Colloidal liquid crystals in rectangular confinement: theory and experiment

We theoretically and experimentally study nematic liquid crystal equilibria within shallow rectangular wells. We model the wells within a two-dimensional Oseen-Frank framework, with strong tangent anchoring, and obtain explicit analytical expressions for the director fields and energies of the '...

Full description

Saved in:
Bibliographic Details
Published inSoft matter Vol. 1; no. 39; pp. 7865 - 7873
Main Authors Lewis, Alexander H, Garlea, Ioana, Alvarado, José, Dammone, Oliver J, Howell, Peter D, Majumdar, Apala, Mulder, Bela M, Lettinga, M. P, Koenderink, Gijsje H, Aarts, Dirk G. A. L
Format Journal Article
LanguageEnglish
Published England 21.10.2014
Subjects
Online AccessGet full text
ISSN1744-683X
1744-6848
1744-6848
DOI10.1039/c4sm01123f

Cover

Abstract We theoretically and experimentally study nematic liquid crystal equilibria within shallow rectangular wells. We model the wells within a two-dimensional Oseen-Frank framework, with strong tangent anchoring, and obtain explicit analytical expressions for the director fields and energies of the 'diagonal' and 'rotated' solutions reported in the literature. These expressions separate the leading-order defect energies from the bulk distortion energy for both families of solutions. The continuum Oseen-Frank study is complemented by a microscopic mean-field approach. We numerically minimize the mean-field functional, including the effects of weak anchoring, variable order and random initial conditions. In particular, these simulations suggest the existence of higher-energy metastable states with internal defects. We compare our theoretical results to experimental director profiles, obtained using two types of filamentous virus particles, wild-type fd -virus and a modified stiffer variant (Y21M), which display nematic ordering in rectangular chambers, as found by confocal scanning laser microscopy. We combine our analytical energy expressions with experimentally recorded frequencies of the different equilibrium states to obtain explicit estimates for the extrapolation length, defined to be the ratio of the nematic elastic constant to the anchoring coefficient, of the fd -virus. We theoretically and experimentally study equilibrium states of nematic liquid crystals within shallow rectangular wells.
AbstractList We theoretically and experimentally study nematic liquid crystal equilibria within shallow rectangular wells. We model the wells within a two-dimensional Oseen–Frank framework, with strong tangent anchoring, and obtain explicit analytical expressions for the director fields and energies of the ‘diagonal’ and ‘rotated’ solutions reported in the literature. These expressions separate the leading-order defect energies from the bulk distortion energy for both families of solutions. The continuum Oseen–Frank study is complemented by a microscopic mean-field approach. We numerically minimize the mean-field functional, including the effects of weak anchoring, variable order and random initial conditions. In particular, these simulations suggest the existence of higher-energy metastable states with internal defects. We compare our theoretical results to experimental director profiles, obtained using two types of filamentous virus particles, wild-type fd -virus and a modified stiffer variant (Y21M), which display nematic ordering in rectangular chambers, as found by confocal scanning laser microscopy. We combine our analytical energy expressions with experimentally recorded frequencies of the different equilibrium states to obtain explicit estimates for the extrapolation length, defined to be the ratio of the nematic elastic constant to the anchoring coefficient, of the fd -virus.
We theoretically and experimentally study nematic liquid crystal equilibria within shallow rectangular wells. We model the wells within a two-dimensional Oseen-Frank framework, with strong tangent anchoring, and obtain explicit analytical expressions for the director fields and energies of the 'diagonal' and 'rotated' solutions reported in the literature. These expressions separate the leading-order defect energies from the bulk distortion energy for both families of solutions. The continuum Oseen-Frank study is complemented by a microscopic mean-field approach. We numerically minimize the mean-field functional, including the effects of weak anchoring, variable order and random initial conditions. In particular, these simulations suggest the existence of higher-energy metastable states with internal defects. We compare our theoretical results to experimental director profiles, obtained using two types of filamentous virus particles, wild-type fd-virus and a modified stiffer variant (Y21M), which display nematic ordering in rectangular chambers, as found by confocal scanning laser microscopy. We combine our analytical energy expressions with experimentally recorded frequencies of the different equilibrium states to obtain explicit estimates for the extrapolation length, defined to be the ratio of the nematic elastic constant to the anchoring coefficient, of the fd-virus.
We theoretically and experimentally study nematic liquid crystal equilibria within shallow rectangular wells. We model the wells within a two-dimensional Oseen-Frank framework, with strong tangent anchoring, and obtain explicit analytical expressions for the director fields and energies of the 'diagonal' and 'rotated' solutions reported in the literature. These expressions separate the leading-order defect energies from the bulk distortion energy for both families of solutions. The continuum Oseen-Frank study is complemented by a microscopic mean-field approach. We numerically minimize the mean-field functional, including the effects of weak anchoring, variable order and random initial conditions. In particular, these simulations suggest the existence of higher-energy metastable states with internal defects. We compare our theoretical results to experimental director profiles, obtained using two types of filamentous virus particles, wild-type fd -virus and a modified stiffer variant (Y21M), which display nematic ordering in rectangular chambers, as found by confocal scanning laser microscopy. We combine our analytical energy expressions with experimentally recorded frequencies of the different equilibrium states to obtain explicit estimates for the extrapolation length, defined to be the ratio of the nematic elastic constant to the anchoring coefficient, of the fd -virus. We theoretically and experimentally study equilibrium states of nematic liquid crystals within shallow rectangular wells.
We theoretically and experimentally study nematic liquid crystal equilibria within shallow rectangular wells. We model the wells within a two-dimensional Oseen-Frank framework, with strong tangent anchoring, and obtain explicit analytical expressions for the director fields and energies of the 'diagonal' and 'rotated' solutions reported in the literature. These expressions separate the leading-order defect energies from the bulk distortion energy for both families of solutions. The continuum Oseen-Frank study is complemented by a microscopic mean-field approach. We numerically minimize the mean-field functional, including the effects of weak anchoring, variable order and random initial conditions. In particular, these simulations suggest the existence of higher-energy metastable states with internal defects. We compare our theoretical results to experimental director profiles, obtained using two types of filamentous virus particles, wild-type fd-virus and a modified stiffer variant (Y21M), which display nematic ordering in rectangular chambers, as found by confocal scanning laser microscopy. We combine our analytical energy expressions with experimentally recorded frequencies of the different equilibrium states to obtain explicit estimates for the extrapolation length, defined to be the ratio of the nematic elastic constant to the anchoring coefficient, of the fd-virus.We theoretically and experimentally study nematic liquid crystal equilibria within shallow rectangular wells. We model the wells within a two-dimensional Oseen-Frank framework, with strong tangent anchoring, and obtain explicit analytical expressions for the director fields and energies of the 'diagonal' and 'rotated' solutions reported in the literature. These expressions separate the leading-order defect energies from the bulk distortion energy for both families of solutions. The continuum Oseen-Frank study is complemented by a microscopic mean-field approach. We numerically minimize the mean-field functional, including the effects of weak anchoring, variable order and random initial conditions. In particular, these simulations suggest the existence of higher-energy metastable states with internal defects. We compare our theoretical results to experimental director profiles, obtained using two types of filamentous virus particles, wild-type fd-virus and a modified stiffer variant (Y21M), which display nematic ordering in rectangular chambers, as found by confocal scanning laser microscopy. We combine our analytical energy expressions with experimentally recorded frequencies of the different equilibrium states to obtain explicit estimates for the extrapolation length, defined to be the ratio of the nematic elastic constant to the anchoring coefficient, of the fd-virus.
Author Koenderink, Gijsje H
Aarts, Dirk G. A. L
Alvarado, José
Mulder, Bela M
Dammone, Oliver J
Lewis, Alexander H
Howell, Peter D
Garlea, Ioana
Lettinga, M. P
Majumdar, Apala
AuthorAffiliation FOM Institute AMOLF
Institute of Technology
University of Bath
Laboratory of Cell Biology
Institut für Festkörperforschung
Forschungszentrum Jülich
Department of Chemistry
Mathematical Institute
Department of Mechanical Engineering
University of Oxford
Physical and Theoretical Chemistry Laboratory
Department of Mathematical Sciences
Wageningen University
AuthorAffiliation_xml – name: Mathematical Institute
– name: Department of Chemistry
– name: Institut für Festkörperforschung
– name: Laboratory of Cell Biology
– name: University of Bath
– name: FOM Institute AMOLF
– name: Institute of Technology
– name: University of Oxford
– name: Department of Mechanical Engineering
– name: Department of Mathematical Sciences
– name: Forschungszentrum Jülich
– name: Wageningen University
– name: Physical and Theoretical Chemistry Laboratory
Author_xml – sequence: 1
  givenname: Alexander H
  surname: Lewis
  fullname: Lewis, Alexander H
– sequence: 2
  givenname: Ioana
  surname: Garlea
  fullname: Garlea, Ioana
– sequence: 3
  givenname: José
  surname: Alvarado
  fullname: Alvarado, José
– sequence: 4
  givenname: Oliver J
  surname: Dammone
  fullname: Dammone, Oliver J
– sequence: 5
  givenname: Peter D
  surname: Howell
  fullname: Howell, Peter D
– sequence: 6
  givenname: Apala
  surname: Majumdar
  fullname: Majumdar, Apala
– sequence: 7
  givenname: Bela M
  surname: Mulder
  fullname: Mulder, Bela M
– sequence: 8
  givenname: M. P
  surname: Lettinga
  fullname: Lettinga, M. P
– sequence: 9
  givenname: Gijsje H
  surname: Koenderink
  fullname: Koenderink, Gijsje H
– sequence: 10
  givenname: Dirk G. A. L
  surname: Aarts
  fullname: Aarts, Dirk G. A. L
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25154421$$D View this record in MEDLINE/PubMed
BookMark eNqFks1rFTEQwINU-n3pXdneRHg2s8l-pLfysCqteNBCbyGbna2RvGSbZGnff2_W11YoUi-ZMPx-w2Qme2TLeYeEHAH9AJSJE83jigKUbHhFdqHhfFG3vN16urPrHbIX4y9KWcuh3iY7ZQUV5yXskoult9abXtnCmtvJ9IUO65iUjYVxRUCdlLuZrAqF9m4wDlfo0mmRfqIP60K5vsD7EYOZ0wfk9ZBFPHyI--Tq_OOP5efF5bdPX5ZnlwtdVVVaiKZsaNv2JeCADXRcqFIhCIGizQnsRN00rFM1dnUpdMMoQ9AcuoH1dYuc7ZPTTd07dYPOuHxIp4I2UXplpDVdUGEt76YgnZ3DOHVRcpHfT7P8biOPwd9OGJNcmajRWuXQT1FCzUsGjDfwf7SqmWgrXs3o2wd06lbYyzFPZO7hcdAZoBtABx9jwEFqk1Qy3qWgjJVA5bxLueTfv_7Z5XlW3j9THqv-Ez7ewCHqJ-7vx5BjP2TmzUsM-w1xzLVH
CitedBy_id crossref_primary_10_1103_PhysRevE_101_022706
crossref_primary_10_1080_00268976_2018_1497210
crossref_primary_10_1080_02678292_2023_2294960
crossref_primary_10_1098_rspa_2021_0458
crossref_primary_10_1039_C4SM02087A
crossref_primary_10_1140_epje_i2016_16065_x
crossref_primary_10_1039_D3NR02650G
crossref_primary_10_1137_22M1490909
crossref_primary_10_1103_PhysRevE_97_012703
crossref_primary_10_1088_1361_6463_aae5d0
crossref_primary_10_1039_C5SM02838H
crossref_primary_10_1103_PhysRevE_101_032705
crossref_primary_10_1103_PhysRevLett_124_090601
crossref_primary_10_1039_C5SM00670H
crossref_primary_10_1103_PhysRevLett_127_198001
crossref_primary_10_1137_17M1179820
crossref_primary_10_1103_PhysRevE_105_044704
crossref_primary_10_1103_PhysRevE_97_022702
crossref_primary_10_1103_PhysRevE_98_032706
crossref_primary_10_1063_1_4948785
crossref_primary_10_1038_s41467_020_20842_5
crossref_primary_10_1088_0957_4484_27_2_025301
crossref_primary_10_1137_16M1087990
crossref_primary_10_1080_00268976_2018_1481234
crossref_primary_10_1137_19M1293156
crossref_primary_10_1038_s41598_019_56729_9
crossref_primary_10_1038_ncomms12112
crossref_primary_10_1016_j_ijnonlinmec_2015_04_010
crossref_primary_10_1093_pnasnexus_pgae470
crossref_primary_10_1137_23M1604606
crossref_primary_10_1177_1081286520902507
crossref_primary_10_1080_02678292_2017_1290284
crossref_primary_10_1016_j_ijnonlinmec_2019_103342
crossref_primary_10_1103_PhysRevE_97_052707
crossref_primary_10_1080_02678292_2016_1239773
crossref_primary_10_1103_PhysRevE_97_052703
crossref_primary_10_1007_s13538_019_00657_6
crossref_primary_10_1080_02678292_2023_2200262
crossref_primary_10_1103_PhysRevE_99_062701
crossref_primary_10_1021_acsnano_3c12799
crossref_primary_10_1080_00268976_2015_1051151
crossref_primary_10_1088_1402_4896_ab8ad6
crossref_primary_10_1063_1_4916389
crossref_primary_10_1002_adma_201807514
crossref_primary_10_1039_D2CP00060A
crossref_primary_10_1142_S0217979219500024
crossref_primary_10_1080_02678292_2021_1909762
crossref_primary_10_1137_21M1447404
crossref_primary_10_1080_02678292_2020_1817584
crossref_primary_10_1103_PhysRevE_107_034702
crossref_primary_10_1039_C5SM00578G
crossref_primary_10_1103_PhysRevFluids_9_110511
crossref_primary_10_1088_1361_648X_29_6_064002
crossref_primary_10_1088_1361_648X_29_6_064003
crossref_primary_10_1111_sapm_12161
crossref_primary_10_1103_PhysRevE_101_062706
crossref_primary_10_1063_1_4919307
crossref_primary_10_1103_PhysRevE_100_062604
Cites_doi 10.1103/PhysRevA.23.305
10.1103/PhysRevE.82.020702
10.1098/rspa.2014.0276
10.1063/1.2724912
10.1103/PhysRevE.62.6694
10.1063/1.2713140
10.1088/0305-4470/37/44/L05
10.1039/c3sm51991k
10.1016/j.cocis.2005.10.004
10.1103/PhysRevE.51.R5204
10.1038/nature01163
10.1103/PhysRevE.85.061702
10.1080/00268979909483083
10.1103/PhysRevLett.59.2582
10.1063/1.3148861
10.1039/C3SM52421C
10.3934/cpaa.2012.11.1303
10.1063/1.3520389
10.1126/science.291.5513.2576
10.1063/1.91359
10.1103/PhysRevE.68.021701
10.1103/PhysRevE.63.051703
10.1063/1.1478778
10.1051/jphyscol:1969413
10.1021/la0482397
10.1021/la104128m
10.1021/la000446t
10.1103/PhysRevLett.109.108303
10.1063/1.2795347
10.1088/0034-4885/52/5/002
10.1103/PhysRevLett.97.087801
10.1126/science.276.5318.1533
10.1007/s00205-009-0249-2
10.1134/1.1499901
10.1063/1.329049
10.1140/epje/e2004-00038-y
10.1039/c1sm06060k
10.1017/S0956792510000380
ContentType Journal Article
Copyright Wageningen University & Research
Copyright_xml – notice: Wageningen University & Research
DBID AAYXX
CITATION
NPM
7X8
7U5
8FD
L7M
QVL
DOI 10.1039/c4sm01123f
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
NARCIS:Publications
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList CrossRef


PubMed
Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1744-6848
EndPage 7873
ExternalDocumentID oai_library_wur_nl_wurpubs_490030
25154421
10_1039_C4SM01123F
c4sm01123f
Genre Journal Article
GroupedDBID 0-7
0R~
0UZ
123
1TJ
4.4
53G
705
70~
71~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACLDK
ACPRK
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRAH
AFRZK
AFVBQ
AGEGJ
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C1A
C6K
CITATION
CS3
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~9
H~N
J3G
J3H
J3I
KZ1
L-8
M4U
N9A
NDZJH
O9-
P2P
R56
R7B
RAOCF
RCLXC
RCNCU
RNS
RPMJG
RSCEA
SKA
SLH
VH6
XJT
NPM
7X8
7U5
8FD
L7M
0R
70
71
AAGNR
ABFLS
ABGFH
ACHRU
AGSTE
AHGVY
HZ
JG
KC5
OK1
QVL
RIG
RRC
UNR
ID FETCH-LOGICAL-c555t-9727088d21efe71b49a2ae199e98fe7eb96773ba6eb629c7303e1c41bf3d68e43
ISSN 1744-683X
1744-6848
IngestDate Tue Jan 05 17:59:32 EST 2021
Fri Jul 11 09:25:12 EDT 2025
Fri Jul 11 04:39:07 EDT 2025
Thu Apr 03 07:08:33 EDT 2025
Thu Apr 24 23:01:39 EDT 2025
Tue Jul 01 01:06:44 EDT 2025
Sat Jun 01 02:25:27 EDT 2019
Thu May 19 04:18:49 EDT 2016
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c555t-9727088d21efe71b49a2ae199e98fe7eb96773ba6eb629c7303e1c41bf3d68e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25154421
PQID 1563985451
PQPubID 23479
PageCount 9
ParticipantIDs crossref_citationtrail_10_1039_C4SM01123F
pubmed_primary_25154421
proquest_miscellaneous_1563985451
crossref_primary_10_1039_C4SM01123F
rsc_primary_c4sm01123f
proquest_miscellaneous_1642313471
wageningen_narcis_oai_library_wur_nl_wurpubs_490030
ProviderPackageCode CITATION
AAYXX
QVL
PublicationCentury 2000
PublicationDate 2014-10-21
PublicationDateYYYYMMDD 2014-10-21
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-21
  day: 21
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Soft matter
PublicationTitleAlternate Soft Matter
PublicationYear 2014
References Chen (C4SM01123F-(cit14)/*[position()=1]) 2013; 9
Puech (C4SM01123F-(cit41)/*[position()=1]) 2010; 82
Majumdar (C4SM01123F-(cit19)/*[position()=1]) 2004; 37
Mottram (C4SM01123F-(cit3)/*[position()=1]) 2004
Gupta (C4SM01123F-(cit18)/*[position()=1]) 1997; 276
Allen (C4SM01123F-(cit23)/*[position()=1]) 1999; 96
Dammone (C4SM01123F-(cit38)/*[position()=1]) 2013
Brake (C4SM01123F-(cit17)/*[position()=1]) 2005; 21
Rapini (C4SM01123F-(cit33)/*[position()=1]) 1969; 30
Stewart (C4SM01123F-(cit2)/*[position()=1]) 2004
Danese (C4SM01123F-(cit30)/*[position()=1]) 1965; vol. 1
Dogic (C4SM01123F-(cit35)/*[position()=1]) 2006; 11
Kaznacheev (C4SM01123F-(cit43)/*[position()=1]) 2002; 95
Lee (C4SM01123F-(cit7)/*[position()=1]) 2001; 291
Prinsen (C4SM01123F-(cit42)/*[position()=1]) 2004; 13
Mkaddem (C4SM01123F-(cit29)/*[position()=1]) 2000; 62
Ribas (C4SM01123F-(cit24)/*[position()=1]) 1995; 51
Klemen (C4SM01123F-(cit27)/*[position()=1]) 1989; 52
van der Beek (C4SM01123F-(cit45)/*[position()=1]) 2006; 97
Berreman (C4SM01123F-(cit6)/*[position()=1]) 1981; 52
e Silva (C4SM01123F-(cit21)/*[position()=1]) 2011; 7
Barry (C4SM01123F-(cit36)/*[position()=1]) 2009; 5
Dunmur (C4SM01123F-(cit4)/*[position()=1]) 2010
Clark (C4SM01123F-(cit5)/*[position()=1]) 1980; 36
Alvarado (C4SM01123F-(cit22)/*[position()=1]) 2014; 10
Yi (C4SM01123F-(cit11)/*[position()=1]) 2007; 90
Luo (C4SM01123F-(cit12)/*[position()=1]) 2012; 85
Prinsen (C4SM01123F-(cit40)/*[position()=1]) 2003; 68
Rosenblatt (C4SM01123F-(cit32)/*[position()=1]) 1981; 23
Dogic (C4SM01123F-(cit37)/*[position()=1]) 2000; 16
Schopohl (C4SM01123F-(cit48)/*[position()=1]) 1987; 59
de Gennes (C4SM01123F-(cit1)/*[position()=1]) 1998
Davidson (C4SM01123F-(cit13)/*[position()=1]) 2012; 23
Kim (C4SM01123F-(cit8)/*[position()=1]) 2002; 420
Zannoni (C4SM01123F-(cit31)/*[position()=1]) 1979
Dammone (C4SM01123F-(cit20)/*[position()=1]) 2012; 109
Majumdar (C4SM01123F-(cit28)/*[position()=1]) 2012; 11
Dijkstra (C4SM01123F-(cit25)/*[position()=1]) 2001; 63
Sheng (C4SM01123F-(cit34)/*[position()=1]) 1976
McCamley (C4SM01123F-(cit15)/*[position()=1]) 2007; 91
Hill (C4SM01123F-(cit39)/*[position()=1]) 1960
Kralj (C4SM01123F-(cit47)/*[position()=1]) 2014; 470
Verhoeff (C4SM01123F-(cit44)/*[position()=1]) 2010; 27
Majumdar (C4SM01123F-(cit26)/*[position()=1]) 2010; 196
McCamley (C4SM01123F-(cit16)/*[position()=1]) 2009; 105
Verhoeff (C4SM01123F-(cit46)/*[position()=1]) 2011; 134
Kitson (C4SM01123F-(cit9)/*[position()=1]) 2002; 80
Tsakonas (C4SM01123F-(cit10)/*[position()=1]) 2007; 90
References_xml – issn: 2004
  publication-title: Introduction to Q-tensor Theory
  doi: Mottram Newton
– issn: 1976
  end-page: p 143-201
  publication-title: Introduction to Liquid Crystals
  doi: Sheng Priestly
– issn: 1998
  publication-title: The Physics of Liquid Crystals
  doi: de Gennes Prost
– issn: 1960
  publication-title: An Introduction to Statistical Thermodynamics
  doi: Hill
– issn: 2013
  publication-title: PhD Thesis
  doi: Dammone
– issn: 1979
  end-page: p 51 - 83
  publication-title: The Molecular Physics of Liquid Crystals
  doi: Zannoni
– issn: 2010
  publication-title: Soap, Science and Flat-Srcreen TVs: A History of Liquid Crystals
  doi: Dunmur Sluckin
– issn: 2004
  publication-title: The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction
  doi: Stewart
– volume: 23
  start-page: 305
  year: 1981
  ident: C4SM01123F-(cit32)/*[position()=1]
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.23.305
– volume: 82
  start-page: 020702
  year: 2010
  ident: C4SM01123F-(cit41)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.82.020702
– volume-title: The Molecular Physics of Liquid Crystals
  year: 1979
  ident: C4SM01123F-(cit31)/*[position()=1]
– volume: 470
  start-page: 20140276
  year: 2014
  ident: C4SM01123F-(cit47)/*[position()=1]
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2014.0276
– volume-title: The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction
  year: 2004
  ident: C4SM01123F-(cit2)/*[position()=1]
– volume: 90
  start-page: 163510
  year: 2007
  ident: C4SM01123F-(cit11)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2724912
– volume: 62
  start-page: 6694
  year: 2000
  ident: C4SM01123F-(cit29)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.62.6694
– volume: 90
  start-page: 111913
  year: 2007
  ident: C4SM01123F-(cit10)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2713140
– volume: 37
  start-page: L573
  year: 2004
  ident: C4SM01123F-(cit19)/*[position()=1]
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/37/44/L05
– volume: 9
  start-page: 10921
  year: 2013
  ident: C4SM01123F-(cit14)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/c3sm51991k
– volume-title: The Physics of Liquid Crystals
  year: 1998
  ident: C4SM01123F-(cit1)/*[position()=1]
– volume: 11
  start-page: 47
  year: 2006
  ident: C4SM01123F-(cit35)/*[position()=1]
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2005.10.004
– volume: 51
  start-page: R5204
  year: 1995
  ident: C4SM01123F-(cit24)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.51.R5204
– volume-title: An Introduction to Statistical Thermodynamics
  year: 1960
  ident: C4SM01123F-(cit39)/*[position()=1]
– volume: 420
  start-page: 159
  year: 2002
  ident: C4SM01123F-(cit8)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature01163
– volume: 85
  start-page: 061702
  year: 2012
  ident: C4SM01123F-(cit12)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.85.061702
– volume: 96
  start-page: 1391
  year: 1999
  ident: C4SM01123F-(cit23)/*[position()=1]
  publication-title: Mol. Phys.
  doi: 10.1080/00268979909483083
– volume-title: PhD Thesis
  year: 2013
  ident: C4SM01123F-(cit38)/*[position()=1]
– volume: 59
  start-page: 2582
  year: 1987
  ident: C4SM01123F-(cit48)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.59.2582
– volume: 105
  start-page: 123504
  year: 2009
  ident: C4SM01123F-(cit16)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3148861
– volume: 10
  start-page: 2354
  year: 2014
  ident: C4SM01123F-(cit22)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C3SM52421C
– volume: 11
  start-page: 1303
  year: 2012
  ident: C4SM01123F-(cit28)/*[position()=1]
  publication-title: Comm. Pure. Appl. Anal.
  doi: 10.3934/cpaa.2012.11.1303
– volume: 134
  start-page: 044904
  year: 2011
  ident: C4SM01123F-(cit46)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3520389
– volume: 291
  start-page: 2576
  year: 2001
  ident: C4SM01123F-(cit7)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.291.5513.2576
– volume: 36
  start-page: 899
  year: 1980
  ident: C4SM01123F-(cit5)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.91359
– volume: 68
  start-page: 021701
  year: 2003
  ident: C4SM01123F-(cit40)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.68.021701
– volume-title: Soap, Science and Flat-Srcreen TVs: A History of Liquid Crystals
  year: 2010
  ident: C4SM01123F-(cit4)/*[position()=1]
– volume: 63
  start-page: 051703
  year: 2001
  ident: C4SM01123F-(cit25)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.63.051703
– volume: 80
  start-page: 3635
  year: 2002
  ident: C4SM01123F-(cit9)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1478778
– volume: 30
  start-page: 54
  year: 1969
  ident: C4SM01123F-(cit33)/*[position()=1]
  publication-title: J. Phys., Colloq.
  doi: 10.1051/jphyscol:1969413
– volume-title: Introduction to Liquid Crystals
  year: 1976
  ident: C4SM01123F-(cit34)/*[position()=1]
– volume: 21
  start-page: 2218
  year: 2005
  ident: C4SM01123F-(cit17)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la0482397
– volume: 5
  start-page: 2563
  year: 2009
  ident: C4SM01123F-(cit36)/*[position()=1]
  publication-title: Soft Matter
– volume: 27
  start-page: 116
  year: 2010
  ident: C4SM01123F-(cit44)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la104128m
– volume: 16
  start-page: 7820
  year: 2000
  ident: C4SM01123F-(cit37)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la000446t
– volume: 109
  start-page: 108303
  year: 2012
  ident: C4SM01123F-(cit20)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.108303
– volume: 91
  start-page: 141916
  year: 2007
  ident: C4SM01123F-(cit15)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2795347
– volume: 52
  start-page: 555
  year: 1989
  ident: C4SM01123F-(cit27)/*[position()=1]
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/52/5/002
– volume: vol. 1
  year: 1965
  ident: C4SM01123F-(cit30)/*[position()=1]
  publication-title: Advanced Calculus
– volume: 97
  start-page: 087801
  year: 2006
  ident: C4SM01123F-(cit45)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.087801
– volume: 276
  start-page: 1533
  year: 1997
  ident: C4SM01123F-(cit18)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.276.5318.1533
– volume: 196
  start-page: 227
  year: 2010
  ident: C4SM01123F-(cit26)/*[position()=1]
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-009-0249-2
– volume: 95
  start-page: 57
  year: 2002
  ident: C4SM01123F-(cit43)/*[position()=1]
  publication-title: J. Exp. Theor. Phys.
  doi: 10.1134/1.1499901
– volume: 52
  start-page: 3032
  year: 1981
  ident: C4SM01123F-(cit6)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.329049
– volume: 13
  start-page: 35
  year: 2004
  ident: C4SM01123F-(cit42)/*[position()=1]
  publication-title: Eur. Phys. J. E
  doi: 10.1140/epje/e2004-00038-y
– volume: 7
  start-page: 10631
  year: 2011
  ident: C4SM01123F-(cit21)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/c1sm06060k
– volume-title: Introduction to Q-tensor Theory
  year: 2004
  ident: C4SM01123F-(cit3)/*[position()=1]
– volume: 23
  start-page: 99
  year: 2012
  ident: C4SM01123F-(cit13)/*[position()=1]
  publication-title: Eur. J. Appl. Math.
  doi: 10.1017/S0956792510000380
SSID ssj0038416
Score 2.4208846
Snippet We theoretically and experimentally study nematic liquid crystal equilibria within shallow rectangular wells. We model the wells within a two-dimensional...
SourceID wageningen
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7865
SubjectTerms alignment
Anchoring
cell-sized confinement
Crystal defects
de-gennes theory
defects
Exact solutions
interfaces
Liquid crystals
Mathematical analysis
Mathematical models
Nematic
phases
surfaces
Wells
Title Colloidal liquid crystals in rectangular confinement: theory and experiment
URI https://www.ncbi.nlm.nih.gov/pubmed/25154421
https://www.proquest.com/docview/1563985451
https://www.proquest.com/docview/1642313471
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F490030
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELaWrZDKA-IqbDkUBC9olSWJnYu3VVW0LS08dCv1zYqTibRSmm1zdAW_nnHsHKUrVHjJrmwnVjyTmW88hwn5iCoeHMp8U6ZJmgyoMEUofBOhh--ASCFIZXLy6Xdvcc6OL9yL0ageZpdUYhb_2ppX8j9UxTakq8yS_QfKdg_FBvyP9MUrUhiv96KxtPrXqwRXOVtd16tkGhc_Ee1lpcpSiSu5GSnDTNHoTRFOtjuBTfaiKrzUV_gfwtQzFM7Ty6gaxO6ewEafXNymxEwXsy56R_rsGxh6tI7yTtLPs5uoiJK1djUop3y_Ny4XqtlP_ZHJ6JDp8Wy4B2EzKbxVYrMWmz5jphc0J_uiVhm2qTqanay1BjylqhhpyekH6swIrYVRjtCtEt6iskDqATs7Rcnk6ODHW2W0_1BvXdBh426nIe_vfUB2HB8h15jszA-XRyetCqfSF6syadVrtXVtafi5v_s2krljniBYKcr4Ednd4PvkTabcALksn5DH2uQw5op_npIR5M_Iwyb0Ny6fk28dFxmKi4yWi4xVbgy4yBhw0RdD8ZCBnGD0PPSCnH89XB4sTH3Ehhm7rluZIcJX1DOJY0MKvi1YGDkR2GEIYYANIELP96mIPBCeE8aoDijYMbNFShMvAEb3yDhHXnlFDCsAwB4vciig0R4ItPTBwg8-SJkFQkzIp3a5eKzrz8tjUDJ-lzAT8qEbe6Wqrmwd9b5ddY5CUXq6ohzWdcltF4F3gMaB_ZcxaHlTmUiNY14qknVzIeh3GXOwZw9p2DXHrLxspk4nZH97B79KsJP2NOe5PBOs5LKMu96Y5Zu64Hkmf3DekjPpTbD27_XOr8lu_wG-IeOqqOEtwuJKvNNM_BtucLch
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Colloidal+liquid+crystals+in+rectangular+confinement%3A+theory+and+experiment&rft.jtitle=Soft+matter&rft.au=Lewis%2C+Alexander+H.&rft.au=Garlea%2C+Ioana&rft.au=Alvarado%2C+Jos%C3%A9&rft.au=Dammone%2C+Oliver+J.&rft.date=2014-10-21&rft.issn=1744-683X&rft.eissn=1744-6848&rft.volume=10&rft.issue=39&rft.spage=7865&rft.epage=7873&rft_id=info:doi/10.1039%2FC4SM01123F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C4SM01123F
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-683X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-683X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-683X&client=summon