短期负荷局部线性嵌入流形学习预测法

考虑短期日负荷预测各时刻点之间的整体性和相关性,提出一种从整体上刻画和预测短期日负荷的新方法。将日24点负荷数据值看作一个24维数据集,从多维角度挖掘负荷复杂的变化规律,建立高维预测模型。利用流形学习理论对建立的高维模型进行有效降维,从而提取高维空间数据的固有属性和整体几何规律,揭示其蕴含的有效信息。采用局部线性嵌入法(locallyl Inearembedding,LLE)对24维负荷数据进行非绳l生降维,在低维空间内进行负荷预测,再用LLE重构得到24个时刻的预测值。仿真结果表明本文提出方法相比于传统一维分量预测法精度更高、速度更快。...

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 40; no. 7; pp. 25 - 30
Main Author 黄静 肖先勇 刘旭娜
Format Journal Article
LanguageChinese
Published 四川大学电气信息学院,四川成都,610065%四川大学电气信息学院,四川成都610065 2012
智能电网四川省重点实验室,四川成都610065
Subjects
Online AccessGet full text
ISSN1674-3415
DOI10.3969/j.issn.1674-3415.2012.07.005

Cover

Abstract 考虑短期日负荷预测各时刻点之间的整体性和相关性,提出一种从整体上刻画和预测短期日负荷的新方法。将日24点负荷数据值看作一个24维数据集,从多维角度挖掘负荷复杂的变化规律,建立高维预测模型。利用流形学习理论对建立的高维模型进行有效降维,从而提取高维空间数据的固有属性和整体几何规律,揭示其蕴含的有效信息。采用局部线性嵌入法(locallyl Inearembedding,LLE)对24维负荷数据进行非绳l生降维,在低维空间内进行负荷预测,再用LLE重构得到24个时刻的预测值。仿真结果表明本文提出方法相比于传统一维分量预测法精度更高、速度更快。
AbstractList 考虑短期日负荷预测各时刻点之间的整体性和相关性,提出一种从整体上刻画和预测短期日负荷的新方法。将日24点负荷数据值看作一个24维数据集,从多维角度挖掘负荷复杂的变化规律,建立高维预测模型。利用流形学习理论对建立的高维模型进行有效降维,从而提取高维空间数据的固有属性和整体几何规律,揭示其蕴含的有效信息。采用局部线性嵌入法(locallyl Inearembedding,LLE)对24维负荷数据进行非绳l生降维,在低维空间内进行负荷预测,再用LLE重构得到24个时刻的预测值。仿真结果表明本文提出方法相比于传统一维分量预测法精度更高、速度更快。
TM715; 考虑短期日负荷预测各时刻点之间的整体性和相关性,提出一种从整体上刻画和预测短期日负荷的新方法.将日24点负荷数据值看作一个24维数据集,从多维角度挖掘负荷复杂的变化规律,建立高维预测模型.利用流形学习理论对建立的高维模型进行有效降维,从而提取高维空间数据的固有属性和整体几何规律,揭示其蕴含的有效信息.采用局部线性嵌入法(locally linear embedding,LLE)对24维负荷数据进行非线性降维,在低维空间内进行负荷预测,再用LLE重构得到24个时刻的预测值.仿真结果表明本文提出方法相比于传统一维分量预测法精度更高、速度更快.
Author 黄静 肖先勇 刘旭娜
AuthorAffiliation 四川大学电气信息学院,四川成都610065 智能电网四川省重点实验室,四川成都610065
AuthorAffiliation_xml – name: 四川大学电气信息学院,四川成都,610065%四川大学电气信息学院,四川成都610065;智能电网四川省重点实验室,四川成都610065
Author_FL XIAO Xian-yong
HUANG Jing
LIU Xu-na
Author_FL_xml – sequence: 1
  fullname: HUANG Jing
– sequence: 2
  fullname: XIAO Xian-yong
– sequence: 3
  fullname: LIU Xu-na
Author_xml – sequence: 1
  fullname: 黄静 肖先勇 刘旭娜
BookMark eNo9j81Kw0AcxPdQwVr7EEKvif_dze52j1L8goKX3sM2u6kpurEJIt4q6kl79CZUCn5cehAtoiC-jEnbtzBS8TAMDD9mmBVUsrE1CNUwuFRyud51ozS1LubCc6iHmUsAExeEC8BKqPyfL6NqmkZtAIoZ43VZRnQ6HOe3w9nrcDZ4y5778_On6cdX3n_MJtfZ5X0-Ocs-R9n44fv9bj66yCdX-cvNKloK1UFqqn9eQa2tzVZjx2nube82NppOwBhzTMg5NUSGnFJiBJcK2qCE1lryQoLrALMgkFAXnjKBUJSHbUKYYqHxFNG0gmqL2hNlQ2U7fjc-Tmwx6Hd17_cgiOJega0tsGA_tp1eVIBHSXSoklPfwxRknQL9AQvNZ6o
ClassificationCodes TM715
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1674-3415.2012.07.005
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Short-term load forecasting based on manifold learning and locally linear embedding theory
DocumentTitle_FL Short-term load forecasting based on manifold learning and locally linear embedding theory
EndPage 30
ExternalDocumentID jdq201207005
41309830
GroupedDBID -03
2RA
5XA
5XD
92L
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CQIGP
GROUPED_DOAJ
U1G
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c555-ef663e29f6332e769a0b0a7ddd96dd976dc15cc90874aec7a36fb225a5fe4a2d3
ISSN 1674-3415
IngestDate Thu May 29 03:55:48 EDT 2025
Wed Feb 14 10:47:31 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords 流形学习
最小二乘支持向量机
负荷预测
局部线性嵌入
非线性降维
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c555-ef663e29f6332e769a0b0a7ddd96dd976dc15cc90874aec7a36fb225a5fe4a2d3
Notes load forecast; manifold learning; locally linear embedding; nonlinear dimension reduction; least square support vector machine
Considering the integrity and strong relevance of each point in short-term daily load value, the paper proposes a new model exposing and forecasting the daily load as a whole. We consider the 24 daily load values as a 24-dimensional data set, study the complex load changing rule from the multi-dimensional perspective and establish a high-dimensional load forecasting model. We use manifold theory to make an effective dimension reduction of the high-dimensional model, thus extract the inherence characteristics and overall regularity of the high-dimensional data, revealing the useful information it contains. We adopt locally linear embedding (LLE) to make a nonlinear dimension reduction for the 24-dimendional load data, and forecast the load in low dimensionality space, and then reconstruct the 24 load prediction based on the LLE reconstruction algorithm. Simulation results show that the
PageCount 6
ParticipantIDs wanfang_journals_jdq201207005
chongqing_primary_41309830
PublicationCentury 2000
PublicationDate 2012
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012
PublicationDecade 2010
PublicationTitle 电力系统保护与控制
PublicationTitleAlternate Relay
PublicationTitle_FL Power System Protection and Control
PublicationYear 2012
Publisher 四川大学电气信息学院,四川成都,610065%四川大学电气信息学院,四川成都610065
智能电网四川省重点实验室,四川成都610065
Publisher_xml – name: 智能电网四川省重点实验室,四川成都610065
– name: 四川大学电气信息学院,四川成都,610065%四川大学电气信息学院,四川成都610065
SSID ssib003155689
ssib017479473
ssib023166999
ssj0002912115
ssib051374514
ssib002424069
ssib036435463
Score 1.9664446
Snippet 考虑短期日负荷预测各时刻点之间的整体性和相关性,提出一种从整体上刻画和预测短期日负荷的新方法。将日24点负荷数据值看作一个24维数据集,从多维角度挖掘负荷复杂的变化...
TM715; 考虑短期日负荷预测各时刻点之间的整体性和相关性,提出一种从整体上刻画和预测短期日负荷的新方法.将日24点负荷数据值看作一个24维数据集,从多维角度挖掘负荷复杂...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 25
SubjectTerms 局部线性嵌入
最小二乘支持向量机
流形学习
负荷预测
非线性降维
Title 短期负荷局部线性嵌入流形学习预测法
URI http://lib.cqvip.com/qk/90494A/201207/41309830.html
https://d.wanfangdata.com.cn/periodical/jdq201207005
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  issn: 1674-3415
  databaseCode: DOA
  dateStart: 20080101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0002912115
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtNAcBWKhLggECBaKOqhe6pcHO_7aCeOKiQ4Bam3yM9WHFJa0ktPRcAJOHJDCqrE49IDggiBBPwMSdu_YGbtOBZCFXCINRnv7M7s2Dsz651dQpaFdk0s3MRRuWEOlx53IggLnJinntCp8LjCfOc7d-XaPX57Xaw3Gt9rq5Z2B_FqsvfHvJL_0SrgQK-YJfsPmq0qBQTAoF-4gobh-lc6pqGipkP9Ng0lNS2EQ00DXgK6TQNFQ0GDJi5oCA3VjPoaqQKfBh2kArxflBFUtxDQgvoCbyGmaW-1qe8hAA35koacBob6tkLAaz4tHFiA0eI8y6nLa5nkWAAr96kJLAOMBgUQWG458mOsIFDG5xYDIoQWE5ZMapCumkrE9oEa2zdIasyKldqjRpaCQPnQMqbVSklvtO0sZXtNYHeYVn3qo1mbB8XcCQcMsKgP5MW-T-UDq-qjsqjZ9-Iz0O-WgxlprOXA6ler6nHtn2d3d3XFzGJW6xjRAzCauWfIWQ_ng2ohfen-YGJxbfzE_d6q_xAMwmg4cx_B1ZbSzMJDBt5i_bQC0WSKi_KrN3oansEN-nCVbsXwObJcSnPrNFlwJ5HNrf7GNvhHNl2tn0f9jZpn1b1ILpQh0ZJfPN-XSGNv8zJhR8PDyavh8afh8YvP4w_7J4_fH339Mdl_Nx49Hz99Mxk9Gn87GB--_fnl9cnBk8no2eTjyyuk2wm7rTWnPODDSYQQTpaDu5t5JpeMeZmSJnJjN1JpmhoJPyXTpCmSxLha8ShLVMRkHoP9iUSe8chL2VUy19_qZ9fIElc61jqKci_VPFFJHIk4hsg-1ZlRTLrzZKGSt_eg2MelN9XePFksO6BXvtwPe_fTbewuMIiuWDiN-Do5jwWLWbkbZG6ws5stgp86iG_ah-EX-Zxsig
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%9F%AD%E6%9C%9F%E8%B4%9F%E8%8D%B7%E5%B1%80%E9%83%A8%E7%BA%BF%E6%80%A7%E5%B5%8C%E5%85%A5%E6%B5%81%E5%BD%A2%E5%AD%A6%E4%B9%A0%E9%A2%84%E6%B5%8B%E6%B3%95&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E9%BB%84%E9%9D%99+%E8%82%96%E5%85%88%E5%8B%87+%E5%88%98%E6%97%AD%E5%A8%9C&rft.date=2012&rft.issn=1674-3415&rft.volume=40&rft.issue=7&rft.spage=25&rft.epage=30&rft_id=info:doi/10.3969%2Fj.issn.1674-3415.2012.07.005&rft.externalDocID=41309830
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90494A%2F90494A.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg