From Whole-Brain Data to Functional Circuit Models: The Zebrafish Optomotor Response
Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network modeling. Here, we...
Saved in:
Published in | Cell Vol. 167; no. 4; pp. 947 - 960.e20 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
03.11.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0092-8674 1097-4172 1097-4172 |
DOI | 10.1016/j.cell.2016.10.019 |
Cover
Abstract | Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network modeling. Here, we harness these tools to generate a brain-scale circuit model of the optomotor response, an orienting behavior evoked by visual motion. We show that such motion is processed by diverse neural response types distributed across multiple brain regions. To transform sensory input into action, these regions sequentially integrate eye- and direction-specific sensory streams, refine representations via interhemispheric inhibition, and demix locomotor instructions to independently drive turning and forward swimming. While experiments revealed many neural response types throughout the brain, modeling identified the dimensions of functional connectivity most critical for the behavior. We thus reveal how distributed neurons collaborate to generate behavior and illustrate a paradigm for distilling functional circuit models from whole-brain data.
[Display omitted]
•Optomotor response is driven asymmetrically by visual motion to each eye•Dedicated circuits differentially process eye- and direction-specific motion•Neural representations are distributed over select overrepresented response types•Behavior and neural activity are captured by realistic whole-brain circuit model
Whole-brain imaging and behavioral analysis combined with network modeling reveal key circuit elements contributing to a complex sensorimotor behavior in zebrafish larvae and provide a framework for building brain-level circuit models. |
---|---|
AbstractList | Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network modeling. Here, we harness these tools to generate a brain-scale circuit model of the optomotor response, an orienting behavior evoked by visual motion. We show that such motion is processed by diverse neural response types distributed across multiple brain regions. To transform sensory input into action, these regions sequentially integrate eye- and direction-specific sensory streams, refine representations via interhemispheric inhibition, and demix locomotor instructions to independently drive turning and forward swimming. While experiments revealed many neural response types throughout the brain, modeling identified the dimensions of functional connectivity most critical for the behavior. We thus reveal how distributed neurons collaborate to generate behavior and illustrate a paradigm for distilling functional circuit models from whole-brain data. Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network modeling. Here, we harness these tools to generate a brain-scale circuit model of the optomotor response, an orienting behavior evoked by visual motion. We show that such motion is processed by diverse neural response types distributed across multiple brain regions. To transform sensory input into action, these regions sequentially integrate eye- and direction-specific sensory streams, refine representations via interhemispheric inhibition, and demix locomotor instructions to independently drive turning and forward swimming. While experiments revealed many neural response types throughout the brain, modeling identified the dimensions of functional connectivity most critical for the behavior. We thus reveal how distributed neurons collaborate to generate behavior and illustrate a paradigm for distilling functional circuit models from whole-brain data. [Display omitted] •Optomotor response is driven asymmetrically by visual motion to each eye•Dedicated circuits differentially process eye- and direction-specific motion•Neural representations are distributed over select overrepresented response types•Behavior and neural activity are captured by realistic whole-brain circuit model Whole-brain imaging and behavioral analysis combined with network modeling reveal key circuit elements contributing to a complex sensorimotor behavior in zebrafish larvae and provide a framework for building brain-level circuit models. Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network modeling. Here, we harness these tools to generate a brain-scale circuit model of the optomotor response, an orienting behavior evoked by visual motion. We show that such motion is processed by diverse neural response types distributed across multiple brain regions. To transform sensory input into action, these regions sequentially integrate eye- and direction-specific sensory streams, refine representations via interhemispheric inhibition, and demix locomotor instructions to independently drive turning and forward swimming. While experiments revealed many neural response types throughout the brain, modeling identified the dimensions of functional connectivity most critical for the behavior. We thus reveal how distributed neurons collaborate to generate behavior and illustrate a paradigm for distilling functional circuit models from whole-brain data. Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network modeling. Here, we harness these tools to generate a brain-scale circuit model of the optomotor response, an orienting behavior evoked by visual motion. We show that such motion is processed by diverse neural response types distributed across multiple brain regions. To transform sensory input into action, these regions sequentially integrate eye- and direction-specific sensory streams, refine representations via interhemispheric inhibition, and demix locomotor instructions to independently drive turning and forward swimming. While experiments revealed many neural response types throughout the brain, modeling identified the dimensions of functional connectivity most critical for the behavior. We thus reveal how distributed neurons collaborate to generate behavior and illustrate a paradigm for distilling functional circuit models from whole-brain data.Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network modeling. Here, we harness these tools to generate a brain-scale circuit model of the optomotor response, an orienting behavior evoked by visual motion. We show that such motion is processed by diverse neural response types distributed across multiple brain regions. To transform sensory input into action, these regions sequentially integrate eye- and direction-specific sensory streams, refine representations via interhemispheric inhibition, and demix locomotor instructions to independently drive turning and forward swimming. While experiments revealed many neural response types throughout the brain, modeling identified the dimensions of functional connectivity most critical for the behavior. We thus reveal how distributed neurons collaborate to generate behavior and illustrate a paradigm for distilling functional circuit models from whole-brain data. |
Author | Rihel, Jason Naumann, Eva A. Sompolinsky, Haim Engert, Florian Dunn, Timothy W. Fitzgerald, James E. |
AuthorAffiliation | 1 Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138, USA 4 Racah Institute of Physics and the Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel 3 Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK 2 Center for Brain Science, Harvard University, Cambridge, MA 02138, USA |
AuthorAffiliation_xml | – name: 2 Center for Brain Science, Harvard University, Cambridge, MA 02138, USA – name: 4 Racah Institute of Physics and the Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel – name: 3 Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK – name: 1 Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138, USA |
Author_xml | – sequence: 1 givenname: Eva A. surname: Naumann fullname: Naumann, Eva A. organization: Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138, USA – sequence: 2 givenname: James E. surname: Fitzgerald fullname: Fitzgerald, James E. organization: Center for Brain Science, Harvard University, Cambridge, MA 02138, USA – sequence: 3 givenname: Timothy W. surname: Dunn fullname: Dunn, Timothy W. organization: Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138, USA – sequence: 4 givenname: Jason surname: Rihel fullname: Rihel, Jason organization: Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK – sequence: 5 givenname: Haim surname: Sompolinsky fullname: Sompolinsky, Haim organization: Center for Brain Science, Harvard University, Cambridge, MA 02138, USA – sequence: 6 givenname: Florian surname: Engert fullname: Engert, Florian email: florian@mcb.harvard.edu organization: Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27814522$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUcFq3DAUFCWl2ST9gRyKjr14oydbtreUQrvJpoWEQNlSyEXI8nNXiy1tJDmQv4_MJqXtIT0IiaeZecPMETmwziIhp8DmwKA828419v2cp3cazBksXpEZsEWVFVDxAzJjbMGzuqyKQ3IUwpYxVgsh3pBDXtVQCM5nZL3ybqA_N67H7ItXxtJzFRWNjq5Gq6NxVvV0abweTaTXrsU-fKDrDdJbbLzqTNjQm110g4vO0-8Yds4GPCGvO9UHfPt0H5Mfq4v18mt2dXP5bfn5KtNCFDFra2wElEyXLVesgjxXQufYsE4gVo1mhYAcoYG2hYppsSiV4oLpgoMAVnb5Mfm0192NzYCtRhu96uXOm0H5B-mUkX__WLORv9y9FABQQ5kE3j8JeHc3YohyMGEKVVl0Y5A8RZZOweC_UKjzssrzpJug7_609dvPc-oJUO8B2rsQPHZSm6imsJNL00tgcipYbuW0QE4FT7NUcKLyf6jP6i-SPu5JqT28N-hl0AatxtZ41FG2zrxEfwTvVr6V |
CitedBy_id | crossref_primary_10_1523_JNEUROSCI_0842_21_2021 crossref_primary_10_3390_ijms23052464 crossref_primary_10_1016_j_cub_2022_04_048 crossref_primary_10_1146_annurev_neuro_110220_013050 crossref_primary_10_1016_j_conb_2020_09_011 crossref_primary_10_1016_j_conb_2017_02_009 crossref_primary_10_1016_j_conb_2020_10_021 crossref_primary_10_1016_j_conb_2018_10_004 crossref_primary_10_1016_j_cub_2019_10_020 crossref_primary_10_1371_journal_pbio_3001012 crossref_primary_10_1371_journal_pgen_1011139 crossref_primary_10_1016_j_neuron_2018_09_042 crossref_primary_10_1038_s41467_021_22322_w crossref_primary_10_1126_science_aaz8627 crossref_primary_10_3389_fnana_2022_838567 crossref_primary_10_1038_s41592_018_0221_x crossref_primary_10_3389_fnmol_2022_901309 crossref_primary_10_1007_s00244_025_01113_0 crossref_primary_10_1371_journal_pcbi_1010418 crossref_primary_10_1038_s41592_022_01621_0 crossref_primary_10_1080_01677063_2017_1359834 crossref_primary_10_1016_j_conb_2018_02_004 crossref_primary_10_1016_j_cub_2020_04_043 crossref_primary_10_1016_j_cub_2021_06_054 crossref_primary_10_7554_eLife_55119 crossref_primary_10_1016_j_cell_2022_11_022 crossref_primary_10_7554_eLife_53684 crossref_primary_10_1016_j_celrep_2020_108054 crossref_primary_10_1371_journal_pone_0183414 crossref_primary_10_1002_etc_4951 crossref_primary_10_1098_rsif_2023_0212 crossref_primary_10_1146_annurev_neuro_092619_094115 crossref_primary_10_3389_fncir_2021_814128 crossref_primary_10_3389_fncir_2021_709048 crossref_primary_10_3389_fncir_2021_748535 crossref_primary_10_1016_j_plrev_2023_04_004 crossref_primary_10_1016_j_conb_2017_02_017 crossref_primary_10_1371_journal_pcbi_1010924 crossref_primary_10_3389_fncir_2020_607391 crossref_primary_10_3389_fncir_2018_00089 crossref_primary_10_1038_s41593_019_0535_8 crossref_primary_10_1016_j_cub_2023_12_063 crossref_primary_10_1021_acs_est_0c06479 crossref_primary_10_1364_BOE_9_006154 crossref_primary_10_1371_journal_pcbi_1005526 crossref_primary_10_1016_j_neubiorev_2020_12_014 crossref_primary_10_1016_j_neuron_2024_11_011 crossref_primary_10_1162_netn_a_00262 crossref_primary_10_7554_eLife_22537 crossref_primary_10_3389_fnbeh_2020_606900 crossref_primary_10_1016_j_bbr_2024_115412 crossref_primary_10_1016_j_cub_2024_08_008 crossref_primary_10_1016_j_neuron_2020_08_027 crossref_primary_10_1126_sciadv_adi6470 crossref_primary_10_7554_eLife_63355 crossref_primary_10_1146_annurev_vision_101623_025432 crossref_primary_10_1016_j_isci_2020_100917 crossref_primary_10_1038_s41598_023_30303_w crossref_primary_10_1038_s41380_022_01567_x crossref_primary_10_1016_j_celrep_2019_12_031 crossref_primary_10_3389_fncir_2017_00088 crossref_primary_10_1186_s12915_018_0494_7 crossref_primary_10_1021_acs_est_1c08471 crossref_primary_10_1038_s41467_023_35836_2 crossref_primary_10_1016_j_ymeth_2018_06_008 crossref_primary_10_1039_C7LC00786H crossref_primary_10_1038_s41598_021_03068_3 crossref_primary_10_1016_j_bbr_2021_113544 crossref_primary_10_1126_scirobotics_adi2243 crossref_primary_10_1186_s12915_019_0648_2 crossref_primary_10_1016_j_conb_2017_08_006 crossref_primary_10_3389_fnbeh_2024_1320126 crossref_primary_10_1016_j_celrep_2019_09_024 crossref_primary_10_1038_s41467_019_13484_9 crossref_primary_10_1016_j_neuron_2022_04_030 crossref_primary_10_3390_ijms222111750 crossref_primary_10_1038_s41467_023_44681_2 crossref_primary_10_1016_j_neuron_2019_04_018 crossref_primary_10_1002_cne_25204 crossref_primary_10_1016_j_cub_2019_11_026 crossref_primary_10_1038_s41593_019_0534_9 crossref_primary_10_1016_j_scitotenv_2022_154584 crossref_primary_10_1038_s41598_019_50372_0 crossref_primary_10_1016_j_smrv_2022_101595 crossref_primary_10_7554_eLife_54183 crossref_primary_10_1002_dneu_22895 crossref_primary_10_1186_s12915_021_01222_x crossref_primary_10_1016_j_conb_2018_01_004 crossref_primary_10_3390_cells10082133 crossref_primary_10_1016_j_cub_2019_12_064 crossref_primary_10_1016_j_cub_2022_04_084 crossref_primary_10_1007_s00359_021_01524_z crossref_primary_10_1016_j_conb_2020_08_013 crossref_primary_10_1167_iovs_19_27544 crossref_primary_10_1038_s41467_021_26748_0 crossref_primary_10_1016_j_aquatox_2021_105988 crossref_primary_10_1016_j_isci_2024_109455 crossref_primary_10_3330_hikakuseiriseika_37_62 crossref_primary_10_1038_s41592_018_0144_6 crossref_primary_10_3389_fncir_2019_00001 crossref_primary_10_1016_j_cub_2024_12_010 crossref_primary_10_1162_neco_a_01401 crossref_primary_10_3389_fcell_2023_1120984 crossref_primary_10_1016_j_jneumeth_2019_108366 crossref_primary_10_1073_pnas_2106785118 crossref_primary_10_1002_cpet_19 crossref_primary_10_1016_j_bbr_2023_114812 crossref_primary_10_1016_j_cub_2023_08_037 crossref_primary_10_1016_j_neuron_2017_04_034 crossref_primary_10_1016_j_neuron_2019_04_034 crossref_primary_10_1186_s12915_022_01298_z crossref_primary_10_1016_j_neuron_2018_04_013 crossref_primary_10_1016_j_neurobiolaging_2023_06_005 crossref_primary_10_1038_s41598_021_85896_x crossref_primary_10_3389_fcell_2022_875044 crossref_primary_10_1186_s12915_022_01286_3 crossref_primary_10_1103_PhysRevResearch_4_023255 crossref_primary_10_3389_fnbeh_2019_00012 crossref_primary_10_1016_j_scitotenv_2021_150681 crossref_primary_10_1016_j_chom_2020_11_011 crossref_primary_10_1016_j_cell_2019_02_037 crossref_primary_10_1016_j_neuroscience_2022_12_016 crossref_primary_10_1038_s41598_018_31968_4 crossref_primary_10_1117_1_NPh_10_4_044409 crossref_primary_10_1523_ENEURO_0371_23_2023 crossref_primary_10_1186_s12915_020_00903_3 crossref_primary_10_2139_ssrn_3257346 crossref_primary_10_1016_j_cub_2024_10_057 crossref_primary_10_1038_s41593_020_00743_y crossref_primary_10_1117_1_NPh_11_3_033409 crossref_primary_10_1371_journal_pcbi_1011848 crossref_primary_10_1016_j_neurobiolaging_2020_10_018 crossref_primary_10_3389_fnmol_2018_00294 crossref_primary_10_7554_eLife_51975 crossref_primary_10_1088_1758_5090_acb466 crossref_primary_10_1016_j_neuron_2018_06_013 crossref_primary_10_1038_s41598_019_54958_6 crossref_primary_10_1016_j_cub_2021_01_045 crossref_primary_10_1016_j_cub_2020_12_034 crossref_primary_10_1038_s41598_022_10133_y crossref_primary_10_1016_j_cophys_2020_03_006 crossref_primary_10_1016_j_physrep_2023_03_005 crossref_primary_10_1523_JNEUROSCI_1908_17_2018 crossref_primary_10_2139_ssrn_3155628 crossref_primary_10_1098_rstb_2017_0372 crossref_primary_10_1016_j_mbs_2023_109033 crossref_primary_10_1146_annurev_vision_091718_014723 crossref_primary_10_1038_s41592_018_0276_8 crossref_primary_10_1038_s41467_021_26988_0 crossref_primary_10_3389_fnmol_2022_867010 crossref_primary_10_1038_nrn_2017_85 crossref_primary_10_1126_sciadv_abi7460 crossref_primary_10_3389_fnins_2021_632634 |
Cites_doi | 10.1016/j.cell.2015.09.034 10.1016/j.neuron.2014.01.019 10.1016/j.cub.2014.07.080 10.1038/nature09554 10.1371/journal.pone.0004320 10.1016/j.neuron.2009.04.014 10.1073/pnas.1012189108 10.1016/j.conb.2014.02.002 10.3389/fncir.2013.00104 10.1016/0165-0173(83)90036-X 10.1146/annurev-neuro-060909-153155 10.1038/nature14297 10.1016/j.neuron.2005.05.019 10.1038/nature11057 10.1093/cercor/1.1.1 10.1038/nature12160 10.1038/nature09880 10.1016/j.neuron.2014.02.043 10.1038/nature06808 10.1016/j.cub.2015.01.042 10.1038/nature13276 10.1016/j.tins.2014.08.009 10.1016/j.cub.2013.06.044 10.1038/nature06292 10.1002/cne.902270208 10.1113/jphysiol.1988.sp017319 10.1002/cne.902360105 10.1016/j.conb.2015.04.003 10.1002/cne.903460410 10.7554/eLife.12741 10.1073/pnas.1012185108 10.1002/cne.901450208 10.1038/nmeth.2434 10.1146/annurev-neuro-071013-013931 10.1016/j.cell.2015.06.035 10.2174/1381612811319240011 10.1038/nmeth.3581 10.1016/j.neuron.2010.03.027 10.1016/j.neuron.2012.10.002 10.1007/s00424-006-0187-x 10.1002/dvdy.21084 10.1523/JNEUROSCI.3045-14.2015 10.1016/j.neuron.2014.06.032 10.1038/nn2048 10.1016/S0079-6123(05)51012-4 10.1016/j.neuron.2013.06.041 10.1016/j.conb.2015.01.006 10.1523/JNEUROSCI.23-09-03726.2003 10.1002/cne.23602 10.1159/000118769 10.1016/j.neuron.2009.12.009 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Copyright © 2016 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright © 2016 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.cell.2016.10.019 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 960.e20 |
ExternalDocumentID | PMC5111816 27814522 10_1016_j_cell_2016_10_019 S0092867416314027 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: DP1 NS082121 – fundername: NINDS NIH HHS grantid: U01 NS090449 – fundername: NINDS NIH HHS grantid: R24 NS086601 |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6I. 6J9 7-5 85S AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AAKUH AAUCE AAVLU AAXJY AAXUO ABCQX ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AIDAL AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YZZ ZA5 ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAEDT AAHBH AAIKJ AALRI AAMRU AAQFI AAQXK AAYJJ AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AI. AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 0SF CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c554t-d8eb5160c6d2a07133a5c3eb0f5ee7bc04513e1b1dd170c596aa250c4215106f3 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 13:46:14 EDT 2025 Thu Sep 04 22:08:29 EDT 2025 Fri Sep 05 06:10:30 EDT 2025 Thu Jan 02 23:09:06 EST 2025 Tue Jul 01 02:16:56 EDT 2025 Thu Apr 24 23:11:33 EDT 2025 Fri Feb 23 02:30:35 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | circuit model behavioral analysis two-photon imaging zebrafish calcium imaging |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2016 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c554t-d8eb5160c6d2a07133a5c3eb0f5ee7bc04513e1b1dd170c596aa250c4215106f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0092867416314027 |
PMID | 27814522 |
PQID | 1836733118 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5111816 proquest_miscellaneous_2000200401 proquest_miscellaneous_1836733118 pubmed_primary_27814522 crossref_citationtrail_10_1016_j_cell_2016_10_019 crossref_primary_10_1016_j_cell_2016_10_019 elsevier_sciencedirect_doi_10_1016_j_cell_2016_10_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11-03 |
PublicationDateYYYYMMDD | 2016-11-03 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Ahrens, Li, Orger, Robson, Schier, Engert, Portugues (bib1) 2012; 485 Ahrens, Huang, Narayan, Mensh, Engert (bib3) 2013; 7 Vanegas, Ito (bib51) 1983; 287 Chalasani, Chronis, Tsunozaki, Gray, Ramot, Goodman, Bargmann (bib9) 2007; 450 Sompolinsky (bib49) 2014; 25 Yonehara, Ishikane, Sakuta, Shintani, Nakamura-Yonehara, Kamiji, Usui, Noda (bib52) 2009; 4 Scalia (bib46) 1972; 145 Lee, Arrenberg, Aksay (bib31) 2015; 35 Fink, Croce, Huang, Abbott, Jessell, Azim (bib14) 2014; 509 Ko, Hofer, Pichler, Buchanan, Sjöström, Mrsic-Flogel (bib26) 2011; 473 Masland (bib33) 2012; 76 Korn, Faber (bib28) 2005; 47 Rigotti, Barak, Warden, Wang, Daw, Miller, Fusi (bib40) 2013; 497 Armstrong (bib4) 1988; 405 Mauss, Pankova, Arenz, Nern, Rubin, Borst (bib34) 2015; 162 O’Leary, Sutton, Marder (bib35) 2015; 32 Koyama, Kinkhabwala, Satou, Higashijima, Fetcho (bib29) 2011; 108 Orger, Kampff, Severi, Bollmann, Engert (bib37) 2008; 11 Huang, Ahrens, Dunn, Engert (bib22) 2013; 23 Gamlin (bib17) 2006; 151 Roeser, Baier (bib42) 2003; 23 Kato, Kaplan, Schrödel, Skora, Lindsay, Yemini, Lockery, Zimmer (bib24) 2015; 163 Portugues, Feierstein, Engert, Orger (bib38) 2014; 81 Huberman, Wei, Elstrott, Stafford, Feller, Barres (bib23) 2009; 62 Bounoutas, Chalfie (bib7) 2007; 454 Koontz, Rodieck, Farmer (bib27) 1985; 236 Dunn, Mu, Narayan, Randlett, Naumann, Yang, Schier, Freeman, Engert, Ahrens (bib12) 2016; 5 Fite (bib16) 1985; 26 Burrill, Easter (bib8) 1994; 346 Ruta, Datta, Vasconcelos, Freeland, Looger, Axel (bib43) 2010; 468 Randlett, Wee, Naumann, Nnaemeka, Schoppik, Fitzgerald, Portugues, Lacoste, Riegler, Engert, Schier (bib39) 2015; 12 Robles, Laurell, Baier (bib41) 2014; 24 Severi, Portugues, Marques, O’Malley, Orger, Engert (bib47) 2014; 83 Kubo, Hablitzel, Dal Maschio, Driever, Baier, Arrenberg (bib30) 2014; 81 Borst, Haag, Reiff (bib6) 2010; 33 Kinkhabwala, Riley, Koyama, Monen, Satou, Kimura, Higashijima, Fetcho (bib25) 2011; 108 Datta, Vasconcelos, Ruta, Luo, Wong, Demir, Flores, Balonze, Dickson, Axel (bib11) 2008; 452 Felleman, Van Essen (bib13) 1991; 1 Gollisch, Meister (bib20) 2010; 65 Lisberger (bib32) 2010; 66 Giolli, Blanks, Torigoe (bib19) 1984; 227 Sun, May (bib50) 2014; 522 Bianco, Engert (bib5) 2015; 25 Ryczko, Dubuc (bib44) 2013; 19 Heiligenberg, Konishi (bib21) 1991 Fisher, Olasagasti, Tank, Aksay, Goldman (bib15) 2013; 79 Ahrens, Orger, Robson, Li, Keller (bib2) 2013; 10 Gao, Ganguli (bib18) 2015; 32 Silies, Gohl, Clandinin (bib48) 2014; 37 Sassa, Aizawa, Okamoto (bib45) 2007; 236 Chédotal (bib10) 2014; 37 Ohyama, Schneider-Mizell, Fetter, Aleman, Franconville, Rivera-Alba, Mensh, Branson, Simpson, Truman (bib36) 2015; 520 Fisher (10.1016/j.cell.2016.10.019_bib15) 2013; 79 Heiligenberg (10.1016/j.cell.2016.10.019_bib21) 1991 Gollisch (10.1016/j.cell.2016.10.019_bib20) 2010; 65 Ohyama (10.1016/j.cell.2016.10.019_bib36) 2015; 520 Ahrens (10.1016/j.cell.2016.10.019_bib2) 2013; 10 Ko (10.1016/j.cell.2016.10.019_bib26) 2011; 473 Korn (10.1016/j.cell.2016.10.019_bib28) 2005; 47 Ahrens (10.1016/j.cell.2016.10.019_bib3) 2013; 7 Masland (10.1016/j.cell.2016.10.019_bib33) 2012; 76 Giolli (10.1016/j.cell.2016.10.019_bib19) 1984; 227 O’Leary (10.1016/j.cell.2016.10.019_bib35) 2015; 32 Lisberger (10.1016/j.cell.2016.10.019_bib32) 2010; 66 Mauss (10.1016/j.cell.2016.10.019_bib34) 2015; 162 Koyama (10.1016/j.cell.2016.10.019_bib29) 2011; 108 Gao (10.1016/j.cell.2016.10.019_bib18) 2015; 32 Felleman (10.1016/j.cell.2016.10.019_bib13) 1991; 1 Severi (10.1016/j.cell.2016.10.019_bib47) 2014; 83 Bounoutas (10.1016/j.cell.2016.10.019_bib7) 2007; 454 Orger (10.1016/j.cell.2016.10.019_bib37) 2008; 11 Vanegas (10.1016/j.cell.2016.10.019_bib51) 1983; 287 Kato (10.1016/j.cell.2016.10.019_bib24) 2015; 163 Dunn (10.1016/j.cell.2016.10.019_bib12) 2016; 5 Fite (10.1016/j.cell.2016.10.019_bib16) 1985; 26 Huang (10.1016/j.cell.2016.10.019_bib22) 2013; 23 Koontz (10.1016/j.cell.2016.10.019_bib27) 1985; 236 Burrill (10.1016/j.cell.2016.10.019_bib8) 1994; 346 Chédotal (10.1016/j.cell.2016.10.019_bib10) 2014; 37 Scalia (10.1016/j.cell.2016.10.019_bib46) 1972; 145 Armstrong (10.1016/j.cell.2016.10.019_bib4) 1988; 405 Rigotti (10.1016/j.cell.2016.10.019_bib40) 2013; 497 Kinkhabwala (10.1016/j.cell.2016.10.019_bib25) 2011; 108 Yonehara (10.1016/j.cell.2016.10.019_bib52) 2009; 4 Gamlin (10.1016/j.cell.2016.10.019_bib17) 2006; 151 Robles (10.1016/j.cell.2016.10.019_bib41) 2014; 24 Sassa (10.1016/j.cell.2016.10.019_bib45) 2007; 236 Ruta (10.1016/j.cell.2016.10.019_bib43) 2010; 468 Sompolinsky (10.1016/j.cell.2016.10.019_bib49) 2014; 25 Huberman (10.1016/j.cell.2016.10.019_bib23) 2009; 62 Roeser (10.1016/j.cell.2016.10.019_bib42) 2003; 23 Silies (10.1016/j.cell.2016.10.019_bib48) 2014; 37 Bianco (10.1016/j.cell.2016.10.019_bib5) 2015; 25 Fink (10.1016/j.cell.2016.10.019_bib14) 2014; 509 Ahrens (10.1016/j.cell.2016.10.019_bib1) 2012; 485 Kubo (10.1016/j.cell.2016.10.019_bib30) 2014; 81 Sun (10.1016/j.cell.2016.10.019_bib50) 2014; 522 Randlett (10.1016/j.cell.2016.10.019_bib39) 2015; 12 Lee (10.1016/j.cell.2016.10.019_bib31) 2015; 35 Chalasani (10.1016/j.cell.2016.10.019_bib9) 2007; 450 Datta (10.1016/j.cell.2016.10.019_bib11) 2008; 452 Borst (10.1016/j.cell.2016.10.019_bib6) 2010; 33 Portugues (10.1016/j.cell.2016.10.019_bib38) 2014; 81 Ryczko (10.1016/j.cell.2016.10.019_bib44) 2013; 19 27003593 - Elife. 2016 Mar 22;5:e12741 24602868 - Curr Opin Neurobiol. 2014 Apr;25:xiii-xviii 25220044 - Trends Neurosci. 2014 Oct;37(10):551-62 24656252 - Neuron. 2014 Mar 19;81(6):1328-43 6470215 - J Comp Neurol. 1984 Aug 1;227(2):228-51 24656253 - Neuron. 2014 Mar 19;81(6):1344-59 12736343 - J Neurosci. 2003 May 1;23(9):3726-34 25032498 - Annu Rev Neurosci. 2014;37:307-27 20152123 - Neuron. 2010 Jan 28;65(2):150-64 15996545 - Neuron. 2005 Jul 7;47(1):13-28 21124455 - Nature. 2010 Dec 2;468(7324):686-90 24012010 - Neuron. 2013 Sep 4;79(5):987-1000 3907745 - Brain Behav Evol. 1985;26(2):71-90 21199937 - Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1170-5 17279576 - Dev Dyn. 2007 Mar;236(3):706-18 21478872 - Nature. 2011 May 5;473(7345):87-91 25995475 - J Neurosci. 2015 May 20;35(20):7903-20 25932978 - Curr Opin Neurobiol. 2015 Jun;32:148-55 7983245 - J Comp Neurol. 1994 Aug 22;346(4):583-600 26186189 - Cell. 2015 Jul 16;162(2):351-62 3076600 - J Physiol. 1988 Nov;405:1-37 23083731 - Neuron. 2012 Oct 18;76(2):266-80 22622571 - Nature. 2012 May 09;485(7399):471-7 20225934 - Annu Rev Neurosci. 2010;33:49-70 23910662 - Curr Biol. 2013 Aug 19;23(16):1566-73 24784215 - Nature. 2014 May 1;509(7498):43-8 23360276 - Curr Pharm Des. 2013;19(24):4448-70 19447089 - Neuron. 2009 May 14;62(3):327-34 26778924 - Nat Methods. 2015 Nov;12(11):1039-46 1822724 - Cereb Cortex. 1991 Jan-Feb;1(1):1-47 25754638 - Curr Biol. 2015 Mar 30;25(7):831-46 25066084 - Neuron. 2014 Aug 6;83(3):692-707 23524393 - Nat Methods. 2013 May;10(5):413-20 25896325 - Nature. 2015 Apr 30;520(7549):633-9 18264094 - Nat Neurosci. 2008 Mar;11(3):327-33 20510853 - Neuron. 2010 May 27;66(4):477-91 17285303 - Pflugers Arch. 2007 Aug;454(5):691-702 24706328 - J Comp Neurol. 2014 Dec 15;522(18):3960-77 23685452 - Nature. 2013 May 30;497(7451):585-90 17972877 - Nature. 2007 Nov 1;450(7166):63-70 6315186 - Brain Res. 1983 Oct;287(2):117-37 18305480 - Nature. 2008 Mar 27;452(7186):473-7 21199947 - Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1164-9 25155513 - Curr Biol. 2014 Sep 22;24(18):2085-96 4056090 - J Comp Neurol. 1985 Jun 1;236(1):42-59 4555428 - J Comp Neurol. 1972 Jun;145(2):223-57 25637959 - Curr Opin Neurobiol. 2015 Jun;32:87-94 26478179 - Cell. 2015 Oct 22;163(3):656-69 16221595 - Prog Brain Res. 2006;151:379-405 19177171 - PLoS One. 2009;4(1):e4320 23761738 - Front Neural Circuits. 2013 Jun 06;7:104 |
References_xml | – volume: 473 start-page: 87 year: 2011 end-page: 91 ident: bib26 article-title: Functional specificity of local synaptic connections in neocortical networks publication-title: Nature – volume: 35 start-page: 7903 year: 2015 end-page: 7920 ident: bib31 article-title: A structural and genotypic scaffold underlying temporal integration publication-title: J. Neurosci. – volume: 81 start-page: 1328 year: 2014 end-page: 1343 ident: bib38 article-title: Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior publication-title: Neuron – year: 1991 ident: bib21 article-title: Neural Nets in Electric Fish – volume: 468 start-page: 686 year: 2010 end-page: 690 ident: bib43 article-title: A dimorphic pheromone circuit in Drosophila from sensory input to descending output publication-title: Nature – volume: 23 start-page: 1566 year: 2013 end-page: 1573 ident: bib22 article-title: Spinal projection neurons control turning behaviors in zebrafish publication-title: Curr. Biol. – volume: 522 start-page: 3960 year: 2014 end-page: 3977 ident: bib50 article-title: Central pupillary light reflex circuits in the cat: I. The olivary pretectal nucleus publication-title: J. Comp. Neurol. – volume: 454 start-page: 691 year: 2007 end-page: 702 ident: bib7 article-title: Touch sensitivity in Caenorhabditis elegans. Pflüg publication-title: Arch. Eur. J. Physiol. – volume: 7 start-page: 104 year: 2013 ident: bib3 article-title: Two-photon calcium imaging during fictive navigation in virtual environments publication-title: Front. Neural Circuits – volume: 19 start-page: 4448 year: 2013 end-page: 4470 ident: bib44 article-title: The multifunctional mesencephalic locomotor region publication-title: Curr. Pharm. Des. – volume: 66 start-page: 477 year: 2010 end-page: 491 ident: bib32 article-title: Visual guidance of smooth-pursuit eye movements: Sensation, action, and what happens in between publication-title: Neuron – volume: 37 start-page: 551 year: 2014 end-page: 562 ident: bib10 article-title: Development and plasticity of commissural circuits: From locomotion to brain repair publication-title: Trends Neurosci. – volume: 25 start-page: xiii year: 2014 end-page: xviii ident: bib49 article-title: Computational neuroscience: Beyond the local circuit publication-title: Curr. Opin. Neurobiol. – volume: 23 start-page: 3726 year: 2003 end-page: 3734 ident: bib42 article-title: Visuomotor behaviors in larval zebrafish after GFP-guided laser ablation of the optic tectum publication-title: J. Neurosci. – volume: 24 start-page: 2085 year: 2014 end-page: 2096 ident: bib41 article-title: The retinal projectome reveals brain-area-specific visual representations generated by ganglion cell diversity publication-title: Curr. Biol. – volume: 25 start-page: 831 year: 2015 end-page: 846 ident: bib5 article-title: Visuomotor transformations underlying hunting behavior in zebrafish publication-title: Curr. Biol. – volume: 509 start-page: 43 year: 2014 end-page: 48 ident: bib14 article-title: Presynaptic inhibition of spinal sensory feedback ensures smooth movement publication-title: Nature – volume: 76 start-page: 266 year: 2012 end-page: 280 ident: bib33 article-title: The neuronal organization of the retina publication-title: Neuron – volume: 108 start-page: 1170 year: 2011 end-page: 1175 ident: bib29 article-title: Mapping a sensory-motor network onto a structural and functional ground plan in the hindbrain publication-title: Proc. Natl. Acad. Sci. USA – volume: 33 start-page: 49 year: 2010 end-page: 70 ident: bib6 article-title: Fly motion vision publication-title: Annu. Rev. Neurosci. – volume: 81 start-page: 1344 year: 2014 end-page: 1359 ident: bib30 article-title: Functional architecture of an optic flow-responsive area that drives horizontal eye movements in zebrafish publication-title: Neuron – volume: 26 start-page: 71 year: 1985 end-page: 90 ident: bib16 article-title: Pretectal and accessory-optic visual nuclei of fish, amphibia and reptiles: Theme and variations publication-title: Brain Behav. Evol. – volume: 12 start-page: 1039 year: 2015 end-page: 1046 ident: bib39 article-title: Whole-brain activity mapping onto a zebrafish brain atlas publication-title: Nat. Methods – volume: 32 start-page: 148 year: 2015 end-page: 155 ident: bib18 article-title: On simplicity and complexity in the brave new world of large-scale neuroscience publication-title: Curr. Opin. Neurobiol. – volume: 162 start-page: 351 year: 2015 end-page: 362 ident: bib34 article-title: neural circuit to integrate opposing motions in the visual field publication-title: Cell – volume: 32 start-page: 87 year: 2015 end-page: 94 ident: bib35 article-title: Computational models in the age of large datasets publication-title: Curr. Opin. Neurobiol. – volume: 405 start-page: 1 year: 1988 end-page: 37 ident: bib4 article-title: The supraspinal control of mammalian locomotion publication-title: J. Physiol. – volume: 108 start-page: 1164 year: 2011 end-page: 1169 ident: bib25 article-title: A structural and functional ground plan for neurons in the hindbrain of zebrafish publication-title: Proc. Natl. Acad. Sci. USA – volume: 227 start-page: 228 year: 1984 end-page: 251 ident: bib19 article-title: Pretectal and brain stem projections of the medial terminal nucleus of the accessory optic system of the rabbit and rat as studied by anterograde and retrograde neuronal tracing methods publication-title: J. Comp. Neurol. – volume: 5 start-page: e12741 year: 2016 ident: bib12 article-title: Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion publication-title: eLife – volume: 287 start-page: 117 year: 1983 end-page: 137 ident: bib51 article-title: Morphological aspects of the teleostean visual system: A review publication-title: Brain Res. – volume: 145 start-page: 223 year: 1972 end-page: 257 ident: bib46 article-title: The termination of retinal axons in the pretectal region of mammals publication-title: J. Comp. Neurol. – volume: 65 start-page: 150 year: 2010 end-page: 164 ident: bib20 article-title: Eye smarter than scientists believed: Neural computations in circuits of the retina publication-title: Neuron – volume: 452 start-page: 473 year: 2008 end-page: 477 ident: bib11 article-title: The Drosophila pheromone cVA activates a sexually dimorphic neural circuit publication-title: Nature – volume: 346 start-page: 583 year: 1994 end-page: 600 ident: bib8 article-title: Development of the retinofugal projections in the embryonic and larval zebrafish (Brachydanio rerio) publication-title: J. Comp. Neurol. – volume: 163 start-page: 656 year: 2015 end-page: 669 ident: bib24 article-title: Global brain dynamics embed the motor command sequence of Caenorhabditis elegans publication-title: Cell – volume: 10 start-page: 413 year: 2013 end-page: 420 ident: bib2 article-title: Whole-brain functional imaging at cellular resolution using light-sheet microscopy publication-title: Nat. Methods – volume: 520 start-page: 633 year: 2015 end-page: 639 ident: bib36 article-title: A multilevel multimodal circuit enhances action selection in Drosophila publication-title: Nature – volume: 11 start-page: 327 year: 2008 end-page: 333 ident: bib37 article-title: Control of visually guided behavior by distinct populations of spinal projection neurons publication-title: Nat. Neurosci. – volume: 1 start-page: 1 year: 1991 end-page: 47 ident: bib13 article-title: Distributed hierarchical processing in the primate cerebral cortex publication-title: Cereb. Cortex – volume: 62 start-page: 327 year: 2009 end-page: 334 ident: bib23 article-title: Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion publication-title: Neuron – volume: 236 start-page: 42 year: 1985 end-page: 59 ident: bib27 article-title: The retinal projection to the cat pretectum publication-title: J. Comp. Neurol. – volume: 485 start-page: 471 year: 2012 end-page: 477 ident: bib1 article-title: Brain-wide neuronal dynamics during motor adaptation in zebrafish publication-title: Nature – volume: 151 start-page: 379 year: 2006 end-page: 405 ident: bib17 article-title: The pretectum: Connections and oculomotor-related roles publication-title: Prog. Brain Res. – volume: 37 start-page: 307 year: 2014 end-page: 327 ident: bib48 article-title: Motion-detecting circuits in flies: Coming into view publication-title: Annu. Rev. Neurosci. – volume: 47 start-page: 13 year: 2005 end-page: 28 ident: bib28 article-title: The Mauthner cell half a century later: A neurobiological model for decision-making? publication-title: Neuron – volume: 79 start-page: 987 year: 2013 end-page: 1000 ident: bib15 article-title: A modeling framework for deriving the structural and functional architecture of a short-term memory microcircuit publication-title: Neuron – volume: 4 start-page: e4320 year: 2009 ident: bib52 article-title: Identification of retinal ganglion cells and their projections involved in central transmission of information about upward and downward image motion publication-title: PLoS ONE – volume: 450 start-page: 63 year: 2007 end-page: 70 ident: bib9 article-title: Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans publication-title: Nature – volume: 497 start-page: 585 year: 2013 end-page: 590 ident: bib40 article-title: The importance of mixed selectivity in complex cognitive tasks publication-title: Nature – volume: 236 start-page: 706 year: 2007 end-page: 718 ident: bib45 article-title: Visualization of two distinct classes of neurons by gad2 and zic1 promoter/enhancer elements in the dorsal hindbrain of developing zebrafish reveals neuronal connectivity related to the auditory and lateral line systems publication-title: Dev. Dyn. – volume: 83 start-page: 692 year: 2014 end-page: 707 ident: bib47 article-title: Neural control and modulation of swimming speed in the larval zebrafish publication-title: Neuron – volume: 163 start-page: 656 year: 2015 ident: 10.1016/j.cell.2016.10.019_bib24 article-title: Global brain dynamics embed the motor command sequence of Caenorhabditis elegans publication-title: Cell doi: 10.1016/j.cell.2015.09.034 – volume: 81 start-page: 1328 year: 2014 ident: 10.1016/j.cell.2016.10.019_bib38 article-title: Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior publication-title: Neuron doi: 10.1016/j.neuron.2014.01.019 – volume: 24 start-page: 2085 year: 2014 ident: 10.1016/j.cell.2016.10.019_bib41 article-title: The retinal projectome reveals brain-area-specific visual representations generated by ganglion cell diversity publication-title: Curr. Biol. doi: 10.1016/j.cub.2014.07.080 – volume: 468 start-page: 686 year: 2010 ident: 10.1016/j.cell.2016.10.019_bib43 article-title: A dimorphic pheromone circuit in Drosophila from sensory input to descending output publication-title: Nature doi: 10.1038/nature09554 – volume: 4 start-page: e4320 year: 2009 ident: 10.1016/j.cell.2016.10.019_bib52 article-title: Identification of retinal ganglion cells and their projections involved in central transmission of information about upward and downward image motion publication-title: PLoS ONE doi: 10.1371/journal.pone.0004320 – volume: 62 start-page: 327 year: 2009 ident: 10.1016/j.cell.2016.10.019_bib23 article-title: Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion publication-title: Neuron doi: 10.1016/j.neuron.2009.04.014 – volume: 108 start-page: 1170 year: 2011 ident: 10.1016/j.cell.2016.10.019_bib29 article-title: Mapping a sensory-motor network onto a structural and functional ground plan in the hindbrain publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1012189108 – volume: 25 start-page: xiii year: 2014 ident: 10.1016/j.cell.2016.10.019_bib49 article-title: Computational neuroscience: Beyond the local circuit publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2014.02.002 – volume: 7 start-page: 104 year: 2013 ident: 10.1016/j.cell.2016.10.019_bib3 article-title: Two-photon calcium imaging during fictive navigation in virtual environments publication-title: Front. Neural Circuits doi: 10.3389/fncir.2013.00104 – volume: 287 start-page: 117 year: 1983 ident: 10.1016/j.cell.2016.10.019_bib51 article-title: Morphological aspects of the teleostean visual system: A review publication-title: Brain Res. doi: 10.1016/0165-0173(83)90036-X – volume: 33 start-page: 49 year: 2010 ident: 10.1016/j.cell.2016.10.019_bib6 article-title: Fly motion vision publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-060909-153155 – year: 1991 ident: 10.1016/j.cell.2016.10.019_bib21 – volume: 520 start-page: 633 year: 2015 ident: 10.1016/j.cell.2016.10.019_bib36 article-title: A multilevel multimodal circuit enhances action selection in Drosophila publication-title: Nature doi: 10.1038/nature14297 – volume: 47 start-page: 13 year: 2005 ident: 10.1016/j.cell.2016.10.019_bib28 article-title: The Mauthner cell half a century later: A neurobiological model for decision-making? publication-title: Neuron doi: 10.1016/j.neuron.2005.05.019 – volume: 485 start-page: 471 year: 2012 ident: 10.1016/j.cell.2016.10.019_bib1 article-title: Brain-wide neuronal dynamics during motor adaptation in zebrafish publication-title: Nature doi: 10.1038/nature11057 – volume: 1 start-page: 1 year: 1991 ident: 10.1016/j.cell.2016.10.019_bib13 article-title: Distributed hierarchical processing in the primate cerebral cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/1.1.1 – volume: 497 start-page: 585 year: 2013 ident: 10.1016/j.cell.2016.10.019_bib40 article-title: The importance of mixed selectivity in complex cognitive tasks publication-title: Nature doi: 10.1038/nature12160 – volume: 473 start-page: 87 year: 2011 ident: 10.1016/j.cell.2016.10.019_bib26 article-title: Functional specificity of local synaptic connections in neocortical networks publication-title: Nature doi: 10.1038/nature09880 – volume: 81 start-page: 1344 year: 2014 ident: 10.1016/j.cell.2016.10.019_bib30 article-title: Functional architecture of an optic flow-responsive area that drives horizontal eye movements in zebrafish publication-title: Neuron doi: 10.1016/j.neuron.2014.02.043 – volume: 452 start-page: 473 year: 2008 ident: 10.1016/j.cell.2016.10.019_bib11 article-title: The Drosophila pheromone cVA activates a sexually dimorphic neural circuit publication-title: Nature doi: 10.1038/nature06808 – volume: 25 start-page: 831 year: 2015 ident: 10.1016/j.cell.2016.10.019_bib5 article-title: Visuomotor transformations underlying hunting behavior in zebrafish publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.01.042 – volume: 509 start-page: 43 year: 2014 ident: 10.1016/j.cell.2016.10.019_bib14 article-title: Presynaptic inhibition of spinal sensory feedback ensures smooth movement publication-title: Nature doi: 10.1038/nature13276 – volume: 37 start-page: 551 year: 2014 ident: 10.1016/j.cell.2016.10.019_bib10 article-title: Development and plasticity of commissural circuits: From locomotion to brain repair publication-title: Trends Neurosci. doi: 10.1016/j.tins.2014.08.009 – volume: 23 start-page: 1566 year: 2013 ident: 10.1016/j.cell.2016.10.019_bib22 article-title: Spinal projection neurons control turning behaviors in zebrafish publication-title: Curr. Biol. doi: 10.1016/j.cub.2013.06.044 – volume: 450 start-page: 63 year: 2007 ident: 10.1016/j.cell.2016.10.019_bib9 article-title: Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans publication-title: Nature doi: 10.1038/nature06292 – volume: 227 start-page: 228 year: 1984 ident: 10.1016/j.cell.2016.10.019_bib19 article-title: Pretectal and brain stem projections of the medial terminal nucleus of the accessory optic system of the rabbit and rat as studied by anterograde and retrograde neuronal tracing methods publication-title: J. Comp. Neurol. doi: 10.1002/cne.902270208 – volume: 405 start-page: 1 year: 1988 ident: 10.1016/j.cell.2016.10.019_bib4 article-title: The supraspinal control of mammalian locomotion publication-title: J. Physiol. doi: 10.1113/jphysiol.1988.sp017319 – volume: 236 start-page: 42 year: 1985 ident: 10.1016/j.cell.2016.10.019_bib27 article-title: The retinal projection to the cat pretectum publication-title: J. Comp. Neurol. doi: 10.1002/cne.902360105 – volume: 32 start-page: 148 year: 2015 ident: 10.1016/j.cell.2016.10.019_bib18 article-title: On simplicity and complexity in the brave new world of large-scale neuroscience publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2015.04.003 – volume: 346 start-page: 583 year: 1994 ident: 10.1016/j.cell.2016.10.019_bib8 article-title: Development of the retinofugal projections in the embryonic and larval zebrafish (Brachydanio rerio) publication-title: J. Comp. Neurol. doi: 10.1002/cne.903460410 – volume: 5 start-page: e12741 year: 2016 ident: 10.1016/j.cell.2016.10.019_bib12 article-title: Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion publication-title: eLife doi: 10.7554/eLife.12741 – volume: 108 start-page: 1164 year: 2011 ident: 10.1016/j.cell.2016.10.019_bib25 article-title: A structural and functional ground plan for neurons in the hindbrain of zebrafish publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1012185108 – volume: 145 start-page: 223 year: 1972 ident: 10.1016/j.cell.2016.10.019_bib46 article-title: The termination of retinal axons in the pretectal region of mammals publication-title: J. Comp. Neurol. doi: 10.1002/cne.901450208 – volume: 10 start-page: 413 year: 2013 ident: 10.1016/j.cell.2016.10.019_bib2 article-title: Whole-brain functional imaging at cellular resolution using light-sheet microscopy publication-title: Nat. Methods doi: 10.1038/nmeth.2434 – volume: 37 start-page: 307 year: 2014 ident: 10.1016/j.cell.2016.10.019_bib48 article-title: Motion-detecting circuits in flies: Coming into view publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-071013-013931 – volume: 162 start-page: 351 year: 2015 ident: 10.1016/j.cell.2016.10.019_bib34 article-title: neural circuit to integrate opposing motions in the visual field publication-title: Cell doi: 10.1016/j.cell.2015.06.035 – volume: 19 start-page: 4448 year: 2013 ident: 10.1016/j.cell.2016.10.019_bib44 article-title: The multifunctional mesencephalic locomotor region publication-title: Curr. Pharm. Des. doi: 10.2174/1381612811319240011 – volume: 12 start-page: 1039 year: 2015 ident: 10.1016/j.cell.2016.10.019_bib39 article-title: Whole-brain activity mapping onto a zebrafish brain atlas publication-title: Nat. Methods doi: 10.1038/nmeth.3581 – volume: 66 start-page: 477 year: 2010 ident: 10.1016/j.cell.2016.10.019_bib32 article-title: Visual guidance of smooth-pursuit eye movements: Sensation, action, and what happens in between publication-title: Neuron doi: 10.1016/j.neuron.2010.03.027 – volume: 76 start-page: 266 year: 2012 ident: 10.1016/j.cell.2016.10.019_bib33 article-title: The neuronal organization of the retina publication-title: Neuron doi: 10.1016/j.neuron.2012.10.002 – volume: 454 start-page: 691 year: 2007 ident: 10.1016/j.cell.2016.10.019_bib7 article-title: Touch sensitivity in Caenorhabditis elegans. Pflüg publication-title: Arch. Eur. J. Physiol. doi: 10.1007/s00424-006-0187-x – volume: 236 start-page: 706 year: 2007 ident: 10.1016/j.cell.2016.10.019_bib45 article-title: Visualization of two distinct classes of neurons by gad2 and zic1 promoter/enhancer elements in the dorsal hindbrain of developing zebrafish reveals neuronal connectivity related to the auditory and lateral line systems publication-title: Dev. Dyn. doi: 10.1002/dvdy.21084 – volume: 35 start-page: 7903 year: 2015 ident: 10.1016/j.cell.2016.10.019_bib31 article-title: A structural and genotypic scaffold underlying temporal integration publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3045-14.2015 – volume: 83 start-page: 692 year: 2014 ident: 10.1016/j.cell.2016.10.019_bib47 article-title: Neural control and modulation of swimming speed in the larval zebrafish publication-title: Neuron doi: 10.1016/j.neuron.2014.06.032 – volume: 11 start-page: 327 year: 2008 ident: 10.1016/j.cell.2016.10.019_bib37 article-title: Control of visually guided behavior by distinct populations of spinal projection neurons publication-title: Nat. Neurosci. doi: 10.1038/nn2048 – volume: 151 start-page: 379 year: 2006 ident: 10.1016/j.cell.2016.10.019_bib17 article-title: The pretectum: Connections and oculomotor-related roles publication-title: Prog. Brain Res. doi: 10.1016/S0079-6123(05)51012-4 – volume: 79 start-page: 987 year: 2013 ident: 10.1016/j.cell.2016.10.019_bib15 article-title: A modeling framework for deriving the structural and functional architecture of a short-term memory microcircuit publication-title: Neuron doi: 10.1016/j.neuron.2013.06.041 – volume: 32 start-page: 87 year: 2015 ident: 10.1016/j.cell.2016.10.019_bib35 article-title: Computational models in the age of large datasets publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2015.01.006 – volume: 23 start-page: 3726 year: 2003 ident: 10.1016/j.cell.2016.10.019_bib42 article-title: Visuomotor behaviors in larval zebrafish after GFP-guided laser ablation of the optic tectum publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-09-03726.2003 – volume: 522 start-page: 3960 year: 2014 ident: 10.1016/j.cell.2016.10.019_bib50 article-title: Central pupillary light reflex circuits in the cat: I. The olivary pretectal nucleus publication-title: J. Comp. Neurol. doi: 10.1002/cne.23602 – volume: 26 start-page: 71 year: 1985 ident: 10.1016/j.cell.2016.10.019_bib16 article-title: Pretectal and accessory-optic visual nuclei of fish, amphibia and reptiles: Theme and variations publication-title: Brain Behav. Evol. doi: 10.1159/000118769 – volume: 65 start-page: 150 year: 2010 ident: 10.1016/j.cell.2016.10.019_bib20 article-title: Eye smarter than scientists believed: Neural computations in circuits of the retina publication-title: Neuron doi: 10.1016/j.neuron.2009.12.009 – reference: 25032498 - Annu Rev Neurosci. 2014;37:307-27 – reference: 4056090 - J Comp Neurol. 1985 Jun 1;236(1):42-59 – reference: 3076600 - J Physiol. 1988 Nov;405:1-37 – reference: 25155513 - Curr Biol. 2014 Sep 22;24(18):2085-96 – reference: 6470215 - J Comp Neurol. 1984 Aug 1;227(2):228-51 – reference: 23685452 - Nature. 2013 May 30;497(7451):585-90 – reference: 26478179 - Cell. 2015 Oct 22;163(3):656-69 – reference: 19177171 - PLoS One. 2009;4(1):e4320 – reference: 25932978 - Curr Opin Neurobiol. 2015 Jun;32:148-55 – reference: 24656252 - Neuron. 2014 Mar 19;81(6):1328-43 – reference: 23910662 - Curr Biol. 2013 Aug 19;23(16):1566-73 – reference: 17279576 - Dev Dyn. 2007 Mar;236(3):706-18 – reference: 23761738 - Front Neural Circuits. 2013 Jun 06;7:104 – reference: 21478872 - Nature. 2011 May 5;473(7345):87-91 – reference: 19447089 - Neuron. 2009 May 14;62(3):327-34 – reference: 18264094 - Nat Neurosci. 2008 Mar;11(3):327-33 – reference: 25637959 - Curr Opin Neurobiol. 2015 Jun;32:87-94 – reference: 16221595 - Prog Brain Res. 2006;151:379-405 – reference: 17972877 - Nature. 2007 Nov 1;450(7166):63-70 – reference: 3907745 - Brain Behav Evol. 1985;26(2):71-90 – reference: 20152123 - Neuron. 2010 Jan 28;65(2):150-64 – reference: 17285303 - Pflugers Arch. 2007 Aug;454(5):691-702 – reference: 7983245 - J Comp Neurol. 1994 Aug 22;346(4):583-600 – reference: 18305480 - Nature. 2008 Mar 27;452(7186):473-7 – reference: 15996545 - Neuron. 2005 Jul 7;47(1):13-28 – reference: 25066084 - Neuron. 2014 Aug 6;83(3):692-707 – reference: 25896325 - Nature. 2015 Apr 30;520(7549):633-9 – reference: 22622571 - Nature. 2012 May 09;485(7399):471-7 – reference: 24706328 - J Comp Neurol. 2014 Dec 15;522(18):3960-77 – reference: 25754638 - Curr Biol. 2015 Mar 30;25(7):831-46 – reference: 25220044 - Trends Neurosci. 2014 Oct;37(10):551-62 – reference: 26186189 - Cell. 2015 Jul 16;162(2):351-62 – reference: 25995475 - J Neurosci. 2015 May 20;35(20):7903-20 – reference: 24012010 - Neuron. 2013 Sep 4;79(5):987-1000 – reference: 27003593 - Elife. 2016 Mar 22;5:e12741 – reference: 1822724 - Cereb Cortex. 1991 Jan-Feb;1(1):1-47 – reference: 21124455 - Nature. 2010 Dec 2;468(7324):686-90 – reference: 24602868 - Curr Opin Neurobiol. 2014 Apr;25:xiii-xviii – reference: 24784215 - Nature. 2014 May 1;509(7498):43-8 – reference: 21199937 - Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1170-5 – reference: 26778924 - Nat Methods. 2015 Nov;12(11):1039-46 – reference: 20510853 - Neuron. 2010 May 27;66(4):477-91 – reference: 23083731 - Neuron. 2012 Oct 18;76(2):266-80 – reference: 23360276 - Curr Pharm Des. 2013;19(24):4448-70 – reference: 23524393 - Nat Methods. 2013 May;10(5):413-20 – reference: 20225934 - Annu Rev Neurosci. 2010;33:49-70 – reference: 21199947 - Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1164-9 – reference: 6315186 - Brain Res. 1983 Oct;287(2):117-37 – reference: 24656253 - Neuron. 2014 Mar 19;81(6):1344-59 – reference: 4555428 - J Comp Neurol. 1972 Jun;145(2):223-57 – reference: 12736343 - J Neurosci. 2003 May 1;23(9):3726-34 |
SSID | ssj0008555 |
Score | 2.6031015 |
Snippet | Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 947 |
SubjectTerms | Animals behavioral analysis brain Brain - physiology calcium imaging circuit model Danio rerio Feedback, Sensory image analysis Neural Pathways Neuroimaging Neurons neurophysiology streams Swimming two-photon imaging vertebrates Visual Perception zebrafish Zebrafish - physiology |
Title | From Whole-Brain Data to Functional Circuit Models: The Zebrafish Optomotor Response |
URI | https://dx.doi.org/10.1016/j.cell.2016.10.019 https://www.ncbi.nlm.nih.gov/pubmed/27814522 https://www.proquest.com/docview/1836733118 https://www.proquest.com/docview/2000200401 https://pubmed.ncbi.nlm.nih.gov/PMC5111816 |
Volume | 167 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5DEHwR787LiOCb1PWWtPXNTccQVJCJw5eSpBlWZju27sF_7zlNO5y3Bx-bpqU9Sc750n7nfISchiHXAfOVFXJlW77UrhWJUFgs0I5kXDJZqjfc3vH-o38zZMMG6da5MEirrHy_8emlt65a2pU125M0xRzfyA15iShgl-BiRjlmlWIS37Cz8MYhY0bFIIKVD72rxBnD8cKP40jv4ufI8MJqOz8Hp-_g8yuH8lNQ6m2Q9QpN0kvzwJukobMtsmr0Jd-3yaA3zd_oE0rgWh3UgqBXohC0yGkPwpn5Cki76VTN04KiKtp4dkFh4tBn_J08Smcv9H5SIF8vn9IHw6bVO-Sxdz3o9q1KRsFSgBUKKwm1ZA63FU9cUW5KBVOelvaIaR1IhRVmPBgZJ0mcwFYs4kIAMFI-ogGbj7xdspLlmd4nlI0i204AtWgpfU_DnZH_J-0I2hLuJU3i1PaLVVVjHKUuxnFNJnuN0eYx2hzbwOZNcra4ZmIqbPzZm9XDEi_NkxhCwJ_XndRjGMMCwtMi0_l8FoNP4yhc6YS_93HLP7bg75wm2TPjvnhWF4uGAYptkmBpRiw6YAHv5TNZ-lIW8gawCwCLH_zznQ7JGh6VmZHeEVkppnN9DBCpkC0MUKxVroQPF-cPXA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgguiPJcHsWVekOhzsNOwo0uXW2hLRLaihUXy3a8alBJVrvZA_-emThZsUB76NWPyBnb48_25_kADrJMulQkNsik5UFiXBTkOtOBSF1ohDTCtOoNZ-dyfJF8morpFgz7tzBEq-x8v_fprbfuUg47ax7Oy5Le-OZRJltEgbuEKL0DO4gGOA3tk-nR2h1nQngZgxynPhbvXs54khedjhO_S74jiheF2_n_6vQv-vybRPnHqjR6CA86OMk--BbvwparHsFdLzD56zFMRov6J_tGGrjBEYlBsI-60ayp2QjXM38MyIblwq7KhpEs2tXyPcORw77TffKsXF6yL_OGCHv1gn31dFr3BC5Gx5PhOOh0FAKLYKEJiswZEUpuZRHpdleqhY2d4TPhXGoshZiJsWvCoghTbkUutUZkZBOCA1zO4qewXdWVew5MzHLOC4QtzpgkdvhlIgAanmNaIeNiAGFvP2W7IOOkdXGlejbZD0U2V2RzSkObD-Dtus7ch9i4sbTou0VtDBSFa8CN9fb7PlQ4gyhbV65eLRU6NUnKlWF2fZmovbJFhxcO4Jnv93VbI4oahjB2AOnGiFgXoAjemzlVedlG8ka0iwhLvrjlP72Be-PJ2ak6PTn__BLuU077TDJ-BdvNYuVeI15qzF47H34DYaURmQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Whole-Brain+Data+to+Functional+Circuit+Models%3A+The+Zebrafish+Optomotor+Response&rft.jtitle=Cell&rft.au=Naumann%2C+Eva+A.&rft.au=Fitzgerald%2C+James+E.&rft.au=Dunn%2C+Timothy+W.&rft.au=Rihel%2C+Jason&rft.date=2016-11-03&rft.pub=Elsevier+Inc&rft.issn=0092-8674&rft.eissn=1097-4172&rft.volume=167&rft.issue=4&rft.spage=947&rft.epage=960.e20&rft_id=info:doi/10.1016%2Fj.cell.2016.10.019&rft.externalDocID=S0092867416314027 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |