Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly
Site‐to‐site variation in species composition (β‐diversity) generally increases from low‐ to high‐diversity regions. Although biogeographical differences in community assembly mechanisms may explain this pattern, random sampling effects can create this pattern through differences in regional species...
Saved in:
Published in | Ecology letters Vol. 16; no. 2; pp. 151 - 157 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.02.2013
Blackwell |
Subjects | |
Online Access | Get full text |
ISSN | 1461-023X 1461-0248 1461-0248 |
DOI | 10.1111/ele.12021 |
Cover
Abstract | Site‐to‐site variation in species composition (β‐diversity) generally increases from low‐ to high‐diversity regions. Although biogeographical differences in community assembly mechanisms may explain this pattern, random sampling effects can create this pattern through differences in regional species pools. Here, we compared assembly mechanisms between spatially extensive networks of temperate and tropical forest plots with highly divergent species pools (46 vs. 607 species). After controlling for sampling effects, β‐diversity of woody plants was similar and higher than expected by chance in both forests, reflecting strong intraspecific aggregation. However, different mechanisms appeared to explain aggregation in the two forests. In the temperate forest, aggregation reflected stronger environmental correlations, suggesting an important role for species‐sorting (e.g. environmental filtering) processes, whereas in the tropics, aggregation reflected stronger spatial correlations, more likely reflecting dispersal limitation. We suggest that biogeographical differences in the relative importance of different community assembly mechanisms contribute to these striking gradients in global biodiversity. |
---|---|
AbstractList | Site-to-site variation in species composition (β-diversity) generally increases from low- to high-diversity regions. Although biogeographical differences in community assembly mechanisms may explain this pattern, random sampling effects can create this pattern through differences in regional species pools. Here, we compared assembly mechanisms between spatially extensive networks of temperate and tropical forest plots with highly divergent species pools (46 vs. 607 species). After controlling for sampling effects, β-diversity of woody plants was similar and higher than expected by chance in both forests, reflecting strong intraspecific aggregation. However, different mechanisms appeared to explain aggregation in the two forests. In the temperate forest, aggregation reflected stronger environmental correlations, suggesting an important role for species-sorting (e.g. environmental filtering) processes, whereas in the tropics, aggregation reflected stronger spatial correlations, more likely reflecting dispersal limitation. We suggest that biogeographical differences in the relative importance of different community assembly mechanisms contribute to these striking gradients in global biodiversity. Site-to-site variation in species composition (β-diversity) generally increases from low- to high-diversity regions. Although biogeographical differences in community assembly mechanisms may explain this pattern, random sampling effects can create this pattern through differences in regional species pools. Here, we compared assembly mechanisms between spatially extensive networks of temperate and tropical forest plots with highly divergent species pools (46 vs. 607 species). After controlling for sampling effects, β-diversity of woody plants was similar and higher than expected by chance in both forests, reflecting strong intraspecific aggregation. However, different mechanisms appeared to explain aggregation in the two forests. In the temperate forest, aggregation reflected stronger environmental correlations, suggesting an important role for species-sorting (e.g. environmental filtering) processes, whereas in the tropics, aggregation reflected stronger spatial correlations, more likely reflecting dispersal limitation. We suggest that biogeographical differences in the relative importance of different community assembly mechanisms contribute to these striking gradients in global biodiversity.Site-to-site variation in species composition (β-diversity) generally increases from low- to high-diversity regions. Although biogeographical differences in community assembly mechanisms may explain this pattern, random sampling effects can create this pattern through differences in regional species pools. Here, we compared assembly mechanisms between spatially extensive networks of temperate and tropical forest plots with highly divergent species pools (46 vs. 607 species). After controlling for sampling effects, β-diversity of woody plants was similar and higher than expected by chance in both forests, reflecting strong intraspecific aggregation. However, different mechanisms appeared to explain aggregation in the two forests. In the temperate forest, aggregation reflected stronger environmental correlations, suggesting an important role for species-sorting (e.g. environmental filtering) processes, whereas in the tropics, aggregation reflected stronger spatial correlations, more likely reflecting dispersal limitation. We suggest that biogeographical differences in the relative importance of different community assembly mechanisms contribute to these striking gradients in global biodiversity. Site-to-site variation in species composition ([beta]-diversity) generally increases from low- to high-diversity regions. Although biogeographical differences in community assembly mechanisms may explain this pattern, random sampling effects can create this pattern through differences in regional species pools. Here, we compared assembly mechanisms between spatially extensive networks of temperate and tropical forest plots with highly divergent species pools (46 vs. 607 species). After controlling for sampling effects, [beta]-diversity of woody plants was similar and higher than expected by chance in both forests, reflecting strong intraspecific aggregation. However, different mechanisms appeared to explain aggregation in the two forests. In the temperate forest, aggregation reflected stronger environmental correlations, suggesting an important role for species-sorting (e.g. environmental filtering) processes, whereas in the tropics, aggregation reflected stronger spatial correlations, more likely reflecting dispersal limitation. We suggest that biogeographical differences in the relative importance of different community assembly mechanisms contribute to these striking gradients in global biodiversity. [PUBLICATION ABSTRACT] Site-to-site variation in species composition ( beta -diversity) generally increases from low- to high-diversity regions. Although biogeographical differences in community assembly mechanisms may explain this pattern, random sampling effects can create this pattern through differences in regional species pools. Here, we compared assembly mechanisms between spatially extensive networks of temperate and tropical forest plots with highly divergent species pools (46 vs. 607 species). After controlling for sampling effects, beta -diversity of woody plants was similar and higher than expected by chance in both forests, reflecting strong intraspecific aggregation. However, different mechanisms appeared to explain aggregation in the two forests. In the temperate forest, aggregation reflected stronger environmental correlations, suggesting an important role for species-sorting (e.g. environmental filtering) processes, whereas in the tropics, aggregation reflected stronger spatial correlations, more likely reflecting dispersal limitation. We suggest that biogeographical differences in the relative importance of different community assembly mechanisms contribute to these striking gradients in global biodiversity. |
Author | Jiménez, Iván Chase, Jonathan M. Jørgensen, Peter M. Araujo-Murakami, Alejandro Myers, Jonathan A. Paniagua-Zambrana, Narel Seidel, Renate |
Author_xml | – sequence: 1 givenname: Jonathan A. surname: Myers fullname: Myers, Jonathan A. email: jamyers@wustl.edu organization: Department of Biology and Tyson Research Center, Washington University, Missouri, 63130, Saint Louis, USA – sequence: 2 givenname: Jonathan M. surname: Chase fullname: Chase, Jonathan M. organization: Department of Biology and Tyson Research Center, Washington University, Missouri, 63130, Saint Louis, USA – sequence: 3 givenname: Iván surname: Jiménez fullname: Jiménez, Iván organization: Missouri Botanical Garden, P.O. Box 299, Missouri, 63166, Saint Louis, USA – sequence: 4 givenname: Peter M. surname: Jørgensen fullname: Jørgensen, Peter M. organization: Missouri Botanical Garden, P.O. Box 299, Missouri, 63166, Saint Louis, USA – sequence: 5 givenname: Alejandro surname: Araujo-Murakami fullname: Araujo-Murakami, Alejandro organization: Museo de Historia Natural Noel Kempff Mercado, Herbario, Facultad de Ciéncias Agrícolas, Universidad Autónoma Gabriel René Moreno, Casilla 2489, Santa Cruz, Bolivia – sequence: 6 givenname: Narel surname: Paniagua-Zambrana fullname: Paniagua-Zambrana, Narel organization: Herbario Nacional de Bolivia, Universidad Mayor de San Andrés, Casilla 10077 - Correo Central, La Paz, Bolivia – sequence: 7 givenname: Renate surname: Seidel fullname: Seidel, Renate organization: Herbario Nacional de Bolivia, Universidad Mayor de San Andrés, Casilla 10077 - Correo Central, La Paz, Bolivia |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26853493$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23113954$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkVFrFDEUhYNUbLv64B-QARHqw7S5k8kk81i3a1UWRVD0Ldxm7mBqZrIms-r-e1N3t0JRMARyH75zuDnnmB2MYSTGHgM_hXzOyNMpVLyCe-wI6gZKXtX64HYWnw_ZcUrXnEPVKnjADisBIFpZHzF6QROWnftOMblpU7ixmGhYUcSJChy7Yoph5Sz6og-R0pSKSL0nm4fOpeQG5zEWA9kvOLo0pCL0hQ3DsB5v3DAlGq785iG736NP9Gj3ztjHl4sP81fl8t3l6_n5srRSSih10yolwFaibrSGBgXWNSeUWgEJ3nZUoxZVy4l3oLrGUtVDixx1D8B7EDN2svVdxfBtndc1g0uWvMeRwjoZqLQELrSS_4EqIXUj8p2xp3fQ67COY_5IpppWVtC2KlNPdtT6aqDOrKIbMG7MPusMPNsBmHKgfcTRuvSHa7QUdSsyd7blbAwp5biNdRNOLoxTROcNcHPTusmtm9-tZ8XzO4q96d_YnfsP52nzb9Aslou9otwqXJro560C41fTKKGk-fT20ig9v1Dv50vzRvwCosnInQ |
CitedBy_id | crossref_primary_10_1007_s00027_019_0634_3 crossref_primary_10_1128_MMBR_00002_17 crossref_primary_10_1134_S1067413618010046 crossref_primary_10_1890_14_0392_1 crossref_primary_10_1111_ele_12787 crossref_primary_10_1186_s12898_018_0177_9 crossref_primary_10_1080_20442041_2023_2213630 crossref_primary_10_1016_j_polar_2025_101164 crossref_primary_10_1111_jvs_13032 crossref_primary_10_1016_j_scitotenv_2018_07_019 crossref_primary_10_1038_s41467_020_19228_4 crossref_primary_10_1002_ldr_2885 crossref_primary_10_1038_s41467_022_32063_z crossref_primary_10_1016_j_gecco_2021_e01487 crossref_primary_10_1002_ece3_10607 crossref_primary_10_1111_jvs_12628 crossref_primary_10_1002_ldr_4382 crossref_primary_10_1007_s10980_017_0591_y crossref_primary_10_1139_cjfas_2016_0049 crossref_primary_10_1371_journal_pone_0245249 crossref_primary_10_1093_ismeco_ycaf025 crossref_primary_10_1007_s11676_019_00918_9 crossref_primary_10_1016_j_ufug_2023_127919 crossref_primary_10_1111_ddi_13708 crossref_primary_10_1111_oik_02803 crossref_primary_10_3390_f13060923 crossref_primary_10_1111_ecog_06538 crossref_primary_10_3389_fevo_2023_1199874 crossref_primary_10_1111_fwb_14011 crossref_primary_10_3354_meps12378 crossref_primary_10_1016_j_biocon_2019_07_015 crossref_primary_10_1111_1744_7917_12442 crossref_primary_10_1111_1365_2656_12903 crossref_primary_10_1111_1365_2745_13570 crossref_primary_10_3389_fmicb_2022_1018077 crossref_primary_10_1111_geb_12331 crossref_primary_10_1093_jpe_rty026 crossref_primary_10_1111_avsc_70000 crossref_primary_10_1111_fwb_12870 crossref_primary_10_1002_eap_1562 crossref_primary_10_1111_mec_17516 crossref_primary_10_3390_f10100863 crossref_primary_10_1111_ele_12642 crossref_primary_10_1139_cjfas_2016_0066 crossref_primary_10_1111_ele_12647 crossref_primary_10_1371_journal_pone_0121458 crossref_primary_10_1007_s10531_016_1228_1 crossref_primary_10_1111_1365_2745_13126 crossref_primary_10_3389_fevo_2022_1008477 crossref_primary_10_1111_jvs_12761 crossref_primary_10_1002_ece3_7926 crossref_primary_10_1111_1744_7917_12575 crossref_primary_10_1590_0102_33062020abb0064 crossref_primary_10_1111_1365_2745_12153 crossref_primary_10_1111_jvs_12649 crossref_primary_10_1111_ddi_12992 crossref_primary_10_1029_2024WR037194 crossref_primary_10_3389_fpls_2019_00294 crossref_primary_10_1002_ece3_10993 crossref_primary_10_1098_rstb_2015_0279 crossref_primary_10_1093_femsec_fix031 crossref_primary_10_1111_jvs_13183 crossref_primary_10_3390_f11010043 crossref_primary_10_1016_j_geoderma_2019_114004 crossref_primary_10_1111_ele_13188 crossref_primary_10_3897_subtbiol_16_5470 crossref_primary_10_1002_ldr_4595 crossref_primary_10_1016_j_gecco_2024_e03378 crossref_primary_10_1002_ecy_2220 crossref_primary_10_1111_1365_2745_12267 crossref_primary_10_1016_j_soilbio_2020_108023 crossref_primary_10_1093_jpe_rtx072 crossref_primary_10_1111_1365_2656_13417 crossref_primary_10_1038_srep12731 crossref_primary_10_1111_gcb_14090 crossref_primary_10_3389_fevo_2019_00128 crossref_primary_10_1038_s41598_018_35410_7 crossref_primary_10_1016_j_ecoleng_2019_07_013 crossref_primary_10_1080_17550874_2023_2277282 crossref_primary_10_1111_1462_2920_15653 crossref_primary_10_1371_journal_pone_0109870 crossref_primary_10_1890_14_0145_1 crossref_primary_10_1111_ddi_12763 crossref_primary_10_3390_f10040332 crossref_primary_10_1111_oik_10367 crossref_primary_10_1007_s00442_019_04555_1 crossref_primary_10_1007_s11284_015_1313_z crossref_primary_10_1111_jvs_13110 crossref_primary_10_1007_s00338_023_02418_z crossref_primary_10_1016_j_ympev_2016_08_008 crossref_primary_10_1111_mec_14346 crossref_primary_10_1111_aec_12798 crossref_primary_10_1111_jvs_12820 crossref_primary_10_1093_jpe_rty053 crossref_primary_10_1016_j_ecolmodel_2014_06_006 crossref_primary_10_1111_ddi_13290 crossref_primary_10_1002_ecs2_2413 crossref_primary_10_1007_s42729_023_01425_x crossref_primary_10_1016_j_baae_2014_07_003 crossref_primary_10_1016_j_pld_2024_11_003 crossref_primary_10_1086_676991 crossref_primary_10_1111_jvs_12708 crossref_primary_10_1016_j_fecs_2022_100062 crossref_primary_10_1002_ecs2_4819 crossref_primary_10_3389_fmars_2021_780268 crossref_primary_10_1111_ele_14019 crossref_primary_10_1016_j_ppees_2016_09_006 crossref_primary_10_1890_14_0695_1 crossref_primary_10_1111_oik_02604 crossref_primary_10_1002_ecs2_70115 crossref_primary_10_1111_jbi_13404 crossref_primary_10_1002_ece3_7711 crossref_primary_10_1111_1365_2656_13752 crossref_primary_10_1002_ecy_3774 crossref_primary_10_1002_ecy_2441 crossref_primary_10_1093_gigascience_giac040 crossref_primary_10_1111_jbi_13535 crossref_primary_10_3389_fevo_2022_788184 crossref_primary_10_1002_ecs2_3296 crossref_primary_10_1016_j_chnaes_2022_08_003 crossref_primary_10_1002_ecy_4189 crossref_primary_10_1111_1365_2745_13253 crossref_primary_10_3897_phytokeys_153_53637 crossref_primary_10_1111_oik_05329 crossref_primary_10_1002_ecm_1588 crossref_primary_10_1016_j_scitotenv_2025_178977 crossref_primary_10_1038_s41467_021_23236_3 crossref_primary_10_3390_f13122184 crossref_primary_10_1007_s10457_017_0144_z crossref_primary_10_1111_geb_13101 crossref_primary_10_1016_j_jes_2024_06_042 crossref_primary_10_1007_s10980_023_01616_y crossref_primary_10_3390_f14112138 crossref_primary_10_1002_ecs2_1310 crossref_primary_10_1111_avsc_12514 crossref_primary_10_1111_ddi_12781 crossref_primary_10_1038_srep17043 crossref_primary_10_1111_oik_03969 crossref_primary_10_1111_ele_13372 crossref_primary_10_1016_j_fecs_2022_100035 crossref_primary_10_1016_j_ppees_2016_10_001 crossref_primary_10_1111_jbi_13517 crossref_primary_10_1007_s00442_021_04925_8 crossref_primary_10_1002_ecs2_4253 crossref_primary_10_1111_1365_2745_14132 crossref_primary_10_1111_jvs_13017 crossref_primary_10_1111_ddi_13076 crossref_primary_10_1111_brv_12300 crossref_primary_10_1038_s41559_017_0225_4 crossref_primary_10_1111_ele_13269 crossref_primary_10_1111_1365_2435_13079 crossref_primary_10_1002_ece3_3493 crossref_primary_10_1086_729423 crossref_primary_10_1007_s11284_017_1555_z crossref_primary_10_3389_fmicb_2022_929772 crossref_primary_10_3389_fpls_2024_1285787 crossref_primary_10_1098_rspb_2020_3045 crossref_primary_10_3390_f10121115 crossref_primary_10_5424_fs_2024331_20575 crossref_primary_10_3389_fpls_2023_1243209 crossref_primary_10_1111_1365_2745_14487 crossref_primary_10_1111_avsc_12070 crossref_primary_10_3389_fpls_2016_01533 crossref_primary_10_1016_j_biocon_2016_07_017 crossref_primary_10_1111_jvs_12977 crossref_primary_10_7717_peerj_6746 crossref_primary_10_1111_geb_13442 crossref_primary_10_1086_712565 crossref_primary_10_1016_j_actao_2015_06_006 crossref_primary_10_1038_srep35926 crossref_primary_10_1002_ece3_8710 crossref_primary_10_1111_jbi_13739 crossref_primary_10_1007_s10750_020_04484_8 crossref_primary_10_1016_j_baae_2019_08_005 crossref_primary_10_1111_jvs_12583 crossref_primary_10_1371_journal_pone_0235733 crossref_primary_10_1186_s12983_022_00455_y crossref_primary_10_1002_ece3_4913 crossref_primary_10_1371_journal_pone_0253284 crossref_primary_10_1111_jvs_12586 crossref_primary_10_1007_s10980_015_0206_4 crossref_primary_10_3389_fevo_2022_1034829 crossref_primary_10_3390_d15040507 crossref_primary_10_1002_ecm_1394 crossref_primary_10_1111_jbi_14156 crossref_primary_10_1111_ecog_07111 crossref_primary_10_1002_lno_12429 crossref_primary_10_3389_fmicb_2022_996305 crossref_primary_10_1016_j_heliyon_2022_e11163 crossref_primary_10_1111_1462_2920_15337 crossref_primary_10_1371_journal_pone_0188300 crossref_primary_10_1016_j_ecolind_2021_108261 crossref_primary_10_1111_ddi_13781 crossref_primary_10_1111_avsc_12641 crossref_primary_10_1111_aec_12641 crossref_primary_10_1111_oik_10158 crossref_primary_10_1111_ecog_05726 crossref_primary_10_1016_j_foreco_2021_119452 crossref_primary_10_1073_pnas_1709584114 crossref_primary_10_1002_ece3_4248 crossref_primary_10_1007_s00227_018_3356_5 crossref_primary_10_1007_s00027_022_00859_2 crossref_primary_10_1111_1365_2745_14140 crossref_primary_10_1007_s11368_022_03329_2 crossref_primary_10_1088_1748_9326_ac592c crossref_primary_10_1038_srep27087 crossref_primary_10_1038_ncomms13960 crossref_primary_10_1111_ecog_02809 crossref_primary_10_1007_s11629_020_6479_3 crossref_primary_10_1007_s42832_019_0013_y crossref_primary_10_1111_geb_13139 crossref_primary_10_1016_j_ecolind_2024_112111 crossref_primary_10_1111_ddi_13793 crossref_primary_10_1890_15_1673_1 crossref_primary_10_1016_j_soilbio_2022_108635 crossref_primary_10_1371_journal_pone_0210890 crossref_primary_10_1111_jvs_12482 crossref_primary_10_1111_1365_2745_12436 crossref_primary_10_1111_ecog_00860 crossref_primary_10_1111_ecog_00982 crossref_primary_10_1016_j_gecco_2018_e00433 crossref_primary_10_3390_f10111003 crossref_primary_10_1007_s00442_014_3111_7 crossref_primary_10_1111_gcb_70097 crossref_primary_10_1111_jbi_13722 crossref_primary_10_1111_fwb_13699 crossref_primary_10_1111_jbi_14131 crossref_primary_10_1007_s10531_024_02781_5 crossref_primary_10_1002_ecs2_2399 crossref_primary_10_1007_s11258_019_00957_6 crossref_primary_10_1111_geb_13251 crossref_primary_10_1086_701755 crossref_primary_10_1111_fwb_12926 crossref_primary_10_1007_s00572_022_01072_7 crossref_primary_10_1111_ddi_13205 crossref_primary_10_1007_s13157_019_01182_7 crossref_primary_10_1002_ecs2_1847 crossref_primary_10_3732_ajb_1500079 crossref_primary_10_1111_oik_02426 crossref_primary_10_1016_j_foreco_2024_122329 crossref_primary_10_1111_btp_12140 crossref_primary_10_1002_ecy_1534 crossref_primary_10_1111_ele_12494 crossref_primary_10_1111_geb_12719 crossref_primary_10_1002_ecy_3835 crossref_primary_10_1111_ecog_05986 crossref_primary_10_1002_ece3_1313 crossref_primary_10_1007_s00442_018_4060_3 crossref_primary_10_1016_j_jenvman_2018_04_059 crossref_primary_10_1080_07929978_2016_1255020 crossref_primary_10_1016_j_ppees_2015_01_002 crossref_primary_10_1111_oik_10968 crossref_primary_10_1126_sciadv_aav3223 crossref_primary_10_3390_f15081441 crossref_primary_10_1146_annurev_ecolsys_120213_091759 crossref_primary_10_1186_s40663_020_0214_y crossref_primary_10_1038_s43247_024_01273_2 crossref_primary_10_1111_geb_12278 crossref_primary_10_1002_rra_4227 crossref_primary_10_17221_78_2020_JFS crossref_primary_10_1111_jvs_12819 crossref_primary_10_1371_journal_pone_0131162 crossref_primary_10_1098_rsos_181168 crossref_primary_10_1007_s10342_019_01220_3 crossref_primary_10_3390_f15061056 crossref_primary_10_1002_ece3_3068 crossref_primary_10_1016_j_scitotenv_2023_167545 crossref_primary_10_3389_fevo_2021_622148 crossref_primary_10_1016_j_tree_2018_04_012 crossref_primary_10_1111_boj_12495 crossref_primary_10_1016_j_ecoleng_2020_106092 crossref_primary_10_1111_avsc_12101 crossref_primary_10_1007_s10980_024_01819_x crossref_primary_10_1016_j_gecco_2024_e02938 crossref_primary_10_1016_j_ecolind_2022_109291 crossref_primary_10_1016_j_jenvman_2024_120490 crossref_primary_10_1016_j_scitotenv_2023_164270 crossref_primary_10_1111_avsc_12686 crossref_primary_10_1111_geb_12413 crossref_primary_10_1016_j_scitotenv_2019_135301 crossref_primary_10_1038_srep24965 crossref_primary_10_1098_rspb_2023_2768 crossref_primary_10_1111_ele_14098 crossref_primary_10_1016_j_jnc_2014_07_005 crossref_primary_10_1111_jbi_12839 crossref_primary_10_1111_mec_14731 crossref_primary_10_1002_ece3_745 crossref_primary_10_1016_j_ecolind_2022_109736 crossref_primary_10_1111_1365_2745_13530 crossref_primary_10_1002_ecy_3014 crossref_primary_10_1038_s41598_017_17736_w crossref_primary_10_52547_ifej_8_15_146 crossref_primary_10_1016_j_gecco_2024_e03239 crossref_primary_10_1002_ecs2_4542 crossref_primary_10_1016_j_gecco_2021_e01956 crossref_primary_10_1080_17550874_2024_2352372 crossref_primary_10_1016_j_scitotenv_2024_171741 crossref_primary_10_1017_S0266467422000426 crossref_primary_10_1371_journal_pone_0185763 crossref_primary_10_1007_s10021_023_00844_2 crossref_primary_10_1016_j_apsoil_2023_105027 crossref_primary_10_1016_j_jenvman_2024_120265 crossref_primary_10_1016_j_tree_2024_10_004 crossref_primary_10_1111_ecog_02607 crossref_primary_10_1890_13_2153_1 crossref_primary_10_1371_journal_pone_0172495 crossref_primary_10_3389_fpls_2018_01000 crossref_primary_10_2478_forj_2021_0012 crossref_primary_10_1111_jbi_14217 crossref_primary_10_1111_jbi_14332 crossref_primary_10_1016_j_tree_2017_02_020 crossref_primary_10_3390_f16010006 crossref_primary_10_1111_j_1600_0587_2013_00244_x crossref_primary_10_1111_2041_210X_13531 crossref_primary_10_1002_ecs2_2358 crossref_primary_10_1111_oik_03690 crossref_primary_10_1098_rspb_2017_0947 crossref_primary_10_3389_fmicb_2018_00569 crossref_primary_10_1086_731905 crossref_primary_10_1016_j_gecco_2021_e01739 crossref_primary_10_3897_VCS_134621 crossref_primary_10_1016_j_ecolind_2016_02_035 crossref_primary_10_1016_j_flora_2016_01_005 crossref_primary_10_1111_plb_12253 crossref_primary_10_3390_f14081536 crossref_primary_10_1111_rec_12856 crossref_primary_10_3354_meps13129 crossref_primary_10_1007_s00442_014_3170_9 crossref_primary_10_1111_jbi_13235 crossref_primary_10_1139_cjz_2019_0008 crossref_primary_10_1111_ecog_07048 crossref_primary_10_1007_s00442_020_04671_3 crossref_primary_10_1111_j_1600_0587_2013_00546_x crossref_primary_10_1016_j_ecolind_2020_106330 crossref_primary_10_7717_peerj_6220 crossref_primary_10_1371_journal_pone_0223880 crossref_primary_10_3390_f14030553 crossref_primary_10_1111_1365_2664_14754 crossref_primary_10_1371_journal_pone_0095244 crossref_primary_10_3390_f11101106 crossref_primary_10_1007_s00035_019_00229_z crossref_primary_10_1002_ecs2_70061 crossref_primary_10_1111_icad_12251 crossref_primary_10_3390_f11111140 |
Cites_doi | 10.1146/annurev.ecolsys.39.110707.173430 10.1046/j.1466-822X.2003.00056.x 10.1126/science.1160662 10.1890/07-0986.1 10.1126/science.1187820 10.1111/j.1461-0248.2010.01552.x 10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2 10.1111/j.1466‐8238.2012.00770.x 10.1126/science.1078037 10.1111/j.1461-0248.2005.00820.x 10.1038/nature00809 10.1126/science.283.5401.554 10.1890/0012-9658(2001)082[2101:DADOTS]2.0.CO;2 10.1890/06-1730.1 10.1086/378901 10.1890/09-0392.1 10.1111/j.1461-0248.2011.01589.x 10.1111/j.1365-2699.2011.02585.x 10.1111/j.1365-2745.2007.01233.x 10.1890/09-1841.1 10.1007/s12080-011-0113-5 10.1006/jtbi.1995.0170 10.7208/chicago/9780226101811.001.0001 10.1371/journal.pone.0020906 10.1111/j.1654-1103.2009.01151.x 10.1126/science.337.6092.285 10.1890/0012-9658(2006)87[2603:SMIETF]2.0.CO;2 10.1111/j.1600-0587.2009.06105.x 10.1073/pnas.0604666104 10.1890/0012-9658(1999)080[1475:SDNAFP]2.0.CO;2 10.1111/j.1461-0248.2007.01066.x 10.1126/science.1220269 10.1098/rstb.2011.0063 10.1890/03-3111 10.1126/science.1066854 10.1038/nature04534 10.1073/pnas.0400814101 10.1126/science.288.5470.1414 10.1111/j.1541-0420.2005.00440.x 10.1111/j.1472-4642.2007.00361.x 10.1038/35006630 10.1126/science.1208584 10.1038/nature05884 10.1126/science.235.4785.167 10.1890/07-1880.1 10.1002/joc.1276 |
ContentType | Journal Article |
Copyright | 2012 Blackwell Publishing Ltd/CNRS 2014 INIST-CNRS 2012 Blackwell Publishing Ltd/CNRS. Copyright © 2013 Blackwell Publishing Ltd/CNRS |
Copyright_xml | – notice: 2012 Blackwell Publishing Ltd/CNRS – notice: 2014 INIST-CNRS – notice: 2012 Blackwell Publishing Ltd/CNRS. – notice: Copyright © 2013 Blackwell Publishing Ltd/CNRS |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 C1K H94 M7N 7X8 7ST 7U6 |
DOI | 10.1111/ele.12021 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts AIDS and Cancer Research Abstracts Virology and AIDS Abstracts Ecology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Environmental Sciences and Pollution Management MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts |
DatabaseTitleList | MEDLINE MEDLINE - Academic Entomology Abstracts Ecology Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Forestry |
EISSN | 1461-0248 |
Editor | Cornell, Howard |
Editor_xml | – sequence: 8 givenname: Howard surname: Cornell fullname: Cornell, Howard |
EndPage | 157 |
ExternalDocumentID | 2865893051 23113954 26853493 10_1111_ele_12021 ELE12021 ark_67375_WNG_78CD7QCL_J |
Genre | letter Research Support, U.S. Gov't, Non-P.H.S Comparative Study Research Support, Non-U.S. Gov't Journal Article Feature |
GeographicLocations | South America America Amazon Basin Bolivia Missouri |
GeographicLocations_xml | – name: Bolivia – name: Missouri |
GrantInformation_xml | – fundername: National Science Foundation funderid: DEB 0101775; Grant EF‐0553768 – fundername: Washington University's Tyson Research Center – fundername: RRD VA grantid: IK6 RX002477 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACGOD ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ N~3 O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHHS ABTAH ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ESX WRC AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 C1K H94 M7N 7X8 7ST 7U6 |
ID | FETCH-LOGICAL-c5551-8697731c23468816a3a440ea5871e309de4a83290e0d17d6ce2f19a0a8f110f13 |
IEDL.DBID | DR2 |
ISSN | 1461-023X 1461-0248 |
IngestDate | Fri Jul 11 15:55:20 EDT 2025 Fri Jul 11 15:34:24 EDT 2025 Fri Jul 25 10:53:01 EDT 2025 Thu Apr 03 07:00:07 EDT 2025 Mon Jul 21 09:13:29 EDT 2025 Tue Jul 01 02:29:39 EDT 2025 Thu Apr 24 22:57:25 EDT 2025 Wed Jan 22 16:32:51 EST 2025 Sun Sep 21 06:29:10 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Filtering intraspecific aggregation beta-diversity Beta diversity Tropical forest Dispersion Sorting Aggregation species pool dispersal limitation Ozarks environmental filtering Amazonia species sorting Temperate forests Community community assembly metacommunity |
Language | English |
License | CC BY 4.0 2012 Blackwell Publishing Ltd/CNRS. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5551-8697731c23468816a3a440ea5871e309de4a83290e0d17d6ce2f19a0a8f110f13 |
Notes | istex:EEEEE884BB9A72EF198834811ACB1CB124822EC5 ark:/67375/WNG-78CD7QCL-J National Science Foundation - No. DEB 0101775; No. Grant EF-0553768 Washington University's Tyson Research Center ArticleID:ELE12021 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ele.12021 |
PMID | 23113954 |
PQID | 1269521997 |
PQPubID | 32390 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1285103875 proquest_miscellaneous_1273586386 proquest_journals_1269521997 pubmed_primary_23113954 pascalfrancis_primary_26853493 crossref_citationtrail_10_1111_ele_12021 crossref_primary_10_1111_ele_12021 wiley_primary_10_1111_ele_12021_ELE12021 istex_primary_ark_67375_WNG_78CD7QCL_J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2013 |
PublicationDateYYYYMMDD | 2013-02-01 |
PublicationDate_xml | – month: 02 year: 2013 text: February 2013 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England – name: Paris |
PublicationTitle | Ecology letters |
PublicationTitleAlternate | Ecol Lett |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
References | Crist, T.O., Veech, J.A., Gering, J.C. & Summerville, K.S. (2003). Partitioning species diversity across landscapes and regions: a hierarchical analysis of alpha, beta, and gamma diversity. Am. Nat., 162, 734-743. Hubbell, S.P., Foster, R.B., O'Brien, S.T., Harms, K.E., Condit, R., Wechsler, B. et al. (1999). Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science, 283, 554-557. Chase, J.M. & Leibold, M.A. (2003). Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press, Chicago. Borcard, D., Legendre, P., Avois-Jacquet, C. & Tuomisto, H. (2004). Dissecting the spatial structure of ecological data at multiple scales. Ecology, 85, 1826-1832. DeCáceres, M., Legendre, P., Valencia, R., Cao, M., Chang, L., Chuyong, G. et al. (2012). The variation of tree beta diversity across a global network of forest plots. Global Ecol. Biogeogr., DOI: 10.1111/j.1466-8238.2012.00770.x. Ricklefs, R.E. (1987). Community diversity - relative roles of local and regional processes. Science, 235, 167-171. Hille Ris Lambers, J., Clark, J.S. & Beckage, B. (2002). Density-dependent mortality and the latitudinal gradient in species diversity. Nature, 417, 732-735. Qian, H. & Ricklefs, R.E. (2007). A latitudinal gradient in large-scale beta diversity for vascular plants in North America. Ecol. Lett., 10, 737-744. R Core Development Team (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL Available at: http://www.R-project.org/. Last accessed 25 August 2012. Clark, J.S., Silman, M., Kern, R., Macklin, E. & Hille Ris Lambers, J. (1999). Seed dispersal near and far: patterns across temperate and tropical forests. Ecology, 80, 1475-1494. Smith, T.W. & Lundholm, J.T. (2010). Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography, 33, 648-655. Freestone, A.L. & Osman, R.W. (2011). Latitudinal variation in local interactions and regional enrichment shape patterns of marine community diversity. Ecology, 92, 208-217. John, R., Dalling, J.W., Harms, K.E., Yavitt, J.B., Stallard, R.F., Mirabello, M. et al. (2007). Soil nutrients influence spatial distributions of tropical tree species. Proc. Natl Acad. Sci. USA, 104, 864-869. Anderson, M.J. (2006). Distance-based tests for homogeneity of multivariate dispersions. Biometrics, 62, 245-253. Blanchet, F.G., Legendre, P. & Borcard, D. (2008). Forward selection of explanatory variables. Ecology, 89, 2623-2632. Higgins, M.A., Ruokolainen, K., Tuomisto, H., Llerena, N., Cardenas, G., Phillips, O.L. et al. (2011). Geological control of floristic composition in Amazonian forests. J. Biogeogr., 38, 2136-2149. Condit, R., Ashton, P.S., Baker, P., Bunyavejchewin, S., Gunatilleke, S., Gunatilleke, N. et al. (2000). Spatial patterns in the distribution of tropical tree species. Science, 288, 1414-1418. Cottenie, K. (2005). Integrating environmental and spatial processes in ecological community dynamics. Ecol. Lett., 8, 1175-1182. Kraft, N.J.B., Valencia, R. & Ackerly, D.D. (2008). Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580-582. Anderson, M.J., Crist, T.O., Chase, J.M., Vellend, M., Inouye, B.D., Freestone, A.L. et al. (2011). Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecol. Lett., 14, 19-28. Chase, J.M. & Myers, J.A. (2011). Disentangling the importance of ecological niches from stochastic processes across scales. Phil. Trans. Roy. Soc. B., 366, 2351-2363. Gilbert, G.S., Howard, E., Ayala-Orozco, B., Bonilla-Moheno, M., Cummings, J., Langridge, S. et al. (2010). Beyond the tropics: forest structure in a temperate forest mapped plot. J. Veg. Sci., 21, 388-405. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25, 1965-1978. Peres-Neto, P.R., Legendre, P., Dray, S. & Borcard, D. (2006). Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology, 87, 2614-2625. Kraft, N.J.B., Comita, L.S., Chase, J.M., Sanders, N.J., Swenson, N.G., Crist, T.O. et al. (2011). Disentangling the drivers of β-diversity along latitudinal and elevational gradients. Science, 333, 1755-1758. Dyer, L.A., Singer, M.S., Lill, J.T., Stireman, J.O., Gentry, G.L., Marquis, R.J. et al. (2007). Host specificity of Lepidoptera in tropical and temperate forests. Nature, 448, 696-699. Korhonen, J.J., Soininen, J. & Hillebrand, H. (2010). A quantitative analysis of temporal turnover in aquatic species assemblages across ecosystems. Ecology, 91, 508-517. Harms, K.E., Wright, S.J., Calderon, O., Hernandez, A. & Herre, E.A. (2000). Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature, 404, 493-495. Leprieur, F., Tedesco, P.A., Hugueny, B., Beauchard, O., Durr, H.H., Brosse, S. et al. (2011). Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecol. Lett., 14, 325-334. Chase, J.M. (2010). Stochastic community assembly causes higher biodiversity in more productive environments. Science, 328, 1388-1391. Tuomisto, H., Ruokolainen, K. & Yli-Halla, M. (2003). Dispersal, environment, and floristic variation of western Amazonian forests. Science, 299, 241-244. Condit, R., Pitman, N., Leigh, E.G., Chave, J., Terborgh, J., Foster, R.B. et al. (2002). Beta-diversity in tropical forest trees. Science, 295, 666-669. Dornelas, M., Connolly, S.R. & Hughes, T.P. (2006). Coral reef diversity refutes the neutral theory of biodiversity. Nature, 440, 80-82. Passy, S.I. & Blanchet, F.G. (2007). Algal communities in human-impacted stream ecosystems suffer beta-diversity decline. Divers. Distrib., 13, 670-679. Koleff, P., Lennon, J.J. & Gaston, K.J. (2003). Are there latitudinal gradients in species turnover? Global Ecol. Biogeogr., 12, 483-498. Pitman, N.C.A., Terborgh, J.W., Silman, M.R., Nunez, P., Neill, D.A., Ceron, C.E. et al. (2001). Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology, 82, 2101-2117. Schemske, D.W., Mittelbach, G.G., Cornell, H.V., Sobel, J.M. & Roy, K. (2009). Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst., 40, 245-269. Johnson, D.J., Beaulieu, W.T., Bever, J.D. & Clay, K. (2012). Conspecific negative density dependence and forest diversity. Science, 336, 904-907. Griffith, D.A. & Peres-Neto, P.R. (2006). Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology, 87, 2603-2613. Soininen, J., Lennon, J.J. & Hillebrand, H. (2007). A multivariate analysis of beta diversity across organisms and environments. Ecology, 88, 2830-2838. Hubbell, S.P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, New Jersey. Hurtt, G.C. & Pacala, S.W. (1995). The consequences of recruitment limitation - Reconciling chance, history and competitive differences between plants. J. Theor. Biol., 176, 1-12. Gilbert, B. & Lechowicz, M.J. (2004). Neutrality, niches, and dispersal in a temperate forest understory. Proc. Natl Acad. Sci. USA, 101, 7651-7656. Chisholm, R.A. & Pacala, S.W. (2011). Theory predicts a rapid transition from niche-structured to neutral biodiversity patterns across a speciation-rate gradient. Theor. Ecol., 4, 195-200. Friedman-Rudovsky, J. (2012). Taking the measure of Madidi. Science, 377, 285-287. Vellend, M., Verheyen, K., Flinn, K.M., Jacquemyn, H., Kolb, A., Van Calster, H. et al. (2007). Homogenization of forest plant communities and weakening of species-environment relationships via agricultural land use. J. Ecol., 95, 565-573. Legendre, P., Mi, X.C., Ren, H.B., Ma, K.P., Yu, M.J., Sun, I.F. et al. (2009). Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology, 90, 663-674. Stegen, J.C. & Hurlbert, A.H. (2011). Inferring ecological processes from taxonomic, phylogenetic and functional trait β-diversity. PLoS ONE, 6, e20906. 2004; 101 2007; 104 2010; 33 2004; 85 2011; 333 2007; 448 2009; 40 2012 2010; 328 2002; 295 1999; 283 2003 2007; 95 2011; 14 2002; 417 2008; 322 2011; 4 2011; 38 1995; 176 2007; 10 1999; 80 2011; 6 2003; 299 2007; 13 2005; 25 2003; 12 2010; 21 2001; 82 2011; 366 2006; 62 2012; 377 2001 2006; 87 1987; 235 2005; 8 2011; 92 2000; 404 2009; 90 2003; 162 2008; 89 2006; 440 2000; 288 2010; 91 2012; 336 2007; 88 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Hubbell S.P. (e_1_2_7_27_1) 2001 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 R Core Development Team (e_1_2_7_43_1) 2012 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – reference: Blanchet, F.G., Legendre, P. & Borcard, D. (2008). Forward selection of explanatory variables. Ecology, 89, 2623-2632. – reference: Clark, J.S., Silman, M., Kern, R., Macklin, E. & Hille Ris Lambers, J. (1999). Seed dispersal near and far: patterns across temperate and tropical forests. Ecology, 80, 1475-1494. – reference: Hurtt, G.C. & Pacala, S.W. (1995). The consequences of recruitment limitation - Reconciling chance, history and competitive differences between plants. J. Theor. Biol., 176, 1-12. – reference: Anderson, M.J., Crist, T.O., Chase, J.M., Vellend, M., Inouye, B.D., Freestone, A.L. et al. (2011). Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecol. Lett., 14, 19-28. – reference: Soininen, J., Lennon, J.J. & Hillebrand, H. (2007). A multivariate analysis of beta diversity across organisms and environments. Ecology, 88, 2830-2838. – reference: Condit, R., Pitman, N., Leigh, E.G., Chave, J., Terborgh, J., Foster, R.B. et al. (2002). Beta-diversity in tropical forest trees. Science, 295, 666-669. – reference: Dyer, L.A., Singer, M.S., Lill, J.T., Stireman, J.O., Gentry, G.L., Marquis, R.J. et al. (2007). Host specificity of Lepidoptera in tropical and temperate forests. Nature, 448, 696-699. – reference: Leprieur, F., Tedesco, P.A., Hugueny, B., Beauchard, O., Durr, H.H., Brosse, S. et al. (2011). Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecol. Lett., 14, 325-334. – reference: Chisholm, R.A. & Pacala, S.W. (2011). Theory predicts a rapid transition from niche-structured to neutral biodiversity patterns across a speciation-rate gradient. Theor. Ecol., 4, 195-200. – reference: Friedman-Rudovsky, J. (2012). Taking the measure of Madidi. Science, 377, 285-287. – reference: Kraft, N.J.B., Comita, L.S., Chase, J.M., Sanders, N.J., Swenson, N.G., Crist, T.O. et al. (2011). Disentangling the drivers of β-diversity along latitudinal and elevational gradients. Science, 333, 1755-1758. – reference: Johnson, D.J., Beaulieu, W.T., Bever, J.D. & Clay, K. (2012). Conspecific negative density dependence and forest diversity. Science, 336, 904-907. – reference: Gilbert, B. & Lechowicz, M.J. (2004). Neutrality, niches, and dispersal in a temperate forest understory. Proc. Natl Acad. Sci. USA, 101, 7651-7656. – reference: Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25, 1965-1978. – reference: Gilbert, G.S., Howard, E., Ayala-Orozco, B., Bonilla-Moheno, M., Cummings, J., Langridge, S. et al. (2010). Beyond the tropics: forest structure in a temperate forest mapped plot. J. Veg. Sci., 21, 388-405. – reference: Passy, S.I. & Blanchet, F.G. (2007). Algal communities in human-impacted stream ecosystems suffer beta-diversity decline. Divers. Distrib., 13, 670-679. – reference: Kraft, N.J.B., Valencia, R. & Ackerly, D.D. (2008). Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580-582. – reference: Condit, R., Ashton, P.S., Baker, P., Bunyavejchewin, S., Gunatilleke, S., Gunatilleke, N. et al. (2000). Spatial patterns in the distribution of tropical tree species. Science, 288, 1414-1418. – reference: Cottenie, K. (2005). Integrating environmental and spatial processes in ecological community dynamics. Ecol. Lett., 8, 1175-1182. – reference: Peres-Neto, P.R., Legendre, P., Dray, S. & Borcard, D. (2006). Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology, 87, 2614-2625. – reference: Vellend, M., Verheyen, K., Flinn, K.M., Jacquemyn, H., Kolb, A., Van Calster, H. et al. (2007). Homogenization of forest plant communities and weakening of species-environment relationships via agricultural land use. J. Ecol., 95, 565-573. – reference: Pitman, N.C.A., Terborgh, J.W., Silman, M.R., Nunez, P., Neill, D.A., Ceron, C.E. et al. (2001). Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology, 82, 2101-2117. – reference: Qian, H. & Ricklefs, R.E. (2007). A latitudinal gradient in large-scale beta diversity for vascular plants in North America. Ecol. Lett., 10, 737-744. – reference: Chase, J.M. (2010). Stochastic community assembly causes higher biodiversity in more productive environments. Science, 328, 1388-1391. – reference: Stegen, J.C. & Hurlbert, A.H. (2011). Inferring ecological processes from taxonomic, phylogenetic and functional trait β-diversity. PLoS ONE, 6, e20906. – reference: Smith, T.W. & Lundholm, J.T. (2010). Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography, 33, 648-655. – reference: R Core Development Team (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL Available at: http://www.R-project.org/. Last accessed 25 August 2012. – reference: Tuomisto, H., Ruokolainen, K. & Yli-Halla, M. (2003). Dispersal, environment, and floristic variation of western Amazonian forests. Science, 299, 241-244. – reference: Chase, J.M. & Myers, J.A. (2011). Disentangling the importance of ecological niches from stochastic processes across scales. Phil. Trans. Roy. Soc. B., 366, 2351-2363. – reference: Hubbell, S.P., Foster, R.B., O'Brien, S.T., Harms, K.E., Condit, R., Wechsler, B. et al. (1999). Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science, 283, 554-557. – reference: Korhonen, J.J., Soininen, J. & Hillebrand, H. (2010). A quantitative analysis of temporal turnover in aquatic species assemblages across ecosystems. Ecology, 91, 508-517. – reference: Harms, K.E., Wright, S.J., Calderon, O., Hernandez, A. & Herre, E.A. (2000). Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature, 404, 493-495. – reference: Legendre, P., Mi, X.C., Ren, H.B., Ma, K.P., Yu, M.J., Sun, I.F. et al. (2009). Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology, 90, 663-674. – reference: Koleff, P., Lennon, J.J. & Gaston, K.J. (2003). Are there latitudinal gradients in species turnover? Global Ecol. Biogeogr., 12, 483-498. – reference: Hubbell, S.P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, New Jersey. – reference: Dornelas, M., Connolly, S.R. & Hughes, T.P. (2006). Coral reef diversity refutes the neutral theory of biodiversity. Nature, 440, 80-82. – reference: Freestone, A.L. & Osman, R.W. (2011). Latitudinal variation in local interactions and regional enrichment shape patterns of marine community diversity. Ecology, 92, 208-217. – reference: Ricklefs, R.E. (1987). Community diversity - relative roles of local and regional processes. Science, 235, 167-171. – reference: Anderson, M.J. (2006). Distance-based tests for homogeneity of multivariate dispersions. Biometrics, 62, 245-253. – reference: DeCáceres, M., Legendre, P., Valencia, R., Cao, M., Chang, L., Chuyong, G. et al. (2012). The variation of tree beta diversity across a global network of forest plots. Global Ecol. Biogeogr., DOI: 10.1111/j.1466-8238.2012.00770.x. – reference: Chase, J.M. & Leibold, M.A. (2003). Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press, Chicago. – reference: John, R., Dalling, J.W., Harms, K.E., Yavitt, J.B., Stallard, R.F., Mirabello, M. et al. (2007). Soil nutrients influence spatial distributions of tropical tree species. Proc. Natl Acad. Sci. USA, 104, 864-869. – reference: Higgins, M.A., Ruokolainen, K., Tuomisto, H., Llerena, N., Cardenas, G., Phillips, O.L. et al. (2011). Geological control of floristic composition in Amazonian forests. J. Biogeogr., 38, 2136-2149. – reference: Schemske, D.W., Mittelbach, G.G., Cornell, H.V., Sobel, J.M. & Roy, K. (2009). Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst., 40, 245-269. – reference: Crist, T.O., Veech, J.A., Gering, J.C. & Summerville, K.S. (2003). Partitioning species diversity across landscapes and regions: a hierarchical analysis of alpha, beta, and gamma diversity. Am. Nat., 162, 734-743. – reference: Griffith, D.A. & Peres-Neto, P.R. (2006). Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology, 87, 2603-2613. – reference: Borcard, D., Legendre, P., Avois-Jacquet, C. & Tuomisto, H. (2004). Dissecting the spatial structure of ecological data at multiple scales. Ecology, 85, 1826-1832. – reference: Hille Ris Lambers, J., Clark, J.S. & Beckage, B. (2002). Density-dependent mortality and the latitudinal gradient in species diversity. Nature, 417, 732-735. – volume: 366 start-page: 2351 year: 2011 end-page: 2363 article-title: Disentangling the importance of ecological niches from stochastic processes across scales publication-title: Phil. Trans. Roy. Soc. B. – volume: 33 start-page: 648 year: 2010 end-page: 655 article-title: Variation partitioning as a tool to distinguish between niche and neutral processes publication-title: Ecography – volume: 295 start-page: 666 year: 2002 end-page: 669 article-title: Beta‐diversity in tropical forest trees publication-title: Science – volume: 82 start-page: 2101 year: 2001 end-page: 2117 article-title: Dominance and distribution of tree species in upper Amazonian terra firme forests publication-title: Ecology – volume: 14 start-page: 325 year: 2011 end-page: 334 article-title: Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes publication-title: Ecol. Lett. – volume: 95 start-page: 565 year: 2007 end-page: 573 article-title: Homogenization of forest plant communities and weakening of species‐environment relationships via agricultural land use publication-title: J. Ecol. – volume: 322 start-page: 580 year: 2008 end-page: 582 article-title: Functional traits and niche‐based tree community assembly in an Amazonian forest publication-title: Science – volume: 25 start-page: 1965 year: 2005 end-page: 1978 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: Int. J. Climatol. – volume: 162 start-page: 734 year: 2003 end-page: 743 article-title: Partitioning species diversity across landscapes and regions: a hierarchical analysis of alpha, beta, and gamma diversity publication-title: Am. Nat. – volume: 87 start-page: 2603 year: 2006 end-page: 2613 article-title: Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses publication-title: Ecology – year: 2001 – year: 2003 – volume: 10 start-page: 737 year: 2007 end-page: 744 article-title: A latitudinal gradient in large‐scale beta diversity for vascular plants in North America publication-title: Ecol. Lett. – volume: 40 start-page: 245 year: 2009 end-page: 269 article-title: Is there a latitudinal gradient in the importance of biotic interactions? publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 12 start-page: 483 year: 2003 end-page: 498 article-title: Are there latitudinal gradients in species turnover? publication-title: Global Ecol. Biogeogr. – volume: 80 start-page: 1475 year: 1999 end-page: 1494 article-title: Seed dispersal near and far: patterns across temperate and tropical forests publication-title: Ecology – volume: 333 start-page: 1755 year: 2011 end-page: 1758 article-title: Disentangling the drivers of β‐diversity along latitudinal and elevational gradients publication-title: Science – volume: 92 start-page: 208 year: 2011 end-page: 217 article-title: Latitudinal variation in local interactions and regional enrichment shape patterns of marine community diversity publication-title: Ecology – volume: 328 start-page: 1388 year: 2010 end-page: 1391 article-title: Stochastic community assembly causes higher biodiversity in more productive environments publication-title: Science – volume: 91 start-page: 508 year: 2010 end-page: 517 article-title: A quantitative analysis of temporal turnover in aquatic species assemblages across ecosystems publication-title: Ecology – volume: 448 start-page: 696 year: 2007 end-page: 699 article-title: Host specificity of Lepidoptera in tropical and temperate forests publication-title: Nature – volume: 283 start-page: 554 year: 1999 end-page: 557 article-title: Light‐gap disturbances, recruitment limitation, and tree diversity in a neotropical forest publication-title: Science – year: 2012 – year: 2012 article-title: The variation of tree beta diversity across a global network of forest plots publication-title: Global Ecol. Biogeogr – volume: 440 start-page: 80 year: 2006 end-page: 82 article-title: Coral reef diversity refutes the neutral theory of biodiversity publication-title: Nature – volume: 21 start-page: 388 year: 2010 end-page: 405 article-title: Beyond the tropics: forest structure in a temperate forest mapped plot publication-title: J. Veg. Sci. – volume: 14 start-page: 19 year: 2011 end-page: 28 article-title: Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist publication-title: Ecol. Lett. – volume: 13 start-page: 670 year: 2007 end-page: 679 article-title: Algal communities in human‐impacted stream ecosystems suffer beta‐diversity decline publication-title: Divers. Distrib. – volume: 89 start-page: 2623 year: 2008 end-page: 2632 article-title: Forward selection of explanatory variables publication-title: Ecology – volume: 87 start-page: 2614 year: 2006 end-page: 2625 article-title: Variation partitioning of species data matrices: estimation and comparison of fractions publication-title: Ecology – volume: 101 start-page: 7651 year: 2004 end-page: 7656 article-title: Neutrality, niches, and dispersal in a temperate forest understory publication-title: Proc. Natl Acad. Sci. USA – volume: 176 start-page: 1 year: 1995 end-page: 12 article-title: The consequences of recruitment limitation – Reconciling chance, history and competitive differences between plants publication-title: J. Theor. Biol. – volume: 288 start-page: 1414 year: 2000 end-page: 1418 article-title: Spatial patterns in the distribution of tropical tree species publication-title: Science – volume: 4 start-page: 195 year: 2011 end-page: 200 article-title: Theory predicts a rapid transition from niche‐structured to neutral biodiversity patterns across a speciation‐rate gradient publication-title: Theor. Ecol. – volume: 38 start-page: 2136 year: 2011 end-page: 2149 article-title: Geological control of floristic composition in Amazonian forests publication-title: J. Biogeogr. – volume: 235 start-page: 167 year: 1987 end-page: 171 article-title: Community diversity – relative roles of local and regional processes publication-title: Science – volume: 417 start-page: 732 year: 2002 end-page: 735 article-title: Density‐dependent mortality and the latitudinal gradient in species diversity publication-title: Nature – volume: 85 start-page: 1826 year: 2004 end-page: 1832 article-title: Dissecting the spatial structure of ecological data at multiple scales publication-title: Ecology – volume: 377 start-page: 285 year: 2012 end-page: 287 article-title: Taking the measure of Madidi publication-title: Science – volume: 104 start-page: 864 year: 2007 end-page: 869 article-title: Soil nutrients influence spatial distributions of tropical tree species publication-title: Proc. Natl Acad. Sci. USA – volume: 90 start-page: 663 year: 2009 end-page: 674 article-title: Partitioning beta diversity in a subtropical broad‐leaved forest of China publication-title: Ecology – volume: 8 start-page: 1175 year: 2005 end-page: 1182 article-title: Integrating environmental and spatial processes in ecological community dynamics publication-title: Ecol. Lett. – volume: 6 start-page: e20906 year: 2011 article-title: Inferring ecological processes from taxonomic, phylogenetic and functional trait β‐diversity publication-title: PLoS ONE – volume: 299 start-page: 241 year: 2003 end-page: 244 article-title: Dispersal, environment, and floristic variation of western Amazonian forests publication-title: Science – volume: 62 start-page: 245 year: 2006 end-page: 253 article-title: Distance‐based tests for homogeneity of multivariate dispersions publication-title: Biometrics – volume: 88 start-page: 2830 year: 2007 end-page: 2838 article-title: A multivariate analysis of beta diversity across organisms and environments publication-title: Ecology – volume: 404 start-page: 493 year: 2000 end-page: 495 article-title: Pervasive density‐dependent recruitment enhances seedling diversity in a tropical forest publication-title: Nature – volume: 336 start-page: 904 year: 2012 end-page: 907 article-title: Conspecific negative density dependence and forest diversity publication-title: Science – ident: e_1_2_7_45_1 doi: 10.1146/annurev.ecolsys.39.110707.173430 – ident: e_1_2_7_32_1 doi: 10.1046/j.1466-822X.2003.00056.x – ident: e_1_2_7_34_1 doi: 10.1126/science.1160662 – ident: e_1_2_7_4_1 doi: 10.1890/07-0986.1 – ident: e_1_2_7_7_1 doi: 10.1126/science.1187820 – ident: e_1_2_7_3_1 doi: 10.1111/j.1461-0248.2010.01552.x – ident: e_1_2_7_40_1 doi: 10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2 – ident: e_1_2_7_6_1 doi: 10.1111/j.1466‐8238.2012.00770.x – ident: e_1_2_7_49_1 doi: 10.1126/science.1078037 – ident: e_1_2_7_14_1 doi: 10.1111/j.1461-0248.2005.00820.x – ident: e_1_2_7_26_1 doi: 10.1038/nature00809 – ident: e_1_2_7_28_1 doi: 10.1126/science.283.5401.554 – ident: e_1_2_7_41_1 doi: 10.1890/0012-9658(2001)082[2101:DADOTS]2.0.CO;2 – ident: e_1_2_7_47_1 doi: 10.1890/06-1730.1 – ident: e_1_2_7_15_1 doi: 10.1086/378901 – ident: e_1_2_7_33_1 doi: 10.1890/09-0392.1 – ident: e_1_2_7_38_1 – ident: e_1_2_7_37_1 doi: 10.1111/j.1461-0248.2011.01589.x – ident: e_1_2_7_24_1 doi: 10.1111/j.1365-2699.2011.02585.x – ident: e_1_2_7_50_1 doi: 10.1111/j.1365-2745.2007.01233.x – ident: e_1_2_7_18_1 doi: 10.1890/09-1841.1 – ident: e_1_2_7_10_1 doi: 10.1007/s12080-011-0113-5 – ident: e_1_2_7_29_1 doi: 10.1006/jtbi.1995.0170 – ident: e_1_2_7_8_1 doi: 10.7208/chicago/9780226101811.001.0001 – ident: e_1_2_7_48_1 doi: 10.1371/journal.pone.0020906 – ident: e_1_2_7_21_1 doi: 10.1111/j.1654-1103.2009.01151.x – ident: e_1_2_7_19_1 doi: 10.1126/science.337.6092.285 – ident: e_1_2_7_22_1 doi: 10.1890/0012-9658(2006)87[2603:SMIETF]2.0.CO;2 – ident: e_1_2_7_46_1 doi: 10.1111/j.1600-0587.2009.06105.x – ident: e_1_2_7_30_1 doi: 10.1073/pnas.0604666104 – ident: e_1_2_7_11_1 doi: 10.1890/0012-9658(1999)080[1475:SDNAFP]2.0.CO;2 – ident: e_1_2_7_42_1 doi: 10.1111/j.1461-0248.2007.01066.x – ident: e_1_2_7_31_1 doi: 10.1126/science.1220269 – ident: e_1_2_7_9_1 doi: 10.1098/rstb.2011.0063 – ident: e_1_2_7_5_1 doi: 10.1890/03-3111 – ident: e_1_2_7_13_1 doi: 10.1126/science.1066854 – ident: e_1_2_7_16_1 doi: 10.1038/nature04534 – ident: e_1_2_7_20_1 doi: 10.1073/pnas.0400814101 – ident: e_1_2_7_12_1 doi: 10.1126/science.288.5470.1414 – volume-title: The Unified Neutral Theory of Biodiversity and Biogeography year: 2001 ident: e_1_2_7_27_1 – ident: e_1_2_7_2_1 doi: 10.1111/j.1541-0420.2005.00440.x – ident: e_1_2_7_39_1 doi: 10.1111/j.1472-4642.2007.00361.x – ident: e_1_2_7_23_1 doi: 10.1038/35006630 – ident: e_1_2_7_35_1 doi: 10.1126/science.1208584 – ident: e_1_2_7_17_1 doi: 10.1038/nature05884 – ident: e_1_2_7_44_1 doi: 10.1126/science.235.4785.167 – ident: e_1_2_7_36_1 doi: 10.1890/07-1880.1 – ident: e_1_2_7_25_1 doi: 10.1002/joc.1276 – volume-title: R: A Language and Environment for Statistical Computing year: 2012 ident: e_1_2_7_43_1 |
SSID | ssj0012971 |
Score | 2.5648308 |
Snippet | Site‐to‐site variation in species composition (β‐diversity) generally increases from low‐ to high‐diversity regions. Although biogeographical differences in... Site-to-site variation in species composition (β-diversity) generally increases from low- to high-diversity regions. Although biogeographical differences in... Site-to-site variation in species composition ([beta]-diversity) generally increases from low- to high-diversity regions. Although biogeographical differences... Site-to-site variation in species composition ( beta -diversity) generally increases from low- to high-diversity regions. Although biogeographical differences... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 151 |
SubjectTerms | Amazonia Animal and plant ecology Animal, plant and microbial ecology beta-diversity Biodiversity Biological and medical sciences Bolivia Carya Climate community assembly Community ecology dispersal limitation environmental filtering Forestry Fundamental and applied biological sciences. Psychology General aspects General forest ecology Generalities. Production, biomass. Quality of wood and forest products. General forest ecology intraspecific aggregation metacommunity Missouri Models, Biological Ozarks Plant populations Quercus Rainforests Species composition Species diversity species pool species sorting Temperate forests Terrestrial ecosystems Trees Tropical Climate Tropical environments Tropical forests Woody plants |
Title | Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly |
URI | https://api.istex.fr/ark:/67375/WNG-78CD7QCL-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fele.12021 https://www.ncbi.nlm.nih.gov/pubmed/23113954 https://www.proquest.com/docview/1269521997 https://www.proquest.com/docview/1273586386 https://www.proquest.com/docview/1285103875 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9KRfDFb220llVEfMmRzX5kF5_0erWUWlAs3oMQNslGjvZy5ZIDzyf_BP9G_xJnNh96UkV8C2Q2yU5mZn-TzP6GkKeWS2Vg4Qx1EdlQ6DIPjRUylExHLiq0EZ4k6c2JOjwVR1M53SIv-r0wLT_E8MENPcPHa3Rwm9W_ODlE5RGD1B1TH8YV8ubvvxuoo2AZa5MtoSBdjvm0YxXCKp5h5MZadAXV-hlrI20N6inbvhaXAc9NHOsXooMb5GM_hbb-5Gy0arJR_uU3dsf_nONNcr0DqPRla1G3yJarbpOrbcvKNRxNPM31-g759Mo19vvXb0Vf2UFnFUWmK6RpdtRWBW2Wiws0AgrIGKZWU1AB_iaoKZYBzOYzSKvp3OHm41k9r-mipHm7YQWuBqjezbPz9V1yejB5Pz4Mu7YNYS4Bf4VaAabkLI-5UFozZbkVInJWQm7meGQKJyzEEYO2wJICW5KVzNjI6hKwSMn4PbJdLSq3Q2jmtFa2VDa2RrAMsmnAh64QhbAytyIJyPP-BaZ5x2mOrTXO0z63AQ2mXoMBeTKIXrREHpcJPfNWMEjY5RlWviUy_XDyOk30eD95Oz5OjwKyt2Emw4BYAf4Rhgdkt7ebtIsKNdxDGYBLxsCDPx5Ogz_jTxpbucUKZRIuNURF9TcZjUSIkGoG5H5rkz8fgDMA9VKAarxl_Xmy6eR44g8e_LvoQ3It9v1AsJ5nl2w3y5V7BKisyfa8-_0AT9oxJA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VrRBceD8MpSwIIS6ObO_DuxIXCCmhpJFArcilstb2GkVtnCpOJMKJn8Bv5Jcws35AUEGImyWPHzuemf3GO_sNIU8NE1LDxOmrPDA-V0Xma8OFL0IV2CBXmjuSpMOxHB7zg4mYbJEX7V6Ymh-i--GGnuHiNTo4_pD-xcshLPdCyN0h99lx63MIiT505FEwkdXpFpeQMEds0vAKYR1Pd-nGbLSDiv2M1ZGmAgUVdWeLi6DnJpJ1U9H-NXLSDqKuQDntrZZpL_vyG7_j_47yOrnaYFT6sjaqG2TLljfJpbpr5RqOBo7pen2LfHpll-b71295W9xBpyVFsitkarbUlDldLubnaAcUwDGMraKgA1wpqChWAkxnU8is6czi_uNpNavovKBZvWcF7gbA3s7Ss_Vtcrw_OOoP_aZzg58JgGC-kgArWZhFjEulQmmY4TywRkB6Zlmgc8sNhBKN5hDGOXYlK0JtAqMKgCNFyO6Q7XJe2nuEplYpaQppIqN5mEJCDRDR5jznRmSGxx553n7BJGtozbG7xlnSpjegwcRp0CNPOtHzmsvjIqFnzgw6CbM4xeK3WCQfx2-SWPVfx-_7o-TAI3sbdtJdEEmAQFwzj-y2hpM0gaGCZ0gNiElrePHH3WlwaVynMaWdr1AmZkJBYJR_k1HIhQjZpkfu1kb58wVYCLhecFCNM60_DzYZjAbu4P6_iz4il4dHh6Nk9Hb87gG5Ern2IFjes0u2l4uVfQggbZnuOV_8AUyvNUI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VrUBcKG9cSlkQQlwc-bG73hUnSBNKCREgKnKoZK3tNYraOFHsSIQTP4HfyC9hZv2AoIIQN0sZO97xPL6xZ78h5LEOuVCQOF2ZedplMk9dpRl3uS8942VSMUuS9GYsjk7Y8YRPtsizdi9MzQ_RvXBDz7DxGh18keW_ODlE5Z4PpTuUPjtMQJpERPS-446CPFZXW0xAvRyEk4ZWCNt4ulM3ktEO6vUzNkfqEvST14MtLkKem0DWZqLhLjlt11A3oJz1VlXSS7_8Ru_4n4u8Rq42CJU-r03qOtkyxQ1yqZ5ZuYajgeW5Xt8kn16YSn__-i1rWzvotKBIdYU8zYbqIqPVcr5AK6AAjWFpJQUV4HeCkmIfwHQ2hbqazgzuPp6Ws5LOc5rWO1bgagDrzSw5X98iJ8PBh_6R28xtcFMOAMyVAkBl6KdByISUvtChZswzmkNxZkJPZYZpCCQKjcGPMpxJlvtKe1rmAEZyP7xNtot5Ye4Smhgphc6FDrRifgLlNABEk7GMaZ5qFjnkafsA47QhNcfZGudxW9yABmOrQYc86kQXNZPHRUJPrBV0Enp5hq1vEY8_jl_GkewfRu_6o_jYIQcbZtKdEAgAQEyFDtlv7SZuwkIJ_yEU4CWl4MYfdj-DQ-NXGl2Y-QplopBLCIvibzISmRCh1nTIndomf95A6AOq5wxUYy3rz4uNB6OBPdj7d9EH5PLbw2E8ejV-fY9cCexsEOzt2Sfb1XJl7gNCq5ID64k_AISZM_E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beta-diversity+in+temperate+and+tropical+forests+reflects+dissimilar+mechanisms+of+community+assembly&rft.jtitle=Ecology+letters&rft.au=Myers%2C+Jonathan+A&rft.au=Chase%2C+Jonathan+M&rft.au=Jim%C3%A9nez%2C+Iv%C3%A1n&rft.au=J%C3%B8rgensen%2C+Peter+M&rft.date=2013-02-01&rft.eissn=1461-0248&rft.volume=16&rft.issue=2&rft.spage=151&rft_id=info:doi/10.1111%2Fele.12021&rft_id=info%3Apmid%2F23113954&rft.externalDocID=23113954 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon |