融合粗糙集与神经网络的燃气轮发电机组振动故障诊断方法

针对燃气轮发电机组振动故障诊断中可测参数难以直接反映机组故障状态的问题,提出一种融合粗糙集理论和神经网络的燃气轮发电机组振动故障诊断方法。结合粗糙集对燃气轮发电机组振动信号原始特征数据进行约简,减少冗余信息。将粗糙集与神经网络有机结合,用优化了的神经网络诊断燃气轮发电机组振动故障。试验结果表明了所述方法的有效性,为燃气轮发电机组振动故障的快速诊断提供了可参考的新思路。...

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 42; no. 8; pp. 90 - 94
Main Author 李永德 李红伟 张炳成 杨洁 刘灏颖 张娇
Format Journal Article
LanguageChinese
Published 西南石油大学电气信息学院,四川 成都,610500%新疆油田公司百口泉采油厂,新疆 克拉玛依,834000 2014
Subjects
Online AccessGet full text
ISSN1674-3415

Cover

Abstract 针对燃气轮发电机组振动故障诊断中可测参数难以直接反映机组故障状态的问题,提出一种融合粗糙集理论和神经网络的燃气轮发电机组振动故障诊断方法。结合粗糙集对燃气轮发电机组振动信号原始特征数据进行约简,减少冗余信息。将粗糙集与神经网络有机结合,用优化了的神经网络诊断燃气轮发电机组振动故障。试验结果表明了所述方法的有效性,为燃气轮发电机组振动故障的快速诊断提供了可参考的新思路。
AbstractList TP181%TM311; 针对燃气轮发电机组振动故障诊断中可测参数难以直接反映机组故障状态的问题,提出一种融合粗糙集理论和神经网络的燃气轮发电机组振动故障诊断方法。结合粗糙集对燃气轮发电机组振动信号原始特征数据进行约简,减少冗余信息。将粗糙集与神经网络有机结合,用优化了的神经网络诊断燃气轮发电机组振动故障。试验结果表明了所述方法的有效性,为燃气轮发电机组振动故障的快速诊断提供了可参考的新思路。
针对燃气轮发电机组振动故障诊断中可测参数难以直接反映机组故障状态的问题,提出一种融合粗糙集理论和神经网络的燃气轮发电机组振动故障诊断方法。结合粗糙集对燃气轮发电机组振动信号原始特征数据进行约简,减少冗余信息。将粗糙集与神经网络有机结合,用优化了的神经网络诊断燃气轮发电机组振动故障。试验结果表明了所述方法的有效性,为燃气轮发电机组振动故障的快速诊断提供了可参考的新思路。
Abstract_FL In view of the problem that fault diagnosis for gas turbine vibration generator set parameters is difficult to reflect the state of unit fault directly, a fusion of rough set and neural network for gas turbine generator set vibration fault diagnosis is presented. Rough sets theory is applied in reduction of the original features of the vibration signal characteristic value data to remove unnecessary attributes. An optimized neural network structure which is used to fault diagnosis of gas turbine generator set is established based on rough sets. The experimental results show that the method is effective and provides a new idea for gas turbine generator set vibration fault diagnosis.
Author 李永德 李红伟 张炳成 杨洁 刘灏颖 张娇
AuthorAffiliation 西南石油大学电气信息学院,四川成都610500 新疆油田公司百口泉采油厂,新疆克拉玛依834000
AuthorAffiliation_xml – name: 西南石油大学电气信息学院,四川 成都,610500%新疆油田公司百口泉采油厂,新疆 克拉玛依,834000
Author_FL ZHANG Jiao
YANG Jie
LI Hong-wei
LIU Hao-ying
LI Yong-de
ZHANG Bing-cheng
Author_FL_xml – sequence: 1
  fullname: LI Yong-de
– sequence: 2
  fullname: LI Hong-wei
– sequence: 3
  fullname: ZHANG Bing-cheng
– sequence: 4
  fullname: YANG Jie
– sequence: 5
  fullname: LIU Hao-ying
– sequence: 6
  fullname: ZHANG Jiao
Author_xml – sequence: 1
  fullname: 李永德 李红伟 张炳成 杨洁 刘灏颖 张娇
BookMark eNotzU1LAkEAxvE5GGTmhwi6Lsz7zh5DegOpi3fZnd0xpdZUIjpnL0hlghqZeAu6lJEE1eK3aWf0W7Rgp-fy4_mvgFRYDYMUSCNuU4tQxJZBttEoexASxBgXThrszUa38f21-Xgwk8f50-Xv1515HpmobaYdEw3NoGmuzvV7dzZ9i9sd0_3Uwx8TNfXNOG696N7FfDCcjVu6_6r733rSWwVLyj1sBNn_zYDC1mYht2Pl97d3cxt5SzLGLC-QFHJGhFRUUBJ4SmHf8QlXNgk4VRjbNhRMBtzFQtlYYodz35OMSgE9qEgGrC9uT91QuWGpWKme1MMkWKz4NQwRhQIilrC1BZMH1bBUKyfwuF4-cutnRepglKQR-QM_5HGx
ClassificationCodes TP181%TM311
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Fault diagnosis of gas turbine generator set by combination of rough sets and neural network
DocumentTitle_FL Fault diagnosis of gas turbine generator set by combination of rough sets and neural network
EndPage 94
ExternalDocumentID jdq201408015
49218431
GroupedDBID -03
2RA
5XA
5XD
92L
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CQIGP
GROUPED_DOAJ
U1G
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c555-bec406538cf4843ebff2d9d36f73e64f2277085ce6a28f72c2966dbc54c80b0f3
ISSN 1674-3415
IngestDate Thu May 29 03:55:49 EDT 2025
Wed Feb 14 10:36:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords fault diagnosis
燃气轮发电机组
故障诊断
粗糙集
神经网络
rough set theory
neural network
gas turbine generator set
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c555-bec406538cf4843ebff2d9d36f73e64f2277085ce6a28f72c2966dbc54c80b0f3
Notes LI Yong-de, LI Hong-wei, ZHANG Bing-cheng, YANG Jie, LIU Hao-ying, ZHANG Jiao (1. School of Electrical Engineering and Information, Southwest Petroleum University, Chengdu 610500, China; 2. BKQ Production Plant, Petro China Xinjiang Oilfield Company, Karamay 834000, China)
In view of the problem that fault diagnosis for gas turbine vibration generator set parameters is difficult to reflect the state of unit fault directly, a fusion of rough set and neural network for gas turbine generator set vibration fault diagnosis is presented. Rough sets theory is applied in reduction of the original features of the vibration signal characteristic value data to remove unnecessary attributes. An optimized neural network structure which is used to fault diagnosis of gas turbine generator set is established based on rough sets. The experimental results show that the method is effective and provides a new idea for gas turbine generator set vibration fault diagnosis.
41-1401/TM
gas turbine generator set;fault diagnosis;rough set
PageCount 5
ParticipantIDs wanfang_journals_jdq201408015
chongqing_primary_49218431
PublicationCentury 2000
PublicationDate 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationTitle 电力系统保护与控制
PublicationTitleAlternate Relay
PublicationTitle_FL Power System Protection and Control
PublicationYear 2014
Publisher 西南石油大学电气信息学院,四川 成都,610500%新疆油田公司百口泉采油厂,新疆 克拉玛依,834000
Publisher_xml – name: 西南石油大学电气信息学院,四川 成都,610500%新疆油田公司百口泉采油厂,新疆 克拉玛依,834000
SSID ssib003155689
ssib017479473
ssib023166999
ssj0002912115
ssib051374514
ssib002424069
ssib036435463
Score 2.046852
Snippet 针对燃气轮发电机组振动故障诊断中可测参数难以直接反映机组故障状态的问题,提出一种融合粗糙集理论和神经网络的燃气轮发电机组振动故障诊断方法。结合粗糙集对燃气轮发电...
TP181%TM311; 针对燃气轮发电机组振动故障诊断中可测参数难以直接反映机组故障状态的问题,提出一种融合粗糙集理论和神经网络的燃气轮发电机组振动故障诊断方法。结合粗糙...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 90
SubjectTerms 故障诊断
燃气轮发电机组
神经网络
粗糙集
Title 融合粗糙集与神经网络的燃气轮发电机组振动故障诊断方法
URI http://lib.cqvip.com/qk/90494A/201408/49218431.html
https://d.wanfangdata.com.cn/periodical/jdq201408015
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  issn: 1674-3415
  databaseCode: DOA
  dateStart: 20080101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0002912115
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFA-1Jy-iqNhqpaBzKpHsZD6PyW6WItjTCr0tSXbT4mFrtb30av2gqLXQVqylN8GLViyCWvrf2GT7X_jeZHYbRESFJczOvI958zaT35vNvHGcm8rv-ImXxC7cDbHLsjh2VZxS16Mxz4ROaVfjfuc7M2L6Lrs9y2dHztyovLW0vJTcSld-u6_kf7wKdeBX3CX7D54dCoUKKIN_4Qoehutf-ZhEiuiIqAaJONEeUYpEkoSUaGkKPtGaRJrokChBIkZCRVSETQFHRqSBpqYpNIiu2Rpdx4IOiGJYUPDxSSRI6BHNUCkQBxEqBd6SC-pDjjTAGwYDyQxrVJ0ETUMckEAZGihz07HA6FJIAK3YJEjQsIVQG6VgBa9i6Io6IxOsK40Nw0H_m8ZY6JsRhXpZxXyB10AadrBluDZp1DYsCdgK5EASRiSUU5U2iQYG1Aisg64pQwVGemawKHYFdYBvvAFfaXeIwH3K6tXGWapmxl-jQC2qojgyWZhgl2XKjbD2GSIkcwEc8OpDhtHKzaQqT4zysFSLPcrznn9JAM40huEmVwCgSVlZNrAQCzcvV-ZozCk3_A4BJ8y4pxAV4LwQ-jQE9QGRVk9E4DVfMm7_WUc0QzUmAcQ3gYd2YRqS-YXe3CKAK7PXrZfFvbkKLGudd87ZeGoyKG-OC87IyvxFZ6a_9-L41bPi8-vi4M3J2yc_vr4s3u0Vh-vF0UZxuFvsrBZPH-WfNvtHH4_XN4rNL_nu9-JwNX--f7z2Pt96fLKz299fy7c_5Nvf8oOtS06rGbXq0649OMRNOecuTEsMUy6rNGMwcN0ky2hHd3yRSb8rWEaplBBppF0RU5VJmlKI-TtJylmqvMTL_MvOaG-h173iTGoFNGA3pR6MopRJAuBO12KWdkBU6o8548OhaN8v88O0Bw4bcybs2LTtpPGwfa-ziL8WiNNqfPxPzFeds0hYrvZdc0aXHix3JwD_LiXXzQ_gJ6xih30
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%9E%8D%E5%90%88%E7%B2%97%E7%B3%99%E9%9B%86%E4%B8%8E%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E7%87%83%E6%B0%94%E8%BD%AE%E5%8F%91%E7%94%B5%E6%9C%BA%E7%BB%84%E6%8C%AF%E5%8A%A8%E6%95%85%E9%9A%9C%E8%AF%8A%E6%96%AD%E6%96%B9%E6%B3%95&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E6%9D%8E%E6%B0%B8%E5%BE%B7+%E6%9D%8E%E7%BA%A2%E4%BC%9F+%E5%BC%A0%E7%82%B3%E6%88%90+%E6%9D%A8%E6%B4%81+%E5%88%98%E7%81%8F%E9%A2%96+%E5%BC%A0%E5%A8%87&rft.date=2014&rft.issn=1674-3415&rft.volume=42&rft.issue=8&rft.spage=90&rft.epage=94&rft.externalDocID=49218431
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90494A%2F90494A.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg