Enhancing the Cellular Uptake and Antibacterial Activity of Rifampicin through Encapsulation in Mesoporous Silica Nanoparticles
An urgent demand exists for the development of novel delivery systems that efficiently transport antibacterial agents across cellular membranes for the eradication of intracellular pathogens. In this study, the clinically relevant poorly water-soluble antibiotic, rifampicin, was confined within meso...
Saved in:
Published in | Nanomaterials (Basel, Switzerland) Vol. 10; no. 4; p. 815 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
24.04.2020
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2079-4991 2079-4991 |
DOI | 10.3390/nano10040815 |
Cover
Abstract | An urgent demand exists for the development of novel delivery systems that efficiently transport antibacterial agents across cellular membranes for the eradication of intracellular pathogens. In this study, the clinically relevant poorly water-soluble antibiotic, rifampicin, was confined within mesoporous silica nanoparticles (MSN) to investigate their ability to serve as an efficacious nanocarrier system against small colony variants of Staphylococcus aureus (SCV S. aureus) hosted within Caco-2 cells. The surface chemistry and particle size of MSN were varied through modifications during synthesis, where 40 nm particles with high silanol group densities promoted enhanced cellular uptake. Extensive biophysical analysis was performed, using quartz crystal microbalance with dissipation (QCM-D) and total internal reflection fluorescence (TIRF) microscopy, to elucidate the mechanism of MSN adsorption onto semi-native supported lipid bilayers (snSLB) and, thus, uncover potential cellular uptake mechanisms of MSN into Caco-2 cells. Such studies revealed that MSN with reduced silanol group densities were prone to greater particle aggregation on snSLB, which was expected to restrict endocytosis. MSN adsorption and uptake into Caco-2 cells correlated well with antibacterial efficacy against SCV S. aureus, with 40 nm hydrophilic particles triggering a ~2.5-log greater reduction in colony forming units, compared to the pure rifampicin. Thus, this study provides evidence for the potential to design silica nanocarrier systems with controlled surface chemistries that can be used to re-sensitise intracellular bacteria to antibiotics by delivering them to the site of infection. |
---|---|
AbstractList | An urgent demand exists for the development of novel delivery systems that efficiently transport antibacterial agents across cellular membranes for the eradication of intracellular pathogens. In this study, the clinically relevant poorly water-soluble antibiotic, rifampicin, was confined within mesoporous silica nanoparticles (MSN) to investigate their ability to serve as an efficacious nanocarrier system against small colony variants of Staphylococcus aureus (SCV S. aureus) hosted within Caco-2 cells. The surface chemistry and particle size of MSN were varied through modifications during synthesis, where 40 nm particles with high silanol group densities promoted enhanced cellular uptake. Extensive biophysical analysis was performed, using quartz crystal microbalance with dissipation (QCM-D) and total internal reflection fluorescence (TIRF) microscopy, to elucidate the mechanism of MSN adsorption onto semi-native supported lipid bilayers (snSLB) and, thus, uncover potential cellular uptake mechanisms of MSN into Caco-2 cells. Such studies revealed that MSN with reduced silanol group densities were prone to greater particle aggregation on snSLB, which was expected to restrict endocytosis. MSN adsorption and uptake into Caco-2 cells correlated well with antibacterial efficacy against SCV S. aureus, with 40 nm hydrophilic particles triggering a ~2.5-log greater reduction in colony forming units, compared to the pure rifampicin. Thus, this study provides evidence for the potential to design silica nanocarrier systems with controlled surface chemistries that can be used to re-sensitise intracellular bacteria to antibiotics by delivering them to the site of infection. An urgent demand exists for the development of novel delivery systems that efficiently transport antibacterial agents across cellular membranes for the eradication of intracellular pathogens. In this study, the clinically relevant poorly water-soluble antibiotic, rifampicin, was confined within mesoporous silica nanoparticles (MSN) to investigate their ability to serve as an efficacious nanocarrier system against small colony variants of Staphylococcus aureus (SCV S. aureus) hosted within Caco-2 cells. The surface chemistry and particle size of MSN were varied through modifications during synthesis, where 40 nm particles with high silanol group densities promoted enhanced cellular uptake. Extensive biophysical analysis was performed, using quartz crystal microbalance with dissipation (QCM-D) and total internal reflection fluorescence (TIRF) microscopy, to elucidate the mechanism of MSN adsorption onto semi-native supported lipid bilayers (snSLB) and, thus, uncover potential cellular uptake mechanisms of MSN into Caco-2 cells. Such studies revealed that MSN with reduced silanol group densities were prone to greater particle aggregation on snSLB, which was expected to restrict endocytosis. MSN adsorption and uptake into Caco-2 cells correlated well with antibacterial efficacy against SCV S. aureus, with 40 nm hydrophilic particles triggering a ~2.5-log greater reduction in colony forming units, compared to the pure rifampicin. Thus, this study provides evidence for the potential to design silica nanocarrier systems with controlled surface chemistries that can be used to re-sensitise intracellular bacteria to antibiotics by delivering them to the site of infection.An urgent demand exists for the development of novel delivery systems that efficiently transport antibacterial agents across cellular membranes for the eradication of intracellular pathogens. In this study, the clinically relevant poorly water-soluble antibiotic, rifampicin, was confined within mesoporous silica nanoparticles (MSN) to investigate their ability to serve as an efficacious nanocarrier system against small colony variants of Staphylococcus aureus (SCV S. aureus) hosted within Caco-2 cells. The surface chemistry and particle size of MSN were varied through modifications during synthesis, where 40 nm particles with high silanol group densities promoted enhanced cellular uptake. Extensive biophysical analysis was performed, using quartz crystal microbalance with dissipation (QCM-D) and total internal reflection fluorescence (TIRF) microscopy, to elucidate the mechanism of MSN adsorption onto semi-native supported lipid bilayers (snSLB) and, thus, uncover potential cellular uptake mechanisms of MSN into Caco-2 cells. Such studies revealed that MSN with reduced silanol group densities were prone to greater particle aggregation on snSLB, which was expected to restrict endocytosis. MSN adsorption and uptake into Caco-2 cells correlated well with antibacterial efficacy against SCV S. aureus, with 40 nm hydrophilic particles triggering a ~2.5-log greater reduction in colony forming units, compared to the pure rifampicin. Thus, this study provides evidence for the potential to design silica nanocarrier systems with controlled surface chemistries that can be used to re-sensitise intracellular bacteria to antibiotics by delivering them to the site of infection. An urgent demand exists for the development of novel delivery systems that efficiently transport antibacterial agents across cellular membranes for the eradication of intracellular pathogens. In this study, the clinically relevant poorly water-soluble antibiotic, rifampicin, was confined within mesoporous silica nanoparticles (MSN) to investigate their ability to serve as an efficacious nanocarrier system against small colony variants of Staphylococcus aureus (SCV S. aureus ) hosted within Caco-2 cells. The surface chemistry and particle size of MSN were varied through modifications during synthesis, where 40 nm particles with high silanol group densities promoted enhanced cellular uptake. Extensive biophysical analysis was performed, using quartz crystal microbalance with dissipation (QCM-D) and total internal reflection fluorescence (TIRF) microscopy, to elucidate the mechanism of MSN adsorption onto semi-native supported lipid bilayers (snSLB) and, thus, uncover potential cellular uptake mechanisms of MSN into Caco-2 cells. Such studies revealed that MSN with reduced silanol group densities were prone to greater particle aggregation on snSLB, which was expected to restrict endocytosis. MSN adsorption and uptake into Caco-2 cells correlated well with antibacterial efficacy against SCV S. aureus , with 40 nm hydrophilic particles triggering a ~2.5-log greater reduction in colony forming units, compared to the pure rifampicin. Thus, this study provides evidence for the potential to design silica nanocarrier systems with controlled surface chemistries that can be used to re-sensitise intracellular bacteria to antibiotics by delivering them to the site of infection. An urgent demand exists for the development of novel delivery systems that efficiently transport antibacterial agents across cellular membranes for the eradication of intracellular pathogens. In this study, the clinically relevant poorly water-soluble antibiotic, rifampicin, was confined within mesoporous silica nanoparticles (MSN) to investigate their ability to serve as an efficacious nanocarrier system against small colony variants of (SCV ) hosted within Caco-2 cells. The surface chemistry and particle size of MSN were varied through modifications during synthesis, where 40 nm particles with high silanol group densities promoted enhanced cellular uptake. Extensive biophysical analysis was performed, using quartz crystal microbalance with dissipation (QCM-D) and total internal reflection fluorescence (TIRF) microscopy, to elucidate the mechanism of MSN adsorption onto semi-native supported lipid bilayers (snSLB) and, thus, uncover potential cellular uptake mechanisms of MSN into Caco-2 cells. Such studies revealed that MSN with reduced silanol group densities were prone to greater particle aggregation on snSLB, which was expected to restrict endocytosis. MSN adsorption and uptake into Caco-2 cells correlated well with antibacterial efficacy against SCV , with 40 nm hydrophilic particles triggering a ~2.5-log greater reduction in colony forming units, compared to the pure rifampicin. Thus, this study provides evidence for the potential to design silica nanocarrier systems with controlled surface chemistries that can be used to re-sensitise intracellular bacteria to antibiotics by delivering them to the site of infection. |
Author | Joyce, Paul Prestidge, Clive A. Maghrebi, Sajedeh Wignall, Anthony Höök, Fredrik Jõemetsa, Silver Ulmefors, Hanna Subramaniam, Santhni |
AuthorAffiliation | 3 ARC Centre of Excellence in Bio-Nano Science and Technology, University of South Australia, Adelaide, South Australia 5090, Australia 2 School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia 5090, Australia; hanna.gustafsson@chalmers.se (H.U.); sajedehsadat.maghrebi@mymail.unisa.edu.au (S.M.); santhni.subramaniam@mymail.unisa.edu.au (S.S.); anthony.wignall@unisa.edu.au (A.W.) 1 Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; paul.joyce@unisa.edu.au (P.J.); silver@chalmers.se (S.J.); fredrik.hook@chalmers.se (F.H.) |
AuthorAffiliation_xml | – name: 1 Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; paul.joyce@unisa.edu.au (P.J.); silver@chalmers.se (S.J.); fredrik.hook@chalmers.se (F.H.) – name: 2 School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia 5090, Australia; hanna.gustafsson@chalmers.se (H.U.); sajedehsadat.maghrebi@mymail.unisa.edu.au (S.M.); santhni.subramaniam@mymail.unisa.edu.au (S.S.); anthony.wignall@unisa.edu.au (A.W.) – name: 3 ARC Centre of Excellence in Bio-Nano Science and Technology, University of South Australia, Adelaide, South Australia 5090, Australia |
Author_xml | – sequence: 1 givenname: Paul orcidid: 0000-0003-3619-7901 surname: Joyce fullname: Joyce, Paul – sequence: 2 givenname: Hanna surname: Ulmefors fullname: Ulmefors, Hanna – sequence: 3 givenname: Sajedeh surname: Maghrebi fullname: Maghrebi, Sajedeh – sequence: 4 givenname: Santhni surname: Subramaniam fullname: Subramaniam, Santhni – sequence: 5 givenname: Anthony surname: Wignall fullname: Wignall, Anthony – sequence: 6 givenname: Silver orcidid: 0000-0001-7957-8750 surname: Jõemetsa fullname: Jõemetsa, Silver – sequence: 7 givenname: Fredrik surname: Höök fullname: Höök, Fredrik – sequence: 8 givenname: Clive A. orcidid: 0000-0001-5401-7535 surname: Prestidge fullname: Prestidge, Clive A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32344619$$D View this record in MEDLINE/PubMed https://research.chalmers.se/publication/516805$$DView record from Swedish Publication Index |
BookMark | eNptkk1v1DAQhiNUREvpjTOKxIUDC47tfPiCtFoVqFRAovRsTSaTjZesHWxvUU_8ddzuUu1W5JLI88yjmfh9nh1ZZynLXhbsnRCKvbdgXcGYZE1RPslOOKvVTCpVHO19H2dnIaxYelQhmlI8y44FF1JWhTrJ_pzbASwau8zjQPmCxnEzgs-vpwg_KQfb5XMbTQsYyRsY8zlGc2Pibe76_LvpYT2Z1J2avdssh_zcIkwhKaJxNk-FLxTc5FIx5FdmNAj51zTzBD4aHCm8yJ72MAY6271Ps-uP5z8Wn2eX3z5dLOaXMyxLGWd9jUgddpj2aWuo67rsWCtANJL6shBQsqJq2q5SrOtahmWdViUUHJUgRkqcZhdbb-dgpSdv1uBvtQOj7w-cX-rdSLpSVYuyaEXPG1l1pLioes6AN1gD4yy5rrau8JumTXtg8xQIPA4aBxjX5IMOpJEabJVsNCLrtQRGWjWq0ZK1DdRdhV2Lyfpha03KddqVbPQwHsgPK9YMeuludM15oaRIgjc7gXe_NhSiXpuA6ULBUvr9mgtVCZZontDXj9CV23ibLuCOKqVMgaoT9Wp_oodR_qUnAW-3AHoXgqf-ASmYvsun3s9nwvkjHE28D0rax4z_b_oLPfbrww |
CitedBy_id | crossref_primary_10_1007_s00210_024_03536_3 crossref_primary_10_3390_s23020976 crossref_primary_10_1016_j_msec_2021_112274 crossref_primary_10_2147_IJN_S273064 crossref_primary_10_1016_j_heliyon_2024_e41151 crossref_primary_10_3390_molecules26237238 crossref_primary_10_3390_pharmaceutics15071934 crossref_primary_10_3390_ijms22041896 crossref_primary_10_1098_rsos_220013 crossref_primary_10_1002_adhm_202100453 crossref_primary_10_1007_s13346_022_01287_3 crossref_primary_10_1016_j_cis_2022_102746 crossref_primary_10_1016_j_bioadv_2024_214036 crossref_primary_10_1088_2053_1591_ad4f54 crossref_primary_10_1021_acs_molpharmaceut_4c00779 crossref_primary_10_1021_acsagscitech_3c00066 crossref_primary_10_1039_D4BM00608A crossref_primary_10_1002_admt_202001236 crossref_primary_10_1016_j_micres_2022_127040 crossref_primary_10_1016_j_nantod_2021_101279 crossref_primary_10_1016_j_apsusc_2021_150011 crossref_primary_10_1016_j_xphs_2020_09_026 crossref_primary_10_2217_fmb_2022_0069 crossref_primary_10_1007_s13346_022_01274_8 crossref_primary_10_1016_j_colsurfb_2022_112763 crossref_primary_10_3390_pharmaceutics15020310 crossref_primary_10_3390_pharmaceutics13091436 crossref_primary_10_4103_jmss_jmss_52_24 |
Cites_doi | 10.1021/nn100561e 10.1039/c1nr10224a 10.1016/S0022-3093(01)00806-7 10.1128/AAC.02340-16 10.1080/21691401.2018.1496924 10.1002/bdd.1802 10.1021/ja203984j 10.1016/j.anaerobe.2012.08.001 10.4049/jimmunol.153.6.2568 10.1038/srep29707 10.1038/nrmicro1384 10.1021/acsinfecdis.7b00270 10.1016/S0006-3495(81)84905-3 10.1021/nn101643u 10.1039/c3nr00357d 10.1007/BF01964420 10.1039/c1cc11760b 10.1038/47229 10.1186/s12989-019-0325-1 10.1080/17425247.2019.1605353 10.1021/ja203316q 10.1016/j.watres.2004.12.008 10.1093/infdis/123.4.439 10.1002/1521-4141(200103)31:3<876::AID-IMMU876>3.0.CO;2-I 10.1086/514706 10.1088/1361-6528/aa5f63 10.1039/C7PY01603D 10.1038/210259a0 10.1021/acsnano.5b03443 10.1039/c3cs35405a 10.1128/iai.58.4.1048-1058.1990 10.1529/biophysj.108.134874 10.1021/acs.analchem.5b01449 10.1111/j.1365-2818.1983.tb04158.x 10.1016/j.surfrep.2014.07.001 10.1016/0378-5173(96)04574-7 10.1128/IAI.00001-12 10.1002/smll.200900005 10.1016/j.colsurfb.2015.12.040 10.1039/C9BM00058E 10.1093/jac/dki027 10.1016/j.micromeso.2008.12.019 10.1016/j.jcis.2016.01.026 10.2174/1573413052953110 10.1002/smll.200800926 10.1016/j.tim.2008.11.004 10.1016/0022-1759(91)90205-T 10.1038/nmeth.2019 10.1016/S0022-4804(03)00314-7 10.1021/acsami.9b22991 10.2217/nnm.16.5 10.1021/ja910846q 10.1016/j.tim.2008.11.005 10.1016/j.jconrel.2010.04.029 10.1038/s41565-018-0246-4 10.1128/AAC.06049-11 10.1080/21691401.2017.1362414 10.1021/la401556k 10.1016/j.tiv.2012.01.018 10.1016/j.actbio.2017.10.025 10.3390/antibiotics8020039 10.1021/acs.langmuir.0c00253 10.1039/b204060c 10.1021/acs.analchem.8b04110 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KB. KR7 L7M LK8 L~C L~D M7P P64 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ABBSD ADTPV AOWAS D8T F1S ZZAVC DOA |
DOI | 10.3390/nano10040815 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Materials Science Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Chalmers tekniska högskola full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Chalmers tekniska högskola SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Materials Science & Engineering Collection Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-4991 |
ExternalDocumentID | oai_doaj_org_article_696bc41b3f2846de9236f20a28c7a020 oai_research_chalmers_se_ce8cb948_cc0f_4a0e_9898_40b8a7d6cdbc PMC7221943 32344619 10_3390_nano10040815 |
Genre | Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: Australian Research Council Centre of Excellence in Bio-Nano Science and Technology grantid: ARC CE140100036 – fundername: ÅForsk Foundation grantid: 16-463 |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I GROUPED_DOAJ HCIFZ HYE I-F KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO 5PM ABBSD ADTPV AOWAS D8T F1S IAO IPNFZ ITC RIG ZZAVC |
ID | FETCH-LOGICAL-c554t-f7ccedcdc991b7a7775d0b3a384ef513a50168bd690ddb0c57138ec32c93e0e93 |
IEDL.DBID | DOA |
ISSN | 2079-4991 |
IngestDate | Wed Aug 27 01:29:28 EDT 2025 Tue Sep 09 23:29:52 EDT 2025 Thu Aug 21 14:32:29 EDT 2025 Fri Sep 05 09:39:16 EDT 2025 Fri Jul 25 11:58:06 EDT 2025 Wed Feb 19 02:30:08 EST 2025 Tue Jul 01 01:16:55 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | infection mesoporous silica Caco-2 small colony variants permeability nanoparticle antibiotics fluorescence microscopy Staphylococcus aureus total internal reflection |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c554t-f7ccedcdc991b7a7775d0b3a384ef513a50168bd690ddb0c57138ec32c93e0e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5401-7535 0000-0001-7957-8750 0000-0003-3619-7901 |
OpenAccessLink | https://doaj.org/article/696bc41b3f2846de9236f20a28c7a020 |
PMID | 32344619 |
PQID | 2395444087 |
PQPubID | 2032354 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_696bc41b3f2846de9236f20a28c7a020 swepub_primary_oai_research_chalmers_se_ce8cb948_cc0f_4a0e_9898_40b8a7d6cdbc pubmedcentral_primary_oai_pubmedcentral_nih_gov_7221943 proquest_miscellaneous_2396307222 proquest_journals_2395444087 pubmed_primary_32344619 crossref_primary_10_3390_nano10040815 crossref_citationtrail_10_3390_nano10040815 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200424 |
PublicationDateYYYYMMDD | 2020-04-24 |
PublicationDate_xml | – month: 4 year: 2020 text: 20200424 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Nanomaterials (Basel, Switzerland) |
PublicationTitleAlternate | Nanomaterials (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zheng (ref_19) 2018; 46 Nennie (ref_43) 1991; 141 Hess (ref_61) 2003; 114 Fernandes (ref_63) 2012; 26 ref_14 Hua (ref_40) 2001; 292 Zhang (ref_27) 2010; 145 Mounier (ref_7) 1990; 58 Xu (ref_8) 1994; 153 Hoshyar (ref_49) 2016; 11 Cortesi (ref_34) 1996; 139 Prado (ref_42) 2002; 12 Bennett (ref_9) 2001; 31 Sun (ref_47) 2015; 9 Faria (ref_48) 2018; 13 Clemens (ref_33) 2012; 56 Ekkapongpisit (ref_60) 2012; 7 Santovito (ref_17) 2018; 46 Peerboom (ref_54) 2018; 4 Asefa (ref_39) 1999; 402 Proctor (ref_65) 2006; 4 ref_66 Sendi (ref_2) 2009; 17 Nandiyanto (ref_26) 2009; 120 Gustafsson (ref_28) 2016; 467 Lin (ref_46) 2010; 132 Nash (ref_44) 1966; 210 Lu (ref_52) 2009; 5 Mohamed (ref_12) 2016; 6 Kim (ref_18) 2016; 140 Chiann (ref_5) 2012; 33 Axelrod (ref_56) 1983; 129 Kwak (ref_62) 2012; 80 Pandey (ref_3) 2005; 55 Rubio (ref_53) 2019; 16 Pace (ref_29) 2015; 87 Pace (ref_30) 2018; 90 Ren (ref_25) 2012; 18 Huang (ref_50) 2010; 4 Zhao (ref_58) 2018; 9 Schindelin (ref_32) 2012; 9 Oh (ref_59) 2010; 4 Cruz (ref_13) 2017; 28 Larsen (ref_57) 2011; 133 Tulkens (ref_6) 1991; 10 ref_35 Thompson (ref_55) 1981; 33 Proctor (ref_64) 1998; 27 Khraisheh (ref_38) 2005; 39 Wang (ref_21) 2018; 65 Slowing (ref_45) 2009; 5 Popat (ref_22) 2011; 3 Jonsson (ref_31) 2008; 95 Mackanes (ref_4) 1971; 123 Maghrebi (ref_16) 2020; 12 Maghrebi (ref_10) 2019; 16 Le (ref_11) 2017; 61 Mody (ref_24) 2013; 5 Wu (ref_41) 2013; 42 Pocock (ref_20) 2019; 7 Liberman (ref_36) 2014; 69 Liu (ref_51) 2013; 29 Wong (ref_37) 2011; 133 Vasir (ref_15) 2005; 1 Garzoni (ref_1) 2009; 17 Wu (ref_23) 2011; 47 |
References_xml | – volume: 4 start-page: 5301 year: 2010 ident: ref_59 article-title: Cellular uptake, cytotoxicity, and innate immune response of silica− titania hollow nanoparticles based on size and surface functionality publication-title: ACS Nano doi: 10.1021/nn100561e – volume: 3 start-page: 2801 year: 2011 ident: ref_22 article-title: Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers publication-title: Nanoscale doi: 10.1039/c1nr10224a – volume: 292 start-page: 177 year: 2001 ident: ref_40 article-title: Preparation of mesoporous silica films on a glass slide: Surfactant template removal by solvent extraction publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(01)00806-7 – volume: 61 start-page: e02340-16 year: 2017 ident: ref_11 article-title: Intracellular targeting mechanisms by antimicrobial peptides publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.02340-16 – volume: 46 start-page: S414 year: 2018 ident: ref_17 article-title: Antimicrobial properties of rosin acids-loaded nanoparticles against antibiotic-sensitive and antibiotic-resistant foodborne pathogens publication-title: Artif. Cells Nanomed. Biotechnol. doi: 10.1080/21691401.2018.1496924 – volume: 33 start-page: 316 year: 2012 ident: ref_5 article-title: Effect of pH, mucin and bovine serum on rifampicin permeability through Caco-2 cells publication-title: Biopharm. Drug Dispos. doi: 10.1002/bdd.1802 – volume: 133 start-page: 10685 year: 2011 ident: ref_57 article-title: Observation of inhomogeneity in the lipid composition of individual nanoscale liposomes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja203984j – volume: 18 start-page: 508 year: 2012 ident: ref_25 article-title: Inhibition of Staphylococcus aureus adherence to Caco-2 cells by lactobacilli and cell surface properties that influence attachment publication-title: Anaerobe doi: 10.1016/j.anaerobe.2012.08.001 – volume: 153 start-page: 2568 year: 1994 ident: ref_8 article-title: Intracellular trafficking in Mycobacterium tuberculosis and Mycobacterium avium-infected macrophages publication-title: J. Immunol. doi: 10.4049/jimmunol.153.6.2568 – volume: 6 start-page: 1 year: 2016 ident: ref_12 article-title: Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus publication-title: Sci. Rep. doi: 10.1038/srep29707 – volume: 4 start-page: 295 year: 2006 ident: ref_65 article-title: Small colony variants: A pathogenic form of bacteria that facilitates persistent and recurrent infections publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1384 – ident: ref_35 – volume: 4 start-page: 944 year: 2018 ident: ref_54 article-title: Cell Membrane Derived Platform To Study Virus Binding Kinetics and Diffusion with Single Particle Sensitivity publication-title: ACS Infect. Dis. doi: 10.1021/acsinfecdis.7b00270 – volume: 33 start-page: 435 year: 1981 ident: ref_55 article-title: Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy publication-title: Biophys. J. doi: 10.1016/S0006-3495(81)84905-3 – volume: 4 start-page: 7151 year: 2010 ident: ref_50 article-title: Effects of Nanoparticle Size on Cellular Uptake and Liver MRI with Polyvinylpyrrolidone-Coated Iron Oxide Nanoparticles publication-title: ACS Nano doi: 10.1021/nn101643u – volume: 5 start-page: 5167 year: 2013 ident: ref_24 article-title: Mesoporous silica nanoparticles as antigen carriers and adjuvants for vaccine delivery publication-title: Nanoscale doi: 10.1039/c3nr00357d – volume: 10 start-page: 100 year: 1991 ident: ref_6 article-title: Intracellular distribution and activity of antibiotics publication-title: Eur. J. Clin. Microbiol. Infecti. Dis. doi: 10.1007/BF01964420 – volume: 47 start-page: 9972 year: 2011 ident: ref_23 article-title: Mesoporous silica nanoparticles as nanocarriers publication-title: Chem. Commun. doi: 10.1039/c1cc11760b – volume: 402 start-page: 867 year: 1999 ident: ref_39 article-title: Periodic mesoporous organosilicas with organic groups inside the channel walls publication-title: Nature doi: 10.1038/47229 – volume: 16 start-page: 40 year: 2019 ident: ref_53 article-title: Safer-by-design flame-sprayed silicon dioxide nanoparticles: The role of silanol content on ROS generation, surface activity and cytotoxicity publication-title: Part. Fibre Toxicol. doi: 10.1186/s12989-019-0325-1 – volume: 16 start-page: 507 year: 2019 ident: ref_10 article-title: An update on polymer-lipid hybrid systems for improving oral drug delivery publication-title: Expert Opin. Drug Deliv. doi: 10.1080/17425247.2019.1605353 – volume: 133 start-page: 11422 year: 2011 ident: ref_37 article-title: Revisiting the Stöber Method: Inhomogeneity in Silica Shells publication-title: J. Am. Chem. Soc. doi: 10.1021/ja203316q – volume: 39 start-page: 922 year: 2005 ident: ref_38 article-title: Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite publication-title: Water Res. doi: 10.1016/j.watres.2004.12.008 – volume: 123 start-page: 439 year: 1971 ident: ref_4 article-title: Resistance to intracellular infection publication-title: J. Infect. Dis. doi: 10.1093/infdis/123.4.439 – volume: 31 start-page: 876 year: 2001 ident: ref_9 article-title: Silent infection of bone marrow-derived dendritic cells by Leishmania mexicana amastigotes publication-title: Eur. J. Immunol. doi: 10.1002/1521-4141(200103)31:3<876::AID-IMMU876>3.0.CO;2-I – volume: 27 start-page: 419 year: 1998 ident: ref_64 article-title: Small colony variants in staphylococcal infections: Diagnostic and therapeutic implications publication-title: Clin. Infect. Dis. doi: 10.1086/514706 – volume: 28 start-page: 135102 year: 2017 ident: ref_13 article-title: Antimicrobial activity of a new synthetic peptide loaded in polylactic acid or poly (lactic-co-glycolic) acid nanoparticles against Pseudomonas aeruginosa, Escherichia coli O157: H7 and methicillin resistant Staphylococcus aureus (MRSA) publication-title: Nanotechnology doi: 10.1088/1361-6528/aa5f63 – volume: 9 start-page: 259 year: 2018 ident: ref_58 article-title: Entry of nanoparticles into cells: The importance of nanoparticle properties publication-title: Polym. Chem. doi: 10.1039/C7PY01603D – volume: 210 start-page: 259 year: 1966 ident: ref_44 article-title: Physico-chemical properties of silica in relation to its toxicity publication-title: Nature doi: 10.1038/210259a0 – volume: 9 start-page: 9357 year: 2015 ident: ref_47 article-title: Reduction of acute inflammatory effects of fumed silica nanoparticles in the lung by adjusting silanol display through calcination and metal doping publication-title: ACS Nano doi: 10.1021/acsnano.5b03443 – volume: 42 start-page: 3862 year: 2013 ident: ref_41 article-title: Synthesis of mesoporous silica nanoparticles publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs35405a – volume: 58 start-page: 1048 year: 1990 ident: ref_7 article-title: Intracellular and cell-to-cell spread of Listeria monocytogenes involves interaction with F-actin in the enterocytelike cell line Caco-2 publication-title: Infect. Immun. doi: 10.1128/iai.58.4.1048-1058.1990 – volume: 95 start-page: 5334 year: 2008 ident: ref_31 article-title: A method improving the accuracy of fluorescence recovery after photobleaching analysis publication-title: Biophys. J. doi: 10.1529/biophysj.108.134874 – volume: 87 start-page: 9194 year: 2015 ident: ref_29 article-title: Preserved transmembrane protein mobility in polymer-supported lipid bilayers derived from cell membranes publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b01449 – volume: 129 start-page: 19 year: 1983 ident: ref_56 article-title: Total internal reflection fluorescent microscopy publication-title: J. Microsc. doi: 10.1111/j.1365-2818.1983.tb04158.x – volume: 7 start-page: 4147 year: 2012 ident: ref_60 article-title: Biocompatibility, endocytosis, and intracellular trafficking of mesoporous silica and polystyrene nanoparticles in ovarian cancer cells: Effects of size and surface charge groups publication-title: Int. J. Nanomed. – volume: 69 start-page: 132 year: 2014 ident: ref_36 article-title: Synthesis and surface functionalization of silica nanoparticles for nanomedicine publication-title: Surf. Sci. Rep. doi: 10.1016/j.surfrep.2014.07.001 – volume: 139 start-page: 69 year: 1996 ident: ref_34 article-title: Effect of cationic liposome composition on in vitro cytotoxicity and protective effect on carried DNA publication-title: Int. J. Pharm. doi: 10.1016/0378-5173(96)04574-7 – volume: 80 start-page: 1670 year: 2012 ident: ref_62 article-title: The Staphylococcus aureus alpha-toxin perturbs the barrier function in Caco-2 epithelial cell monolayers by altering junctional integrity publication-title: Infect. Immun. doi: 10.1128/IAI.00001-12 – volume: 5 start-page: 1408 year: 2009 ident: ref_52 article-title: Size Effect on Cell Uptake in Well-Suspended, Uniform Mesoporous Silica Nanoparticles publication-title: Small doi: 10.1002/smll.200900005 – volume: 140 start-page: 161 year: 2016 ident: ref_18 article-title: Core–shell microcapsules of solid lipid nanoparticles and mesoporous silica for enhanced oral delivery of curcumin publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2015.12.040 – volume: 7 start-page: 2410 year: 2019 ident: ref_20 article-title: Uptake of silica particulate drug carriers in an intestine-on-a-chip: Towards a better in vitro model of nanoparticulate carrier and mucus interactions publication-title: Biomater. Sci. doi: 10.1039/C9BM00058E – volume: 55 start-page: 430 year: 2005 ident: ref_3 article-title: Antitubercular inhaled therapy: Opportunities, progress and challenges publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dki027 – volume: 120 start-page: 447 year: 2009 ident: ref_26 article-title: Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2008.12.019 – volume: 467 start-page: 253 year: 2016 ident: ref_28 article-title: Mesoporous silica nanoparticles with controllable morphology prepared from oil-in-water emulsions publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2016.01.026 – volume: 1 start-page: 47 year: 2005 ident: ref_15 article-title: Nanosystems in drug targeting: Opportunities and challenges publication-title: Curr. Nanosci. doi: 10.2174/1573413052953110 – volume: 5 start-page: 57 year: 2009 ident: ref_45 article-title: Mesoporous Silica Nanoparticles for Reducing Hemolytic Activity Towards Mammalian Red Blood Cells publication-title: Small doi: 10.1002/smll.200800926 – volume: 17 start-page: 54 year: 2009 ident: ref_2 article-title: Staphylococcus aureus as an intracellular pathogen: The role of small colony variants publication-title: Trends Microbiol. doi: 10.1016/j.tim.2008.11.004 – volume: 141 start-page: 15 year: 1991 ident: ref_43 article-title: Cell mediated cytotoxicity against U 937 cells by human monocytes and macrophages in a modified colorimetric MTT assay: A methodological study publication-title: J. Immunol. Methods doi: 10.1016/0022-1759(91)90205-T – volume: 9 start-page: 676 year: 2012 ident: ref_32 article-title: Fiji: An open-source platform for biological-image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 114 start-page: 42 year: 2003 ident: ref_61 article-title: Intracellular survival of Staphylococcus aureus within cultured enterocytes publication-title: J. Surg. Res. doi: 10.1016/S0022-4804(03)00314-7 – volume: 12 start-page: 8030 year: 2020 ident: ref_16 article-title: PLGA-Lipid Hybrid (PLH) Microparticles Enhance the Intracellular Uptake and Antibacterial Activity of Rifampicin publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b22991 – volume: 11 start-page: 673 year: 2016 ident: ref_49 article-title: The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction publication-title: Nanomedicine (Lond) doi: 10.2217/nnm.16.5 – volume: 132 start-page: 4834 year: 2010 ident: ref_46 article-title: Impacts of Mesoporous Silica Nanoparticle Size, Pore Ordering, and Pore Integrity on Hemolytic Activity publication-title: J. Am. Chem. Soc. doi: 10.1021/ja910846q – volume: 17 start-page: 59 year: 2009 ident: ref_1 article-title: Staphylococcus aureus: New evidence for intracellular persistence publication-title: Trends Microbiol. doi: 10.1016/j.tim.2008.11.005 – volume: 145 start-page: 257 year: 2010 ident: ref_27 article-title: Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan publication-title: J. Control. Release doi: 10.1016/j.jconrel.2010.04.029 – volume: 13 start-page: 777 year: 2018 ident: ref_48 article-title: Minimum information reporting in bio–nano experimental literature publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0246-4 – volume: 56 start-page: 2535 year: 2012 ident: ref_33 article-title: Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.06049-11 – volume: 46 start-page: 1132 year: 2018 ident: ref_19 article-title: Mesoporous silica nanorods for improved oral drug absorption publication-title: Artif. Cells Nanomed. Biotechnol. doi: 10.1080/21691401.2017.1362414 – volume: 29 start-page: 9138 year: 2013 ident: ref_51 article-title: Surface and Size Effects on Cell Interaction of Gold Nanoparticles with Both Phagocytic and Nonphagocytic Cells publication-title: Langmuir doi: 10.1021/la401556k – volume: 26 start-page: 535 year: 2012 ident: ref_63 article-title: Caco-2 cells cytotoxicity of nifuroxazide derivatives with potential activity against Methicillin-resistant Staphylococcus aureus (MRSA) publication-title: Toxicol. In Vitro doi: 10.1016/j.tiv.2012.01.018 – volume: 65 start-page: 405 year: 2018 ident: ref_21 article-title: Overcoming multiple gastrointestinal barriers by bilayer modified hollow mesoporous silica nanocarriers publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.10.025 – ident: ref_14 doi: 10.3390/antibiotics8020039 – ident: ref_66 doi: 10.1021/acs.langmuir.0c00253 – volume: 12 start-page: 3823 year: 2002 ident: ref_42 article-title: Different neutral surfactant template extraction routes for synthetic hexagonal mesoporous silicas publication-title: J. Mater. Chem. doi: 10.1039/b204060c – volume: 90 start-page: 13065 year: 2018 ident: ref_30 article-title: Structure and composition of native membrane derived polymer-supported lipid bilayers publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b04110 |
SSID | ssj0000913853 |
Score | 2.2882378 |
Snippet | An urgent demand exists for the development of novel delivery systems that efficiently transport antibacterial agents across cellular membranes for the... |
SourceID | doaj swepub pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 815 |
SubjectTerms | Adsorption Antibacterial activity Antibacterial agents Antibiotics Antimicrobial agents Bacteria Caco-2 Cell membranes Colonies Control surfaces Endocytosis Fluorescence Fluorescence microscopy Fourier transforms Infection Intracellular Lipid bilayers Lipids Mesoporous silica Microbalances Microscopy Nanoparticle Nanoparticles Nitrogen Pathogens Permeability Quartz crystal microbalance Quartz crystals Rifampin Silica Silicon dioxide Small colony variants Staphylococcus aureus Staphylococcus infections Surface chemistry Surfactants Total internal reflection |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeBMoyEhwQlGT2HGSEyrVLhWiHIBKvVn22O6uujhLsz3z15lJsksjHqdIsRPFHnvmm_HkG8ZeQ26azNcqLWsrUgmVS9EMExGysVURgrSK_kY--ayOT-XHs_JsDLh1Y1rlVif2itq1QDHyg0I0paTyyNW79Y-UqkbR6epYQuMmu5UXaGvpT_H5h12MhTgv0RwN-e4CvfuDaGJLHGloCMuJJeoJ-_-GMv9MlpxQivZmaH6P3R3xIz8cBH6f3fDxAbtzjVXwIfs5iwti0YjnHNEdP_KrFeWa8tP1xlx4bqLjh3GztANPM70MhhISvA38yzKY72s6budjCR8-i2DQlx6S5jg2nPiuRdjeXnX865KCfhx1NDrfY47dI3Y6n307Ok7HOgspIJjYpKECwPE5QKxoK1NVVekyK4yopQ9lLkyJuLC2Dh1p52wGJTq2tQdRQCN85hvxmO3FNvqnjCvXFDWdLtvcSQ_KBIMKoWzwgp5oHhL2djvnGkYScqqFsdLojJCE9HUJJezNrvd6IN_4R7_3JL5dH6LM7m-0l-d6HLxWjbIgcysCWmTlPCJbFYrMFDVUBkFzwva3wtfjPu7071WXsFe7ZtyBdKxioseZpj4KNSUCrYQ9GdbK7ktEIdDfzpuEVZNVNPnUaUtcLnqWb3xh3kiRsE_Deps8MjJBLTQs-jI7ne68Bl-DbWStAbKgpcm8puqgWma2NpVT4Cw8-_8on7PbBQUUMpkWcp_tbS6v_AtEXRv7st9avwCSxzGe priority: 102 providerName: ProQuest |
Title | Enhancing the Cellular Uptake and Antibacterial Activity of Rifampicin through Encapsulation in Mesoporous Silica Nanoparticles |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32344619 https://www.proquest.com/docview/2395444087 https://www.proquest.com/docview/2396307222 https://pubmed.ncbi.nlm.nih.gov/PMC7221943 https://research.chalmers.se/publication/516805 https://doaj.org/article/696bc41b3f2846de9236f20a28c7a020 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgucAB8SawVEaCE4rWiR0_jrurlhViV2ih0t4sP2lFcSraPfPXGSfZqhEgLpwixW7k2OOZ74un3yD0xlVGkSB52UhLS-aELyEMZyFkY0UdI7M8_xv5_IKfzdmHq-Zqr9RXzgnr5YH7iTviilvHKksjOFLuAwASHmtiaumEAayTvS9RZI9MdT5YVRQCUZ_pToHXHyWT2qyOBiGwGcWgTqr_T_jy9zTJkZhoF4BmD9D9ATni437ED9GtkB6he3t6go_Rz2laZP2M9BUDrsOnYbXKWaZ4vt6abwGb5PFx2i5tr9CcH-b64hG4jfhyGc33dT5ox0PxHjxNzgCL7tPlMDSch00LgL293uDPy_y5D4N3Bto9ZNc9QfPZ9MvpWTlUWCgdwIhtGYVz8H7eAUq0wgghGk8sNVSyEJuKmgYQobQeKLT3lrgGKK0MjtZO0UCCok_RQWpTeI4w96qW-VzZVp4Fx0004AoaBRfgoFUs0LubOddukB_PVTBWGmhIXiG9v0IFervrve5lN_7S7yQv365PFsvuboAJ6eHl9b9MqECHN4uvhx280TVVDcvluEWBXu-aYe_lAxWTAsx07sPBRwLEKtCz3lZ2I6E1BaZdqQKJkRWNhjpuSctFp-8ND6wUowX62Nvb6CeDBtRCu0VXYGejN0G7IJ1VTGrnSNTMkKBzXVDNiJVGeO68dS_-x1S9RHfr_MGBsLJmh-hg--M6vAJUtrUTdFvO3k_QnZPpxafLSbcdfwF1_zvh |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V5QAcEO8aCiwSPSGrtnf9OiBUSkJLkx6gkXpbdmfXTUSwQ50KceIf8RuZsZ1Qi8etp0jx2rI9szPf7I6_j7EXEOo8cFnix5kRvoTU-piGiQhZmzQqCmkS-hp5fJwcTOT70_h0g_1cfQtDbZWrmNgEalsBrZHvRiKPJckjp68XX31SjaLd1ZWERusWR-77NyzZ6leHb9G-O1E0HJzsH_idqoAPmDqXfpECOAsWEBmZVKdpGtvACC0y6Yo4FDpGFJQZi2WjtSaAGMu4zIGIIBcucES-hCH_mhRCUAthNny3XtMhjk1Mf21_vRB5sFvqsiJONky8cS_zNQIBf0O1fzZn9ihMm7Q3vM1udXiV77UOdodtuPIuu3mJxfAe-zEop8TaUZ5xRJN8383n1NvKJ4ul_uy4Li3fK5cz0_JC08WglazgVcE_zAr9ZUHb-7yTDOKDEjTW7m2THscDY1dXWCZUFzX_OKNFRo45AYv9rqfvPptciQUesM2yKt0W44nNo4x2s01opYNEFxoDUJzjD1a-YeGxl6t3rqAjPSftjbnC4ocspC5byGM769GLluzjH-PekPnWY4iiu_mjOj9T3cOrJE8MyNCIAhFAYh0i6aSIAh1lkGoE6R7bXhlfdXGjVr-93GPP14dxxtM2ji4dvmkak2BkRmDnsYetr6zvREQC6_sw91ja86LerfaPlLNpwyqOFwxzKTw2av2td0rHPDVVMG1kfWpVOwUuA5PLTAEEhZI6cIrUSJUMTKZTm4A18Oj_T_mMXT84GY_U6PD46DG7EdFiRiD9SG6zzeX5hXuCiG9pnjbTjLNPVz2vfwGBmm9u |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamISF4QNwJDDASe0JRk9iJkweExtaysYsQMGlvxte1ojhl7YR44n_x6zgnScsiLm97qlQ7UZJzt4-_j5DnJlVV4soizkvNYm6EjSEMIxCy0iLznusCTyMfHhW7x_ztSX6yRn4uz8JgW-XSJzaO2tYG18gHGatyjvTIYuC7toh3O6NXs68xMkjhTuuSTqNVkX33_RuUb_OXezsg680sGw0_bu_GHcNAbCCMLmIvjHHWWANZkhZKCJHbRDPFSu58njKVQ0ZUagslpLU6MTmUdKUzLDMVc4lDICZw_1cEAzvBU-qjN6v1HcTbhFDY9tozViWDoEKN-GwQhPNeFGzIAv6W4f7ZqNmDM21C4OgmudHlrnSrVbZbZM2F2-T6BUTDO-THMIwRwSOcUsgs6babTrHPlR7PFuqzoypYuhUWE91iROPNTEtfQWtP30-8-jLDrX7a0QfRYTAK6vi2YY_CwKGb11Ay1Odz-mGCC44U4gMU_l1_311yfCkSuEfWQx3cA0ILW2Ul7mzr1HJnCuUVOKO8gh-oglMfkRfLby5NB4COPBxTCYUQSkhelFBENlezZy3wxz_mvUbxreYgXHfzR312KruXl0VVaMNTzTxkA4V1kFUXPktUVhqhIGGPyMZS-LLzIXP5W-Mj8mw1DNaPWzoqOPjSOKcALw1JXkTut7qyehKWMaj10yoioqdFvUftj4TJuEEYhxumFWcROWj1rXdJh0I1lmbcUPzM5dxJ40qjK15KYxIvuUqcRGZSyRNdKmELY7V5-P-3fEqugkXLg72j_UfkWobrGgmPM75B1hdn5-4xJH8L_aSxMko-XbZZ_wJIwXOh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+cellular+uptake+and+antibacterial+activity+of+rifampicin+through+encapsulation+in+mesoporous+silica+nanoparticles&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Joyce%2C+Paul&rft.au=Ulmefors%2C+Hanna&rft.au=Maghrebi%2C+Sajedehsadat&rft.au=Subramaniam%2C+Santhni&rft.date=2020-04-24&rft.issn=2079-4991&rft.eissn=2079-4991&rft.volume=10&rft.issue=4&rft_id=info:doi/10.3390%2Fnano10040815&rft.externalDocID=oai_research_chalmers_se_ce8cb948_cc0f_4a0e_9898_40b8a7d6cdbc |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon |