Microstructural maturation of the human brain from childhood to adulthood

Brain maturation is a complex process that continues well beyond infancy, and adolescence is thought to be a key period of brain rewiring. To assess structural brain maturation from childhood to adulthood, we charted brain development in subjects aged 5 to 30 years using diffusion tensor magnetic re...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 40; no. 3; pp. 1044 - 1055
Main Authors Lebel, C., Walker, L., Leemans, A., Phillips, L., Beaulieu, C.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.04.2008
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
DOI10.1016/j.neuroimage.2007.12.053

Cover

Abstract Brain maturation is a complex process that continues well beyond infancy, and adolescence is thought to be a key period of brain rewiring. To assess structural brain maturation from childhood to adulthood, we charted brain development in subjects aged 5 to 30 years using diffusion tensor magnetic resonance imaging, a novel brain imaging technique that is sensitive to axonal packing and myelination and is particularly adept at virtually extracting white matter connections. Age-related changes were seen in major white matter tracts, deep gray matter, and subcortical white matter, in our large (n=202), age-distributed sample. These diffusion changes followed an exponential pattern of maturation with considerable regional variation. Differences observed in developmental timing suggest a pattern of maturation in which areas with fronto-temporal connections develop more slowly than other regions. These in vivo results expand upon previous postmortem and imaging studies and provide quantitative measures indicative of the progression and magnitude of regional human brain maturation.
AbstractList Brain maturation is a complex process that continues well beyond infancy, and adolescence is thought to be a key period of brain rewiring. To assess structural brain maturation from childhood to adulthood, we charted brain development in subjects aged 5 to 30 years using diffusion tensor magnetic resonance imaging, a novel brain imaging technique that is sensitive to axonal packing and myelination and is particularly adept at virtually extracting white matter connections. Age-related changes were seen in major white matter tracts, deep gray matter, and subcortical white matter, in our large (n=202), age-distributed sample. These diffusion changes followed an exponential pattern of maturation with considerable regional variation. Differences observed in developmental timing suggest a pattern of maturation in which areas with fronto-temporal connections develop more slowly than other regions. These in vivo results expand upon previous postmortem and imaging studies and provide quantitative measures indicative of the progression and magnitude of regional human brain maturation.
Brain maturation is a complex process that continues well beyond infancy, and adolescence is thought to be a key period of brain rewiring. To assess structural brain maturation from childhood to adulthood, we charted brain development in subjects aged 5 to 30 years using diffusion tensor magnetic resonance imaging, a novel brain imaging technique that is sensitive to axonal packing and myelination and is particularly adept at virtually extracting white matter connections. Age-related changes were seen in major white matter tracts, deep gray matter, and subcortical white matter, in our large (n=202), age-distributed sample. These diffusion changes followed an exponential pattern of maturation with considerable regional variation. Differences observed in developmental timing suggest a pattern of maturation in which areas with fronto-temporal connections develop more slowly than other regions. Thesein vivoresults expand upon previous postmortem and imaging studies and provide quantitative measures indicative of the progression and magnitude of regional human brain maturation.
Brain maturation is a complex process that continues well beyond infancy, and adolescence is thought to be a key period of brain rewiring. To assess structural brain maturation from childhood to adulthood, we charted brain development in subjects aged 5 to 30 years using diffusion tensor magnetic resonance imaging, a novel brain imaging technique that is sensitive to axonal packing and myelination and is particularly adept at virtually extracting white matter connections. Age-related changes were seen in major white matter tracts, deep gray matter, and subcortical white matter, in our large (n=202), age-distributed sample. These diffusion changes followed an exponential pattern of maturation with considerable regional variation. Differences observed in developmental timing suggest a pattern of maturation in which areas with fronto-temporal connections develop more slowly than other regions. These in vivo results expand upon previous postmortem and imaging studies and provide quantitative measures indicative of the progression and magnitude of regional human brain maturation.
Brain maturation is a complex process that continues well beyond infancy, and adolescence is thought to be a key period of brain rewiring. To assess structural brain maturation from childhood to adulthood, we charted brain development in subjects aged 5 to 30 years using diffusion tensor magnetic resonance imaging, a novel brain imaging technique that is sensitive to axonal packing and myelination and is particularly adept at virtually extracting white matter connections. Age-related changes were seen in major white matter tracts, deep gray matter, and subcortical white matter, in our large (n=202), age-distributed sample. These diffusion changes followed an exponential pattern of maturation with considerable regional variation. Differences observed in developmental timing suggest a pattern of maturation in which areas with fronto-temporal connections develop more slowly than other regions. These in vivo results expand upon previous postmortem and imaging studies and provide quantitative measures indicative of the progression and magnitude of regional human brain maturation.Brain maturation is a complex process that continues well beyond infancy, and adolescence is thought to be a key period of brain rewiring. To assess structural brain maturation from childhood to adulthood, we charted brain development in subjects aged 5 to 30 years using diffusion tensor magnetic resonance imaging, a novel brain imaging technique that is sensitive to axonal packing and myelination and is particularly adept at virtually extracting white matter connections. Age-related changes were seen in major white matter tracts, deep gray matter, and subcortical white matter, in our large (n=202), age-distributed sample. These diffusion changes followed an exponential pattern of maturation with considerable regional variation. Differences observed in developmental timing suggest a pattern of maturation in which areas with fronto-temporal connections develop more slowly than other regions. These in vivo results expand upon previous postmortem and imaging studies and provide quantitative measures indicative of the progression and magnitude of regional human brain maturation.
Author Lebel, C.
Walker, L.
Phillips, L.
Beaulieu, C.
Leemans, A.
Author_xml – sequence: 1
  givenname: C.
  surname: Lebel
  fullname: Lebel, C.
  organization: Department of Biomedical Engineering, Faculty of Medicine and Dentistry, Room 1098 Research Transition Facility, University of Alberta, Edmonton, Alberta, Canada T6G 2V2
– sequence: 2
  givenname: L.
  surname: Walker
  fullname: Walker, L.
  organization: Department of Biomedical Engineering, Faculty of Medicine and Dentistry, Room 1098 Research Transition Facility, University of Alberta, Edmonton, Alberta, Canada T6G 2V2
– sequence: 3
  givenname: A.
  surname: Leemans
  fullname: Leemans, A.
  organization: School of Psychology (CUBRIC), Cardiff University, Cardiff, UK
– sequence: 4
  givenname: L.
  surname: Phillips
  fullname: Phillips, L.
  organization: Canadian Centre for Research on Literacy, University of Alberta, Edmonton, Alberta, Canada
– sequence: 5
  givenname: C.
  surname: Beaulieu
  fullname: Beaulieu, C.
  email: christian.beaulieu@ualberta.ca
  organization: Department of Biomedical Engineering, Faculty of Medicine and Dentistry, Room 1098 Research Transition Facility, University of Alberta, Edmonton, Alberta, Canada T6G 2V2
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18295509$$D View this record in MEDLINE/PubMed
BookMark eNqNkU2L1TAUhoOMOB_6FyQguGs9J236sRF18GNgxI2uQ5qceHNtkzFNhfn3tt5R4W5mVieB5zwh73vOTkIMxBhHKBGwebUvAy0p-kl_p1IAtCWKEmT1iJ0h9LLoZStOtrOsig6xP2Xn87wHgB7r7gk7xU70UkJ_xq4-e5PinNNi8pL0yCe9zexj4NHxvCO-WyYd-JC0D9ylOHGz86PdxWh5jlzbZczb5Sl77PQ407O7ecG-fXj_9fJTcf3l49Xl2-vCSFnnYmhFBb0DiRpINLohI9u600ZaR9YOlmTVamycEwM2UHdCC0JtnHC2Nk5XF-zlwXuT4s-F5qwmPxsaRx0oLrNqoa5qCe29oECougblCr44AvdxSWH9hEIJTdsJrOqVen5HLcNEVt2kNf50q_5muQKvD8AW6JzIKePznyTzmt2oENRWntqr_-WprTyFQq1NrYLuSPDvjftX3x1WaU3-l6ekZuMpGLI-kcnKRv8QyZsjiRl98EaPP-j2YYrfqN7RTg
CitedBy_id crossref_primary_10_1016_j_nicl_2014_05_012
crossref_primary_10_1002_pne2_12072
crossref_primary_10_1089_brain_2017_0493
crossref_primary_10_1016_j_biopsych_2020_02_007
crossref_primary_10_1016_j_neubiorev_2016_07_024
crossref_primary_10_3389_fnhum_2021_616132
crossref_primary_10_1016_j_neubiorev_2014_11_006
crossref_primary_10_1038_s41390_019_0689_9
crossref_primary_10_1016_j_dcn_2024_101341
crossref_primary_10_1002_nbm_1506
crossref_primary_10_3389_fneur_2018_00704
crossref_primary_10_1186_s13229_015_0001_8
crossref_primary_10_3389_fnhum_2021_662031
crossref_primary_10_1016_j_jaac_2015_07_007
crossref_primary_10_1016_j_neuroimage_2016_08_033
crossref_primary_10_1017_S003329171200116X
crossref_primary_10_1016_j_ijdevneu_2010_11_005
crossref_primary_10_1002_hbm_23243
crossref_primary_10_1523_JNEUROSCI_4682_09_2010
crossref_primary_10_1016_j_dcn_2023_101293
crossref_primary_10_1016_j_neuroimage_2017_12_097
crossref_primary_10_1111_j_1460_9568_2008_06483_x
crossref_primary_10_1016_j_dcn_2024_101351
crossref_primary_10_3389_fnins_2017_00372
crossref_primary_10_1016_j_brainresbull_2014_05_006
crossref_primary_10_1016_j_lindif_2011_09_003
crossref_primary_10_1007_s00429_014_0763_3
crossref_primary_10_1016_j_neuroimage_2011_06_026
crossref_primary_10_1016_j_neuroimage_2019_06_020
crossref_primary_10_1249_MSS_0000000000002657
crossref_primary_10_1007_s00429_022_02503_z
crossref_primary_10_1016_j_ejpn_2025_02_002
crossref_primary_10_1177_1362361312442596
crossref_primary_10_1016_j_neulet_2014_07_044
crossref_primary_10_1016_j_neuroimage_2024_120731
crossref_primary_10_1007_s00234_020_02584_9
crossref_primary_10_31887_DCNS_2013_15_3_edennis
crossref_primary_10_1016_j_bpsc_2018_12_008
crossref_primary_10_1093_cercor_bhr372
crossref_primary_10_1002_jmri_23857
crossref_primary_10_1016_j_nicl_2021_102885
crossref_primary_10_1016_j_tics_2012_04_011
crossref_primary_10_1016_j_neuroimage_2020_117441
crossref_primary_10_1161_STROKEAHA_111_624858
crossref_primary_10_2214_AJR_10_6382
crossref_primary_10_1007_s11682_016_9657_8
crossref_primary_10_1038_s41598_024_52576_5
crossref_primary_10_1002_hbm_21080
crossref_primary_10_3389_fneur_2021_801195
crossref_primary_10_1016_j_mri_2020_12_015
crossref_primary_10_1371_journal_pcbi_1002374
crossref_primary_10_1371_journal_pone_0180973
crossref_primary_10_1002_hbm_24346
crossref_primary_10_1007_s00330_015_4178_1
crossref_primary_10_1007_s11682_019_00211_7
crossref_primary_10_1007_s40259_022_00519_9
crossref_primary_10_1093_cercor_bhaa220
crossref_primary_10_1016_j_bandl_2018_05_007
crossref_primary_10_1016_j_dcn_2015_10_004
crossref_primary_10_3390_brainsci8010007
crossref_primary_10_1002_hbm_26528
crossref_primary_10_1016_j_neubiorev_2017_10_007
crossref_primary_10_1002_hbm_21030
crossref_primary_10_1002_jmri_23631
crossref_primary_10_1002_hbm_24542
crossref_primary_10_1371_journal_pone_0175143
crossref_primary_10_1016_j_nicl_2017_10_006
crossref_primary_10_1016_j_dcn_2017_12_002
crossref_primary_10_1007_s00784_022_04770_w
crossref_primary_10_1038_s41598_017_11497_2
crossref_primary_10_1016_j_neubiorev_2011_04_013
crossref_primary_10_1002_glia_23629
crossref_primary_10_1016_j_ijrobp_2011_03_057
crossref_primary_10_1016_j_lansea_2024_100388
crossref_primary_10_3389_fnins_2023_1154637
crossref_primary_10_1016_j_ejpn_2011_05_002
crossref_primary_10_1089_can_2022_0144
crossref_primary_10_1002_hbm_24771
crossref_primary_10_1002_acn3_51793
crossref_primary_10_1523_JNEUROSCI_0026_14_2014
crossref_primary_10_1016_j_neuroimage_2013_08_018
crossref_primary_10_1007_s00221_022_06448_x
crossref_primary_10_1016_j_brainres_2009_04_025
crossref_primary_10_1093_brain_awu154
crossref_primary_10_1002_hbm_24525
crossref_primary_10_1002_hbm_24522
crossref_primary_10_1002_hbm_21257
crossref_primary_10_1371_journal_pone_0075115
crossref_primary_10_1007_s11065_010_9146_6
crossref_primary_10_1016_j_neubiorev_2013_07_005
crossref_primary_10_1111_ejn_12869
crossref_primary_10_1111_jon_12854
crossref_primary_10_1523_JNEUROSCI_5781_10_2011
crossref_primary_10_1002_hbm_25654
crossref_primary_10_3389_fnut_2022_820224
crossref_primary_10_1016_j_nicl_2015_01_016
crossref_primary_10_1097_MD_0000000000020492
crossref_primary_10_1007_s11065_020_09442_8
crossref_primary_10_1093_brain_awt094
crossref_primary_10_1016_j_neuroimage_2020_116552
crossref_primary_10_1016_j_neuroimage_2019_04_004
crossref_primary_10_1016_j_neuroimage_2020_117643
crossref_primary_10_3389_fpsyg_2018_02758
crossref_primary_10_1016_j_pscychresns_2012_11_003
crossref_primary_10_1203_PDR_0b013e3181b1bd6a
crossref_primary_10_1002_aur_1243
crossref_primary_10_1146_annurev_neuro_070815_013815
crossref_primary_10_3390_cancers13081939
crossref_primary_10_1002_hbm_22139
crossref_primary_10_3389_fneur_2021_645534
crossref_primary_10_1002_hbm_21280
crossref_primary_10_1016_j_tins_2009_01_005
crossref_primary_10_3390_math9131549
crossref_primary_10_1073_pnas_1904931116
crossref_primary_10_1016_j_neuroimage_2017_01_023
crossref_primary_10_1134_S0362119712010136
crossref_primary_10_1038_s42003_024_06641_4
crossref_primary_10_3389_fpsyg_2020_00931
crossref_primary_10_1016_j_biopsych_2019_06_018
crossref_primary_10_1016_j_neuroimage_2014_11_029
crossref_primary_10_1016_j_cortex_2020_11_022
crossref_primary_10_1016_j_neuroimage_2011_05_050
crossref_primary_10_1093_cercor_bht335
crossref_primary_10_1523_ENEURO_0003_15_2015
crossref_primary_10_1007_s00234_014_1342_2
crossref_primary_10_1002_hbm_22368
crossref_primary_10_1016_j_neuroscience_2012_01_016
crossref_primary_10_1080_17482631_2024_2408831
crossref_primary_10_1016_j_dcn_2020_100767
crossref_primary_10_1016_j_psyneuen_2011_12_019
crossref_primary_10_1016_j_dcn_2017_11_001
crossref_primary_10_1016_j_schres_2013_06_014
crossref_primary_10_1016_j_neuroimage_2011_09_086
crossref_primary_10_1080_01942638_2021_1982839
crossref_primary_10_1111_j_1365_2869_2011_00930_x
crossref_primary_10_3389_fnana_2018_00077
crossref_primary_10_1089_brain_2012_0106
crossref_primary_10_1017_cjn_2019_243
crossref_primary_10_1002_hbm_22317
crossref_primary_10_1016_j_nicl_2017_05_006
crossref_primary_10_1038_mp_2016_147
crossref_primary_10_2463_mrms_mp_2022_0099
crossref_primary_10_4103_1673_5374_135309
crossref_primary_10_1016_j_neubiorev_2018_08_002
crossref_primary_10_1007_s11682_012_9220_1
crossref_primary_10_1016_j_dcn_2012_05_002
crossref_primary_10_1055_s_0041_1726127
crossref_primary_10_3389_fnhum_2018_00268
crossref_primary_10_1016_j_brainres_2016_08_042
crossref_primary_10_1073_pnas_1009073107
crossref_primary_10_1080_14737175_2022_2064743
crossref_primary_10_1002_hbm_24726
crossref_primary_10_1016_j_neuroimage_2014_10_005
crossref_primary_10_1016_j_neuropsychologia_2017_10_017
crossref_primary_10_1016_j_bja_2024_05_007
crossref_primary_10_1093_cercor_bhaa051
crossref_primary_10_1016_j_nicl_2013_08_005
crossref_primary_10_1017_S0033291709005728
crossref_primary_10_1186_s12880_016_0163_7
crossref_primary_10_3390_e20070506
crossref_primary_10_1038_s41380_021_01153_7
crossref_primary_10_1016_j_neuroimage_2014_12_084
crossref_primary_10_1146_annurev_psych_120710_100434
crossref_primary_10_1176_appi_ajp_2014_13101427
crossref_primary_10_1089_brain_2012_0127
crossref_primary_10_1016_j_jaac_2010_12_003
crossref_primary_10_1016_j_neuroimage_2016_05_017
crossref_primary_10_1016_j_nicl_2016_06_009
crossref_primary_10_1016_j_pscychresns_2015_02_009
crossref_primary_10_1002_hbm_21486
crossref_primary_10_1002_hbm_21004
crossref_primary_10_1523_JNEUROSCI_1864_17_2018
crossref_primary_10_1203_PDR_0b013e3181bbc6b5
crossref_primary_10_1093_braincomms_fcad111
crossref_primary_10_1371_journal_pone_0182340
crossref_primary_10_1093_cercor_bhac482
crossref_primary_10_1016_j_neuroimage_2011_07_006
crossref_primary_10_1038_s41562_017_0184_4
crossref_primary_10_1016_j_neuroimage_2014_01_002
crossref_primary_10_1016_j_neuroimage_2011_11_004
crossref_primary_10_1089_brain_2012_0111
crossref_primary_10_1089_neu_2017_5145
crossref_primary_10_3389_fnana_2017_00088
crossref_primary_10_1016_j_jneumeth_2017_12_017
crossref_primary_10_1089_brain_2016_0451
crossref_primary_10_1093_brain_awp126
crossref_primary_10_1186_s12888_022_03734_4
crossref_primary_10_1016_j_pscychresns_2011_07_015
crossref_primary_10_1016_j_dcn_2020_100765
crossref_primary_10_1016_j_clinph_2023_03_357
crossref_primary_10_1111_jcpp_14069
crossref_primary_10_1016_j_neuroimage_2011_07_032
crossref_primary_10_1016_j_schres_2013_07_018
crossref_primary_10_3390_e19040141
crossref_primary_10_1016_j_nicl_2024_103712
crossref_primary_10_1111_adb_12332
crossref_primary_10_1007_s00429_015_1178_5
crossref_primary_10_1016_j_neuroimage_2022_118909
crossref_primary_10_1093_jncics_pkab069
crossref_primary_10_1016_j_neuroimage_2020_117268
crossref_primary_10_1016_j_chc_2012_01_004
crossref_primary_10_1089_brain_2016_0442
crossref_primary_10_1371_journal_pone_0117666
crossref_primary_10_1212_WNL_0000000000001358
crossref_primary_10_1093_jpepsy_jss070
crossref_primary_10_1134_S036211971504012X
crossref_primary_10_1093_cercor_bhz268
crossref_primary_10_1016_j_neuroimage_2016_06_008
crossref_primary_10_1001_jamapsychiatry_2020_4064
crossref_primary_10_1016_j_cortex_2011_05_018
crossref_primary_10_1016_j_neuroimage_2023_120287
crossref_primary_10_1007_s00429_023_02642_x
crossref_primary_10_3389_fnsys_2017_00018
crossref_primary_10_1200_JCO_20_02444
crossref_primary_10_1017_S1355617713001148
crossref_primary_10_1016_j_brainres_2008_06_030
crossref_primary_10_1093_cercor_bhp118
crossref_primary_10_1038_ejhg_2012_138
crossref_primary_10_1002_hbm_23836
crossref_primary_10_1016_j_cpet_2013_04_002
crossref_primary_10_1002_hbm_23833
crossref_primary_10_1186_s12888_023_04597_z
crossref_primary_10_3389_fpsyg_2020_543773
crossref_primary_10_1016_j_dcn_2020_100788
crossref_primary_10_1016_j_neubiorev_2016_12_032
crossref_primary_10_3389_fnagi_2015_00255
crossref_primary_10_1111_desc_12316
crossref_primary_10_3389_fnins_2023_1285396
crossref_primary_10_1016_j_ntt_2014_11_009
crossref_primary_10_1093_cercor_bhz053
crossref_primary_10_1111_jon_12215
crossref_primary_10_1007_s00586_014_3435_3
crossref_primary_10_1159_000356219
crossref_primary_10_1162_jocn_a_00896
crossref_primary_10_1177_0883073809339394
crossref_primary_10_1016_j_dcn_2024_101363
crossref_primary_10_1002_eat_22154
crossref_primary_10_1148_rg_335125212
crossref_primary_10_1073_pnas_1001229107
crossref_primary_10_3390_nu13072435
crossref_primary_10_1017_S0033291716003585
crossref_primary_10_1016_j_dcn_2024_101368
crossref_primary_10_1134_S0362119715050151
crossref_primary_10_1007_s00381_013_2315_1
crossref_primary_10_1002_hbm_22538
crossref_primary_10_1002_hbm_23624
crossref_primary_10_1038_s41598_024_80372_8
crossref_primary_10_1016_j_cpr_2016_11_003
crossref_primary_10_1073_pnas_1604658114
crossref_primary_10_1002_jmri_22397
crossref_primary_10_1186_2045_5380_3_21
crossref_primary_10_1007_s00429_015_1078_8
crossref_primary_10_1177_0883073812452917
crossref_primary_10_1002_mds_22264
crossref_primary_10_1016_j_nicl_2019_101825
crossref_primary_10_1002_hbm_24706
crossref_primary_10_1016_j_neuroimage_2018_09_004
crossref_primary_10_1523_JNEUROSCI_3185_16_2017
crossref_primary_10_3390_brainsci12121622
crossref_primary_10_1002_hbm_22524
crossref_primary_10_1016_j_brainres_2009_07_046
crossref_primary_10_1016_j_alcohol_2021_07_003
crossref_primary_10_1007_s40279_019_01069_x
crossref_primary_10_1017_S0140525X10000804
crossref_primary_10_1007_s11065_011_9162_1
crossref_primary_10_1016_j_biopsych_2020_06_028
crossref_primary_10_1007_s11055_022_01237_z
crossref_primary_10_1016_j_clinph_2011_03_016
crossref_primary_10_1523_JNEUROSCI_1745_22_2023
crossref_primary_10_3389_fped_2023_1112121
crossref_primary_10_1007_s00429_018_1658_5
crossref_primary_10_1016_j_bandc_2009_06_002
crossref_primary_10_1007_s00221_024_06925_5
crossref_primary_10_1016_j_bandc_2009_06_005
crossref_primary_10_1016_j_neuroimage_2018_08_043
crossref_primary_10_1162_jocn_a_00517
crossref_primary_10_1148_radiol_12112420
crossref_primary_10_1017_S0954579408000527
crossref_primary_10_1016_j_nicl_2015_03_012
crossref_primary_10_1177_0883073813520503
crossref_primary_10_1016_j_neuroimage_2015_09_017
crossref_primary_10_1016_j_neuroimage_2013_07_067
crossref_primary_10_1016_j_pediatrneurol_2010_11_006
crossref_primary_10_1016_j_dcn_2010_11_001
crossref_primary_10_1371_journal_pone_0023437
crossref_primary_10_1016_j_nic_2012_12_002
crossref_primary_10_3389_fnhum_2017_00475
crossref_primary_10_1093_braincomms_fcaa032
crossref_primary_10_1162_jocn_a_00527
crossref_primary_10_1002_jcph_1139
crossref_primary_10_1089_brain_2015_0340
crossref_primary_10_3389_fnsys_2021_692152
crossref_primary_10_3390_ijms24043343
crossref_primary_10_3389_fpsyg_2020_01534
crossref_primary_10_1016_j_cortex_2019_09_014
crossref_primary_10_1016_j_jad_2018_11_068
crossref_primary_10_1016_j_pscychresns_2011_05_012
crossref_primary_10_1016_j_pscychresns_2014_11_009
crossref_primary_10_1073_pnas_1208243109
crossref_primary_10_7763_IJIET_2015_V5_640
crossref_primary_10_1007_s00062_015_0490_z
crossref_primary_10_1007_s11682_022_00700_2
crossref_primary_10_1016_j_drugalcdep_2016_02_015
crossref_primary_10_3390_jcm10040861
crossref_primary_10_1016_j_pnpbp_2014_01_006
crossref_primary_10_3389_fpsyg_2021_750559
crossref_primary_10_1038_s41380_021_01330_8
crossref_primary_10_1146_annurev_neuro_071714_034054
crossref_primary_10_1093_cercor_bhx223
crossref_primary_10_1016_j_neuroimage_2010_08_014
crossref_primary_10_1080_09297049_2016_1186616
crossref_primary_10_1002_hbm_22848
crossref_primary_10_1038_s41380_019_0450_0
crossref_primary_10_3389_fpsyg_2017_01643
crossref_primary_10_1007_s00221_017_5029_x
crossref_primary_10_1016_j_tine_2019_02_004
crossref_primary_10_1097_YCO_0b013e328325aa23
crossref_primary_10_1523_ENEURO_0362_24_2024
crossref_primary_10_3389_fnhum_2022_859358
crossref_primary_10_1016_j_jneumeth_2018_08_008
crossref_primary_10_1089_brain_2018_0580
crossref_primary_10_1007_s10237_019_01157_x
crossref_primary_10_1097_j_pain_0000000000002923
crossref_primary_10_1038_s41398_024_02961_5
crossref_primary_10_1007_s00702_013_0971_7
crossref_primary_10_1002_aur_1909
crossref_primary_10_1093_psyrad_kkab021
crossref_primary_10_1016_j_neuropsychologia_2010_05_001
crossref_primary_10_1093_schbul_sbs054
crossref_primary_10_1016_j_ntt_2019_106834
crossref_primary_10_1093_cercor_bhn102
crossref_primary_10_1080_19585969_2022_2043128
crossref_primary_10_1371_journal_pone_0222620
crossref_primary_10_1007_s00429_021_02414_5
crossref_primary_10_1016_j_nicl_2019_102050
crossref_primary_10_1016_j_neuroscience_2010_08_071
crossref_primary_10_1016_j_schres_2015_11_001
crossref_primary_10_1002_hbm_26157
crossref_primary_10_1111_j_1749_6632_2010_05954_x
crossref_primary_10_1016_j_neubiorev_2018_06_017
crossref_primary_10_1016_j_psychres_2024_116343
crossref_primary_10_1002_wcs_114
crossref_primary_10_1007_s00213_016_4398_3
crossref_primary_10_1016_j_jad_2018_08_029
crossref_primary_10_1111_dmcn_12618
crossref_primary_10_3389_fnhum_2019_00214
crossref_primary_10_1016_j_cortex_2017_05_007
crossref_primary_10_1016_j_pscychresns_2015_05_001
crossref_primary_10_1007_s00330_009_1534_z
crossref_primary_10_1007_s00429_011_0321_1
crossref_primary_10_1016_j_neuroimage_2018_08_073
crossref_primary_10_1016_j_neuroimage_2010_10_048
crossref_primary_10_1177_1533317515578257
crossref_primary_10_1093_cercor_bhac155
crossref_primary_10_1016_j_jaac_2015_10_004
crossref_primary_10_1016_j_sleep_2024_12_001
crossref_primary_10_1002_hbm_20880
crossref_primary_10_1016_j_neurobiolaging_2012_07_013
crossref_primary_10_1007_s40817_021_00099_6
crossref_primary_10_1016_j_brainres_2012_05_035
crossref_primary_10_1016_j_brainres_2010_02_066
crossref_primary_10_1016_j_cortex_2012_05_020
crossref_primary_10_1002_hbm_23907
crossref_primary_10_1002_jmri_24065
crossref_primary_10_1093_cercor_bhab069
crossref_primary_10_1371_journal_pone_0117968
crossref_primary_10_3389_fnhum_2015_00039
crossref_primary_10_1371_journal_pone_0049790
crossref_primary_10_1002_hbm_70091
crossref_primary_10_1016_j_dcn_2017_02_010
crossref_primary_10_1016_j_neuroimage_2019_116348
crossref_primary_10_1017_S0954579416000444
crossref_primary_10_3389_fneur_2022_948830
crossref_primary_10_1007_s00429_009_0238_0
crossref_primary_10_1111_ejn_70026
crossref_primary_10_1002_nbm_4222
crossref_primary_10_1038_s41380_023_02343_1
crossref_primary_10_1016_j_cortex_2020_05_020
crossref_primary_10_1016_j_envint_2023_107905
crossref_primary_10_1016_j_neuroimage_2021_118101
crossref_primary_10_1038_s41467_022_29770_y
crossref_primary_10_1016_j_jaac_2010_09_007
crossref_primary_10_1016_j_neuroimage_2020_117195
crossref_primary_10_1038_s41598_017_17352_8
crossref_primary_10_1111_jcpp_13578
crossref_primary_10_1002_hbm_25031
crossref_primary_10_1007_s00429_014_0975_6
crossref_primary_10_1016_j_ymeth_2014_10_016
crossref_primary_10_1016_j_neuroimage_2013_04_028
crossref_primary_10_1038_npp_2015_354
crossref_primary_10_1016_j_jpsychires_2010_11_007
crossref_primary_10_1111_dmcn_13072
crossref_primary_10_1016_j_mri_2011_07_027
crossref_primary_10_1097_CHI_0b013e318185e703
crossref_primary_10_3174_ajnr_A2184
crossref_primary_10_1016_j_neuroimage_2011_05_063
crossref_primary_10_1016_j_neuroimage_2012_11_056
crossref_primary_10_3389_fpsyg_2018_00955
crossref_primary_10_1080_02699052_2016_1200143
crossref_primary_10_1016_j_neuropsychologia_2011_10_001
crossref_primary_10_1016_j_ymeth_2014_10_025
crossref_primary_10_3174_ajnr_A2188
crossref_primary_10_1523_JNEUROSCI_4184_11_2011
crossref_primary_10_1002_ana_25245
crossref_primary_10_1016_j_brainres_2012_08_038
crossref_primary_10_3389_fneur_2014_00053
crossref_primary_10_1016_j_ejrad_2019_108690
crossref_primary_10_1016_j_concog_2010_06_024
crossref_primary_10_1002_hbm_23082
crossref_primary_10_1007_s00787_024_02416_8
crossref_primary_10_1007_s00429_017_1600_2
crossref_primary_10_1016_j_jpsychires_2011_09_016
crossref_primary_10_1523_ENEURO_0044_19_2019
crossref_primary_10_3389_fnins_2018_00288
crossref_primary_10_1016_j_neuroimage_2011_01_048
crossref_primary_10_1186_s13229_023_00573_2
crossref_primary_10_1093_brain_awu113
crossref_primary_10_1016_j_neuroimage_2022_119590
crossref_primary_10_1007_s11065_010_9148_4
crossref_primary_10_1016_S2215_0366_16_30283_8
crossref_primary_10_1016_j_actbio_2024_10_003
crossref_primary_10_1007_s11427_020_1863_6
crossref_primary_10_1016_j_asieco_2021_101423
crossref_primary_10_1007_s40279_020_01261_4
crossref_primary_10_1016_S0013_7006_19_30072_7
crossref_primary_10_1109_TMI_2013_2274051
crossref_primary_10_1007_s11682_012_9150_y
crossref_primary_10_1038_npp_2016_130
crossref_primary_10_1162_imag_a_00221
crossref_primary_10_1016_j_dcn_2021_101008
crossref_primary_10_3389_fneur_2018_00445
crossref_primary_10_1155_2012_250196
crossref_primary_10_2217_fnl_14_70
crossref_primary_10_1016_j_neuroimage_2018_07_050
crossref_primary_10_1186_2040_2392_6_4
crossref_primary_10_1111_dmcn_13042
crossref_primary_10_1002_nbm_1551
crossref_primary_10_1162_jocn_2010_21592
crossref_primary_10_1016_j_trf_2013_05_004
crossref_primary_10_1016_j_schres_2008_04_042
crossref_primary_10_1016_j_yebeh_2014_06_020
crossref_primary_10_1038_s41380_021_01018_z
crossref_primary_10_1093_texcom_tgab057
crossref_primary_10_1002_hbm_26321
crossref_primary_10_1002_hbm_23296
crossref_primary_10_1111_psyp_12227
crossref_primary_10_3389_fnana_2016_00009
crossref_primary_10_1016_j_cortex_2014_07_018
crossref_primary_10_1523_ENEURO_0353_19_2019
crossref_primary_10_1007_s00429_022_02571_1
crossref_primary_10_1016_j_nicl_2014_06_011
crossref_primary_10_1016_j_tics_2009_12_006
crossref_primary_10_1093_braincomms_fcaa224
crossref_primary_10_3174_ajnr_A2380
crossref_primary_10_1007_s00429_022_02605_8
crossref_primary_10_1016_j_dcn_2014_04_004
crossref_primary_10_1111_acer_12132
crossref_primary_10_1016_j_bpsc_2018_08_006
crossref_primary_10_1016_j_neuropsychologia_2020_107438
crossref_primary_10_1080_02640414_2020_1794763
crossref_primary_10_1002_hbm_25224
crossref_primary_10_1002_hbm_23286
crossref_primary_10_1016_j_bpsc_2021_10_003
crossref_primary_10_1016_j_neubiorev_2011_02_011
crossref_primary_10_1016_j_neulet_2008_07_056
crossref_primary_10_1016_j_cobme_2019_12_009
crossref_primary_10_1111_j_1460_9568_2008_06545_x
crossref_primary_10_1016_j_ymgmr_2016_03_003
crossref_primary_10_1016_j_neurobiolaging_2009_05_013
crossref_primary_10_1002_hbm_25458
crossref_primary_10_1016_j_jaac_2017_11_014
crossref_primary_10_1093_brain_awu311
crossref_primary_10_1093_scan_nsv156
crossref_primary_10_1371_journal_pone_0097445
crossref_primary_10_1016_j_pscychresns_2010_09_007
crossref_primary_10_1016_j_neuroimage_2009_08_003
crossref_primary_10_1016_j_neuropsychologia_2010_04_024
crossref_primary_10_1111_pcn_12530
crossref_primary_10_1016_j_neuroimage_2022_119101
crossref_primary_10_1097_DBP_0b013e3181dcaa8b
crossref_primary_10_3390_biomedicines10112740
crossref_primary_10_1371_journal_pone_0216554
crossref_primary_10_1016_j_neuroimage_2015_09_022
crossref_primary_10_1016_j_neuroimage_2020_116703
crossref_primary_10_1016_j_neurobiolaging_2024_02_014
crossref_primary_10_1016_j_dcn_2021_101044
crossref_primary_10_1002_ab_21820
crossref_primary_10_1073_pnas_2410341121
crossref_primary_10_3389_fendo_2019_00918
crossref_primary_10_3389_fnins_2017_00029
crossref_primary_10_1002_hbm_23062
crossref_primary_10_1016_j_mri_2015_12_021
crossref_primary_10_1016_j_schres_2014_05_021
crossref_primary_10_1016_j_nicl_2021_102730
crossref_primary_10_1016_j_pscychresns_2015_08_003
crossref_primary_10_1016_j_psychsport_2021_102060
crossref_primary_10_1007_s00234_017_1858_3
crossref_primary_10_1038_tp_2017_197
crossref_primary_10_1002_nbm_3778
crossref_primary_10_1016_j_neuroimage_2012_11_063
crossref_primary_10_1016_j_pscychresns_2021_111324
crossref_primary_10_5863_1551_6776_15_3_160
crossref_primary_10_1016_j_neuroscience_2017_10_050
crossref_primary_10_1002_hbm_24461
crossref_primary_10_1016_j_biopha_2024_117377
crossref_primary_10_1016_j_tics_2008_11_003
crossref_primary_10_3389_fnhum_2014_01047
crossref_primary_10_1371_journal_pbio_1002328
crossref_primary_10_1523_JNEUROSCI_1968_13_2013
crossref_primary_10_1093_schbul_sbq105
crossref_primary_10_1016_j_dcn_2016_11_008
crossref_primary_10_1002_jnr_24851
crossref_primary_10_1016_j_bpsc_2025_03_003
crossref_primary_10_1016_j_cortex_2024_02_014
crossref_primary_10_1111_ejn_15199
crossref_primary_10_1007_s11065_012_9214_1
crossref_primary_10_1016_j_neuroimage_2020_117105
crossref_primary_10_1111_desc_13340
crossref_primary_10_1016_j_pupt_2019_03_001
crossref_primary_10_1016_j_nicl_2025_103758
crossref_primary_10_1371_journal_pone_0259422
crossref_primary_10_1016_j_biopsych_2012_08_001
crossref_primary_10_1016_j_bbi_2024_12_028
crossref_primary_10_1038_s41598_024_58648_w
crossref_primary_10_1177_19714009090220S106
crossref_primary_10_1016_j_ijrobp_2023_11_038
crossref_primary_10_1016_j_jecp_2021_105094
crossref_primary_10_1016_j_dcn_2021_100999
crossref_primary_10_1002_brb3_237
crossref_primary_10_3389_fpsyg_2019_01198
crossref_primary_10_3390_nu12040909
crossref_primary_10_1016_j_braindev_2022_04_003
crossref_primary_10_1016_j_neuroimage_2009_08_031
crossref_primary_10_1017_S135561771300129X
crossref_primary_10_1093_cercor_bhp280
crossref_primary_10_3390_cells11182789
crossref_primary_10_3389_fnagi_2022_787516
crossref_primary_10_1088_1741_2552_ac9a76
crossref_primary_10_1016_j_neuroimage_2016_01_061
crossref_primary_10_1203_PDR_0b013e3181fcb285
crossref_primary_10_1159_000492859
crossref_primary_10_1038_s41598_018_38430_5
crossref_primary_10_3389_fneur_2018_00836
crossref_primary_10_1016_j_neuroimage_2018_04_017
crossref_primary_10_1093_cercor_bhy090
crossref_primary_10_1155_2013_176027
crossref_primary_10_1523_JNEUROSCI_1242_09_2009
crossref_primary_10_1002_hbm_22027
crossref_primary_10_1016_j_neuroimage_2013_10_026
crossref_primary_10_1016_j_schres_2012_02_016
crossref_primary_10_1371_journal_pone_0020726
crossref_primary_10_3389_fnhum_2014_00197
crossref_primary_10_1016_j_cub_2011_07_019
crossref_primary_10_1016_j_ijdevneu_2015_04_301
crossref_primary_10_1007_s40894_021_00153_6
crossref_primary_10_3389_fnsys_2016_00093
crossref_primary_10_1002_hbm_24002
crossref_primary_10_1016_j_bandc_2009_10_012
crossref_primary_10_1002_mabi_202000004
crossref_primary_10_1002_eat_22083
crossref_primary_10_1016_j_dcn_2025_101520
crossref_primary_10_1016_j_nicl_2012_09_010
crossref_primary_10_1016_j_cortex_2012_08_004
crossref_primary_10_1038_s41598_017_09915_6
crossref_primary_10_1038_s41598_019_44150_1
crossref_primary_10_1007_s00787_017_0990_2
crossref_primary_10_1016_j_neuroimage_2010_12_008
crossref_primary_10_3389_fpsyt_2020_00342
crossref_primary_10_1002_brb3_1165
crossref_primary_10_1016_j_nicl_2020_102236
crossref_primary_10_3389_fnhum_2016_00464
crossref_primary_10_1111_acer_14929
crossref_primary_10_1093_cercor_bhr243
crossref_primary_10_1038_s41380_020_00969_z
crossref_primary_10_1152_jn_00320_2013
crossref_primary_10_1016_j_jad_2020_12_075
crossref_primary_10_1371_journal_pone_0233244
crossref_primary_10_7202_1036965ar
crossref_primary_10_1007_BF03379543
crossref_primary_10_1016_j_schres_2019_08_022
crossref_primary_10_1371_journal_pone_0179624
crossref_primary_10_1111_desc_13557
crossref_primary_10_1016_j_jpsychires_2014_08_023
crossref_primary_10_1007_s00247_012_2496_x
crossref_primary_10_11603_bmbr_2706_6290_2020_3_11528
crossref_primary_10_1016_j_ijdevneu_2011_12_008
crossref_primary_10_1016_j_neuroimage_2015_07_046
crossref_primary_10_1016_j_neuroimage_2015_07_048
crossref_primary_10_1016_j_brainres_2008_10_026
crossref_primary_10_1016_j_neuroimage_2012_08_086
crossref_primary_10_1002_hbm_21147
crossref_primary_10_1073_pnas_1206792109
crossref_primary_10_1016_j_ymeth_2022_06_001
crossref_primary_10_1007_s10508_016_0768_5
crossref_primary_10_1089_brain_2014_0285
crossref_primary_10_1002_dneu_22821
crossref_primary_10_3917_cdlj_2002_0311
crossref_primary_10_1016_j_neuroimage_2021_117825
crossref_primary_10_1176_appi_ajp_2018_17070825
crossref_primary_10_1176_appi_ajp_2018_18040425
crossref_primary_10_1002_hbm_24409
crossref_primary_10_1155_2011_542896
crossref_primary_10_1111_acer_13854
crossref_primary_10_1016_j_neuroimage_2010_03_017
crossref_primary_10_1016_j_neulet_2010_09_066
crossref_primary_10_1097_CCM_0000000000002553
crossref_primary_10_1002_hbm_24407
crossref_primary_10_1016_j_nicl_2012_09_001
crossref_primary_10_1016_j_earlhumdev_2008_09_004
crossref_primary_10_1016_j_neuroimage_2015_06_014
crossref_primary_10_1002_hbm_22022
crossref_primary_10_1016_j_nicl_2019_101781
crossref_primary_10_3109_15622975_2014_903336
crossref_primary_10_1371_journal_pone_0300139
crossref_primary_10_1093_cercor_bhr292
crossref_primary_10_1192_bjp_bp_108_055376
crossref_primary_10_3390_diagnostics11030560
crossref_primary_10_1088_0031_9155_60_2_453
crossref_primary_10_1016_j_neuroimage_2020_116672
crossref_primary_10_1016_j_neuroimage_2019_01_077
crossref_primary_10_1016_j_nicl_2018_06_002
crossref_primary_10_3389_fnana_2019_00024
crossref_primary_10_1016_j_envres_2019_109093
crossref_primary_10_1038_tp_2015_23
crossref_primary_10_1002_hbm_24435
crossref_primary_10_25259_SNI_955_2024
crossref_primary_10_1016_j_ejpn_2010_03_012
crossref_primary_10_1111_jcpp_13268
crossref_primary_10_1371_journal_pbio_1000157
crossref_primary_10_1177_1744629521995378
crossref_primary_10_1016_j_jpsychires_2020_07_012
crossref_primary_10_1016_j_psyneuen_2020_104722
crossref_primary_10_1038_s41598_017_08107_6
crossref_primary_10_1051_jbio_2015026
crossref_primary_10_3233_JAD_210495
crossref_primary_10_1002_hbm_23530
crossref_primary_10_1002_pbc_24958
crossref_primary_10_1542_peds_2018_4032
crossref_primary_10_1002_hbm_22441
crossref_primary_10_1016_j_ejpn_2023_07_004
crossref_primary_10_1515_REVNEURO_2010_21_3_187
crossref_primary_10_1007_s00330_012_2572_5
crossref_primary_10_1212_WNL_0000000000013250
crossref_primary_10_3389_fnhum_2017_00063
crossref_primary_10_1017_S0954579413000643
crossref_primary_10_3389_fnsys_2021_724805
crossref_primary_10_1177_1352458515596600
crossref_primary_10_1111_j_1467_8624_2009_01324_x
crossref_primary_10_1002_hbm_23526
crossref_primary_10_1111_adb_12493
crossref_primary_10_3389_fped_2014_00123
crossref_primary_10_1007_s00234_018_2017_1
crossref_primary_10_1016_j_biopsych_2018_11_026
crossref_primary_10_1111_desc_12647
crossref_primary_10_1111_desc_12648
crossref_primary_10_1016_j_pscychresns_2016_12_003
crossref_primary_10_1016_j_bandl_2017_10_008
crossref_primary_10_1002_mrm_28216
crossref_primary_10_1097_JSM_0000000000000753
crossref_primary_10_1523_JNEUROSCI_1321_21_2021
crossref_primary_10_1002_hbm_21335
crossref_primary_10_1016_j_pscychresns_2016_12_010
crossref_primary_10_1002_hbm_24842
crossref_primary_10_1093_cercor_bhab012
crossref_primary_10_1523_JNEUROSCI_2422_18_2019
crossref_primary_10_1086_714366
crossref_primary_10_1093_schbul_sbw062
crossref_primary_10_1038_s41537_023_00411_7
crossref_primary_10_1093_cercor_bhy046
crossref_primary_10_1093_cercor_bhab021
crossref_primary_10_1016_j_neuroimage_2010_12_087
crossref_primary_10_1097_INF_0000000000004796
crossref_primary_10_1016_j_neuroimage_2012_09_021
crossref_primary_10_1080_13607863_2018_1455804
crossref_primary_10_1016_j_ridd_2014_10_013
crossref_primary_10_3109_02699052_2015_1075172
crossref_primary_10_3945_ajcn_110_001206
crossref_primary_10_1016_j_neuroimage_2010_07_055
crossref_primary_10_1093_scan_nss113
crossref_primary_10_1111_j_1530_0277_2008_00750_x
crossref_primary_10_1016_j_pscychresns_2011_11_005
crossref_primary_10_1089_neu_2016_4584
crossref_primary_10_1002_hbm_23545
crossref_primary_10_1002_hbm_23546
crossref_primary_10_15388_CrimLithuan_2020_8_4
crossref_primary_10_1016_j_neuroimage_2010_10_037
crossref_primary_10_1016_j_pse_2015_08_001
crossref_primary_10_1177_15459683211011220
crossref_primary_10_1016_j_clinph_2019_08_029
crossref_primary_10_1038_npp_2012_133
crossref_primary_10_1007_s10548_020_00811_3
crossref_primary_10_1002_nbm_5114
crossref_primary_10_7554_eLife_77571
crossref_primary_10_1038_s41390_021_01394_w
crossref_primary_10_1371_journal_pone_0195540
crossref_primary_10_1007_s00234_024_03367_2
crossref_primary_10_1016_j_dcn_2020_100881
crossref_primary_10_1002_hbm_25959
crossref_primary_10_1186_s12888_024_05852_7
crossref_primary_10_3174_ajnr_A8033
crossref_primary_10_1589_rika_25_171
crossref_primary_10_1016_j_schres_2014_09_040
crossref_primary_10_1007_s00429_013_0517_7
crossref_primary_10_1111_ejn_13655
crossref_primary_10_1186_s40478_019_0684_8
crossref_primary_10_1111_j_1752_4571_2010_00164_x
crossref_primary_10_1002_ana_27180
crossref_primary_10_1111_eip_12359
crossref_primary_10_1016_j_ijdevneu_2013_06_007
crossref_primary_10_1016_j_tics_2013_09_015
crossref_primary_10_3109_15622975_2011_591824
crossref_primary_10_1007_s00429_019_01973_y
crossref_primary_10_1016_j_neuroimage_2013_02_055
crossref_primary_10_1016_j_psyneuen_2017_11_009
crossref_primary_10_1016_j_clinph_2012_04_025
crossref_primary_10_1016_j_neuroimage_2018_02_050
crossref_primary_10_1089_neu_2016_4527
crossref_primary_10_1523_JNEUROSCI_4122_13_2013
crossref_primary_10_1016_j_neuroimage_2015_06_068
crossref_primary_10_1016_j_neuroimage_2010_05_019
crossref_primary_10_1016_j_nicl_2022_103306
crossref_primary_10_3390_brainsci11050664
crossref_primary_10_1038_s41598_019_44198_z
crossref_primary_10_3109_00207454_2010_531894
crossref_primary_10_1016_j_bandl_2023_105270
crossref_primary_10_1111_j_1552_6569_2012_00779_x
crossref_primary_10_1002_hbm_22620
crossref_primary_10_1111_jcpp_13085
crossref_primary_10_3390_brainsci4010150
crossref_primary_10_1134_S0362119715050035
crossref_primary_10_1016_j_bpsc_2021_09_009
crossref_primary_10_1016_j_neuroimage_2015_05_054
crossref_primary_10_3389_fnbeh_2015_00252
crossref_primary_10_1162_jocn_a_00534
crossref_primary_10_3389_fpsyg_2018_01147
crossref_primary_10_3389_fnins_2018_00950
crossref_primary_10_1016_j_neuroimage_2013_02_078
crossref_primary_10_3174_ajnr_A2924
crossref_primary_10_1155_2016_4724792
crossref_primary_10_1016_j_bandc_2009_11_002
crossref_primary_10_1016_j_pscychresns_2025_111960
crossref_primary_10_1038_nrneurol_2015_30
crossref_primary_10_1007_s11682_017_9685_z
crossref_primary_10_1016_j_cortex_2012_07_001
crossref_primary_10_5665_SLEEP_1284
crossref_primary_10_1080_03004430_2013_871275
crossref_primary_10_1016_j_dcn_2025_101552
crossref_primary_10_1371_journal_pone_0233684
crossref_primary_10_1016_j_neuroimage_2021_118744
crossref_primary_10_1016_j_dcn_2021_100982
crossref_primary_10_1007_s00234_008_0488_1
crossref_primary_10_1093_cercor_bhq108
crossref_primary_10_1371_journal_pone_0125170
crossref_primary_10_1016_j_artmed_2022_102330
crossref_primary_10_1371_journal_pone_0056113
crossref_primary_10_1016_j_dcn_2018_03_007
crossref_primary_10_1016_j_neuroimage_2019_116477
crossref_primary_10_1007_s00429_019_01955_0
crossref_primary_10_1371_journal_pone_0083516
crossref_primary_10_1007_s00429_024_02884_3
crossref_primary_10_1089_neu_2020_6993
crossref_primary_10_1111_cdep_12084
crossref_primary_10_1093_cercor_bhu065
crossref_primary_10_1002_hbm_20779
crossref_primary_10_1016_j_chc_2016_12_017
crossref_primary_10_1016_j_neuroimage_2019_02_014
crossref_primary_10_1016_j_jpsychires_2010_05_006
crossref_primary_10_1007_s10803_014_2131_9
crossref_primary_10_1038_s41380_019_0509_y
crossref_primary_10_1016_j_dcn_2020_100812
crossref_primary_10_1016_j_spen_2019_03_016
crossref_primary_10_1016_j_dcn_2020_100815
crossref_primary_10_3390_cells10102679
crossref_primary_10_3389_fnins_2018_00318
crossref_primary_10_1007_s11065_010_9129_7
crossref_primary_10_1007_s10865_019_00010_x
crossref_primary_10_1093_cercor_bhu084
crossref_primary_10_1186_s40359_024_02297_1
crossref_primary_10_1017_S1355617722000170
crossref_primary_10_1016_j_jad_2018_02_024
crossref_primary_10_17816_ACEN_2017_3_10
crossref_primary_10_1007_s11682_021_00530_8
crossref_primary_10_1002_brb3_1975
crossref_primary_10_1016_j_ntt_2009_07_006
crossref_primary_10_1016_j_neuroimage_2014_09_063
crossref_primary_10_1007_s00429_014_0947_x
crossref_primary_10_1111_j_1753_4887_2010_00327_x
crossref_primary_10_1007_s11682_017_9761_4
crossref_primary_10_1016_j_dcn_2019_100682
crossref_primary_10_1146_annurev_clinpsy_032210_104507
crossref_primary_10_1371_journal_pone_0048789
crossref_primary_10_1038_pr_2012_129
crossref_primary_10_1016_j_nicl_2023_103427
crossref_primary_10_1002_nbm_3450
crossref_primary_10_1016_j_neuroimage_2014_09_057
crossref_primary_10_3389_fpsyg_2017_00674
crossref_primary_10_1371_journal_pone_0255892
crossref_primary_10_1016_j_disamonth_2019_02_008
crossref_primary_10_3389_fpsyt_2021_686967
crossref_primary_10_1038_mp_2013_44
crossref_primary_10_3174_ajnr_A2417
crossref_primary_10_1111_ane_12183
crossref_primary_10_1016_j_neuroimage_2011_09_041
crossref_primary_10_1111_j_1467_7687_2010_00980_x
crossref_primary_10_1016_j_dcn_2019_100678
crossref_primary_10_1016_j_neurobiolaging_2014_05_024
crossref_primary_10_3389_fnhum_2019_00320
crossref_primary_10_1111_acer_12097
crossref_primary_10_1016_j_neuroimage_2015_02_051
crossref_primary_10_1038_s41398_024_02810_5
crossref_primary_10_1136_bjsports_2012_091441
crossref_primary_10_1016_j_neuroimage_2014_09_039
crossref_primary_10_1093_cercor_bhac022
crossref_primary_10_1016_j_neuroimage_2019_116207
crossref_primary_10_1016_j_jaac_2018_01_014
crossref_primary_10_1111_desc_12965
crossref_primary_10_1016_j_brainres_2010_12_051
crossref_primary_10_1016_j_cobeha_2016_04_008
crossref_primary_10_1371_journal_pone_0084650
crossref_primary_10_1002_hbm_26271
crossref_primary_10_1097_QAD_0000000000000648
crossref_primary_10_1007_s10803_016_2803_8
crossref_primary_10_1093_noajnl_vdac016
crossref_primary_10_1111_psyp_13281
crossref_primary_10_1124_jpet_116_234476
crossref_primary_10_1007_s11571_018_9476_2
crossref_primary_10_3174_ajnr_A3764
crossref_primary_10_1016_j_pscychresns_2014_09_001
crossref_primary_10_1038_nmeth_3098
crossref_primary_10_1002_hbm_20962
crossref_primary_10_1016_j_pneurobio_2011_08_003
crossref_primary_10_1016_j_neubiorev_2009_12_007
crossref_primary_10_1016_j_neuroimage_2019_116440
crossref_primary_10_1016_j_neuropsychologia_2009_11_001
crossref_primary_10_1016_j_ultrasmedbio_2020_04_004
crossref_primary_10_1038_npp_2010_199
crossref_primary_10_1007_s00429_015_1001_3
crossref_primary_10_24193_cbb_2023_27_03
crossref_primary_10_1016_j_neuint_2017_03_022
crossref_primary_10_1002_hbm_26064
crossref_primary_10_1007_s00381_010_1329_1
crossref_primary_10_1111_j_1530_0277_2011_01476_x
crossref_primary_10_1038_s41598_022_24803_4
crossref_primary_10_1186_s12880_021_00549_9
crossref_primary_10_1177_0963721419848672
crossref_primary_10_1016_j_neuroimage_2017_05_017
crossref_primary_10_1109_TMI_2019_2901712
crossref_primary_10_1016_j_brainres_2013_06_003
crossref_primary_10_3389_fnint_2015_00065
crossref_primary_10_1016_j_cortex_2014_10_014
crossref_primary_10_1016_j_neurad_2011_05_002
crossref_primary_10_3917_ado_077_0479
crossref_primary_10_1016_j_neuroimage_2011_12_079
crossref_primary_10_1111_j_1749_6632_2009_04420_x
crossref_primary_10_1111_jon_13155
crossref_primary_10_18699_VJ21_064
crossref_primary_10_1016_j_jad_2024_08_146
crossref_primary_10_1016_j_neuropsychologia_2011_08_022
crossref_primary_10_1016_j_neubiorev_2020_05_015
crossref_primary_10_1016_j_neuron_2014_09_035
crossref_primary_10_1016_j_jpsychires_2021_07_042
crossref_primary_10_1111_j_1399_5618_2012_01045_x
crossref_primary_10_1111_epi_12871
crossref_primary_10_1007_s00426_011_0357_0
crossref_primary_10_1016_j_dcn_2019_100633
crossref_primary_10_1016_j_dcn_2019_100630
crossref_primary_10_1111_acer_14633
crossref_primary_10_1089_neu_2018_6071
crossref_primary_10_1007_s11682_016_9555_0
crossref_primary_10_1161_CIRCOUTCOMES_108_819235
crossref_primary_10_3389_fnhum_2022_965602
crossref_primary_10_1002_hbm_26238
crossref_primary_10_1080_13803395_2020_1813257
crossref_primary_10_3390_ijerph18126300
crossref_primary_10_1016_j_nicl_2014_11_004
crossref_primary_10_3389_fnana_2015_00115
crossref_primary_10_1027_0044_3409_a000017
crossref_primary_10_1038_s41598_020_72802_0
crossref_primary_10_1186_s12984_017_0221_6
crossref_primary_10_1016_j_jad_2020_11_098
crossref_primary_10_1007_s11689_010_9059_y
crossref_primary_10_1159_000485376
crossref_primary_10_1016_j_neuroimage_2010_03_056
crossref_primary_10_1016_j_neuroimage_2012_03_057
crossref_primary_10_1093_brain_awu230
crossref_primary_10_1038_s41380_024_02850_9
crossref_primary_10_1097_NPT_0000000000000226
crossref_primary_10_1093_texcom_tgac004
crossref_primary_10_1111_desc_12088
crossref_primary_10_1016_j_neuroimage_2018_11_043
crossref_primary_10_1080_17470919_2016_1256832
crossref_primary_10_1016_j_pscychresns_2012_04_017
crossref_primary_10_1016_j_pscychresns_2013_10_006
crossref_primary_10_3390_brainsci11040474
crossref_primary_10_1111_epi_12859
crossref_primary_10_1007_s00117_018_0388_2
crossref_primary_10_1016_j_bbr_2020_113079
crossref_primary_10_1162_imag_a_00102
crossref_primary_10_1038_s41598_017_01263_9
crossref_primary_10_3390_ijerph191912972
crossref_primary_10_1016_j_neubiorev_2012_04_002
crossref_primary_10_1093_cercor_bhv323
crossref_primary_10_1016_j_neuroimage_2010_03_072
crossref_primary_10_1159_000373885
crossref_primary_10_1016_j_pscychresns_2022_111543
crossref_primary_10_1016_j_drugalcdep_2017_01_011
crossref_primary_10_1093_cercor_bhu227
crossref_primary_10_1016_j_pscychresns_2020_111105
crossref_primary_10_1016_j_dcn_2015_06_003
crossref_primary_10_1002_aur_2789
crossref_primary_10_5812_iranjradiol_56115
crossref_primary_10_1002_ana_24222
crossref_primary_10_1016_j_nicl_2021_102627
crossref_primary_10_1038_s41598_024_61253_6
crossref_primary_10_1371_journal_pone_0282363
crossref_primary_10_3389_fnagi_2020_594002
crossref_primary_10_1371_journal_pone_0123656
crossref_primary_10_1016_j_envres_2024_120638
crossref_primary_10_3174_ajnr_A3350
crossref_primary_10_1002_mrm_23254
crossref_primary_10_3389_fnhum_2018_00512
crossref_primary_10_1007_s11682_024_00963_x
crossref_primary_10_3389_fnhum_2020_00233
crossref_primary_10_3389_fpsyg_2019_01708
crossref_primary_10_3390_brainsci14050495
crossref_primary_10_1016_j_dcn_2015_04_004
crossref_primary_10_1016_j_neuroimage_2021_118079
crossref_primary_10_1016_j_dcn_2023_101301
crossref_primary_10_1016_j_neuroimage_2011_11_094
crossref_primary_10_1089_brain_2020_0749
crossref_primary_10_1093_cercor_bhae046
crossref_primary_10_1124_pr_115_012138
crossref_primary_10_1002_hbm_22075
crossref_primary_10_1002_hbm_26671
crossref_primary_10_1016_j_neuroimage_2023_119974
crossref_primary_10_1089_neu_2014_3822
crossref_primary_10_1016_j_pnpbp_2011_11_015
crossref_primary_10_1016_j_neuroimage_2009_01_068
crossref_primary_10_1016_j_nicl_2014_12_019
crossref_primary_10_1016_j_neuroimage_2022_119439
crossref_primary_10_1016_j_nicl_2021_102872
crossref_primary_10_3390_life13010119
crossref_primary_10_3390_brainsci11070920
crossref_primary_10_1016_j_dcn_2014_10_002
crossref_primary_10_1016_j_neuroimage_2013_11_025
crossref_primary_10_1176_appi_ajp_2013_12111462
crossref_primary_10_3389_fneur_2021_681467
crossref_primary_10_1016_j_neuroimage_2021_118084
crossref_primary_10_1002_hbm_25130
crossref_primary_10_1016_j_pscychresns_2017_03_015
crossref_primary_10_1146_annurev_psych_010213_115202
crossref_primary_10_1038_s41386_019_0343_6
crossref_primary_10_1002_hbm_24287
crossref_primary_10_1016_j_neuroimage_2013_12_044
crossref_primary_10_1016_j_neuroscience_2013_11_029
crossref_primary_10_1016_j_jphysparis_2010_08_007
crossref_primary_10_1016_j_neuroimage_2010_01_033
crossref_primary_10_3174_ajnr_A4417
crossref_primary_10_1016_j_jpsychires_2013_03_021
crossref_primary_10_1016_j_pscychresns_2013_11_006
crossref_primary_10_1007_s00429_013_0655_y
crossref_primary_10_3390_biom11060823
crossref_primary_10_1073_pnas_2205162119
crossref_primary_10_1016_j_neuroimage_2019_06_016
crossref_primary_10_1016_j_dcn_2017_08_003
crossref_primary_10_3389_fnhum_2017_00528
crossref_primary_10_1016_j_neuropsychologia_2010_10_007
crossref_primary_10_1089_brain_2021_0058
crossref_primary_10_1176_appi_ajp_2016_15111435
crossref_primary_10_18454_ACEN_2017_3_10
crossref_primary_10_1016_j_nicl_2019_102123
crossref_primary_10_1038_s41598_024_78351_0
crossref_primary_10_1093_cercor_bht187
crossref_primary_10_1007_s11682_024_00876_9
crossref_primary_10_1016_j_seizure_2018_04_002
crossref_primary_10_1016_j_mri_2009_05_006
crossref_primary_10_1007_s11682_016_9666_7
crossref_primary_10_1038_s41467_023_44591_3
crossref_primary_10_1097_00004583_201012000_00010
crossref_primary_10_1016_j_dcn_2018_01_004
crossref_primary_10_1016_j_neuroimage_2017_04_057
crossref_primary_10_1016_j_neuroimage_2017_04_059
crossref_primary_10_1016_j_neuropsychologia_2016_05_018
crossref_primary_10_1016_j_dcn_2015_05_006
crossref_primary_10_1016_j_neuroimage_2014_08_059
crossref_primary_10_3389_fneur_2023_1305071
crossref_primary_10_1007_s00234_021_02713_y
crossref_primary_10_1016_j_neuroscience_2013_12_044
Cites_doi 10.1016/j.ijdevneu.2007.03.008
10.1097/01.wnr.0000183327.98370.6a
10.1016/j.neuroimage.2005.01.028
10.1016/j.neuroimage.2005.03.016
10.1038/35004593
10.1093/cercor/bhi062
10.1126/science.283.5409.1908
10.1002/jmri.20410
10.1006/nimg.2001.0786
10.1016/j.neuroimage.2006.01.042
10.1002/jmri.20281
10.1016/S0006-3495(94)80775-1
10.1002/hbm.20363
10.1093/schbul/15.4.585
10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
10.1016/j.neuroimage.2007.03.053
10.1148/radiol.2212001702
10.1093/cercor/bhh055
10.1007/s002340050869
10.1148/radiol.2301021640
10.1093/brain/awg203
10.1177/1073858404263960
10.1016/j.neuroimage.2005.04.027
10.1038/13158
10.1002/(SICI)1522-2594(199907)42:1<37::AID-MRM7>3.0.CO;2-O
10.2214/AJR.07.2132
10.1148/radiol.2221010626
10.1006/jecp.1993.1034
10.1038/nn1008
10.1002/hbm.20273
10.1016/j.neuroimage.2005.08.017
10.1002/hbm.20431
10.1038/nrn1119
10.1073/pnas.96.18.10422
10.1016/j.neuroimage.2007.07.043
10.1016/j.neuroimage.2005.11.022
10.1093/cercor/12.12.1237
10.1016/j.tins.2006.01.007
10.1007/s00234-003-1154-2
10.1093/cercor/bhm003
10.1016/j.neuroimage.2006.10.047
10.1159/000104277
10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
10.1111/j.1467-8624.2004.00745.x
10.1002/nbm.782
ContentType Journal Article
Copyright 2007 Elsevier Inc.
Copyright Elsevier Limited Apr 15, 2008
Copyright_xml – notice: 2007 Elsevier Inc.
– notice: Copyright Elsevier Limited Apr 15, 2008
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7QO
7X8
DOI 10.1016/j.neuroimage.2007.12.053
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Psychology Database
ProQuest Biological Science
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
Biotechnology Research Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Biotechnology Research Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Engineering Research Database
ProQuest One Psychology


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 1055
ExternalDocumentID 3244645361
18295509
10_1016_j_neuroimage_2007_12_053
S1053811907011779
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
.1-
.FO
29N
AAFWJ
AAQXK
AAYXX
ABMZM
ACLOT
ADFGL
ADVLN
ADXHL
AFPKN
AFRHN
AGHFR
AGQPQ
AIGII
AJUYK
AKRLJ
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
GBLVA
HDW
HEI
HMK
HMO
HVGLF
OK1
P-8
R2-
SEW
WUQ
XPP
Z5R
ZMT
~HD
AGRNS
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7QO
7X8
ID FETCH-LOGICAL-c554t-b72309f051a0e26a6ec5748ac5dfeddbde537a16ff2b160482a2e1acf2fd4cfa3
IEDL.DBID 7X7
ISSN 1053-8119
IngestDate Sun Sep 28 04:11:23 EDT 2025
Sat Sep 27 18:35:50 EDT 2025
Wed Aug 13 04:42:07 EDT 2025
Mon Jul 21 06:00:59 EDT 2025
Thu Apr 24 23:03:32 EDT 2025
Wed Oct 01 02:57:43 EDT 2025
Fri Feb 23 02:31:38 EST 2024
Tue Aug 26 17:34:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-b72309f051a0e26a6ec5748ac5dfeddbde537a16ff2b160482a2e1acf2fd4cfa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 18295509
PQID 1506782134
PQPubID 2031077
PageCount 12
ParticipantIDs proquest_miscellaneous_70434507
proquest_miscellaneous_21038615
proquest_journals_1506782134
pubmed_primary_18295509
crossref_citationtrail_10_1016_j_neuroimage_2007_12_053
crossref_primary_10_1016_j_neuroimage_2007_12_053
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2007_12_053
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2007_12_053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-04-15
PublicationDateYYYYMMDD 2008-04-15
PublicationDate_xml – month: 04
  year: 2008
  text: 2008-04-15
  day: 15
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2008
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Basser, Pajevic, Pierpaoli, Duda, Aldroubi (bib3) 2000; 44
Catani, Jones, Donato, Ffytche (bib9) 2003; 126
Schmithorst, V.J., Holland, S.K., Dardzinski, B.J., in press. Developmental differences in white matter architecture between boys and girls. Hum. Brain Mapp.
Barnea-Goraly, Menon, Eckert, Tamm, Bammer, Karchemskiy (bib2) 2005; 15
Beaulieu (bib5) 2002; 15
Benes (bib7) 1989; 15
Sowell, Peterson, Thompson, Welcome, Henkenius, Toga (bib42) 2003; 6
Mukherjee, Miller, Shimony, Conturo, Lee, Almli (bib31) 2001; 221
McLaughlin, Paul, Grieve, Williams, Laidlaw, DiCarlo (bib28) 2007; 25
Ashtari, Cervellione, Hasan, Wu, McIlree, Kester (bib1) 2007; 35
Giorgio, Watkins, Douaud, James, James, De Stefano (bib16) 2008; 39
Good, Johnsrude, Ashburner, Henson, Friston, Frackowiak (bib18) 2001; 14
Deipolyi, Mukherjee, Gill, Henry, Partridge, Veeraraghavan (bib11) 2005; 27
Provenzale, Liang, DeLong, White (bib34) 2007; 189
McKinstry, Mathur, Miller, Ozcan, Snyder, Schefft (bib27) 2002; 12
Schneider, Il'yasov, Hennig, Martin (bib37) 2004; 46
Eluvathingal, Hasan, Kramer, Fletcher, Ewing-Cobbs (bib14) 2007; 17
Luna, Garver, Urban, Lazar, Sweeney (bib26) 2004; 75
Partridge, Mukherjee, Berman, Henry, Miller, Lu (bib32) 2005; 22
Schmithorst, Wilke, Dardzinski, Holland (bib36) 2002; 222
Kretschmann (bib22) 1988; 160
Dubois, Dehaene-Lambertz, Perrin, Mangin, Cointepas, Duchesnay (bib12) 2008; 29
Song, Yoshino, Le, Lin, Sun, Cross (bib40) 2005; 26
Dubois, Hertz-Pannier, Dehaene-Lambertz, Cointepas, Le Bihan (bib13) 2006; 30
Toga, Thompson, Sowell (bib44) 2006; 29
Basser, Mattiello, LeBihan (bib4) 1994; 66
Hermoye, Saint-Martin, Cosnard, Lee, Kim, Nassogne (bib19) 2006; 29
Wakana, Jiang, Nagae-Poetscher, van Zijl, Mori (bib45) 2004; 230
Thompson, Giedd, Woods, MacDonald, Evans, Toga (bib43) 2000; 404
Snook, Paulson, Roy, Phillips, Beaulieu (bib39) 2005; 26
Sowell, Thompson, Toga (bib41) 2004; 10
Yakovlev, Lecours (bib47) 1967
Lenroot, Gogtay, Greenstein, Wells, Wallace, Clasen (bib24) 2007; 36
Buchel, Raedler, Sommer, Sach, Weiller, Koch (bib8) 2004; 14
.
Schneiderman, Buchsbaum, Haznedar, Hazlett, Brickman, Shihabuddin (bib38) 2007; 55
Mori, Crain, Chacko, van Zijl (bib29) 1999; 45
Le Bihan (bib23) 2003; 4
Kail (bib21) 1993; 56
Jones, Simmons, Williams, Horsfield (bib20) 1999; 42
Whitford, Rennie, Grieve, Clark, Gordon, Williams (bib46) 2007; 28
Morriss, Zimmerman, Bilaniuk, Hunter, Haselgrove (bib30) 1999; 41
Gong, Jiang, Zhu, Zang, He, Xie (bib17) 2005; 16
Conturo, Lori, Cull, Akbudak, Snyder, Shimony (bib10) 1999; 96
Lerch, Worsley, Shaw, Greenstein, Lenroot, Giedd (bib25) 2006; 31
Giedd, Blumenthal, Jeffries, Castellanos, Liu, Zijdenbos (bib15) 1999; 2
Paus, Zijdenbos, Worsley, Collins, Blumenthal, Giedd (bib33) 1999; 283
Ben Bashat, Ben Sira, Graif, Pianka, Hendler, Cohen (bib6) 2005; 21
Morriss (10.1016/j.neuroimage.2007.12.053_bib30) 1999; 41
10.1016/j.neuroimage.2007.12.053_bib35
Lerch (10.1016/j.neuroimage.2007.12.053_bib25) 2006; 31
Buchel (10.1016/j.neuroimage.2007.12.053_bib8) 2004; 14
Catani (10.1016/j.neuroimage.2007.12.053_bib9) 2003; 126
Luna (10.1016/j.neuroimage.2007.12.053_bib26) 2004; 75
Song (10.1016/j.neuroimage.2007.12.053_bib40) 2005; 26
Paus (10.1016/j.neuroimage.2007.12.053_bib33) 1999; 283
Thompson (10.1016/j.neuroimage.2007.12.053_bib43) 2000; 404
Hermoye (10.1016/j.neuroimage.2007.12.053_bib19) 2006; 29
Partridge (10.1016/j.neuroimage.2007.12.053_bib32) 2005; 22
Provenzale (10.1016/j.neuroimage.2007.12.053_bib34) 2007; 189
Whitford (10.1016/j.neuroimage.2007.12.053_bib46) 2007; 28
Basser (10.1016/j.neuroimage.2007.12.053_bib4) 1994; 66
Ben Bashat (10.1016/j.neuroimage.2007.12.053_bib6) 2005; 21
Deipolyi (10.1016/j.neuroimage.2007.12.053_bib11) 2005; 27
Schneider (10.1016/j.neuroimage.2007.12.053_bib37) 2004; 46
Giedd (10.1016/j.neuroimage.2007.12.053_bib15) 1999; 2
Le Bihan (10.1016/j.neuroimage.2007.12.053_bib23) 2003; 4
Snook (10.1016/j.neuroimage.2007.12.053_bib39) 2005; 26
Wakana (10.1016/j.neuroimage.2007.12.053_bib45) 2004; 230
Basser (10.1016/j.neuroimage.2007.12.053_bib3) 2000; 44
Good (10.1016/j.neuroimage.2007.12.053_bib18) 2001; 14
Dubois (10.1016/j.neuroimage.2007.12.053_bib13) 2006; 30
Schneiderman (10.1016/j.neuroimage.2007.12.053_bib38) 2007; 55
Gong (10.1016/j.neuroimage.2007.12.053_bib17) 2005; 16
Dubois (10.1016/j.neuroimage.2007.12.053_bib12) 2008; 29
Kail (10.1016/j.neuroimage.2007.12.053_bib21) 1993; 56
Sowell (10.1016/j.neuroimage.2007.12.053_bib42) 2003; 6
Ashtari (10.1016/j.neuroimage.2007.12.053_bib1) 2007; 35
Kretschmann (10.1016/j.neuroimage.2007.12.053_bib22) 1988; 160
Lenroot (10.1016/j.neuroimage.2007.12.053_bib24) 2007; 36
Yakovlev (10.1016/j.neuroimage.2007.12.053_bib47) 1967
McKinstry (10.1016/j.neuroimage.2007.12.053_bib27) 2002; 12
Eluvathingal (10.1016/j.neuroimage.2007.12.053_bib14) 2007; 17
Beaulieu (10.1016/j.neuroimage.2007.12.053_bib5) 2002; 15
Schmithorst (10.1016/j.neuroimage.2007.12.053_bib36) 2002; 222
McLaughlin (10.1016/j.neuroimage.2007.12.053_bib28) 2007; 25
Mukherjee (10.1016/j.neuroimage.2007.12.053_bib31) 2001; 221
Sowell (10.1016/j.neuroimage.2007.12.053_bib41) 2004; 10
Benes (10.1016/j.neuroimage.2007.12.053_bib7) 1989; 15
Conturo (10.1016/j.neuroimage.2007.12.053_bib10) 1999; 96
Giorgio (10.1016/j.neuroimage.2007.12.053_bib16) 2008; 39
Jones (10.1016/j.neuroimage.2007.12.053_bib20) 1999; 42
Mori (10.1016/j.neuroimage.2007.12.053_bib29) 1999; 45
Toga (10.1016/j.neuroimage.2007.12.053_bib44) 2006; 29
Barnea-Goraly (10.1016/j.neuroimage.2007.12.053_bib2) 2005; 15
References_xml – volume: 29
  start-page: 148
  year: 2006
  end-page: 159
  ident: bib44
  article-title: Mapping brain maturation
  publication-title: Trends Neurosci.
– volume: 17
  start-page: 2760
  year: 2007
  end-page: 2768
  ident: bib14
  article-title: Quantitative diffusion tensor tractography of association and projection fibers in normally developing children and adolescents
  publication-title: Cereb. Cortex.
– volume: 10
  start-page: 372
  year: 2004
  end-page: 392
  ident: bib41
  article-title: Mapping changes in the human cortex throughout the span of life
  publication-title: Neuroscientist
– reference: Schmithorst, V.J., Holland, S.K., Dardzinski, B.J., in press. Developmental differences in white matter architecture between boys and girls. Hum. Brain Mapp.
– volume: 4
  start-page: 469
  year: 2003
  end-page: 480
  ident: bib23
  article-title: Looking into the functional architecture of the brain with diffusion MRI
  publication-title: Nat. Rev., Neurosci.
– volume: 28
  start-page: 228
  year: 2007
  end-page: 237
  ident: bib46
  article-title: Brain maturation in adolescence: concurrent changes in neuroanatomy and neurophysiology
  publication-title: Hum. Brain Mapp.
– volume: 404
  start-page: 190
  year: 2000
  end-page: 193
  ident: bib43
  article-title: Growth patterns in the developing brain detected by using continuum mechanical tensor maps
  publication-title: Nature
– volume: 30
  start-page: 1121
  year: 2006
  end-page: 1132
  ident: bib13
  article-title: Assessment of the early organization and maturation of infants' cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography
  publication-title: Neuroimage
– volume: 26
  start-page: 1164
  year: 2005
  end-page: 1173
  ident: bib39
  article-title: Diffusion tensor imaging of neurodevelopment in children and young adults
  publication-title: Neuroimage
– volume: 21
  start-page: 503
  year: 2005
  end-page: 511
  ident: bib6
  article-title: Normal white matter development from infancy to adulthood: comparing diffusion tensor and high b value diffusion weighted MR images
  publication-title: J. Magn. Reson. Imaging
– volume: 29
  start-page: 14
  year: 2008
  end-page: 27
  ident: bib12
  article-title: Asynchrony of the early maturation of white matter bundles in healthy infants: Quantitative landmarks revealed noninvasively by diffusion tensor imaging
  publication-title: Hum. Brain Mapp.
– volume: 2
  start-page: 861
  year: 1999
  end-page: 863
  ident: bib15
  article-title: Brain development during childhood and adolescence: a longitudinal MRI study
  publication-title: Nat. Neurosci.
– volume: 96
  start-page: 10422
  year: 1999
  end-page: 10427
  ident: bib10
  article-title: Tracking neuronal fiber pathways in the living human brain
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 26
  start-page: 132
  year: 2005
  end-page: 140
  ident: bib40
  article-title: Demyelination increases radial diffusivity in corpus callosum of mouse brain
  publication-title: Neuroimage
– start-page: 3
  year: 1967
  end-page: 70
  ident: bib47
  article-title: The myelogenetic cycles of regional maturation of the brain
  publication-title: Regional Development of the Brain Early in Life
– volume: 42
  start-page: 37
  year: 1999
  end-page: 41
  ident: bib20
  article-title: Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI
  publication-title: Magn. Reson. Med.
– volume: 56
  start-page: 254
  year: 1993
  end-page: 265
  ident: bib21
  article-title: Processing time decreases globally at an exponential rate during childhood and adolescence
  publication-title: J. Exp. Child Psychol.
– volume: 160
  start-page: 219
  year: 1988
  end-page: 225
  ident: bib22
  article-title: Localisation of the corticospinal fibres in the internal capsule in man
  publication-title: J. Anat.
– volume: 55
  start-page: 96
  year: 2007
  end-page: 111
  ident: bib38
  article-title: Diffusion tensor anisotropy in adolescents and adults
  publication-title: Neuropsychobiology
– volume: 75
  start-page: 1357
  year: 2004
  end-page: 1372
  ident: bib26
  article-title: Maturation of cognitive processes from late childhood to adulthood
  publication-title: Child Dev.
– volume: 15
  start-page: 1848
  year: 2005
  end-page: 1854
  ident: bib2
  article-title: White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study
  publication-title: Cereb. Cortex
– volume: 16
  start-page: 1701
  year: 2005
  end-page: 1705
  ident: bib17
  article-title: Side and handedness effects on the cingulum from diffusion tensor imaging
  publication-title: Neuroreport
– volume: 25
  start-page: 215
  year: 2007
  end-page: 221
  ident: bib28
  article-title: Diffusion tensor imaging of the corpus callosum: a cross-sectional study across the lifespan
  publication-title: Int. J. Dev. Neurosci.
– volume: 126
  start-page: 2093
  year: 2003
  end-page: 2107
  ident: bib9
  article-title: Occipito-temporal connections in the human brain
  publication-title: Brain
– volume: 29
  start-page: 493
  year: 2006
  end-page: 504
  ident: bib19
  article-title: Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood
  publication-title: Neuroimage
– volume: 45
  start-page: 265
  year: 1999
  end-page: 269
  ident: bib29
  article-title: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging
  publication-title: Ann. Neurol.
– volume: 46
  start-page: 258
  year: 2004
  end-page: 266
  ident: bib37
  article-title: Fast quantitative diffusion-tensor imaging of cerebral white matter from the neonatal period to adolescence
  publication-title: Neuroradiology
– volume: 22
  start-page: 467
  year: 2005
  end-page: 474
  ident: bib32
  article-title: Tractography-based quantitation of diffusion tensor imaging parameters in white matter tracts of preterm newborns
  publication-title: J. Magn. Reson. Imaging
– volume: 39
  start-page: 52
  year: 2008
  end-page: 61
  ident: bib16
  article-title: Changes in white matter microstructure during adolescence
  publication-title: Neuroimage
– volume: 14
  start-page: 945
  year: 2004
  end-page: 951
  ident: bib8
  article-title: White matter asymmetry in the human brain: a diffusion tensor MRI study
  publication-title: Cereb. Cortex
– volume: 283
  start-page: 1908
  year: 1999
  end-page: 1911
  ident: bib33
  article-title: Structural maturation of neural pathways in children and adolescents: in vivo study
  publication-title: Science
– reference: .
– volume: 36
  start-page: 1065
  year: 2007
  end-page: 1073
  ident: bib24
  article-title: Sexual dimorphism of brain developmental trajectories during childhood and adolescence
  publication-title: Neuroimage
– volume: 189
  start-page: 476
  year: 2007
  end-page: 486
  ident: bib34
  article-title: Diffusion tensor imaging assessment of brain white matter maturation during the first postnatal year
  publication-title: AJR. Am. J. Roentgenol.
– volume: 222
  start-page: 212
  year: 2002
  end-page: 218
  ident: bib36
  article-title: Correlation of white matter diffusivity and anisotropy with age during childhood and adolescence: a cross-sectional diffusion-tensor MR imaging study
  publication-title: Radiology
– volume: 66
  start-page: 259
  year: 1994
  end-page: 267
  ident: bib4
  article-title: MR diffusion tensor spectroscopy and imaging
  publication-title: Biophys. J.
– volume: 44
  start-page: 625
  year: 2000
  end-page: 632
  ident: bib3
  article-title: In vivo fiber tractography using DT-MRI data
  publication-title: Magn. Reson. Med.
– volume: 35
  start-page: 501
  year: 2007
  end-page: 510
  ident: bib1
  article-title: White matter development during late adolescence in healthy males: a cross-sectional diffusion tensor imaging study
  publication-title: Neuroimage
– volume: 27
  start-page: 579
  year: 2005
  end-page: 586
  ident: bib11
  article-title: Comparing microstructural and macrostructural development of the cerebral cortex in premature newborns: diffusion tensor imaging versus cortical gyration
  publication-title: Neuroimage
– volume: 6
  start-page: 309
  year: 2003
  end-page: 315
  ident: bib42
  article-title: Mapping cortical change across the human life span
  publication-title: Nat. Neurosci.
– volume: 15
  start-page: 585
  year: 1989
  end-page: 593
  ident: bib7
  article-title: Myelination of cortical-hippocampal relays during late adolescence
  publication-title: Schizophr. Bull
– volume: 31
  start-page: 993
  year: 2006
  end-page: 1003
  ident: bib25
  article-title: Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI
  publication-title: Neuroimage
– volume: 12
  start-page: 1237
  year: 2002
  end-page: 1243
  ident: bib27
  article-title: Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI
  publication-title: Cereb. Cortex
– volume: 14
  start-page: 21
  year: 2001
  end-page: 36
  ident: bib18
  article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains
  publication-title: Neuroimage
– volume: 41
  start-page: 929
  year: 1999
  end-page: 934
  ident: bib30
  article-title: Changes in brain water diffusion during childhood
  publication-title: Neuroradiology
– volume: 15
  start-page: 435
  year: 2002
  end-page: 455
  ident: bib5
  article-title: The basis of anisotropic water diffusion in the nervous system—a technical review
  publication-title: NMR Biomed.
– volume: 230
  start-page: 77
  year: 2004
  end-page: 87
  ident: bib45
  article-title: Fiber tract-based atlas of human white matter anatomy
  publication-title: Radiology
– volume: 221
  start-page: 349
  year: 2001
  end-page: 358
  ident: bib31
  article-title: Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging
  publication-title: Radiology
– volume: 25
  start-page: 215
  year: 2007
  ident: 10.1016/j.neuroimage.2007.12.053_bib28
  article-title: Diffusion tensor imaging of the corpus callosum: a cross-sectional study across the lifespan
  publication-title: Int. J. Dev. Neurosci.
  doi: 10.1016/j.ijdevneu.2007.03.008
– volume: 16
  start-page: 1701
  year: 2005
  ident: 10.1016/j.neuroimage.2007.12.053_bib17
  article-title: Side and handedness effects on the cingulum from diffusion tensor imaging
  publication-title: Neuroreport
  doi: 10.1097/01.wnr.0000183327.98370.6a
– volume: 26
  start-page: 132
  year: 2005
  ident: 10.1016/j.neuroimage.2007.12.053_bib40
  article-title: Demyelination increases radial diffusivity in corpus callosum of mouse brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.01.028
– volume: 26
  start-page: 1164
  year: 2005
  ident: 10.1016/j.neuroimage.2007.12.053_bib39
  article-title: Diffusion tensor imaging of neurodevelopment in children and young adults
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.03.016
– volume: 404
  start-page: 190
  year: 2000
  ident: 10.1016/j.neuroimage.2007.12.053_bib43
  article-title: Growth patterns in the developing brain detected by using continuum mechanical tensor maps
  publication-title: Nature
  doi: 10.1038/35004593
– volume: 15
  start-page: 1848
  year: 2005
  ident: 10.1016/j.neuroimage.2007.12.053_bib2
  article-title: White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhi062
– volume: 283
  start-page: 1908
  year: 1999
  ident: 10.1016/j.neuroimage.2007.12.053_bib33
  article-title: Structural maturation of neural pathways in children and adolescents: in vivo study
  publication-title: Science
  doi: 10.1126/science.283.5409.1908
– volume: 22
  start-page: 467
  year: 2005
  ident: 10.1016/j.neuroimage.2007.12.053_bib32
  article-title: Tractography-based quantitation of diffusion tensor imaging parameters in white matter tracts of preterm newborns
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.20410
– volume: 14
  start-page: 21
  year: 2001
  ident: 10.1016/j.neuroimage.2007.12.053_bib18
  article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0786
– volume: 31
  start-page: 993
  year: 2006
  ident: 10.1016/j.neuroimage.2007.12.053_bib25
  article-title: Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.042
– volume: 21
  start-page: 503
  year: 2005
  ident: 10.1016/j.neuroimage.2007.12.053_bib6
  article-title: Normal white matter development from infancy to adulthood: comparing diffusion tensor and high b value diffusion weighted MR images
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.20281
– volume: 66
  start-page: 259
  year: 1994
  ident: 10.1016/j.neuroimage.2007.12.053_bib4
  article-title: MR diffusion tensor spectroscopy and imaging
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(94)80775-1
– volume: 29
  start-page: 14
  year: 2008
  ident: 10.1016/j.neuroimage.2007.12.053_bib12
  article-title: Asynchrony of the early maturation of white matter bundles in healthy infants: Quantitative landmarks revealed noninvasively by diffusion tensor imaging
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20363
– volume: 15
  start-page: 585
  year: 1989
  ident: 10.1016/j.neuroimage.2007.12.053_bib7
  article-title: Myelination of cortical-hippocampal relays during late adolescence
  publication-title: Schizophr. Bull
  doi: 10.1093/schbul/15.4.585
– volume: 45
  start-page: 265
  year: 1999
  ident: 10.1016/j.neuroimage.2007.12.053_bib29
  article-title: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging
  publication-title: Ann. Neurol.
  doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
– volume: 36
  start-page: 1065
  year: 2007
  ident: 10.1016/j.neuroimage.2007.12.053_bib24
  article-title: Sexual dimorphism of brain developmental trajectories during childhood and adolescence
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.03.053
– volume: 221
  start-page: 349
  year: 2001
  ident: 10.1016/j.neuroimage.2007.12.053_bib31
  article-title: Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging
  publication-title: Radiology
  doi: 10.1148/radiol.2212001702
– volume: 14
  start-page: 945
  year: 2004
  ident: 10.1016/j.neuroimage.2007.12.053_bib8
  article-title: White matter asymmetry in the human brain: a diffusion tensor MRI study
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhh055
– volume: 41
  start-page: 929
  year: 1999
  ident: 10.1016/j.neuroimage.2007.12.053_bib30
  article-title: Changes in brain water diffusion during childhood
  publication-title: Neuroradiology
  doi: 10.1007/s002340050869
– volume: 230
  start-page: 77
  year: 2004
  ident: 10.1016/j.neuroimage.2007.12.053_bib45
  article-title: Fiber tract-based atlas of human white matter anatomy
  publication-title: Radiology
  doi: 10.1148/radiol.2301021640
– volume: 126
  start-page: 2093
  year: 2003
  ident: 10.1016/j.neuroimage.2007.12.053_bib9
  article-title: Occipito-temporal connections in the human brain
  publication-title: Brain
  doi: 10.1093/brain/awg203
– volume: 10
  start-page: 372
  year: 2004
  ident: 10.1016/j.neuroimage.2007.12.053_bib41
  article-title: Mapping changes in the human cortex throughout the span of life
  publication-title: Neuroscientist
  doi: 10.1177/1073858404263960
– volume: 27
  start-page: 579
  year: 2005
  ident: 10.1016/j.neuroimage.2007.12.053_bib11
  article-title: Comparing microstructural and macrostructural development of the cerebral cortex in premature newborns: diffusion tensor imaging versus cortical gyration
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.04.027
– volume: 2
  start-page: 861
  year: 1999
  ident: 10.1016/j.neuroimage.2007.12.053_bib15
  article-title: Brain development during childhood and adolescence: a longitudinal MRI study
  publication-title: Nat. Neurosci.
  doi: 10.1038/13158
– volume: 42
  start-page: 37
  year: 1999
  ident: 10.1016/j.neuroimage.2007.12.053_bib20
  article-title: Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199907)42:1<37::AID-MRM7>3.0.CO;2-O
– volume: 189
  start-page: 476
  year: 2007
  ident: 10.1016/j.neuroimage.2007.12.053_bib34
  article-title: Diffusion tensor imaging assessment of brain white matter maturation during the first postnatal year
  publication-title: AJR. Am. J. Roentgenol.
  doi: 10.2214/AJR.07.2132
– volume: 160
  start-page: 219
  year: 1988
  ident: 10.1016/j.neuroimage.2007.12.053_bib22
  article-title: Localisation of the corticospinal fibres in the internal capsule in man
  publication-title: J. Anat.
– volume: 222
  start-page: 212
  year: 2002
  ident: 10.1016/j.neuroimage.2007.12.053_bib36
  article-title: Correlation of white matter diffusivity and anisotropy with age during childhood and adolescence: a cross-sectional diffusion-tensor MR imaging study
  publication-title: Radiology
  doi: 10.1148/radiol.2221010626
– volume: 56
  start-page: 254
  year: 1993
  ident: 10.1016/j.neuroimage.2007.12.053_bib21
  article-title: Processing time decreases globally at an exponential rate during childhood and adolescence
  publication-title: J. Exp. Child Psychol.
  doi: 10.1006/jecp.1993.1034
– volume: 6
  start-page: 309
  year: 2003
  ident: 10.1016/j.neuroimage.2007.12.053_bib42
  article-title: Mapping cortical change across the human life span
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1008
– volume: 28
  start-page: 228
  year: 2007
  ident: 10.1016/j.neuroimage.2007.12.053_bib46
  article-title: Brain maturation in adolescence: concurrent changes in neuroanatomy and neurophysiology
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20273
– volume: 29
  start-page: 493
  year: 2006
  ident: 10.1016/j.neuroimage.2007.12.053_bib19
  article-title: Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.08.017
– ident: 10.1016/j.neuroimage.2007.12.053_bib35
  doi: 10.1002/hbm.20431
– volume: 4
  start-page: 469
  year: 2003
  ident: 10.1016/j.neuroimage.2007.12.053_bib23
  article-title: Looking into the functional architecture of the brain with diffusion MRI
  publication-title: Nat. Rev., Neurosci.
  doi: 10.1038/nrn1119
– volume: 96
  start-page: 10422
  year: 1999
  ident: 10.1016/j.neuroimage.2007.12.053_bib10
  article-title: Tracking neuronal fiber pathways in the living human brain
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.96.18.10422
– volume: 39
  start-page: 52
  year: 2008
  ident: 10.1016/j.neuroimage.2007.12.053_bib16
  article-title: Changes in white matter microstructure during adolescence
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.07.043
– volume: 30
  start-page: 1121
  year: 2006
  ident: 10.1016/j.neuroimage.2007.12.053_bib13
  article-title: Assessment of the early organization and maturation of infants' cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.11.022
– volume: 12
  start-page: 1237
  year: 2002
  ident: 10.1016/j.neuroimage.2007.12.053_bib27
  article-title: Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/12.12.1237
– volume: 29
  start-page: 148
  year: 2006
  ident: 10.1016/j.neuroimage.2007.12.053_bib44
  article-title: Mapping brain maturation
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2006.01.007
– volume: 46
  start-page: 258
  year: 2004
  ident: 10.1016/j.neuroimage.2007.12.053_bib37
  article-title: Fast quantitative diffusion-tensor imaging of cerebral white matter from the neonatal period to adolescence
  publication-title: Neuroradiology
  doi: 10.1007/s00234-003-1154-2
– start-page: 3
  year: 1967
  ident: 10.1016/j.neuroimage.2007.12.053_bib47
  article-title: The myelogenetic cycles of regional maturation of the brain
– volume: 17
  start-page: 2760
  year: 2007
  ident: 10.1016/j.neuroimage.2007.12.053_bib14
  article-title: Quantitative diffusion tensor tractography of association and projection fibers in normally developing children and adolescents
  publication-title: Cereb. Cortex.
  doi: 10.1093/cercor/bhm003
– volume: 35
  start-page: 501
  year: 2007
  ident: 10.1016/j.neuroimage.2007.12.053_bib1
  article-title: White matter development during late adolescence in healthy males: a cross-sectional diffusion tensor imaging study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.10.047
– volume: 55
  start-page: 96
  year: 2007
  ident: 10.1016/j.neuroimage.2007.12.053_bib38
  article-title: Diffusion tensor anisotropy in adolescents and adults
  publication-title: Neuropsychobiology
  doi: 10.1159/000104277
– volume: 44
  start-page: 625
  year: 2000
  ident: 10.1016/j.neuroimage.2007.12.053_bib3
  article-title: In vivo fiber tractography using DT-MRI data
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
– volume: 75
  start-page: 1357
  year: 2004
  ident: 10.1016/j.neuroimage.2007.12.053_bib26
  article-title: Maturation of cognitive processes from late childhood to adulthood
  publication-title: Child Dev.
  doi: 10.1111/j.1467-8624.2004.00745.x
– volume: 15
  start-page: 435
  year: 2002
  ident: 10.1016/j.neuroimage.2007.12.053_bib5
  article-title: The basis of anisotropic water diffusion in the nervous system—a technical review
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.782
SSID ssj0009148
Score 2.5219657
Snippet Brain maturation is a complex process that continues well beyond infancy, and adolescence is thought to be a key period of brain rewiring. To assess structural...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1044
SubjectTerms Adolescent
Adult
Age
Aging - physiology
Attention deficit hyperactivity disorder
Brain - growth & development
Brain - ultrastructure
Brain damage
Brain research
Child
Child development
Child, Preschool
Cognitive ability
Diffusion Magnetic Resonance Imaging
Female
Humans
Image Processing, Computer-Assisted
Male
Methods
Nerve Fibers - physiology
Neural Pathways - growth & development
Neural Pathways - ultrastructure
Studies
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7iQbyIb-szB69rzXsXTyKKCvWigreQzSZQ0bZgvfrbndlkWzwUCh43m4EwmZl8u5n5hpBzbgLTpoEdYD4WEmyocCWPRS1ddL6JotRYOzx40vev8vFNva2Qm64WBtMqc-xPMb2N1nmkn7XZnwyH_WdABnDcwIFmkNfMYBEfsn-BTV_8zNM8KiZTOZwSBc7O2Twpx6vljBx-gucmMkP8MajEoiNqEQRtj6K7TbKRMSS9TsvcIithtE3WBvmWfIc8DDDLLjHDIqsG_UT2znYL6DhSgHy0bc1Ha-wPQbHChPqO4phOx7Ql5cCHXfJ6d_tyc1_klgmFB1wwLWoDnxRVBE9zl4Frp4NXRpbOqyaGpqmboIRxTMfIa6bBe7njgTkfeWykj07skdXReBQOCFXBqQjThVFOOhErbRyEtxJGmdOq6hHTacn6zCeObS0-bJc49m7n-sV2l8YybkG_PcJmkpPEqbGETNVthO1qRiHKWQj8S8hezWT_2NaS0sfdvtvs318WeRkBWzEhe-Rs9ho8E69b3CiMv78sR-55AIyLZ5hLKSQA8h7ZT_Y0V0fJK_h2rA7_tfQjsp7SW2TB1DFZBbsLJ4ChpvVp6yS_zcgdFQ
  priority: 102
  providerName: Elsevier
Title Microstructural maturation of the human brain from childhood to adulthood
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811907011779
https://dx.doi.org/10.1016/j.neuroimage.2007.12.053
https://www.ncbi.nlm.nih.gov/pubmed/18295509
https://www.proquest.com/docview/1506782134
https://www.proquest.com/docview/21038615
https://www.proquest.com/docview/70434507
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250803
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250803
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZoKyEuqLwDJfjA1VC_d8WhKlWrFEhUVVTKzfJ6bQlEs0UJ1_72zqy9ySkoJ2t3PVppPDP-bI-_IeSjsJEb28II8JCYAhtivhKJNconH9okK4N3h6czM7lR3-Z6XjbcliWtcoiJfaBuu4B75J-RCQ9mMy7Vyd1fhlWj8HS1lNDYIwccoApatZ3bDekuV_kqnJasgg4lkyfnd_V8kb9uwWszkSFuCmq5bXraBj_7aejikDwt-JGe5gF_Rh7FxXPyeFpOyF-Qyylm2GVWWGTUoLfI3Nmrn3aJAtyjfVk-2mBtCIq3S2gY6I3pqqM9IQc-vCQ3F-c_zyaslEtgATDBijUWlhN1Ai_zx1EYb2LQVlU-6DbFtm3aqKX13KQkGm7Ac4UXkfuQRGpVSF6-IvuLbhHfEKqj1wm6S6u98jLVxnoIbRW85d7oekTsoCUXCpc4lrT444aksd9uo18sdWkdFw70OyJ8LXmX-TR2kKmHgXDDfVGIcA6C_g6yX9ayBVNkrLCj9NEw7q749tJtLHFEPqw_g1fiUYtfxO7f0gnknQewuL2HPVZSARgfkdfZnjbqqEQN68b67f9__o48ybkrinF9RPbBsOJ7AEirZkz2Pt3zce8LY3Jwenb94wrby--TGbRfz2dX1w96KBdi
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIgEXxJtAoT7A0SJ-7wohhIAqoU1PrZSb8XptCUSzrZIK8af4jYzX6-QUlEuP-5hdaWZ25lt75huAN9wEpk2LFmA-Uok-RF3FI22ki863UVQ69Q7PTvXkXH6bq_ke_C29MKmsssTEPlC3nU9r5O8SEx5mMybkx8srmqZGpd3VMkIju8Vx-PMbf9mWH6Zf0L5vOT_6evZ5QoepAtRj6lzRxiDqriM6oxsHrp0OXhlZOa_aGNq2aYMSxjEdI2-YRgfnjgfmfOSxlT46gc-9BbelGMvE1W_mZkPyy2RuvVOCVozVQ-VQrifr-Sl_XGCUyMSJaRFSiW3pcBvc7dPe0QO4P-BV8ik72EPYC4tHcGc27Mg_huksVfRlFtrE4EEuElNob27SRYLwkvRjAEmTZlGQ1M1CfKFTJquO9AQg6eAJnN-IIp_C_qJbhOdAVHAq4u3CKCediLU2DkNphWeZ06oegSlasn7gLk8jNH7ZUqT20270m0ZrGsu4Rf2OgK0lLzN_xw4ydTGELf2pGFEtJpkdZN-vZQcMk7HJjtIHxe52iCVLu_H8ERyuL2MUSFs7bhG666Xliecewen2O8xYCongfwTPsj9t1FHxGv9T6xf_f_kh3J2czU7syfT0-CXcy3UzkjJ1APvoZOEVgrNV87r_Igh8v-lP8B-NvFC7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIlVcEG9SCvUBjlbr964QQogSNZRUHKiUm_F6bamIZlslCPHX-HWM1-vkFJRLj_uYXWnetme-AXjNTWDatCgB5iOVqEPUVTzSRrrofBtFpVPv8PRcn17IzzM124G_pRcmlVUWn9g76rbzaY_8KCHhYTRjQh7FoSzi68n4_fUNTROk0klrGaeRVeQs_PmNy7fFu8kJyvoN5-NP3z6e0mHCAPUYRpe0MZiB1xEV0x0Hrp0OXhlZOa_aGNq2aYMSxjEdI2-YRmXnjgfmfOSxlT46gd-9A3eNkCKVk5mZWQP-Mpnb8JSgFWP1UEWUa8t6rMrLK_QYGUQxbUgqsSk0bkp9-xA4fgD3h9yVfMjK9hB2wvwR7E2H0_nHMJmm6r6MSJvQPMhVQg3tRU-6SDDVJP1IQNKkuRQkdbYQX6CVybIjPRhIungCF7fCyKewO-_m4TkQFZyK-LowykknYq2NQ7da4V3mtKpHYAqXrB9wzNM4jZ-2FKz9sGv-pjGbxjJukb8jYCvK64zlsQVNXQRhS68qeleLAWcL2rcr2iGfyXnKltQHRe528CsLu7aCERyuHqNHSMc8bh66XwvLE-Y9Jqqb3zDHUkhcCIzgWdanNTsqXuOatd7__88PYQ-Nz36ZnJ-9gHu5hEZSpg5gF3UsvMQ8bdm86g2CwPfbtsB_D-5U9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructural+maturation+of+the+human+brain+from+childhood+to+adulthood&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Lebel%2C+C&rft.au=Walker%2C+L&rft.au=Leemans%2C+A&rft.au=Phillips%2C+L&rft.date=2008-04-15&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=40&rft.issue=3&rft.spage=1044&rft.epage=1055&rft_id=info:doi/10.1016%2Fj.neuroimage.2007.12.053&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon