Enhancing the Cellular Uptake and Antibacterial Activity of Rifampicin through Encapsulation in Mesoporous Silica Nanoparticles

An urgent demand exists for the development of novel delivery systems that efficiently transport antibacterial agents across cellular membranes for the eradication of intracellular pathogens. In this study, the clinically relevant poorly water-soluble antibiotic, rifampicin, was confined within meso...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 10; no. 4; p. 815
Main Authors Joyce, Paul, Ulmefors, Hanna, Maghrebi, Sajedeh, Subramaniam, Santhni, Wignall, Anthony, Jõemetsa, Silver, Höök, Fredrik, Prestidge, Clive A.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 24.04.2020
MDPI
Subjects
Online AccessGet full text
ISSN2079-4991
2079-4991
DOI10.3390/nano10040815

Cover

Abstract An urgent demand exists for the development of novel delivery systems that efficiently transport antibacterial agents across cellular membranes for the eradication of intracellular pathogens. In this study, the clinically relevant poorly water-soluble antibiotic, rifampicin, was confined within mesoporous silica nanoparticles (MSN) to investigate their ability to serve as an efficacious nanocarrier system against small colony variants of Staphylococcus aureus (SCV S. aureus) hosted within Caco-2 cells. The surface chemistry and particle size of MSN were varied through modifications during synthesis, where 40 nm particles with high silanol group densities promoted enhanced cellular uptake. Extensive biophysical analysis was performed, using quartz crystal microbalance with dissipation (QCM-D) and total internal reflection fluorescence (TIRF) microscopy, to elucidate the mechanism of MSN adsorption onto semi-native supported lipid bilayers (snSLB) and, thus, uncover potential cellular uptake mechanisms of MSN into Caco-2 cells. Such studies revealed that MSN with reduced silanol group densities were prone to greater particle aggregation on snSLB, which was expected to restrict endocytosis. MSN adsorption and uptake into Caco-2 cells correlated well with antibacterial efficacy against SCV S. aureus, with 40 nm hydrophilic particles triggering a ~2.5-log greater reduction in colony forming units, compared to the pure rifampicin. Thus, this study provides evidence for the potential to design silica nanocarrier systems with controlled surface chemistries that can be used to re-sensitise intracellular bacteria to antibiotics by delivering them to the site of infection.
AbstractList An urgent demand exists for the development of novel delivery systems that efficiently transport antibacterial agents across cellular membranes for the eradication of intracellular pathogens. In this study, the clinically relevant poorly water-soluble antibiotic, rifampicin, was confined within mesoporous silica nanoparticles (MSN) to investigate their ability to serve as an efficacious nanocarrier system against small colony variants of Staphylococcus aureus (SCV S. aureus) hosted within Caco-2 cells. The surface chemistry and particle size of MSN were varied through modifications during synthesis, where 40 nm particles with high silanol group densities promoted enhanced cellular uptake. Extensive biophysical analysis was performed, using quartz crystal microbalance with dissipation (QCM-D) and total internal reflection fluorescence (TIRF) microscopy, to elucidate the mechanism of MSN adsorption onto semi-native supported lipid bilayers (snSLB) and, thus, uncover potential cellular uptake mechanisms of MSN into Caco-2 cells. Such studies revealed that MSN with reduced silanol group densities were prone to greater particle aggregation on snSLB, which was expected to restrict endocytosis. MSN adsorption and uptake into Caco-2 cells correlated well with antibacterial efficacy against SCV S. aureus, with 40 nm hydrophilic particles triggering a ~2.5-log greater reduction in colony forming units, compared to the pure rifampicin. Thus, this study provides evidence for the potential to design silica nanocarrier systems with controlled surface chemistries that can be used to re-sensitise intracellular bacteria to antibiotics by delivering them to the site of infection.
An urgent demand exists for the development of novel delivery systems that efficiently transport antibacterial agents across cellular membranes for the eradication of intracellular pathogens. In this study, the clinically relevant poorly water-soluble antibiotic, rifampicin, was confined within mesoporous silica nanoparticles (MSN) to investigate their ability to serve as an efficacious nanocarrier system against small colony variants of Staphylococcus aureus (SCV S. aureus) hosted within Caco-2 cells. The surface chemistry and particle size of MSN were varied through modifications during synthesis, where 40 nm particles with high silanol group densities promoted enhanced cellular uptake. Extensive biophysical analysis was performed, using quartz crystal microbalance with dissipation (QCM-D) and total internal reflection fluorescence (TIRF) microscopy, to elucidate the mechanism of MSN adsorption onto semi-native supported lipid bilayers (snSLB) and, thus, uncover potential cellular uptake mechanisms of MSN into Caco-2 cells. Such studies revealed that MSN with reduced silanol group densities were prone to greater particle aggregation on snSLB, which was expected to restrict endocytosis. MSN adsorption and uptake into Caco-2 cells correlated well with antibacterial efficacy against SCV S. aureus, with 40 nm hydrophilic particles triggering a ~2.5-log greater reduction in colony forming units, compared to the pure rifampicin. Thus, this study provides evidence for the potential to design silica nanocarrier systems with controlled surface chemistries that can be used to re-sensitise intracellular bacteria to antibiotics by delivering them to the site of infection.An urgent demand exists for the development of novel delivery systems that efficiently transport antibacterial agents across cellular membranes for the eradication of intracellular pathogens. In this study, the clinically relevant poorly water-soluble antibiotic, rifampicin, was confined within mesoporous silica nanoparticles (MSN) to investigate their ability to serve as an efficacious nanocarrier system against small colony variants of Staphylococcus aureus (SCV S. aureus) hosted within Caco-2 cells. The surface chemistry and particle size of MSN were varied through modifications during synthesis, where 40 nm particles with high silanol group densities promoted enhanced cellular uptake. Extensive biophysical analysis was performed, using quartz crystal microbalance with dissipation (QCM-D) and total internal reflection fluorescence (TIRF) microscopy, to elucidate the mechanism of MSN adsorption onto semi-native supported lipid bilayers (snSLB) and, thus, uncover potential cellular uptake mechanisms of MSN into Caco-2 cells. Such studies revealed that MSN with reduced silanol group densities were prone to greater particle aggregation on snSLB, which was expected to restrict endocytosis. MSN adsorption and uptake into Caco-2 cells correlated well with antibacterial efficacy against SCV S. aureus, with 40 nm hydrophilic particles triggering a ~2.5-log greater reduction in colony forming units, compared to the pure rifampicin. Thus, this study provides evidence for the potential to design silica nanocarrier systems with controlled surface chemistries that can be used to re-sensitise intracellular bacteria to antibiotics by delivering them to the site of infection.
An urgent demand exists for the development of novel delivery systems that efficiently transport antibacterial agents across cellular membranes for the eradication of intracellular pathogens. In this study, the clinically relevant poorly water-soluble antibiotic, rifampicin, was confined within mesoporous silica nanoparticles (MSN) to investigate their ability to serve as an efficacious nanocarrier system against small colony variants of Staphylococcus aureus (SCV S. aureus ) hosted within Caco-2 cells. The surface chemistry and particle size of MSN were varied through modifications during synthesis, where 40 nm particles with high silanol group densities promoted enhanced cellular uptake. Extensive biophysical analysis was performed, using quartz crystal microbalance with dissipation (QCM-D) and total internal reflection fluorescence (TIRF) microscopy, to elucidate the mechanism of MSN adsorption onto semi-native supported lipid bilayers (snSLB) and, thus, uncover potential cellular uptake mechanisms of MSN into Caco-2 cells. Such studies revealed that MSN with reduced silanol group densities were prone to greater particle aggregation on snSLB, which was expected to restrict endocytosis. MSN adsorption and uptake into Caco-2 cells correlated well with antibacterial efficacy against SCV S. aureus , with 40 nm hydrophilic particles triggering a ~2.5-log greater reduction in colony forming units, compared to the pure rifampicin. Thus, this study provides evidence for the potential to design silica nanocarrier systems with controlled surface chemistries that can be used to re-sensitise intracellular bacteria to antibiotics by delivering them to the site of infection.
An urgent demand exists for the development of novel delivery systems that efficiently transport antibacterial agents across cellular membranes for the eradication of intracellular pathogens. In this study, the clinically relevant poorly water-soluble antibiotic, rifampicin, was confined within mesoporous silica nanoparticles (MSN) to investigate their ability to serve as an efficacious nanocarrier system against small colony variants of (SCV ) hosted within Caco-2 cells. The surface chemistry and particle size of MSN were varied through modifications during synthesis, where 40 nm particles with high silanol group densities promoted enhanced cellular uptake. Extensive biophysical analysis was performed, using quartz crystal microbalance with dissipation (QCM-D) and total internal reflection fluorescence (TIRF) microscopy, to elucidate the mechanism of MSN adsorption onto semi-native supported lipid bilayers (snSLB) and, thus, uncover potential cellular uptake mechanisms of MSN into Caco-2 cells. Such studies revealed that MSN with reduced silanol group densities were prone to greater particle aggregation on snSLB, which was expected to restrict endocytosis. MSN adsorption and uptake into Caco-2 cells correlated well with antibacterial efficacy against SCV , with 40 nm hydrophilic particles triggering a ~2.5-log greater reduction in colony forming units, compared to the pure rifampicin. Thus, this study provides evidence for the potential to design silica nanocarrier systems with controlled surface chemistries that can be used to re-sensitise intracellular bacteria to antibiotics by delivering them to the site of infection.
Author Joyce, Paul
Prestidge, Clive A.
Maghrebi, Sajedeh
Wignall, Anthony
Höök, Fredrik
Jõemetsa, Silver
Ulmefors, Hanna
Subramaniam, Santhni
AuthorAffiliation 3 ARC Centre of Excellence in Bio-Nano Science and Technology, University of South Australia, Adelaide, South Australia 5090, Australia
2 School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia 5090, Australia; hanna.gustafsson@chalmers.se (H.U.); sajedehsadat.maghrebi@mymail.unisa.edu.au (S.M.); santhni.subramaniam@mymail.unisa.edu.au (S.S.); anthony.wignall@unisa.edu.au (A.W.)
1 Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; paul.joyce@unisa.edu.au (P.J.); silver@chalmers.se (S.J.); fredrik.hook@chalmers.se (F.H.)
AuthorAffiliation_xml – name: 1 Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; paul.joyce@unisa.edu.au (P.J.); silver@chalmers.se (S.J.); fredrik.hook@chalmers.se (F.H.)
– name: 2 School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia 5090, Australia; hanna.gustafsson@chalmers.se (H.U.); sajedehsadat.maghrebi@mymail.unisa.edu.au (S.M.); santhni.subramaniam@mymail.unisa.edu.au (S.S.); anthony.wignall@unisa.edu.au (A.W.)
– name: 3 ARC Centre of Excellence in Bio-Nano Science and Technology, University of South Australia, Adelaide, South Australia 5090, Australia
Author_xml – sequence: 1
  givenname: Paul
  orcidid: 0000-0003-3619-7901
  surname: Joyce
  fullname: Joyce, Paul
– sequence: 2
  givenname: Hanna
  surname: Ulmefors
  fullname: Ulmefors, Hanna
– sequence: 3
  givenname: Sajedeh
  surname: Maghrebi
  fullname: Maghrebi, Sajedeh
– sequence: 4
  givenname: Santhni
  surname: Subramaniam
  fullname: Subramaniam, Santhni
– sequence: 5
  givenname: Anthony
  surname: Wignall
  fullname: Wignall, Anthony
– sequence: 6
  givenname: Silver
  orcidid: 0000-0001-7957-8750
  surname: Jõemetsa
  fullname: Jõemetsa, Silver
– sequence: 7
  givenname: Fredrik
  surname: Höök
  fullname: Höök, Fredrik
– sequence: 8
  givenname: Clive A.
  orcidid: 0000-0001-5401-7535
  surname: Prestidge
  fullname: Prestidge, Clive A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32344619$$D View this record in MEDLINE/PubMed
https://research.chalmers.se/publication/516805$$DView record from Swedish Publication Index
BookMark eNptkk1v1DAQhiNUREvpjTOKxIUDC47tfPiCtFoVqFRAovRsTSaTjZesHWxvUU_8ddzuUu1W5JLI88yjmfh9nh1ZZynLXhbsnRCKvbdgXcGYZE1RPslOOKvVTCpVHO19H2dnIaxYelQhmlI8y44FF1JWhTrJ_pzbASwau8zjQPmCxnEzgs-vpwg_KQfb5XMbTQsYyRsY8zlGc2Pibe76_LvpYT2Z1J2avdssh_zcIkwhKaJxNk-FLxTc5FIx5FdmNAj51zTzBD4aHCm8yJ72MAY6271Ps-uP5z8Wn2eX3z5dLOaXMyxLGWd9jUgddpj2aWuo67rsWCtANJL6shBQsqJq2q5SrOtahmWdViUUHJUgRkqcZhdbb-dgpSdv1uBvtQOj7w-cX-rdSLpSVYuyaEXPG1l1pLioes6AN1gD4yy5rrau8JumTXtg8xQIPA4aBxjX5IMOpJEabJVsNCLrtQRGWjWq0ZK1DdRdhV2Lyfpha03KddqVbPQwHsgPK9YMeuludM15oaRIgjc7gXe_NhSiXpuA6ULBUvr9mgtVCZZontDXj9CV23ibLuCOKqVMgaoT9Wp_oodR_qUnAW-3AHoXgqf-ASmYvsun3s9nwvkjHE28D0rax4z_b_oLPfbrww
CitedBy_id crossref_primary_10_1007_s00210_024_03536_3
crossref_primary_10_3390_s23020976
crossref_primary_10_1016_j_msec_2021_112274
crossref_primary_10_2147_IJN_S273064
crossref_primary_10_1016_j_heliyon_2024_e41151
crossref_primary_10_3390_molecules26237238
crossref_primary_10_3390_pharmaceutics15071934
crossref_primary_10_3390_ijms22041896
crossref_primary_10_1098_rsos_220013
crossref_primary_10_1002_adhm_202100453
crossref_primary_10_1007_s13346_022_01287_3
crossref_primary_10_1016_j_cis_2022_102746
crossref_primary_10_1016_j_bioadv_2024_214036
crossref_primary_10_1088_2053_1591_ad4f54
crossref_primary_10_1021_acs_molpharmaceut_4c00779
crossref_primary_10_1021_acsagscitech_3c00066
crossref_primary_10_1039_D4BM00608A
crossref_primary_10_1002_admt_202001236
crossref_primary_10_1016_j_micres_2022_127040
crossref_primary_10_1016_j_nantod_2021_101279
crossref_primary_10_1016_j_apsusc_2021_150011
crossref_primary_10_1016_j_xphs_2020_09_026
crossref_primary_10_2217_fmb_2022_0069
crossref_primary_10_1007_s13346_022_01274_8
crossref_primary_10_1016_j_colsurfb_2022_112763
crossref_primary_10_3390_pharmaceutics15020310
crossref_primary_10_3390_pharmaceutics13091436
crossref_primary_10_4103_jmss_jmss_52_24
Cites_doi 10.1021/nn100561e
10.1039/c1nr10224a
10.1016/S0022-3093(01)00806-7
10.1128/AAC.02340-16
10.1080/21691401.2018.1496924
10.1002/bdd.1802
10.1021/ja203984j
10.1016/j.anaerobe.2012.08.001
10.4049/jimmunol.153.6.2568
10.1038/srep29707
10.1038/nrmicro1384
10.1021/acsinfecdis.7b00270
10.1016/S0006-3495(81)84905-3
10.1021/nn101643u
10.1039/c3nr00357d
10.1007/BF01964420
10.1039/c1cc11760b
10.1038/47229
10.1186/s12989-019-0325-1
10.1080/17425247.2019.1605353
10.1021/ja203316q
10.1016/j.watres.2004.12.008
10.1093/infdis/123.4.439
10.1002/1521-4141(200103)31:3<876::AID-IMMU876>3.0.CO;2-I
10.1086/514706
10.1088/1361-6528/aa5f63
10.1039/C7PY01603D
10.1038/210259a0
10.1021/acsnano.5b03443
10.1039/c3cs35405a
10.1128/iai.58.4.1048-1058.1990
10.1529/biophysj.108.134874
10.1021/acs.analchem.5b01449
10.1111/j.1365-2818.1983.tb04158.x
10.1016/j.surfrep.2014.07.001
10.1016/0378-5173(96)04574-7
10.1128/IAI.00001-12
10.1002/smll.200900005
10.1016/j.colsurfb.2015.12.040
10.1039/C9BM00058E
10.1093/jac/dki027
10.1016/j.micromeso.2008.12.019
10.1016/j.jcis.2016.01.026
10.2174/1573413052953110
10.1002/smll.200800926
10.1016/j.tim.2008.11.004
10.1016/0022-1759(91)90205-T
10.1038/nmeth.2019
10.1016/S0022-4804(03)00314-7
10.1021/acsami.9b22991
10.2217/nnm.16.5
10.1021/ja910846q
10.1016/j.tim.2008.11.005
10.1016/j.jconrel.2010.04.029
10.1038/s41565-018-0246-4
10.1128/AAC.06049-11
10.1080/21691401.2017.1362414
10.1021/la401556k
10.1016/j.tiv.2012.01.018
10.1016/j.actbio.2017.10.025
10.3390/antibiotics8020039
10.1021/acs.langmuir.0c00253
10.1039/b204060c
10.1021/acs.analchem.8b04110
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KB.
KR7
L7M
LK8
L~C
L~D
M7P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
DOA
DOI 10.3390/nano10040815
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Materials Science Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Chalmers tekniska högskola full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Chalmers tekniska högskola
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
ANTE: Abstracts in New Technology & Engineering
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Biotechnology Research Abstracts
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Materials Science & Engineering Collection
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database


MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-4991
ExternalDocumentID oai_doaj_org_article_696bc41b3f2846de9236f20a28c7a020
oai_research_chalmers_se_ce8cb948_cc0f_4a0e_9898_40b8a7d6cdbc
PMC7221943
32344619
10_3390_nano10040815
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: Australian Research Council Centre of Excellence in Bio-Nano Science and Technology
  grantid: ARC CE140100036
– fundername: ÅForsk Foundation
  grantid: 16-463
GroupedDBID 53G
5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
HYE
I-F
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ABBSD
ADTPV
AOWAS
D8T
F1S
IAO
IPNFZ
ITC
RIG
ZZAVC
ID FETCH-LOGICAL-c554t-f7ccedcdc991b7a7775d0b3a384ef513a50168bd690ddb0c57138ec32c93e0e93
IEDL.DBID DOA
ISSN 2079-4991
IngestDate Wed Aug 27 01:29:28 EDT 2025
Tue Sep 09 23:29:52 EDT 2025
Thu Aug 21 14:32:29 EDT 2025
Fri Sep 05 09:39:16 EDT 2025
Fri Jul 25 11:58:06 EDT 2025
Wed Feb 19 02:30:08 EST 2025
Tue Jul 01 01:16:55 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords infection
mesoporous silica
Caco-2
small colony variants
permeability
nanoparticle
antibiotics
fluorescence microscopy
Staphylococcus aureus
total internal reflection
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-f7ccedcdc991b7a7775d0b3a384ef513a50168bd690ddb0c57138ec32c93e0e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5401-7535
0000-0001-7957-8750
0000-0003-3619-7901
OpenAccessLink https://doaj.org/article/696bc41b3f2846de9236f20a28c7a020
PMID 32344619
PQID 2395444087
PQPubID 2032354
ParticipantIDs doaj_primary_oai_doaj_org_article_696bc41b3f2846de9236f20a28c7a020
swepub_primary_oai_research_chalmers_se_ce8cb948_cc0f_4a0e_9898_40b8a7d6cdbc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7221943
proquest_miscellaneous_2396307222
proquest_journals_2395444087
pubmed_primary_32344619
crossref_primary_10_3390_nano10040815
crossref_citationtrail_10_3390_nano10040815
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200424
PublicationDateYYYYMMDD 2020-04-24
PublicationDate_xml – month: 4
  year: 2020
  text: 20200424
  day: 24
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Nanomaterials (Basel, Switzerland)
PublicationTitleAlternate Nanomaterials (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zheng (ref_19) 2018; 46
Nennie (ref_43) 1991; 141
Hess (ref_61) 2003; 114
Fernandes (ref_63) 2012; 26
ref_14
Hua (ref_40) 2001; 292
Zhang (ref_27) 2010; 145
Mounier (ref_7) 1990; 58
Xu (ref_8) 1994; 153
Hoshyar (ref_49) 2016; 11
Cortesi (ref_34) 1996; 139
Prado (ref_42) 2002; 12
Bennett (ref_9) 2001; 31
Sun (ref_47) 2015; 9
Faria (ref_48) 2018; 13
Clemens (ref_33) 2012; 56
Ekkapongpisit (ref_60) 2012; 7
Santovito (ref_17) 2018; 46
Peerboom (ref_54) 2018; 4
Asefa (ref_39) 1999; 402
Proctor (ref_65) 2006; 4
ref_66
Sendi (ref_2) 2009; 17
Nandiyanto (ref_26) 2009; 120
Gustafsson (ref_28) 2016; 467
Lin (ref_46) 2010; 132
Nash (ref_44) 1966; 210
Lu (ref_52) 2009; 5
Mohamed (ref_12) 2016; 6
Kim (ref_18) 2016; 140
Chiann (ref_5) 2012; 33
Axelrod (ref_56) 1983; 129
Kwak (ref_62) 2012; 80
Pandey (ref_3) 2005; 55
Rubio (ref_53) 2019; 16
Pace (ref_29) 2015; 87
Pace (ref_30) 2018; 90
Ren (ref_25) 2012; 18
Huang (ref_50) 2010; 4
Zhao (ref_58) 2018; 9
Schindelin (ref_32) 2012; 9
Oh (ref_59) 2010; 4
Cruz (ref_13) 2017; 28
Larsen (ref_57) 2011; 133
Tulkens (ref_6) 1991; 10
ref_35
Thompson (ref_55) 1981; 33
Proctor (ref_64) 1998; 27
Khraisheh (ref_38) 2005; 39
Wang (ref_21) 2018; 65
Slowing (ref_45) 2009; 5
Popat (ref_22) 2011; 3
Jonsson (ref_31) 2008; 95
Mackanes (ref_4) 1971; 123
Maghrebi (ref_16) 2020; 12
Maghrebi (ref_10) 2019; 16
Le (ref_11) 2017; 61
Mody (ref_24) 2013; 5
Wu (ref_41) 2013; 42
Pocock (ref_20) 2019; 7
Liberman (ref_36) 2014; 69
Liu (ref_51) 2013; 29
Wong (ref_37) 2011; 133
Vasir (ref_15) 2005; 1
Garzoni (ref_1) 2009; 17
Wu (ref_23) 2011; 47
References_xml – volume: 4
  start-page: 5301
  year: 2010
  ident: ref_59
  article-title: Cellular uptake, cytotoxicity, and innate immune response of silica− titania hollow nanoparticles based on size and surface functionality
  publication-title: ACS Nano
  doi: 10.1021/nn100561e
– volume: 3
  start-page: 2801
  year: 2011
  ident: ref_22
  article-title: Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers
  publication-title: Nanoscale
  doi: 10.1039/c1nr10224a
– volume: 292
  start-page: 177
  year: 2001
  ident: ref_40
  article-title: Preparation of mesoporous silica films on a glass slide: Surfactant template removal by solvent extraction
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(01)00806-7
– volume: 61
  start-page: e02340-16
  year: 2017
  ident: ref_11
  article-title: Intracellular targeting mechanisms by antimicrobial peptides
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.02340-16
– volume: 46
  start-page: S414
  year: 2018
  ident: ref_17
  article-title: Antimicrobial properties of rosin acids-loaded nanoparticles against antibiotic-sensitive and antibiotic-resistant foodborne pathogens
  publication-title: Artif. Cells Nanomed. Biotechnol.
  doi: 10.1080/21691401.2018.1496924
– volume: 33
  start-page: 316
  year: 2012
  ident: ref_5
  article-title: Effect of pH, mucin and bovine serum on rifampicin permeability through Caco-2 cells
  publication-title: Biopharm. Drug Dispos.
  doi: 10.1002/bdd.1802
– volume: 133
  start-page: 10685
  year: 2011
  ident: ref_57
  article-title: Observation of inhomogeneity in the lipid composition of individual nanoscale liposomes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja203984j
– volume: 18
  start-page: 508
  year: 2012
  ident: ref_25
  article-title: Inhibition of Staphylococcus aureus adherence to Caco-2 cells by lactobacilli and cell surface properties that influence attachment
  publication-title: Anaerobe
  doi: 10.1016/j.anaerobe.2012.08.001
– volume: 153
  start-page: 2568
  year: 1994
  ident: ref_8
  article-title: Intracellular trafficking in Mycobacterium tuberculosis and Mycobacterium avium-infected macrophages
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.153.6.2568
– volume: 6
  start-page: 1
  year: 2016
  ident: ref_12
  article-title: Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus
  publication-title: Sci. Rep.
  doi: 10.1038/srep29707
– volume: 4
  start-page: 295
  year: 2006
  ident: ref_65
  article-title: Small colony variants: A pathogenic form of bacteria that facilitates persistent and recurrent infections
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1384
– ident: ref_35
– volume: 4
  start-page: 944
  year: 2018
  ident: ref_54
  article-title: Cell Membrane Derived Platform To Study Virus Binding Kinetics and Diffusion with Single Particle Sensitivity
  publication-title: ACS Infect. Dis.
  doi: 10.1021/acsinfecdis.7b00270
– volume: 33
  start-page: 435
  year: 1981
  ident: ref_55
  article-title: Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(81)84905-3
– volume: 4
  start-page: 7151
  year: 2010
  ident: ref_50
  article-title: Effects of Nanoparticle Size on Cellular Uptake and Liver MRI with Polyvinylpyrrolidone-Coated Iron Oxide Nanoparticles
  publication-title: ACS Nano
  doi: 10.1021/nn101643u
– volume: 5
  start-page: 5167
  year: 2013
  ident: ref_24
  article-title: Mesoporous silica nanoparticles as antigen carriers and adjuvants for vaccine delivery
  publication-title: Nanoscale
  doi: 10.1039/c3nr00357d
– volume: 10
  start-page: 100
  year: 1991
  ident: ref_6
  article-title: Intracellular distribution and activity of antibiotics
  publication-title: Eur. J. Clin. Microbiol. Infecti. Dis.
  doi: 10.1007/BF01964420
– volume: 47
  start-page: 9972
  year: 2011
  ident: ref_23
  article-title: Mesoporous silica nanoparticles as nanocarriers
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc11760b
– volume: 402
  start-page: 867
  year: 1999
  ident: ref_39
  article-title: Periodic mesoporous organosilicas with organic groups inside the channel walls
  publication-title: Nature
  doi: 10.1038/47229
– volume: 16
  start-page: 40
  year: 2019
  ident: ref_53
  article-title: Safer-by-design flame-sprayed silicon dioxide nanoparticles: The role of silanol content on ROS generation, surface activity and cytotoxicity
  publication-title: Part. Fibre Toxicol.
  doi: 10.1186/s12989-019-0325-1
– volume: 16
  start-page: 507
  year: 2019
  ident: ref_10
  article-title: An update on polymer-lipid hybrid systems for improving oral drug delivery
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1080/17425247.2019.1605353
– volume: 133
  start-page: 11422
  year: 2011
  ident: ref_37
  article-title: Revisiting the Stöber Method: Inhomogeneity in Silica Shells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja203316q
– volume: 39
  start-page: 922
  year: 2005
  ident: ref_38
  article-title: Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite
  publication-title: Water Res.
  doi: 10.1016/j.watres.2004.12.008
– volume: 123
  start-page: 439
  year: 1971
  ident: ref_4
  article-title: Resistance to intracellular infection
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/123.4.439
– volume: 31
  start-page: 876
  year: 2001
  ident: ref_9
  article-title: Silent infection of bone marrow-derived dendritic cells by Leishmania mexicana amastigotes
  publication-title: Eur. J. Immunol.
  doi: 10.1002/1521-4141(200103)31:3<876::AID-IMMU876>3.0.CO;2-I
– volume: 27
  start-page: 419
  year: 1998
  ident: ref_64
  article-title: Small colony variants in staphylococcal infections: Diagnostic and therapeutic implications
  publication-title: Clin. Infect. Dis.
  doi: 10.1086/514706
– volume: 28
  start-page: 135102
  year: 2017
  ident: ref_13
  article-title: Antimicrobial activity of a new synthetic peptide loaded in polylactic acid or poly (lactic-co-glycolic) acid nanoparticles against Pseudomonas aeruginosa, Escherichia coli O157: H7 and methicillin resistant Staphylococcus aureus (MRSA)
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa5f63
– volume: 9
  start-page: 259
  year: 2018
  ident: ref_58
  article-title: Entry of nanoparticles into cells: The importance of nanoparticle properties
  publication-title: Polym. Chem.
  doi: 10.1039/C7PY01603D
– volume: 210
  start-page: 259
  year: 1966
  ident: ref_44
  article-title: Physico-chemical properties of silica in relation to its toxicity
  publication-title: Nature
  doi: 10.1038/210259a0
– volume: 9
  start-page: 9357
  year: 2015
  ident: ref_47
  article-title: Reduction of acute inflammatory effects of fumed silica nanoparticles in the lung by adjusting silanol display through calcination and metal doping
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03443
– volume: 42
  start-page: 3862
  year: 2013
  ident: ref_41
  article-title: Synthesis of mesoporous silica nanoparticles
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs35405a
– volume: 58
  start-page: 1048
  year: 1990
  ident: ref_7
  article-title: Intracellular and cell-to-cell spread of Listeria monocytogenes involves interaction with F-actin in the enterocytelike cell line Caco-2
  publication-title: Infect. Immun.
  doi: 10.1128/iai.58.4.1048-1058.1990
– volume: 95
  start-page: 5334
  year: 2008
  ident: ref_31
  article-title: A method improving the accuracy of fluorescence recovery after photobleaching analysis
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.108.134874
– volume: 87
  start-page: 9194
  year: 2015
  ident: ref_29
  article-title: Preserved transmembrane protein mobility in polymer-supported lipid bilayers derived from cell membranes
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b01449
– volume: 129
  start-page: 19
  year: 1983
  ident: ref_56
  article-title: Total internal reflection fluorescent microscopy
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.1983.tb04158.x
– volume: 7
  start-page: 4147
  year: 2012
  ident: ref_60
  article-title: Biocompatibility, endocytosis, and intracellular trafficking of mesoporous silica and polystyrene nanoparticles in ovarian cancer cells: Effects of size and surface charge groups
  publication-title: Int. J. Nanomed.
– volume: 69
  start-page: 132
  year: 2014
  ident: ref_36
  article-title: Synthesis and surface functionalization of silica nanoparticles for nanomedicine
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/j.surfrep.2014.07.001
– volume: 139
  start-page: 69
  year: 1996
  ident: ref_34
  article-title: Effect of cationic liposome composition on in vitro cytotoxicity and protective effect on carried DNA
  publication-title: Int. J. Pharm.
  doi: 10.1016/0378-5173(96)04574-7
– volume: 80
  start-page: 1670
  year: 2012
  ident: ref_62
  article-title: The Staphylococcus aureus alpha-toxin perturbs the barrier function in Caco-2 epithelial cell monolayers by altering junctional integrity
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00001-12
– volume: 5
  start-page: 1408
  year: 2009
  ident: ref_52
  article-title: Size Effect on Cell Uptake in Well-Suspended, Uniform Mesoporous Silica Nanoparticles
  publication-title: Small
  doi: 10.1002/smll.200900005
– volume: 140
  start-page: 161
  year: 2016
  ident: ref_18
  article-title: Core–shell microcapsules of solid lipid nanoparticles and mesoporous silica for enhanced oral delivery of curcumin
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2015.12.040
– volume: 7
  start-page: 2410
  year: 2019
  ident: ref_20
  article-title: Uptake of silica particulate drug carriers in an intestine-on-a-chip: Towards a better in vitro model of nanoparticulate carrier and mucus interactions
  publication-title: Biomater. Sci.
  doi: 10.1039/C9BM00058E
– volume: 55
  start-page: 430
  year: 2005
  ident: ref_3
  article-title: Antitubercular inhaled therapy: Opportunities, progress and challenges
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dki027
– volume: 120
  start-page: 447
  year: 2009
  ident: ref_26
  article-title: Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2008.12.019
– volume: 467
  start-page: 253
  year: 2016
  ident: ref_28
  article-title: Mesoporous silica nanoparticles with controllable morphology prepared from oil-in-water emulsions
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2016.01.026
– volume: 1
  start-page: 47
  year: 2005
  ident: ref_15
  article-title: Nanosystems in drug targeting: Opportunities and challenges
  publication-title: Curr. Nanosci.
  doi: 10.2174/1573413052953110
– volume: 5
  start-page: 57
  year: 2009
  ident: ref_45
  article-title: Mesoporous Silica Nanoparticles for Reducing Hemolytic Activity Towards Mammalian Red Blood Cells
  publication-title: Small
  doi: 10.1002/smll.200800926
– volume: 17
  start-page: 54
  year: 2009
  ident: ref_2
  article-title: Staphylococcus aureus as an intracellular pathogen: The role of small colony variants
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2008.11.004
– volume: 141
  start-page: 15
  year: 1991
  ident: ref_43
  article-title: Cell mediated cytotoxicity against U 937 cells by human monocytes and macrophages in a modified colorimetric MTT assay: A methodological study
  publication-title: J. Immunol. Methods
  doi: 10.1016/0022-1759(91)90205-T
– volume: 9
  start-page: 676
  year: 2012
  ident: ref_32
  article-title: Fiji: An open-source platform for biological-image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 114
  start-page: 42
  year: 2003
  ident: ref_61
  article-title: Intracellular survival of Staphylococcus aureus within cultured enterocytes
  publication-title: J. Surg. Res.
  doi: 10.1016/S0022-4804(03)00314-7
– volume: 12
  start-page: 8030
  year: 2020
  ident: ref_16
  article-title: PLGA-Lipid Hybrid (PLH) Microparticles Enhance the Intracellular Uptake and Antibacterial Activity of Rifampicin
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b22991
– volume: 11
  start-page: 673
  year: 2016
  ident: ref_49
  article-title: The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction
  publication-title: Nanomedicine (Lond)
  doi: 10.2217/nnm.16.5
– volume: 132
  start-page: 4834
  year: 2010
  ident: ref_46
  article-title: Impacts of Mesoporous Silica Nanoparticle Size, Pore Ordering, and Pore Integrity on Hemolytic Activity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja910846q
– volume: 17
  start-page: 59
  year: 2009
  ident: ref_1
  article-title: Staphylococcus aureus: New evidence for intracellular persistence
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2008.11.005
– volume: 145
  start-page: 257
  year: 2010
  ident: ref_27
  article-title: Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2010.04.029
– volume: 13
  start-page: 777
  year: 2018
  ident: ref_48
  article-title: Minimum information reporting in bio–nano experimental literature
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0246-4
– volume: 56
  start-page: 2535
  year: 2012
  ident: ref_33
  article-title: Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.06049-11
– volume: 46
  start-page: 1132
  year: 2018
  ident: ref_19
  article-title: Mesoporous silica nanorods for improved oral drug absorption
  publication-title: Artif. Cells Nanomed. Biotechnol.
  doi: 10.1080/21691401.2017.1362414
– volume: 29
  start-page: 9138
  year: 2013
  ident: ref_51
  article-title: Surface and Size Effects on Cell Interaction of Gold Nanoparticles with Both Phagocytic and Nonphagocytic Cells
  publication-title: Langmuir
  doi: 10.1021/la401556k
– volume: 26
  start-page: 535
  year: 2012
  ident: ref_63
  article-title: Caco-2 cells cytotoxicity of nifuroxazide derivatives with potential activity against Methicillin-resistant Staphylococcus aureus (MRSA)
  publication-title: Toxicol. In Vitro
  doi: 10.1016/j.tiv.2012.01.018
– volume: 65
  start-page: 405
  year: 2018
  ident: ref_21
  article-title: Overcoming multiple gastrointestinal barriers by bilayer modified hollow mesoporous silica nanocarriers
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.10.025
– ident: ref_14
  doi: 10.3390/antibiotics8020039
– ident: ref_66
  doi: 10.1021/acs.langmuir.0c00253
– volume: 12
  start-page: 3823
  year: 2002
  ident: ref_42
  article-title: Different neutral surfactant template extraction routes for synthetic hexagonal mesoporous silicas
  publication-title: J. Mater. Chem.
  doi: 10.1039/b204060c
– volume: 90
  start-page: 13065
  year: 2018
  ident: ref_30
  article-title: Structure and composition of native membrane derived polymer-supported lipid bilayers
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b04110
SSID ssj0000913853
Score 2.2882378
Snippet An urgent demand exists for the development of novel delivery systems that efficiently transport antibacterial agents across cellular membranes for the...
SourceID doaj
swepub
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 815
SubjectTerms Adsorption
Antibacterial activity
Antibacterial agents
Antibiotics
Antimicrobial agents
Bacteria
Caco-2
Cell membranes
Colonies
Control surfaces
Endocytosis
Fluorescence
Fluorescence microscopy
Fourier transforms
Infection
Intracellular
Lipid bilayers
Lipids
Mesoporous silica
Microbalances
Microscopy
Nanoparticle
Nanoparticles
Nitrogen
Pathogens
Permeability
Quartz crystal microbalance
Quartz crystals
Rifampin
Silica
Silicon dioxide
Small colony variants
Staphylococcus aureus
Staphylococcus infections
Surface chemistry
Surfactants
Total internal reflection
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeBMoyEhwQlGT2HGSEyrVLhWiHIBKvVn22O6uujhLsz3z15lJsksjHqdIsRPFHnvmm_HkG8ZeQ26azNcqLWsrUgmVS9EMExGysVURgrSK_kY--ayOT-XHs_JsDLh1Y1rlVif2itq1QDHyg0I0paTyyNW79Y-UqkbR6epYQuMmu5UXaGvpT_H5h12MhTgv0RwN-e4CvfuDaGJLHGloCMuJJeoJ-_-GMv9MlpxQivZmaH6P3R3xIz8cBH6f3fDxAbtzjVXwIfs5iwti0YjnHNEdP_KrFeWa8tP1xlx4bqLjh3GztANPM70MhhISvA38yzKY72s6budjCR8-i2DQlx6S5jg2nPiuRdjeXnX865KCfhx1NDrfY47dI3Y6n307Ok7HOgspIJjYpKECwPE5QKxoK1NVVekyK4yopQ9lLkyJuLC2Dh1p52wGJTq2tQdRQCN85hvxmO3FNvqnjCvXFDWdLtvcSQ_KBIMKoWzwgp5oHhL2djvnGkYScqqFsdLojJCE9HUJJezNrvd6IN_4R7_3JL5dH6LM7m-0l-d6HLxWjbIgcysCWmTlPCJbFYrMFDVUBkFzwva3wtfjPu7071WXsFe7ZtyBdKxioseZpj4KNSUCrYQ9GdbK7ktEIdDfzpuEVZNVNPnUaUtcLnqWb3xh3kiRsE_Deps8MjJBLTQs-jI7ne68Bl-DbWStAbKgpcm8puqgWma2NpVT4Cw8-_8on7PbBQUUMpkWcp_tbS6v_AtEXRv7st9avwCSxzGe
  priority: 102
  providerName: ProQuest
Title Enhancing the Cellular Uptake and Antibacterial Activity of Rifampicin through Encapsulation in Mesoporous Silica Nanoparticles
URI https://www.ncbi.nlm.nih.gov/pubmed/32344619
https://www.proquest.com/docview/2395444087
https://www.proquest.com/docview/2396307222
https://pubmed.ncbi.nlm.nih.gov/PMC7221943
https://research.chalmers.se/publication/516805
https://doaj.org/article/696bc41b3f2846de9236f20a28c7a020
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgucAB8SawVEaCE4rWiR0_jrurlhViV2ih0t4sP2lFcSraPfPXGSfZqhEgLpwixW7k2OOZ74un3yD0xlVGkSB52UhLS-aELyEMZyFkY0UdI7M8_xv5_IKfzdmHq-Zqr9RXzgnr5YH7iTviilvHKksjOFLuAwASHmtiaumEAayTvS9RZI9MdT5YVRQCUZ_pToHXHyWT2qyOBiGwGcWgTqr_T_jy9zTJkZhoF4BmD9D9ATni437ED9GtkB6he3t6go_Rz2laZP2M9BUDrsOnYbXKWaZ4vt6abwGb5PFx2i5tr9CcH-b64hG4jfhyGc33dT5ox0PxHjxNzgCL7tPlMDSch00LgL293uDPy_y5D4N3Bto9ZNc9QfPZ9MvpWTlUWCgdwIhtGYVz8H7eAUq0wgghGk8sNVSyEJuKmgYQobQeKLT3lrgGKK0MjtZO0UCCok_RQWpTeI4w96qW-VzZVp4Fx0004AoaBRfgoFUs0LubOddukB_PVTBWGmhIXiG9v0IFervrve5lN_7S7yQv365PFsvuboAJ6eHl9b9MqECHN4uvhx280TVVDcvluEWBXu-aYe_lAxWTAsx07sPBRwLEKtCz3lZ2I6E1BaZdqQKJkRWNhjpuSctFp-8ND6wUowX62Nvb6CeDBtRCu0VXYGejN0G7IJ1VTGrnSNTMkKBzXVDNiJVGeO68dS_-x1S9RHfr_MGBsLJmh-hg--M6vAJUtrUTdFvO3k_QnZPpxafLSbcdfwF1_zvh
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V5QAcEO8aCiwSPSGrtnf9OiBUSkJLkx6gkXpbdmfXTUSwQ50KceIf8RuZsZ1Qi8etp0jx2rI9szPf7I6_j7EXEOo8cFnix5kRvoTU-piGiQhZmzQqCmkS-hp5fJwcTOT70_h0g_1cfQtDbZWrmNgEalsBrZHvRiKPJckjp68XX31SjaLd1ZWERusWR-77NyzZ6leHb9G-O1E0HJzsH_idqoAPmDqXfpECOAsWEBmZVKdpGtvACC0y6Yo4FDpGFJQZi2WjtSaAGMu4zIGIIBcucES-hCH_mhRCUAthNny3XtMhjk1Mf21_vRB5sFvqsiJONky8cS_zNQIBf0O1fzZn9ihMm7Q3vM1udXiV77UOdodtuPIuu3mJxfAe-zEop8TaUZ5xRJN8383n1NvKJ4ul_uy4Li3fK5cz0_JC08WglazgVcE_zAr9ZUHb-7yTDOKDEjTW7m2THscDY1dXWCZUFzX_OKNFRo45AYv9rqfvPptciQUesM2yKt0W44nNo4x2s01opYNEFxoDUJzjD1a-YeGxl6t3rqAjPSftjbnC4ocspC5byGM769GLluzjH-PekPnWY4iiu_mjOj9T3cOrJE8MyNCIAhFAYh0i6aSIAh1lkGoE6R7bXhlfdXGjVr-93GPP14dxxtM2ji4dvmkak2BkRmDnsYetr6zvREQC6_sw91ja86LerfaPlLNpwyqOFwxzKTw2av2td0rHPDVVMG1kfWpVOwUuA5PLTAEEhZI6cIrUSJUMTKZTm4A18Oj_T_mMXT84GY_U6PD46DG7EdFiRiD9SG6zzeX5hXuCiG9pnjbTjLNPVz2vfwGBmm9u
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamISF4QNwJDDASe0JRk9iJkweExtaysYsQMGlvxte1ojhl7YR44n_x6zgnScsiLm97qlQ7UZJzt4-_j5DnJlVV4soizkvNYm6EjSEMIxCy0iLznusCTyMfHhW7x_ztSX6yRn4uz8JgW-XSJzaO2tYG18gHGatyjvTIYuC7toh3O6NXs68xMkjhTuuSTqNVkX33_RuUb_OXezsg680sGw0_bu_GHcNAbCCMLmIvjHHWWANZkhZKCJHbRDPFSu58njKVQ0ZUagslpLU6MTmUdKUzLDMVc4lDICZw_1cEAzvBU-qjN6v1HcTbhFDY9tozViWDoEKN-GwQhPNeFGzIAv6W4f7ZqNmDM21C4OgmudHlrnSrVbZbZM2F2-T6BUTDO-THMIwRwSOcUsgs6babTrHPlR7PFuqzoypYuhUWE91iROPNTEtfQWtP30-8-jLDrX7a0QfRYTAK6vi2YY_CwKGb11Ay1Odz-mGCC44U4gMU_l1_311yfCkSuEfWQx3cA0ILW2Ul7mzr1HJnCuUVOKO8gh-oglMfkRfLby5NB4COPBxTCYUQSkhelFBENlezZy3wxz_mvUbxreYgXHfzR312KruXl0VVaMNTzTxkA4V1kFUXPktUVhqhIGGPyMZS-LLzIXP5W-Mj8mw1DNaPWzoqOPjSOKcALw1JXkTut7qyehKWMaj10yoioqdFvUftj4TJuEEYhxumFWcROWj1rXdJh0I1lmbcUPzM5dxJ40qjK15KYxIvuUqcRGZSyRNdKmELY7V5-P-3fEqugkXLg72j_UfkWobrGgmPM75B1hdn5-4xJH8L_aSxMko-XbZZ_wJIwXOh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+cellular+uptake+and+antibacterial+activity+of+rifampicin+through+encapsulation+in+mesoporous+silica+nanoparticles&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Joyce%2C+Paul&rft.au=Ulmefors%2C+Hanna&rft.au=Maghrebi%2C+Sajedehsadat&rft.au=Subramaniam%2C+Santhni&rft.date=2020-04-24&rft.issn=2079-4991&rft.eissn=2079-4991&rft.volume=10&rft.issue=4&rft_id=info:doi/10.3390%2Fnano10040815&rft.externalDocID=oai_research_chalmers_se_ce8cb948_cc0f_4a0e_9898_40b8a7d6cdbc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon