Organoid Modeling of the Tumor Immune Microenvironment
In vitro cancer cultures, including three-dimensional organoids, typically contain exclusively neoplastic epithelium but require artificial reconstitution to recapitulate the tumor microenvironment (TME). The co-culture of primary tumor epithelia with endogenous, syngeneic tumor-infiltrating lymphoc...
Saved in:
Published in | Cell Vol. 175; no. 7; pp. 1972 - 1988.e16 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
13.12.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0092-8674 1097-4172 1097-4172 |
DOI | 10.1016/j.cell.2018.11.021 |
Cover
Abstract | In vitro cancer cultures, including three-dimensional organoids, typically contain exclusively neoplastic epithelium but require artificial reconstitution to recapitulate the tumor microenvironment (TME). The co-culture of primary tumor epithelia with endogenous, syngeneic tumor-infiltrating lymphocytes (TILs) as a cohesive unit has been particularly elusive. Here, an air-liquid interface (ALI) method propagated patient-derived organoids (PDOs) from >100 human biopsies or mouse tumors in syngeneic immunocompetent hosts as tumor epithelia with native embedded immune cells (T, B, NK, macrophages). Robust droplet-based, single-cell simultaneous determination of gene expression and immune repertoire indicated that PDO TILs accurately preserved the original tumor T cell receptor (TCR) spectrum. Crucially, human and murine PDOs successfully modeled immune checkpoint blockade (ICB) with anti-PD-1- and/or anti-PD-L1 expanding and activating tumor antigen-specific TILs and eliciting tumor cytotoxicity. Organoid-based propagation of primary tumor epithelium en bloc with endogenous immune stroma should enable immuno-oncology investigations within the TME and facilitate personalized immunotherapy testing.
[Display omitted]
•Air-liquid interface (ALI) patient-derived tumor organoids (PDO) retain immune cells•5′ V(D)J and RNA-seq from the same single cells allows robust immune characterization•T cell receptor repertoire is highly conserved between tumor and PDO•ALI PDOs functionally recapitulate the PD-1/PD-L1-dependent immune checkpoint
The tumor-immune microenvironment is modeled using a patient-derived organoid approach that preserves the original tumor T cell receptor spectrum and successfully models immune checkpoint blockade. |
---|---|
AbstractList | In vitro cancer cultures, including 3-dimensional organoids, typically contain exclusively neoplastic epithelium but require artificial reconstitution to recapitulate the tumor microenvironment (TME). The co-culture of primary tumor epithelia with endogenous, syngeneic tumor-infiltrating lymphocytes (TILs) as a cohesive unit has been particularly elusive. Here, an air-liquid interface (ALI) method propagated Patient-Derived Organoids (PDOs) from >100 human biopsies or mouse tumors in syngeneic immunocompetent hosts as tumor epithelia with native embedded immune cells (T, B, NK, macrophages). Robust droplet-based, single cell simultaneous determination of gene expression and immune repertoire indicated that PDO TILs accurately preserved the original tumor T cell receptor (TCR) spectrum. Crucially, human and murine PDOs successfully modeled immune checkpoint blockade (ICB) with anti-PD-1- and/or anti-PD-L1 expanding and activating tumor antigen-specific TILs and eliciting tumor cytotoxicity. Organoid-based propagation of primary tumor epithelium en bloc with endogenous immune stroma should enable immunooncology investigations within the TME and facilitate personalized immunotherapy testing.
The tumor immune microenvironment is modeled using a patient-derived organoid approach that preserves the original tumor T cell receptor spectrum and successfully models immune checkpoint blockade In vitro cancer cultures, including three-dimensional organoids, typically contain exclusively neoplastic epithelium but require artificial reconstitution to recapitulate the tumor microenvironment (TME). The co-culture of primary tumor epithelia with endogenous, syngeneic tumor-infiltrating lymphocytes (TILs) as a cohesive unit has been particularly elusive. Here, an air-liquid interface (ALI) method propagated patient-derived organoids (PDOs) from >100 human biopsies or mouse tumors in syngeneic immunocompetent hosts as tumor epithelia with native embedded immune cells (T, B, NK, macrophages). Robust droplet-based, single-cell simultaneous determination of gene expression and immune repertoire indicated that PDO TILs accurately preserved the original tumor T cell receptor (TCR) spectrum. Crucially, human and murine PDOs successfully modeled immune checkpoint blockade (ICB) with anti-PD-1- and/or anti-PD-L1 expanding and activating tumor antigen-specific TILs and eliciting tumor cytotoxicity. Organoid-based propagation of primary tumor epithelium en bloc with endogenous immune stroma should enable immuno-oncology investigations within the TME and facilitate personalized immunotherapy testing. [Display omitted] •Air-liquid interface (ALI) patient-derived tumor organoids (PDO) retain immune cells•5′ V(D)J and RNA-seq from the same single cells allows robust immune characterization•T cell receptor repertoire is highly conserved between tumor and PDO•ALI PDOs functionally recapitulate the PD-1/PD-L1-dependent immune checkpoint The tumor-immune microenvironment is modeled using a patient-derived organoid approach that preserves the original tumor T cell receptor spectrum and successfully models immune checkpoint blockade. In vitro cancer cultures, including three-dimensional organoids, typically contain exclusively neoplastic epithelium but require artificial reconstitution to recapitulate the tumor microenvironment (TME). The co-culture of primary tumor epithelia with endogenous, syngeneic tumor-infiltrating lymphocytes (TILs) as a cohesive unit has been particularly elusive. Here, an air-liquid interface (ALI) method propagated patient-derived organoids (PDOs) from >100 human biopsies or mouse tumors in syngeneic immunocompetent hosts as tumor epithelia with native embedded immune cells (T, B, NK, macrophages). Robust droplet-based, single-cell simultaneous determination of gene expression and immune repertoire indicated that PDO TILs accurately preserved the original tumor T cell receptor (TCR) spectrum. Crucially, human and murine PDOs successfully modeled immune checkpoint blockade (ICB) with anti-PD-1- and/or anti-PD-L1 expanding and activating tumor antigen-specific TILs and eliciting tumor cytotoxicity. Organoid-based propagation of primary tumor epithelium en bloc with endogenous immune stroma should enable immuno-oncology investigations within the TME and facilitate personalized immunotherapy testing. In vitro cancer cultures, including three-dimensional organoids, typically contain exclusively neoplastic epithelium but require artificial reconstitution to recapitulate the tumor microenvironment (TME). The co-culture of primary tumor epithelia with endogenous, syngeneic tumor-infiltrating lymphocytes (TILs) as a cohesive unit has been particularly elusive. Here, an air-liquid interface (ALI) method propagated patient-derived organoids (PDOs) from >100 human biopsies or mouse tumors in syngeneic immunocompetent hosts as tumor epithelia with native embedded immune cells (T, B, NK, macrophages). Robust droplet-based, single-cell simultaneous determination of gene expression and immune repertoire indicated that PDO TILs accurately preserved the original tumor T cell receptor (TCR) spectrum. Crucially, human and murine PDOs successfully modeled immune checkpoint blockade (ICB) with anti-PD-1- and/or anti-PD-L1 expanding and activating tumor antigen-specific TILs and eliciting tumor cytotoxicity. Organoid-based propagation of primary tumor epithelium en bloc with endogenous immune stroma should enable immuno-oncology investigations within the TME and facilitate personalized immunotherapy testing. In vitro cancer cultures, including three-dimensional organoids, typically contain exclusively neoplastic epithelium but require artificial reconstitution to recapitulate the tumor microenvironment (TME). The co-culture of primary tumor epithelia with endogenous, syngeneic tumor-infiltrating lymphocytes (TILs) as a cohesive unit has been particularly elusive. Here, an air-liquid interface (ALI) method propagated patient-derived organoids (PDOs) from >100 human biopsies or mouse tumors in syngeneic immunocompetent hosts as tumor epithelia with native embedded immune cells (T, B, NK, macrophages). Robust droplet-based, single-cell simultaneous determination of gene expression and immune repertoire indicated that PDO TILs accurately preserved the original tumor T cell receptor (TCR) spectrum. Crucially, human and murine PDOs successfully modeled immune checkpoint blockade (ICB) with anti-PD-1- and/or anti-PD-L1 expanding and activating tumor antigen-specific TILs and eliciting tumor cytotoxicity. Organoid-based propagation of primary tumor epithelium en bloc with endogenous immune stroma should enable immuno-oncology investigations within the TME and facilitate personalized immunotherapy testing.In vitro cancer cultures, including three-dimensional organoids, typically contain exclusively neoplastic epithelium but require artificial reconstitution to recapitulate the tumor microenvironment (TME). The co-culture of primary tumor epithelia with endogenous, syngeneic tumor-infiltrating lymphocytes (TILs) as a cohesive unit has been particularly elusive. Here, an air-liquid interface (ALI) method propagated patient-derived organoids (PDOs) from >100 human biopsies or mouse tumors in syngeneic immunocompetent hosts as tumor epithelia with native embedded immune cells (T, B, NK, macrophages). Robust droplet-based, single-cell simultaneous determination of gene expression and immune repertoire indicated that PDO TILs accurately preserved the original tumor T cell receptor (TCR) spectrum. Crucially, human and murine PDOs successfully modeled immune checkpoint blockade (ICB) with anti-PD-1- and/or anti-PD-L1 expanding and activating tumor antigen-specific TILs and eliciting tumor cytotoxicity. Organoid-based propagation of primary tumor epithelium en bloc with endogenous immune stroma should enable immuno-oncology investigations within the TME and facilitate personalized immunotherapy testing. |
Author | Tseng, Yuen-Yi Grzeskowiak, Caitlin L. Sabatti, Chiara Zemek, Allison J. De La Vega, Francisco M. Ju, Jihang Mendoza-Villanueva, Daniel Alkhairy, Sahar Kunz, Pamela L. Karlsson, Kasper Neal, James T. Li, Xingnan Salahudeen, Ameen A. Metzner, Thomas J. Chiou, Shin-Heng Giangarra, Valeria Smith, Amber R. Liu, Iris H. Zhao, Fan Liao, Lillian Sunwoo, John B. Oh, Coyin Kuo, Calvin J. Deutsch, Brian C. Boehm, Jesse S. Hahn, William C. Nadauld, Lincoln D. Zheng, Grace X.Y. Liao, Joseph C. Zhu, Junjie Leppert, John T. Schultz, Liora M. Keskula, Paula Davis, Mark M. |
AuthorAffiliation | 6 Departments of Pathology, Stanford University School of Medicine, Stanford, California, USA 5 Howard Hughes Medical Institute and Department of Microbiology and immunology, Stanford University, Stanford, California, USA 9 Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA 12 Departments of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, USA 8 Departments of Urology, Stanford University School of Medicine, Stanford, California, USA 15 Current address: Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA 11 Departments of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA 13 Department of Statistics, Stanford University School of Humanities and Sciences, Stanford, California, USA 7 Department of Oncology, Stanford University School of Medicine, Stanford, California, USA 16 Equal contributions 1 Department of Medicine, Divisions of Hematology, Stanford University School of Medicine, Stanford, Califor |
AuthorAffiliation_xml | – name: 14 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA – name: 2 Department of Electrical Engineering, Stanford University School of Engineering, Stanford, California, USA – name: 4 Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, California, USA – name: 1 Department of Medicine, Divisions of Hematology, Stanford University School of Medicine, Stanford, California, USA – name: 8 Departments of Urology, Stanford University School of Medicine, Stanford, California, USA – name: 9 Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA – name: 13 Department of Statistics, Stanford University School of Humanities and Sciences, Stanford, California, USA – name: 5 Howard Hughes Medical Institute and Department of Microbiology and immunology, Stanford University, Stanford, California, USA – name: 12 Departments of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, USA – name: 15 Current address: Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA – name: 7 Department of Oncology, Stanford University School of Medicine, Stanford, California, USA – name: 17 Lead contact – name: 3 10x Genomics, Pleasanton, CA – name: 10 TOMA Biosciences, Foster City, California, USA – name: 11 Departments of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA – name: 6 Departments of Pathology, Stanford University School of Medicine, Stanford, California, USA – name: 16 Equal contributions |
Author_xml | – sequence: 1 givenname: James T. surname: Neal fullname: Neal, James T. organization: Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA – sequence: 2 givenname: Xingnan surname: Li fullname: Li, Xingnan organization: Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA – sequence: 3 givenname: Junjie surname: Zhu fullname: Zhu, Junjie organization: Department of Electrical Engineering, Stanford University School of Engineering, Stanford, CA, USA – sequence: 4 givenname: Valeria surname: Giangarra fullname: Giangarra, Valeria organization: 10x Genomics, Pleasanton, CA, USA – sequence: 5 givenname: Caitlin L. surname: Grzeskowiak fullname: Grzeskowiak, Caitlin L. organization: Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA – sequence: 6 givenname: Jihang surname: Ju fullname: Ju, Jihang organization: Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA – sequence: 7 givenname: Iris H. surname: Liu fullname: Liu, Iris H. organization: Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA – sequence: 8 givenname: Shin-Heng surname: Chiou fullname: Chiou, Shin-Heng organization: Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA – sequence: 9 givenname: Ameen A. surname: Salahudeen fullname: Salahudeen, Ameen A. organization: Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA – sequence: 10 givenname: Amber R. surname: Smith fullname: Smith, Amber R. organization: Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA – sequence: 11 givenname: Brian C. surname: Deutsch fullname: Deutsch, Brian C. organization: Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA – sequence: 12 givenname: Lillian surname: Liao fullname: Liao, Lillian organization: Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA – sequence: 13 givenname: Allison J. surname: Zemek fullname: Zemek, Allison J. organization: Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA – sequence: 14 givenname: Fan surname: Zhao fullname: Zhao, Fan organization: Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA – sequence: 15 givenname: Kasper surname: Karlsson fullname: Karlsson, Kasper organization: Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA – sequence: 16 givenname: Liora M. surname: Schultz fullname: Schultz, Liora M. organization: Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA – sequence: 17 givenname: Thomas J. surname: Metzner fullname: Metzner, Thomas J. organization: Department of Urology, Stanford University School of Medicine, Stanford, CA, USA – sequence: 18 givenname: Lincoln D. surname: Nadauld fullname: Nadauld, Lincoln D. organization: Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA – sequence: 19 givenname: Yuen-Yi surname: Tseng fullname: Tseng, Yuen-Yi organization: Broad Institute of Harvard and MIT, Cambridge, MA, USA – sequence: 20 givenname: Sahar surname: Alkhairy fullname: Alkhairy, Sahar organization: Broad Institute of Harvard and MIT, Cambridge, MA, USA – sequence: 21 givenname: Coyin surname: Oh fullname: Oh, Coyin organization: Broad Institute of Harvard and MIT, Cambridge, MA, USA – sequence: 22 givenname: Paula surname: Keskula fullname: Keskula, Paula organization: Broad Institute of Harvard and MIT, Cambridge, MA, USA – sequence: 23 givenname: Daniel surname: Mendoza-Villanueva fullname: Mendoza-Villanueva, Daniel organization: TOMA Biosciences, Foster City, CA, USA – sequence: 24 givenname: Francisco M. surname: De La Vega fullname: De La Vega, Francisco M. organization: TOMA Biosciences, Foster City, CA, USA – sequence: 25 givenname: Pamela L. surname: Kunz fullname: Kunz, Pamela L. organization: Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA – sequence: 26 givenname: Joseph C. surname: Liao fullname: Liao, Joseph C. organization: Department of Urology, Stanford University School of Medicine, Stanford, CA, USA – sequence: 27 givenname: John T. surname: Leppert fullname: Leppert, John T. organization: Department of Urology, Stanford University School of Medicine, Stanford, CA, USA – sequence: 28 givenname: John B. surname: Sunwoo fullname: Sunwoo, John B. organization: Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA, USA – sequence: 29 givenname: Chiara surname: Sabatti fullname: Sabatti, Chiara organization: Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA – sequence: 30 givenname: Jesse S. surname: Boehm fullname: Boehm, Jesse S. organization: Broad Institute of Harvard and MIT, Cambridge, MA, USA – sequence: 31 givenname: William C. surname: Hahn fullname: Hahn, William C. organization: Broad Institute of Harvard and MIT, Cambridge, MA, USA – sequence: 32 givenname: Grace X.Y. surname: Zheng fullname: Zheng, Grace X.Y. organization: 10x Genomics, Pleasanton, CA, USA – sequence: 33 givenname: Mark M. surname: Davis fullname: Davis, Mark M. organization: Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA – sequence: 34 givenname: Calvin J. surname: Kuo fullname: Kuo, Calvin J. email: cjkuo@stanford.edu organization: Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30550791$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9r3DAQxUVJSDZpvkAPxcde7M7IlixDKZTQP4GEXNKz0EqzGy22lEr2Qr59bTYNbQ8hpzno996M3jtjRyEGYuwdQoWA8uOustT3FQdUFWIFHN-wFULXlg22_IitADpeKtk2p-ws5x0AKCHECTutQQhoO1wxeZu2JkTvipvoqPdhW8RNMd5TcTcNMRVXwzAFKm68TZHC3qcYBgrjW3a8MX2mi6d5zn5--3p3-aO8vv1-dfnlurRCNGNJwtVdQ9atO-hwzWuE2tRIkjuuTGMFGeTgjBI11K2B1imwUrgNNUIJLutz9vng-zCtB3J2Xp1Mrx-SH0x61NF4_e9L8Pd6G_daSiGlameDD08GKf6aKI968HmJzQSKU9accwSoJb4CRdFKOYeIM_r-77Oe7_mT6wzwAzDHlnOizTOCoJfy9E4v1nopTyPqubxZpP4TWT-a0cfla75_WfrpIKW5jL2npLP1FCw5n8iO2kX_kvw32fOz8g |
CitedBy_id | crossref_primary_10_1016_j_tips_2019_12_003 crossref_primary_10_1016_j_mtadv_2021_100160 crossref_primary_10_1038_s41563_021_01057_5 crossref_primary_10_3389_fcell_2023_1232528 crossref_primary_10_3390_cells9020293 crossref_primary_10_15252_emmm_202013189 crossref_primary_10_5306_wjco_v15_i8_968 crossref_primary_10_1007_s44164_023_00048_x crossref_primary_10_3389_fonc_2025_1485886 crossref_primary_10_1183_16000617_0042_2023 crossref_primary_10_1021_acs_molpharmaceut_1c00452 crossref_primary_10_3390_cancers13020307 crossref_primary_10_1016_j_semcdb_2019_05_016 crossref_primary_10_1186_s12915_024_02092_9 crossref_primary_10_1038_s41586_024_07716_2 crossref_primary_10_1038_s41551_021_00805_x crossref_primary_10_3390_cancers12040987 crossref_primary_10_1016_j_jbiotec_2024_11_008 crossref_primary_10_1002_adfm_202308552 crossref_primary_10_1038_s41388_024_03112_2 crossref_primary_10_1016_j_critrevonc_2020_103190 crossref_primary_10_1080_14728222_2021_2010046 crossref_primary_10_1038_s41419_022_05525_x crossref_primary_10_1080_13543784_2021_1865308 crossref_primary_10_1038_s12276_024_01272_5 crossref_primary_10_1136_jitc_2022_006290 crossref_primary_10_1016_j_jcmgh_2021_09_005 crossref_primary_10_1016_j_isci_2020_101719 crossref_primary_10_1016_j_gendis_2023_02_052 crossref_primary_10_1172_jci_insight_181873 crossref_primary_10_1016_j_actbio_2021_06_025 crossref_primary_10_1016_j_cej_2024_158040 crossref_primary_10_1186_s12915_023_01516_2 crossref_primary_10_3390_vaccines10111963 crossref_primary_10_1038_s41598_023_38373_6 crossref_primary_10_3390_cancers13215434 crossref_primary_10_51335_organoid_2024_4_e11 crossref_primary_10_1002_adhm_202102479 crossref_primary_10_1172_JCI162870 crossref_primary_10_1016_j_addr_2022_114365 crossref_primary_10_1080_23808993_2019_1685868 crossref_primary_10_1111_cpr_70008 crossref_primary_10_1146_annurev_cancerbio_030419_033413 crossref_primary_10_1002_jcsm_12627 crossref_primary_10_1038_s41575_024_01024_w crossref_primary_10_1111_pcmr_12853 crossref_primary_10_1016_j_coemr_2020_02_005 crossref_primary_10_1038_s41467_023_39591_2 crossref_primary_10_3390_cancers14153703 crossref_primary_10_1002_anie_202317613 crossref_primary_10_3389_fonc_2022_837233 crossref_primary_10_34133_bmr_0171 crossref_primary_10_3390_cancers12123816 crossref_primary_10_1007_s10147_019_01520_z crossref_primary_10_1016_j_heliyon_2023_e21070 crossref_primary_10_1186_s13578_024_01252_2 crossref_primary_10_1126_sciadv_aay5556 crossref_primary_10_1038_s41416_019_0495_5 crossref_primary_10_1016_j_celrep_2024_115128 crossref_primary_10_2174_1574892817666220804142633 crossref_primary_10_1016_j_ccell_2021_07_020 crossref_primary_10_1038_s41388_024_03012_5 crossref_primary_10_1007_s10549_023_06973_5 crossref_primary_10_1016_j_tranon_2024_102226 crossref_primary_10_1016_j_jpha_2025_101225 crossref_primary_10_1093_pcmedi_pbac028 crossref_primary_10_1016_j_tibtech_2024_06_008 crossref_primary_10_1136_jitc_2020_001498 crossref_primary_10_3390_ijms251910823 crossref_primary_10_1016_j_addr_2021_114067 crossref_primary_10_1016_j_ccell_2024_03_001 crossref_primary_10_1007_s10911_020_09464_1 crossref_primary_10_1038_s41698_020_0117_y crossref_primary_10_1002_pros_23966 crossref_primary_10_1016_j_semcancer_2021_12_004 crossref_primary_10_1038_s41577_023_00896_4 crossref_primary_10_1016_j_tranon_2024_102238 crossref_primary_10_1038_s41587_024_02301_4 crossref_primary_10_1063_5_0057773 crossref_primary_10_1016_j_stemcr_2022_07_016 crossref_primary_10_1111_exd_14675 crossref_primary_10_3390_cells13191638 crossref_primary_10_1016_j_trecan_2022_06_001 crossref_primary_10_1016_j_semcancer_2021_05_030 crossref_primary_10_1002_mog2_87 crossref_primary_10_3390_cells11101611 crossref_primary_10_1016_j_isci_2019_11_005 crossref_primary_10_1002_adbi_202100535 crossref_primary_10_1038_s41591_024_03489_3 crossref_primary_10_3390_cancers13225682 crossref_primary_10_1016_j_bioactmat_2022_10_007 crossref_primary_10_1016_j_celrep_2021_110060 crossref_primary_10_1016_j_bios_2023_115213 crossref_primary_10_1016_j_canlet_2024_217122 crossref_primary_10_3389_fcell_2023_1166916 crossref_primary_10_1038_s41598_020_80240_1 crossref_primary_10_1016_j_tibtech_2022_03_003 crossref_primary_10_3390_jcm13061804 crossref_primary_10_3389_fcell_2024_1507388 crossref_primary_10_1038_s43018_020_0067_x crossref_primary_10_1016_j_yexcr_2020_112003 crossref_primary_10_1002_ame2_12352 crossref_primary_10_3390_ijms21082982 crossref_primary_10_1093_clinchem_hvae138 crossref_primary_10_3390_cells12081165 crossref_primary_10_1097_DCR_0000000000001971 crossref_primary_10_3389_fonc_2022_1105454 crossref_primary_10_1186_s13045_022_01278_4 crossref_primary_10_1038_s41467_023_37993_w crossref_primary_10_3389_fimmu_2024_1422031 crossref_primary_10_1002_smtd_202300685 crossref_primary_10_3390_biomedicines9091209 crossref_primary_10_1038_s43018_024_00725_0 crossref_primary_10_3390_cimb44060169 crossref_primary_10_3390_ijms22073483 crossref_primary_10_1158_2159_8290_CD_20_0962 crossref_primary_10_3390_cells12172204 crossref_primary_10_1038_s41598_023_34154_3 crossref_primary_10_1038_s41586_020_2851_2 crossref_primary_10_1016_j_semcancer_2020_08_017 crossref_primary_10_1021_acs_analchem_0c00205 crossref_primary_10_1158_0008_5472_CAN_20_1674 crossref_primary_10_1016_j_trecan_2019_09_009 crossref_primary_10_1152_ajpgi_00329_2020 crossref_primary_10_1177_15330338241285097 crossref_primary_10_1002_ijc_34931 crossref_primary_10_1007_s11306_022_01934_3 crossref_primary_10_1101_cshperspect_a041385 crossref_primary_10_3390_cancers15245779 crossref_primary_10_1002_cti2_1400 crossref_primary_10_3389_fimmu_2020_00369 crossref_primary_10_1111_xen_70010 crossref_primary_10_3390_ph18010062 crossref_primary_10_1007_s13205_021_02815_7 crossref_primary_10_1016_j_clon_2021_08_008 crossref_primary_10_1101_cshperspect_a035949 crossref_primary_10_1186_s12951_024_02936_0 crossref_primary_10_3389_fbioe_2023_1132940 crossref_primary_10_3390_cancers14041069 crossref_primary_10_3390_cancers13122972 crossref_primary_10_1158_2326_6066_CIR_23_0083 crossref_primary_10_1126_scitranslmed_aaz0152 crossref_primary_10_1016_j_cmet_2022_08_016 crossref_primary_10_3390_applbiosci2020012 crossref_primary_10_1038_s41397_022_00296_2 crossref_primary_10_1016_j_trecan_2020_02_022 crossref_primary_10_1063_5_0190840 crossref_primary_10_1093_infdis_jiad334 crossref_primary_10_1016_j_clon_2021_08_015 crossref_primary_10_3390_bios12111045 crossref_primary_10_1242_bio_059949 crossref_primary_10_1016_j_canlet_2020_02_027 crossref_primary_10_3390_cancers14153561 crossref_primary_10_3389_fonc_2021_769305 crossref_primary_10_1038_s41568_019_0108_x crossref_primary_10_1007_s13770_020_00258_4 crossref_primary_10_1016_j_immuni_2022_02_006 crossref_primary_10_1016_j_cobme_2020_03_005 crossref_primary_10_1002_cam4_5311 crossref_primary_10_1038_s41467_024_55098_w crossref_primary_10_1097_CM9_0000000000002631 crossref_primary_10_1002_adfm_202419912 crossref_primary_10_3389_fcell_2021_674219 crossref_primary_10_1016_j_jconrel_2024_03_052 crossref_primary_10_1016_j_stem_2023_05_012 crossref_primary_10_3389_fimmu_2022_970950 crossref_primary_10_3389_fonc_2022_976065 crossref_primary_10_1016_j_phrs_2022_106583 crossref_primary_10_3389_fonc_2022_893592 crossref_primary_10_1016_j_ebiom_2021_103218 crossref_primary_10_1016_j_cell_2024_02_022 crossref_primary_10_3390_cancers13071713 crossref_primary_10_1038_s41598_021_81475_2 crossref_primary_10_1038_s41467_020_16583_0 crossref_primary_10_3390_ijms25168830 crossref_primary_10_1016_j_ccell_2020_09_004 crossref_primary_10_1360_SSV_2021_0315 crossref_primary_10_1016_j_dmpk_2024_101003 crossref_primary_10_1016_j_tibtech_2020_01_003 crossref_primary_10_1186_s13046_022_02524_w crossref_primary_10_1002_mco2_274 crossref_primary_10_3389_fimmu_2020_568931 crossref_primary_10_3390_biomedicines11041058 crossref_primary_10_1051_medsci_2022148 crossref_primary_10_3389_fcell_2020_606039 crossref_primary_10_1016_j_trsl_2022_08_003 crossref_primary_10_1016_j_oraloncology_2023_106330 crossref_primary_10_1016_j_addr_2021_05_001 crossref_primary_10_3389_fmolb_2024_1382070 crossref_primary_10_3389_fgene_2022_939956 crossref_primary_10_3389_fonc_2021_736431 crossref_primary_10_1038_s41423_023_01120_y crossref_primary_10_1016_j_intimp_2020_107080 crossref_primary_10_1038_s41378_024_00756_8 crossref_primary_10_1038_s41598_019_40809_x crossref_primary_10_51335_organoid_2021_1_e13 crossref_primary_10_1016_j_clon_2019_12_009 crossref_primary_10_1038_s41540_024_00344_6 crossref_primary_10_1016_j_crmeth_2024_100909 crossref_primary_10_1007_s12015_019_09909_z crossref_primary_10_3390_cancers14041091 crossref_primary_10_3389_fimmu_2022_770465 crossref_primary_10_1038_s41467_023_43746_6 crossref_primary_10_1002_advs_202301565 crossref_primary_10_1007_s00262_021_02897_5 crossref_primary_10_3389_fonc_2021_738626 crossref_primary_10_1210_endocr_bqae016 crossref_primary_10_1016_j_cell_2019_11_036 crossref_primary_10_32604_or_2024_053635 crossref_primary_10_3389_fimmu_2020_603640 crossref_primary_10_3390_cancers14153758 crossref_primary_10_1038_s41420_023_01354_9 crossref_primary_10_1038_s41388_021_01723_7 crossref_primary_10_1016_j_canlet_2024_216664 crossref_primary_10_3389_fcell_2021_694261 crossref_primary_10_1016_j_gde_2020_12_003 crossref_primary_10_1016_j_vaccine_2019_11_035 crossref_primary_10_3390_cancers15092536 crossref_primary_10_3390_ijms25021093 crossref_primary_10_3389_fcell_2024_1432744 crossref_primary_10_1126_scitranslmed_aay2574 crossref_primary_10_3389_fimmu_2022_807696 crossref_primary_10_3390_cancers12071875 crossref_primary_10_1002_advs_202302640 crossref_primary_10_3390_genes15121624 crossref_primary_10_4103_eus_eus_79_20 crossref_primary_10_1016_j_biopha_2022_112869 crossref_primary_10_3390_life13061360 crossref_primary_10_1007_s12032_020_01429_y crossref_primary_10_1126_sciadv_adg6686 crossref_primary_10_3390_cancers13235873 crossref_primary_10_1016_j_dmpk_2024_101046 crossref_primary_10_1016_j_isci_2021_102475 crossref_primary_10_1038_s41419_019_1453_0 crossref_primary_10_1038_s41467_024_47737_z crossref_primary_10_1016_j_biotechadv_2019_107460 crossref_primary_10_3390_ijms24098037 crossref_primary_10_1016_j_stem_2022_05_002 crossref_primary_10_1111_den_14648 crossref_primary_10_1007_s13402_023_00802_z crossref_primary_10_1002_cti2_1248 crossref_primary_10_1038_s42003_024_06812_3 crossref_primary_10_1038_s41563_020_0754_0 crossref_primary_10_1002_EXP_20230126 crossref_primary_10_1002_cai2_101 crossref_primary_10_1016_j_addr_2023_115075 crossref_primary_10_3389_fcell_2020_00166 crossref_primary_10_1016_j_celrep_2023_113355 crossref_primary_10_3389_fonc_2021_719355 crossref_primary_10_1016_j_trecan_2020_07_007 crossref_primary_10_1186_s13046_025_03332_8 crossref_primary_10_15252_msb_202211017 crossref_primary_10_3390_ijms25105414 crossref_primary_10_1021_acs_analchem_3c05085 crossref_primary_10_1038_s41467_023_41811_8 crossref_primary_10_3389_fgene_2020_00607 crossref_primary_10_3390_cells8060525 crossref_primary_10_1111_jcmm_16578 crossref_primary_10_3390_cells9122649 crossref_primary_10_1038_s41596_019_0195_x crossref_primary_10_1088_1758_5090_ad3e30 crossref_primary_10_1007_s43657_023_00111_3 crossref_primary_10_1186_s12935_024_03225_4 crossref_primary_10_1002_adhm_202202422 crossref_primary_10_3389_fonc_2022_889686 crossref_primary_10_1002_mco2_697 crossref_primary_10_1186_s13045_019_0832_4 crossref_primary_10_3390_cancers15113036 crossref_primary_10_1016_j_jmb_2019_05_031 crossref_primary_10_1186_s13048_023_01225_y crossref_primary_10_1016_j_stem_2019_05_006 crossref_primary_10_1016_j_semcancer_2022_01_003 crossref_primary_10_1039_D0LC00801J crossref_primary_10_1038_s41416_020_0942_3 crossref_primary_10_1016_j_crmeth_2024_100866 crossref_primary_10_1186_s12885_023_11434_9 crossref_primary_10_1089_scd_2024_0132 crossref_primary_10_3390_ijms24087116 crossref_primary_10_3390_cancers11121889 crossref_primary_10_3390_biomedicines11030890 crossref_primary_10_1186_s40824_023_00445_z crossref_primary_10_1016_j_actbio_2021_03_002 crossref_primary_10_1016_j_jgg_2021_06_010 crossref_primary_10_1038_s41467_020_19058_4 crossref_primary_10_3390_ijms20236094 crossref_primary_10_1016_j_canlet_2019_04_005 crossref_primary_10_1093_gpbjnl_qzae036 crossref_primary_10_1016_j_addr_2020_10_009 crossref_primary_10_3390_mi10070481 crossref_primary_10_1097_HC9_0000000000000105 crossref_primary_10_1158_2159_8290_CD_18_1522 crossref_primary_10_3390_cancers12092520 crossref_primary_10_1136_jitc_2022_005660 crossref_primary_10_1093_humupd_dmaa017 crossref_primary_10_3390_biomedicines12020397 crossref_primary_10_1002_cac2_12416 crossref_primary_10_62347_VCCZ1477 crossref_primary_10_26508_lsa_202403053 crossref_primary_10_1021_acsbiomaterials_0c01801 crossref_primary_10_34133_bmef_0022 crossref_primary_10_1038_s41423_019_0214_4 crossref_primary_10_3389_fonc_2020_588530 crossref_primary_10_1002_mco2_437 crossref_primary_10_1002_adma_202414882 crossref_primary_10_1016_j_pbiomolbio_2021_08_003 crossref_primary_10_1002_mco2_433 crossref_primary_10_1016_j_bprint_2023_e00316 crossref_primary_10_1158_1078_0432_CCR_19_1376 crossref_primary_10_1038_s41578_019_0129_9 crossref_primary_10_1152_ajpcell_00120_2020 crossref_primary_10_1080_14728222_2020_1826929 crossref_primary_10_1038_s41378_020_0164_0 crossref_primary_10_1038_s41427_024_00560_w crossref_primary_10_1016_j_canlet_2024_216964 crossref_primary_10_3390_cancers12102727 crossref_primary_10_1002_gcc_23233 crossref_primary_10_3389_or_2024_1434981 crossref_primary_10_1002_cac2_12224 crossref_primary_10_1093_stmcls_sxae070 crossref_primary_10_1002_ctm2_883 crossref_primary_10_1016_j_stem_2022_04_006 crossref_primary_10_1016_j_apsb_2023_09_015 crossref_primary_10_1016_j_biomaterials_2021_121276 crossref_primary_10_1016_j_copbio_2020_05_002 crossref_primary_10_1038_s41580_020_0259_3 crossref_primary_10_3389_fimmu_2020_573562 crossref_primary_10_1016_j_crfs_2022_11_021 crossref_primary_10_1111_apt_17049 crossref_primary_10_1186_s12943_021_01426_3 crossref_primary_10_1016_j_atherosclerosis_2024_118529 crossref_primary_10_1016_j_bbcan_2020_188378 crossref_primary_10_2174_0929867327999200820124111 crossref_primary_10_1088_1758_5090_ad2534 crossref_primary_10_1016_j_tibtech_2020_04_006 crossref_primary_10_1016_j_stem_2019_05_016 crossref_primary_10_3390_cancers13143417 crossref_primary_10_3389_fcell_2022_845401 crossref_primary_10_3389_fcell_2024_1401504 crossref_primary_10_3389_fonc_2024_1448089 crossref_primary_10_1038_s41571_022_00682_6 crossref_primary_10_7554_eLife_69703 crossref_primary_10_1038_s41563_024_01908_x crossref_primary_10_3389_fonc_2023_1164535 crossref_primary_10_3389_fimmu_2024_1379613 crossref_primary_10_1016_j_xphs_2024_06_016 crossref_primary_10_1007_s13577_021_00642_9 crossref_primary_10_3389_fimmu_2022_973881 crossref_primary_10_1158_0008_5472_CAN_20_4026 crossref_primary_10_1126_science_aaw2367 crossref_primary_10_1016_j_ejphar_2025_177368 crossref_primary_10_1101_cshperspect_a041682 crossref_primary_10_3389_fbioe_2022_1066869 crossref_primary_10_1016_j_drudis_2020_11_028 crossref_primary_10_1016_j_semcancer_2022_02_019 crossref_primary_10_3390_cancers15030805 crossref_primary_10_1038_s43018_021_00325_2 crossref_primary_10_3390_cancers13040874 crossref_primary_10_1242_dmm_048801 crossref_primary_10_7554_eLife_52253 crossref_primary_10_1007_s13402_023_00771_3 crossref_primary_10_3389_fmed_2022_934974 crossref_primary_10_1016_j_ejca_2020_11_014 crossref_primary_10_1186_s12890_023_02809_6 crossref_primary_10_1016_j_canlet_2019_04_039 crossref_primary_10_1096_fj_201902143R crossref_primary_10_1016_j_biomaterials_2019_119265 crossref_primary_10_1136_jitc_2023_007716 crossref_primary_10_1038_s44318_024_00319_7 crossref_primary_10_1186_s12957_022_02878_7 crossref_primary_10_1111_pcmr_13078 crossref_primary_10_1186_s13619_021_00103_6 crossref_primary_10_3390_cancers12123863 crossref_primary_10_1097_MPA_0000000000002084 crossref_primary_10_3389_fimmu_2023_1237565 crossref_primary_10_3390_immuno4040020 crossref_primary_10_1002_path_5684 crossref_primary_10_3892_ol_2023_14071 crossref_primary_10_1038_s44321_025_00193_8 crossref_primary_10_3389_fonc_2024_1429919 crossref_primary_10_3390_jpm11050423 crossref_primary_10_1007_s00249_021_01551_3 crossref_primary_10_1186_s40246_021_00338_z crossref_primary_10_1038_s43586_022_00174_y crossref_primary_10_1038_s41573_021_00301_6 crossref_primary_10_1053_j_gastro_2024_10_045 crossref_primary_10_3389_fimmu_2024_1290504 crossref_primary_10_1080_17460441_2023_2194627 crossref_primary_10_1002_advs_202201478 crossref_primary_10_1038_s41523_021_00269_x crossref_primary_10_1007_s00432_023_05415_5 crossref_primary_10_1002_wsbm_1585 crossref_primary_10_1016_j_bcp_2023_115589 crossref_primary_10_3390_cancers14133051 crossref_primary_10_3390_cells13201726 crossref_primary_10_1016_j_mtbio_2023_100724 crossref_primary_10_1186_s13619_021_00082_8 crossref_primary_10_2174_1574892816666210728115605 crossref_primary_10_3724_abbs_2023224 crossref_primary_10_1111_febs_15788 crossref_primary_10_1002_smll_202107305 crossref_primary_10_1016_j_ejcb_2025_151478 crossref_primary_10_1002_adhm_202202279 crossref_primary_10_1056_NEJMc1903253 crossref_primary_10_1063_5_0216185 crossref_primary_10_1016_j_pharmthera_2019_107398 crossref_primary_10_1186_s12964_023_01332_9 crossref_primary_10_1245_s10434_021_10829_x crossref_primary_10_1016_j_trecan_2019_02_003 crossref_primary_10_1177_2472555220915827 crossref_primary_10_32604_or_2024_050851 crossref_primary_10_1038_s41598_020_80881_2 crossref_primary_10_1038_s41420_023_01428_8 crossref_primary_10_1111_cns_14272 crossref_primary_10_1002_advs_202405084 crossref_primary_10_3390_cancers14092062 crossref_primary_10_1016_j_jncc_2022_10_001 crossref_primary_10_1158_1535_7163_MCT_19_0776 crossref_primary_10_3390_ijms22147667 crossref_primary_10_1016_j_actbio_2021_03_076 crossref_primary_10_1186_s12935_022_02698_5 crossref_primary_10_1016_j_it_2022_01_003 crossref_primary_10_1038_s41568_019_0168_y crossref_primary_10_1155_2022_5794150 crossref_primary_10_1038_s41698_024_00661_3 crossref_primary_10_1038_s41467_021_26081_6 crossref_primary_10_3389_fonc_2023_1122322 crossref_primary_10_3390_cancers17030406 crossref_primary_10_3390_cancers17040692 crossref_primary_10_3389_fcell_2022_887693 crossref_primary_10_1089_ten_tec_2020_0300 crossref_primary_10_3389_fonc_2021_641980 crossref_primary_10_1016_j_isci_2020_101851 crossref_primary_10_1007_s00262_020_02828_w crossref_primary_10_1038_s41467_024_47423_0 crossref_primary_10_3389_fonc_2021_762184 crossref_primary_10_1038_s41598_020_69488_9 crossref_primary_10_1038_s41422_022_00614_0 crossref_primary_10_1038_s41421_022_00500_4 crossref_primary_10_17816_onco516562 crossref_primary_10_3390_cancers13030422 crossref_primary_10_2147_CMAR_S311548 crossref_primary_10_3389_fcell_2024_1460544 crossref_primary_10_3389_fimmu_2022_1068091 crossref_primary_10_1007_s00109_020_01990_z crossref_primary_10_1186_s40580_021_00261_y crossref_primary_10_1038_s41598_022_20096_9 crossref_primary_10_1038_s41588_020_0668_4 crossref_primary_10_1016_j_celrep_2021_109351 crossref_primary_10_3389_fonc_2022_1072774 crossref_primary_10_1038_s41388_023_02776_6 crossref_primary_10_3390_futurepharmacol3010015 crossref_primary_10_3390_cells10040831 crossref_primary_10_3390_cancers13112551 crossref_primary_10_3390_cancers13194812 crossref_primary_10_1186_s12935_021_02219_w crossref_primary_10_3390_cancers12123695 crossref_primary_10_15252_embj_2019101654 crossref_primary_10_3389_fonc_2021_700972 crossref_primary_10_1016_j_isci_2020_101408 crossref_primary_10_1186_s43556_023_00165_9 crossref_primary_10_5483_BMBRep_2022_0155 crossref_primary_10_1016_j_imlet_2022_04_008 crossref_primary_10_3390_cancers13236052 crossref_primary_10_3390_ijms23063154 crossref_primary_10_1016_j_taap_2024_116960 crossref_primary_10_1007_s10565_022_09698_1 crossref_primary_10_1152_ajpcell_00300_2017 crossref_primary_10_1155_2019_8071842 crossref_primary_10_3390_cancers13030440 crossref_primary_10_1016_j_ebiom_2020_102786 crossref_primary_10_1016_j_onano_2023_100134 crossref_primary_10_3389_fimmu_2021_698604 crossref_primary_10_1186_s13046_024_03192_8 crossref_primary_10_1038_s41419_023_06133_z crossref_primary_10_3390_cancers13194991 crossref_primary_10_3389_fonc_2022_871252 crossref_primary_10_1126_sciadv_adk4670 crossref_primary_10_3390_ijms25147623 crossref_primary_10_1093_jnci_djae249 crossref_primary_10_1242_dev_166173 crossref_primary_10_3389_fonc_2023_1293441 crossref_primary_10_1016_j_jid_2020_03_943 crossref_primary_10_1016_j_prp_2024_155231 crossref_primary_10_3171_2020_11_FOCUS20853 crossref_primary_10_1186_s12885_023_11362_8 crossref_primary_10_1016_j_yasu_2021_05_015 crossref_primary_10_3390_cancers13112657 crossref_primary_10_3390_cancers13051179 crossref_primary_10_1002_anbr_202000066 crossref_primary_10_1016_j_slast_2024_100219 crossref_primary_10_51335_organoid_2021_1_e6 crossref_primary_10_1016_j_mattod_2025_02_002 crossref_primary_10_1016_j_trecan_2023_09_011 crossref_primary_10_1016_j_ccr_2024_216109 crossref_primary_10_62347_BQFH7352 crossref_primary_10_1111_imr_12848 crossref_primary_10_1016_j_isci_2021_102179 crossref_primary_10_1038_s41392_020_00377_3 crossref_primary_10_1016_j_biomaterials_2024_122838 crossref_primary_10_1186_s13046_021_01917_7 crossref_primary_10_1002_path_6382 crossref_primary_10_1016_j_immuno_2022_100009 crossref_primary_10_1186_s40364_022_00421_0 crossref_primary_10_1186_s13059_020_01995_4 crossref_primary_10_3390_cancers11070893 crossref_primary_10_1097_DCR_0000000000001806 crossref_primary_10_2147_OTT_S237431 crossref_primary_10_1186_s13046_021_01970_2 crossref_primary_10_1152_physrev_00048_2019 crossref_primary_10_3390_ijms241914609 crossref_primary_10_1002_adhm_202201907 crossref_primary_10_1007_s12015_024_10706_6 crossref_primary_10_3389_fimmu_2022_902060 crossref_primary_10_3390_ijms20112766 crossref_primary_10_1158_0008_5472_CAN_21_4029 crossref_primary_10_3390_ijms21218324 crossref_primary_10_1186_s12957_023_03231_2 crossref_primary_10_3390_cancers13194979 crossref_primary_10_1038_s41467_024_51909_2 crossref_primary_10_3390_ijms24086949 crossref_primary_10_1101_cshperspect_a037820 crossref_primary_10_1007_s11605_022_05568_7 crossref_primary_10_1186_s13045_020_00931_0 crossref_primary_10_3390_cimb46060346 crossref_primary_10_3389_fonc_2023_1239957 crossref_primary_10_3390_ijms23010216 crossref_primary_10_1016_j_bulcan_2021_09_019 crossref_primary_10_1002_lio2_388 crossref_primary_10_1093_cei_uxae004 crossref_primary_10_1038_s41596_019_0232_9 crossref_primary_10_3389_fcell_2021_740574 crossref_primary_10_1038_s41435_023_00217_8 crossref_primary_10_3390_biomedicines11092359 crossref_primary_10_1002_advs_202002030 crossref_primary_10_1146_annurev_bioeng_110220_123503 crossref_primary_10_1038_s41577_019_0248_y crossref_primary_10_1186_s13619_020_00059_z crossref_primary_10_1016_j_gde_2019_02_002 crossref_primary_10_1016_j_xcrm_2024_101777 crossref_primary_10_1016_j_euf_2022_07_006 crossref_primary_10_1016_j_jcis_2024_07_010 crossref_primary_10_1177_15330338231221856 crossref_primary_10_3389_fonc_2022_872531 crossref_primary_10_1016_j_xcrm_2020_100161 crossref_primary_10_3390_cancers14184394 crossref_primary_10_1097_GOX_0000000000002787 crossref_primary_10_1016_j_bbcan_2024_189190 crossref_primary_10_1360_SSV_2021_0294 crossref_primary_10_1073_pnas_2016168118 crossref_primary_10_1002_cso2_1043 crossref_primary_10_1016_j_bbcan_2024_189199 crossref_primary_10_1038_s41385_022_00532_9 crossref_primary_10_1007_s12274_021_3946_2 crossref_primary_10_1177_10668969231211338 crossref_primary_10_1186_s13046_023_02653_w crossref_primary_10_1093_bib_bbab312 crossref_primary_10_1186_s13046_022_02486_z crossref_primary_10_3390_biomedicines13020523 crossref_primary_10_3390_cancers13225788 crossref_primary_10_1038_s41587_019_0206_z crossref_primary_10_3389_fonc_2022_850732 crossref_primary_10_1007_s42242_023_00247_1 crossref_primary_10_1038_s41587_024_02335_8 crossref_primary_10_3389_fonc_2021_682872 crossref_primary_10_1038_s41388_021_01897_0 crossref_primary_10_1242_dmm_050319 crossref_primary_10_1016_j_pharmthera_2022_108276 crossref_primary_10_3390_ijms21207621 crossref_primary_10_1146_annurev_cancerbio_061421_040659 crossref_primary_10_1158_0008_5472_CAN_19_1166 crossref_primary_10_3389_fcell_2024_1384450 crossref_primary_10_1016_j_cell_2023_03_016 crossref_primary_10_1007_s10549_021_06431_0 crossref_primary_10_3390_cells14060457 crossref_primary_10_1016_j_berh_2022_101742 crossref_primary_10_1016_j_compbiomed_2022_105889 crossref_primary_10_3390_organoids2030011 crossref_primary_10_3389_fimmu_2022_1061388 crossref_primary_10_3390_cells12071001 crossref_primary_10_1002_adbi_201900188 crossref_primary_10_1080_15384047_2020_1738907 crossref_primary_10_1186_s12943_023_01916_6 crossref_primary_10_1186_s13045_021_01103_4 crossref_primary_10_1007_s00125_020_05126_3 crossref_primary_10_1039_C9SM00626E crossref_primary_10_1136_gutjnl_2021_326560 crossref_primary_10_1016_j_hlife_2024_05_002 crossref_primary_10_3390_curroncol30060428 crossref_primary_10_1088_1758_5090_acd1b8 crossref_primary_10_1038_s41568_024_00706_6 crossref_primary_10_1186_s12957_022_02510_8 crossref_primary_10_3389_fceng_2023_1120348 crossref_primary_10_1080_10428194_2021_1927019 crossref_primary_10_3390_cancers13184511 crossref_primary_10_1016_j_trecan_2024_11_011 crossref_primary_10_1016_j_gde_2019_02_007 crossref_primary_10_1016_j_jma_2024_11_014 crossref_primary_10_1038_s41467_024_52394_3 crossref_primary_10_3390_cancers14092144 crossref_primary_10_3390_cancers15184601 crossref_primary_10_1093_jmcb_mjaa035 crossref_primary_10_1038_s41388_020_1234_3 crossref_primary_10_1093_cei_uxad118 crossref_primary_10_1093_jmcb_mjaa031 crossref_primary_10_3389_fphar_2024_1438067 crossref_primary_10_1186_s40779_022_00434_8 crossref_primary_10_1126_science_aaw6985 crossref_primary_10_1186_s40779_023_00475_7 crossref_primary_10_1007_s12035_024_04406_y crossref_primary_10_1038_s44222_024_00268_0 crossref_primary_10_3892_ijo_2022_5342 crossref_primary_10_1002_ange_202317613 crossref_primary_10_3390_cancers12102800 crossref_primary_10_1186_s40364_021_00313_9 crossref_primary_10_1186_s12943_023_01844_5 crossref_primary_10_1038_s41467_021_22676_1 crossref_primary_10_1093_lifemedi_lnae016 crossref_primary_10_1155_2022_6497241 crossref_primary_10_1136_jitc_2021_003487 crossref_primary_10_1002_advs_202300548 crossref_primary_10_1016_j_drudis_2020_11_030 crossref_primary_10_1016_j_jep_2025_119447 crossref_primary_10_3389_fcell_2021_787249 crossref_primary_10_1080_1744666X_2024_2336583 crossref_primary_10_1177_20417314241255470 crossref_primary_10_3390_pharmaceutics16081042 crossref_primary_10_1186_s12935_024_03628_3 crossref_primary_10_3389_fcell_2023_1125405 crossref_primary_10_1055_s_0043_1777761 crossref_primary_10_1158_2159_8290_CD_21_0234 crossref_primary_10_1016_j_actbio_2020_02_006 crossref_primary_10_1136_jitc_2021_003213 crossref_primary_10_1088_1758_5090_acb1db crossref_primary_10_1002_adbi_202200264 crossref_primary_10_1038_s41598_022_09508_y crossref_primary_10_1186_s13045_022_01242_2 crossref_primary_10_3390_organoids2010003 crossref_primary_10_1055_s_0040_1719176 crossref_primary_10_1002_advs_202400185 crossref_primary_10_3389_fimmu_2022_884185 crossref_primary_10_1002_cam4_6521 crossref_primary_10_1016_S2665_9913_23_00190_X crossref_primary_10_3390_cells9040832 crossref_primary_10_1016_j_stem_2019_12_003 crossref_primary_10_1038_s41586_020_2099_x crossref_primary_10_3390_cancers14194581 crossref_primary_10_3389_fcell_2021_700482 crossref_primary_10_1038_s41592_020_0737_8 crossref_primary_10_1016_j_tibtech_2021_03_009 crossref_primary_10_1042_BST20190569 crossref_primary_10_1038_s41591_021_01398_3 crossref_primary_10_1038_s43018_020_0102_y crossref_primary_10_1002_path_5915 crossref_primary_10_1136_thoraxjnl_2020_216602 crossref_primary_10_1016_j_canlet_2021_03_017 crossref_primary_10_1039_C9LC00811J crossref_primary_10_1002_ctm2_1656 crossref_primary_10_1200_EDBK_280579 crossref_primary_10_1186_s13578_022_00866_8 crossref_primary_10_1016_j_molmed_2023_01_002 crossref_primary_10_3389_fimmu_2023_1105244 crossref_primary_10_3390_cancers15245859 crossref_primary_10_1016_j_crmeth_2024_100800 crossref_primary_10_1016_j_trecan_2024_06_009 crossref_primary_10_1186_s13046_023_02622_3 crossref_primary_10_1016_j_lfs_2021_119307 crossref_primary_10_1016_j_esmoop_2023_101642 crossref_primary_10_1016_j_tips_2022_08_009 crossref_primary_10_1080_19490976_2024_2353399 crossref_primary_10_1038_s41467_021_24545_3 crossref_primary_10_1360_TB_2022_1027 crossref_primary_10_1016_j_mtbio_2024_101438 crossref_primary_10_3389_fonc_2020_01775 crossref_primary_10_1146_annurev_cancerbio_043020_125955 crossref_primary_10_1016_j_celrep_2023_113424 crossref_primary_10_3390_cells10113012 crossref_primary_10_1021_acsptsci_3c00304 crossref_primary_10_1371_journal_ppat_1008851 crossref_primary_10_3390_ani12182461 crossref_primary_10_1002_adma_202300977 crossref_primary_10_3892_ijo_2022_5378 crossref_primary_10_1158_2326_6066_CIR_23_1011 crossref_primary_10_1186_s13287_024_04128_x crossref_primary_10_1002_VIW_20240074 crossref_primary_10_1080_14728222_2022_2077188 crossref_primary_10_1039_D2LC00493C crossref_primary_10_1016_j_celrep_2023_113420 crossref_primary_10_1038_s41556_022_00969_x crossref_primary_10_1016_j_xcrm_2023_101042 crossref_primary_10_15252_embj_2019104013 crossref_primary_10_1186_s40001_023_01195_3 crossref_primary_10_3390_cancers13010056 crossref_primary_10_1186_s13578_023_01136_x crossref_primary_10_1089_ten_tea_2020_0184 crossref_primary_10_1016_j_cbpa_2020_01_002 crossref_primary_10_51335_organoid_2022_2_e18 crossref_primary_10_1186_s13046_021_01981_z crossref_primary_10_1016_j_xcrm_2023_101277 crossref_primary_10_2217_3dp_2021_0006 crossref_primary_10_2174_1871530323666230411100121 crossref_primary_10_3389_fimmu_2023_1175503 crossref_primary_10_3390_cells10030488 crossref_primary_10_1038_s41580_023_00615_w crossref_primary_10_1093_burnst_tkae003 crossref_primary_10_1016_j_devcel_2025_01_005 crossref_primary_10_1080_13880209_2025_2458149 crossref_primary_10_1136_jitc_2021_003667 crossref_primary_10_1186_s12967_020_02677_2 crossref_primary_10_1016_j_oraloncology_2022_106186 crossref_primary_10_3389_fimmu_2024_1413858 crossref_primary_10_1016_j_soc_2023_12_022 crossref_primary_10_1152_ajpgi_00203_2024 crossref_primary_10_3390_cancers11121972 crossref_primary_10_51335_organoid_2023_3_e2 crossref_primary_10_51335_organoid_2022_2_e22 crossref_primary_10_1016_j_xinn_2024_100620 crossref_primary_10_1007_s11912_021_01043_9 crossref_primary_10_1016_j_ebiom_2023_104614 crossref_primary_10_3390_cancers16111965 crossref_primary_10_3390_organoids1020012 crossref_primary_10_1038_s41575_019_0255_2 crossref_primary_10_3389_fimmu_2022_1021067 crossref_primary_10_1016_j_ebiom_2020_102828 crossref_primary_10_1016_j_euf_2024_08_008 crossref_primary_10_1158_2159_8290_CD_20_0493 crossref_primary_10_1080_21655979_2021_1956402 crossref_primary_10_3390_cancers13153760 crossref_primary_10_3892_or_2021_8177 crossref_primary_10_1039_D4LC00016A crossref_primary_10_3389_frlct_2024_1420233 crossref_primary_10_1038_s41586_020_3014_1 crossref_primary_10_1038_s42003_021_02233_8 crossref_primary_10_1038_s41589_022_01048_w crossref_primary_10_1021_acssensors_2c02381 crossref_primary_10_1002_smtd_202100111 crossref_primary_10_1007_s12015_024_10733_3 crossref_primary_10_3389_fimmu_2021_755304 crossref_primary_10_1016_j_yexcr_2023_113538 crossref_primary_10_1002_cam4_5943 crossref_primary_10_1016_j_iotech_2022_100071 crossref_primary_10_3390_ijms25021066 crossref_primary_10_1002_admt_202201942 crossref_primary_10_1002_mco2_574 crossref_primary_10_1126_sciadv_adm9071 crossref_primary_10_1515_nanoph_2021_0304 crossref_primary_10_3390_cancers13040737 crossref_primary_10_7554_eLife_82998 crossref_primary_10_1002_advs_202105810 crossref_primary_10_1089_ten_tea_2019_0278 crossref_primary_10_1080_2162402X_2021_1906500 crossref_primary_10_3390_cancers14122895 crossref_primary_10_1136_gutjnl_2019_318930 crossref_primary_10_3389_fimmu_2020_577869 crossref_primary_10_3389_fonc_2023_1253573 crossref_primary_10_1186_s12859_023_05241_z crossref_primary_10_3390_cells10020265 crossref_primary_10_1021_acsnano_3c10811 crossref_primary_10_1016_j_gendis_2021_01_003 crossref_primary_10_1002_cac2_12529 crossref_primary_10_1038_s41592_021_01201_8 crossref_primary_10_1097_CU9_0000000000000263 crossref_primary_10_3389_fgene_2021_684281 crossref_primary_10_3390_cancers13040701 crossref_primary_10_1016_j_bioactmat_2024_09_008 crossref_primary_10_3892_ol_2023_13914 crossref_primary_10_1063_5_0053792 crossref_primary_10_1016_j_lfs_2024_123300 crossref_primary_10_1016_j_celrep_2021_109429 crossref_primary_10_1158_0008_5472_CAN_21_1443 crossref_primary_10_1186_s41232_023_00261_x crossref_primary_10_1186_s12943_023_01737_7 crossref_primary_10_1016_j_addr_2024_115485 crossref_primary_10_1038_s41577_021_00534_x crossref_primary_10_1007_s12072_021_10237_z crossref_primary_10_1016_j_bbcan_2021_188527 crossref_primary_10_1038_s41598_023_34324_3 crossref_primary_10_1007_s11864_020_00737_9 crossref_primary_10_61958_NCBK6263 crossref_primary_10_2478_raon_2020_0025 crossref_primary_10_1016_j_gde_2024_102227 crossref_primary_10_3390_organoids1010008 crossref_primary_10_1016_j_semcancer_2024_12_003 crossref_primary_10_1038_s41575_022_00586_x crossref_primary_10_3390_cells13161312 crossref_primary_10_1002_cac2_12597 crossref_primary_10_1002_ctm2_1802 crossref_primary_10_1038_s44276_025_00128_3 crossref_primary_10_1371_journal_pone_0283044 crossref_primary_10_1016_S0140_6736_20_30540_7 crossref_primary_10_3390_jpm13111575 crossref_primary_10_1016_j_jsbmb_2023_106350 crossref_primary_10_1002_adfm_202201306 crossref_primary_10_1186_s13046_024_03173_x crossref_primary_10_3390_cancers14215416 crossref_primary_10_1016_j_tim_2020_01_001 crossref_primary_10_1016_j_trecan_2019_12_005 crossref_primary_10_1097_PPO_0000000000000609 crossref_primary_10_1186_s12943_024_01952_w crossref_primary_10_1016_j_tibtech_2023_11_006 crossref_primary_10_3390_ijms24087047 crossref_primary_10_1016_j_colsurfb_2024_114435 crossref_primary_10_1515_mr_2022_0028 crossref_primary_10_1002_ctm2_308 crossref_primary_10_1080_23808993_2020_1831910 crossref_primary_10_1016_j_stem_2024_03_008 crossref_primary_10_3390_cancers13235910 crossref_primary_10_3390_biomedicines12071624 crossref_primary_10_1002_orm2_12 crossref_primary_10_1002_wnan_1892 crossref_primary_10_1007_s11626_021_00548_8 crossref_primary_10_3390_cancers16213664 crossref_primary_10_1016_j_biopha_2022_114098 crossref_primary_10_3389_fonc_2022_855996 crossref_primary_10_3389_fonc_2022_888416 crossref_primary_10_3389_frmbi_2024_1411322 crossref_primary_10_1016_S2468_1253_22_00235_7 crossref_primary_10_3390_cancers12010104 crossref_primary_10_1002_cpz1_431 crossref_primary_10_1016_j_isci_2020_101365 crossref_primary_10_1002_mc_23447 crossref_primary_10_1016_j_jhepr_2020_100198 crossref_primary_10_2174_1874467215666220803125822 crossref_primary_10_1016_j_jncc_2024_06_002 crossref_primary_10_3389_fbioe_2023_1205157 crossref_primary_10_1016_j_pharmthera_2023_108347 crossref_primary_10_3389_fonc_2020_604121 crossref_primary_10_3390_cancers12123743 crossref_primary_10_1021_acsami_2c22420 crossref_primary_10_1016_j_isci_2020_101770 crossref_primary_10_1186_s13578_022_00775_w crossref_primary_10_1016_j_addr_2021_113852 crossref_primary_10_1016_j_medj_2024_08_010 crossref_primary_10_1016_j_omtm_2024_101368 crossref_primary_10_1038_s43018_020_00114_3 crossref_primary_10_1186_s12935_024_03272_x crossref_primary_10_1016_j_it_2020_06_010 crossref_primary_10_1016_j_crmeth_2024_100792 crossref_primary_10_1016_j_drup_2022_100806 crossref_primary_10_1016_j_eng_2021_04_017 crossref_primary_10_1080_13543784_2021_1882993 crossref_primary_10_1016_j_trecan_2019_10_006 crossref_primary_10_1016_j_tice_2024_102692 crossref_primary_10_3389_fimmu_2023_1162905 crossref_primary_10_3389_fphar_2024_1412489 crossref_primary_10_1038_s41421_019_0137_3 crossref_primary_10_1002_adhm_202101312 crossref_primary_10_3233_BLC_200281 crossref_primary_10_1016_j_ebiom_2020_102684 crossref_primary_10_3389_fsurg_2021_753801 crossref_primary_10_3390_jpm12050789 crossref_primary_10_3389_fcell_2023_1232146 crossref_primary_10_1002_advs_202001447 crossref_primary_10_3389_fimmu_2023_1285540 crossref_primary_10_3390_antib11030046 crossref_primary_10_3389_fncel_2020_558381 crossref_primary_10_1016_j_actbio_2022_04_050 crossref_primary_10_1007_s10439_019_02384_0 crossref_primary_10_3389_fonc_2024_1414311 crossref_primary_10_1007_s13402_024_00960_8 crossref_primary_10_1186_s40659_023_00476_9 crossref_primary_10_1101_gr_262196_120 crossref_primary_10_3390_cells10071657 crossref_primary_10_1111_iju_14727 crossref_primary_10_1007_s00018_019_03044_1 crossref_primary_10_1002_adhm_202300903 crossref_primary_10_3390_cells10040928 crossref_primary_10_1038_s41571_025_01000_6 crossref_primary_10_1038_s42003_023_05529_z crossref_primary_10_3389_fonc_2024_1350935 crossref_primary_10_1016_j_biopha_2023_114751 crossref_primary_10_3390_cancers12123779 crossref_primary_10_1007_s44272_024_00012_0 crossref_primary_10_1038_s41578_023_00535_3 crossref_primary_10_1016_j_bbcan_2021_188586 crossref_primary_10_1038_s41392_022_01194_6 crossref_primary_10_1053_j_gastro_2024_05_032 crossref_primary_10_3389_fcell_2021_749689 crossref_primary_10_1002_btm2_10559 crossref_primary_10_3389_fonc_2025_1432506 crossref_primary_10_1016_j_trecan_2021_06_009 crossref_primary_10_1038_s44318_024_00084_7 crossref_primary_10_3389_fimmu_2023_1101324 crossref_primary_10_1002_ijc_34297 crossref_primary_10_26599_CO_2024_9410009 crossref_primary_10_3390_cancers12113335 crossref_primary_10_1002_advs_202304160 crossref_primary_10_1158_2159_8290_CD_20_0455 crossref_primary_10_1063_5_0030693 crossref_primary_10_1038_s41588_023_01507_7 crossref_primary_10_1177_09636897231187996 crossref_primary_10_1038_s41467_023_38891_x crossref_primary_10_3389_fonc_2024_1334631 crossref_primary_10_1016_j_isci_2020_101985 crossref_primary_10_1080_17460441_2019_1570129 crossref_primary_10_1016_j_cell_2021_02_020 crossref_primary_10_1016_j_trecan_2020_10_009 crossref_primary_10_3389_fonc_2023_1191614 crossref_primary_10_3390_cancers14030525 crossref_primary_10_1021_acsnano_9b05038 crossref_primary_10_1007_s13346_023_01327_6 crossref_primary_10_1200_PO_21_00489 crossref_primary_10_1016_j_stem_2020_10_005 crossref_primary_10_1016_j_addr_2021_113839 crossref_primary_10_1002_adhm_202400475 crossref_primary_10_1038_s41368_024_00324_w crossref_primary_10_1146_annurev_pathmechdis_012419_032611 crossref_primary_10_3390_cells11213440 crossref_primary_10_3389_fcell_2021_649937 crossref_primary_10_3390_cancers15020515 crossref_primary_10_3389_fcell_2022_815067 crossref_primary_10_1172_JCI157917 crossref_primary_10_1038_s41596_020_0335_3 crossref_primary_10_1016_j_pharmthera_2021_107981 crossref_primary_10_1186_s13046_020_01583_1 crossref_primary_10_3390_bioengineering10070832 crossref_primary_10_1002_rmb2_12404 crossref_primary_10_1186_s12894_024_01511_x crossref_primary_10_1038_s41571_023_00745_2 crossref_primary_10_1002_cbic_202400731 crossref_primary_10_1002_ctm2_1189 crossref_primary_10_1038_s41587_022_01397_w crossref_primary_10_1093_jmicro_dfad014 crossref_primary_10_1093_oxfimm_iqad006 crossref_primary_10_3390_cancers12113303 crossref_primary_10_1158_2159_8290_CD_20_1531 crossref_primary_10_1038_s41568_021_00386_6 crossref_primary_10_1186_s12967_024_05824_1 crossref_primary_10_1186_s12920_024_01895_7 crossref_primary_10_1016_j_lungcan_2022_08_006 crossref_primary_10_3389_fimmu_2021_733317 |
Cites_doi | 10.1016/j.cell.2014.12.021 10.1158/2159-8290.CD-17-0833 10.1038/nm.4466 10.1038/nature16965 10.1016/j.cell.2015.03.053 10.1016/j.critrevonc.2016.02.001 10.1016/j.tcb.2014.11.006 10.1038/nature14011 10.1016/j.cell.2016.01.049 10.1038/nm.1951 10.1158/2159-8290.CD-16-0828 10.1016/S1470-2045(15)70076-8 10.1016/j.stem.2016.04.003 10.1016/S0140-6736(15)01281-7 10.1038/ncomms14049 10.1016/j.molmed.2008.06.001 10.1056/NEJMoa1510665 10.18632/oncotarget.19965 10.1146/annurev-pathol-012615-044249 10.1038/nbt.3192 10.1038/nbt.2514 10.1126/science.3919442 10.1016/j.cell.2017.07.024 10.1038/nrc.2016.36 10.1039/C3IB40188J 10.3389/fimmu.2017.00908 10.1056/NEJMoa1609279 10.1053/j.seminoncol.2015.05.005 10.1016/j.cell.2018.07.009 10.1016/j.cell.2016.12.022 10.1038/nature22396 10.1038/nrc3239 10.1126/science.aaa1348 10.1056/NEJMoa1412082 10.1126/science.aao2774 10.1016/S1470-2045(15)00083-2 10.1158/2159-8290.CD-17-0915 10.1038/nature22079 10.1038/nprot.2014.006 10.1016/j.addr.2014.05.003 10.1056/NEJMoa1507643 10.1038/nm.3585 10.1038/nature22313 10.1016/j.cell.2018.05.060 10.1053/j.gastro.2011.07.050 10.1038/nature11003 10.1056/NEJMoa1200690 10.1016/j.cell.2017.04.014 10.1073/pnas.1705327114 10.1371/journal.pone.0130142 10.1126/science.aac4255 10.1038/nature09691 10.1038/nature12626 10.1056/NEJMoa1504627 10.1038/nbt.2938 10.1038/nature11252 10.1056/NEJMoa1501824 10.1016/j.cell.2017.04.016 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.cell.2018.11.021 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 1988.e16 |
ExternalDocumentID | PMC6656687 30550791 10_1016_j_cell_2018_11_021 S0092867418315137 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: U54 CA224081 – fundername: NIAID NIH HHS grantid: U19 AI116484 – fundername: Howard Hughes Medical Institute – fundername: NIDDK NIH HHS grantid: U01 DK085532 – fundername: NCI NIH HHS grantid: U01 CA217851 – fundername: NCI NIH HHS grantid: U01 CA176299 – fundername: NIAID NIH HHS grantid: U19 AI057229 – fundername: NCI NIH HHS grantid: U01 CA199241 – fundername: NIDCR NIH HHS grantid: U01 DE025188 – fundername: NHLBI NIH HHS grantid: T32 HL120824 |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6I. 6J9 7-5 85S AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABCQX ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YZZ ZA5 ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYJJ AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AI. AIDAL AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 0SF CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c554t-e5d394ecdb9091b23103a31e62d28a4c5ea120da853037a07d80c65dfe4585263 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 14:10:47 EDT 2025 Sat Sep 27 21:25:52 EDT 2025 Sat Sep 27 18:30:38 EDT 2025 Thu Jan 02 22:41:07 EST 2025 Tue Jul 01 02:17:02 EDT 2025 Thu Apr 24 22:50:50 EDT 2025 Fri Feb 23 02:27:23 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | TCR T cell receptor immunotherapy tumor-infiltrating lymphocyte single-cell RNA-seq PDO cancer PD-1 checkpoint inhibitor organoid |
Language | English |
License | Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c554t-e5d394ecdb9091b23103a31e62d28a4c5ea120da853037a07d80c65dfe4585263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AUTHOR CONTRIBUTIONS J.T.N., X. L. and C.L.G. conceived, designed, and performed experiments, analyzed data, and wrote the manuscript. J.Z., G.X.Y.Z. and C.S. designed and analyzed single-cell studies. I.H.L, A.R.S., B.C.D, L.L., J.J., L.M.S. and L.D.N. designed and performed organoid experiments and analyzed data. V.G. and A.A.S. designed and performed single cell RNA-seq. K.K., Y-Y.T., S.A., C.O., P.K., D.M-V., F.M.DLV., J.S.B. and W.C.H participated in exome sequencing. A.J.Z. provided pathologic interpretation. J.B.S. designed patient-derived organoid studies. P.L.K, J.C.L., T.J.M and J.T.L. provided tumor samples. S-H.C., F.Z. and M.M.D. conceived and performed Smart-seq2 TCR sequencing and tetramer TIL detection. C.J.K. conceived and designed experiments, analyzed data and wrote the manuscript. |
OpenAccessLink | http://www.cell.com/article/S0092867418315137/pdf |
PMID | 30550791 |
PQID | 2157660001 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6656687 proquest_miscellaneous_2221003617 proquest_miscellaneous_2157660001 pubmed_primary_30550791 crossref_primary_10_1016_j_cell_2018_11_021 crossref_citationtrail_10_1016_j_cell_2018_11_021 elsevier_sciencedirect_doi_10_1016_j_cell_2018_11_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-13 |
PublicationDateYYYYMMDD | 2018-12-13 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Kamphorst, Pillai, Yang, Nasti, Akondy, Wieland, Sica, Yu, Koenig, Patel (bib32) 2017; 114 Vlachogiannis, Hedayat, Vatsiou, Jamin, Fernández-Mateos, Khan, Lampis, Eason, Huntingford, Burke (bib55) 2018; 359 Ootani, Li, Sangiorgi, Ho, Ueno, Toda, Sugihara, Fujimoto, Weissman, Capecchi, Kuo (bib39) 2009; 15 Carbognin, Pilotto, Milella, Vaccaro, Brunelli, Caliò, Cuppone, Sperduti, Giannarelli, Chilosi (bib9) 2015; 10 Ribas, Puzanov, Dummer, Schadendorf, Hamid, Robert, Hodi, Schachter, Pavlick, Lewis (bib43) 2015; 16 Brahmer, Reckamp, Baas, Crinò, Eberhardt, Poddubskaya, Antonia, Pluzanski, Vokes, Holgado (bib7) 2015; 373 Weber, D’Angelo, Minor, Hodi, Gutzmer, Neyns, Hoeller, Khushalani, Miller, Lao (bib56) 2015; 16 Boj, Hwang, Baker, Chio, Engle, Corbo, Jager, Ponz-Sarvise, Tiriac, Spector (bib5) 2015; 160 Gandini, Massi, Mandalà (bib22) 2016; 100 Klemm, Joyce (bib33) 2015; 25 Sivan, Corrales, Hubert, Williams, Aquino-Michaels, Earley, Benyamin, Lei, Jabri, Alegre (bib48) 2015; 350 Rizvi, Hellmann, Snyder, Kvistborg, Makarov, Havel, Lee, Yuan, Wong, Ho (bib44) 2015; 348 Pardoll (bib41) 2012; 12 Picelli, Faridani, Björklund, Winberg, Sagasser, Sandberg (bib42) 2014; 9 Li, Nadauld, Ootani, Corney, Pai, Gevaert, Cantrell, Rack, Neal, Chan (bib36) 2014; 20 Cancer Genome Atlas (bib8) 2012; 487 Huang, Postow, Orlowski, Mick, Bengsch, Manne, Xu, Harmon, Giles, Wenz (bib29) 2017; 545 Deng, Wang, Jenkins, Li, Dries, Yates, Chhabra, Huang, Liu, Aref (bib14) 2018; 8 Wei, Levine, Cogdill, Zhao, Anang, Andrews, Sharma, Wang, Wargo, Pe’er, Allison (bib57) 2017; 170 Cibulskis, Lawrence, Carter, Sivachenko, Jaffe, Sougnez, Gabriel, Meyerson, Lander, Getz (bib12) 2013; 31 Croce, Isobe, Palumbo, Puck, Ming, Tweardy, Erikson, Davis, Rovera (bib13) 1985; 227 Tran, Robbins, Lu, Prickett, Gartner, Jia, Pasetto, Zheng, Ray, Groh (bib53) 2016; 375 Motzer, Escudier, McDermott, George, Hammers, Srinivas, Tykodi, Sosman, Procopio, Plimack (bib37) 2015; 373 Spitzer, Carmi, Reticker-Flynn, Kwek, Madhireddy, Martins, Gherardini, Prestwood, Chabon, Bendall (bib50) 2017; 168 Bailey, Chang, Nones, Johns, Patch, Gingras, Miller, Christ, Bruxner, Quinn (bib3) 2016; 531 Spence, Mayhew, Rankin, Kuhar, Vallance, Tolle, Hoskins, Kalinichenko, Wells, Zorn (bib49) 2011; 470 Jenkins, Aref, Lizotte, Ivanova, Stinson, Zhou, Bowden, Deng, Liu, Miao (bib30) 2018; 8 DiMarco, Su, Yan, Dewi, Kuo, Heilshorn (bib16) 2014; 6 Garon, Rizvi, Hui, Leighl, Balmanoukian, Eder, Patnaik, Aggarwal, Gubens, Horn (bib23) 2015; 372 Neal, Kuo (bib38) 2016; 11 Topalian, Hodi, Brahmer, Gettinger, Smith, McDermott, Powderly, Carvajal, Sosman, Atkins (bib51) 2012; 366 Robert, Long, Brady, Dutriaux, Maio, Mortier, Hassel, Rutkowski, McNeil, Kalinka-Warzocha (bib45) 2015; 372 Palucka, Coussens (bib40) 2016; 164 Feder-Mengus, Ghosh, Reschner, Martin, Spagnoli (bib17) 2008; 14 Lavin, Kobayashi, Leader, Amir, Elefant, Bigenwald, Remark, Sweeney, Becker, Levine (bib35) 2017; 169 Azizi, Carr, Plitas, Cornish, Konopacki, Prabhakaran, Nainys, Wu, Kiseliovas, Setty (bib2) 2018; 174 Barretina, Caponigro, Stransky, Venkatesan, Margolin, Kim, Wilson, Lehár, Kryukov, Sonkin (bib4) 2012; 483 Topalian, Taube, Anders, Pardoll (bib52) 2016; 16 van de Wetering, Francies, Francis, Bounova, Iorio, Pronk, van Houdt, van Gorp, Taylor-Weiner, Kester (bib54) 2015; 161 Borghaei, Paz-Ares, Horn, Spigel, Steins, Ready, Chow, Vokes, Felip, Holgado (bib6) 2015; 373 Chevrier, Levine, Zanotelli, Silina, Schulz, Bacac, Ries, Ailles, Jewett, Moch (bib11) 2017; 169 Han, Glanville, Hansmann, Davis (bib25) 2014; 32 Chen, Lau, Andor, Grimes, Handy, Wood-Bouwens, Ji (bib10) 2018 Sato, Stange, Ferrante, Vries, Van Es, Van den Brink, Van Houdt, Pronk, Van Gorp, Siersema, Clevers (bib47) 2011; 141 Yan, Janda, Chang, Zheng, Larkin, Luca, Chia, Mah, Han, Terry (bib58) 2017; 545 Krieg, Nowicka, Guglietta, Schindler, Hartmann, Weber, Dummer, Robinson, Levesque, Becher (bib34) 2018; 24 Anagnostou, Smith, Forde, Niknafs, Bhattacharya, White, Zhang, Adleff, Phallen, Wali (bib1) 2017; 7 Herbst, Soria, Kowanetz, Fine, Hamid, Gordon, Sosman, McDermott, Powderly, Gettinger (bib26) 2014; 515 Junttila, de Sauvage (bib31) 2013; 501 Zheng, Terry, Belgrader, Ryvkin, Bent, Wilson, Ziraldo, Wheeler, McDermott, Zhu (bib59) 2017; 8 Herbst, Baas, Kim, Felip, Pérez-Gracia, Han, Molina, Kim, Arvis, Ahn (bib27) 2016; 387 Forget, Tavera, Haymaker, Ramachandran, Malu, Zhang, Wardell, Fulbright, Toth, Gonzalez (bib20) 2017; 8 Feldman, Assadipour, Kriley, Goff, Rosenberg (bib18) 2015; 42 Satija, Farrell, Gennert, Schier, Regev (bib46) 2015; 33 Gordon, Maute, Dulken, Hutter, George, McCracken, Gupta, Tsai, Sinha, Corey (bib24) 2017; 545 Hirt, Papadimitropoulos, Mele, Muraro, Mengus, Iezzi, Terracciano, Martin, Spagnoli (bib28) 2014; 79-80 Fujii, Shimokawa, Date, Takano, Matano, Nanki, Ohta, Toshimitsu, Nakazato, Kawasaki (bib21) 2016; 18 Dijkstra, Cattaneo, Weeber, Chalabi, van de Haar, Fanchi, Slagter, van der Velden, Kaing, Kelderman (bib15) 2018; 174 Finnberg, Gokare, Lev, Grivennikov, MacFarlane, Campbell, Winters, Kaputa, Farma, Abbas (bib19) 2017; 8 Dijkstra (10.1016/j.cell.2018.11.021_bib15) 2018; 174 Motzer (10.1016/j.cell.2018.11.021_bib37) 2015; 373 Bailey (10.1016/j.cell.2018.11.021_bib3) 2016; 531 Kamphorst (10.1016/j.cell.2018.11.021_bib32) 2017; 114 Robert (10.1016/j.cell.2018.11.021_bib45) 2015; 372 Ribas (10.1016/j.cell.2018.11.021_bib43) 2015; 16 Palucka (10.1016/j.cell.2018.11.021_bib40) 2016; 164 Wei (10.1016/j.cell.2018.11.021_bib57) 2017; 170 Lavin (10.1016/j.cell.2018.11.021_bib35) 2017; 169 Feldman (10.1016/j.cell.2018.11.021_bib18) 2015; 42 Weber (10.1016/j.cell.2018.11.021_bib56) 2015; 16 Hirt (10.1016/j.cell.2018.11.021_bib28) 2014; 79-80 Spitzer (10.1016/j.cell.2018.11.021_bib50) 2017; 168 Fujii (10.1016/j.cell.2018.11.021_bib21) 2016; 18 van de Wetering (10.1016/j.cell.2018.11.021_bib54) 2015; 161 Krieg (10.1016/j.cell.2018.11.021_bib34) 2018; 24 Tran (10.1016/j.cell.2018.11.021_bib53) 2016; 375 Feder-Mengus (10.1016/j.cell.2018.11.021_bib17) 2008; 14 Topalian (10.1016/j.cell.2018.11.021_bib51) 2012; 366 Pardoll (10.1016/j.cell.2018.11.021_bib41) 2012; 12 Junttila (10.1016/j.cell.2018.11.021_bib31) 2013; 501 Anagnostou (10.1016/j.cell.2018.11.021_bib1) 2017; 7 Azizi (10.1016/j.cell.2018.11.021_bib2) 2018; 174 Picelli (10.1016/j.cell.2018.11.021_bib42) 2014; 9 Garon (10.1016/j.cell.2018.11.021_bib23) 2015; 372 Brahmer (10.1016/j.cell.2018.11.021_bib7) 2015; 373 Klemm (10.1016/j.cell.2018.11.021_bib33) 2015; 25 Herbst (10.1016/j.cell.2018.11.021_bib27) 2016; 387 Li (10.1016/j.cell.2018.11.021_bib36) 2014; 20 Jenkins (10.1016/j.cell.2018.11.021_bib30) 2018; 8 Neal (10.1016/j.cell.2018.11.021_bib38) 2016; 11 Topalian (10.1016/j.cell.2018.11.021_bib52) 2016; 16 Borghaei (10.1016/j.cell.2018.11.021_bib6) 2015; 373 Deng (10.1016/j.cell.2018.11.021_bib14) 2018; 8 Barretina (10.1016/j.cell.2018.11.021_bib4) 2012; 483 Cancer Genome Atlas (10.1016/j.cell.2018.11.021_bib8) 2012; 487 Carbognin (10.1016/j.cell.2018.11.021_bib9) 2015; 10 Finnberg (10.1016/j.cell.2018.11.021_bib19) 2017; 8 DiMarco (10.1016/j.cell.2018.11.021_bib16) 2014; 6 Cibulskis (10.1016/j.cell.2018.11.021_bib12) 2013; 31 Sato (10.1016/j.cell.2018.11.021_bib47) 2011; 141 Zheng (10.1016/j.cell.2018.11.021_bib59) 2017; 8 Forget (10.1016/j.cell.2018.11.021_bib20) 2017; 8 Han (10.1016/j.cell.2018.11.021_bib25) 2014; 32 Spence (10.1016/j.cell.2018.11.021_bib49) 2011; 470 Herbst (10.1016/j.cell.2018.11.021_bib26) 2014; 515 Gordon (10.1016/j.cell.2018.11.021_bib24) 2017; 545 Chevrier (10.1016/j.cell.2018.11.021_bib11) 2017; 169 Ootani (10.1016/j.cell.2018.11.021_bib39) 2009; 15 Chen (10.1016/j.cell.2018.11.021_bib10) 2018 Rizvi (10.1016/j.cell.2018.11.021_bib44) 2015; 348 Vlachogiannis (10.1016/j.cell.2018.11.021_bib55) 2018; 359 Boj (10.1016/j.cell.2018.11.021_bib5) 2015; 160 Sivan (10.1016/j.cell.2018.11.021_bib48) 2015; 350 Huang (10.1016/j.cell.2018.11.021_bib29) 2017; 545 Yan (10.1016/j.cell.2018.11.021_bib58) 2017; 545 Satija (10.1016/j.cell.2018.11.021_bib46) 2015; 33 Croce (10.1016/j.cell.2018.11.021_bib13) 1985; 227 Gandini (10.1016/j.cell.2018.11.021_bib22) 2016; 100 30670821 - Nat Rev Cancer. 2019 Mar;19(3):126-127 31136743 - Gastroenterology. 2019 Jul;157(1):260-261 |
References_xml | – volume: 12 start-page: 252 year: 2012 end-page: 264 ident: bib41 article-title: The blockade of immune checkpoints in cancer immunotherapy publication-title: Nat. Rev. Cancer – volume: 501 start-page: 346 year: 2013 end-page: 354 ident: bib31 article-title: Influence of tumour micro-environment heterogeneity on therapeutic response publication-title: Nature – volume: 100 start-page: 88 year: 2016 end-page: 98 ident: bib22 article-title: PD-L1 expression in cancer patients receiving anti PD-1/PD-L1 antibodies: A systematic review and meta-analysis publication-title: Crit. Rev. Oncol. Hematol. – volume: 483 start-page: 603 year: 2012 end-page: 607 ident: bib4 article-title: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity publication-title: Nature – volume: 487 start-page: 330 year: 2012 end-page: 337 ident: bib8 article-title: Comprehensive molecular characterization of human colon and rectal cancer publication-title: Nature – volume: 545 start-page: 495 year: 2017 end-page: 499 ident: bib24 article-title: PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity publication-title: Nature – volume: 42 start-page: 626 year: 2015 end-page: 639 ident: bib18 article-title: Adoptive cell therapy--tumor-infiltrating lymphocytes, T-cell receptors, and chimeric antigen receptors publication-title: Semin. Oncol. – volume: 515 start-page: 563 year: 2014 end-page: 567 ident: bib26 article-title: Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients publication-title: Nature – volume: 350 start-page: 1084 year: 2015 end-page: 1089 ident: bib48 article-title: Commensal bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy publication-title: Science – volume: 79-80 start-page: 145 year: 2014 end-page: 154 ident: bib28 article-title: “In vitro” 3D models of tumor-immune system interaction publication-title: Adv. Drug Deliv. Rev. – volume: 141 start-page: 1762 year: 2011 end-page: 1772 ident: bib47 article-title: Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium publication-title: Gastroenterology – volume: 366 start-page: 2443 year: 2012 end-page: 2454 ident: bib51 article-title: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer publication-title: N. Engl. J. Med. – volume: 174 start-page: 1586 year: 2018 end-page: 1598 ident: bib15 article-title: Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids publication-title: Cell – volume: 169 start-page: 750 year: 2017 end-page: 765 ident: bib35 article-title: Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses publication-title: Cell – volume: 373 start-page: 1627 year: 2015 end-page: 1639 ident: bib6 article-title: Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer publication-title: N. Engl. J. Med. – volume: 8 start-page: 14049 year: 2017 ident: bib59 article-title: Massively parallel digital transcriptional profiling of single cells publication-title: Nat. Commun. – volume: 348 start-page: 124 year: 2015 end-page: 128 ident: bib44 article-title: Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer publication-title: Science – volume: 168 start-page: 487 year: 2017 end-page: 502 ident: bib50 article-title: Systemic immunity is required for effective cancer immunotherapy publication-title: Cell – volume: 545 start-page: 60 year: 2017 end-page: 65 ident: bib29 article-title: T-cell invigoration to tumour burden ratio associated with anti-PD-1 response publication-title: Nature – volume: 170 start-page: 1120 year: 2017 end-page: 1133 ident: bib57 article-title: Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade publication-title: Cell – volume: 359 start-page: 920 year: 2018 end-page: 926 ident: bib55 article-title: Patient-derived organoids model treatment response of metastatic gastrointestinal cancers publication-title: Science – volume: 531 start-page: 47 year: 2016 end-page: 52 ident: bib3 article-title: Genomic analyses identify molecular subtypes of pancreatic cancer publication-title: Nature – volume: 18 start-page: 827 year: 2016 end-page: 838 ident: bib21 article-title: A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis publication-title: Cell Stem Cell – volume: 24 start-page: 144 year: 2018 end-page: 153 ident: bib34 article-title: High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy publication-title: Nat. Med. – volume: 33 start-page: 495 year: 2015 end-page: 502 ident: bib46 article-title: Spatial reconstruction of single-cell gene expression data publication-title: Nat. Biotechnol. – volume: 161 start-page: 933 year: 2015 end-page: 945 ident: bib54 article-title: Prospective derivation of a living organoid biobank of colorectal cancer patients publication-title: Cell – volume: 32 start-page: 684 year: 2014 end-page: 692 ident: bib25 article-title: Linking T-cell receptor sequence to functional phenotype at the single-cell level publication-title: Nat. Biotechnol. – volume: 25 start-page: 198 year: 2015 end-page: 213 ident: bib33 article-title: Microenvironmental regulation of therapeutic response in cancer publication-title: Trends Cell Biol. – volume: 174 start-page: 1293 year: 2018 end-page: 1308 ident: bib2 article-title: Single-cell map of diverse immune phenotypes in the breast tumor microenvironment publication-title: Cell – volume: 16 start-page: 275 year: 2016 end-page: 287 ident: bib52 article-title: Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy publication-title: Nat. Rev. Cancer – volume: 16 start-page: 375 year: 2015 end-page: 384 ident: bib56 article-title: Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial publication-title: Lancet Oncol. – year: 2018 ident: bib10 article-title: Single-cell transcriptome analysis identifies distinct cell types and intercellular niche signaling in a primary gastric organoid model publication-title: bioRxiv – volume: 114 start-page: 4993 year: 2017 end-page: 4998 ident: bib32 article-title: Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients publication-title: Proc. Natl. Acad. Sci. USA – volume: 31 start-page: 213 year: 2013 end-page: 219 ident: bib12 article-title: Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples publication-title: Nat. Biotechnol. – volume: 373 start-page: 123 year: 2015 end-page: 135 ident: bib7 article-title: Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer publication-title: N. Engl. J. Med. – volume: 372 start-page: 2018 year: 2015 end-page: 2028 ident: bib23 article-title: Pembrolizumab for the treatment of non-small-cell lung cancer publication-title: N. Engl. J. Med. – volume: 387 start-page: 1540 year: 2016 end-page: 1550 ident: bib27 article-title: Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial publication-title: Lancet – volume: 160 start-page: 324 year: 2015 end-page: 338 ident: bib5 article-title: Organoid models of human and mouse ductal pancreatic cancer publication-title: Cell – volume: 20 start-page: 769 year: 2014 end-page: 777 ident: bib36 article-title: Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture publication-title: Nat. Med. – volume: 9 start-page: 171 year: 2014 end-page: 181 ident: bib42 article-title: Full-length RNA-seq from single cells using Smart-seq2 publication-title: Nat. Protoc. – volume: 545 start-page: 238 year: 2017 end-page: 242 ident: bib58 article-title: Non-equivalence of Wnt and R-spondin ligands during Lgr5 publication-title: Nature – volume: 16 start-page: 908 year: 2015 end-page: 918 ident: bib43 article-title: Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial publication-title: Lancet Oncol. – volume: 10 start-page: e0130142 year: 2015 ident: bib9 article-title: Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed death-ligand-1 (PD-L1): sensitivity analysis of trials in melanoma, lung and genitourinary cancers publication-title: PLoS ONE – volume: 11 start-page: 199 year: 2016 end-page: 220 ident: bib38 article-title: Organoids as models for neoplastic transformation publication-title: Annu. Rev. Pathol. – volume: 8 start-page: 196 year: 2018 end-page: 215 ident: bib30 article-title: profiling of PD-1 blockade using organotypic tumor spheroids publication-title: Cancer Discov. – volume: 375 start-page: 2255 year: 2016 end-page: 2262 ident: bib53 article-title: T-cell transfer therapy targeting mutant KRAS in cancer publication-title: N. Engl. J. Med. – volume: 6 start-page: 127 year: 2014 end-page: 142 ident: bib16 article-title: Engineering of three-dimensional microenvironments to promote contractile behavior in primary intestinal organoids publication-title: Integr. Biol. – volume: 14 start-page: 333 year: 2008 end-page: 340 ident: bib17 article-title: New dimensions in tumor immunology: what does 3D culture reveal? publication-title: Trends Mol. Med. – volume: 372 start-page: 320 year: 2015 end-page: 330 ident: bib45 article-title: Nivolumab in previously untreated melanoma without BRAF mutation publication-title: N. Engl. J. Med. – volume: 227 start-page: 1044 year: 1985 end-page: 1047 ident: bib13 article-title: Gene for alpha-chain of human T-cell receptor: location on chromosome 14 region involved in T-cell neoplasms publication-title: Science – volume: 7 start-page: 264 year: 2017 end-page: 276 ident: bib1 article-title: Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer publication-title: Cancer Discov. – volume: 169 start-page: 736 year: 2017 end-page: 749 ident: bib11 article-title: An immune atlas of clear cell renal cell carcinoma publication-title: Cell – volume: 8 start-page: 66747 year: 2017 end-page: 66757 ident: bib19 article-title: Application of 3D tumoroid systems to define immune and cytotoxic therapeutic responses based on tumoroid and tissue slice culture molecular signatures publication-title: Oncotarget – volume: 8 start-page: 216 year: 2018 end-page: 233 ident: bib14 article-title: CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation publication-title: Cancer Discov. – volume: 8 start-page: 908 year: 2017 ident: bib20 article-title: A novel method to generate and expand clinical-grade, genetically modified, tumor-infiltrating lymphocytes publication-title: Front. Immunol. – volume: 164 start-page: 1233 year: 2016 end-page: 1247 ident: bib40 article-title: The basis of oncoimmunology publication-title: Cell – volume: 373 start-page: 1803 year: 2015 end-page: 1813 ident: bib37 article-title: Nivolumab versus everolimus in advanced renal-cell carcinoma publication-title: N. Engl. J. Med. – volume: 15 start-page: 701 year: 2009 end-page: 706 ident: bib39 article-title: Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche publication-title: Nat. Med. – volume: 470 start-page: 105 year: 2011 end-page: 109 ident: bib49 article-title: Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro publication-title: Nature – volume: 160 start-page: 324 year: 2015 ident: 10.1016/j.cell.2018.11.021_bib5 article-title: Organoid models of human and mouse ductal pancreatic cancer publication-title: Cell doi: 10.1016/j.cell.2014.12.021 – volume: 8 start-page: 196 year: 2018 ident: 10.1016/j.cell.2018.11.021_bib30 article-title: Ex vivo profiling of PD-1 blockade using organotypic tumor spheroids publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-17-0833 – volume: 24 start-page: 144 year: 2018 ident: 10.1016/j.cell.2018.11.021_bib34 article-title: High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy publication-title: Nat. Med. doi: 10.1038/nm.4466 – volume: 531 start-page: 47 year: 2016 ident: 10.1016/j.cell.2018.11.021_bib3 article-title: Genomic analyses identify molecular subtypes of pancreatic cancer publication-title: Nature doi: 10.1038/nature16965 – volume: 161 start-page: 933 year: 2015 ident: 10.1016/j.cell.2018.11.021_bib54 article-title: Prospective derivation of a living organoid biobank of colorectal cancer patients publication-title: Cell doi: 10.1016/j.cell.2015.03.053 – year: 2018 ident: 10.1016/j.cell.2018.11.021_bib10 article-title: Single-cell transcriptome analysis identifies distinct cell types and intercellular niche signaling in a primary gastric organoid model publication-title: bioRxiv – volume: 100 start-page: 88 year: 2016 ident: 10.1016/j.cell.2018.11.021_bib22 article-title: PD-L1 expression in cancer patients receiving anti PD-1/PD-L1 antibodies: A systematic review and meta-analysis publication-title: Crit. Rev. Oncol. Hematol. doi: 10.1016/j.critrevonc.2016.02.001 – volume: 25 start-page: 198 year: 2015 ident: 10.1016/j.cell.2018.11.021_bib33 article-title: Microenvironmental regulation of therapeutic response in cancer publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2014.11.006 – volume: 515 start-page: 563 year: 2014 ident: 10.1016/j.cell.2018.11.021_bib26 article-title: Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients publication-title: Nature doi: 10.1038/nature14011 – volume: 164 start-page: 1233 year: 2016 ident: 10.1016/j.cell.2018.11.021_bib40 article-title: The basis of oncoimmunology publication-title: Cell doi: 10.1016/j.cell.2016.01.049 – volume: 15 start-page: 701 year: 2009 ident: 10.1016/j.cell.2018.11.021_bib39 article-title: Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche publication-title: Nat. Med. doi: 10.1038/nm.1951 – volume: 7 start-page: 264 year: 2017 ident: 10.1016/j.cell.2018.11.021_bib1 article-title: Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-16-0828 – volume: 16 start-page: 375 year: 2015 ident: 10.1016/j.cell.2018.11.021_bib56 article-title: Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(15)70076-8 – volume: 18 start-page: 827 year: 2016 ident: 10.1016/j.cell.2018.11.021_bib21 article-title: A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.04.003 – volume: 387 start-page: 1540 year: 2016 ident: 10.1016/j.cell.2018.11.021_bib27 article-title: Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial publication-title: Lancet doi: 10.1016/S0140-6736(15)01281-7 – volume: 8 start-page: 14049 year: 2017 ident: 10.1016/j.cell.2018.11.021_bib59 article-title: Massively parallel digital transcriptional profiling of single cells publication-title: Nat. Commun. doi: 10.1038/ncomms14049 – volume: 14 start-page: 333 year: 2008 ident: 10.1016/j.cell.2018.11.021_bib17 article-title: New dimensions in tumor immunology: what does 3D culture reveal? publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2008.06.001 – volume: 373 start-page: 1803 year: 2015 ident: 10.1016/j.cell.2018.11.021_bib37 article-title: Nivolumab versus everolimus in advanced renal-cell carcinoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1510665 – volume: 8 start-page: 66747 year: 2017 ident: 10.1016/j.cell.2018.11.021_bib19 article-title: Application of 3D tumoroid systems to define immune and cytotoxic therapeutic responses based on tumoroid and tissue slice culture molecular signatures publication-title: Oncotarget doi: 10.18632/oncotarget.19965 – volume: 11 start-page: 199 year: 2016 ident: 10.1016/j.cell.2018.11.021_bib38 article-title: Organoids as models for neoplastic transformation publication-title: Annu. Rev. Pathol. doi: 10.1146/annurev-pathol-012615-044249 – volume: 33 start-page: 495 year: 2015 ident: 10.1016/j.cell.2018.11.021_bib46 article-title: Spatial reconstruction of single-cell gene expression data publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3192 – volume: 31 start-page: 213 year: 2013 ident: 10.1016/j.cell.2018.11.021_bib12 article-title: Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2514 – volume: 227 start-page: 1044 year: 1985 ident: 10.1016/j.cell.2018.11.021_bib13 article-title: Gene for alpha-chain of human T-cell receptor: location on chromosome 14 region involved in T-cell neoplasms publication-title: Science doi: 10.1126/science.3919442 – volume: 170 start-page: 1120 year: 2017 ident: 10.1016/j.cell.2018.11.021_bib57 article-title: Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade publication-title: Cell doi: 10.1016/j.cell.2017.07.024 – volume: 16 start-page: 275 year: 2016 ident: 10.1016/j.cell.2018.11.021_bib52 article-title: Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2016.36 – volume: 6 start-page: 127 year: 2014 ident: 10.1016/j.cell.2018.11.021_bib16 article-title: Engineering of three-dimensional microenvironments to promote contractile behavior in primary intestinal organoids publication-title: Integr. Biol. doi: 10.1039/C3IB40188J – volume: 8 start-page: 908 year: 2017 ident: 10.1016/j.cell.2018.11.021_bib20 article-title: A novel method to generate and expand clinical-grade, genetically modified, tumor-infiltrating lymphocytes publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.00908 – volume: 375 start-page: 2255 year: 2016 ident: 10.1016/j.cell.2018.11.021_bib53 article-title: T-cell transfer therapy targeting mutant KRAS in cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1609279 – volume: 42 start-page: 626 year: 2015 ident: 10.1016/j.cell.2018.11.021_bib18 article-title: Adoptive cell therapy--tumor-infiltrating lymphocytes, T-cell receptors, and chimeric antigen receptors publication-title: Semin. Oncol. doi: 10.1053/j.seminoncol.2015.05.005 – volume: 174 start-page: 1586 year: 2018 ident: 10.1016/j.cell.2018.11.021_bib15 article-title: Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids publication-title: Cell doi: 10.1016/j.cell.2018.07.009 – volume: 168 start-page: 487 year: 2017 ident: 10.1016/j.cell.2018.11.021_bib50 article-title: Systemic immunity is required for effective cancer immunotherapy publication-title: Cell doi: 10.1016/j.cell.2016.12.022 – volume: 545 start-page: 495 year: 2017 ident: 10.1016/j.cell.2018.11.021_bib24 article-title: PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity publication-title: Nature doi: 10.1038/nature22396 – volume: 12 start-page: 252 year: 2012 ident: 10.1016/j.cell.2018.11.021_bib41 article-title: The blockade of immune checkpoints in cancer immunotherapy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3239 – volume: 348 start-page: 124 year: 2015 ident: 10.1016/j.cell.2018.11.021_bib44 article-title: Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer publication-title: Science doi: 10.1126/science.aaa1348 – volume: 372 start-page: 320 year: 2015 ident: 10.1016/j.cell.2018.11.021_bib45 article-title: Nivolumab in previously untreated melanoma without BRAF mutation publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1412082 – volume: 359 start-page: 920 year: 2018 ident: 10.1016/j.cell.2018.11.021_bib55 article-title: Patient-derived organoids model treatment response of metastatic gastrointestinal cancers publication-title: Science doi: 10.1126/science.aao2774 – volume: 16 start-page: 908 year: 2015 ident: 10.1016/j.cell.2018.11.021_bib43 article-title: Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(15)00083-2 – volume: 8 start-page: 216 year: 2018 ident: 10.1016/j.cell.2018.11.021_bib14 article-title: CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-17-0915 – volume: 545 start-page: 60 year: 2017 ident: 10.1016/j.cell.2018.11.021_bib29 article-title: T-cell invigoration to tumour burden ratio associated with anti-PD-1 response publication-title: Nature doi: 10.1038/nature22079 – volume: 9 start-page: 171 year: 2014 ident: 10.1016/j.cell.2018.11.021_bib42 article-title: Full-length RNA-seq from single cells using Smart-seq2 publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.006 – volume: 79-80 start-page: 145 year: 2014 ident: 10.1016/j.cell.2018.11.021_bib28 article-title: “In vitro” 3D models of tumor-immune system interaction publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2014.05.003 – volume: 373 start-page: 1627 year: 2015 ident: 10.1016/j.cell.2018.11.021_bib6 article-title: Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1507643 – volume: 20 start-page: 769 year: 2014 ident: 10.1016/j.cell.2018.11.021_bib36 article-title: Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture publication-title: Nat. Med. doi: 10.1038/nm.3585 – volume: 545 start-page: 238 year: 2017 ident: 10.1016/j.cell.2018.11.021_bib58 article-title: Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal publication-title: Nature doi: 10.1038/nature22313 – volume: 174 start-page: 1293 year: 2018 ident: 10.1016/j.cell.2018.11.021_bib2 article-title: Single-cell map of diverse immune phenotypes in the breast tumor microenvironment publication-title: Cell doi: 10.1016/j.cell.2018.05.060 – volume: 141 start-page: 1762 year: 2011 ident: 10.1016/j.cell.2018.11.021_bib47 article-title: Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium publication-title: Gastroenterology doi: 10.1053/j.gastro.2011.07.050 – volume: 483 start-page: 603 year: 2012 ident: 10.1016/j.cell.2018.11.021_bib4 article-title: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity publication-title: Nature doi: 10.1038/nature11003 – volume: 366 start-page: 2443 year: 2012 ident: 10.1016/j.cell.2018.11.021_bib51 article-title: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1200690 – volume: 169 start-page: 750 year: 2017 ident: 10.1016/j.cell.2018.11.021_bib35 article-title: Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses publication-title: Cell doi: 10.1016/j.cell.2017.04.014 – volume: 114 start-page: 4993 year: 2017 ident: 10.1016/j.cell.2018.11.021_bib32 article-title: Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1705327114 – volume: 10 start-page: e0130142 year: 2015 ident: 10.1016/j.cell.2018.11.021_bib9 article-title: Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed death-ligand-1 (PD-L1): sensitivity analysis of trials in melanoma, lung and genitourinary cancers publication-title: PLoS ONE doi: 10.1371/journal.pone.0130142 – volume: 350 start-page: 1084 year: 2015 ident: 10.1016/j.cell.2018.11.021_bib48 article-title: Commensal bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy publication-title: Science doi: 10.1126/science.aac4255 – volume: 470 start-page: 105 year: 2011 ident: 10.1016/j.cell.2018.11.021_bib49 article-title: Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro publication-title: Nature doi: 10.1038/nature09691 – volume: 501 start-page: 346 year: 2013 ident: 10.1016/j.cell.2018.11.021_bib31 article-title: Influence of tumour micro-environment heterogeneity on therapeutic response publication-title: Nature doi: 10.1038/nature12626 – volume: 373 start-page: 123 year: 2015 ident: 10.1016/j.cell.2018.11.021_bib7 article-title: Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1504627 – volume: 32 start-page: 684 year: 2014 ident: 10.1016/j.cell.2018.11.021_bib25 article-title: Linking T-cell receptor sequence to functional phenotype at the single-cell level publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2938 – volume: 487 start-page: 330 year: 2012 ident: 10.1016/j.cell.2018.11.021_bib8 article-title: Comprehensive molecular characterization of human colon and rectal cancer publication-title: Nature doi: 10.1038/nature11252 – volume: 372 start-page: 2018 year: 2015 ident: 10.1016/j.cell.2018.11.021_bib23 article-title: Pembrolizumab for the treatment of non-small-cell lung cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1501824 – volume: 169 start-page: 736 year: 2017 ident: 10.1016/j.cell.2018.11.021_bib11 article-title: An immune atlas of clear cell renal cell carcinoma publication-title: Cell doi: 10.1016/j.cell.2017.04.016 – reference: 31136743 - Gastroenterology. 2019 Jul;157(1):260-261 – reference: 30670821 - Nat Rev Cancer. 2019 Mar;19(3):126-127 |
SSID | ssj0008555 |
Score | 2.7155747 |
Snippet | In vitro cancer cultures, including three-dimensional organoids, typically contain exclusively neoplastic epithelium but require artificial reconstitution to... In vitro cancer cultures, including three-dimensional organoids, typically contain exclusively neoplastic epithelium but require artificial reconstitution to... In vitro cancer cultures, including 3-dimensional organoids, typically contain exclusively neoplastic epithelium but require artificial reconstitution to... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1972 |
SubjectTerms | Animals B7-H1 Antigen - immunology biopsy cancer checkpoint inhibitor coculture Coculture Techniques cytotoxicity epithelium Female hosts Humans Immunotherapy liquid-air interface macrophages Male Mice Mice, Inbred BALB C Models, Immunological Neoplasm Proteins - immunology neoplasms Neoplasms, Experimental - immunology Neoplasms, Experimental - pathology Neoplasms, Experimental - therapy organoid Organoids - immunology Organoids - pathology PD-1 PDO receptors Receptors, Antigen, T-Cell - immunology single-cell RNA-seq T cell receptor T-lymphocytes TCR Tumor Microenvironment - immunology tumor-infiltrating lymphocyte |
Title | Organoid Modeling of the Tumor Immune Microenvironment |
URI | https://dx.doi.org/10.1016/j.cell.2018.11.021 https://www.ncbi.nlm.nih.gov/pubmed/30550791 https://www.proquest.com/docview/2157660001 https://www.proquest.com/docview/2221003617 https://pubmed.ncbi.nlm.nih.gov/PMC6656687 |
Volume | 175 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7Et-uLCt6k2ibNo0ddXFZFTy7sLaRJihVtl3X34L93ZtsuruIePLaZQDqTzHwp880Qcm6iTMGpsSF2QAkTK3mY8tSF0qiIptjaxyPf-fFJ9AfJ_ZAPV0i35cJgWmXj-2ufPvPWzZurRptXo6JAjm9KlcDqKwzCFkNGObJKkcQ3vJl7Y8V53cUghZMP0g1xps7xwp_jmN6lLrGSJ43_Ck6_wefPHMpvQam3STYaNBlc1wveIiu-3CZrdX_Jzx0iZkzLqnABtjxD4nlQ5QFAvuB5-l6Ngzskh_jgEZPyvjHedsmgd_vc7YdNo4TQAhqYhJ47libeuiyF8J8hZGOGxV5QR5VJLPcmppEzEJojJk0knYqs4C73CdwWqGB7ZLWsSn9AgoxawDjC2wwCP8-NyRSzznDDOc1Z5jokbjWkbVNFHJtZvOk2XexVo1Y1ahWuFxq02iEX8zmjuobGUmneKl4v7AQNTn7pvLPWShqOCA6b0lfTDw2oRgqBaHaJDIW7L0TzWHbIfm3Z-VqxKFokU5gtF2w-F8AS3YsjZfEyK9UtEC4refjPbzoi6_iE6TMxOyark_HUnwAImmSnAP_vHk5ne_0LCmkFdg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4xpmm8INgYFBjLpL2hQGLHP_IIaKjdKE9F6pvl2K4ogqSC9oH_nrsmqegQfdhrfJaSs333Ofq-O4BfNik0nhoXUweUOHNKxLnIfaysTlhOrX0C6Z3717J7k_0ZiuEaXLRaGKJVNrG_junzaN08OW28eToZj0njmzMtqfoKx7TF1Qf4iGggoa3dG54vwrEWom5jkOPRR_NGOVOTvOjvOPG79AmV8mTpe9npLfr8l0T5KitdbsFmAyejs_qNt2EtlF_gU91g8vkryLnUshr7iHqekfI8qkYRYr5oMHuoHqMeqUNC1CdW3ivJ2w7cXP4eXHTjplNC7BAOTOMgPM-z4HyRY_4vCLNxy9MgmWfaZk4Em7LEW8zNCVc2UV4nTgo_ChleF5jk32C9rMqwB1HBHIIcGVyBmV-MrC00d94KKwQb8cJ3IG09ZFxTRpy6Wdybli92Z8irhryK9wuDXu3A8WLOpC6isdJatI43S1vBYJRfOe9nu0oGzwgN2zJUsyeDsEZJSXB2hQ3Dyy-m81R1YLde2cW7UlW0ROU4Wy2t-cKAanQvj5Tj23mtbkl4Wav9__ymH_C5O-hfmave9d8D2KAR4tKk_BDWp4-z8B0R0bQ4mu_4FxD2B6A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organoid+Modeling+of+the+Tumor+Immune+Microenvironment&rft.jtitle=Cell&rft.au=Neal%2C+James+T&rft.au=Li%2C+Xingnan&rft.au=Zhu%2C+Junjie&rft.au=Giangarra%2C+Valeria&rft.date=2018-12-13&rft.eissn=1097-4172&rft.volume=175&rft.issue=7&rft.spage=1972&rft_id=info:doi/10.1016%2Fj.cell.2018.11.021&rft_id=info%3Apmid%2F30550791&rft.externalDocID=30550791 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |