From Whole-Brain Data to Functional Circuit Models: The Zebrafish Optomotor Response

Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network modeling. Here, we...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 167; no. 4; pp. 947 - 960.e20
Main Authors Naumann, Eva A., Fitzgerald, James E., Dunn, Timothy W., Rihel, Jason, Sompolinsky, Haim, Engert, Florian
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 03.11.2016
Subjects
Online AccessGet full text
ISSN0092-8674
1097-4172
1097-4172
DOI10.1016/j.cell.2016.10.019

Cover

Abstract Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network modeling. Here, we harness these tools to generate a brain-scale circuit model of the optomotor response, an orienting behavior evoked by visual motion. We show that such motion is processed by diverse neural response types distributed across multiple brain regions. To transform sensory input into action, these regions sequentially integrate eye- and direction-specific sensory streams, refine representations via interhemispheric inhibition, and demix locomotor instructions to independently drive turning and forward swimming. While experiments revealed many neural response types throughout the brain, modeling identified the dimensions of functional connectivity most critical for the behavior. We thus reveal how distributed neurons collaborate to generate behavior and illustrate a paradigm for distilling functional circuit models from whole-brain data. [Display omitted] •Optomotor response is driven asymmetrically by visual motion to each eye•Dedicated circuits differentially process eye- and direction-specific motion•Neural representations are distributed over select overrepresented response types•Behavior and neural activity are captured by realistic whole-brain circuit model Whole-brain imaging and behavioral analysis combined with network modeling reveal key circuit elements contributing to a complex sensorimotor behavior in zebrafish larvae and provide a framework for building brain-level circuit models.
AbstractList Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network modeling. Here, we harness these tools to generate a brain-scale circuit model of the optomotor response, an orienting behavior evoked by visual motion. We show that such motion is processed by diverse neural response types distributed across multiple brain regions. To transform sensory input into action, these regions sequentially integrate eye- and direction-specific sensory streams, refine representations via interhemispheric inhibition, and demix locomotor instructions to independently drive turning and forward swimming. While experiments revealed many neural response types throughout the brain, modeling identified the dimensions of functional connectivity most critical for the behavior. We thus reveal how distributed neurons collaborate to generate behavior and illustrate a paradigm for distilling functional circuit models from whole-brain data.
Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network modeling. Here, we harness these tools to generate a brain-scale circuit model of the optomotor response, an orienting behavior evoked by visual motion. We show that such motion is processed by diverse neural response types distributed across multiple brain regions. To transform sensory input into action, these regions sequentially integrate eye- and direction-specific sensory streams, refine representations via interhemispheric inhibition, and demix locomotor instructions to independently drive turning and forward swimming. While experiments revealed many neural response types throughout the brain, modeling identified the dimensions of functional connectivity most critical for the behavior. We thus reveal how distributed neurons collaborate to generate behavior and illustrate a paradigm for distilling functional circuit models from whole-brain data. [Display omitted] •Optomotor response is driven asymmetrically by visual motion to each eye•Dedicated circuits differentially process eye- and direction-specific motion•Neural representations are distributed over select overrepresented response types•Behavior and neural activity are captured by realistic whole-brain circuit model Whole-brain imaging and behavioral analysis combined with network modeling reveal key circuit elements contributing to a complex sensorimotor behavior in zebrafish larvae and provide a framework for building brain-level circuit models.
Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network modeling. Here, we harness these tools to generate a brain-scale circuit model of the optomotor response, an orienting behavior evoked by visual motion. We show that such motion is processed by diverse neural response types distributed across multiple brain regions. To transform sensory input into action, these regions sequentially integrate eye- and direction-specific sensory streams, refine representations via interhemispheric inhibition, and demix locomotor instructions to independently drive turning and forward swimming. While experiments revealed many neural response types throughout the brain, modeling identified the dimensions of functional connectivity most critical for the behavior. We thus reveal how distributed neurons collaborate to generate behavior and illustrate a paradigm for distilling functional circuit models from whole-brain data.
Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network modeling. Here, we harness these tools to generate a brain-scale circuit model of the optomotor response, an orienting behavior evoked by visual motion. We show that such motion is processed by diverse neural response types distributed across multiple brain regions. To transform sensory input into action, these regions sequentially integrate eye- and direction-specific sensory streams, refine representations via interhemispheric inhibition, and demix locomotor instructions to independently drive turning and forward swimming. While experiments revealed many neural response types throughout the brain, modeling identified the dimensions of functional connectivity most critical for the behavior. We thus reveal how distributed neurons collaborate to generate behavior and illustrate a paradigm for distilling functional circuit models from whole-brain data.Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network modeling. Here, we harness these tools to generate a brain-scale circuit model of the optomotor response, an orienting behavior evoked by visual motion. We show that such motion is processed by diverse neural response types distributed across multiple brain regions. To transform sensory input into action, these regions sequentially integrate eye- and direction-specific sensory streams, refine representations via interhemispheric inhibition, and demix locomotor instructions to independently drive turning and forward swimming. While experiments revealed many neural response types throughout the brain, modeling identified the dimensions of functional connectivity most critical for the behavior. We thus reveal how distributed neurons collaborate to generate behavior and illustrate a paradigm for distilling functional circuit models from whole-brain data.
Author Rihel, Jason
Naumann, Eva A.
Sompolinsky, Haim
Engert, Florian
Dunn, Timothy W.
Fitzgerald, James E.
AuthorAffiliation 1 Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138, USA
4 Racah Institute of Physics and the Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
3 Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
2 Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
AuthorAffiliation_xml – name: 2 Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
– name: 4 Racah Institute of Physics and the Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
– name: 3 Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
– name: 1 Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138, USA
Author_xml – sequence: 1
  givenname: Eva A.
  surname: Naumann
  fullname: Naumann, Eva A.
  organization: Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138, USA
– sequence: 2
  givenname: James E.
  surname: Fitzgerald
  fullname: Fitzgerald, James E.
  organization: Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
– sequence: 3
  givenname: Timothy W.
  surname: Dunn
  fullname: Dunn, Timothy W.
  organization: Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138, USA
– sequence: 4
  givenname: Jason
  surname: Rihel
  fullname: Rihel, Jason
  organization: Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
– sequence: 5
  givenname: Haim
  surname: Sompolinsky
  fullname: Sompolinsky, Haim
  organization: Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
– sequence: 6
  givenname: Florian
  surname: Engert
  fullname: Engert, Florian
  email: florian@mcb.harvard.edu
  organization: Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27814522$$D View this record in MEDLINE/PubMed
BookMark eNqFUcFq3DAUFCWl2ST9gRyKjr14oydbtreUQrvJpoWEQNlSyEXI8nNXiy1tJDmQv4_MJqXtIT0IiaeZecPMETmwziIhp8DmwKA828419v2cp3cazBksXpEZsEWVFVDxAzJjbMGzuqyKQ3IUwpYxVgsh3pBDXtVQCM5nZL3ybqA_N67H7ItXxtJzFRWNjq5Gq6NxVvV0abweTaTXrsU-fKDrDdJbbLzqTNjQm110g4vO0-8Yds4GPCGvO9UHfPt0H5Mfq4v18mt2dXP5bfn5KtNCFDFra2wElEyXLVesgjxXQufYsE4gVo1mhYAcoYG2hYppsSiV4oLpgoMAVnb5Mfm0192NzYCtRhu96uXOm0H5B-mUkX__WLORv9y9FABQQ5kE3j8JeHc3YohyMGEKVVl0Y5A8RZZOweC_UKjzssrzpJug7_609dvPc-oJUO8B2rsQPHZSm6imsJNL00tgcipYbuW0QE4FT7NUcKLyf6jP6i-SPu5JqT28N-hl0AatxtZ41FG2zrxEfwTvVr6V
CitedBy_id crossref_primary_10_1523_JNEUROSCI_0842_21_2021
crossref_primary_10_3390_ijms23052464
crossref_primary_10_1016_j_cub_2022_04_048
crossref_primary_10_1146_annurev_neuro_110220_013050
crossref_primary_10_1016_j_conb_2020_09_011
crossref_primary_10_1016_j_conb_2017_02_009
crossref_primary_10_1016_j_conb_2020_10_021
crossref_primary_10_1016_j_conb_2018_10_004
crossref_primary_10_1016_j_cub_2019_10_020
crossref_primary_10_1371_journal_pbio_3001012
crossref_primary_10_1371_journal_pgen_1011139
crossref_primary_10_1016_j_neuron_2018_09_042
crossref_primary_10_1038_s41467_021_22322_w
crossref_primary_10_1126_science_aaz8627
crossref_primary_10_3389_fnana_2022_838567
crossref_primary_10_1038_s41592_018_0221_x
crossref_primary_10_3389_fnmol_2022_901309
crossref_primary_10_1007_s00244_025_01113_0
crossref_primary_10_1371_journal_pcbi_1010418
crossref_primary_10_1038_s41592_022_01621_0
crossref_primary_10_1080_01677063_2017_1359834
crossref_primary_10_1016_j_conb_2018_02_004
crossref_primary_10_1016_j_cub_2020_04_043
crossref_primary_10_1016_j_cub_2021_06_054
crossref_primary_10_7554_eLife_55119
crossref_primary_10_1016_j_cell_2022_11_022
crossref_primary_10_7554_eLife_53684
crossref_primary_10_1016_j_celrep_2020_108054
crossref_primary_10_1371_journal_pone_0183414
crossref_primary_10_1002_etc_4951
crossref_primary_10_1098_rsif_2023_0212
crossref_primary_10_1146_annurev_neuro_092619_094115
crossref_primary_10_3389_fncir_2021_814128
crossref_primary_10_3389_fncir_2021_709048
crossref_primary_10_3389_fncir_2021_748535
crossref_primary_10_1016_j_plrev_2023_04_004
crossref_primary_10_1016_j_conb_2017_02_017
crossref_primary_10_1371_journal_pcbi_1010924
crossref_primary_10_3389_fncir_2020_607391
crossref_primary_10_3389_fncir_2018_00089
crossref_primary_10_1038_s41593_019_0535_8
crossref_primary_10_1016_j_cub_2023_12_063
crossref_primary_10_1021_acs_est_0c06479
crossref_primary_10_1364_BOE_9_006154
crossref_primary_10_1371_journal_pcbi_1005526
crossref_primary_10_1016_j_neubiorev_2020_12_014
crossref_primary_10_1016_j_neuron_2024_11_011
crossref_primary_10_1162_netn_a_00262
crossref_primary_10_7554_eLife_22537
crossref_primary_10_3389_fnbeh_2020_606900
crossref_primary_10_1016_j_bbr_2024_115412
crossref_primary_10_1016_j_cub_2024_08_008
crossref_primary_10_1016_j_neuron_2020_08_027
crossref_primary_10_1126_sciadv_adi6470
crossref_primary_10_7554_eLife_63355
crossref_primary_10_1146_annurev_vision_101623_025432
crossref_primary_10_1016_j_isci_2020_100917
crossref_primary_10_1038_s41598_023_30303_w
crossref_primary_10_1038_s41380_022_01567_x
crossref_primary_10_1016_j_celrep_2019_12_031
crossref_primary_10_3389_fncir_2017_00088
crossref_primary_10_1186_s12915_018_0494_7
crossref_primary_10_1021_acs_est_1c08471
crossref_primary_10_1038_s41467_023_35836_2
crossref_primary_10_1016_j_ymeth_2018_06_008
crossref_primary_10_1039_C7LC00786H
crossref_primary_10_1038_s41598_021_03068_3
crossref_primary_10_1016_j_bbr_2021_113544
crossref_primary_10_1126_scirobotics_adi2243
crossref_primary_10_1186_s12915_019_0648_2
crossref_primary_10_1016_j_conb_2017_08_006
crossref_primary_10_3389_fnbeh_2024_1320126
crossref_primary_10_1016_j_celrep_2019_09_024
crossref_primary_10_1038_s41467_019_13484_9
crossref_primary_10_1016_j_neuron_2022_04_030
crossref_primary_10_3390_ijms222111750
crossref_primary_10_1038_s41467_023_44681_2
crossref_primary_10_1016_j_neuron_2019_04_018
crossref_primary_10_1002_cne_25204
crossref_primary_10_1016_j_cub_2019_11_026
crossref_primary_10_1038_s41593_019_0534_9
crossref_primary_10_1016_j_scitotenv_2022_154584
crossref_primary_10_1038_s41598_019_50372_0
crossref_primary_10_1016_j_smrv_2022_101595
crossref_primary_10_7554_eLife_54183
crossref_primary_10_1002_dneu_22895
crossref_primary_10_1186_s12915_021_01222_x
crossref_primary_10_1016_j_conb_2018_01_004
crossref_primary_10_3390_cells10082133
crossref_primary_10_1016_j_cub_2019_12_064
crossref_primary_10_1016_j_cub_2022_04_084
crossref_primary_10_1007_s00359_021_01524_z
crossref_primary_10_1016_j_conb_2020_08_013
crossref_primary_10_1167_iovs_19_27544
crossref_primary_10_1038_s41467_021_26748_0
crossref_primary_10_1016_j_aquatox_2021_105988
crossref_primary_10_1016_j_isci_2024_109455
crossref_primary_10_3330_hikakuseiriseika_37_62
crossref_primary_10_1038_s41592_018_0144_6
crossref_primary_10_3389_fncir_2019_00001
crossref_primary_10_1016_j_cub_2024_12_010
crossref_primary_10_1162_neco_a_01401
crossref_primary_10_3389_fcell_2023_1120984
crossref_primary_10_1016_j_jneumeth_2019_108366
crossref_primary_10_1073_pnas_2106785118
crossref_primary_10_1002_cpet_19
crossref_primary_10_1016_j_bbr_2023_114812
crossref_primary_10_1016_j_cub_2023_08_037
crossref_primary_10_1016_j_neuron_2017_04_034
crossref_primary_10_1016_j_neuron_2019_04_034
crossref_primary_10_1186_s12915_022_01298_z
crossref_primary_10_1016_j_neuron_2018_04_013
crossref_primary_10_1016_j_neurobiolaging_2023_06_005
crossref_primary_10_1038_s41598_021_85896_x
crossref_primary_10_3389_fcell_2022_875044
crossref_primary_10_1186_s12915_022_01286_3
crossref_primary_10_1103_PhysRevResearch_4_023255
crossref_primary_10_3389_fnbeh_2019_00012
crossref_primary_10_1016_j_scitotenv_2021_150681
crossref_primary_10_1016_j_chom_2020_11_011
crossref_primary_10_1016_j_cell_2019_02_037
crossref_primary_10_1016_j_neuroscience_2022_12_016
crossref_primary_10_1038_s41598_018_31968_4
crossref_primary_10_1117_1_NPh_10_4_044409
crossref_primary_10_1523_ENEURO_0371_23_2023
crossref_primary_10_1186_s12915_020_00903_3
crossref_primary_10_2139_ssrn_3257346
crossref_primary_10_1016_j_cub_2024_10_057
crossref_primary_10_1038_s41593_020_00743_y
crossref_primary_10_1117_1_NPh_11_3_033409
crossref_primary_10_1371_journal_pcbi_1011848
crossref_primary_10_1016_j_neurobiolaging_2020_10_018
crossref_primary_10_3389_fnmol_2018_00294
crossref_primary_10_7554_eLife_51975
crossref_primary_10_1088_1758_5090_acb466
crossref_primary_10_1016_j_neuron_2018_06_013
crossref_primary_10_1038_s41598_019_54958_6
crossref_primary_10_1016_j_cub_2021_01_045
crossref_primary_10_1016_j_cub_2020_12_034
crossref_primary_10_1038_s41598_022_10133_y
crossref_primary_10_1016_j_cophys_2020_03_006
crossref_primary_10_1016_j_physrep_2023_03_005
crossref_primary_10_1523_JNEUROSCI_1908_17_2018
crossref_primary_10_2139_ssrn_3155628
crossref_primary_10_1098_rstb_2017_0372
crossref_primary_10_1016_j_mbs_2023_109033
crossref_primary_10_1146_annurev_vision_091718_014723
crossref_primary_10_1038_s41592_018_0276_8
crossref_primary_10_1038_s41467_021_26988_0
crossref_primary_10_3389_fnmol_2022_867010
crossref_primary_10_1038_nrn_2017_85
crossref_primary_10_1126_sciadv_abi7460
crossref_primary_10_3389_fnins_2021_632634
Cites_doi 10.1016/j.cell.2015.09.034
10.1016/j.neuron.2014.01.019
10.1016/j.cub.2014.07.080
10.1038/nature09554
10.1371/journal.pone.0004320
10.1016/j.neuron.2009.04.014
10.1073/pnas.1012189108
10.1016/j.conb.2014.02.002
10.3389/fncir.2013.00104
10.1016/0165-0173(83)90036-X
10.1146/annurev-neuro-060909-153155
10.1038/nature14297
10.1016/j.neuron.2005.05.019
10.1038/nature11057
10.1093/cercor/1.1.1
10.1038/nature12160
10.1038/nature09880
10.1016/j.neuron.2014.02.043
10.1038/nature06808
10.1016/j.cub.2015.01.042
10.1038/nature13276
10.1016/j.tins.2014.08.009
10.1016/j.cub.2013.06.044
10.1038/nature06292
10.1002/cne.902270208
10.1113/jphysiol.1988.sp017319
10.1002/cne.902360105
10.1016/j.conb.2015.04.003
10.1002/cne.903460410
10.7554/eLife.12741
10.1073/pnas.1012185108
10.1002/cne.901450208
10.1038/nmeth.2434
10.1146/annurev-neuro-071013-013931
10.1016/j.cell.2015.06.035
10.2174/1381612811319240011
10.1038/nmeth.3581
10.1016/j.neuron.2010.03.027
10.1016/j.neuron.2012.10.002
10.1007/s00424-006-0187-x
10.1002/dvdy.21084
10.1523/JNEUROSCI.3045-14.2015
10.1016/j.neuron.2014.06.032
10.1038/nn2048
10.1016/S0079-6123(05)51012-4
10.1016/j.neuron.2013.06.041
10.1016/j.conb.2015.01.006
10.1523/JNEUROSCI.23-09-03726.2003
10.1002/cne.23602
10.1159/000118769
10.1016/j.neuron.2009.12.009
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.cell.2016.10.019
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 960.e20
ExternalDocumentID PMC5111816
27814522
10_1016_j_cell_2016_10_019
S0092867416314027
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: DP1 NS082121
– fundername: NINDS NIH HHS
  grantid: U01 NS090449
– fundername: NINDS NIH HHS
  grantid: R24 NS086601
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6I.
6J9
7-5
85S
AACTN
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AAKUH
AAUCE
AAVLU
AAXJY
AAXUO
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AHHHB
AIDAL
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YZZ
ZA5
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
6TJ
9M8
AAEDT
AAHBH
AAIKJ
AALRI
AAMRU
AAQFI
AAQXK
AAYJJ
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
UBW
UHB
VH1
X7M
YYP
YYQ
ZGI
ZHY
ZKB
ZY4
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
5PM
ID FETCH-LOGICAL-c554t-d8eb5160c6d2a07133a5c3eb0f5ee7bc04513e1b1dd170c596aa250c4215106f3
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 13:46:14 EDT 2025
Thu Sep 04 22:08:29 EDT 2025
Fri Sep 05 06:10:30 EDT 2025
Thu Jan 02 23:09:06 EST 2025
Tue Jul 01 02:16:56 EDT 2025
Thu Apr 24 23:11:33 EDT 2025
Fri Feb 23 02:30:35 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords circuit model
behavioral analysis
two-photon imaging
zebrafish
calcium imaging
Language English
License This article is made available under the Elsevier license.
Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-d8eb5160c6d2a07133a5c3eb0f5ee7bc04513e1b1dd170c596aa250c4215106f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867416314027
PMID 27814522
PQID 1836733118
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5111816
proquest_miscellaneous_2000200401
proquest_miscellaneous_1836733118
pubmed_primary_27814522
crossref_citationtrail_10_1016_j_cell_2016_10_019
crossref_primary_10_1016_j_cell_2016_10_019
elsevier_sciencedirect_doi_10_1016_j_cell_2016_10_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-03
PublicationDateYYYYMMDD 2016-11-03
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ahrens, Li, Orger, Robson, Schier, Engert, Portugues (bib1) 2012; 485
Ahrens, Huang, Narayan, Mensh, Engert (bib3) 2013; 7
Vanegas, Ito (bib51) 1983; 287
Chalasani, Chronis, Tsunozaki, Gray, Ramot, Goodman, Bargmann (bib9) 2007; 450
Sompolinsky (bib49) 2014; 25
Yonehara, Ishikane, Sakuta, Shintani, Nakamura-Yonehara, Kamiji, Usui, Noda (bib52) 2009; 4
Scalia (bib46) 1972; 145
Lee, Arrenberg, Aksay (bib31) 2015; 35
Fink, Croce, Huang, Abbott, Jessell, Azim (bib14) 2014; 509
Ko, Hofer, Pichler, Buchanan, Sjöström, Mrsic-Flogel (bib26) 2011; 473
Masland (bib33) 2012; 76
Korn, Faber (bib28) 2005; 47
Rigotti, Barak, Warden, Wang, Daw, Miller, Fusi (bib40) 2013; 497
Armstrong (bib4) 1988; 405
Mauss, Pankova, Arenz, Nern, Rubin, Borst (bib34) 2015; 162
O’Leary, Sutton, Marder (bib35) 2015; 32
Koyama, Kinkhabwala, Satou, Higashijima, Fetcho (bib29) 2011; 108
Orger, Kampff, Severi, Bollmann, Engert (bib37) 2008; 11
Huang, Ahrens, Dunn, Engert (bib22) 2013; 23
Gamlin (bib17) 2006; 151
Roeser, Baier (bib42) 2003; 23
Kato, Kaplan, Schrödel, Skora, Lindsay, Yemini, Lockery, Zimmer (bib24) 2015; 163
Portugues, Feierstein, Engert, Orger (bib38) 2014; 81
Huberman, Wei, Elstrott, Stafford, Feller, Barres (bib23) 2009; 62
Bounoutas, Chalfie (bib7) 2007; 454
Koontz, Rodieck, Farmer (bib27) 1985; 236
Dunn, Mu, Narayan, Randlett, Naumann, Yang, Schier, Freeman, Engert, Ahrens (bib12) 2016; 5
Fite (bib16) 1985; 26
Burrill, Easter (bib8) 1994; 346
Ruta, Datta, Vasconcelos, Freeland, Looger, Axel (bib43) 2010; 468
Randlett, Wee, Naumann, Nnaemeka, Schoppik, Fitzgerald, Portugues, Lacoste, Riegler, Engert, Schier (bib39) 2015; 12
Robles, Laurell, Baier (bib41) 2014; 24
Severi, Portugues, Marques, O’Malley, Orger, Engert (bib47) 2014; 83
Kubo, Hablitzel, Dal Maschio, Driever, Baier, Arrenberg (bib30) 2014; 81
Borst, Haag, Reiff (bib6) 2010; 33
Kinkhabwala, Riley, Koyama, Monen, Satou, Kimura, Higashijima, Fetcho (bib25) 2011; 108
Datta, Vasconcelos, Ruta, Luo, Wong, Demir, Flores, Balonze, Dickson, Axel (bib11) 2008; 452
Felleman, Van Essen (bib13) 1991; 1
Gollisch, Meister (bib20) 2010; 65
Lisberger (bib32) 2010; 66
Giolli, Blanks, Torigoe (bib19) 1984; 227
Sun, May (bib50) 2014; 522
Bianco, Engert (bib5) 2015; 25
Ryczko, Dubuc (bib44) 2013; 19
Heiligenberg, Konishi (bib21) 1991
Fisher, Olasagasti, Tank, Aksay, Goldman (bib15) 2013; 79
Ahrens, Orger, Robson, Li, Keller (bib2) 2013; 10
Gao, Ganguli (bib18) 2015; 32
Silies, Gohl, Clandinin (bib48) 2014; 37
Sassa, Aizawa, Okamoto (bib45) 2007; 236
Chédotal (bib10) 2014; 37
Ohyama, Schneider-Mizell, Fetter, Aleman, Franconville, Rivera-Alba, Mensh, Branson, Simpson, Truman (bib36) 2015; 520
Fisher (10.1016/j.cell.2016.10.019_bib15) 2013; 79
Heiligenberg (10.1016/j.cell.2016.10.019_bib21) 1991
Gollisch (10.1016/j.cell.2016.10.019_bib20) 2010; 65
Ohyama (10.1016/j.cell.2016.10.019_bib36) 2015; 520
Ahrens (10.1016/j.cell.2016.10.019_bib2) 2013; 10
Ko (10.1016/j.cell.2016.10.019_bib26) 2011; 473
Korn (10.1016/j.cell.2016.10.019_bib28) 2005; 47
Ahrens (10.1016/j.cell.2016.10.019_bib3) 2013; 7
Masland (10.1016/j.cell.2016.10.019_bib33) 2012; 76
Giolli (10.1016/j.cell.2016.10.019_bib19) 1984; 227
O’Leary (10.1016/j.cell.2016.10.019_bib35) 2015; 32
Lisberger (10.1016/j.cell.2016.10.019_bib32) 2010; 66
Mauss (10.1016/j.cell.2016.10.019_bib34) 2015; 162
Koyama (10.1016/j.cell.2016.10.019_bib29) 2011; 108
Gao (10.1016/j.cell.2016.10.019_bib18) 2015; 32
Felleman (10.1016/j.cell.2016.10.019_bib13) 1991; 1
Severi (10.1016/j.cell.2016.10.019_bib47) 2014; 83
Bounoutas (10.1016/j.cell.2016.10.019_bib7) 2007; 454
Orger (10.1016/j.cell.2016.10.019_bib37) 2008; 11
Vanegas (10.1016/j.cell.2016.10.019_bib51) 1983; 287
Kato (10.1016/j.cell.2016.10.019_bib24) 2015; 163
Dunn (10.1016/j.cell.2016.10.019_bib12) 2016; 5
Fite (10.1016/j.cell.2016.10.019_bib16) 1985; 26
Huang (10.1016/j.cell.2016.10.019_bib22) 2013; 23
Koontz (10.1016/j.cell.2016.10.019_bib27) 1985; 236
Burrill (10.1016/j.cell.2016.10.019_bib8) 1994; 346
Chédotal (10.1016/j.cell.2016.10.019_bib10) 2014; 37
Scalia (10.1016/j.cell.2016.10.019_bib46) 1972; 145
Armstrong (10.1016/j.cell.2016.10.019_bib4) 1988; 405
Rigotti (10.1016/j.cell.2016.10.019_bib40) 2013; 497
Kinkhabwala (10.1016/j.cell.2016.10.019_bib25) 2011; 108
Yonehara (10.1016/j.cell.2016.10.019_bib52) 2009; 4
Gamlin (10.1016/j.cell.2016.10.019_bib17) 2006; 151
Robles (10.1016/j.cell.2016.10.019_bib41) 2014; 24
Sassa (10.1016/j.cell.2016.10.019_bib45) 2007; 236
Ruta (10.1016/j.cell.2016.10.019_bib43) 2010; 468
Sompolinsky (10.1016/j.cell.2016.10.019_bib49) 2014; 25
Huberman (10.1016/j.cell.2016.10.019_bib23) 2009; 62
Roeser (10.1016/j.cell.2016.10.019_bib42) 2003; 23
Silies (10.1016/j.cell.2016.10.019_bib48) 2014; 37
Bianco (10.1016/j.cell.2016.10.019_bib5) 2015; 25
Fink (10.1016/j.cell.2016.10.019_bib14) 2014; 509
Ahrens (10.1016/j.cell.2016.10.019_bib1) 2012; 485
Kubo (10.1016/j.cell.2016.10.019_bib30) 2014; 81
Sun (10.1016/j.cell.2016.10.019_bib50) 2014; 522
Randlett (10.1016/j.cell.2016.10.019_bib39) 2015; 12
Lee (10.1016/j.cell.2016.10.019_bib31) 2015; 35
Chalasani (10.1016/j.cell.2016.10.019_bib9) 2007; 450
Datta (10.1016/j.cell.2016.10.019_bib11) 2008; 452
Borst (10.1016/j.cell.2016.10.019_bib6) 2010; 33
Portugues (10.1016/j.cell.2016.10.019_bib38) 2014; 81
Ryczko (10.1016/j.cell.2016.10.019_bib44) 2013; 19
27003593 - Elife. 2016 Mar 22;5:e12741
24602868 - Curr Opin Neurobiol. 2014 Apr;25:xiii-xviii
25220044 - Trends Neurosci. 2014 Oct;37(10):551-62
24656252 - Neuron. 2014 Mar 19;81(6):1328-43
6470215 - J Comp Neurol. 1984 Aug 1;227(2):228-51
24656253 - Neuron. 2014 Mar 19;81(6):1344-59
12736343 - J Neurosci. 2003 May 1;23(9):3726-34
25032498 - Annu Rev Neurosci. 2014;37:307-27
20152123 - Neuron. 2010 Jan 28;65(2):150-64
15996545 - Neuron. 2005 Jul 7;47(1):13-28
21124455 - Nature. 2010 Dec 2;468(7324):686-90
24012010 - Neuron. 2013 Sep 4;79(5):987-1000
3907745 - Brain Behav Evol. 1985;26(2):71-90
21199937 - Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1170-5
17279576 - Dev Dyn. 2007 Mar;236(3):706-18
21478872 - Nature. 2011 May 5;473(7345):87-91
25995475 - J Neurosci. 2015 May 20;35(20):7903-20
25932978 - Curr Opin Neurobiol. 2015 Jun;32:148-55
7983245 - J Comp Neurol. 1994 Aug 22;346(4):583-600
26186189 - Cell. 2015 Jul 16;162(2):351-62
3076600 - J Physiol. 1988 Nov;405:1-37
23083731 - Neuron. 2012 Oct 18;76(2):266-80
22622571 - Nature. 2012 May 09;485(7399):471-7
20225934 - Annu Rev Neurosci. 2010;33:49-70
23910662 - Curr Biol. 2013 Aug 19;23(16):1566-73
24784215 - Nature. 2014 May 1;509(7498):43-8
23360276 - Curr Pharm Des. 2013;19(24):4448-70
19447089 - Neuron. 2009 May 14;62(3):327-34
26778924 - Nat Methods. 2015 Nov;12(11):1039-46
1822724 - Cereb Cortex. 1991 Jan-Feb;1(1):1-47
25754638 - Curr Biol. 2015 Mar 30;25(7):831-46
25066084 - Neuron. 2014 Aug 6;83(3):692-707
23524393 - Nat Methods. 2013 May;10(5):413-20
25896325 - Nature. 2015 Apr 30;520(7549):633-9
18264094 - Nat Neurosci. 2008 Mar;11(3):327-33
20510853 - Neuron. 2010 May 27;66(4):477-91
17285303 - Pflugers Arch. 2007 Aug;454(5):691-702
24706328 - J Comp Neurol. 2014 Dec 15;522(18):3960-77
23685452 - Nature. 2013 May 30;497(7451):585-90
17972877 - Nature. 2007 Nov 1;450(7166):63-70
6315186 - Brain Res. 1983 Oct;287(2):117-37
18305480 - Nature. 2008 Mar 27;452(7186):473-7
21199947 - Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1164-9
25155513 - Curr Biol. 2014 Sep 22;24(18):2085-96
4056090 - J Comp Neurol. 1985 Jun 1;236(1):42-59
4555428 - J Comp Neurol. 1972 Jun;145(2):223-57
25637959 - Curr Opin Neurobiol. 2015 Jun;32:87-94
26478179 - Cell. 2015 Oct 22;163(3):656-69
16221595 - Prog Brain Res. 2006;151:379-405
19177171 - PLoS One. 2009;4(1):e4320
23761738 - Front Neural Circuits. 2013 Jun 06;7:104
References_xml – volume: 473
  start-page: 87
  year: 2011
  end-page: 91
  ident: bib26
  article-title: Functional specificity of local synaptic connections in neocortical networks
  publication-title: Nature
– volume: 35
  start-page: 7903
  year: 2015
  end-page: 7920
  ident: bib31
  article-title: A structural and genotypic scaffold underlying temporal integration
  publication-title: J. Neurosci.
– volume: 81
  start-page: 1328
  year: 2014
  end-page: 1343
  ident: bib38
  article-title: Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior
  publication-title: Neuron
– year: 1991
  ident: bib21
  article-title: Neural Nets in Electric Fish
– volume: 468
  start-page: 686
  year: 2010
  end-page: 690
  ident: bib43
  article-title: A dimorphic pheromone circuit in Drosophila from sensory input to descending output
  publication-title: Nature
– volume: 23
  start-page: 1566
  year: 2013
  end-page: 1573
  ident: bib22
  article-title: Spinal projection neurons control turning behaviors in zebrafish
  publication-title: Curr. Biol.
– volume: 522
  start-page: 3960
  year: 2014
  end-page: 3977
  ident: bib50
  article-title: Central pupillary light reflex circuits in the cat: I. The olivary pretectal nucleus
  publication-title: J. Comp. Neurol.
– volume: 454
  start-page: 691
  year: 2007
  end-page: 702
  ident: bib7
  article-title: Touch sensitivity in Caenorhabditis elegans. Pflüg
  publication-title: Arch. Eur. J. Physiol.
– volume: 7
  start-page: 104
  year: 2013
  ident: bib3
  article-title: Two-photon calcium imaging during fictive navigation in virtual environments
  publication-title: Front. Neural Circuits
– volume: 19
  start-page: 4448
  year: 2013
  end-page: 4470
  ident: bib44
  article-title: The multifunctional mesencephalic locomotor region
  publication-title: Curr. Pharm. Des.
– volume: 66
  start-page: 477
  year: 2010
  end-page: 491
  ident: bib32
  article-title: Visual guidance of smooth-pursuit eye movements: Sensation, action, and what happens in between
  publication-title: Neuron
– volume: 37
  start-page: 551
  year: 2014
  end-page: 562
  ident: bib10
  article-title: Development and plasticity of commissural circuits: From locomotion to brain repair
  publication-title: Trends Neurosci.
– volume: 25
  start-page: xiii
  year: 2014
  end-page: xviii
  ident: bib49
  article-title: Computational neuroscience: Beyond the local circuit
  publication-title: Curr. Opin. Neurobiol.
– volume: 23
  start-page: 3726
  year: 2003
  end-page: 3734
  ident: bib42
  article-title: Visuomotor behaviors in larval zebrafish after GFP-guided laser ablation of the optic tectum
  publication-title: J. Neurosci.
– volume: 24
  start-page: 2085
  year: 2014
  end-page: 2096
  ident: bib41
  article-title: The retinal projectome reveals brain-area-specific visual representations generated by ganglion cell diversity
  publication-title: Curr. Biol.
– volume: 25
  start-page: 831
  year: 2015
  end-page: 846
  ident: bib5
  article-title: Visuomotor transformations underlying hunting behavior in zebrafish
  publication-title: Curr. Biol.
– volume: 509
  start-page: 43
  year: 2014
  end-page: 48
  ident: bib14
  article-title: Presynaptic inhibition of spinal sensory feedback ensures smooth movement
  publication-title: Nature
– volume: 76
  start-page: 266
  year: 2012
  end-page: 280
  ident: bib33
  article-title: The neuronal organization of the retina
  publication-title: Neuron
– volume: 108
  start-page: 1170
  year: 2011
  end-page: 1175
  ident: bib29
  article-title: Mapping a sensory-motor network onto a structural and functional ground plan in the hindbrain
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 33
  start-page: 49
  year: 2010
  end-page: 70
  ident: bib6
  article-title: Fly motion vision
  publication-title: Annu. Rev. Neurosci.
– volume: 81
  start-page: 1344
  year: 2014
  end-page: 1359
  ident: bib30
  article-title: Functional architecture of an optic flow-responsive area that drives horizontal eye movements in zebrafish
  publication-title: Neuron
– volume: 26
  start-page: 71
  year: 1985
  end-page: 90
  ident: bib16
  article-title: Pretectal and accessory-optic visual nuclei of fish, amphibia and reptiles: Theme and variations
  publication-title: Brain Behav. Evol.
– volume: 12
  start-page: 1039
  year: 2015
  end-page: 1046
  ident: bib39
  article-title: Whole-brain activity mapping onto a zebrafish brain atlas
  publication-title: Nat. Methods
– volume: 32
  start-page: 148
  year: 2015
  end-page: 155
  ident: bib18
  article-title: On simplicity and complexity in the brave new world of large-scale neuroscience
  publication-title: Curr. Opin. Neurobiol.
– volume: 162
  start-page: 351
  year: 2015
  end-page: 362
  ident: bib34
  article-title: neural circuit to integrate opposing motions in the visual field
  publication-title: Cell
– volume: 32
  start-page: 87
  year: 2015
  end-page: 94
  ident: bib35
  article-title: Computational models in the age of large datasets
  publication-title: Curr. Opin. Neurobiol.
– volume: 405
  start-page: 1
  year: 1988
  end-page: 37
  ident: bib4
  article-title: The supraspinal control of mammalian locomotion
  publication-title: J. Physiol.
– volume: 108
  start-page: 1164
  year: 2011
  end-page: 1169
  ident: bib25
  article-title: A structural and functional ground plan for neurons in the hindbrain of zebrafish
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 227
  start-page: 228
  year: 1984
  end-page: 251
  ident: bib19
  article-title: Pretectal and brain stem projections of the medial terminal nucleus of the accessory optic system of the rabbit and rat as studied by anterograde and retrograde neuronal tracing methods
  publication-title: J. Comp. Neurol.
– volume: 5
  start-page: e12741
  year: 2016
  ident: bib12
  article-title: Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion
  publication-title: eLife
– volume: 287
  start-page: 117
  year: 1983
  end-page: 137
  ident: bib51
  article-title: Morphological aspects of the teleostean visual system: A review
  publication-title: Brain Res.
– volume: 145
  start-page: 223
  year: 1972
  end-page: 257
  ident: bib46
  article-title: The termination of retinal axons in the pretectal region of mammals
  publication-title: J. Comp. Neurol.
– volume: 65
  start-page: 150
  year: 2010
  end-page: 164
  ident: bib20
  article-title: Eye smarter than scientists believed: Neural computations in circuits of the retina
  publication-title: Neuron
– volume: 452
  start-page: 473
  year: 2008
  end-page: 477
  ident: bib11
  article-title: The Drosophila pheromone cVA activates a sexually dimorphic neural circuit
  publication-title: Nature
– volume: 346
  start-page: 583
  year: 1994
  end-page: 600
  ident: bib8
  article-title: Development of the retinofugal projections in the embryonic and larval zebrafish (Brachydanio rerio)
  publication-title: J. Comp. Neurol.
– volume: 163
  start-page: 656
  year: 2015
  end-page: 669
  ident: bib24
  article-title: Global brain dynamics embed the motor command sequence of Caenorhabditis elegans
  publication-title: Cell
– volume: 10
  start-page: 413
  year: 2013
  end-page: 420
  ident: bib2
  article-title: Whole-brain functional imaging at cellular resolution using light-sheet microscopy
  publication-title: Nat. Methods
– volume: 520
  start-page: 633
  year: 2015
  end-page: 639
  ident: bib36
  article-title: A multilevel multimodal circuit enhances action selection in Drosophila
  publication-title: Nature
– volume: 11
  start-page: 327
  year: 2008
  end-page: 333
  ident: bib37
  article-title: Control of visually guided behavior by distinct populations of spinal projection neurons
  publication-title: Nat. Neurosci.
– volume: 1
  start-page: 1
  year: 1991
  end-page: 47
  ident: bib13
  article-title: Distributed hierarchical processing in the primate cerebral cortex
  publication-title: Cereb. Cortex
– volume: 62
  start-page: 327
  year: 2009
  end-page: 334
  ident: bib23
  article-title: Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion
  publication-title: Neuron
– volume: 236
  start-page: 42
  year: 1985
  end-page: 59
  ident: bib27
  article-title: The retinal projection to the cat pretectum
  publication-title: J. Comp. Neurol.
– volume: 485
  start-page: 471
  year: 2012
  end-page: 477
  ident: bib1
  article-title: Brain-wide neuronal dynamics during motor adaptation in zebrafish
  publication-title: Nature
– volume: 151
  start-page: 379
  year: 2006
  end-page: 405
  ident: bib17
  article-title: The pretectum: Connections and oculomotor-related roles
  publication-title: Prog. Brain Res.
– volume: 37
  start-page: 307
  year: 2014
  end-page: 327
  ident: bib48
  article-title: Motion-detecting circuits in flies: Coming into view
  publication-title: Annu. Rev. Neurosci.
– volume: 47
  start-page: 13
  year: 2005
  end-page: 28
  ident: bib28
  article-title: The Mauthner cell half a century later: A neurobiological model for decision-making?
  publication-title: Neuron
– volume: 79
  start-page: 987
  year: 2013
  end-page: 1000
  ident: bib15
  article-title: A modeling framework for deriving the structural and functional architecture of a short-term memory microcircuit
  publication-title: Neuron
– volume: 4
  start-page: e4320
  year: 2009
  ident: bib52
  article-title: Identification of retinal ganglion cells and their projections involved in central transmission of information about upward and downward image motion
  publication-title: PLoS ONE
– volume: 450
  start-page: 63
  year: 2007
  end-page: 70
  ident: bib9
  article-title: Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans
  publication-title: Nature
– volume: 497
  start-page: 585
  year: 2013
  end-page: 590
  ident: bib40
  article-title: The importance of mixed selectivity in complex cognitive tasks
  publication-title: Nature
– volume: 236
  start-page: 706
  year: 2007
  end-page: 718
  ident: bib45
  article-title: Visualization of two distinct classes of neurons by gad2 and zic1 promoter/enhancer elements in the dorsal hindbrain of developing zebrafish reveals neuronal connectivity related to the auditory and lateral line systems
  publication-title: Dev. Dyn.
– volume: 83
  start-page: 692
  year: 2014
  end-page: 707
  ident: bib47
  article-title: Neural control and modulation of swimming speed in the larval zebrafish
  publication-title: Neuron
– volume: 163
  start-page: 656
  year: 2015
  ident: 10.1016/j.cell.2016.10.019_bib24
  article-title: Global brain dynamics embed the motor command sequence of Caenorhabditis elegans
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.034
– volume: 81
  start-page: 1328
  year: 2014
  ident: 10.1016/j.cell.2016.10.019_bib38
  article-title: Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.01.019
– volume: 24
  start-page: 2085
  year: 2014
  ident: 10.1016/j.cell.2016.10.019_bib41
  article-title: The retinal projectome reveals brain-area-specific visual representations generated by ganglion cell diversity
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2014.07.080
– volume: 468
  start-page: 686
  year: 2010
  ident: 10.1016/j.cell.2016.10.019_bib43
  article-title: A dimorphic pheromone circuit in Drosophila from sensory input to descending output
  publication-title: Nature
  doi: 10.1038/nature09554
– volume: 4
  start-page: e4320
  year: 2009
  ident: 10.1016/j.cell.2016.10.019_bib52
  article-title: Identification of retinal ganglion cells and their projections involved in central transmission of information about upward and downward image motion
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0004320
– volume: 62
  start-page: 327
  year: 2009
  ident: 10.1016/j.cell.2016.10.019_bib23
  article-title: Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.04.014
– volume: 108
  start-page: 1170
  year: 2011
  ident: 10.1016/j.cell.2016.10.019_bib29
  article-title: Mapping a sensory-motor network onto a structural and functional ground plan in the hindbrain
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1012189108
– volume: 25
  start-page: xiii
  year: 2014
  ident: 10.1016/j.cell.2016.10.019_bib49
  article-title: Computational neuroscience: Beyond the local circuit
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2014.02.002
– volume: 7
  start-page: 104
  year: 2013
  ident: 10.1016/j.cell.2016.10.019_bib3
  article-title: Two-photon calcium imaging during fictive navigation in virtual environments
  publication-title: Front. Neural Circuits
  doi: 10.3389/fncir.2013.00104
– volume: 287
  start-page: 117
  year: 1983
  ident: 10.1016/j.cell.2016.10.019_bib51
  article-title: Morphological aspects of the teleostean visual system: A review
  publication-title: Brain Res.
  doi: 10.1016/0165-0173(83)90036-X
– volume: 33
  start-page: 49
  year: 2010
  ident: 10.1016/j.cell.2016.10.019_bib6
  article-title: Fly motion vision
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-060909-153155
– year: 1991
  ident: 10.1016/j.cell.2016.10.019_bib21
– volume: 520
  start-page: 633
  year: 2015
  ident: 10.1016/j.cell.2016.10.019_bib36
  article-title: A multilevel multimodal circuit enhances action selection in Drosophila
  publication-title: Nature
  doi: 10.1038/nature14297
– volume: 47
  start-page: 13
  year: 2005
  ident: 10.1016/j.cell.2016.10.019_bib28
  article-title: The Mauthner cell half a century later: A neurobiological model for decision-making?
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.05.019
– volume: 485
  start-page: 471
  year: 2012
  ident: 10.1016/j.cell.2016.10.019_bib1
  article-title: Brain-wide neuronal dynamics during motor adaptation in zebrafish
  publication-title: Nature
  doi: 10.1038/nature11057
– volume: 1
  start-page: 1
  year: 1991
  ident: 10.1016/j.cell.2016.10.019_bib13
  article-title: Distributed hierarchical processing in the primate cerebral cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/1.1.1
– volume: 497
  start-page: 585
  year: 2013
  ident: 10.1016/j.cell.2016.10.019_bib40
  article-title: The importance of mixed selectivity in complex cognitive tasks
  publication-title: Nature
  doi: 10.1038/nature12160
– volume: 473
  start-page: 87
  year: 2011
  ident: 10.1016/j.cell.2016.10.019_bib26
  article-title: Functional specificity of local synaptic connections in neocortical networks
  publication-title: Nature
  doi: 10.1038/nature09880
– volume: 81
  start-page: 1344
  year: 2014
  ident: 10.1016/j.cell.2016.10.019_bib30
  article-title: Functional architecture of an optic flow-responsive area that drives horizontal eye movements in zebrafish
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.02.043
– volume: 452
  start-page: 473
  year: 2008
  ident: 10.1016/j.cell.2016.10.019_bib11
  article-title: The Drosophila pheromone cVA activates a sexually dimorphic neural circuit
  publication-title: Nature
  doi: 10.1038/nature06808
– volume: 25
  start-page: 831
  year: 2015
  ident: 10.1016/j.cell.2016.10.019_bib5
  article-title: Visuomotor transformations underlying hunting behavior in zebrafish
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.01.042
– volume: 509
  start-page: 43
  year: 2014
  ident: 10.1016/j.cell.2016.10.019_bib14
  article-title: Presynaptic inhibition of spinal sensory feedback ensures smooth movement
  publication-title: Nature
  doi: 10.1038/nature13276
– volume: 37
  start-page: 551
  year: 2014
  ident: 10.1016/j.cell.2016.10.019_bib10
  article-title: Development and plasticity of commissural circuits: From locomotion to brain repair
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2014.08.009
– volume: 23
  start-page: 1566
  year: 2013
  ident: 10.1016/j.cell.2016.10.019_bib22
  article-title: Spinal projection neurons control turning behaviors in zebrafish
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2013.06.044
– volume: 450
  start-page: 63
  year: 2007
  ident: 10.1016/j.cell.2016.10.019_bib9
  article-title: Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans
  publication-title: Nature
  doi: 10.1038/nature06292
– volume: 227
  start-page: 228
  year: 1984
  ident: 10.1016/j.cell.2016.10.019_bib19
  article-title: Pretectal and brain stem projections of the medial terminal nucleus of the accessory optic system of the rabbit and rat as studied by anterograde and retrograde neuronal tracing methods
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.902270208
– volume: 405
  start-page: 1
  year: 1988
  ident: 10.1016/j.cell.2016.10.019_bib4
  article-title: The supraspinal control of mammalian locomotion
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1988.sp017319
– volume: 236
  start-page: 42
  year: 1985
  ident: 10.1016/j.cell.2016.10.019_bib27
  article-title: The retinal projection to the cat pretectum
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.902360105
– volume: 32
  start-page: 148
  year: 2015
  ident: 10.1016/j.cell.2016.10.019_bib18
  article-title: On simplicity and complexity in the brave new world of large-scale neuroscience
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2015.04.003
– volume: 346
  start-page: 583
  year: 1994
  ident: 10.1016/j.cell.2016.10.019_bib8
  article-title: Development of the retinofugal projections in the embryonic and larval zebrafish (Brachydanio rerio)
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.903460410
– volume: 5
  start-page: e12741
  year: 2016
  ident: 10.1016/j.cell.2016.10.019_bib12
  article-title: Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion
  publication-title: eLife
  doi: 10.7554/eLife.12741
– volume: 108
  start-page: 1164
  year: 2011
  ident: 10.1016/j.cell.2016.10.019_bib25
  article-title: A structural and functional ground plan for neurons in the hindbrain of zebrafish
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1012185108
– volume: 145
  start-page: 223
  year: 1972
  ident: 10.1016/j.cell.2016.10.019_bib46
  article-title: The termination of retinal axons in the pretectal region of mammals
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.901450208
– volume: 10
  start-page: 413
  year: 2013
  ident: 10.1016/j.cell.2016.10.019_bib2
  article-title: Whole-brain functional imaging at cellular resolution using light-sheet microscopy
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2434
– volume: 37
  start-page: 307
  year: 2014
  ident: 10.1016/j.cell.2016.10.019_bib48
  article-title: Motion-detecting circuits in flies: Coming into view
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-071013-013931
– volume: 162
  start-page: 351
  year: 2015
  ident: 10.1016/j.cell.2016.10.019_bib34
  article-title: neural circuit to integrate opposing motions in the visual field
  publication-title: Cell
  doi: 10.1016/j.cell.2015.06.035
– volume: 19
  start-page: 4448
  year: 2013
  ident: 10.1016/j.cell.2016.10.019_bib44
  article-title: The multifunctional mesencephalic locomotor region
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/1381612811319240011
– volume: 12
  start-page: 1039
  year: 2015
  ident: 10.1016/j.cell.2016.10.019_bib39
  article-title: Whole-brain activity mapping onto a zebrafish brain atlas
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3581
– volume: 66
  start-page: 477
  year: 2010
  ident: 10.1016/j.cell.2016.10.019_bib32
  article-title: Visual guidance of smooth-pursuit eye movements: Sensation, action, and what happens in between
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.03.027
– volume: 76
  start-page: 266
  year: 2012
  ident: 10.1016/j.cell.2016.10.019_bib33
  article-title: The neuronal organization of the retina
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.10.002
– volume: 454
  start-page: 691
  year: 2007
  ident: 10.1016/j.cell.2016.10.019_bib7
  article-title: Touch sensitivity in Caenorhabditis elegans. Pflüg
  publication-title: Arch. Eur. J. Physiol.
  doi: 10.1007/s00424-006-0187-x
– volume: 236
  start-page: 706
  year: 2007
  ident: 10.1016/j.cell.2016.10.019_bib45
  article-title: Visualization of two distinct classes of neurons by gad2 and zic1 promoter/enhancer elements in the dorsal hindbrain of developing zebrafish reveals neuronal connectivity related to the auditory and lateral line systems
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.21084
– volume: 35
  start-page: 7903
  year: 2015
  ident: 10.1016/j.cell.2016.10.019_bib31
  article-title: A structural and genotypic scaffold underlying temporal integration
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3045-14.2015
– volume: 83
  start-page: 692
  year: 2014
  ident: 10.1016/j.cell.2016.10.019_bib47
  article-title: Neural control and modulation of swimming speed in the larval zebrafish
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.06.032
– volume: 11
  start-page: 327
  year: 2008
  ident: 10.1016/j.cell.2016.10.019_bib37
  article-title: Control of visually guided behavior by distinct populations of spinal projection neurons
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn2048
– volume: 151
  start-page: 379
  year: 2006
  ident: 10.1016/j.cell.2016.10.019_bib17
  article-title: The pretectum: Connections and oculomotor-related roles
  publication-title: Prog. Brain Res.
  doi: 10.1016/S0079-6123(05)51012-4
– volume: 79
  start-page: 987
  year: 2013
  ident: 10.1016/j.cell.2016.10.019_bib15
  article-title: A modeling framework for deriving the structural and functional architecture of a short-term memory microcircuit
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.06.041
– volume: 32
  start-page: 87
  year: 2015
  ident: 10.1016/j.cell.2016.10.019_bib35
  article-title: Computational models in the age of large datasets
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2015.01.006
– volume: 23
  start-page: 3726
  year: 2003
  ident: 10.1016/j.cell.2016.10.019_bib42
  article-title: Visuomotor behaviors in larval zebrafish after GFP-guided laser ablation of the optic tectum
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-09-03726.2003
– volume: 522
  start-page: 3960
  year: 2014
  ident: 10.1016/j.cell.2016.10.019_bib50
  article-title: Central pupillary light reflex circuits in the cat: I. The olivary pretectal nucleus
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.23602
– volume: 26
  start-page: 71
  year: 1985
  ident: 10.1016/j.cell.2016.10.019_bib16
  article-title: Pretectal and accessory-optic visual nuclei of fish, amphibia and reptiles: Theme and variations
  publication-title: Brain Behav. Evol.
  doi: 10.1159/000118769
– volume: 65
  start-page: 150
  year: 2010
  ident: 10.1016/j.cell.2016.10.019_bib20
  article-title: Eye smarter than scientists believed: Neural computations in circuits of the retina
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.12.009
– reference: 25032498 - Annu Rev Neurosci. 2014;37:307-27
– reference: 4056090 - J Comp Neurol. 1985 Jun 1;236(1):42-59
– reference: 3076600 - J Physiol. 1988 Nov;405:1-37
– reference: 25155513 - Curr Biol. 2014 Sep 22;24(18):2085-96
– reference: 6470215 - J Comp Neurol. 1984 Aug 1;227(2):228-51
– reference: 23685452 - Nature. 2013 May 30;497(7451):585-90
– reference: 26478179 - Cell. 2015 Oct 22;163(3):656-69
– reference: 19177171 - PLoS One. 2009;4(1):e4320
– reference: 25932978 - Curr Opin Neurobiol. 2015 Jun;32:148-55
– reference: 24656252 - Neuron. 2014 Mar 19;81(6):1328-43
– reference: 23910662 - Curr Biol. 2013 Aug 19;23(16):1566-73
– reference: 17279576 - Dev Dyn. 2007 Mar;236(3):706-18
– reference: 23761738 - Front Neural Circuits. 2013 Jun 06;7:104
– reference: 21478872 - Nature. 2011 May 5;473(7345):87-91
– reference: 19447089 - Neuron. 2009 May 14;62(3):327-34
– reference: 18264094 - Nat Neurosci. 2008 Mar;11(3):327-33
– reference: 25637959 - Curr Opin Neurobiol. 2015 Jun;32:87-94
– reference: 16221595 - Prog Brain Res. 2006;151:379-405
– reference: 17972877 - Nature. 2007 Nov 1;450(7166):63-70
– reference: 3907745 - Brain Behav Evol. 1985;26(2):71-90
– reference: 20152123 - Neuron. 2010 Jan 28;65(2):150-64
– reference: 17285303 - Pflugers Arch. 2007 Aug;454(5):691-702
– reference: 7983245 - J Comp Neurol. 1994 Aug 22;346(4):583-600
– reference: 18305480 - Nature. 2008 Mar 27;452(7186):473-7
– reference: 15996545 - Neuron. 2005 Jul 7;47(1):13-28
– reference: 25066084 - Neuron. 2014 Aug 6;83(3):692-707
– reference: 25896325 - Nature. 2015 Apr 30;520(7549):633-9
– reference: 22622571 - Nature. 2012 May 09;485(7399):471-7
– reference: 24706328 - J Comp Neurol. 2014 Dec 15;522(18):3960-77
– reference: 25754638 - Curr Biol. 2015 Mar 30;25(7):831-46
– reference: 25220044 - Trends Neurosci. 2014 Oct;37(10):551-62
– reference: 26186189 - Cell. 2015 Jul 16;162(2):351-62
– reference: 25995475 - J Neurosci. 2015 May 20;35(20):7903-20
– reference: 24012010 - Neuron. 2013 Sep 4;79(5):987-1000
– reference: 27003593 - Elife. 2016 Mar 22;5:e12741
– reference: 1822724 - Cereb Cortex. 1991 Jan-Feb;1(1):1-47
– reference: 21124455 - Nature. 2010 Dec 2;468(7324):686-90
– reference: 24602868 - Curr Opin Neurobiol. 2014 Apr;25:xiii-xviii
– reference: 24784215 - Nature. 2014 May 1;509(7498):43-8
– reference: 21199937 - Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1170-5
– reference: 26778924 - Nat Methods. 2015 Nov;12(11):1039-46
– reference: 20510853 - Neuron. 2010 May 27;66(4):477-91
– reference: 23083731 - Neuron. 2012 Oct 18;76(2):266-80
– reference: 23360276 - Curr Pharm Des. 2013;19(24):4448-70
– reference: 23524393 - Nat Methods. 2013 May;10(5):413-20
– reference: 20225934 - Annu Rev Neurosci. 2010;33:49-70
– reference: 21199947 - Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1164-9
– reference: 6315186 - Brain Res. 1983 Oct;287(2):117-37
– reference: 24656253 - Neuron. 2014 Mar 19;81(6):1344-59
– reference: 4555428 - J Comp Neurol. 1972 Jun;145(2):223-57
– reference: 12736343 - J Neurosci. 2003 May 1;23(9):3726-34
SSID ssj0008555
Score 2.6031015
Snippet Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 947
SubjectTerms Animals
behavioral analysis
brain
Brain - physiology
calcium imaging
circuit model
Danio rerio
Feedback, Sensory
image analysis
Neural Pathways
Neuroimaging
Neurons
neurophysiology
streams
Swimming
two-photon imaging
vertebrates
Visual Perception
zebrafish
Zebrafish - physiology
Title From Whole-Brain Data to Functional Circuit Models: The Zebrafish Optomotor Response
URI https://dx.doi.org/10.1016/j.cell.2016.10.019
https://www.ncbi.nlm.nih.gov/pubmed/27814522
https://www.proquest.com/docview/1836733118
https://www.proquest.com/docview/2000200401
https://pubmed.ncbi.nlm.nih.gov/PMC5111816
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5DEHwR787LiOCb1PWWtPXNTccQVJCJw5eSpBlWZju27sF_7zlNO5y3Bx-bpqU9Sc750n7nfISchiHXAfOVFXJlW77UrhWJUFgs0I5kXDJZqjfc3vH-o38zZMMG6da5MEirrHy_8emlt65a2pU125M0xRzfyA15iShgl-BiRjlmlWIS37Cz8MYhY0bFIIKVD72rxBnD8cKP40jv4ufI8MJqOz8Hp-_g8yuH8lNQ6m2Q9QpN0kvzwJukobMtsmr0Jd-3yaA3zd_oE0rgWh3UgqBXohC0yGkPwpn5Cki76VTN04KiKtp4dkFh4tBn_J08Smcv9H5SIF8vn9IHw6bVO-Sxdz3o9q1KRsFSgBUKKwm1ZA63FU9cUW5KBVOelvaIaR1IhRVmPBgZJ0mcwFYs4kIAMFI-ogGbj7xdspLlmd4nlI0i204AtWgpfU_DnZH_J-0I2hLuJU3i1PaLVVVjHKUuxnFNJnuN0eYx2hzbwOZNcra4ZmIqbPzZm9XDEi_NkxhCwJ_XndRjGMMCwtMi0_l8FoNP4yhc6YS_93HLP7bg75wm2TPjvnhWF4uGAYptkmBpRiw6YAHv5TNZ-lIW8gawCwCLH_zznQ7JGh6VmZHeEVkppnN9DBCpkC0MUKxVroQPF-cPXA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgguiPJcHsWVekOhzsNOwo0uXW2hLRLaihUXy3a8alBJVrvZA_-emThZsUB76NWPyBnb48_25_kADrJMulQkNsik5UFiXBTkOtOBSF1ohDTCtOoNZ-dyfJF8morpFgz7tzBEq-x8v_fprbfuUg47ax7Oy5Le-OZRJltEgbuEKL0DO4gGOA3tk-nR2h1nQngZgxynPhbvXs54khedjhO_S74jiheF2_n_6vQv-vybRPnHqjR6CA86OMk--BbvwparHsFdLzD56zFMRov6J_tGGrjBEYlBsI-60ayp2QjXM38MyIblwq7KhpEs2tXyPcORw77TffKsXF6yL_OGCHv1gn31dFr3BC5Gx5PhOOh0FAKLYKEJiswZEUpuZRHpdleqhY2d4TPhXGoshZiJsWvCoghTbkUutUZkZBOCA1zO4qewXdWVew5MzHLOC4QtzpgkdvhlIgAanmNaIeNiAGFvP2W7IOOkdXGlejbZD0U2V2RzSkObD-Dtus7ch9i4sbTou0VtDBSFa8CN9fb7PlQ4gyhbV65eLRU6NUnKlWF2fZmovbJFhxcO4Jnv93VbI4oahjB2AOnGiFgXoAjemzlVedlG8ka0iwhLvrjlP72Be-PJ2ak6PTn__BLuU077TDJ-BdvNYuVeI15qzF47H34DYaURmQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Whole-Brain+Data+to+Functional+Circuit+Models%3A+The+Zebrafish+Optomotor+Response&rft.jtitle=Cell&rft.au=Naumann%2C+Eva+A.&rft.au=Fitzgerald%2C+James+E.&rft.au=Dunn%2C+Timothy+W.&rft.au=Rihel%2C+Jason&rft.date=2016-11-03&rft.pub=Elsevier+Inc&rft.issn=0092-8674&rft.eissn=1097-4172&rft.volume=167&rft.issue=4&rft.spage=947&rft.epage=960.e20&rft_id=info:doi/10.1016%2Fj.cell.2016.10.019&rft.externalDocID=S0092867416314027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon