Maximum Likelihood Estimations and EM Algorithms With Length-Biased Data
Length-biased sampling has been well recognized in economics, industrial reliability, etiology applications, and epidemiological, genetic, and cancer screening studies. Length-biased right-censored data have a unique data structure different from traditional survival data. The nonparametric and semi...
Saved in:
| Published in | Journal of the American Statistical Association Vol. 106; no. 496; pp. 1434 - 1449 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Alexandria, VA
Taylor & Francis
01.12.2011
American Statistical Association Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0162-1459 1537-274X |
| DOI | 10.1198/jasa.2011.tm10156 |
Cover
| Abstract | Length-biased sampling has been well recognized in economics, industrial reliability, etiology applications, and epidemiological, genetic, and cancer screening studies. Length-biased right-censored data have a unique data structure different from traditional survival data. The nonparametric and semiparametric estimation and inference methods for traditional survival data are not directly applicable for length-biased right-censored data. We propose new expectation-maximization algorithms for estimations based on full likelihoods involving infinite-dimensional parameters under three settings for length-biased data: estimating nonparametric distribution function, estimating nonparametric hazard function under an increasing failure rate constraint, and jointly estimating baseline hazards function and the covariate coefficients under the Cox proportional hazards model. Extensive empirical simulation studies show that the maximum likelihood estimators perform well with moderate sample sizes and lead to more efficient estimators compared to the estimating equation approaches. The proposed estimates are also more robust to various right-censoring mechanisms. We prove the strong consistency properties of the estimators, and establish the asymptotic normality of the semiparametric maximum likelihood estimators under the Cox model using modern empirical processes theory. We apply the proposed methods to a prevalent cohort medical study. Supplemental materials are available online. |
|---|---|
| AbstractList | Length-biased sampling has been well recognized in economics, industrial reliability, etiology applications, and epidemiological, genetic, and cancer screening studies. Length-biased right-censored data have a unique data structure different from traditional survival data. The nonparametric and semiparametric estimation and inference methods for traditional survival data are not directly applicable for length-biased right-censored data. We propose new expectation-maximization algorithms for estimations based on full likelihoods involving infinite-dimensional parameters under three settings for length-biased data: estimating nonparametric distribution function, estimating non-parametric hazard function under an increasing failure rate constraint, and jointly estimating baseline hazards function and the covariate coefficients under the Cox proportional hazards model. Extensive empirical simulation studies show that the maximum likelihood estimators perform well with moderate sample sizes and lead to more efficient estimators compared to the estimating equation approaches. The proposed estimates are also more robust to various right-censoring mechanisms. We prove the strong consistency properties of the estimators, and establish the asymptotic normality of the semipararnetric maximum likelihood estimators under the Cox model using modern empirical processes theory. We apply the proposed methods to a prevalent cohort medical study. Supplemental materials are available online. [PUBLICATION ABSTRACT] Length-biased sampling has been well recognized in economics, industrial reliability, etiology applications, epidemiological, genetic and cancer screening studies. Length-biased right-censored data have a unique data structure different from traditional survival data. The nonparametric and semiparametric estimations and inference methods for traditional survival data are not directly applicable for length-biased right-censored data. We propose new expectation-maximization algorithms for estimations based on full likelihoods involving infinite dimensional parameters under three settings for length-biased data: estimating nonparametric distribution function, estimating nonparametric hazard function under an increasing failure rate constraint, and jointly estimating baseline hazards function and the covariate coefficients under the Cox proportional hazards model. Extensive empirical simulation studies show that the maximum likelihood estimators perform well with moderate sample sizes and lead to more efficient estimators compared to the estimating equation approaches. The proposed estimates are also more robust to various right-censoring mechanisms. We prove the strong consistency properties of the estimators, and establish the asymptotic normality of the semi-parametric maximum likelihood estimators under the Cox model using modern empirical processes theory. We apply the proposed methods to a prevalent cohort medical study. Supplemental materials are available online. Length-biased sampling has been well recognized in economics, industrial reliability, etiology applications, and epidemiological, genetic, and cancer screening studies. Length-biased right-censored data have a unique data structure different from traditional survival data. The nonparametric and semiparametric estimation and inference methods for traditional survival data are not directly applicable for length-biased right-censored data. We propose new expectation-maximization algorithms for estimations based on full likelihoods involving infinite-dimensional parameters under three settings for length-biased data: estimating nonparametric distribution function, estimating nonparametric hazard function under an increasing failure rate constraint, and jointly estimating baseline hazards function and the covariate coefficients under the Cox proportional hazards model. Extensive empirical simulation studies show that the maximum likelihood estimators perform well with moderate sample sizes and lead to more efficient estimators compared to the estimating equation approaches. The proposed estimates are also more robust to various right-censoring mechanisms. We prove the strong consistency properties of the estimators, and establish the asymptotic normality of the semiparametric maximum likelihood estimators under the Cox model using modern empirical processes theory. We apply the proposed methods to a prevalent cohort medical study. Supplemental materials are available online. Length-biased sampling has been well recognized in economics, industrial reliability, etiology applications, epidemiological, genetic and cancer screening studies. Length-biased right-censored data have a unique data structure different from traditional survival data. The nonparametric and semiparametric estimations and inference methods for traditional survival data are not directly applicable for length-biased right-censored data. We propose new expectation-maximization algorithms for estimations based on full likelihoods involving infinite dimensional parameters under three settings for length-biased data: estimating nonparametric distribution function, estimating nonparametric hazard function under an increasing failure rate constraint, and jointly estimating baseline hazards function and the covariate coefficients under the Cox proportional hazards model. Extensive empirical simulation studies show that the maximum likelihood estimators perform well with moderate sample sizes and lead to more efficient estimators compared to the estimating equation approaches. The proposed estimates are also more robust to various right-censoring mechanisms. We prove the strong consistency properties of the estimators, and establish the asymptotic normality of the semi-parametric maximum likelihood estimators under the Cox model using modern empirical processes theory. We apply the proposed methods to a prevalent cohort medical study. Supplemental materials are available online.Length-biased sampling has been well recognized in economics, industrial reliability, etiology applications, epidemiological, genetic and cancer screening studies. Length-biased right-censored data have a unique data structure different from traditional survival data. The nonparametric and semiparametric estimations and inference methods for traditional survival data are not directly applicable for length-biased right-censored data. We propose new expectation-maximization algorithms for estimations based on full likelihoods involving infinite dimensional parameters under three settings for length-biased data: estimating nonparametric distribution function, estimating nonparametric hazard function under an increasing failure rate constraint, and jointly estimating baseline hazards function and the covariate coefficients under the Cox proportional hazards model. Extensive empirical simulation studies show that the maximum likelihood estimators perform well with moderate sample sizes and lead to more efficient estimators compared to the estimating equation approaches. The proposed estimates are also more robust to various right-censoring mechanisms. We prove the strong consistency properties of the estimators, and establish the asymptotic normality of the semi-parametric maximum likelihood estimators under the Cox model using modern empirical processes theory. We apply the proposed methods to a prevalent cohort medical study. Supplemental materials are available online. Length-biased sampling has been well recognized in economics, industrial reliability, etiology applications, and epidemiological, genetic, and cancer screening studies. Length-biased right-censored data have a unique data structure different from traditional survival data. The nonparametric and semiparametric estimation and inference methods for traditional survival data are not directly applicable for length-biased right-censored data. We propose new expectation-maximization algorithms for estimations based on full likelihoods involving infinite-dimensional parameters under three settings for length-biased data: estimating nonparametric distribution function, estimating non-parametric hazard function under an increasing failure rate constraint, and jointly estimating baseline hazards function and the covariate coefficients under the Cox proportional hazards model. Extensive empirical simulation studies show that the maximum likelihood estimators perform well with moderate sample sizes and lead to more efficient estimators compared to the estimating equation approaches. The proposed estimates are also more robust to various right-censoring mechanisms. We prove the strong consistency properties of the estimators, and establish the asymptotic normality of the semipararnetric maximum likelihood estimators under the Cox model using modern empirical processes theory. We apply the proposed methods to a prevalent cohort medical study. Supplemental materials are available online. |
| Author | Ning, Jing Liu, Hao Qin, Jing Shen, Yu |
| Author_xml | – sequence: 1 givenname: Jing surname: Qin fullname: Qin, Jing – sequence: 2 givenname: Jing surname: Ning fullname: Ning, Jing – sequence: 3 givenname: Hao surname: Liu fullname: Liu, Hao – sequence: 4 givenname: Yu surname: Shen fullname: Shen, Yu |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25425046$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22323840$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl9rFDEUxYNU7B_9AD4ogyD4MmtuMpnJgAi1Vits8UXRt3Ank9nNOpPUJKv225t1t60WFPNyCfd3Dic395DsOe8MIQ-BzgBa-XyFEWeMAszSBBREfYccgOBNyZrq8x45oFCzEirR7pPDGFc0n0bKe2SfMc64rOgBOTvHH3ZaT8XcfjGjXXrfF6cx2QmT9S4W6PL9vDgeFz7YtJxi8SmXYm7cIi3LVxaj6YvXmPA-uTvgGM2DXT0iH9-cfjg5K-fv3747OZ6XWogqld2gNWrWsw4Moxy4ZNWAHRecCd30tWTtgHKg0ApE2Q898KrShgNCVxvT8SPycut7se4m02vjUsBRXYQcOVwqj1b92XF2qRb-m-Ks4S2V2eDZziD4r2sTk5ps1GYc0Rm_jgokq4UQrPoPNI9eCuAtz-iTW-jKr4PLk1AtA2gkpXWGHv-e_Tr01Xdk4OkOwKhxHAI6beMNJyomaLUxgi2ng48xmOEaAao2q6E2q6E2q6F2q5E1zS2NtunXL-cx2fGfykdb5SomH27S5NCtqNrcf7HtWzf4MOF3H8ZeJbwcfbh6Av-7_U_9Fdzd |
| CODEN | JSTNAL |
| CitedBy_id | crossref_primary_10_1177_1758835918782331 crossref_primary_10_1016_j_jkss_2018_12_003 crossref_primary_10_1111_biom_12746 crossref_primary_10_1007_s10985_021_09524_6 crossref_primary_10_1007_s12561_024_09463_4 crossref_primary_10_1080_10485252_2018_1424335 crossref_primary_10_1002_sim_8411 crossref_primary_10_1007_s10985_017_9415_2 crossref_primary_10_1007_s11425_017_9268_0 crossref_primary_10_1080_00401706_2014_995834 crossref_primary_10_1111_sjos_12182 crossref_primary_10_1002_sim_9183 crossref_primary_10_1007_s00362_018_01080_w crossref_primary_10_1177_20552076231187247 crossref_primary_10_1080_03610926_2019_1604963 crossref_primary_10_3390_math11224576 crossref_primary_10_1093_biostatistics_kxv012 crossref_primary_10_1007_s10985_021_09536_2 crossref_primary_10_1007_s11749_013_0329_3 crossref_primary_10_1214_17_STS638 crossref_primary_10_1007_s10985_018_9422_y crossref_primary_10_1016_j_jspi_2023_06_001 crossref_primary_10_1093_biomet_ast039 crossref_primary_10_1016_j_jmva_2016_04_002 crossref_primary_10_15406_bbij_2019_08_00293 crossref_primary_10_1002_bimj_202100231 crossref_primary_10_1007_s10985_016_9367_y crossref_primary_10_1515_ijb_2023_0121 crossref_primary_10_1111_rssb_12308 crossref_primary_10_1080_02664763_2020_1753028 crossref_primary_10_1007_s00362_016_0870_8 crossref_primary_10_1093_biostatistics_kxx024 crossref_primary_10_1111_biom_12772 crossref_primary_10_1111_biom_12970 crossref_primary_10_1186_s12874_023_01903_x crossref_primary_10_1002_sim_9724 crossref_primary_10_1111_biom_12170 crossref_primary_10_3390_math12111760 crossref_primary_10_1007_s10651_024_00611_z crossref_primary_10_1007_s10463_020_00755_2 crossref_primary_10_1002_qre_3161 crossref_primary_10_4236_am_2014_511160 crossref_primary_10_1007_s10985_015_9355_7 crossref_primary_10_1111_biom_13804 crossref_primary_10_1111_insr_12510 crossref_primary_10_1007_s10985_016_9374_z crossref_primary_10_1080_03610918_2025_2481188 crossref_primary_10_1080_03610926_2016_1157187 crossref_primary_10_1111_biom_13451 crossref_primary_10_1007_s00432_018_2721_6 crossref_primary_10_1080_02664763_2021_1928015 crossref_primary_10_1002_cjs_11272 crossref_primary_10_1016_j_econlet_2015_10_023 crossref_primary_10_1016_j_econlet_2020_109399 crossref_primary_10_1016_j_jmva_2016_08_003 crossref_primary_10_1007_s10985_020_09498_x |
| Cites_doi | 10.1111/j.1541-0420.2009.01287.x 10.1111/j.1369-7412.2007.00606.x 10.1214/aos/1176324462 10.2307/2685783 10.2307/2983150 10.1016/0047-259X(92)90113-T 10.1137/1138022 10.2307/1913267 10.1093/biomet/75.2.319 10.1002/sim.2326 10.1086/514855 10.2307/2337345 10.2307/2289722 10.1214/009053605000000372 10.1093/biomet/80.2.267 10.1093/biomet/83.2.343 10.1198/016214508000000382 10.1191/0962280206sm435oa 10.1198/016214504000001420 10.1093/biomet/asp026 10.1214/aoms/1177700271 10.2307/2532597 10.1093/biomet/56.3.601 10.2307/2669386 10.1214/aos/1176345802 10.1093/biomet/60.2.267 10.1007/s10985-004-4770-1 10.1093/biomet/76.4.751 10.2307/2670005 10.2307/2532345 10.1093/biomet/62.2.269 10.1198/004017008000000442 10.1093/biomet/67.2.470 10.1093/biomet/74.2.281 10.1111/j.2517-6161.1976.tb01597.x 10.1214/aos/1176325492 10.1214/aos/1176348668 10.1056/NEJM200104123441501 10.2307/2297364 10.1111/j.2517-6161.1972.tb00899.x 10.2307/3318710 10.1093/oxfordjournals.aje.a112920 10.1080/0266476022000030066 10.1198/016214502753479347 10.1214/aos/1030563982 |
| ContentType | Journal Article |
| Copyright | 2011 American Statistical Association
2011 2011 The American Statistical Association 2015 INIST-CNRS Copyright American Statistical Association Dec 2011 |
| Copyright_xml | – notice: 2011 American Statistical Association 2011 – notice: 2011 The American Statistical Association – notice: 2015 INIST-CNRS – notice: Copyright American Statistical Association Dec 2011 |
| DBID | AAYXX CITATION IQODW NPM 8BJ FQK JBE K9. 7X8 5PM |
| DOI | 10.1198/jasa.2011.tm10156 |
| DatabaseName | CrossRef Pascal-Francis PubMed International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) PubMed MEDLINE - Academic International Bibliography of the Social Sciences (IBSS) |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| EISSN | 1537-274X |
| EndPage | 1449 |
| ExternalDocumentID | PMC3273908 2584633741 22323840 25425046 10_1198_jasa_2011_tm10156 23239549 10711016 |
| Genre | Research Article Journal Article Feature |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA079466 |
| GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 2AX 30N 4.4 5GY 5RE 692 7WY 85S 8FL AAAVZ AABCJ AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR AAWIL ABAWQ ABBHK ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABPQH ABRLO ABTAI ABUFD ABXSQ ABXUL ABXYU ABYWD ACGFO ACGFS ACGOD ACHJO ACIWK ACMTB ACNCT ACTCW ACTIO ACTMH ACUBG ADCVX ADGTB ADLSF ADMHG ADODI ADULT AEISY AENEX AEOZL AEPSL AEUPB AEYOC AFFNX AFRVT AFVYC AFXHP AGCQS AGDLA AGLNM AGMYJ AHDZW AIHAF AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P FJW GTTXZ H13 HF~ HQ6 HZ~ H~9 H~P IPNFZ IPSME J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K60 K6~ KYCEM LU7 M4Z MS~ MW2 NA5 NY~ O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SA0 SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UPT UQL UT5 UU3 WH7 WZA YQT YYM ZGOLN ZUP ~S~ ADYSH AFSUE ALIPV AMPGV .-4 .GJ 07G 1OL 3R3 7X7 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8G5 8R4 8R5 AAFWJ AAIKQ AAKBW AAYXX ABEFU ABJCF ABUWG ACAGQ ACGEE ADBBV ADXHL AEUMN AFKRA AFQQW AGLEN AGROQ AHMOU AI. ALCKM AMATQ AMEWO AMVHM AMXXU AQUVI AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BPHCQ BPLKW BVXVI C06 CCPQU CITATION CRFIH DMQIW DWIFK DWQXO E.L FEDTE FRNLG FVMVE FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HGD HMCUK HVGLF IVXBP K9- KQ8 L6V LJTGL M0C M0R M0T M1P M2O M2P M7S MVM NHB NUSFT P-O PADUT PHGZM PHGZT PJZUB PPXIY PQBIZ PQBZA PQGLB PQQKQ PRG PROAC PSQYO PTHSS PUEGO Q2X QCRFL RNS S0X SJN TAQ TFMCV UB9 UKHRP VH1 VOH WHG YXB YYP ZCG ZGI ZXP IQODW NPM 8BJ FQK JBE K9. 7X8 5PM |
| ID | FETCH-LOGICAL-c554t-bfccac2d2b1e20313824fab35325c7d6829fa8f0195aa8dfd1344ce31a1b6eeb3 |
| ISSN | 0162-1459 |
| IngestDate | Tue Sep 30 16:44:47 EDT 2025 Thu Oct 02 14:11:54 EDT 2025 Sun Sep 28 00:06:48 EDT 2025 Sat Oct 25 06:46:53 EDT 2025 Mon Jul 21 06:06:26 EDT 2025 Mon Jul 21 09:14:35 EDT 2025 Wed Oct 01 06:41:33 EDT 2025 Thu Apr 24 23:10:28 EDT 2025 Thu May 29 08:44:01 EDT 2025 Mon Oct 20 23:40:51 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 496 |
| Keywords | Nonparametric likelihood Strong consistency Estimator robustness Censored sample Non parametric estimation Cox regression model Statistical test Estimator efficiency Consistent estimator Increasing function Genetics Sample survey Increasing failure rate Survival data Censored data Asymptotic behavior Statistical estimation Life test Semiparametric method Failure rate Statistical method Survival analysis Profile likelihood Estimating function Cox model Sampling theory Estimating equation Maximum likelihood Econometrics Reliability EM algorithm Right-censored data Biased estimation |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c554t-bfccac2d2b1e20313824fab35325c7d6829fa8f0195aa8dfd1344ce31a1b6eeb3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Jing Qin is Mathematical Statistician, National Institution of Allergy and Infectious Diseases, Bethesda, MD 20817 (jingqin@niaid.nih.gov); Jing Ning is Assistant Professor, Division of Biostatistics, The University of Texas, Health Science Center at Houston, TX 77030 (jing.ning@uth.tmc.edu); Hao Liu is Assistant Professor, Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030 (haol@bcm.edu); and Yu Shen is Professor, Department of Biostatistics, M.D. Anderson Cancer Center, Houston, TX 77030 (yshen@mdanderson.org). |
| PMID | 22323840 |
| PQID | 921178006 |
| PQPubID | 41715 |
| PageCount | 16 |
| ParticipantIDs | pascalfrancis_primary_25425046 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3273908 crossref_primary_10_1198_jasa_2011_tm10156 proquest_miscellaneous_1011851393 crossref_citationtrail_10_1198_jasa_2011_tm10156 proquest_journals_921178006 proquest_miscellaneous_1826555248 jstor_primary_23239549 informaworld_taylorfrancis_310_1198_jasa_2011_tm10156 pubmed_primary_22323840 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2011-12-01 |
| PublicationDateYYYYMMDD | 2011-12-01 |
| PublicationDate_xml | – month: 12 year: 2011 text: 2011-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Alexandria, VA |
| PublicationPlace_xml | – name: Alexandria, VA – name: United States – name: Alexandria |
| PublicationTitle | Journal of the American Statistical Association |
| PublicationTitleAlternate | J Am Stat Assoc |
| PublicationYear | 2011 |
| Publisher | Taylor & Francis American Statistical Association Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: American Statistical Association – name: Taylor & Francis Ltd |
| References | p_49 p_47 De Uña Álvarez J. (p_13) 2003; 30 p_41 p_43 p_44 Nielsen G. G. (p_33) 1992; 19 p_38 p_39 p_2 p_4 p_34 p_3 p_35 p_6 p_36 McClean S. (p_27) 1995; 82 p_37 p_7 p_9 Turnbull B. W. (p_45) 1976; 38 Breslow N. (p_8) 1972; 34 p_30 p_31 p_32 Kalbfleisch J. D. (p_20) 1991; 1 p_28 p_29 p_23 p_24 p_26 Cox D. R. (p_10) 1972; 34 p_21 p_22 p_60 Simon R. (p_40) 1980; 111 p_57 p_14 p_58 p_15 p_59 p_52 p_53 p_54 p_11 p_55 Huang J. (p_19) 1995; 22 p_50 p_51 |
| References_xml | – ident: p_36 doi: 10.1111/j.1541-0420.2009.01287.x – ident: p_59 doi: 10.1111/j.1369-7412.2007.00606.x – ident: p_30 doi: 10.1214/aos/1176324462 – ident: p_38 doi: 10.2307/2685783 – ident: p_22 doi: 10.2307/2983150 – ident: p_47 doi: 10.1016/0047-259X(92)90113-T – ident: p_7 doi: 10.1137/1138022 – ident: p_37 doi: 10.2307/1913267 – ident: p_43 doi: 10.1093/biomet/75.2.319 – ident: p_4 doi: 10.1002/sim.2326 – ident: p_41 doi: 10.1086/514855 – volume: 82 start-page: 791 year: 1995 ident: p_27 publication-title: Biometrika doi: 10.2307/2337345 – ident: p_52 doi: 10.2307/2289722 – ident: p_2 doi: 10.1214/009053605000000372 – ident: p_28 doi: 10.1093/biomet/80.2.267 – ident: p_53 doi: 10.1093/biomet/83.2.343 – volume: 22 start-page: 3 year: 1995 ident: p_19 publication-title: Scandinavian Journal of Statistics – ident: p_6 doi: 10.1198/016214508000000382 – ident: p_39 doi: 10.1191/0962280206sm435oa – ident: p_60 doi: 10.1198/016214504000001420 – ident: p_44 doi: 10.1093/biomet/asp026 – ident: p_26 doi: 10.1214/aoms/1177700271 – ident: p_54 doi: 10.2307/2532597 – volume: 34 start-page: 216 year: 1972 ident: p_8 publication-title: Journal of the Royal Statistical Society, Ser. B – volume: 1 start-page: 19 year: 1991 ident: p_20 publication-title: Statistica Sinica – ident: p_58 doi: 10.1093/biomet/56.3.601 – ident: p_32 doi: 10.2307/2669386 – ident: p_49 doi: 10.1214/aos/1176345802 – ident: p_21 doi: 10.1093/biomet/60.2.267 – ident: p_57 doi: 10.1007/s10985-004-4770-1 – ident: p_50 doi: 10.1093/biomet/76.4.751 – ident: p_9 doi: 10.2307/2670005 – ident: p_23 doi: 10.2307/2532345 – ident: p_11 doi: 10.1093/biomet/62.2.269 – ident: p_24 doi: 10.1198/004017008000000442 – ident: p_34 doi: 10.1093/biomet/67.2.470 – ident: p_14 doi: 10.1093/biomet/74.2.281 – volume: 38 start-page: 290 year: 1976 ident: p_45 publication-title: Journal of the Royal Statistical Society, Ser. B doi: 10.1111/j.2517-6161.1976.tb01597.x – ident: p_29 doi: 10.1214/aos/1176325492 – ident: p_51 doi: 10.1214/aos/1176348668 – ident: p_55 doi: 10.1056/NEJM200104123441501 – ident: p_15 doi: 10.2307/2297364 – volume: 34 start-page: 187 year: 1972 ident: p_10 publication-title: Journal of the Royal Statistical Society, Ser. B doi: 10.1111/j.2517-6161.1972.tb00899.x – ident: p_31 doi: 10.2307/3318710 – volume: 111 start-page: 444 year: 1980 ident: p_40 publication-title: American Journal of Epidemiology doi: 10.1093/oxfordjournals.aje.a112920 – volume: 30 start-page: 283 year: 2003 ident: p_13 publication-title: Journal of Applied Statistics doi: 10.1080/0266476022000030066 – volume: 19 start-page: 25 year: 1992 ident: p_33 publication-title: Scandinavian Journal of Statistics – ident: p_3 doi: 10.1198/016214502753479347 – ident: p_35 doi: 10.1214/aos/1030563982 |
| SSID | ssj0000788 |
| Score | 2.30789 |
| Snippet | Length-biased sampling has been well recognized in economics, industrial reliability, etiology applications, and epidemiological, genetic, and cancer screening... Length-biased sampling has been well recognized in economics, industrial reliability, etiology applications, epidemiological, genetic and cancer screening... |
| SourceID | pubmedcentral proquest pubmed pascalfrancis crossref jstor informaworld |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1434 |
| SubjectTerms | Algorithms Applications Asymmetry Bias Cancer Censored data Censorship Cox regression model Dementia Distribution Estimation Estimation bias Estimation methods Estimators Etiology Exact sciences and technology General topics Increasing failure rate Insurance, economics, finance Mathematics Maximum likelihood estimation Maximum likelihood estimators Maximum likelihood method Medical screening Modeling Nonparametric likelihood Nonparametric models Normality Parameter estimation Parametric inference Probability and statistics Probability theory and stochastic processes Profile likelihood Regression analysis Reliability Right-censored data Sampling techniques Sciences and techniques of general use Semiparametric modeling Simulation Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) Statistical methods Statistics Survival analysis Theory and Methods |
| Title | Maximum Likelihood Estimations and EM Algorithms With Length-Biased Data |
| URI | https://www.tandfonline.com/doi/abs/10.1198/jasa.2011.tm10156 https://www.jstor.org/stable/23239549 https://www.ncbi.nlm.nih.gov/pubmed/22323840 https://www.proquest.com/docview/921178006 https://www.proquest.com/docview/1011851393 https://www.proquest.com/docview/1826555248 https://pubmed.ncbi.nlm.nih.gov/PMC3273908 |
| Volume | 106 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: AHDZW dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgXHpBfBWWQhUkTqBAYjuJc6zQohXq9tRK5RQ5jtNdsclWTSIhfj0zjvNVtivgEq1iJ17lPdsz9swzIe9zTqmUYeAyFnnooDBXKs3dOBdCqghIkhm1z_Nwccm_XQVXQ-6JyS6p00_q1868kv9BFe4Brpgl-w_I9i-FG_Ab8IUrIAzXv8J4KX-ui6YAx_qH3qxbgWLosoUNb8M18fny4-nmenu7rleFzWQ70-V1vQKXGCawDGCv5T0W6ijrxJzzWxtR5x2Y4sKpPdWrmwnNVoeN9h3dO1s3ZrKT235px6aHfG_GCxAYAdcHc9g1yZC6PrfC3t2g6oUj9vB4PEiCicZ3j96xMKcGVLLVVq0LHzO9x3UBgJvCwAl2DZgbrdbTHcnsrugheURhsMcTPZh3PkzQkTmOtP_fdrMbWv_8R9soFm3fNrFcJrq2XSwrBtbKCnDI20NRdnktd4NvR9bMxRPy2ILsnLacekoe6PIZOewxrp6ThSWXM5DLGZHLAXI586UzkMtBcjkTcjlIrhfk8uv84svCtcduuApsy9pNc-jVimY09TVFaU9BeS5TFjAaKOi6gsa5FDlmmkopsjzzGedKM1_6aah1yo7IQbkt9SvixJmX0ihVzNMZV1xAdQUefabCKJc6FzPidZ80UVaTHo9G2STGN41FgoAkCEhiAZmRD_0jN60gy77KwRinpDarYBadhO157sgA2reAFMAN8Rk5mSA8VAg4igHCk8cd5IkdKaokpr4fgWcGpe_6UhjGcW9OlnrbVBhpCZYzuGNsTx1BwyAIKIfv9rIl0dC-JemMRBN69RVQRn5aUq5XRk6egQcTe-L1ve88JodDv39DDurbRr8FU7xOT0zH-g16UNzZ |
| linkProvider | Taylor & Francis |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgHNiF8bXRDYaROCFlJP5onOOATgXanjaxm-U49hrWpmhJJcRfz7Odtss09bBTDn6Ok-dn-_fs599D6KNlhCjV5xGlaewcFBopbViUWSGUTsFICs_2OekPL9iPS37ZbrjVbVil86FtIIrwc7Ub3G4zOozwTHz-rWoV2DebeeLuAj9GTzgAfZfBgMaTzUyc-ryTgGpIlDCetaea976isy51WEtXkYoubFLVoDkbUl7ch0nvhlbeWqvO9pBc_WUIUbk-WTb5if53hwDy4Wp4jp61MBafBrt7gR6Z6iXadcg1ED-_QsOx-lvOl3M8Kq_NrHTsyXgAZeGqZI2hWTwY49PZ1eKmbKbzGv-CBx6Z6qqZRl9KWF0L_E016jW6OBucfx1GbdqGSAM2aaLcglVoUpA8McRRQwrCrMopp4Rr6HpBMquEdTcVlRKFLRLKmDY0UUneN-Dc76OdalGZNwhnRZyTNNc0NgXTTIC4Bo-w0P3UKmNFD8WrTpO65TR3qTVm0vs2mZBOR9LpSLY66qFP6yp_AqHHNmF-2xJk43dR2v6XdEu9fW8y6xYAt1J3oNpDxx0b2ghw5sjkoObRyqhkO5vUMgMvPQVkD6Uf1qUwDbizHVWZxbJ2kXqAvADO0y0y4EpyzgkDvR0EM920774QnP0eSjsGvBZwNOTdkqqcejpyCgg4i8XhA3X1Hj0dno9HcvR98vMI7fo9ex8u9BbtNDdL8w5AX5Mf-5H9H36LU90 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgSGgv_N4og2EknpAyEttJnMfBWhXoKh6Y2FvkOPYa1qbTkkqIv547O23XaerDnvLgcxydz_Z3ufN3hHy0gjGlkjjgPA3RQeGB0kYEmZVS6RSMpHRsn-NkeCa-n8fnXW5O06VVog9tPVGE26txcV-V1i_wTH7-oxrlyTfbWYRXgR-SRwlGxPAGRzheb8SpKzsJoIYFkYizLqh55ys2jqUN0tJloiJmTaoGFGd9xYu7IOntzMobR9Xgqa_H2jiGQ8xQuTxatMWR_neL__HeWnhGnnQglh57q3tOHpj6BdlF3Oppn1-S4an6W80WMzqqLs20Qu5k2oc2f1GyoTAq7Z_S4-nF_LpqJ7OG_oYHHZn6op0EXyo4W0t6olr1ipwN-r--DoOuaEOgAZm0QWHBJjQrWREZhsSQkgmrCh5zFmuYeMkyq6TFe4pKydKWERdCGx6pqEgMuPZ7ZKee1-Y1oVkZFiwtNA9NKbSQIK7BHyx1klplrOyRcDlnue4YzbGwxjR3nk0mc9RRjjrKOx31yKdVlytP57FNOL5pCHnr_qF005_zLf32nMWsRgDUyjGc2iOHGya0FogFUslBz4OlTeXdXtLkGfjoKeB6aP2waoVNACM7qjbzRYN5eoC7AMzzLTLgSMZxzATobd9b6Xp8_EJw9Xsk3bDflQCSkG-21NXEkZFzwL9ZKN_cU1fvyeOfJ4N89G3844Dsuh_2LlfoLdlprxfmHSC-tjh06_o_JFhSgQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+Likelihood+Estimations+and+EM+Algorithms+with+Length-biased+Data&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Qin%2C+Jing&rft.au=Ning%2C+Jing&rft.au=Liu%2C+Hao&rft.au=Shen%2C+Yu&rft.date=2011-12-01&rft.issn=0162-1459&rft.volume=106&rft.issue=496&rft.spage=1434&rft_id=info:doi/10.1198%2Fjasa.2011.tm10156&rft_id=info%3Apmid%2F22323840&rft.externalDocID=22323840 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |