短期负荷局部线性嵌入流形学习预测法
考虑短期日负荷预测各时刻点之间的整体性和相关性,提出一种从整体上刻画和预测短期日负荷的新方法。将日24点负荷数据值看作一个24维数据集,从多维角度挖掘负荷复杂的变化规律,建立高维预测模型。利用流形学习理论对建立的高维模型进行有效降维,从而提取高维空间数据的固有属性和整体几何规律,揭示其蕴含的有效信息。采用局部线性嵌入法(locallyl Inearembedding,LLE)对24维负荷数据进行非绳l生降维,在低维空间内进行负荷预测,再用LLE重构得到24个时刻的预测值。仿真结果表明本文提出方法相比于传统一维分量预测法精度更高、速度更快。...
        Saved in:
      
    
          | Published in | 电力系统保护与控制 Vol. 40; no. 7; pp. 25 - 30 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            四川大学电气信息学院,四川成都,610065%四川大学电气信息学院,四川成都610065
    
        2012
     智能电网四川省重点实验室,四川成都610065  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1674-3415 | 
| DOI | 10.3969/j.issn.1674-3415.2012.07.005 | 
Cover
| Summary: | 考虑短期日负荷预测各时刻点之间的整体性和相关性,提出一种从整体上刻画和预测短期日负荷的新方法。将日24点负荷数据值看作一个24维数据集,从多维角度挖掘负荷复杂的变化规律,建立高维预测模型。利用流形学习理论对建立的高维模型进行有效降维,从而提取高维空间数据的固有属性和整体几何规律,揭示其蕴含的有效信息。采用局部线性嵌入法(locallyl Inearembedding,LLE)对24维负荷数据进行非绳l生降维,在低维空间内进行负荷预测,再用LLE重构得到24个时刻的预测值。仿真结果表明本文提出方法相比于传统一维分量预测法精度更高、速度更快。 | 
|---|---|
| Bibliography: | load forecast; manifold learning; locally linear embedding; nonlinear dimension reduction; least square support vector machine Considering the integrity and strong relevance of each point in short-term daily load value, the paper proposes a new model exposing and forecasting the daily load as a whole. We consider the 24 daily load values as a 24-dimensional data set, study the complex load changing rule from the multi-dimensional perspective and establish a high-dimensional load forecasting model. We use manifold theory to make an effective dimension reduction of the high-dimensional model, thus extract the inherence characteristics and overall regularity of the high-dimensional data, revealing the useful information it contains. We adopt locally linear embedding (LLE) to make a nonlinear dimension reduction for the 24-dimendional load data, and forecast the load in low dimensionality space, and then reconstruct the 24 load prediction based on the LLE reconstruction algorithm. Simulation results show that the  | 
| ISSN: | 1674-3415 | 
| DOI: | 10.3969/j.issn.1674-3415.2012.07.005 |