL6AqarYhlSJC9i15Tgn1MFxip0M9e1x1A2hSYheWbK-8_no_31BzvzgkZA3QFdAoXjfrYyzvrZDj2a3YpTKFbAVBXhGFlCVcgmshDOyoKyolpRyfk4uYuwopTkT5QtyzijQQpR8QT7c7fcYMmf7OusG68esOXjdWxOzZgrWf8967Sftsl87RGd22oZsH4b95KId_EvyvNUu4quH85LcXX_6trldbr_cfN6st0sjhBiXGmVTaVPUDHNRc8k0cg0MCyPahkkhBYicM2zBcKhaYLVsmloWdVUDzYuaX5J3R-9OO7UPttfhoAZt1e16q-a7FEElC0HvIbFvj2xa8-eEcVS9jQad0x6HKaoKSpEXtMz_S5ac57KqBE_k6wdyqnts_qzwmGMCro6ACUOMAVtl7KjHFNEYtHUKqJqbU536qzk1N6eAqdRcMsgnhsdHTpndHGcxdXBvMahoLHqDjQ1oRtUM9iTLxyeWmbRGux94wNgNU_CpZAUqpgH1df5d8-eiklKWckqC9b8FJy7xGzkd5Ho
CitedBy_id crossref_primary_10_1016_j_eswa_2012_10_065
crossref_primary_10_1038_sc_2010_149
crossref_primary_10_1016_j_clinbiomech_2023_106029
crossref_primary_10_1080_10803548_2017_1294369
crossref_primary_10_1016_j_medengphy_2020_11_008
crossref_primary_10_3389_fresc_2022_827534
crossref_primary_10_1016_j_clinbiomech_2019_03_003
crossref_primary_10_1177_0309364612448807
crossref_primary_10_1371_journal_pone_0104785
crossref_primary_10_1080_10255842_2015_1069627
crossref_primary_10_1016_j_jelekin_2013_06_009
crossref_primary_10_1007_s11044_014_9421_z
crossref_primary_10_1016_j_jbiomech_2011_01_007
crossref_primary_10_1179_2045772313Y_0000000110
crossref_primary_10_1016_j_jbiomech_2012_11_016
crossref_primary_10_1016_j_clinbiomech_2021_105545
crossref_primary_10_3109_17483107_2015_1099747
crossref_primary_10_1186_1743_0003_10_9
crossref_primary_10_1016_j_apmr_2022_04_014
crossref_primary_10_1016_j_irbm_2011_01_027
crossref_primary_10_1371_journal_pone_0269657
crossref_primary_10_1016_j_jbiomech_2016_04_035
crossref_primary_10_1016_j_jbiomech_2018_01_043
crossref_primary_10_1080_10255842_2012_688107
crossref_primary_10_3390_s23218659
crossref_primary_10_1177_2055668320907819
crossref_primary_10_3390_medicina59091610
crossref_primary_10_1115_1_4002537
crossref_primary_10_1186_s12984_023_01265_x
crossref_primary_10_1080_10255842_2018_1527321
Cites_doi 10.1016/j.jbiomech.2004.05.042
10.1016/S0021-9290(01)00080-X
10.1016/0021-9290(81)90048-8
10.1016/S0003-9993(97)90227-6
10.1197/j.jht.2006.02.004
10.1016/j.apmr.2007.10.040
10.1016/0966-6362(95)01057-2
10.1016/j.clinbiomech.2005.09.007
10.1016/j.jbiomech.2008.07.032
10.1097/00002060-199909000-00006
10.1080/10255840410001727805
10.1016/j.clinbiomech.2006.04.010
10.1016/j.jbiomech.2006.02.013
10.1016/S1350-4533(01)00083-2
10.1080/10790268.2005.11753816
10.1080/10790268.2005.11753815
10.1016/j.apmr.2007.09.052
10.1682/JRRD.2003.01.0027
10.1016/S0268-0033(02)00008-6
10.1097/00003086-199809000-00016
10.1016/j.jbiomech.2006.10.016
10.1016/S0021-9290(00)00146-9
10.1682/JRRD.2005.12.0178
10.1016/j.apmr.2008.07.013
10.1016/j.jbiomech.2009.07.026
10.2106/00004623-198769050-00006
10.1016/j.gaitpost.2007.12.003
10.1016/S0003-9993(96)90166-5
10.1016/j.ejrad.2008.02.051
10.1016/j.gaitpost.2006.05.018
10.1016/0021-9290(82)90047-1
10.1016/j.apmr.2003.08.090
ContentType Journal Article
Copyright 2009 Elsevier Ltd
Elsevier Ltd
Copyright 2009 Elsevier Ltd. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2009 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright 2009 Elsevier Ltd. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
DOI 10.1016/j.clinbiomech.2009.12.011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1879-1271
EndPage 306
ExternalDocumentID oai:HAL:hal-00989650v1
20106573
10_1016_j_clinbiomech_2009_12_011
S0268003309002988
1_s2_0_S0268003309002988
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6PF
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
H~9
IHE
J1W
KOM
M29
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OVD
OZT
P-8
P-9
P2P
PC.
Q38
QZG
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
TEORI
UAP
UPT
WH7
WUQ
Z5R
~G-
~HD
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
YCJ
AAIAV
ABLVK
ABYKQ
AJBFU
LCYCR
ZA5
AAYXX
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
ID FETCH-LOGICAL-c555t-ae9d8ac6b2e45b392ae3a12e6c5fd2959515432ef1c318f12b9ddb96b8b1046b3
IEDL.DBID AIKHN
ISSN 0268-0033
1879-1271
IngestDate Tue Oct 14 20:40:39 EDT 2025
Thu Oct 02 06:43:48 EDT 2025
Sat Sep 27 17:03:36 EDT 2025
Mon Jul 21 05:38:05 EDT 2025
Wed Oct 01 02:07:04 EDT 2025
Thu Apr 24 22:54:18 EDT 2025
Fri Feb 23 02:24:01 EST 2024
Sun Feb 23 10:18:50 EST 2025
Tue Oct 14 19:30:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Joint coordinate system
Spinal cord injured
Wheelchair propulsion
Upper limb joints
Joint power
Joint moment
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright 2009 Elsevier Ltd. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c555t-ae9d8ac6b2e45b392ae3a12e6c5fd2959515432ef1c318f12b9ddb96b8b1046b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ORCID 0000-0002-5695-196X
PMID 20106573
PQID 733498853
PQPubID 23479
PageCount 8
ParticipantIDs hal_primary_oai_HAL_hal_00989650v1
proquest_miscellaneous_817546074
proquest_miscellaneous_733498853
pubmed_primary_20106573
crossref_citationtrail_10_1016_j_clinbiomech_2009_12_011
crossref_primary_10_1016_j_clinbiomech_2009_12_011
elsevier_sciencedirect_doi_10_1016_j_clinbiomech_2009_12_011
elsevier_clinicalkeyesjournals_1_s2_0_S0268003309002988
elsevier_clinicalkey_doi_10_1016_j_clinbiomech_2009_12_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-05-01
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-05-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Clinical biomechanics (Bristol)
PublicationTitleAlternate Clin Biomech (Bristol, Avon)
PublicationYear 2010
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References van der Woude, Veeger, Dallmeijer, Janssen, Rozendaal (bib30) 2001; 23
Samson, Desroches, Cheze, Dumas (bib26) 2009; 42
Dubowsky, Rasmussen, Sisto, Langrana (bib10) 2008; 41
Desroches, Aissaoui, Bourbonnais (bib8) 2006; 43
Rodgers, McQuade, Rasch, Keyser, Finley (bib25) 2003; 40
Veeger, Rozendaal, van der Helm (bib32) 2002; 17
Mulroy (bib24) 2005; 28
Wu (bib33) 2005; 38
Desroches, Aissaoui, Bourbonnais (bib9) 2008; 89
Zhang, Wang (bib34) 2001; 34
Gutierrez, Mulroy, Newsam, Gronley, Perry (bib14) 2005; 28
Lugo, Kung, Ma (bib20) 2008; 68
Mulroy, Farrokhi, Newsam, Perry (bib23) 2004; 85
An, Hui, Morrey, Linscheid, Chao (bib1) 1981; 14
Mercer, Boninger, Koontz, Ren, Dyson-Hudson, Cooper (bib21) 2006; 21
Bayley, Cochran, Sledge (bib2) 1987; 69
Lockard (bib19) 2006; 19
Cheze (bib5) 2000; 33
Senk, Cheze (bib28) 2006; 21
Collinger (bib6) 2008; 89
Mulroy, Gronley, Newsam, Perry (bib22) 1996; 77
Dumas, Cheze (bib11) 2008; 28
Kulig (bib17) 1998
Boninger, Cooper, Robertson, Rudy (bib4) 1997; 78
Kwarciak, Sisto, Yarossi, Price, Komaroff, Boninger (bib18) 2009; 90
Dumas, Cheze, Verriest (bib13) 2007; 40
Koontz, Cooper, Boninger, Souza, Fay (bib16) 2002; 39
Hof (bib15) 1996; 4
Cooper, Boninger, Shimada, Lawrence (bib7) 1999; 78
Dumas, Aissaoui, de Guise (bib12) 2004; 7
Sie, Waters, Adkins, Gellman (bib29) 1992; 73
Bober, Kornecki, Lehr, Zawadzki (bib3) 1982; 15
Schache, Baker (bib27) 2007; 25
Veeger, van der Helm (bib31) 2007; 40
Kulig (10.1016/j.clinbiomech.2009.12.011_bib17) 1998
Lockard (10.1016/j.clinbiomech.2009.12.011_bib19) 2006; 19
Dumas (10.1016/j.clinbiomech.2009.12.011_bib13) 2007; 40
Zhang (10.1016/j.clinbiomech.2009.12.011_bib34) 2001; 34
Samson (10.1016/j.clinbiomech.2009.12.011_bib26) 2009; 42
Mulroy (10.1016/j.clinbiomech.2009.12.011_bib22) 1996; 77
Dubowsky (10.1016/j.clinbiomech.2009.12.011_bib10) 2008; 41
van der Woude (10.1016/j.clinbiomech.2009.12.011_bib30) 2001; 23
Gutierrez (10.1016/j.clinbiomech.2009.12.011_bib14) 2005; 28
Mulroy (10.1016/j.clinbiomech.2009.12.011_bib24) 2005; 28
Rodgers (10.1016/j.clinbiomech.2009.12.011_bib25) 2003; 40
Lugo (10.1016/j.clinbiomech.2009.12.011_bib20) 2008; 68
Mercer (10.1016/j.clinbiomech.2009.12.011_bib21) 2006; 21
Collinger (10.1016/j.clinbiomech.2009.12.011_bib6) 2008; 89
Bayley (10.1016/j.clinbiomech.2009.12.011_bib2) 1987; 69
Senk (10.1016/j.clinbiomech.2009.12.011_bib28) 2006; 21
Boninger (10.1016/j.clinbiomech.2009.12.011_bib4) 1997; 78
Cheze (10.1016/j.clinbiomech.2009.12.011_bib5) 2000; 33
Wu (10.1016/j.clinbiomech.2009.12.011_bib33) 2005; 38
Desroches (10.1016/j.clinbiomech.2009.12.011_bib8) 2006; 43
Desroches (10.1016/j.clinbiomech.2009.12.011_bib9) 2008; 89
Veeger (10.1016/j.clinbiomech.2009.12.011_bib31) 2007; 40
Veeger (10.1016/j.clinbiomech.2009.12.011_bib32) 2002; 17
Schache (10.1016/j.clinbiomech.2009.12.011_bib27) 2007; 25
Mulroy (10.1016/j.clinbiomech.2009.12.011_bib23) 2004; 85
Cooper (10.1016/j.clinbiomech.2009.12.011_bib7) 1999; 78
Hof (10.1016/j.clinbiomech.2009.12.011_bib15) 1996; 4
Koontz (10.1016/j.clinbiomech.2009.12.011_bib16) 2002; 39
Bober (10.1016/j.clinbiomech.2009.12.011_bib3) 1982; 15
An (10.1016/j.clinbiomech.2009.12.011_bib1) 1981; 14
Sie (10.1016/j.clinbiomech.2009.12.011_bib29) 1992; 73
Dumas (10.1016/j.clinbiomech.2009.12.011_bib12) 2004; 7
Kwarciak (10.1016/j.clinbiomech.2009.12.011_bib18) 2009; 90
Dumas (10.1016/j.clinbiomech.2009.12.011_bib11) 2008; 28
References_xml – volume: 73
  start-page: 44
  year: 1992
  end-page: 48
  ident: bib29
  article-title: Upper extremity pain in the postrehabilitation spinal cord injured patient
  publication-title: Arch. Phys. Med. Rehabil.
– volume: 69
  start-page: 676
  year: 1987
  end-page: 678
  ident: bib2
  article-title: The weight-bearing shoulder. The impingement syndrome in paraplegics
  publication-title: J. Bone Joint Surg. Am.
– volume: 14
  start-page: 659
  year: 1981
  end-page: 661
  ident: bib1
  article-title: Muscles across the elbow joint: a biomechanical analysis
  publication-title: J. Biomech.
– volume: 39
  start-page: 635
  year: 2002
  end-page: 650
  ident: bib16
  article-title: Shoulder kinematics and kinetics during two speeds of wheelchair propulsion
  publication-title: J. Rehabil. Res. Dev.
– volume: 21
  start-page: S3
  year: 2006
  end-page: S8
  ident: bib28
  article-title: Rotation sequence as an important factor in shoulder kinematics
  publication-title: Clin. Biomech. (Bristol, Avon)
– volume: 15
  start-page: 825
  year: 1982
  end-page: 827
  ident: bib3
  article-title: Biomechanical analysis of human arm stabilization during force production
  publication-title: J. Biomech.
– volume: 42
  start-page: 2447
  year: 2009
  end-page: 2453
  ident: bib26
  article-title: 3D joint dynamics analysis of healthy children’s gait
  publication-title: J. Biomech.
– volume: 78
  start-page: 364
  year: 1997
  end-page: 372
  ident: bib4
  article-title: Wrist biomechanics during two speeds of wheelchair propulsion: an analysis using a local coordinate system
  publication-title: Arch. Phys. Med. Rehabil.
– volume: 41
  start-page: 2981
  year: 2008
  end-page: 2988
  ident: bib10
  article-title: Validation of a musculoskeletal model of wheelchair propulsion and its application to minimizing shoulder joint forces
  publication-title: J. Biomech.
– volume: 4
  start-page: 222
  year: 1996
  end-page: 223
  ident: bib15
  article-title: Scaling gait data to body size
  publication-title: Gait Posture
– volume: 17
  start-page: 211
  year: 2002
  end-page: 218
  ident: bib32
  article-title: Load on the shoulder in low intensity wheelchair propulsion
  publication-title: Clin. Biomech. (Bristol, Avon)
– volume: 23
  start-page: 713
  year: 2001
  end-page: 733
  ident: bib30
  article-title: Biomechanics and physiology in active manual wheelchair propulsion
  publication-title: Med. Eng. Phys.
– volume: 34
  start-page: 1107
  year: 2001
  end-page: 1115
  ident: bib34
  article-title: Dynamic and static control of the human knee joint in abduction–adduction
  publication-title: J. Biomech.
– volume: 89
  start-page: 667
  year: 2008
  end-page: 676
  ident: bib6
  article-title: Shoulder biomechanics during the push phase of wheelchair propulsion: a multisite study of persons with paraplegia
  publication-title: Arch. Phys. Med. Rehabil.
– volume: 33
  start-page: 1695
  year: 2000
  end-page: 1699
  ident: bib5
  article-title: Comparison of different calculations of three-dimensional joint kinematics from video-based system data
  publication-title: J. Biomech.
– volume: 19
  start-page: 72
  year: 2006
  end-page: 81
  ident: bib19
  article-title: Clinical biomechanics of the elbow
  publication-title: J. Hand Ther.
– volume: 77
  start-page: 187
  year: 1996
  end-page: 193
  ident: bib22
  article-title: Electromyographic activity of shoulder muscles during wheelchair propulsion by paraplegic persons
  publication-title: Arch. Phys. Med. Rehabil.
– volume: 25
  start-page: 440
  year: 2007
  end-page: 452
  ident: bib27
  article-title: On the expression of joint moments during gait
  publication-title: Gait Posture
– start-page: 132
  year: 1998
  end-page: 143
  ident: bib17
  article-title: Shoulder joint kinetics during the push phase of wheelchair propulsion
  publication-title: Clin. Orthop.
– volume: 68
  start-page: 16
  year: 2008
  end-page: 24
  ident: bib20
  article-title: Shoulder biomechanics
  publication-title: Eur. J. Rad.
– volume: 21
  start-page: 781
  year: 2006
  end-page: 789
  ident: bib21
  article-title: Shoulder joint kinetics and pathology in manual wheelchair users
  publication-title: Clin. Biomech. (Bristol, Avon).
– volume: 78
  start-page: 435
  year: 1999
  end-page: 446
  ident: bib7
  article-title: Glenohumeral joint kinematics and kinetics for three coordinate system representations during wheelchair propulsion
  publication-title: Am. J. Phys. Med. Rehabil.
– volume: 40
  start-page: 2119
  year: 2007
  end-page: 2129
  ident: bib31
  article-title: Shoulder function: the perfect compromise between mobility and stability
  publication-title: J. Biomech.
– volume: 90
  start-page: 20
  year: 2009
  end-page: 26
  ident: bib18
  article-title: Redefining the manual wheelchair stroke cycle: identification and impact of nonpropulsive pushrim contact
  publication-title: Arch. Phys. Med. Rehabil.
– volume: 38
  start-page: 981
  year: 2005
  end-page: 992
  ident: bib33
  article-title: ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion–Part II: shoulder, elbow, wrist and hand
  publication-title: J. Biomech.
– volume: 28
  start-page: 222
  year: 2005
  end-page: 229
  ident: bib14
  article-title: Effect of fore-aft seat position on shoulder demands during wheelchair propulsion: part 2. An electromyographic analysis
  publication-title: J. Spinal Cord Med.
– volume: 7
  start-page: 159
  year: 2004
  end-page: 166
  ident: bib12
  article-title: A 3D generic inverse dynamic method using wrench notation and quaternion algebra
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 85
  start-page: 925
  year: 2004
  end-page: 934
  ident: bib23
  article-title: Effects of spinal cord injury level on the activity of shoulder muscles during wheelchair propulsion: an electromyographic study
  publication-title: Arch. Phys. Med. Rehabil.
– volume: 40
  start-page: 543
  year: 2007
  end-page: 553
  ident: bib13
  article-title: Adjustments to McConville et al. and Young et al. body segment inertial parameters
  publication-title: J. Biomech.
– volume: 28
  start-page: 214
  year: 2005
  end-page: 221
  ident: bib24
  article-title: Effect of fore-aft seat position on shoulder demands during wheelchair propulsion: part 1. A kinetic analysis
  publication-title: J. Spinal Cord Med.
– volume: 40
  start-page: 27
  year: 2003
  end-page: 37
  ident: bib25
  article-title: Upper-limb fatigue-related joint power shifts in experienced wheelchair users and nonwheelchair users
  publication-title: J. Rehabil. Res. Dev.
– volume: 28
  start-page: 243
  year: 2008
  end-page: 250
  ident: bib11
  article-title: Hip and knee joints are more stabilized than driven during the stance phase of gait: an analysis of the 3D angle between joint moment and joint angular velocity
  publication-title: Gait Posture
– volume: 89
  start-page: 1155
  year: 2008
  end-page: 1161
  ident: bib9
  article-title: Relationship between resultant force at the pushrim and the net shoulder joint moments during manual wheelchair propulsion in elderly persons
  publication-title: Arch. Phys. Med. Rehabil.
– volume: 43
  start-page: 871
  year: 2006
  end-page: 882
  ident: bib8
  article-title: Effect of system tilt and seat-to-backrest angles on load sustained by shoulder during wheelchair propulsion
  publication-title: J. Rehabil. Res. Dev.
– volume: 38
  start-page: 981
  year: 2005
  ident: 10.1016/j.clinbiomech.2009.12.011_bib33
  article-title: ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion–Part II: shoulder, elbow, wrist and hand
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.05.042
– volume: 34
  start-page: 1107
  year: 2001
  ident: 10.1016/j.clinbiomech.2009.12.011_bib34
  article-title: Dynamic and static control of the human knee joint in abduction–adduction
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00080-X
– volume: 14
  start-page: 659
  year: 1981
  ident: 10.1016/j.clinbiomech.2009.12.011_bib1
  article-title: Muscles across the elbow joint: a biomechanical analysis
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(81)90048-8
– volume: 78
  start-page: 364
  year: 1997
  ident: 10.1016/j.clinbiomech.2009.12.011_bib4
  article-title: Wrist biomechanics during two speeds of wheelchair propulsion: an analysis using a local coordinate system
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/S0003-9993(97)90227-6
– volume: 19
  start-page: 72
  year: 2006
  ident: 10.1016/j.clinbiomech.2009.12.011_bib19
  article-title: Clinical biomechanics of the elbow
  publication-title: J. Hand Ther.
  doi: 10.1197/j.jht.2006.02.004
– volume: 89
  start-page: 1155
  year: 2008
  ident: 10.1016/j.clinbiomech.2009.12.011_bib9
  article-title: Relationship between resultant force at the pushrim and the net shoulder joint moments during manual wheelchair propulsion in elderly persons
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2007.10.040
– volume: 4
  start-page: 222
  year: 1996
  ident: 10.1016/j.clinbiomech.2009.12.011_bib15
  article-title: Scaling gait data to body size
  publication-title: Gait Posture
  doi: 10.1016/0966-6362(95)01057-2
– volume: 21
  start-page: S3
  issue: Suppl. 1
  year: 2006
  ident: 10.1016/j.clinbiomech.2009.12.011_bib28
  article-title: Rotation sequence as an important factor in shoulder kinematics
  publication-title: Clin. Biomech. (Bristol, Avon)
  doi: 10.1016/j.clinbiomech.2005.09.007
– volume: 41
  start-page: 2981
  year: 2008
  ident: 10.1016/j.clinbiomech.2009.12.011_bib10
  article-title: Validation of a musculoskeletal model of wheelchair propulsion and its application to minimizing shoulder joint forces
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.07.032
– volume: 78
  start-page: 435
  year: 1999
  ident: 10.1016/j.clinbiomech.2009.12.011_bib7
  article-title: Glenohumeral joint kinematics and kinetics for three coordinate system representations during wheelchair propulsion
  publication-title: Am. J. Phys. Med. Rehabil.
  doi: 10.1097/00002060-199909000-00006
– volume: 7
  start-page: 159
  year: 2004
  ident: 10.1016/j.clinbiomech.2009.12.011_bib12
  article-title: A 3D generic inverse dynamic method using wrench notation and quaternion algebra
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255840410001727805
– volume: 21
  start-page: 781
  year: 2006
  ident: 10.1016/j.clinbiomech.2009.12.011_bib21
  article-title: Shoulder joint kinetics and pathology in manual wheelchair users
  publication-title: Clin. Biomech. (Bristol, Avon).
  doi: 10.1016/j.clinbiomech.2006.04.010
– volume: 40
  start-page: 543
  year: 2007
  ident: 10.1016/j.clinbiomech.2009.12.011_bib13
  article-title: Adjustments to McConville et al. and Young et al. body segment inertial parameters
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.02.013
– volume: 23
  start-page: 713
  year: 2001
  ident: 10.1016/j.clinbiomech.2009.12.011_bib30
  article-title: Biomechanics and physiology in active manual wheelchair propulsion
  publication-title: Med. Eng. Phys.
  doi: 10.1016/S1350-4533(01)00083-2
– volume: 28
  start-page: 222
  year: 2005
  ident: 10.1016/j.clinbiomech.2009.12.011_bib14
  article-title: Effect of fore-aft seat position on shoulder demands during wheelchair propulsion: part 2. An electromyographic analysis
  publication-title: J. Spinal Cord Med.
  doi: 10.1080/10790268.2005.11753816
– volume: 28
  start-page: 214
  year: 2005
  ident: 10.1016/j.clinbiomech.2009.12.011_bib24
  article-title: Effect of fore-aft seat position on shoulder demands during wheelchair propulsion: part 1. A kinetic analysis
  publication-title: J. Spinal Cord Med.
  doi: 10.1080/10790268.2005.11753815
– volume: 89
  start-page: 667
  year: 2008
  ident: 10.1016/j.clinbiomech.2009.12.011_bib6
  article-title: Shoulder biomechanics during the push phase of wheelchair propulsion: a multisite study of persons with paraplegia
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2007.09.052
– volume: 73
  start-page: 44
  year: 1992
  ident: 10.1016/j.clinbiomech.2009.12.011_bib29
  article-title: Upper extremity pain in the postrehabilitation spinal cord injured patient
  publication-title: Arch. Phys. Med. Rehabil.
– volume: 40
  start-page: 27
  year: 2003
  ident: 10.1016/j.clinbiomech.2009.12.011_bib25
  article-title: Upper-limb fatigue-related joint power shifts in experienced wheelchair users and nonwheelchair users
  publication-title: J. Rehabil. Res. Dev.
  doi: 10.1682/JRRD.2003.01.0027
– volume: 39
  start-page: 635
  year: 2002
  ident: 10.1016/j.clinbiomech.2009.12.011_bib16
  article-title: Shoulder kinematics and kinetics during two speeds of wheelchair propulsion
  publication-title: J. Rehabil. Res. Dev.
– volume: 17
  start-page: 211
  year: 2002
  ident: 10.1016/j.clinbiomech.2009.12.011_bib32
  article-title: Load on the shoulder in low intensity wheelchair propulsion
  publication-title: Clin. Biomech. (Bristol, Avon)
  doi: 10.1016/S0268-0033(02)00008-6
– start-page: 132
  year: 1998
  ident: 10.1016/j.clinbiomech.2009.12.011_bib17
  article-title: Shoulder joint kinetics during the push phase of wheelchair propulsion
  publication-title: Clin. Orthop.
  doi: 10.1097/00003086-199809000-00016
– volume: 40
  start-page: 2119
  year: 2007
  ident: 10.1016/j.clinbiomech.2009.12.011_bib31
  article-title: Shoulder function: the perfect compromise between mobility and stability
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.10.016
– volume: 33
  start-page: 1695
  year: 2000
  ident: 10.1016/j.clinbiomech.2009.12.011_bib5
  article-title: Comparison of different calculations of three-dimensional joint kinematics from video-based system data
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(00)00146-9
– volume: 43
  start-page: 871
  year: 2006
  ident: 10.1016/j.clinbiomech.2009.12.011_bib8
  article-title: Effect of system tilt and seat-to-backrest angles on load sustained by shoulder during wheelchair propulsion
  publication-title: J. Rehabil. Res. Dev.
  doi: 10.1682/JRRD.2005.12.0178
– volume: 90
  start-page: 20
  year: 2009
  ident: 10.1016/j.clinbiomech.2009.12.011_bib18
  article-title: Redefining the manual wheelchair stroke cycle: identification and impact of nonpropulsive pushrim contact
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2008.07.013
– volume: 42
  start-page: 2447
  year: 2009
  ident: 10.1016/j.clinbiomech.2009.12.011_bib26
  article-title: 3D joint dynamics analysis of healthy children’s gait
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.07.026
– volume: 69
  start-page: 676
  year: 1987
  ident: 10.1016/j.clinbiomech.2009.12.011_bib2
  article-title: The weight-bearing shoulder. The impingement syndrome in paraplegics
  publication-title: J. Bone Joint Surg. Am.
  doi: 10.2106/00004623-198769050-00006
– volume: 28
  start-page: 243
  year: 2008
  ident: 10.1016/j.clinbiomech.2009.12.011_bib11
  article-title: Hip and knee joints are more stabilized than driven during the stance phase of gait: an analysis of the 3D angle between joint moment and joint angular velocity
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2007.12.003
– volume: 77
  start-page: 187
  year: 1996
  ident: 10.1016/j.clinbiomech.2009.12.011_bib22
  article-title: Electromyographic activity of shoulder muscles during wheelchair propulsion by paraplegic persons
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/S0003-9993(96)90166-5
– volume: 68
  start-page: 16
  year: 2008
  ident: 10.1016/j.clinbiomech.2009.12.011_bib20
  article-title: Shoulder biomechanics
  publication-title: Eur. J. Rad.
  doi: 10.1016/j.ejrad.2008.02.051
– volume: 25
  start-page: 440
  year: 2007
  ident: 10.1016/j.clinbiomech.2009.12.011_bib27
  article-title: On the expression of joint moments during gait
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2006.05.018
– volume: 15
  start-page: 825
  year: 1982
  ident: 10.1016/j.clinbiomech.2009.12.011_bib3
  article-title: Biomechanical analysis of human arm stabilization during force production
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(82)90047-1
– volume: 85
  start-page: 925
  year: 2004
  ident: 10.1016/j.clinbiomech.2009.12.011_bib23
  article-title: Effects of spinal cord injury level on the activity of shoulder muscles during wheelchair propulsion: an electromyographic study
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2003.08.090
SSID ssj0004257
Score 2.1169407
Snippet Inverse dynamic methods have been widely used to estimate joint loads during manual wheelchair propulsion. However, the interpretation of 3D net joint moments...
Abstract Background Inverse dynamic methods have been widely used to estimate joint loads during manual wheelchair propulsion. However, the interpretation of...
Background: Inverse dynamic methods have been widely used to estimate joint loads during manual wheelchair propulsion. However, the interpretation of 3D net...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 299
SubjectTerms Elbow Joint - physiopathology
Engineering Sciences
Female
Humans
Joint coordinate system
Joint moment
Joint power
Male
Mechanics
Middle Aged
Movement
Physical Exertion
Physical Medicine and Rehabilitation
Range of Motion, Articular
Shoulder Joint - physiopathology
Spinal cord injured
Spinal Cord Injuries - physiopathology
Spinal Cord Injuries - rehabilitation
Torque
Upper limb joints
Wheelchair propulsion
Wheelchairs
Wrist Joint - physiopathology
Title Upper limb joint dynamics during manual wheelchair propulsion
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0268003309002988
https://www.clinicalkey.es/playcontent/1-s2.0-S0268003309002988
https://dx.doi.org/10.1016/j.clinbiomech.2009.12.011
https://www.ncbi.nlm.nih.gov/pubmed/20106573
https://www.proquest.com/docview/733498853
https://www.proquest.com/docview/817546074
https://hal.science/hal-00989650
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-1271
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004257
  issn: 0268-0033
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-1271
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004257
  issn: 0268-0033
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-1271
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004257
  issn: 0268-0033
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1271
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004257
  issn: 0268-0033
  databaseCode: AKRWK
  dateStart: 19860201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-tnTTxgmADVj4mgxBvoXUSJw6Ch2piKh_bC1TamxU7FzVTm0ZNt4kX_nbOidOBoFIlXi1fbF_O57Pv7ncAr1Fb1K849sKY7qphhKQHpUk832g-ykZ5LqXNHT6_iCbT8POluNyD0y4XxoZVOt3f6vRGW7uWoePmsCqK4Te6PUhbimyUNDjisgf7dP5I2Yf98acvk4u79EgH-En9PUtwAC_vwrxsAmKT6d66JpLmcZDzbcdUb2bjJbcZo82hdPYA7jtrko3bCT-EPSwP4Whc0k168YO9YU18Z_NwfggH586NfgQfplWFKzYvFppdLYtyzbK2MH3N2rRFtkgtVCm7nSHOzSwtVqxqSn3Zt7VHMD37-P104rk6Cp4RQqy9FJNMpibSPoZCk0GUYpByHyMj8sxPBBlZIgx8zLmhHZ5zXydZppNIS209wDp4DP1yWeIxMJ1KHZqco0kxzHVAX40xI4UaZBzp9jEA2bFNGQcybmtdzFUXTXalfuO4LYKZKO4r4vgA_A1p1SJt7EL0rvs3qkslJeWn6DzYhTj-FzHWbhvXiquaeqq_RG0A7zeUf0jrrgO_IjHarNIifE_GX5Vts_iuCVnNN9SJdVKmaMtbP05a4vK6VnEQhDQJEWzvIskqDCMyDwfwpBXQzWg2_CEScfD0_9bwDO51gRQj_hz669U1viD7bK1PoPf2Jz9xu_AXwhg6YA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw8LQNafCCYINRPg1CvIXWiZ04CB6qialAuxdWaW9W7FzUTG0aNR2IF34753x0IKhUiVfrLrYv5_Od7wvgNRpX9SuKPBGRrSpCJDmobOz51vBBOsgypVzu8OQ8HE3F50t5uQenXS6MC6tsZX8j02tp3Y70W2r2yzzvfyXrQblWZIO4riOu9uGWkH7kLLC3P2_iPERb7pOgPQd-CC9vgrxc-mGd5944JuL6aZDzbZfU_sxFS25TResr6ewe3G11STZslnsf9rA4guNhQXb04gd7w-rozvrZ_AgOJ60T_Rg-TMsSV2yeLwy7WubFmqVNW_qKNUmLbJG4QqXs-wxxbmdJvmJl3ejLvaw9gOnZx4vTkdd2UfCslHLtJRinKrGh8VFIQ-pQgkHCfQytzFI_lqRiSRH4mHFL5zvjvonT1MShUcb5f03wEA6KZYGPgJlEGWEzjjZBkZmAvhphSuI0SDmS7dED1ZFN27bEuOt0MdddLNmV_o3irgVmrLmvieI98DeoZVNnYxekd92_0V0iKYk-TbfBLsjRv5Cxag9xpbmuCFL_xWg9eL_B_INXd534FbHRZpeuvvdoONZuzFV3jUln_kZArOMyTQfeeXGSApfXlY6CQNAiZLAdRJFOKEJSDntw0jDoZjYX_BDKKHj8f3t4AbdHF5OxHn86__IE7nQhFQP-FA7Wq2t8Rpra2jyvT-Ivavs7KA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Upper+limb+joint+dynamics+during+manual+wheelchair+propulsion&rft.jtitle=Clinical+biomechanics+%28Bristol%29&rft.au=Desroches%2C+Guillaume&rft.au=Dumas%2C+Rapha%C3%ABl&rft.au=Pradon%2C+Didier&rft.au=Vaslin%2C+Philippe&rft.date=2010-05-01&rft.pub=Elsevier+Ltd&rft.issn=0268-0033&rft.volume=25&rft.issue=4&rft.spage=299&rft.epage=306&rft_id=info:doi/10.1016%2Fj.clinbiomech.2009.12.011&rft.externalDocID=S0268003309002988
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F02680033%2FS0268003310X00043%2Fcov150h.gif