融合粗糙集与神经网络的燃气轮发电机组振动故障诊断方法
针对燃气轮发电机组振动故障诊断中可测参数难以直接反映机组故障状态的问题,提出一种融合粗糙集理论和神经网络的燃气轮发电机组振动故障诊断方法。结合粗糙集对燃气轮发电机组振动信号原始特征数据进行约简,减少冗余信息。将粗糙集与神经网络有机结合,用优化了的神经网络诊断燃气轮发电机组振动故障。试验结果表明了所述方法的有效性,为燃气轮发电机组振动故障的快速诊断提供了可参考的新思路。...
Saved in:
| Published in | 电力系统保护与控制 Vol. 42; no. 8; pp. 90 - 94 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
西南石油大学电气信息学院,四川 成都,610500%新疆油田公司百口泉采油厂,新疆 克拉玛依,834000
2014
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-3415 |
Cover
| Abstract | 针对燃气轮发电机组振动故障诊断中可测参数难以直接反映机组故障状态的问题,提出一种融合粗糙集理论和神经网络的燃气轮发电机组振动故障诊断方法。结合粗糙集对燃气轮发电机组振动信号原始特征数据进行约简,减少冗余信息。将粗糙集与神经网络有机结合,用优化了的神经网络诊断燃气轮发电机组振动故障。试验结果表明了所述方法的有效性,为燃气轮发电机组振动故障的快速诊断提供了可参考的新思路。 |
|---|---|
| AbstractList | TP181%TM311; 针对燃气轮发电机组振动故障诊断中可测参数难以直接反映机组故障状态的问题,提出一种融合粗糙集理论和神经网络的燃气轮发电机组振动故障诊断方法。结合粗糙集对燃气轮发电机组振动信号原始特征数据进行约简,减少冗余信息。将粗糙集与神经网络有机结合,用优化了的神经网络诊断燃气轮发电机组振动故障。试验结果表明了所述方法的有效性,为燃气轮发电机组振动故障的快速诊断提供了可参考的新思路。 针对燃气轮发电机组振动故障诊断中可测参数难以直接反映机组故障状态的问题,提出一种融合粗糙集理论和神经网络的燃气轮发电机组振动故障诊断方法。结合粗糙集对燃气轮发电机组振动信号原始特征数据进行约简,减少冗余信息。将粗糙集与神经网络有机结合,用优化了的神经网络诊断燃气轮发电机组振动故障。试验结果表明了所述方法的有效性,为燃气轮发电机组振动故障的快速诊断提供了可参考的新思路。 |
| Abstract_FL | In view of the problem that fault diagnosis for gas turbine vibration generator set parameters is difficult to reflect the state of unit fault directly, a fusion of rough set and neural network for gas turbine generator set vibration fault diagnosis is presented. Rough sets theory is applied in reduction of the original features of the vibration signal characteristic value data to remove unnecessary attributes. An optimized neural network structure which is used to fault diagnosis of gas turbine generator set is established based on rough sets. The experimental results show that the method is effective and provides a new idea for gas turbine generator set vibration fault diagnosis. |
| Author | 李永德 李红伟 张炳成 杨洁 刘灏颖 张娇 |
| AuthorAffiliation | 西南石油大学电气信息学院,四川成都610500 新疆油田公司百口泉采油厂,新疆克拉玛依834000 |
| AuthorAffiliation_xml | – name: 西南石油大学电气信息学院,四川 成都,610500%新疆油田公司百口泉采油厂,新疆 克拉玛依,834000 |
| Author_FL | ZHANG Jiao YANG Jie LI Hong-wei LIU Hao-ying LI Yong-de ZHANG Bing-cheng |
| Author_FL_xml | – sequence: 1 fullname: LI Yong-de – sequence: 2 fullname: LI Hong-wei – sequence: 3 fullname: ZHANG Bing-cheng – sequence: 4 fullname: YANG Jie – sequence: 5 fullname: LIU Hao-ying – sequence: 6 fullname: ZHANG Jiao |
| Author_xml | – sequence: 1 fullname: 李永德 李红伟 张炳成 杨洁 刘灏颖 张娇 |
| BookMark | eNotzU1LAkEAxvE5GGTmhwi6Lsz7zh5DegOpi3fZnd0xpdZUIjpnL0hlghqZeAu6lJEE1eK3aWf0W7Rgp-fy4_mvgFRYDYMUSCNuU4tQxJZBttEoexASxBgXThrszUa38f21-Xgwk8f50-Xv1515HpmobaYdEw3NoGmuzvV7dzZ9i9sd0_3Uwx8TNfXNOG696N7FfDCcjVu6_6r733rSWwVLyj1sBNn_zYDC1mYht2Pl97d3cxt5SzLGLC-QFHJGhFRUUBJ4SmHf8QlXNgk4VRjbNhRMBtzFQtlYYodz35OMSgE9qEgGrC9uT91QuWGpWKme1MMkWKz4NQwRhQIilrC1BZMH1bBUKyfwuF4-cutnRepglKQR-QM_5HGx |
| ClassificationCodes | TP181%TM311 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
| DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| DocumentTitleAlternate | Fault diagnosis of gas turbine generator set by combination of rough sets and neural network |
| DocumentTitle_FL | Fault diagnosis of gas turbine generator set by combination of rough sets and neural network |
| EndPage | 94 |
| ExternalDocumentID | jdq201408015 49218431 |
| GroupedDBID | -03 2RA 5XA 5XD 92L ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB CQIGP GROUPED_DOAJ U1G W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
| ID | FETCH-LOGICAL-c555-bec406538cf4843ebff2d9d36f73e64f2277085ce6a28f72c2966dbc54c80b0f3 |
| ISSN | 1674-3415 |
| IngestDate | Thu May 29 03:55:49 EDT 2025 Wed Feb 14 10:36:59 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | fault diagnosis 燃气轮发电机组 故障诊断 粗糙集 神经网络 rough set theory neural network gas turbine generator set |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c555-bec406538cf4843ebff2d9d36f73e64f2277085ce6a28f72c2966dbc54c80b0f3 |
| Notes | LI Yong-de, LI Hong-wei, ZHANG Bing-cheng, YANG Jie, LIU Hao-ying, ZHANG Jiao (1. School of Electrical Engineering and Information, Southwest Petroleum University, Chengdu 610500, China; 2. BKQ Production Plant, Petro China Xinjiang Oilfield Company, Karamay 834000, China) In view of the problem that fault diagnosis for gas turbine vibration generator set parameters is difficult to reflect the state of unit fault directly, a fusion of rough set and neural network for gas turbine generator set vibration fault diagnosis is presented. Rough sets theory is applied in reduction of the original features of the vibration signal characteristic value data to remove unnecessary attributes. An optimized neural network structure which is used to fault diagnosis of gas turbine generator set is established based on rough sets. The experimental results show that the method is effective and provides a new idea for gas turbine generator set vibration fault diagnosis. 41-1401/TM gas turbine generator set;fault diagnosis;rough set |
| PageCount | 5 |
| ParticipantIDs | wanfang_journals_jdq201408015 chongqing_primary_49218431 |
| PublicationCentury | 2000 |
| PublicationDate | 2014 |
| PublicationDateYYYYMMDD | 2014-01-01 |
| PublicationDate_xml | – year: 2014 text: 2014 |
| PublicationDecade | 2010 |
| PublicationTitle | 电力系统保护与控制 |
| PublicationTitleAlternate | Relay |
| PublicationTitle_FL | Power System Protection and Control |
| PublicationYear | 2014 |
| Publisher | 西南石油大学电气信息学院,四川 成都,610500%新疆油田公司百口泉采油厂,新疆 克拉玛依,834000 |
| Publisher_xml | – name: 西南石油大学电气信息学院,四川 成都,610500%新疆油田公司百口泉采油厂,新疆 克拉玛依,834000 |
| SSID | ssib003155689 ssib017479473 ssib023166999 ssj0002912115 ssib051374514 ssib002424069 ssib036435463 |
| Score | 2.046852 |
| Snippet | 针对燃气轮发电机组振动故障诊断中可测参数难以直接反映机组故障状态的问题,提出一种融合粗糙集理论和神经网络的燃气轮发电机组振动故障诊断方法。结合粗糙集对燃气轮发电... TP181%TM311; 针对燃气轮发电机组振动故障诊断中可测参数难以直接反映机组故障状态的问题,提出一种融合粗糙集理论和神经网络的燃气轮发电机组振动故障诊断方法。结合粗糙... |
| SourceID | wanfang chongqing |
| SourceType | Aggregation Database Publisher |
| StartPage | 90 |
| SubjectTerms | 故障诊断 燃气轮发电机组 神经网络 粗糙集 |
| Title | 融合粗糙集与神经网络的燃气轮发电机组振动故障诊断方法 |
| URI | http://lib.cqvip.com/qk/90494A/201408/49218431.html https://d.wanfangdata.com.cn/periodical/jdq201408015 |
| Volume | 42 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text issn: 1674-3415 databaseCode: DOA dateStart: 20080101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0002912115 providerName: Directory of Open Access Journals |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFA-1Jy-iqNhqpaBzKpHsZD6PyW6WItjTCr0tSXbT4mFrtb30av2gqLXQVqylN8GLViyCWvrf2GT7X_jeZHYbRESFJczOvI958zaT35vNvHGcm8rv-ImXxC7cDbHLsjh2VZxS16Mxz4ROaVfjfuc7M2L6Lrs9y2dHztyovLW0vJTcSld-u6_kf7wKdeBX3CX7D54dCoUKKIN_4Qoehutf-ZhEiuiIqAaJONEeUYpEkoSUaGkKPtGaRJrokChBIkZCRVSETQFHRqSBpqYpNIiu2Rpdx4IOiGJYUPDxSSRI6BHNUCkQBxEqBd6SC-pDjjTAGwYDyQxrVJ0ETUMckEAZGihz07HA6FJIAK3YJEjQsIVQG6VgBa9i6Io6IxOsK40Nw0H_m8ZY6JsRhXpZxXyB10AadrBluDZp1DYsCdgK5EASRiSUU5U2iQYG1Aisg64pQwVGemawKHYFdYBvvAFfaXeIwH3K6tXGWapmxl-jQC2qojgyWZhgl2XKjbD2GSIkcwEc8OpDhtHKzaQqT4zysFSLPcrznn9JAM40huEmVwCgSVlZNrAQCzcvV-ZozCk3_A4BJ8y4pxAV4LwQ-jQE9QGRVk9E4DVfMm7_WUc0QzUmAcQ3gYd2YRqS-YXe3CKAK7PXrZfFvbkKLGudd87ZeGoyKG-OC87IyvxFZ6a_9-L41bPi8-vi4M3J2yc_vr4s3u0Vh-vF0UZxuFvsrBZPH-WfNvtHH4_XN4rNL_nu9-JwNX--f7z2Pt96fLKz299fy7c_5Nvf8oOtS06rGbXq0649OMRNOecuTEsMUy6rNGMwcN0ky2hHd3yRSb8rWEaplBBppF0RU5VJmlKI-TtJylmqvMTL_MvOaG-h173iTGoFNGA3pR6MopRJAuBO12KWdkBU6o8548OhaN8v88O0Bw4bcybs2LTtpPGwfa-ziL8WiNNqfPxPzFeds0hYrvZdc0aXHix3JwD_LiXXzQ_gJ6xih30 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%9E%8D%E5%90%88%E7%B2%97%E7%B3%99%E9%9B%86%E4%B8%8E%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E7%87%83%E6%B0%94%E8%BD%AE%E5%8F%91%E7%94%B5%E6%9C%BA%E7%BB%84%E6%8C%AF%E5%8A%A8%E6%95%85%E9%9A%9C%E8%AF%8A%E6%96%AD%E6%96%B9%E6%B3%95&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E6%9D%8E%E6%B0%B8%E5%BE%B7+%E6%9D%8E%E7%BA%A2%E4%BC%9F+%E5%BC%A0%E7%82%B3%E6%88%90+%E6%9D%A8%E6%B4%81+%E5%88%98%E7%81%8F%E9%A2%96+%E5%BC%A0%E5%A8%87&rft.date=2014&rft.issn=1674-3415&rft.volume=42&rft.issue=8&rft.spage=90&rft.epage=94&rft.externalDocID=49218431 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90494A%2F90494A.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg |