Maximum Likelihood Estimations and EM Algorithms With Length-Biased Data

Length-biased sampling has been well recognized in economics, industrial reliability, etiology applications, and epidemiological, genetic, and cancer screening studies. Length-biased right-censored data have a unique data structure different from traditional survival data. The nonparametric and semi...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 106; no. 496; pp. 1434 - 1449
Main Authors Qin, Jing, Ning, Jing, Liu, Hao, Shen, Yu
Format Journal Article
LanguageEnglish
Published Alexandria, VA Taylor & Francis 01.12.2011
American Statistical Association
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0162-1459
1537-274X
DOI10.1198/jasa.2011.tm10156

Cover

Abstract Length-biased sampling has been well recognized in economics, industrial reliability, etiology applications, and epidemiological, genetic, and cancer screening studies. Length-biased right-censored data have a unique data structure different from traditional survival data. The nonparametric and semiparametric estimation and inference methods for traditional survival data are not directly applicable for length-biased right-censored data. We propose new expectation-maximization algorithms for estimations based on full likelihoods involving infinite-dimensional parameters under three settings for length-biased data: estimating nonparametric distribution function, estimating nonparametric hazard function under an increasing failure rate constraint, and jointly estimating baseline hazards function and the covariate coefficients under the Cox proportional hazards model. Extensive empirical simulation studies show that the maximum likelihood estimators perform well with moderate sample sizes and lead to more efficient estimators compared to the estimating equation approaches. The proposed estimates are also more robust to various right-censoring mechanisms. We prove the strong consistency properties of the estimators, and establish the asymptotic normality of the semiparametric maximum likelihood estimators under the Cox model using modern empirical processes theory. We apply the proposed methods to a prevalent cohort medical study. Supplemental materials are available online.
AbstractList Length-biased sampling has been well recognized in economics, industrial reliability, etiology applications, and epidemiological, genetic, and cancer screening studies. Length-biased right-censored data have a unique data structure different from traditional survival data. The nonparametric and semiparametric estimation and inference methods for traditional survival data are not directly applicable for length-biased right-censored data. We propose new expectation-maximization algorithms for estimations based on full likelihoods involving infinite-dimensional parameters under three settings for length-biased data: estimating nonparametric distribution function, estimating non-parametric hazard function under an increasing failure rate constraint, and jointly estimating baseline hazards function and the covariate coefficients under the Cox proportional hazards model. Extensive empirical simulation studies show that the maximum likelihood estimators perform well with moderate sample sizes and lead to more efficient estimators compared to the estimating equation approaches. The proposed estimates are also more robust to various right-censoring mechanisms. We prove the strong consistency properties of the estimators, and establish the asymptotic normality of the semipararnetric maximum likelihood estimators under the Cox model using modern empirical processes theory. We apply the proposed methods to a prevalent cohort medical study. Supplemental materials are available online. [PUBLICATION ABSTRACT]
Length-biased sampling has been well recognized in economics, industrial reliability, etiology applications, epidemiological, genetic and cancer screening studies. Length-biased right-censored data have a unique data structure different from traditional survival data. The nonparametric and semiparametric estimations and inference methods for traditional survival data are not directly applicable for length-biased right-censored data. We propose new expectation-maximization algorithms for estimations based on full likelihoods involving infinite dimensional parameters under three settings for length-biased data: estimating nonparametric distribution function, estimating nonparametric hazard function under an increasing failure rate constraint, and jointly estimating baseline hazards function and the covariate coefficients under the Cox proportional hazards model. Extensive empirical simulation studies show that the maximum likelihood estimators perform well with moderate sample sizes and lead to more efficient estimators compared to the estimating equation approaches. The proposed estimates are also more robust to various right-censoring mechanisms. We prove the strong consistency properties of the estimators, and establish the asymptotic normality of the semi-parametric maximum likelihood estimators under the Cox model using modern empirical processes theory. We apply the proposed methods to a prevalent cohort medical study. Supplemental materials are available online.
Length-biased sampling has been well recognized in economics, industrial reliability, etiology applications, and epidemiological, genetic, and cancer screening studies. Length-biased right-censored data have a unique data structure different from traditional survival data. The nonparametric and semiparametric estimation and inference methods for traditional survival data are not directly applicable for length-biased right-censored data. We propose new expectation-maximization algorithms for estimations based on full likelihoods involving infinite-dimensional parameters under three settings for length-biased data: estimating nonparametric distribution function, estimating nonparametric hazard function under an increasing failure rate constraint, and jointly estimating baseline hazards function and the covariate coefficients under the Cox proportional hazards model. Extensive empirical simulation studies show that the maximum likelihood estimators perform well with moderate sample sizes and lead to more efficient estimators compared to the estimating equation approaches. The proposed estimates are also more robust to various right-censoring mechanisms. We prove the strong consistency properties of the estimators, and establish the asymptotic normality of the semiparametric maximum likelihood estimators under the Cox model using modern empirical processes theory. We apply the proposed methods to a prevalent cohort medical study. Supplemental materials are available online.
Length-biased sampling has been well recognized in economics, industrial reliability, etiology applications, epidemiological, genetic and cancer screening studies. Length-biased right-censored data have a unique data structure different from traditional survival data. The nonparametric and semiparametric estimations and inference methods for traditional survival data are not directly applicable for length-biased right-censored data. We propose new expectation-maximization algorithms for estimations based on full likelihoods involving infinite dimensional parameters under three settings for length-biased data: estimating nonparametric distribution function, estimating nonparametric hazard function under an increasing failure rate constraint, and jointly estimating baseline hazards function and the covariate coefficients under the Cox proportional hazards model. Extensive empirical simulation studies show that the maximum likelihood estimators perform well with moderate sample sizes and lead to more efficient estimators compared to the estimating equation approaches. The proposed estimates are also more robust to various right-censoring mechanisms. We prove the strong consistency properties of the estimators, and establish the asymptotic normality of the semi-parametric maximum likelihood estimators under the Cox model using modern empirical processes theory. We apply the proposed methods to a prevalent cohort medical study. Supplemental materials are available online.Length-biased sampling has been well recognized in economics, industrial reliability, etiology applications, epidemiological, genetic and cancer screening studies. Length-biased right-censored data have a unique data structure different from traditional survival data. The nonparametric and semiparametric estimations and inference methods for traditional survival data are not directly applicable for length-biased right-censored data. We propose new expectation-maximization algorithms for estimations based on full likelihoods involving infinite dimensional parameters under three settings for length-biased data: estimating nonparametric distribution function, estimating nonparametric hazard function under an increasing failure rate constraint, and jointly estimating baseline hazards function and the covariate coefficients under the Cox proportional hazards model. Extensive empirical simulation studies show that the maximum likelihood estimators perform well with moderate sample sizes and lead to more efficient estimators compared to the estimating equation approaches. The proposed estimates are also more robust to various right-censoring mechanisms. We prove the strong consistency properties of the estimators, and establish the asymptotic normality of the semi-parametric maximum likelihood estimators under the Cox model using modern empirical processes theory. We apply the proposed methods to a prevalent cohort medical study. Supplemental materials are available online.
Length-biased sampling has been well recognized in economics, industrial reliability, etiology applications, and epidemiological, genetic, and cancer screening studies. Length-biased right-censored data have a unique data structure different from traditional survival data. The nonparametric and semiparametric estimation and inference methods for traditional survival data are not directly applicable for length-biased right-censored data. We propose new expectation-maximization algorithms for estimations based on full likelihoods involving infinite-dimensional parameters under three settings for length-biased data: estimating nonparametric distribution function, estimating non-parametric hazard function under an increasing failure rate constraint, and jointly estimating baseline hazards function and the covariate coefficients under the Cox proportional hazards model. Extensive empirical simulation studies show that the maximum likelihood estimators perform well with moderate sample sizes and lead to more efficient estimators compared to the estimating equation approaches. The proposed estimates are also more robust to various right-censoring mechanisms. We prove the strong consistency properties of the estimators, and establish the asymptotic normality of the semipararnetric maximum likelihood estimators under the Cox model using modern empirical processes theory. We apply the proposed methods to a prevalent cohort medical study. Supplemental materials are available online.
Author Ning, Jing
Liu, Hao
Qin, Jing
Shen, Yu
Author_xml – sequence: 1
  givenname: Jing
  surname: Qin
  fullname: Qin, Jing
– sequence: 2
  givenname: Jing
  surname: Ning
  fullname: Ning, Jing
– sequence: 3
  givenname: Hao
  surname: Liu
  fullname: Liu, Hao
– sequence: 4
  givenname: Yu
  surname: Shen
  fullname: Shen, Yu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25425046$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22323840$$D View this record in MEDLINE/PubMed
BookMark eNqNkl9rFDEUxYNU7B_9AD4ogyD4MmtuMpnJgAi1Vits8UXRt3Ank9nNOpPUJKv225t1t60WFPNyCfd3Dic395DsOe8MIQ-BzgBa-XyFEWeMAszSBBREfYccgOBNyZrq8x45oFCzEirR7pPDGFc0n0bKe2SfMc64rOgBOTvHH3ZaT8XcfjGjXXrfF6cx2QmT9S4W6PL9vDgeFz7YtJxi8SmXYm7cIi3LVxaj6YvXmPA-uTvgGM2DXT0iH9-cfjg5K-fv3747OZ6XWogqld2gNWrWsw4Moxy4ZNWAHRecCd30tWTtgHKg0ApE2Q898KrShgNCVxvT8SPycut7se4m02vjUsBRXYQcOVwqj1b92XF2qRb-m-Ks4S2V2eDZziD4r2sTk5ps1GYc0Rm_jgokq4UQrPoPNI9eCuAtz-iTW-jKr4PLk1AtA2gkpXWGHv-e_Tr01Xdk4OkOwKhxHAI6beMNJyomaLUxgi2ng48xmOEaAao2q6E2q6E2q6F2q5E1zS2NtunXL-cx2fGfykdb5SomH27S5NCtqNrcf7HtWzf4MOF3H8ZeJbwcfbh6Av-7_U_9Fdzd
CODEN JSTNAL
CitedBy_id crossref_primary_10_1177_1758835918782331
crossref_primary_10_1016_j_jkss_2018_12_003
crossref_primary_10_1111_biom_12746
crossref_primary_10_1007_s10985_021_09524_6
crossref_primary_10_1007_s12561_024_09463_4
crossref_primary_10_1080_10485252_2018_1424335
crossref_primary_10_1002_sim_8411
crossref_primary_10_1007_s10985_017_9415_2
crossref_primary_10_1007_s11425_017_9268_0
crossref_primary_10_1080_00401706_2014_995834
crossref_primary_10_1111_sjos_12182
crossref_primary_10_1002_sim_9183
crossref_primary_10_1007_s00362_018_01080_w
crossref_primary_10_1177_20552076231187247
crossref_primary_10_1080_03610926_2019_1604963
crossref_primary_10_3390_math11224576
crossref_primary_10_1093_biostatistics_kxv012
crossref_primary_10_1007_s10985_021_09536_2
crossref_primary_10_1007_s11749_013_0329_3
crossref_primary_10_1214_17_STS638
crossref_primary_10_1007_s10985_018_9422_y
crossref_primary_10_1016_j_jspi_2023_06_001
crossref_primary_10_1093_biomet_ast039
crossref_primary_10_1016_j_jmva_2016_04_002
crossref_primary_10_15406_bbij_2019_08_00293
crossref_primary_10_1002_bimj_202100231
crossref_primary_10_1007_s10985_016_9367_y
crossref_primary_10_1515_ijb_2023_0121
crossref_primary_10_1111_rssb_12308
crossref_primary_10_1080_02664763_2020_1753028
crossref_primary_10_1007_s00362_016_0870_8
crossref_primary_10_1093_biostatistics_kxx024
crossref_primary_10_1111_biom_12772
crossref_primary_10_1111_biom_12970
crossref_primary_10_1186_s12874_023_01903_x
crossref_primary_10_1002_sim_9724
crossref_primary_10_1111_biom_12170
crossref_primary_10_3390_math12111760
crossref_primary_10_1007_s10651_024_00611_z
crossref_primary_10_1007_s10463_020_00755_2
crossref_primary_10_1002_qre_3161
crossref_primary_10_4236_am_2014_511160
crossref_primary_10_1007_s10985_015_9355_7
crossref_primary_10_1111_biom_13804
crossref_primary_10_1111_insr_12510
crossref_primary_10_1007_s10985_016_9374_z
crossref_primary_10_1080_03610918_2025_2481188
crossref_primary_10_1080_03610926_2016_1157187
crossref_primary_10_1111_biom_13451
crossref_primary_10_1007_s00432_018_2721_6
crossref_primary_10_1080_02664763_2021_1928015
crossref_primary_10_1002_cjs_11272
crossref_primary_10_1016_j_econlet_2015_10_023
crossref_primary_10_1016_j_econlet_2020_109399
crossref_primary_10_1016_j_jmva_2016_08_003
crossref_primary_10_1007_s10985_020_09498_x
Cites_doi 10.1111/j.1541-0420.2009.01287.x
10.1111/j.1369-7412.2007.00606.x
10.1214/aos/1176324462
10.2307/2685783
10.2307/2983150
10.1016/0047-259X(92)90113-T
10.1137/1138022
10.2307/1913267
10.1093/biomet/75.2.319
10.1002/sim.2326
10.1086/514855
10.2307/2337345
10.2307/2289722
10.1214/009053605000000372
10.1093/biomet/80.2.267
10.1093/biomet/83.2.343
10.1198/016214508000000382
10.1191/0962280206sm435oa
10.1198/016214504000001420
10.1093/biomet/asp026
10.1214/aoms/1177700271
10.2307/2532597
10.1093/biomet/56.3.601
10.2307/2669386
10.1214/aos/1176345802
10.1093/biomet/60.2.267
10.1007/s10985-004-4770-1
10.1093/biomet/76.4.751
10.2307/2670005
10.2307/2532345
10.1093/biomet/62.2.269
10.1198/004017008000000442
10.1093/biomet/67.2.470
10.1093/biomet/74.2.281
10.1111/j.2517-6161.1976.tb01597.x
10.1214/aos/1176325492
10.1214/aos/1176348668
10.1056/NEJM200104123441501
10.2307/2297364
10.1111/j.2517-6161.1972.tb00899.x
10.2307/3318710
10.1093/oxfordjournals.aje.a112920
10.1080/0266476022000030066
10.1198/016214502753479347
10.1214/aos/1030563982
ContentType Journal Article
Copyright 2011 American Statistical Association 2011
2011 The American Statistical Association
2015 INIST-CNRS
Copyright American Statistical Association Dec 2011
Copyright_xml – notice: 2011 American Statistical Association 2011
– notice: 2011 The American Statistical Association
– notice: 2015 INIST-CNRS
– notice: Copyright American Statistical Association Dec 2011
DBID AAYXX
CITATION
IQODW
NPM
8BJ
FQK
JBE
K9.
7X8
5PM
DOI 10.1198/jasa.2011.tm10156
DatabaseName CrossRef
Pascal-Francis
PubMed
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)
PubMed


MEDLINE - Academic
International Bibliography of the Social Sciences (IBSS)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-274X
EndPage 1449
ExternalDocumentID PMC3273908
2584633741
22323840
25425046
10_1198_jasa_2011_tm10156
23239549
10711016
Genre Research Article
Journal Article
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA079466
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
2AX
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABRLO
ABTAI
ABUFD
ABXSQ
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACTCW
ACTIO
ACTMH
ACUBG
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
AEISY
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFRVT
AFVYC
AFXHP
AGCQS
AGDLA
AGLNM
AGMYJ
AHDZW
AIHAF
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
FJW
GTTXZ
H13
HF~
HQ6
HZ~
H~9
H~P
IPNFZ
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
KYCEM
LU7
M4Z
MS~
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UPT
UQL
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
ZUP
~S~
ADYSH
AFSUE
ALIPV
AMPGV
.-4
.GJ
07G
1OL
3R3
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
AAFWJ
AAIKQ
AAKBW
AAYXX
ABEFU
ABJCF
ABUWG
ACAGQ
ACGEE
ADBBV
ADXHL
AEUMN
AFKRA
AFQQW
AGLEN
AGROQ
AHMOU
AI.
ALCKM
AMATQ
AMEWO
AMVHM
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CITATION
CRFIH
DMQIW
DWIFK
DWQXO
E.L
FEDTE
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
HVGLF
IVXBP
K9-
KQ8
L6V
LJTGL
M0C
M0R
M0T
M1P
M2O
M2P
M7S
MVM
NHB
NUSFT
P-O
PADUT
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PTHSS
PUEGO
Q2X
QCRFL
RNS
S0X
SJN
TAQ
TFMCV
UB9
UKHRP
VH1
VOH
WHG
YXB
YYP
ZCG
ZGI
ZXP
IQODW
NPM
8BJ
FQK
JBE
K9.
7X8
5PM
ID FETCH-LOGICAL-c554t-bfccac2d2b1e20313824fab35325c7d6829fa8f0195aa8dfd1344ce31a1b6eeb3
ISSN 0162-1459
IngestDate Tue Sep 30 16:44:47 EDT 2025
Thu Oct 02 14:11:54 EDT 2025
Sun Sep 28 00:06:48 EDT 2025
Sat Oct 25 06:46:53 EDT 2025
Mon Jul 21 06:06:26 EDT 2025
Mon Jul 21 09:14:35 EDT 2025
Wed Oct 01 06:41:33 EDT 2025
Thu Apr 24 23:10:28 EDT 2025
Thu May 29 08:44:01 EDT 2025
Mon Oct 20 23:40:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 496
Keywords Nonparametric likelihood
Strong consistency
Estimator robustness
Censored sample
Non parametric estimation
Cox regression model
Statistical test
Estimator efficiency
Consistent estimator
Increasing function
Genetics
Sample survey
Increasing failure rate
Survival data
Censored data
Asymptotic behavior
Statistical estimation
Life test
Semiparametric method
Failure rate
Statistical method
Survival analysis
Profile likelihood
Estimating function
Cox model
Sampling theory
Estimating equation
Maximum likelihood
Econometrics
Reliability
EM algorithm
Right-censored data
Biased estimation
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c554t-bfccac2d2b1e20313824fab35325c7d6829fa8f0195aa8dfd1344ce31a1b6eeb3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Jing Qin is Mathematical Statistician, National Institution of Allergy and Infectious Diseases, Bethesda, MD 20817 (jingqin@niaid.nih.gov); Jing Ning is Assistant Professor, Division of Biostatistics, The University of Texas, Health Science Center at Houston, TX 77030 (jing.ning@uth.tmc.edu); Hao Liu is Assistant Professor, Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030 (haol@bcm.edu); and Yu Shen is Professor, Department of Biostatistics, M.D. Anderson Cancer Center, Houston, TX 77030 (yshen@mdanderson.org).
PMID 22323840
PQID 921178006
PQPubID 41715
PageCount 16
ParticipantIDs pascalfrancis_primary_25425046
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3273908
crossref_primary_10_1198_jasa_2011_tm10156
proquest_miscellaneous_1011851393
crossref_citationtrail_10_1198_jasa_2011_tm10156
proquest_journals_921178006
proquest_miscellaneous_1826555248
jstor_primary_23239549
informaworld_taylorfrancis_310_1198_jasa_2011_tm10156
pubmed_primary_22323840
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-12-01
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: United States
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationTitleAlternate J Am Stat Assoc
PublicationYear 2011
Publisher Taylor & Francis
American Statistical Association
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: American Statistical Association
– name: Taylor & Francis Ltd
References p_49
p_47
De Uña Álvarez J. (p_13) 2003; 30
p_41
p_43
p_44
Nielsen G. G. (p_33) 1992; 19
p_38
p_39
p_2
p_4
p_34
p_3
p_35
p_6
p_36
McClean S. (p_27) 1995; 82
p_37
p_7
p_9
Turnbull B. W. (p_45) 1976; 38
Breslow N. (p_8) 1972; 34
p_30
p_31
p_32
Kalbfleisch J. D. (p_20) 1991; 1
p_28
p_29
p_23
p_24
p_26
Cox D. R. (p_10) 1972; 34
p_21
p_22
p_60
Simon R. (p_40) 1980; 111
p_57
p_14
p_58
p_15
p_59
p_52
p_53
p_54
p_11
p_55
Huang J. (p_19) 1995; 22
p_50
p_51
References_xml – ident: p_36
  doi: 10.1111/j.1541-0420.2009.01287.x
– ident: p_59
  doi: 10.1111/j.1369-7412.2007.00606.x
– ident: p_30
  doi: 10.1214/aos/1176324462
– ident: p_38
  doi: 10.2307/2685783
– ident: p_22
  doi: 10.2307/2983150
– ident: p_47
  doi: 10.1016/0047-259X(92)90113-T
– ident: p_7
  doi: 10.1137/1138022
– ident: p_37
  doi: 10.2307/1913267
– ident: p_43
  doi: 10.1093/biomet/75.2.319
– ident: p_4
  doi: 10.1002/sim.2326
– ident: p_41
  doi: 10.1086/514855
– volume: 82
  start-page: 791
  year: 1995
  ident: p_27
  publication-title: Biometrika
  doi: 10.2307/2337345
– ident: p_52
  doi: 10.2307/2289722
– ident: p_2
  doi: 10.1214/009053605000000372
– ident: p_28
  doi: 10.1093/biomet/80.2.267
– ident: p_53
  doi: 10.1093/biomet/83.2.343
– volume: 22
  start-page: 3
  year: 1995
  ident: p_19
  publication-title: Scandinavian Journal of Statistics
– ident: p_6
  doi: 10.1198/016214508000000382
– ident: p_39
  doi: 10.1191/0962280206sm435oa
– ident: p_60
  doi: 10.1198/016214504000001420
– ident: p_44
  doi: 10.1093/biomet/asp026
– ident: p_26
  doi: 10.1214/aoms/1177700271
– ident: p_54
  doi: 10.2307/2532597
– volume: 34
  start-page: 216
  year: 1972
  ident: p_8
  publication-title: Journal of the Royal Statistical Society, Ser. B
– volume: 1
  start-page: 19
  year: 1991
  ident: p_20
  publication-title: Statistica Sinica
– ident: p_58
  doi: 10.1093/biomet/56.3.601
– ident: p_32
  doi: 10.2307/2669386
– ident: p_49
  doi: 10.1214/aos/1176345802
– ident: p_21
  doi: 10.1093/biomet/60.2.267
– ident: p_57
  doi: 10.1007/s10985-004-4770-1
– ident: p_50
  doi: 10.1093/biomet/76.4.751
– ident: p_9
  doi: 10.2307/2670005
– ident: p_23
  doi: 10.2307/2532345
– ident: p_11
  doi: 10.1093/biomet/62.2.269
– ident: p_24
  doi: 10.1198/004017008000000442
– ident: p_34
  doi: 10.1093/biomet/67.2.470
– ident: p_14
  doi: 10.1093/biomet/74.2.281
– volume: 38
  start-page: 290
  year: 1976
  ident: p_45
  publication-title: Journal of the Royal Statistical Society, Ser. B
  doi: 10.1111/j.2517-6161.1976.tb01597.x
– ident: p_29
  doi: 10.1214/aos/1176325492
– ident: p_51
  doi: 10.1214/aos/1176348668
– ident: p_55
  doi: 10.1056/NEJM200104123441501
– ident: p_15
  doi: 10.2307/2297364
– volume: 34
  start-page: 187
  year: 1972
  ident: p_10
  publication-title: Journal of the Royal Statistical Society, Ser. B
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– ident: p_31
  doi: 10.2307/3318710
– volume: 111
  start-page: 444
  year: 1980
  ident: p_40
  publication-title: American Journal of Epidemiology
  doi: 10.1093/oxfordjournals.aje.a112920
– volume: 30
  start-page: 283
  year: 2003
  ident: p_13
  publication-title: Journal of Applied Statistics
  doi: 10.1080/0266476022000030066
– volume: 19
  start-page: 25
  year: 1992
  ident: p_33
  publication-title: Scandinavian Journal of Statistics
– ident: p_3
  doi: 10.1198/016214502753479347
– ident: p_35
  doi: 10.1214/aos/1030563982
SSID ssj0000788
Score 2.30789
Snippet Length-biased sampling has been well recognized in economics, industrial reliability, etiology applications, and epidemiological, genetic, and cancer screening...
Length-biased sampling has been well recognized in economics, industrial reliability, etiology applications, epidemiological, genetic and cancer screening...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
jstor
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1434
SubjectTerms Algorithms
Applications
Asymmetry
Bias
Cancer
Censored data
Censorship
Cox regression model
Dementia
Distribution
Estimation
Estimation bias
Estimation methods
Estimators
Etiology
Exact sciences and technology
General topics
Increasing failure rate
Insurance, economics, finance
Mathematics
Maximum likelihood estimation
Maximum likelihood estimators
Maximum likelihood method
Medical screening
Modeling
Nonparametric likelihood
Nonparametric models
Normality
Parameter estimation
Parametric inference
Probability and statistics
Probability theory and stochastic processes
Profile likelihood
Regression analysis
Reliability
Right-censored data
Sampling techniques
Sciences and techniques of general use
Semiparametric modeling
Simulation
Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)
Statistical methods
Statistics
Survival analysis
Theory and Methods
Title Maximum Likelihood Estimations and EM Algorithms With Length-Biased Data
URI https://www.tandfonline.com/doi/abs/10.1198/jasa.2011.tm10156
https://www.jstor.org/stable/23239549
https://www.ncbi.nlm.nih.gov/pubmed/22323840
https://www.proquest.com/docview/921178006
https://www.proquest.com/docview/1011851393
https://www.proquest.com/docview/1826555248
https://pubmed.ncbi.nlm.nih.gov/PMC3273908
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: AHDZW
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgXHpBfBWWQhUkTqBAYjuJc6zQohXq9tRK5RQ5jtNdsclWTSIhfj0zjvNVtivgEq1iJ17lPdsz9swzIe9zTqmUYeAyFnnooDBXKs3dOBdCqghIkhm1z_Nwccm_XQVXQ-6JyS6p00_q1868kv9BFe4Brpgl-w_I9i-FG_Ab8IUrIAzXv8J4KX-ui6YAx_qH3qxbgWLosoUNb8M18fny4-nmenu7rleFzWQ70-V1vQKXGCawDGCv5T0W6ijrxJzzWxtR5x2Y4sKpPdWrmwnNVoeN9h3dO1s3ZrKT235px6aHfG_GCxAYAdcHc9g1yZC6PrfC3t2g6oUj9vB4PEiCicZ3j96xMKcGVLLVVq0LHzO9x3UBgJvCwAl2DZgbrdbTHcnsrugheURhsMcTPZh3PkzQkTmOtP_fdrMbWv_8R9soFm3fNrFcJrq2XSwrBtbKCnDI20NRdnktd4NvR9bMxRPy2ILsnLacekoe6PIZOewxrp6ThSWXM5DLGZHLAXI586UzkMtBcjkTcjlIrhfk8uv84svCtcduuApsy9pNc-jVimY09TVFaU9BeS5TFjAaKOi6gsa5FDlmmkopsjzzGedKM1_6aah1yo7IQbkt9SvixJmX0ihVzNMZV1xAdQUefabCKJc6FzPidZ80UVaTHo9G2STGN41FgoAkCEhiAZmRD_0jN60gy77KwRinpDarYBadhO157sgA2reAFMAN8Rk5mSA8VAg4igHCk8cd5IkdKaokpr4fgWcGpe_6UhjGcW9OlnrbVBhpCZYzuGNsTx1BwyAIKIfv9rIl0dC-JemMRBN69RVQRn5aUq5XRk6egQcTe-L1ve88JodDv39DDurbRr8FU7xOT0zH-g16UNzZ
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgHNiF8bXRDYaROCFlJP5onOOATgXanjaxm-U49hrWpmhJJcRfz7Odtss09bBTDn6Ok-dn-_fs599D6KNlhCjV5xGlaewcFBopbViUWSGUTsFICs_2OekPL9iPS37ZbrjVbVil86FtIIrwc7Ub3G4zOozwTHz-rWoV2DebeeLuAj9GTzgAfZfBgMaTzUyc-ryTgGpIlDCetaea976isy51WEtXkYoubFLVoDkbUl7ch0nvhlbeWqvO9pBc_WUIUbk-WTb5if53hwDy4Wp4jp61MBafBrt7gR6Z6iXadcg1ED-_QsOx-lvOl3M8Kq_NrHTsyXgAZeGqZI2hWTwY49PZ1eKmbKbzGv-CBx6Z6qqZRl9KWF0L_E016jW6OBucfx1GbdqGSAM2aaLcglVoUpA8McRRQwrCrMopp4Rr6HpBMquEdTcVlRKFLRLKmDY0UUneN-Dc76OdalGZNwhnRZyTNNc0NgXTTIC4Bo-w0P3UKmNFD8WrTpO65TR3qTVm0vs2mZBOR9LpSLY66qFP6yp_AqHHNmF-2xJk43dR2v6XdEu9fW8y6xYAt1J3oNpDxx0b2ghw5sjkoObRyqhkO5vUMgMvPQVkD6Uf1qUwDbizHVWZxbJ2kXqAvADO0y0y4EpyzgkDvR0EM920774QnP0eSjsGvBZwNOTdkqqcejpyCgg4i8XhA3X1Hj0dno9HcvR98vMI7fo9ex8u9BbtNDdL8w5AX5Mf-5H9H36LU90
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgSGgv_N4og2EknpAyEttJnMfBWhXoKh6Y2FvkOPYa1qbTkkqIv547O23XaerDnvLgcxydz_Z3ufN3hHy0gjGlkjjgPA3RQeGB0kYEmZVS6RSMpHRsn-NkeCa-n8fnXW5O06VVog9tPVGE26txcV-V1i_wTH7-oxrlyTfbWYRXgR-SRwlGxPAGRzheb8SpKzsJoIYFkYizLqh55ys2jqUN0tJloiJmTaoGFGd9xYu7IOntzMobR9Xgqa_H2jiGQ8xQuTxatMWR_neL__HeWnhGnnQglh57q3tOHpj6BdlF3Oppn1-S4an6W80WMzqqLs20Qu5k2oc2f1GyoTAq7Z_S4-nF_LpqJ7OG_oYHHZn6op0EXyo4W0t6olr1ipwN-r--DoOuaEOgAZm0QWHBJjQrWREZhsSQkgmrCh5zFmuYeMkyq6TFe4pKydKWERdCGx6pqEgMuPZ7ZKee1-Y1oVkZFiwtNA9NKbSQIK7BHyx1klplrOyRcDlnue4YzbGwxjR3nk0mc9RRjjrKOx31yKdVlytP57FNOL5pCHnr_qF005_zLf32nMWsRgDUyjGc2iOHGya0FogFUslBz4OlTeXdXtLkGfjoKeB6aP2waoVNACM7qjbzRYN5eoC7AMzzLTLgSMZxzATobd9b6Xp8_EJw9Xsk3bDflQCSkG-21NXEkZFzwL9ZKN_cU1fvyeOfJ4N89G3844Dsuh_2LlfoLdlprxfmHSC-tjh06_o_JFhSgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+Likelihood+Estimations+and+EM+Algorithms+with+Length-biased+Data&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Qin%2C+Jing&rft.au=Ning%2C+Jing&rft.au=Liu%2C+Hao&rft.au=Shen%2C+Yu&rft.date=2011-12-01&rft.issn=0162-1459&rft.volume=106&rft.issue=496&rft.spage=1434&rft_id=info:doi/10.1198%2Fjasa.2011.tm10156&rft_id=info%3Apmid%2F22323840&rft.externalDocID=22323840
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon