Colloidal liquid crystals in rectangular confinement: theory and experiment
We theoretically and experimentally study nematic liquid crystal equilibria within shallow rectangular wells. We model the wells within a two-dimensional Oseen-Frank framework, with strong tangent anchoring, and obtain explicit analytical expressions for the director fields and energies of the '...
Saved in:
Published in | Soft matter Vol. 1; no. 39; pp. 7865 - 7873 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
21.10.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1744-683X 1744-6848 1744-6848 |
DOI | 10.1039/c4sm01123f |
Cover
Abstract | We theoretically and experimentally study nematic liquid crystal equilibria within shallow rectangular wells. We model the wells within a two-dimensional Oseen-Frank framework, with strong tangent anchoring, and obtain explicit analytical expressions for the director fields and energies of the 'diagonal' and 'rotated' solutions reported in the literature. These expressions separate the leading-order defect energies from the bulk distortion energy for both families of solutions. The continuum Oseen-Frank study is complemented by a microscopic mean-field approach. We numerically minimize the mean-field functional, including the effects of weak anchoring, variable order and random initial conditions. In particular, these simulations suggest the existence of higher-energy metastable states with internal defects. We compare our theoretical results to experimental director profiles, obtained using two types of filamentous virus particles, wild-type
fd
-virus and a modified stiffer variant (Y21M), which display nematic ordering in rectangular chambers, as found by confocal scanning laser microscopy. We combine our analytical energy expressions with experimentally recorded frequencies of the different equilibrium states to obtain explicit estimates for the extrapolation length, defined to be the ratio of the nematic elastic constant to the anchoring coefficient, of the
fd
-virus.
We theoretically and experimentally study equilibrium states of nematic liquid crystals within shallow rectangular wells. |
---|---|
AbstractList | We theoretically and experimentally study nematic liquid crystal equilibria within shallow rectangular wells. We model the wells within a two-dimensional Oseen–Frank framework, with strong tangent anchoring, and obtain explicit analytical expressions for the director fields and energies of the ‘diagonal’ and ‘rotated’ solutions reported in the literature. These expressions separate the leading-order defect energies from the bulk distortion energy for both families of solutions. The continuum Oseen–Frank study is complemented by a microscopic mean-field approach. We numerically minimize the mean-field functional, including the effects of weak anchoring, variable order and random initial conditions. In particular, these simulations suggest the existence of higher-energy metastable states with internal defects. We compare our theoretical results to experimental director profiles, obtained using two types of filamentous virus particles, wild-type
fd
-virus and a modified stiffer variant (Y21M), which display nematic ordering in rectangular chambers, as found by confocal scanning laser microscopy. We combine our analytical energy expressions with experimentally recorded frequencies of the different equilibrium states to obtain explicit estimates for the extrapolation length, defined to be the ratio of the nematic elastic constant to the anchoring coefficient, of the
fd
-virus. We theoretically and experimentally study nematic liquid crystal equilibria within shallow rectangular wells. We model the wells within a two-dimensional Oseen-Frank framework, with strong tangent anchoring, and obtain explicit analytical expressions for the director fields and energies of the 'diagonal' and 'rotated' solutions reported in the literature. These expressions separate the leading-order defect energies from the bulk distortion energy for both families of solutions. The continuum Oseen-Frank study is complemented by a microscopic mean-field approach. We numerically minimize the mean-field functional, including the effects of weak anchoring, variable order and random initial conditions. In particular, these simulations suggest the existence of higher-energy metastable states with internal defects. We compare our theoretical results to experimental director profiles, obtained using two types of filamentous virus particles, wild-type fd-virus and a modified stiffer variant (Y21M), which display nematic ordering in rectangular chambers, as found by confocal scanning laser microscopy. We combine our analytical energy expressions with experimentally recorded frequencies of the different equilibrium states to obtain explicit estimates for the extrapolation length, defined to be the ratio of the nematic elastic constant to the anchoring coefficient, of the fd-virus. We theoretically and experimentally study nematic liquid crystal equilibria within shallow rectangular wells. We model the wells within a two-dimensional Oseen-Frank framework, with strong tangent anchoring, and obtain explicit analytical expressions for the director fields and energies of the 'diagonal' and 'rotated' solutions reported in the literature. These expressions separate the leading-order defect energies from the bulk distortion energy for both families of solutions. The continuum Oseen-Frank study is complemented by a microscopic mean-field approach. We numerically minimize the mean-field functional, including the effects of weak anchoring, variable order and random initial conditions. In particular, these simulations suggest the existence of higher-energy metastable states with internal defects. We compare our theoretical results to experimental director profiles, obtained using two types of filamentous virus particles, wild-type fd -virus and a modified stiffer variant (Y21M), which display nematic ordering in rectangular chambers, as found by confocal scanning laser microscopy. We combine our analytical energy expressions with experimentally recorded frequencies of the different equilibrium states to obtain explicit estimates for the extrapolation length, defined to be the ratio of the nematic elastic constant to the anchoring coefficient, of the fd -virus. We theoretically and experimentally study equilibrium states of nematic liquid crystals within shallow rectangular wells. We theoretically and experimentally study nematic liquid crystal equilibria within shallow rectangular wells. We model the wells within a two-dimensional Oseen-Frank framework, with strong tangent anchoring, and obtain explicit analytical expressions for the director fields and energies of the 'diagonal' and 'rotated' solutions reported in the literature. These expressions separate the leading-order defect energies from the bulk distortion energy for both families of solutions. The continuum Oseen-Frank study is complemented by a microscopic mean-field approach. We numerically minimize the mean-field functional, including the effects of weak anchoring, variable order and random initial conditions. In particular, these simulations suggest the existence of higher-energy metastable states with internal defects. We compare our theoretical results to experimental director profiles, obtained using two types of filamentous virus particles, wild-type fd-virus and a modified stiffer variant (Y21M), which display nematic ordering in rectangular chambers, as found by confocal scanning laser microscopy. We combine our analytical energy expressions with experimentally recorded frequencies of the different equilibrium states to obtain explicit estimates for the extrapolation length, defined to be the ratio of the nematic elastic constant to the anchoring coefficient, of the fd-virus.We theoretically and experimentally study nematic liquid crystal equilibria within shallow rectangular wells. We model the wells within a two-dimensional Oseen-Frank framework, with strong tangent anchoring, and obtain explicit analytical expressions for the director fields and energies of the 'diagonal' and 'rotated' solutions reported in the literature. These expressions separate the leading-order defect energies from the bulk distortion energy for both families of solutions. The continuum Oseen-Frank study is complemented by a microscopic mean-field approach. We numerically minimize the mean-field functional, including the effects of weak anchoring, variable order and random initial conditions. In particular, these simulations suggest the existence of higher-energy metastable states with internal defects. We compare our theoretical results to experimental director profiles, obtained using two types of filamentous virus particles, wild-type fd-virus and a modified stiffer variant (Y21M), which display nematic ordering in rectangular chambers, as found by confocal scanning laser microscopy. We combine our analytical energy expressions with experimentally recorded frequencies of the different equilibrium states to obtain explicit estimates for the extrapolation length, defined to be the ratio of the nematic elastic constant to the anchoring coefficient, of the fd-virus. |
Author | Koenderink, Gijsje H Aarts, Dirk G. A. L Alvarado, José Mulder, Bela M Dammone, Oliver J Lewis, Alexander H Howell, Peter D Garlea, Ioana Lettinga, M. P Majumdar, Apala |
AuthorAffiliation | FOM Institute AMOLF Institute of Technology University of Bath Laboratory of Cell Biology Institut für Festkörperforschung Forschungszentrum Jülich Department of Chemistry Mathematical Institute Department of Mechanical Engineering University of Oxford Physical and Theoretical Chemistry Laboratory Department of Mathematical Sciences Wageningen University |
AuthorAffiliation_xml | – name: Mathematical Institute – name: Department of Chemistry – name: Institut für Festkörperforschung – name: Laboratory of Cell Biology – name: University of Bath – name: FOM Institute AMOLF – name: Institute of Technology – name: University of Oxford – name: Department of Mechanical Engineering – name: Department of Mathematical Sciences – name: Forschungszentrum Jülich – name: Wageningen University – name: Physical and Theoretical Chemistry Laboratory |
Author_xml | – sequence: 1 givenname: Alexander H surname: Lewis fullname: Lewis, Alexander H – sequence: 2 givenname: Ioana surname: Garlea fullname: Garlea, Ioana – sequence: 3 givenname: José surname: Alvarado fullname: Alvarado, José – sequence: 4 givenname: Oliver J surname: Dammone fullname: Dammone, Oliver J – sequence: 5 givenname: Peter D surname: Howell fullname: Howell, Peter D – sequence: 6 givenname: Apala surname: Majumdar fullname: Majumdar, Apala – sequence: 7 givenname: Bela M surname: Mulder fullname: Mulder, Bela M – sequence: 8 givenname: M. P surname: Lettinga fullname: Lettinga, M. P – sequence: 9 givenname: Gijsje H surname: Koenderink fullname: Koenderink, Gijsje H – sequence: 10 givenname: Dirk G. A. L surname: Aarts fullname: Aarts, Dirk G. A. L |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25154421$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1rFTEQwINU-n3pXdneRHg2s8l-pLfysCqteNBCbyGbna2RvGSbZGnff2_W11YoUi-ZMPx-w2Qme2TLeYeEHAH9AJSJE83jigKUbHhFdqHhfFG3vN16urPrHbIX4y9KWcuh3iY7ZQUV5yXskoult9abXtnCmtvJ9IUO65iUjYVxRUCdlLuZrAqF9m4wDlfo0mmRfqIP60K5vsD7EYOZ0wfk9ZBFPHyI--Tq_OOP5efF5bdPX5ZnlwtdVVVaiKZsaNv2JeCADXRcqFIhCIGizQnsRN00rFM1dnUpdMMoQ9AcuoH1dYuc7ZPTTd07dYPOuHxIp4I2UXplpDVdUGEt76YgnZ3DOHVRcpHfT7P8biOPwd9OGJNcmajRWuXQT1FCzUsGjDfwf7SqmWgrXs3o2wd06lbYyzFPZO7hcdAZoBtABx9jwEFqk1Qy3qWgjJVA5bxLueTfv_7Z5XlW3j9THqv-Ez7ewCHqJ-7vx5BjP2TmzUsM-w1xzLVH |
CitedBy_id | crossref_primary_10_1103_PhysRevE_101_022706 crossref_primary_10_1080_00268976_2018_1497210 crossref_primary_10_1080_02678292_2023_2294960 crossref_primary_10_1098_rspa_2021_0458 crossref_primary_10_1039_C4SM02087A crossref_primary_10_1140_epje_i2016_16065_x crossref_primary_10_1039_D3NR02650G crossref_primary_10_1137_22M1490909 crossref_primary_10_1103_PhysRevE_97_012703 crossref_primary_10_1088_1361_6463_aae5d0 crossref_primary_10_1039_C5SM02838H crossref_primary_10_1103_PhysRevE_101_032705 crossref_primary_10_1103_PhysRevLett_124_090601 crossref_primary_10_1039_C5SM00670H crossref_primary_10_1103_PhysRevLett_127_198001 crossref_primary_10_1137_17M1179820 crossref_primary_10_1103_PhysRevE_105_044704 crossref_primary_10_1103_PhysRevE_97_022702 crossref_primary_10_1103_PhysRevE_98_032706 crossref_primary_10_1063_1_4948785 crossref_primary_10_1038_s41467_020_20842_5 crossref_primary_10_1088_0957_4484_27_2_025301 crossref_primary_10_1137_16M1087990 crossref_primary_10_1080_00268976_2018_1481234 crossref_primary_10_1137_19M1293156 crossref_primary_10_1038_s41598_019_56729_9 crossref_primary_10_1038_ncomms12112 crossref_primary_10_1016_j_ijnonlinmec_2015_04_010 crossref_primary_10_1093_pnasnexus_pgae470 crossref_primary_10_1137_23M1604606 crossref_primary_10_1177_1081286520902507 crossref_primary_10_1080_02678292_2017_1290284 crossref_primary_10_1016_j_ijnonlinmec_2019_103342 crossref_primary_10_1103_PhysRevE_97_052707 crossref_primary_10_1080_02678292_2016_1239773 crossref_primary_10_1103_PhysRevE_97_052703 crossref_primary_10_1007_s13538_019_00657_6 crossref_primary_10_1080_02678292_2023_2200262 crossref_primary_10_1103_PhysRevE_99_062701 crossref_primary_10_1021_acsnano_3c12799 crossref_primary_10_1080_00268976_2015_1051151 crossref_primary_10_1088_1402_4896_ab8ad6 crossref_primary_10_1063_1_4916389 crossref_primary_10_1002_adma_201807514 crossref_primary_10_1039_D2CP00060A crossref_primary_10_1142_S0217979219500024 crossref_primary_10_1080_02678292_2021_1909762 crossref_primary_10_1137_21M1447404 crossref_primary_10_1080_02678292_2020_1817584 crossref_primary_10_1103_PhysRevE_107_034702 crossref_primary_10_1039_C5SM00578G crossref_primary_10_1103_PhysRevFluids_9_110511 crossref_primary_10_1088_1361_648X_29_6_064002 crossref_primary_10_1088_1361_648X_29_6_064003 crossref_primary_10_1111_sapm_12161 crossref_primary_10_1103_PhysRevE_101_062706 crossref_primary_10_1063_1_4919307 crossref_primary_10_1103_PhysRevE_100_062604 |
Cites_doi | 10.1103/PhysRevA.23.305 10.1103/PhysRevE.82.020702 10.1098/rspa.2014.0276 10.1063/1.2724912 10.1103/PhysRevE.62.6694 10.1063/1.2713140 10.1088/0305-4470/37/44/L05 10.1039/c3sm51991k 10.1016/j.cocis.2005.10.004 10.1103/PhysRevE.51.R5204 10.1038/nature01163 10.1103/PhysRevE.85.061702 10.1080/00268979909483083 10.1103/PhysRevLett.59.2582 10.1063/1.3148861 10.1039/C3SM52421C 10.3934/cpaa.2012.11.1303 10.1063/1.3520389 10.1126/science.291.5513.2576 10.1063/1.91359 10.1103/PhysRevE.68.021701 10.1103/PhysRevE.63.051703 10.1063/1.1478778 10.1051/jphyscol:1969413 10.1021/la0482397 10.1021/la104128m 10.1021/la000446t 10.1103/PhysRevLett.109.108303 10.1063/1.2795347 10.1088/0034-4885/52/5/002 10.1103/PhysRevLett.97.087801 10.1126/science.276.5318.1533 10.1007/s00205-009-0249-2 10.1134/1.1499901 10.1063/1.329049 10.1140/epje/e2004-00038-y 10.1039/c1sm06060k 10.1017/S0956792510000380 |
ContentType | Journal Article |
Copyright | Wageningen University & Research |
Copyright_xml | – notice: Wageningen University & Research |
DBID | AAYXX CITATION NPM 7X8 7U5 8FD L7M QVL |
DOI | 10.1039/c4sm01123f |
DatabaseName | CrossRef PubMed MEDLINE - Academic Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace NARCIS:Publications |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | CrossRef PubMed Technology Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1744-6848 |
EndPage | 7873 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_490030 25154421 10_1039_C4SM01123F c4sm01123f |
Genre | Journal Article |
GroupedDBID | 0-7 0R~ 0UZ 123 1TJ 4.4 53G 705 70~ 71~ 7~J AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACHDF ACIWK ACLDK ACPRK ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRAH AFRZK AFVBQ AGEGJ AGQPQ AGRSR AHGCF AHGXI AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AVWKF AZFZN BBWZM BLAPV BSQNT C1A C6K CITATION CS3 EBS ECGLT EE0 EEHRC EF- EJD F5P FEDTE GGIMP GNO H13 HVGLF HZ~ H~9 H~N J3G J3H J3I KZ1 L-8 M4U N9A NDZJH O9- P2P R56 R7B RAOCF RCLXC RCNCU RNS RPMJG RSCEA SKA SLH VH6 XJT NPM 7X8 7U5 8FD L7M 0R 70 71 AAGNR ABFLS ABGFH ACHRU AGSTE AHGVY HZ JG KC5 OK1 QVL RIG RRC UNR |
ID | FETCH-LOGICAL-c555t-9727088d21efe71b49a2ae199e98fe7eb96773ba6eb629c7303e1c41bf3d68e43 |
ISSN | 1744-683X 1744-6848 |
IngestDate | Tue Jan 05 17:59:32 EST 2021 Fri Jul 11 09:25:12 EDT 2025 Fri Jul 11 04:39:07 EDT 2025 Thu Apr 03 07:08:33 EDT 2025 Thu Apr 24 23:01:39 EDT 2025 Tue Jul 01 01:06:44 EDT 2025 Sat Jun 01 02:25:27 EDT 2019 Thu May 19 04:18:49 EDT 2016 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c555t-9727088d21efe71b49a2ae199e98fe7eb96773ba6eb629c7303e1c41bf3d68e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25154421 |
PQID | 1563985451 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1039_C4SM01123F pubmed_primary_25154421 proquest_miscellaneous_1563985451 crossref_primary_10_1039_C4SM01123F rsc_primary_c4sm01123f proquest_miscellaneous_1642313471 wageningen_narcis_oai_library_wur_nl_wurpubs_490030 |
ProviderPackageCode | CITATION AAYXX QVL |
PublicationCentury | 2000 |
PublicationDate | 2014-10-21 |
PublicationDateYYYYMMDD | 2014-10-21 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Soft matter |
PublicationTitleAlternate | Soft Matter |
PublicationYear | 2014 |
References | Chen (C4SM01123F-(cit14)/*[position()=1]) 2013; 9 Puech (C4SM01123F-(cit41)/*[position()=1]) 2010; 82 Majumdar (C4SM01123F-(cit19)/*[position()=1]) 2004; 37 Mottram (C4SM01123F-(cit3)/*[position()=1]) 2004 Gupta (C4SM01123F-(cit18)/*[position()=1]) 1997; 276 Allen (C4SM01123F-(cit23)/*[position()=1]) 1999; 96 Dammone (C4SM01123F-(cit38)/*[position()=1]) 2013 Brake (C4SM01123F-(cit17)/*[position()=1]) 2005; 21 Rapini (C4SM01123F-(cit33)/*[position()=1]) 1969; 30 Stewart (C4SM01123F-(cit2)/*[position()=1]) 2004 Danese (C4SM01123F-(cit30)/*[position()=1]) 1965; vol. 1 Dogic (C4SM01123F-(cit35)/*[position()=1]) 2006; 11 Kaznacheev (C4SM01123F-(cit43)/*[position()=1]) 2002; 95 Lee (C4SM01123F-(cit7)/*[position()=1]) 2001; 291 Prinsen (C4SM01123F-(cit42)/*[position()=1]) 2004; 13 Mkaddem (C4SM01123F-(cit29)/*[position()=1]) 2000; 62 Ribas (C4SM01123F-(cit24)/*[position()=1]) 1995; 51 Klemen (C4SM01123F-(cit27)/*[position()=1]) 1989; 52 van der Beek (C4SM01123F-(cit45)/*[position()=1]) 2006; 97 Berreman (C4SM01123F-(cit6)/*[position()=1]) 1981; 52 e Silva (C4SM01123F-(cit21)/*[position()=1]) 2011; 7 Barry (C4SM01123F-(cit36)/*[position()=1]) 2009; 5 Dunmur (C4SM01123F-(cit4)/*[position()=1]) 2010 Clark (C4SM01123F-(cit5)/*[position()=1]) 1980; 36 Alvarado (C4SM01123F-(cit22)/*[position()=1]) 2014; 10 Yi (C4SM01123F-(cit11)/*[position()=1]) 2007; 90 Luo (C4SM01123F-(cit12)/*[position()=1]) 2012; 85 Prinsen (C4SM01123F-(cit40)/*[position()=1]) 2003; 68 Rosenblatt (C4SM01123F-(cit32)/*[position()=1]) 1981; 23 Dogic (C4SM01123F-(cit37)/*[position()=1]) 2000; 16 Schopohl (C4SM01123F-(cit48)/*[position()=1]) 1987; 59 de Gennes (C4SM01123F-(cit1)/*[position()=1]) 1998 Davidson (C4SM01123F-(cit13)/*[position()=1]) 2012; 23 Kim (C4SM01123F-(cit8)/*[position()=1]) 2002; 420 Zannoni (C4SM01123F-(cit31)/*[position()=1]) 1979 Dammone (C4SM01123F-(cit20)/*[position()=1]) 2012; 109 Majumdar (C4SM01123F-(cit28)/*[position()=1]) 2012; 11 Dijkstra (C4SM01123F-(cit25)/*[position()=1]) 2001; 63 Sheng (C4SM01123F-(cit34)/*[position()=1]) 1976 McCamley (C4SM01123F-(cit15)/*[position()=1]) 2007; 91 Hill (C4SM01123F-(cit39)/*[position()=1]) 1960 Kralj (C4SM01123F-(cit47)/*[position()=1]) 2014; 470 Verhoeff (C4SM01123F-(cit44)/*[position()=1]) 2010; 27 Majumdar (C4SM01123F-(cit26)/*[position()=1]) 2010; 196 McCamley (C4SM01123F-(cit16)/*[position()=1]) 2009; 105 Verhoeff (C4SM01123F-(cit46)/*[position()=1]) 2011; 134 Kitson (C4SM01123F-(cit9)/*[position()=1]) 2002; 80 Tsakonas (C4SM01123F-(cit10)/*[position()=1]) 2007; 90 |
References_xml | – issn: 2004 publication-title: Introduction to Q-tensor Theory doi: Mottram Newton – issn: 1976 end-page: p 143-201 publication-title: Introduction to Liquid Crystals doi: Sheng Priestly – issn: 1998 publication-title: The Physics of Liquid Crystals doi: de Gennes Prost – issn: 1960 publication-title: An Introduction to Statistical Thermodynamics doi: Hill – issn: 2013 publication-title: PhD Thesis doi: Dammone – issn: 1979 end-page: p 51 - 83 publication-title: The Molecular Physics of Liquid Crystals doi: Zannoni – issn: 2010 publication-title: Soap, Science and Flat-Srcreen TVs: A History of Liquid Crystals doi: Dunmur Sluckin – issn: 2004 publication-title: The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction doi: Stewart – volume: 23 start-page: 305 year: 1981 ident: C4SM01123F-(cit32)/*[position()=1] publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.23.305 – volume: 82 start-page: 020702 year: 2010 ident: C4SM01123F-(cit41)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.82.020702 – volume-title: The Molecular Physics of Liquid Crystals year: 1979 ident: C4SM01123F-(cit31)/*[position()=1] – volume: 470 start-page: 20140276 year: 2014 ident: C4SM01123F-(cit47)/*[position()=1] publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2014.0276 – volume-title: The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction year: 2004 ident: C4SM01123F-(cit2)/*[position()=1] – volume: 90 start-page: 163510 year: 2007 ident: C4SM01123F-(cit11)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2724912 – volume: 62 start-page: 6694 year: 2000 ident: C4SM01123F-(cit29)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.62.6694 – volume: 90 start-page: 111913 year: 2007 ident: C4SM01123F-(cit10)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2713140 – volume: 37 start-page: L573 year: 2004 ident: C4SM01123F-(cit19)/*[position()=1] publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/37/44/L05 – volume: 9 start-page: 10921 year: 2013 ident: C4SM01123F-(cit14)/*[position()=1] publication-title: Soft Matter doi: 10.1039/c3sm51991k – volume-title: The Physics of Liquid Crystals year: 1998 ident: C4SM01123F-(cit1)/*[position()=1] – volume: 11 start-page: 47 year: 2006 ident: C4SM01123F-(cit35)/*[position()=1] publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2005.10.004 – volume: 51 start-page: R5204 year: 1995 ident: C4SM01123F-(cit24)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.51.R5204 – volume-title: An Introduction to Statistical Thermodynamics year: 1960 ident: C4SM01123F-(cit39)/*[position()=1] – volume: 420 start-page: 159 year: 2002 ident: C4SM01123F-(cit8)/*[position()=1] publication-title: Nature doi: 10.1038/nature01163 – volume: 85 start-page: 061702 year: 2012 ident: C4SM01123F-(cit12)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.85.061702 – volume: 96 start-page: 1391 year: 1999 ident: C4SM01123F-(cit23)/*[position()=1] publication-title: Mol. Phys. doi: 10.1080/00268979909483083 – volume-title: PhD Thesis year: 2013 ident: C4SM01123F-(cit38)/*[position()=1] – volume: 59 start-page: 2582 year: 1987 ident: C4SM01123F-(cit48)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.59.2582 – volume: 105 start-page: 123504 year: 2009 ident: C4SM01123F-(cit16)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.3148861 – volume: 10 start-page: 2354 year: 2014 ident: C4SM01123F-(cit22)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C3SM52421C – volume: 11 start-page: 1303 year: 2012 ident: C4SM01123F-(cit28)/*[position()=1] publication-title: Comm. Pure. Appl. Anal. doi: 10.3934/cpaa.2012.11.1303 – volume: 134 start-page: 044904 year: 2011 ident: C4SM01123F-(cit46)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3520389 – volume: 291 start-page: 2576 year: 2001 ident: C4SM01123F-(cit7)/*[position()=1] publication-title: Science doi: 10.1126/science.291.5513.2576 – volume: 36 start-page: 899 year: 1980 ident: C4SM01123F-(cit5)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.91359 – volume: 68 start-page: 021701 year: 2003 ident: C4SM01123F-(cit40)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.68.021701 – volume-title: Soap, Science and Flat-Srcreen TVs: A History of Liquid Crystals year: 2010 ident: C4SM01123F-(cit4)/*[position()=1] – volume: 63 start-page: 051703 year: 2001 ident: C4SM01123F-(cit25)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.63.051703 – volume: 80 start-page: 3635 year: 2002 ident: C4SM01123F-(cit9)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.1478778 – volume: 30 start-page: 54 year: 1969 ident: C4SM01123F-(cit33)/*[position()=1] publication-title: J. Phys., Colloq. doi: 10.1051/jphyscol:1969413 – volume-title: Introduction to Liquid Crystals year: 1976 ident: C4SM01123F-(cit34)/*[position()=1] – volume: 21 start-page: 2218 year: 2005 ident: C4SM01123F-(cit17)/*[position()=1] publication-title: Langmuir doi: 10.1021/la0482397 – volume: 5 start-page: 2563 year: 2009 ident: C4SM01123F-(cit36)/*[position()=1] publication-title: Soft Matter – volume: 27 start-page: 116 year: 2010 ident: C4SM01123F-(cit44)/*[position()=1] publication-title: Langmuir doi: 10.1021/la104128m – volume: 16 start-page: 7820 year: 2000 ident: C4SM01123F-(cit37)/*[position()=1] publication-title: Langmuir doi: 10.1021/la000446t – volume: 109 start-page: 108303 year: 2012 ident: C4SM01123F-(cit20)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.108303 – volume: 91 start-page: 141916 year: 2007 ident: C4SM01123F-(cit15)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2795347 – volume: 52 start-page: 555 year: 1989 ident: C4SM01123F-(cit27)/*[position()=1] publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/52/5/002 – volume: vol. 1 year: 1965 ident: C4SM01123F-(cit30)/*[position()=1] publication-title: Advanced Calculus – volume: 97 start-page: 087801 year: 2006 ident: C4SM01123F-(cit45)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.087801 – volume: 276 start-page: 1533 year: 1997 ident: C4SM01123F-(cit18)/*[position()=1] publication-title: Science doi: 10.1126/science.276.5318.1533 – volume: 196 start-page: 227 year: 2010 ident: C4SM01123F-(cit26)/*[position()=1] publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-009-0249-2 – volume: 95 start-page: 57 year: 2002 ident: C4SM01123F-(cit43)/*[position()=1] publication-title: J. Exp. Theor. Phys. doi: 10.1134/1.1499901 – volume: 52 start-page: 3032 year: 1981 ident: C4SM01123F-(cit6)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.329049 – volume: 13 start-page: 35 year: 2004 ident: C4SM01123F-(cit42)/*[position()=1] publication-title: Eur. Phys. J. E doi: 10.1140/epje/e2004-00038-y – volume: 7 start-page: 10631 year: 2011 ident: C4SM01123F-(cit21)/*[position()=1] publication-title: Soft Matter doi: 10.1039/c1sm06060k – volume-title: Introduction to Q-tensor Theory year: 2004 ident: C4SM01123F-(cit3)/*[position()=1] – volume: 23 start-page: 99 year: 2012 ident: C4SM01123F-(cit13)/*[position()=1] publication-title: Eur. J. Appl. Math. doi: 10.1017/S0956792510000380 |
SSID | ssj0038416 |
Score | 2.4208846 |
Snippet | We theoretically and experimentally study nematic liquid crystal equilibria within shallow rectangular wells. We model the wells within a two-dimensional... |
SourceID | wageningen proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7865 |
SubjectTerms | alignment Anchoring cell-sized confinement Crystal defects de-gennes theory defects Exact solutions interfaces Liquid crystals Mathematical analysis Mathematical models Nematic phases surfaces Wells |
Title | Colloidal liquid crystals in rectangular confinement: theory and experiment |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25154421 https://www.proquest.com/docview/1563985451 https://www.proquest.com/docview/1642313471 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F490030 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELaWrZDKA-IqbDkUBC9olSWJnYu3VVW0LS08dCv1zYqTibRSmm1zdAW_nnHsHKUrVHjJrmwnVjyTmW88hwn5iCoeHMp8U6ZJmgyoMEUofBOhh--ASCFIZXLy6Xdvcc6OL9yL0ageZpdUYhb_2ppX8j9UxTakq8yS_QfKdg_FBvyP9MUrUhiv96KxtPrXqwRXOVtd16tkGhc_Ee1lpcpSiSu5GSnDTNHoTRFOtjuBTfaiKrzUV_gfwtQzFM7Ty6gaxO6ewEafXNymxEwXsy56R_rsGxh6tI7yTtLPs5uoiJK1djUop3y_Ny4XqtlP_ZHJ6JDp8Wy4B2EzKbxVYrMWmz5jphc0J_uiVhm2qTqanay1BjylqhhpyekH6swIrYVRjtCtEt6iskDqATs7Rcnk6ODHW2W0_1BvXdBh426nIe_vfUB2HB8h15jszA-XRyetCqfSF6syadVrtXVtafi5v_s2krljniBYKcr4Ednd4PvkTabcALksn5DH2uQw5op_npIR5M_Iwyb0Ny6fk28dFxmKi4yWi4xVbgy4yBhw0RdD8ZCBnGD0PPSCnH89XB4sTH3Ehhm7rluZIcJX1DOJY0MKvi1YGDkR2GEIYYANIELP96mIPBCeE8aoDijYMbNFShMvAEb3yDhHXnlFDCsAwB4vciig0R4ItPTBwg8-SJkFQkzIp3a5eKzrz8tjUDJ-lzAT8qEbe6Wqrmwd9b5ddY5CUXq6ohzWdcltF4F3gMaB_ZcxaHlTmUiNY14qknVzIeh3GXOwZw9p2DXHrLxspk4nZH97B79KsJP2NOe5PBOs5LKMu96Y5Zu64Hkmf3DekjPpTbD27_XOr8lu_wG-IeOqqOEtwuJKvNNM_BtucLch |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Colloidal+liquid+crystals+in+rectangular+confinement%3A+theory+and+experiment&rft.jtitle=Soft+matter&rft.au=Lewis%2C+Alexander+H.&rft.au=Garlea%2C+Ioana&rft.au=Alvarado%2C+Jos%C3%A9&rft.au=Dammone%2C+Oliver+J.&rft.date=2014-10-21&rft.issn=1744-683X&rft.eissn=1744-6848&rft.volume=10&rft.issue=39&rft.spage=7865&rft.epage=7873&rft_id=info:doi/10.1039%2FC4SM01123F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C4SM01123F |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-683X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-683X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-683X&client=summon |