Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly

Site‐to‐site variation in species composition (β‐diversity) generally increases from low‐ to high‐diversity regions. Although biogeographical differences in community assembly mechanisms may explain this pattern, random sampling effects can create this pattern through differences in regional species...

Full description

Saved in:
Bibliographic Details
Published inEcology letters Vol. 16; no. 2; pp. 151 - 157
Main Authors Myers, Jonathan A., Chase, Jonathan M., Jiménez, Iván, Jørgensen, Peter M., Araujo-Murakami, Alejandro, Paniagua-Zambrana, Narel, Seidel, Renate
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.02.2013
Blackwell
Subjects
Online AccessGet full text
ISSN1461-023X
1461-0248
1461-0248
DOI10.1111/ele.12021

Cover

Abstract Site‐to‐site variation in species composition (β‐diversity) generally increases from low‐ to high‐diversity regions. Although biogeographical differences in community assembly mechanisms may explain this pattern, random sampling effects can create this pattern through differences in regional species pools. Here, we compared assembly mechanisms between spatially extensive networks of temperate and tropical forest plots with highly divergent species pools (46 vs. 607 species). After controlling for sampling effects, β‐diversity of woody plants was similar and higher than expected by chance in both forests, reflecting strong intraspecific aggregation. However, different mechanisms appeared to explain aggregation in the two forests. In the temperate forest, aggregation reflected stronger environmental correlations, suggesting an important role for species‐sorting (e.g. environmental filtering) processes, whereas in the tropics, aggregation reflected stronger spatial correlations, more likely reflecting dispersal limitation. We suggest that biogeographical differences in the relative importance of different community assembly mechanisms contribute to these striking gradients in global biodiversity.
AbstractList Site-to-site variation in species composition (β-diversity) generally increases from low- to high-diversity regions. Although biogeographical differences in community assembly mechanisms may explain this pattern, random sampling effects can create this pattern through differences in regional species pools. Here, we compared assembly mechanisms between spatially extensive networks of temperate and tropical forest plots with highly divergent species pools (46 vs. 607 species). After controlling for sampling effects, β-diversity of woody plants was similar and higher than expected by chance in both forests, reflecting strong intraspecific aggregation. However, different mechanisms appeared to explain aggregation in the two forests. In the temperate forest, aggregation reflected stronger environmental correlations, suggesting an important role for species-sorting (e.g. environmental filtering) processes, whereas in the tropics, aggregation reflected stronger spatial correlations, more likely reflecting dispersal limitation. We suggest that biogeographical differences in the relative importance of different community assembly mechanisms contribute to these striking gradients in global biodiversity.
Site-to-site variation in species composition (β-diversity) generally increases from low- to high-diversity regions. Although biogeographical differences in community assembly mechanisms may explain this pattern, random sampling effects can create this pattern through differences in regional species pools. Here, we compared assembly mechanisms between spatially extensive networks of temperate and tropical forest plots with highly divergent species pools (46 vs. 607 species). After controlling for sampling effects, β-diversity of woody plants was similar and higher than expected by chance in both forests, reflecting strong intraspecific aggregation. However, different mechanisms appeared to explain aggregation in the two forests. In the temperate forest, aggregation reflected stronger environmental correlations, suggesting an important role for species-sorting (e.g. environmental filtering) processes, whereas in the tropics, aggregation reflected stronger spatial correlations, more likely reflecting dispersal limitation. We suggest that biogeographical differences in the relative importance of different community assembly mechanisms contribute to these striking gradients in global biodiversity.Site-to-site variation in species composition (β-diversity) generally increases from low- to high-diversity regions. Although biogeographical differences in community assembly mechanisms may explain this pattern, random sampling effects can create this pattern through differences in regional species pools. Here, we compared assembly mechanisms between spatially extensive networks of temperate and tropical forest plots with highly divergent species pools (46 vs. 607 species). After controlling for sampling effects, β-diversity of woody plants was similar and higher than expected by chance in both forests, reflecting strong intraspecific aggregation. However, different mechanisms appeared to explain aggregation in the two forests. In the temperate forest, aggregation reflected stronger environmental correlations, suggesting an important role for species-sorting (e.g. environmental filtering) processes, whereas in the tropics, aggregation reflected stronger spatial correlations, more likely reflecting dispersal limitation. We suggest that biogeographical differences in the relative importance of different community assembly mechanisms contribute to these striking gradients in global biodiversity.
Site-to-site variation in species composition ([beta]-diversity) generally increases from low- to high-diversity regions. Although biogeographical differences in community assembly mechanisms may explain this pattern, random sampling effects can create this pattern through differences in regional species pools. Here, we compared assembly mechanisms between spatially extensive networks of temperate and tropical forest plots with highly divergent species pools (46 vs. 607 species). After controlling for sampling effects, [beta]-diversity of woody plants was similar and higher than expected by chance in both forests, reflecting strong intraspecific aggregation. However, different mechanisms appeared to explain aggregation in the two forests. In the temperate forest, aggregation reflected stronger environmental correlations, suggesting an important role for species-sorting (e.g. environmental filtering) processes, whereas in the tropics, aggregation reflected stronger spatial correlations, more likely reflecting dispersal limitation. We suggest that biogeographical differences in the relative importance of different community assembly mechanisms contribute to these striking gradients in global biodiversity. [PUBLICATION ABSTRACT]
Site-to-site variation in species composition ( beta -diversity) generally increases from low- to high-diversity regions. Although biogeographical differences in community assembly mechanisms may explain this pattern, random sampling effects can create this pattern through differences in regional species pools. Here, we compared assembly mechanisms between spatially extensive networks of temperate and tropical forest plots with highly divergent species pools (46 vs. 607 species). After controlling for sampling effects, beta -diversity of woody plants was similar and higher than expected by chance in both forests, reflecting strong intraspecific aggregation. However, different mechanisms appeared to explain aggregation in the two forests. In the temperate forest, aggregation reflected stronger environmental correlations, suggesting an important role for species-sorting (e.g. environmental filtering) processes, whereas in the tropics, aggregation reflected stronger spatial correlations, more likely reflecting dispersal limitation. We suggest that biogeographical differences in the relative importance of different community assembly mechanisms contribute to these striking gradients in global biodiversity.
Author Jiménez, Iván
Chase, Jonathan M.
Jørgensen, Peter M.
Araujo-Murakami, Alejandro
Myers, Jonathan A.
Paniagua-Zambrana, Narel
Seidel, Renate
Author_xml – sequence: 1
  givenname: Jonathan A.
  surname: Myers
  fullname: Myers, Jonathan A.
  email: jamyers@wustl.edu
  organization: Department of Biology and Tyson Research Center, Washington University, Missouri, 63130, Saint Louis, USA
– sequence: 2
  givenname: Jonathan M.
  surname: Chase
  fullname: Chase, Jonathan M.
  organization: Department of Biology and Tyson Research Center, Washington University, Missouri, 63130, Saint Louis, USA
– sequence: 3
  givenname: Iván
  surname: Jiménez
  fullname: Jiménez, Iván
  organization: Missouri Botanical Garden, P.O. Box 299, Missouri, 63166, Saint Louis, USA
– sequence: 4
  givenname: Peter M.
  surname: Jørgensen
  fullname: Jørgensen, Peter M.
  organization: Missouri Botanical Garden, P.O. Box 299, Missouri, 63166, Saint Louis, USA
– sequence: 5
  givenname: Alejandro
  surname: Araujo-Murakami
  fullname: Araujo-Murakami, Alejandro
  organization: Museo de Historia Natural Noel Kempff Mercado, Herbario, Facultad de Ciéncias Agrícolas, Universidad Autónoma Gabriel René Moreno, Casilla 2489, Santa Cruz, Bolivia
– sequence: 6
  givenname: Narel
  surname: Paniagua-Zambrana
  fullname: Paniagua-Zambrana, Narel
  organization: Herbario Nacional de Bolivia, Universidad Mayor de San Andrés, Casilla 10077 - Correo Central, La Paz, Bolivia
– sequence: 7
  givenname: Renate
  surname: Seidel
  fullname: Seidel, Renate
  organization: Herbario Nacional de Bolivia, Universidad Mayor de San Andrés, Casilla 10077 - Correo Central, La Paz, Bolivia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26853493$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23113954$$D View this record in MEDLINE/PubMed
BookMark eNqNkVFrFDEUhYNUbLv64B-QARHqw7S5k8kk81i3a1UWRVD0Ldxm7mBqZrIms-r-e1N3t0JRMARyH75zuDnnmB2MYSTGHgM_hXzOyNMpVLyCe-wI6gZKXtX64HYWnw_ZcUrXnEPVKnjADisBIFpZHzF6QROWnftOMblpU7ixmGhYUcSJChy7Yoph5Sz6og-R0pSKSL0nm4fOpeQG5zEWA9kvOLo0pCL0hQ3DsB5v3DAlGq785iG736NP9Gj3ztjHl4sP81fl8t3l6_n5srRSSih10yolwFaibrSGBgXWNSeUWgEJ3nZUoxZVy4l3oLrGUtVDixx1D8B7EDN2svVdxfBtndc1g0uWvMeRwjoZqLQELrSS_4EqIXUj8p2xp3fQ67COY_5IpppWVtC2KlNPdtT6aqDOrKIbMG7MPusMPNsBmHKgfcTRuvSHa7QUdSsyd7blbAwp5biNdRNOLoxTROcNcHPTusmtm9-tZ8XzO4q96d_YnfsP52nzb9Aslou9otwqXJro560C41fTKKGk-fT20ig9v1Dv50vzRvwCosnInQ
CitedBy_id crossref_primary_10_1007_s00027_019_0634_3
crossref_primary_10_1128_MMBR_00002_17
crossref_primary_10_1134_S1067413618010046
crossref_primary_10_1890_14_0392_1
crossref_primary_10_1111_ele_12787
crossref_primary_10_1186_s12898_018_0177_9
crossref_primary_10_1080_20442041_2023_2213630
crossref_primary_10_1016_j_polar_2025_101164
crossref_primary_10_1111_jvs_13032
crossref_primary_10_1016_j_scitotenv_2018_07_019
crossref_primary_10_1038_s41467_020_19228_4
crossref_primary_10_1002_ldr_2885
crossref_primary_10_1038_s41467_022_32063_z
crossref_primary_10_1016_j_gecco_2021_e01487
crossref_primary_10_1002_ece3_10607
crossref_primary_10_1111_jvs_12628
crossref_primary_10_1002_ldr_4382
crossref_primary_10_1007_s10980_017_0591_y
crossref_primary_10_1139_cjfas_2016_0049
crossref_primary_10_1371_journal_pone_0245249
crossref_primary_10_1093_ismeco_ycaf025
crossref_primary_10_1007_s11676_019_00918_9
crossref_primary_10_1016_j_ufug_2023_127919
crossref_primary_10_1111_ddi_13708
crossref_primary_10_1111_oik_02803
crossref_primary_10_3390_f13060923
crossref_primary_10_1111_ecog_06538
crossref_primary_10_3389_fevo_2023_1199874
crossref_primary_10_1111_fwb_14011
crossref_primary_10_3354_meps12378
crossref_primary_10_1016_j_biocon_2019_07_015
crossref_primary_10_1111_1744_7917_12442
crossref_primary_10_1111_1365_2656_12903
crossref_primary_10_1111_1365_2745_13570
crossref_primary_10_3389_fmicb_2022_1018077
crossref_primary_10_1111_geb_12331
crossref_primary_10_1093_jpe_rty026
crossref_primary_10_1111_avsc_70000
crossref_primary_10_1111_fwb_12870
crossref_primary_10_1002_eap_1562
crossref_primary_10_1111_mec_17516
crossref_primary_10_3390_f10100863
crossref_primary_10_1111_ele_12642
crossref_primary_10_1139_cjfas_2016_0066
crossref_primary_10_1111_ele_12647
crossref_primary_10_1371_journal_pone_0121458
crossref_primary_10_1007_s10531_016_1228_1
crossref_primary_10_1111_1365_2745_13126
crossref_primary_10_3389_fevo_2022_1008477
crossref_primary_10_1111_jvs_12761
crossref_primary_10_1002_ece3_7926
crossref_primary_10_1111_1744_7917_12575
crossref_primary_10_1590_0102_33062020abb0064
crossref_primary_10_1111_1365_2745_12153
crossref_primary_10_1111_jvs_12649
crossref_primary_10_1111_ddi_12992
crossref_primary_10_1029_2024WR037194
crossref_primary_10_3389_fpls_2019_00294
crossref_primary_10_1002_ece3_10993
crossref_primary_10_1098_rstb_2015_0279
crossref_primary_10_1093_femsec_fix031
crossref_primary_10_1111_jvs_13183
crossref_primary_10_3390_f11010043
crossref_primary_10_1016_j_geoderma_2019_114004
crossref_primary_10_1111_ele_13188
crossref_primary_10_3897_subtbiol_16_5470
crossref_primary_10_1002_ldr_4595
crossref_primary_10_1016_j_gecco_2024_e03378
crossref_primary_10_1002_ecy_2220
crossref_primary_10_1111_1365_2745_12267
crossref_primary_10_1016_j_soilbio_2020_108023
crossref_primary_10_1093_jpe_rtx072
crossref_primary_10_1111_1365_2656_13417
crossref_primary_10_1038_srep12731
crossref_primary_10_1111_gcb_14090
crossref_primary_10_3389_fevo_2019_00128
crossref_primary_10_1038_s41598_018_35410_7
crossref_primary_10_1016_j_ecoleng_2019_07_013
crossref_primary_10_1080_17550874_2023_2277282
crossref_primary_10_1111_1462_2920_15653
crossref_primary_10_1371_journal_pone_0109870
crossref_primary_10_1890_14_0145_1
crossref_primary_10_1111_ddi_12763
crossref_primary_10_3390_f10040332
crossref_primary_10_1111_oik_10367
crossref_primary_10_1007_s00442_019_04555_1
crossref_primary_10_1007_s11284_015_1313_z
crossref_primary_10_1111_jvs_13110
crossref_primary_10_1007_s00338_023_02418_z
crossref_primary_10_1016_j_ympev_2016_08_008
crossref_primary_10_1111_mec_14346
crossref_primary_10_1111_aec_12798
crossref_primary_10_1111_jvs_12820
crossref_primary_10_1093_jpe_rty053
crossref_primary_10_1016_j_ecolmodel_2014_06_006
crossref_primary_10_1111_ddi_13290
crossref_primary_10_1002_ecs2_2413
crossref_primary_10_1007_s42729_023_01425_x
crossref_primary_10_1016_j_baae_2014_07_003
crossref_primary_10_1016_j_pld_2024_11_003
crossref_primary_10_1086_676991
crossref_primary_10_1111_jvs_12708
crossref_primary_10_1016_j_fecs_2022_100062
crossref_primary_10_1002_ecs2_4819
crossref_primary_10_3389_fmars_2021_780268
crossref_primary_10_1111_ele_14019
crossref_primary_10_1016_j_ppees_2016_09_006
crossref_primary_10_1890_14_0695_1
crossref_primary_10_1111_oik_02604
crossref_primary_10_1002_ecs2_70115
crossref_primary_10_1111_jbi_13404
crossref_primary_10_1002_ece3_7711
crossref_primary_10_1111_1365_2656_13752
crossref_primary_10_1002_ecy_3774
crossref_primary_10_1002_ecy_2441
crossref_primary_10_1093_gigascience_giac040
crossref_primary_10_1111_jbi_13535
crossref_primary_10_3389_fevo_2022_788184
crossref_primary_10_1002_ecs2_3296
crossref_primary_10_1016_j_chnaes_2022_08_003
crossref_primary_10_1002_ecy_4189
crossref_primary_10_1111_1365_2745_13253
crossref_primary_10_3897_phytokeys_153_53637
crossref_primary_10_1111_oik_05329
crossref_primary_10_1002_ecm_1588
crossref_primary_10_1016_j_scitotenv_2025_178977
crossref_primary_10_1038_s41467_021_23236_3
crossref_primary_10_3390_f13122184
crossref_primary_10_1007_s10457_017_0144_z
crossref_primary_10_1111_geb_13101
crossref_primary_10_1016_j_jes_2024_06_042
crossref_primary_10_1007_s10980_023_01616_y
crossref_primary_10_3390_f14112138
crossref_primary_10_1002_ecs2_1310
crossref_primary_10_1111_avsc_12514
crossref_primary_10_1111_ddi_12781
crossref_primary_10_1038_srep17043
crossref_primary_10_1111_oik_03969
crossref_primary_10_1111_ele_13372
crossref_primary_10_1016_j_fecs_2022_100035
crossref_primary_10_1016_j_ppees_2016_10_001
crossref_primary_10_1111_jbi_13517
crossref_primary_10_1007_s00442_021_04925_8
crossref_primary_10_1002_ecs2_4253
crossref_primary_10_1111_1365_2745_14132
crossref_primary_10_1111_jvs_13017
crossref_primary_10_1111_ddi_13076
crossref_primary_10_1111_brv_12300
crossref_primary_10_1038_s41559_017_0225_4
crossref_primary_10_1111_ele_13269
crossref_primary_10_1111_1365_2435_13079
crossref_primary_10_1002_ece3_3493
crossref_primary_10_1086_729423
crossref_primary_10_1007_s11284_017_1555_z
crossref_primary_10_3389_fmicb_2022_929772
crossref_primary_10_3389_fpls_2024_1285787
crossref_primary_10_1098_rspb_2020_3045
crossref_primary_10_3390_f10121115
crossref_primary_10_5424_fs_2024331_20575
crossref_primary_10_3389_fpls_2023_1243209
crossref_primary_10_1111_1365_2745_14487
crossref_primary_10_1111_avsc_12070
crossref_primary_10_3389_fpls_2016_01533
crossref_primary_10_1016_j_biocon_2016_07_017
crossref_primary_10_1111_jvs_12977
crossref_primary_10_7717_peerj_6746
crossref_primary_10_1111_geb_13442
crossref_primary_10_1086_712565
crossref_primary_10_1016_j_actao_2015_06_006
crossref_primary_10_1038_srep35926
crossref_primary_10_1002_ece3_8710
crossref_primary_10_1111_jbi_13739
crossref_primary_10_1007_s10750_020_04484_8
crossref_primary_10_1016_j_baae_2019_08_005
crossref_primary_10_1111_jvs_12583
crossref_primary_10_1371_journal_pone_0235733
crossref_primary_10_1186_s12983_022_00455_y
crossref_primary_10_1002_ece3_4913
crossref_primary_10_1371_journal_pone_0253284
crossref_primary_10_1111_jvs_12586
crossref_primary_10_1007_s10980_015_0206_4
crossref_primary_10_3389_fevo_2022_1034829
crossref_primary_10_3390_d15040507
crossref_primary_10_1002_ecm_1394
crossref_primary_10_1111_jbi_14156
crossref_primary_10_1111_ecog_07111
crossref_primary_10_1002_lno_12429
crossref_primary_10_3389_fmicb_2022_996305
crossref_primary_10_1016_j_heliyon_2022_e11163
crossref_primary_10_1111_1462_2920_15337
crossref_primary_10_1371_journal_pone_0188300
crossref_primary_10_1016_j_ecolind_2021_108261
crossref_primary_10_1111_ddi_13781
crossref_primary_10_1111_avsc_12641
crossref_primary_10_1111_aec_12641
crossref_primary_10_1111_oik_10158
crossref_primary_10_1111_ecog_05726
crossref_primary_10_1016_j_foreco_2021_119452
crossref_primary_10_1073_pnas_1709584114
crossref_primary_10_1002_ece3_4248
crossref_primary_10_1007_s00227_018_3356_5
crossref_primary_10_1007_s00027_022_00859_2
crossref_primary_10_1111_1365_2745_14140
crossref_primary_10_1007_s11368_022_03329_2
crossref_primary_10_1088_1748_9326_ac592c
crossref_primary_10_1038_srep27087
crossref_primary_10_1038_ncomms13960
crossref_primary_10_1111_ecog_02809
crossref_primary_10_1007_s11629_020_6479_3
crossref_primary_10_1007_s42832_019_0013_y
crossref_primary_10_1111_geb_13139
crossref_primary_10_1016_j_ecolind_2024_112111
crossref_primary_10_1111_ddi_13793
crossref_primary_10_1890_15_1673_1
crossref_primary_10_1016_j_soilbio_2022_108635
crossref_primary_10_1371_journal_pone_0210890
crossref_primary_10_1111_jvs_12482
crossref_primary_10_1111_1365_2745_12436
crossref_primary_10_1111_ecog_00860
crossref_primary_10_1111_ecog_00982
crossref_primary_10_1016_j_gecco_2018_e00433
crossref_primary_10_3390_f10111003
crossref_primary_10_1007_s00442_014_3111_7
crossref_primary_10_1111_gcb_70097
crossref_primary_10_1111_jbi_13722
crossref_primary_10_1111_fwb_13699
crossref_primary_10_1111_jbi_14131
crossref_primary_10_1007_s10531_024_02781_5
crossref_primary_10_1002_ecs2_2399
crossref_primary_10_1007_s11258_019_00957_6
crossref_primary_10_1111_geb_13251
crossref_primary_10_1086_701755
crossref_primary_10_1111_fwb_12926
crossref_primary_10_1007_s00572_022_01072_7
crossref_primary_10_1111_ddi_13205
crossref_primary_10_1007_s13157_019_01182_7
crossref_primary_10_1002_ecs2_1847
crossref_primary_10_3732_ajb_1500079
crossref_primary_10_1111_oik_02426
crossref_primary_10_1016_j_foreco_2024_122329
crossref_primary_10_1111_btp_12140
crossref_primary_10_1002_ecy_1534
crossref_primary_10_1111_ele_12494
crossref_primary_10_1111_geb_12719
crossref_primary_10_1002_ecy_3835
crossref_primary_10_1111_ecog_05986
crossref_primary_10_1002_ece3_1313
crossref_primary_10_1007_s00442_018_4060_3
crossref_primary_10_1016_j_jenvman_2018_04_059
crossref_primary_10_1080_07929978_2016_1255020
crossref_primary_10_1016_j_ppees_2015_01_002
crossref_primary_10_1111_oik_10968
crossref_primary_10_1126_sciadv_aav3223
crossref_primary_10_3390_f15081441
crossref_primary_10_1146_annurev_ecolsys_120213_091759
crossref_primary_10_1186_s40663_020_0214_y
crossref_primary_10_1038_s43247_024_01273_2
crossref_primary_10_1111_geb_12278
crossref_primary_10_1002_rra_4227
crossref_primary_10_17221_78_2020_JFS
crossref_primary_10_1111_jvs_12819
crossref_primary_10_1371_journal_pone_0131162
crossref_primary_10_1098_rsos_181168
crossref_primary_10_1007_s10342_019_01220_3
crossref_primary_10_3390_f15061056
crossref_primary_10_1002_ece3_3068
crossref_primary_10_1016_j_scitotenv_2023_167545
crossref_primary_10_3389_fevo_2021_622148
crossref_primary_10_1016_j_tree_2018_04_012
crossref_primary_10_1111_boj_12495
crossref_primary_10_1016_j_ecoleng_2020_106092
crossref_primary_10_1111_avsc_12101
crossref_primary_10_1007_s10980_024_01819_x
crossref_primary_10_1016_j_gecco_2024_e02938
crossref_primary_10_1016_j_ecolind_2022_109291
crossref_primary_10_1016_j_jenvman_2024_120490
crossref_primary_10_1016_j_scitotenv_2023_164270
crossref_primary_10_1111_avsc_12686
crossref_primary_10_1111_geb_12413
crossref_primary_10_1016_j_scitotenv_2019_135301
crossref_primary_10_1038_srep24965
crossref_primary_10_1098_rspb_2023_2768
crossref_primary_10_1111_ele_14098
crossref_primary_10_1016_j_jnc_2014_07_005
crossref_primary_10_1111_jbi_12839
crossref_primary_10_1111_mec_14731
crossref_primary_10_1002_ece3_745
crossref_primary_10_1016_j_ecolind_2022_109736
crossref_primary_10_1111_1365_2745_13530
crossref_primary_10_1002_ecy_3014
crossref_primary_10_1038_s41598_017_17736_w
crossref_primary_10_52547_ifej_8_15_146
crossref_primary_10_1016_j_gecco_2024_e03239
crossref_primary_10_1002_ecs2_4542
crossref_primary_10_1016_j_gecco_2021_e01956
crossref_primary_10_1080_17550874_2024_2352372
crossref_primary_10_1016_j_scitotenv_2024_171741
crossref_primary_10_1017_S0266467422000426
crossref_primary_10_1371_journal_pone_0185763
crossref_primary_10_1007_s10021_023_00844_2
crossref_primary_10_1016_j_apsoil_2023_105027
crossref_primary_10_1016_j_jenvman_2024_120265
crossref_primary_10_1016_j_tree_2024_10_004
crossref_primary_10_1111_ecog_02607
crossref_primary_10_1890_13_2153_1
crossref_primary_10_1371_journal_pone_0172495
crossref_primary_10_3389_fpls_2018_01000
crossref_primary_10_2478_forj_2021_0012
crossref_primary_10_1111_jbi_14217
crossref_primary_10_1111_jbi_14332
crossref_primary_10_1016_j_tree_2017_02_020
crossref_primary_10_3390_f16010006
crossref_primary_10_1111_j_1600_0587_2013_00244_x
crossref_primary_10_1111_2041_210X_13531
crossref_primary_10_1002_ecs2_2358
crossref_primary_10_1111_oik_03690
crossref_primary_10_1098_rspb_2017_0947
crossref_primary_10_3389_fmicb_2018_00569
crossref_primary_10_1086_731905
crossref_primary_10_1016_j_gecco_2021_e01739
crossref_primary_10_3897_VCS_134621
crossref_primary_10_1016_j_ecolind_2016_02_035
crossref_primary_10_1016_j_flora_2016_01_005
crossref_primary_10_1111_plb_12253
crossref_primary_10_3390_f14081536
crossref_primary_10_1111_rec_12856
crossref_primary_10_3354_meps13129
crossref_primary_10_1007_s00442_014_3170_9
crossref_primary_10_1111_jbi_13235
crossref_primary_10_1139_cjz_2019_0008
crossref_primary_10_1111_ecog_07048
crossref_primary_10_1007_s00442_020_04671_3
crossref_primary_10_1111_j_1600_0587_2013_00546_x
crossref_primary_10_1016_j_ecolind_2020_106330
crossref_primary_10_7717_peerj_6220
crossref_primary_10_1371_journal_pone_0223880
crossref_primary_10_3390_f14030553
crossref_primary_10_1111_1365_2664_14754
crossref_primary_10_1371_journal_pone_0095244
crossref_primary_10_3390_f11101106
crossref_primary_10_1007_s00035_019_00229_z
crossref_primary_10_1002_ecs2_70061
crossref_primary_10_1111_icad_12251
crossref_primary_10_3390_f11111140
Cites_doi 10.1146/annurev.ecolsys.39.110707.173430
10.1046/j.1466-822X.2003.00056.x
10.1126/science.1160662
10.1890/07-0986.1
10.1126/science.1187820
10.1111/j.1461-0248.2010.01552.x
10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2
10.1111/j.1466‐8238.2012.00770.x
10.1126/science.1078037
10.1111/j.1461-0248.2005.00820.x
10.1038/nature00809
10.1126/science.283.5401.554
10.1890/0012-9658(2001)082[2101:DADOTS]2.0.CO;2
10.1890/06-1730.1
10.1086/378901
10.1890/09-0392.1
10.1111/j.1461-0248.2011.01589.x
10.1111/j.1365-2699.2011.02585.x
10.1111/j.1365-2745.2007.01233.x
10.1890/09-1841.1
10.1007/s12080-011-0113-5
10.1006/jtbi.1995.0170
10.7208/chicago/9780226101811.001.0001
10.1371/journal.pone.0020906
10.1111/j.1654-1103.2009.01151.x
10.1126/science.337.6092.285
10.1890/0012-9658(2006)87[2603:SMIETF]2.0.CO;2
10.1111/j.1600-0587.2009.06105.x
10.1073/pnas.0604666104
10.1890/0012-9658(1999)080[1475:SDNAFP]2.0.CO;2
10.1111/j.1461-0248.2007.01066.x
10.1126/science.1220269
10.1098/rstb.2011.0063
10.1890/03-3111
10.1126/science.1066854
10.1038/nature04534
10.1073/pnas.0400814101
10.1126/science.288.5470.1414
10.1111/j.1541-0420.2005.00440.x
10.1111/j.1472-4642.2007.00361.x
10.1038/35006630
10.1126/science.1208584
10.1038/nature05884
10.1126/science.235.4785.167
10.1890/07-1880.1
10.1002/joc.1276
ContentType Journal Article
Copyright 2012 Blackwell Publishing Ltd/CNRS
2014 INIST-CNRS
2012 Blackwell Publishing Ltd/CNRS.
Copyright © 2013 Blackwell Publishing Ltd/CNRS
Copyright_xml – notice: 2012 Blackwell Publishing Ltd/CNRS
– notice: 2014 INIST-CNRS
– notice: 2012 Blackwell Publishing Ltd/CNRS.
– notice: Copyright © 2013 Blackwell Publishing Ltd/CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7X8
7ST
7U6
DOI 10.1111/ele.12021
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Ecology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environmental Sciences and Pollution Management
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitleList MEDLINE
MEDLINE - Academic
Entomology Abstracts

Ecology Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Forestry
EISSN 1461-0248
Editor Cornell, Howard
Editor_xml – sequence: 8
  givenname: Howard
  surname: Cornell
  fullname: Cornell, Howard
EndPage 157
ExternalDocumentID 2865893051
23113954
26853493
10_1111_ele_12021
ELE12021
ark_67375_WNG_78CD7QCL_J
Genre letter
Research Support, U.S. Gov't, Non-P.H.S
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Feature
GeographicLocations South America
America
Amazon Basin
Bolivia
Missouri
GeographicLocations_xml – name: Bolivia
– name: Missouri
GrantInformation_xml – fundername: National Science Foundation
  funderid: DEB 0101775; Grant EF‐0553768
– fundername: Washington University's Tyson Research Center
– fundername: RRD VA
  grantid: IK6 RX002477
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACGOD
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
N~3
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHHS
ABTAH
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ESX
WRC
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7X8
7ST
7U6
ID FETCH-LOGICAL-c5551-8697731c23468816a3a440ea5871e309de4a83290e0d17d6ce2f19a0a8f110f13
IEDL.DBID DR2
ISSN 1461-023X
1461-0248
IngestDate Fri Jul 11 15:55:20 EDT 2025
Fri Jul 11 15:34:24 EDT 2025
Fri Jul 25 10:53:01 EDT 2025
Thu Apr 03 07:00:07 EDT 2025
Mon Jul 21 09:13:29 EDT 2025
Tue Jul 01 02:29:39 EDT 2025
Thu Apr 24 22:57:25 EDT 2025
Wed Jan 22 16:32:51 EST 2025
Sun Sep 21 06:29:10 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Filtering
intraspecific aggregation
beta-diversity
Beta diversity
Tropical forest
Dispersion
Sorting
Aggregation
species pool
dispersal limitation
Ozarks
environmental filtering
Amazonia
species sorting
Temperate forests
Community
community assembly
metacommunity
Language English
License CC BY 4.0
2012 Blackwell Publishing Ltd/CNRS.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5551-8697731c23468816a3a440ea5871e309de4a83290e0d17d6ce2f19a0a8f110f13
Notes istex:EEEEE884BB9A72EF198834811ACB1CB124822EC5
ark:/67375/WNG-78CD7QCL-J
National Science Foundation - No. DEB 0101775; No. Grant EF-0553768
Washington University's Tyson Research Center
ArticleID:ELE12021
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ele.12021
PMID 23113954
PQID 1269521997
PQPubID 32390
PageCount 7
ParticipantIDs proquest_miscellaneous_1285103875
proquest_miscellaneous_1273586386
proquest_journals_1269521997
pubmed_primary_23113954
pascalfrancis_primary_26853493
crossref_citationtrail_10_1111_ele_12021
crossref_primary_10_1111_ele_12021
wiley_primary_10_1111_ele_12021_ELE12021
istex_primary_ark_67375_WNG_78CD7QCL_J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2013
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: February 2013
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
– name: Paris
PublicationTitle Ecology letters
PublicationTitleAlternate Ecol Lett
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Crist, T.O., Veech, J.A., Gering, J.C. & Summerville, K.S. (2003). Partitioning species diversity across landscapes and regions: a hierarchical analysis of alpha, beta, and gamma diversity. Am. Nat., 162, 734-743.
Hubbell, S.P., Foster, R.B., O'Brien, S.T., Harms, K.E., Condit, R., Wechsler, B. et al. (1999). Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science, 283, 554-557.
Chase, J.M. & Leibold, M.A. (2003). Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press, Chicago.
Borcard, D., Legendre, P., Avois-Jacquet, C. & Tuomisto, H. (2004). Dissecting the spatial structure of ecological data at multiple scales. Ecology, 85, 1826-1832.
DeCáceres, M., Legendre, P., Valencia, R., Cao, M., Chang, L., Chuyong, G. et al. (2012). The variation of tree beta diversity across a global network of forest plots. Global Ecol. Biogeogr., DOI: 10.1111/j.1466-8238.2012.00770.x.
Ricklefs, R.E. (1987). Community diversity - relative roles of local and regional processes. Science, 235, 167-171.
Hille Ris Lambers, J., Clark, J.S. & Beckage, B. (2002). Density-dependent mortality and the latitudinal gradient in species diversity. Nature, 417, 732-735.
Qian, H. & Ricklefs, R.E. (2007). A latitudinal gradient in large-scale beta diversity for vascular plants in North America. Ecol. Lett., 10, 737-744.
R Core Development Team (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL Available at: http://www.R-project.org/. Last accessed 25 August 2012.
Clark, J.S., Silman, M., Kern, R., Macklin, E. & Hille Ris Lambers, J. (1999). Seed dispersal near and far: patterns across temperate and tropical forests. Ecology, 80, 1475-1494.
Smith, T.W. & Lundholm, J.T. (2010). Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography, 33, 648-655.
Freestone, A.L. & Osman, R.W. (2011). Latitudinal variation in local interactions and regional enrichment shape patterns of marine community diversity. Ecology, 92, 208-217.
John, R., Dalling, J.W., Harms, K.E., Yavitt, J.B., Stallard, R.F., Mirabello, M. et al. (2007). Soil nutrients influence spatial distributions of tropical tree species. Proc. Natl Acad. Sci. USA, 104, 864-869.
Anderson, M.J. (2006). Distance-based tests for homogeneity of multivariate dispersions. Biometrics, 62, 245-253.
Blanchet, F.G., Legendre, P. & Borcard, D. (2008). Forward selection of explanatory variables. Ecology, 89, 2623-2632.
Higgins, M.A., Ruokolainen, K., Tuomisto, H., Llerena, N., Cardenas, G., Phillips, O.L. et al. (2011). Geological control of floristic composition in Amazonian forests. J. Biogeogr., 38, 2136-2149.
Condit, R., Ashton, P.S., Baker, P., Bunyavejchewin, S., Gunatilleke, S., Gunatilleke, N. et al. (2000). Spatial patterns in the distribution of tropical tree species. Science, 288, 1414-1418.
Cottenie, K. (2005). Integrating environmental and spatial processes in ecological community dynamics. Ecol. Lett., 8, 1175-1182.
Kraft, N.J.B., Valencia, R. & Ackerly, D.D. (2008). Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580-582.
Anderson, M.J., Crist, T.O., Chase, J.M., Vellend, M., Inouye, B.D., Freestone, A.L. et al. (2011). Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecol. Lett., 14, 19-28.
Chase, J.M. & Myers, J.A. (2011). Disentangling the importance of ecological niches from stochastic processes across scales. Phil. Trans. Roy. Soc. B., 366, 2351-2363.
Gilbert, G.S., Howard, E., Ayala-Orozco, B., Bonilla-Moheno, M., Cummings, J., Langridge, S. et al. (2010). Beyond the tropics: forest structure in a temperate forest mapped plot. J. Veg. Sci., 21, 388-405.
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25, 1965-1978.
Peres-Neto, P.R., Legendre, P., Dray, S. & Borcard, D. (2006). Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology, 87, 2614-2625.
Kraft, N.J.B., Comita, L.S., Chase, J.M., Sanders, N.J., Swenson, N.G., Crist, T.O. et al. (2011). Disentangling the drivers of β-diversity along latitudinal and elevational gradients. Science, 333, 1755-1758.
Dyer, L.A., Singer, M.S., Lill, J.T., Stireman, J.O., Gentry, G.L., Marquis, R.J. et al. (2007). Host specificity of Lepidoptera in tropical and temperate forests. Nature, 448, 696-699.
Korhonen, J.J., Soininen, J. & Hillebrand, H. (2010). A quantitative analysis of temporal turnover in aquatic species assemblages across ecosystems. Ecology, 91, 508-517.
Harms, K.E., Wright, S.J., Calderon, O., Hernandez, A. & Herre, E.A. (2000). Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature, 404, 493-495.
Leprieur, F., Tedesco, P.A., Hugueny, B., Beauchard, O., Durr, H.H., Brosse, S. et al. (2011). Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecol. Lett., 14, 325-334.
Chase, J.M. (2010). Stochastic community assembly causes higher biodiversity in more productive environments. Science, 328, 1388-1391.
Tuomisto, H., Ruokolainen, K. & Yli-Halla, M. (2003). Dispersal, environment, and floristic variation of western Amazonian forests. Science, 299, 241-244.
Condit, R., Pitman, N., Leigh, E.G., Chave, J., Terborgh, J., Foster, R.B. et al. (2002). Beta-diversity in tropical forest trees. Science, 295, 666-669.
Dornelas, M., Connolly, S.R. & Hughes, T.P. (2006). Coral reef diversity refutes the neutral theory of biodiversity. Nature, 440, 80-82.
Passy, S.I. & Blanchet, F.G. (2007). Algal communities in human-impacted stream ecosystems suffer beta-diversity decline. Divers. Distrib., 13, 670-679.
Koleff, P., Lennon, J.J. & Gaston, K.J. (2003). Are there latitudinal gradients in species turnover? Global Ecol. Biogeogr., 12, 483-498.
Pitman, N.C.A., Terborgh, J.W., Silman, M.R., Nunez, P., Neill, D.A., Ceron, C.E. et al. (2001). Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology, 82, 2101-2117.
Schemske, D.W., Mittelbach, G.G., Cornell, H.V., Sobel, J.M. & Roy, K. (2009). Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst., 40, 245-269.
Johnson, D.J., Beaulieu, W.T., Bever, J.D. & Clay, K. (2012). Conspecific negative density dependence and forest diversity. Science, 336, 904-907.
Griffith, D.A. & Peres-Neto, P.R. (2006). Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology, 87, 2603-2613.
Soininen, J., Lennon, J.J. & Hillebrand, H. (2007). A multivariate analysis of beta diversity across organisms and environments. Ecology, 88, 2830-2838.
Hubbell, S.P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, New Jersey.
Hurtt, G.C. & Pacala, S.W. (1995). The consequences of recruitment limitation - Reconciling chance, history and competitive differences between plants. J. Theor. Biol., 176, 1-12.
Gilbert, B. & Lechowicz, M.J. (2004). Neutrality, niches, and dispersal in a temperate forest understory. Proc. Natl Acad. Sci. USA, 101, 7651-7656.
Chisholm, R.A. & Pacala, S.W. (2011). Theory predicts a rapid transition from niche-structured to neutral biodiversity patterns across a speciation-rate gradient. Theor. Ecol., 4, 195-200.
Friedman-Rudovsky, J. (2012). Taking the measure of Madidi. Science, 377, 285-287.
Vellend, M., Verheyen, K., Flinn, K.M., Jacquemyn, H., Kolb, A., Van Calster, H. et al. (2007). Homogenization of forest plant communities and weakening of species-environment relationships via agricultural land use. J. Ecol., 95, 565-573.
Legendre, P., Mi, X.C., Ren, H.B., Ma, K.P., Yu, M.J., Sun, I.F. et al. (2009). Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology, 90, 663-674.
Stegen, J.C. & Hurlbert, A.H. (2011). Inferring ecological processes from taxonomic, phylogenetic and functional trait β-diversity. PLoS ONE, 6, e20906.
2004; 101
2007; 104
2010; 33
2004; 85
2011; 333
2007; 448
2009; 40
2012
2010; 328
2002; 295
1999; 283
2003
2007; 95
2011; 14
2002; 417
2008; 322
2011; 4
2011; 38
1995; 176
2007; 10
1999; 80
2011; 6
2003; 299
2007; 13
2005; 25
2003; 12
2010; 21
2001; 82
2011; 366
2006; 62
2012; 377
2001
2006; 87
1987; 235
2005; 8
2011; 92
2000; 404
2009; 90
2003; 162
2008; 89
2006; 440
2000; 288
2010; 91
2012; 336
2007; 88
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Hubbell S.P. (e_1_2_7_27_1) 2001
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
R Core Development Team (e_1_2_7_43_1) 2012
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – reference: Blanchet, F.G., Legendre, P. & Borcard, D. (2008). Forward selection of explanatory variables. Ecology, 89, 2623-2632.
– reference: Clark, J.S., Silman, M., Kern, R., Macklin, E. & Hille Ris Lambers, J. (1999). Seed dispersal near and far: patterns across temperate and tropical forests. Ecology, 80, 1475-1494.
– reference: Hurtt, G.C. & Pacala, S.W. (1995). The consequences of recruitment limitation - Reconciling chance, history and competitive differences between plants. J. Theor. Biol., 176, 1-12.
– reference: Anderson, M.J., Crist, T.O., Chase, J.M., Vellend, M., Inouye, B.D., Freestone, A.L. et al. (2011). Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecol. Lett., 14, 19-28.
– reference: Soininen, J., Lennon, J.J. & Hillebrand, H. (2007). A multivariate analysis of beta diversity across organisms and environments. Ecology, 88, 2830-2838.
– reference: Condit, R., Pitman, N., Leigh, E.G., Chave, J., Terborgh, J., Foster, R.B. et al. (2002). Beta-diversity in tropical forest trees. Science, 295, 666-669.
– reference: Dyer, L.A., Singer, M.S., Lill, J.T., Stireman, J.O., Gentry, G.L., Marquis, R.J. et al. (2007). Host specificity of Lepidoptera in tropical and temperate forests. Nature, 448, 696-699.
– reference: Leprieur, F., Tedesco, P.A., Hugueny, B., Beauchard, O., Durr, H.H., Brosse, S. et al. (2011). Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecol. Lett., 14, 325-334.
– reference: Chisholm, R.A. & Pacala, S.W. (2011). Theory predicts a rapid transition from niche-structured to neutral biodiversity patterns across a speciation-rate gradient. Theor. Ecol., 4, 195-200.
– reference: Friedman-Rudovsky, J. (2012). Taking the measure of Madidi. Science, 377, 285-287.
– reference: Kraft, N.J.B., Comita, L.S., Chase, J.M., Sanders, N.J., Swenson, N.G., Crist, T.O. et al. (2011). Disentangling the drivers of β-diversity along latitudinal and elevational gradients. Science, 333, 1755-1758.
– reference: Johnson, D.J., Beaulieu, W.T., Bever, J.D. & Clay, K. (2012). Conspecific negative density dependence and forest diversity. Science, 336, 904-907.
– reference: Gilbert, B. & Lechowicz, M.J. (2004). Neutrality, niches, and dispersal in a temperate forest understory. Proc. Natl Acad. Sci. USA, 101, 7651-7656.
– reference: Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25, 1965-1978.
– reference: Gilbert, G.S., Howard, E., Ayala-Orozco, B., Bonilla-Moheno, M., Cummings, J., Langridge, S. et al. (2010). Beyond the tropics: forest structure in a temperate forest mapped plot. J. Veg. Sci., 21, 388-405.
– reference: Passy, S.I. & Blanchet, F.G. (2007). Algal communities in human-impacted stream ecosystems suffer beta-diversity decline. Divers. Distrib., 13, 670-679.
– reference: Kraft, N.J.B., Valencia, R. & Ackerly, D.D. (2008). Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580-582.
– reference: Condit, R., Ashton, P.S., Baker, P., Bunyavejchewin, S., Gunatilleke, S., Gunatilleke, N. et al. (2000). Spatial patterns in the distribution of tropical tree species. Science, 288, 1414-1418.
– reference: Cottenie, K. (2005). Integrating environmental and spatial processes in ecological community dynamics. Ecol. Lett., 8, 1175-1182.
– reference: Peres-Neto, P.R., Legendre, P., Dray, S. & Borcard, D. (2006). Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology, 87, 2614-2625.
– reference: Vellend, M., Verheyen, K., Flinn, K.M., Jacquemyn, H., Kolb, A., Van Calster, H. et al. (2007). Homogenization of forest plant communities and weakening of species-environment relationships via agricultural land use. J. Ecol., 95, 565-573.
– reference: Pitman, N.C.A., Terborgh, J.W., Silman, M.R., Nunez, P., Neill, D.A., Ceron, C.E. et al. (2001). Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology, 82, 2101-2117.
– reference: Qian, H. & Ricklefs, R.E. (2007). A latitudinal gradient in large-scale beta diversity for vascular plants in North America. Ecol. Lett., 10, 737-744.
– reference: Chase, J.M. (2010). Stochastic community assembly causes higher biodiversity in more productive environments. Science, 328, 1388-1391.
– reference: Stegen, J.C. & Hurlbert, A.H. (2011). Inferring ecological processes from taxonomic, phylogenetic and functional trait β-diversity. PLoS ONE, 6, e20906.
– reference: Smith, T.W. & Lundholm, J.T. (2010). Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography, 33, 648-655.
– reference: R Core Development Team (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL Available at: http://www.R-project.org/. Last accessed 25 August 2012.
– reference: Tuomisto, H., Ruokolainen, K. & Yli-Halla, M. (2003). Dispersal, environment, and floristic variation of western Amazonian forests. Science, 299, 241-244.
– reference: Chase, J.M. & Myers, J.A. (2011). Disentangling the importance of ecological niches from stochastic processes across scales. Phil. Trans. Roy. Soc. B., 366, 2351-2363.
– reference: Hubbell, S.P., Foster, R.B., O'Brien, S.T., Harms, K.E., Condit, R., Wechsler, B. et al. (1999). Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science, 283, 554-557.
– reference: Korhonen, J.J., Soininen, J. & Hillebrand, H. (2010). A quantitative analysis of temporal turnover in aquatic species assemblages across ecosystems. Ecology, 91, 508-517.
– reference: Harms, K.E., Wright, S.J., Calderon, O., Hernandez, A. & Herre, E.A. (2000). Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature, 404, 493-495.
– reference: Legendre, P., Mi, X.C., Ren, H.B., Ma, K.P., Yu, M.J., Sun, I.F. et al. (2009). Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology, 90, 663-674.
– reference: Koleff, P., Lennon, J.J. & Gaston, K.J. (2003). Are there latitudinal gradients in species turnover? Global Ecol. Biogeogr., 12, 483-498.
– reference: Hubbell, S.P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, New Jersey.
– reference: Dornelas, M., Connolly, S.R. & Hughes, T.P. (2006). Coral reef diversity refutes the neutral theory of biodiversity. Nature, 440, 80-82.
– reference: Freestone, A.L. & Osman, R.W. (2011). Latitudinal variation in local interactions and regional enrichment shape patterns of marine community diversity. Ecology, 92, 208-217.
– reference: Ricklefs, R.E. (1987). Community diversity - relative roles of local and regional processes. Science, 235, 167-171.
– reference: Anderson, M.J. (2006). Distance-based tests for homogeneity of multivariate dispersions. Biometrics, 62, 245-253.
– reference: DeCáceres, M., Legendre, P., Valencia, R., Cao, M., Chang, L., Chuyong, G. et al. (2012). The variation of tree beta diversity across a global network of forest plots. Global Ecol. Biogeogr., DOI: 10.1111/j.1466-8238.2012.00770.x.
– reference: Chase, J.M. & Leibold, M.A. (2003). Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press, Chicago.
– reference: John, R., Dalling, J.W., Harms, K.E., Yavitt, J.B., Stallard, R.F., Mirabello, M. et al. (2007). Soil nutrients influence spatial distributions of tropical tree species. Proc. Natl Acad. Sci. USA, 104, 864-869.
– reference: Higgins, M.A., Ruokolainen, K., Tuomisto, H., Llerena, N., Cardenas, G., Phillips, O.L. et al. (2011). Geological control of floristic composition in Amazonian forests. J. Biogeogr., 38, 2136-2149.
– reference: Schemske, D.W., Mittelbach, G.G., Cornell, H.V., Sobel, J.M. & Roy, K. (2009). Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst., 40, 245-269.
– reference: Crist, T.O., Veech, J.A., Gering, J.C. & Summerville, K.S. (2003). Partitioning species diversity across landscapes and regions: a hierarchical analysis of alpha, beta, and gamma diversity. Am. Nat., 162, 734-743.
– reference: Griffith, D.A. & Peres-Neto, P.R. (2006). Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology, 87, 2603-2613.
– reference: Borcard, D., Legendre, P., Avois-Jacquet, C. & Tuomisto, H. (2004). Dissecting the spatial structure of ecological data at multiple scales. Ecology, 85, 1826-1832.
– reference: Hille Ris Lambers, J., Clark, J.S. & Beckage, B. (2002). Density-dependent mortality and the latitudinal gradient in species diversity. Nature, 417, 732-735.
– volume: 366
  start-page: 2351
  year: 2011
  end-page: 2363
  article-title: Disentangling the importance of ecological niches from stochastic processes across scales
  publication-title: Phil. Trans. Roy. Soc. B.
– volume: 33
  start-page: 648
  year: 2010
  end-page: 655
  article-title: Variation partitioning as a tool to distinguish between niche and neutral processes
  publication-title: Ecography
– volume: 295
  start-page: 666
  year: 2002
  end-page: 669
  article-title: Beta‐diversity in tropical forest trees
  publication-title: Science
– volume: 82
  start-page: 2101
  year: 2001
  end-page: 2117
  article-title: Dominance and distribution of tree species in upper Amazonian terra firme forests
  publication-title: Ecology
– volume: 14
  start-page: 325
  year: 2011
  end-page: 334
  article-title: Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes
  publication-title: Ecol. Lett.
– volume: 95
  start-page: 565
  year: 2007
  end-page: 573
  article-title: Homogenization of forest plant communities and weakening of species‐environment relationships via agricultural land use
  publication-title: J. Ecol.
– volume: 322
  start-page: 580
  year: 2008
  end-page: 582
  article-title: Functional traits and niche‐based tree community assembly in an Amazonian forest
  publication-title: Science
– volume: 25
  start-page: 1965
  year: 2005
  end-page: 1978
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: Int. J. Climatol.
– volume: 162
  start-page: 734
  year: 2003
  end-page: 743
  article-title: Partitioning species diversity across landscapes and regions: a hierarchical analysis of alpha, beta, and gamma diversity
  publication-title: Am. Nat.
– volume: 87
  start-page: 2603
  year: 2006
  end-page: 2613
  article-title: Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses
  publication-title: Ecology
– year: 2001
– year: 2003
– volume: 10
  start-page: 737
  year: 2007
  end-page: 744
  article-title: A latitudinal gradient in large‐scale beta diversity for vascular plants in North America
  publication-title: Ecol. Lett.
– volume: 40
  start-page: 245
  year: 2009
  end-page: 269
  article-title: Is there a latitudinal gradient in the importance of biotic interactions?
  publication-title: Annu. Rev. Ecol. Evol. Syst.
– volume: 12
  start-page: 483
  year: 2003
  end-page: 498
  article-title: Are there latitudinal gradients in species turnover?
  publication-title: Global Ecol. Biogeogr.
– volume: 80
  start-page: 1475
  year: 1999
  end-page: 1494
  article-title: Seed dispersal near and far: patterns across temperate and tropical forests
  publication-title: Ecology
– volume: 333
  start-page: 1755
  year: 2011
  end-page: 1758
  article-title: Disentangling the drivers of β‐diversity along latitudinal and elevational gradients
  publication-title: Science
– volume: 92
  start-page: 208
  year: 2011
  end-page: 217
  article-title: Latitudinal variation in local interactions and regional enrichment shape patterns of marine community diversity
  publication-title: Ecology
– volume: 328
  start-page: 1388
  year: 2010
  end-page: 1391
  article-title: Stochastic community assembly causes higher biodiversity in more productive environments
  publication-title: Science
– volume: 91
  start-page: 508
  year: 2010
  end-page: 517
  article-title: A quantitative analysis of temporal turnover in aquatic species assemblages across ecosystems
  publication-title: Ecology
– volume: 448
  start-page: 696
  year: 2007
  end-page: 699
  article-title: Host specificity of Lepidoptera in tropical and temperate forests
  publication-title: Nature
– volume: 283
  start-page: 554
  year: 1999
  end-page: 557
  article-title: Light‐gap disturbances, recruitment limitation, and tree diversity in a neotropical forest
  publication-title: Science
– year: 2012
– year: 2012
  article-title: The variation of tree beta diversity across a global network of forest plots
  publication-title: Global Ecol. Biogeogr
– volume: 440
  start-page: 80
  year: 2006
  end-page: 82
  article-title: Coral reef diversity refutes the neutral theory of biodiversity
  publication-title: Nature
– volume: 21
  start-page: 388
  year: 2010
  end-page: 405
  article-title: Beyond the tropics: forest structure in a temperate forest mapped plot
  publication-title: J. Veg. Sci.
– volume: 14
  start-page: 19
  year: 2011
  end-page: 28
  article-title: Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist
  publication-title: Ecol. Lett.
– volume: 13
  start-page: 670
  year: 2007
  end-page: 679
  article-title: Algal communities in human‐impacted stream ecosystems suffer beta‐diversity decline
  publication-title: Divers. Distrib.
– volume: 89
  start-page: 2623
  year: 2008
  end-page: 2632
  article-title: Forward selection of explanatory variables
  publication-title: Ecology
– volume: 87
  start-page: 2614
  year: 2006
  end-page: 2625
  article-title: Variation partitioning of species data matrices: estimation and comparison of fractions
  publication-title: Ecology
– volume: 101
  start-page: 7651
  year: 2004
  end-page: 7656
  article-title: Neutrality, niches, and dispersal in a temperate forest understory
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 176
  start-page: 1
  year: 1995
  end-page: 12
  article-title: The consequences of recruitment limitation – Reconciling chance, history and competitive differences between plants
  publication-title: J. Theor. Biol.
– volume: 288
  start-page: 1414
  year: 2000
  end-page: 1418
  article-title: Spatial patterns in the distribution of tropical tree species
  publication-title: Science
– volume: 4
  start-page: 195
  year: 2011
  end-page: 200
  article-title: Theory predicts a rapid transition from niche‐structured to neutral biodiversity patterns across a speciation‐rate gradient
  publication-title: Theor. Ecol.
– volume: 38
  start-page: 2136
  year: 2011
  end-page: 2149
  article-title: Geological control of floristic composition in Amazonian forests
  publication-title: J. Biogeogr.
– volume: 235
  start-page: 167
  year: 1987
  end-page: 171
  article-title: Community diversity – relative roles of local and regional processes
  publication-title: Science
– volume: 417
  start-page: 732
  year: 2002
  end-page: 735
  article-title: Density‐dependent mortality and the latitudinal gradient in species diversity
  publication-title: Nature
– volume: 85
  start-page: 1826
  year: 2004
  end-page: 1832
  article-title: Dissecting the spatial structure of ecological data at multiple scales
  publication-title: Ecology
– volume: 377
  start-page: 285
  year: 2012
  end-page: 287
  article-title: Taking the measure of Madidi
  publication-title: Science
– volume: 104
  start-page: 864
  year: 2007
  end-page: 869
  article-title: Soil nutrients influence spatial distributions of tropical tree species
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 90
  start-page: 663
  year: 2009
  end-page: 674
  article-title: Partitioning beta diversity in a subtropical broad‐leaved forest of China
  publication-title: Ecology
– volume: 8
  start-page: 1175
  year: 2005
  end-page: 1182
  article-title: Integrating environmental and spatial processes in ecological community dynamics
  publication-title: Ecol. Lett.
– volume: 6
  start-page: e20906
  year: 2011
  article-title: Inferring ecological processes from taxonomic, phylogenetic and functional trait β‐diversity
  publication-title: PLoS ONE
– volume: 299
  start-page: 241
  year: 2003
  end-page: 244
  article-title: Dispersal, environment, and floristic variation of western Amazonian forests
  publication-title: Science
– volume: 62
  start-page: 245
  year: 2006
  end-page: 253
  article-title: Distance‐based tests for homogeneity of multivariate dispersions
  publication-title: Biometrics
– volume: 88
  start-page: 2830
  year: 2007
  end-page: 2838
  article-title: A multivariate analysis of beta diversity across organisms and environments
  publication-title: Ecology
– volume: 404
  start-page: 493
  year: 2000
  end-page: 495
  article-title: Pervasive density‐dependent recruitment enhances seedling diversity in a tropical forest
  publication-title: Nature
– volume: 336
  start-page: 904
  year: 2012
  end-page: 907
  article-title: Conspecific negative density dependence and forest diversity
  publication-title: Science
– ident: e_1_2_7_45_1
  doi: 10.1146/annurev.ecolsys.39.110707.173430
– ident: e_1_2_7_32_1
  doi: 10.1046/j.1466-822X.2003.00056.x
– ident: e_1_2_7_34_1
  doi: 10.1126/science.1160662
– ident: e_1_2_7_4_1
  doi: 10.1890/07-0986.1
– ident: e_1_2_7_7_1
  doi: 10.1126/science.1187820
– ident: e_1_2_7_3_1
  doi: 10.1111/j.1461-0248.2010.01552.x
– ident: e_1_2_7_40_1
  doi: 10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2
– ident: e_1_2_7_6_1
  doi: 10.1111/j.1466‐8238.2012.00770.x
– ident: e_1_2_7_49_1
  doi: 10.1126/science.1078037
– ident: e_1_2_7_14_1
  doi: 10.1111/j.1461-0248.2005.00820.x
– ident: e_1_2_7_26_1
  doi: 10.1038/nature00809
– ident: e_1_2_7_28_1
  doi: 10.1126/science.283.5401.554
– ident: e_1_2_7_41_1
  doi: 10.1890/0012-9658(2001)082[2101:DADOTS]2.0.CO;2
– ident: e_1_2_7_47_1
  doi: 10.1890/06-1730.1
– ident: e_1_2_7_15_1
  doi: 10.1086/378901
– ident: e_1_2_7_33_1
  doi: 10.1890/09-0392.1
– ident: e_1_2_7_38_1
– ident: e_1_2_7_37_1
  doi: 10.1111/j.1461-0248.2011.01589.x
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1365-2699.2011.02585.x
– ident: e_1_2_7_50_1
  doi: 10.1111/j.1365-2745.2007.01233.x
– ident: e_1_2_7_18_1
  doi: 10.1890/09-1841.1
– ident: e_1_2_7_10_1
  doi: 10.1007/s12080-011-0113-5
– ident: e_1_2_7_29_1
  doi: 10.1006/jtbi.1995.0170
– ident: e_1_2_7_8_1
  doi: 10.7208/chicago/9780226101811.001.0001
– ident: e_1_2_7_48_1
  doi: 10.1371/journal.pone.0020906
– ident: e_1_2_7_21_1
  doi: 10.1111/j.1654-1103.2009.01151.x
– ident: e_1_2_7_19_1
  doi: 10.1126/science.337.6092.285
– ident: e_1_2_7_22_1
  doi: 10.1890/0012-9658(2006)87[2603:SMIETF]2.0.CO;2
– ident: e_1_2_7_46_1
  doi: 10.1111/j.1600-0587.2009.06105.x
– ident: e_1_2_7_30_1
  doi: 10.1073/pnas.0604666104
– ident: e_1_2_7_11_1
  doi: 10.1890/0012-9658(1999)080[1475:SDNAFP]2.0.CO;2
– ident: e_1_2_7_42_1
  doi: 10.1111/j.1461-0248.2007.01066.x
– ident: e_1_2_7_31_1
  doi: 10.1126/science.1220269
– ident: e_1_2_7_9_1
  doi: 10.1098/rstb.2011.0063
– ident: e_1_2_7_5_1
  doi: 10.1890/03-3111
– ident: e_1_2_7_13_1
  doi: 10.1126/science.1066854
– ident: e_1_2_7_16_1
  doi: 10.1038/nature04534
– ident: e_1_2_7_20_1
  doi: 10.1073/pnas.0400814101
– ident: e_1_2_7_12_1
  doi: 10.1126/science.288.5470.1414
– volume-title: The Unified Neutral Theory of Biodiversity and Biogeography
  year: 2001
  ident: e_1_2_7_27_1
– ident: e_1_2_7_2_1
  doi: 10.1111/j.1541-0420.2005.00440.x
– ident: e_1_2_7_39_1
  doi: 10.1111/j.1472-4642.2007.00361.x
– ident: e_1_2_7_23_1
  doi: 10.1038/35006630
– ident: e_1_2_7_35_1
  doi: 10.1126/science.1208584
– ident: e_1_2_7_17_1
  doi: 10.1038/nature05884
– ident: e_1_2_7_44_1
  doi: 10.1126/science.235.4785.167
– ident: e_1_2_7_36_1
  doi: 10.1890/07-1880.1
– ident: e_1_2_7_25_1
  doi: 10.1002/joc.1276
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2012
  ident: e_1_2_7_43_1
SSID ssj0012971
Score 2.5648308
Snippet Site‐to‐site variation in species composition (β‐diversity) generally increases from low‐ to high‐diversity regions. Although biogeographical differences in...
Site-to-site variation in species composition (β-diversity) generally increases from low- to high-diversity regions. Although biogeographical differences in...
Site-to-site variation in species composition ([beta]-diversity) generally increases from low- to high-diversity regions. Although biogeographical differences...
Site-to-site variation in species composition ( beta -diversity) generally increases from low- to high-diversity regions. Although biogeographical differences...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 151
SubjectTerms Amazonia
Animal and plant ecology
Animal, plant and microbial ecology
beta-diversity
Biodiversity
Biological and medical sciences
Bolivia
Carya
Climate
community assembly
Community ecology
dispersal limitation
environmental filtering
Forestry
Fundamental and applied biological sciences. Psychology
General aspects
General forest ecology
Generalities. Production, biomass. Quality of wood and forest products. General forest ecology
intraspecific aggregation
metacommunity
Missouri
Models, Biological
Ozarks
Plant populations
Quercus
Rainforests
Species composition
Species diversity
species pool
species sorting
Temperate forests
Terrestrial ecosystems
Trees
Tropical Climate
Tropical environments
Tropical forests
Woody plants
Title Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly
URI https://api.istex.fr/ark:/67375/WNG-78CD7QCL-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fele.12021
https://www.ncbi.nlm.nih.gov/pubmed/23113954
https://www.proquest.com/docview/1269521997
https://www.proquest.com/docview/1273586386
https://www.proquest.com/docview/1285103875
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9KRfDFb220llVEfMmRzX5kF5_0erWUWlAs3oMQNslGjvZy5ZIDzyf_BP9G_xJnNh96UkV8C2Q2yU5mZn-TzP6GkKeWS2Vg4Qx1EdlQ6DIPjRUylExHLiq0EZ4k6c2JOjwVR1M53SIv-r0wLT_E8MENPcPHa3Rwm9W_ODlE5RGD1B1TH8YV8ubvvxuoo2AZa5MtoSBdjvm0YxXCKp5h5MZadAXV-hlrI20N6inbvhaXAc9NHOsXooMb5GM_hbb-5Gy0arJR_uU3dsf_nONNcr0DqPRla1G3yJarbpOrbcvKNRxNPM31-g759Mo19vvXb0Vf2UFnFUWmK6RpdtRWBW2Wiws0AgrIGKZWU1AB_iaoKZYBzOYzSKvp3OHm41k9r-mipHm7YQWuBqjezbPz9V1yejB5Pz4Mu7YNYS4Bf4VaAabkLI-5UFozZbkVInJWQm7meGQKJyzEEYO2wJICW5KVzNjI6hKwSMn4PbJdLSq3Q2jmtFa2VDa2RrAMsmnAh64QhbAytyIJyPP-BaZ5x2mOrTXO0z63AQ2mXoMBeTKIXrREHpcJPfNWMEjY5RlWviUy_XDyOk30eD95Oz5OjwKyt2Emw4BYAf4Rhgdkt7ebtIsKNdxDGYBLxsCDPx5Ogz_jTxpbucUKZRIuNURF9TcZjUSIkGoG5H5rkz8fgDMA9VKAarxl_Xmy6eR44g8e_LvoQ3It9v1AsJ5nl2w3y5V7BKisyfa8-_0AT9oxJA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VrRBceD8MpSwIIS6ObO_DuxIXCCmhpJFArcilstb2GkVtnCpOJMKJn8Bv5Jcws35AUEGImyWPHzuemf3GO_sNIU8NE1LDxOmrPDA-V0Xma8OFL0IV2CBXmjuSpMOxHB7zg4mYbJEX7V6Ymh-i--GGnuHiNTo4_pD-xcshLPdCyN0h99lx63MIiT505FEwkdXpFpeQMEds0vAKYR1Pd-nGbLSDiv2M1ZGmAgUVdWeLi6DnJpJ1U9H-NXLSDqKuQDntrZZpL_vyG7_j_47yOrnaYFT6sjaqG2TLljfJpbpr5RqOBo7pen2LfHpll-b71295W9xBpyVFsitkarbUlDldLubnaAcUwDGMraKgA1wpqChWAkxnU8is6czi_uNpNavovKBZvWcF7gbA3s7Ss_Vtcrw_OOoP_aZzg58JgGC-kgArWZhFjEulQmmY4TywRkB6Zlmgc8sNhBKN5hDGOXYlK0JtAqMKgCNFyO6Q7XJe2nuEplYpaQppIqN5mEJCDRDR5jznRmSGxx553n7BJGtozbG7xlnSpjegwcRp0CNPOtHzmsvjIqFnzgw6CbM4xeK3WCQfx2-SWPVfx-_7o-TAI3sbdtJdEEmAQFwzj-y2hpM0gaGCZ0gNiElrePHH3WlwaVynMaWdr1AmZkJBYJR_k1HIhQjZpkfu1kb58wVYCLhecFCNM60_DzYZjAbu4P6_iz4il4dHh6Nk9Hb87gG5Ern2IFjes0u2l4uVfQggbZnuOV_8AUyvNUI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VrUBcKG9cSlkQQlwc-bG73hUnSBNKCREgKnKoZK3tNYraOFHsSIQTP4HfyC9hZv2AoIIQN0sZO97xPL6xZ78h5LEOuVCQOF2ZedplMk9dpRl3uS8942VSMUuS9GYsjk7Y8YRPtsizdi9MzQ_RvXBDz7DxGh18keW_ODlE5Z4PpTuUPjtMQJpERPS-446CPFZXW0xAvRyEk4ZWCNt4ulM3ktEO6vUzNkfqEvST14MtLkKem0DWZqLhLjlt11A3oJz1VlXSS7_8Ru_4n4u8Rq42CJU-r03qOtkyxQ1yqZ5ZuYajgeW5Xt8kn16YSn__-i1rWzvotKBIdYU8zYbqIqPVcr5AK6AAjWFpJQUV4HeCkmIfwHQ2hbqazgzuPp6Ws5LOc5rWO1bgagDrzSw5X98iJ8PBh_6R28xtcFMOAMyVAkBl6KdByISUvtChZswzmkNxZkJPZYZpCCQKjcGPMpxJlvtKe1rmAEZyP7xNtot5Ye4Smhgphc6FDrRifgLlNABEk7GMaZ5qFjnkafsA47QhNcfZGudxW9yABmOrQYc86kQXNZPHRUJPrBV0Enp5hq1vEY8_jl_GkewfRu_6o_jYIQcbZtKdEAgAQEyFDtlv7SZuwkIJ_yEU4CWl4MYfdj-DQ-NXGl2Y-QplopBLCIvibzISmRCh1nTIndomf95A6AOq5wxUYy3rz4uNB6OBPdj7d9EH5PLbw2E8ejV-fY9cCexsEOzt2Sfb1XJl7gNCq5ID64k_AISZM_E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beta-diversity+in+temperate+and+tropical+forests+reflects+dissimilar+mechanisms+of+community+assembly&rft.jtitle=Ecology+letters&rft.au=Myers%2C+Jonathan+A&rft.au=Chase%2C+Jonathan+M&rft.au=Jim%C3%A9nez%2C+Iv%C3%A1n&rft.au=J%C3%B8rgensen%2C+Peter+M&rft.date=2013-02-01&rft.eissn=1461-0248&rft.volume=16&rft.issue=2&rft.spage=151&rft_id=info:doi/10.1111%2Fele.12021&rft_id=info%3Apmid%2F23113954&rft.externalDocID=23113954
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon