Microstructural maturation of the human brain from childhood to adulthood
Brain maturation is a complex process that continues well beyond infancy, and adolescence is thought to be a key period of brain rewiring. To assess structural brain maturation from childhood to adulthood, we charted brain development in subjects aged 5 to 30 years using diffusion tensor magnetic re...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 40; no. 3; pp. 1044 - 1055 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.04.2008
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 |
DOI | 10.1016/j.neuroimage.2007.12.053 |
Cover
Abstract | Brain maturation is a complex process that continues well beyond infancy, and adolescence is thought to be a key period of brain rewiring. To assess structural brain maturation from childhood to adulthood, we charted brain development in subjects aged 5 to 30 years using diffusion tensor magnetic resonance imaging, a novel brain imaging technique that is sensitive to axonal packing and myelination and is particularly adept at virtually extracting white matter connections. Age-related changes were seen in major white matter tracts, deep gray matter, and subcortical white matter, in our large (n=202), age-distributed sample. These diffusion changes followed an exponential pattern of maturation with considerable regional variation. Differences observed in developmental timing suggest a pattern of maturation in which areas with fronto-temporal connections develop more slowly than other regions. These in vivo results expand upon previous postmortem and imaging studies and provide quantitative measures indicative of the progression and magnitude of regional human brain maturation. |
---|---|
AbstractList | Brain maturation is a complex process that continues well beyond infancy, and adolescence is thought to be a key period of brain rewiring. To assess structural brain maturation from childhood to adulthood, we charted brain development in subjects aged 5 to 30 years using diffusion tensor magnetic resonance imaging, a novel brain imaging technique that is sensitive to axonal packing and myelination and is particularly adept at virtually extracting white matter connections. Age-related changes were seen in major white matter tracts, deep gray matter, and subcortical white matter, in our large (n=202), age-distributed sample. These diffusion changes followed an exponential pattern of maturation with considerable regional variation. Differences observed in developmental timing suggest a pattern of maturation in which areas with fronto-temporal connections develop more slowly than other regions. These in vivo results expand upon previous postmortem and imaging studies and provide quantitative measures indicative of the progression and magnitude of regional human brain maturation. Brain maturation is a complex process that continues well beyond infancy, and adolescence is thought to be a key period of brain rewiring. To assess structural brain maturation from childhood to adulthood, we charted brain development in subjects aged 5 to 30 years using diffusion tensor magnetic resonance imaging, a novel brain imaging technique that is sensitive to axonal packing and myelination and is particularly adept at virtually extracting white matter connections. Age-related changes were seen in major white matter tracts, deep gray matter, and subcortical white matter, in our large (n=202), age-distributed sample. These diffusion changes followed an exponential pattern of maturation with considerable regional variation. Differences observed in developmental timing suggest a pattern of maturation in which areas with fronto-temporal connections develop more slowly than other regions. Thesein vivoresults expand upon previous postmortem and imaging studies and provide quantitative measures indicative of the progression and magnitude of regional human brain maturation. Brain maturation is a complex process that continues well beyond infancy, and adolescence is thought to be a key period of brain rewiring. To assess structural brain maturation from childhood to adulthood, we charted brain development in subjects aged 5 to 30 years using diffusion tensor magnetic resonance imaging, a novel brain imaging technique that is sensitive to axonal packing and myelination and is particularly adept at virtually extracting white matter connections. Age-related changes were seen in major white matter tracts, deep gray matter, and subcortical white matter, in our large (n=202), age-distributed sample. These diffusion changes followed an exponential pattern of maturation with considerable regional variation. Differences observed in developmental timing suggest a pattern of maturation in which areas with fronto-temporal connections develop more slowly than other regions. These in vivo results expand upon previous postmortem and imaging studies and provide quantitative measures indicative of the progression and magnitude of regional human brain maturation. Brain maturation is a complex process that continues well beyond infancy, and adolescence is thought to be a key period of brain rewiring. To assess structural brain maturation from childhood to adulthood, we charted brain development in subjects aged 5 to 30 years using diffusion tensor magnetic resonance imaging, a novel brain imaging technique that is sensitive to axonal packing and myelination and is particularly adept at virtually extracting white matter connections. Age-related changes were seen in major white matter tracts, deep gray matter, and subcortical white matter, in our large (n=202), age-distributed sample. These diffusion changes followed an exponential pattern of maturation with considerable regional variation. Differences observed in developmental timing suggest a pattern of maturation in which areas with fronto-temporal connections develop more slowly than other regions. These in vivo results expand upon previous postmortem and imaging studies and provide quantitative measures indicative of the progression and magnitude of regional human brain maturation.Brain maturation is a complex process that continues well beyond infancy, and adolescence is thought to be a key period of brain rewiring. To assess structural brain maturation from childhood to adulthood, we charted brain development in subjects aged 5 to 30 years using diffusion tensor magnetic resonance imaging, a novel brain imaging technique that is sensitive to axonal packing and myelination and is particularly adept at virtually extracting white matter connections. Age-related changes were seen in major white matter tracts, deep gray matter, and subcortical white matter, in our large (n=202), age-distributed sample. These diffusion changes followed an exponential pattern of maturation with considerable regional variation. Differences observed in developmental timing suggest a pattern of maturation in which areas with fronto-temporal connections develop more slowly than other regions. These in vivo results expand upon previous postmortem and imaging studies and provide quantitative measures indicative of the progression and magnitude of regional human brain maturation. |
Author | Lebel, C. Walker, L. Phillips, L. Beaulieu, C. Leemans, A. |
Author_xml | – sequence: 1 givenname: C. surname: Lebel fullname: Lebel, C. organization: Department of Biomedical Engineering, Faculty of Medicine and Dentistry, Room 1098 Research Transition Facility, University of Alberta, Edmonton, Alberta, Canada T6G 2V2 – sequence: 2 givenname: L. surname: Walker fullname: Walker, L. organization: Department of Biomedical Engineering, Faculty of Medicine and Dentistry, Room 1098 Research Transition Facility, University of Alberta, Edmonton, Alberta, Canada T6G 2V2 – sequence: 3 givenname: A. surname: Leemans fullname: Leemans, A. organization: School of Psychology (CUBRIC), Cardiff University, Cardiff, UK – sequence: 4 givenname: L. surname: Phillips fullname: Phillips, L. organization: Canadian Centre for Research on Literacy, University of Alberta, Edmonton, Alberta, Canada – sequence: 5 givenname: C. surname: Beaulieu fullname: Beaulieu, C. email: christian.beaulieu@ualberta.ca organization: Department of Biomedical Engineering, Faculty of Medicine and Dentistry, Room 1098 Research Transition Facility, University of Alberta, Edmonton, Alberta, Canada T6G 2V2 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18295509$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU2L1TAUhoOMOB_6FyQguGs9J236sRF18GNgxI2uQ5qceHNtkzFNhfn3tt5R4W5mVieB5zwh73vOTkIMxBhHKBGwebUvAy0p-kl_p1IAtCWKEmT1iJ0h9LLoZStOtrOsig6xP2Xn87wHgB7r7gk7xU70UkJ_xq4-e5PinNNi8pL0yCe9zexj4NHxvCO-WyYd-JC0D9ylOHGz86PdxWh5jlzbZczb5Sl77PQ407O7ecG-fXj_9fJTcf3l49Xl2-vCSFnnYmhFBb0DiRpINLohI9u600ZaR9YOlmTVamycEwM2UHdCC0JtnHC2Nk5XF-zlwXuT4s-F5qwmPxsaRx0oLrNqoa5qCe29oECougblCr44AvdxSWH9hEIJTdsJrOqVen5HLcNEVt2kNf50q_5muQKvD8AW6JzIKePznyTzmt2oENRWntqr_-WprTyFQq1NrYLuSPDvjftX3x1WaU3-l6ekZuMpGLI-kcnKRv8QyZsjiRl98EaPP-j2YYrfqN7RTg |
CitedBy_id | crossref_primary_10_1016_j_nicl_2014_05_012 crossref_primary_10_1002_pne2_12072 crossref_primary_10_1089_brain_2017_0493 crossref_primary_10_1016_j_biopsych_2020_02_007 crossref_primary_10_1016_j_neubiorev_2016_07_024 crossref_primary_10_3389_fnhum_2021_616132 crossref_primary_10_1016_j_neubiorev_2014_11_006 crossref_primary_10_1038_s41390_019_0689_9 crossref_primary_10_1016_j_dcn_2024_101341 crossref_primary_10_1002_nbm_1506 crossref_primary_10_3389_fneur_2018_00704 crossref_primary_10_1186_s13229_015_0001_8 crossref_primary_10_3389_fnhum_2021_662031 crossref_primary_10_1016_j_jaac_2015_07_007 crossref_primary_10_1016_j_neuroimage_2016_08_033 crossref_primary_10_1017_S003329171200116X crossref_primary_10_1016_j_ijdevneu_2010_11_005 crossref_primary_10_1002_hbm_23243 crossref_primary_10_1523_JNEUROSCI_4682_09_2010 crossref_primary_10_1016_j_dcn_2023_101293 crossref_primary_10_1016_j_neuroimage_2017_12_097 crossref_primary_10_1111_j_1460_9568_2008_06483_x crossref_primary_10_1016_j_dcn_2024_101351 crossref_primary_10_3389_fnins_2017_00372 crossref_primary_10_1016_j_brainresbull_2014_05_006 crossref_primary_10_1016_j_lindif_2011_09_003 crossref_primary_10_1007_s00429_014_0763_3 crossref_primary_10_1016_j_neuroimage_2011_06_026 crossref_primary_10_1016_j_neuroimage_2019_06_020 crossref_primary_10_1249_MSS_0000000000002657 crossref_primary_10_1007_s00429_022_02503_z crossref_primary_10_1016_j_ejpn_2025_02_002 crossref_primary_10_1177_1362361312442596 crossref_primary_10_1016_j_neulet_2014_07_044 crossref_primary_10_1016_j_neuroimage_2024_120731 crossref_primary_10_1007_s00234_020_02584_9 crossref_primary_10_31887_DCNS_2013_15_3_edennis crossref_primary_10_1016_j_bpsc_2018_12_008 crossref_primary_10_1093_cercor_bhr372 crossref_primary_10_1002_jmri_23857 crossref_primary_10_1016_j_nicl_2021_102885 crossref_primary_10_1016_j_tics_2012_04_011 crossref_primary_10_1016_j_neuroimage_2020_117441 crossref_primary_10_1161_STROKEAHA_111_624858 crossref_primary_10_2214_AJR_10_6382 crossref_primary_10_1007_s11682_016_9657_8 crossref_primary_10_1038_s41598_024_52576_5 crossref_primary_10_1002_hbm_21080 crossref_primary_10_3389_fneur_2021_801195 crossref_primary_10_1016_j_mri_2020_12_015 crossref_primary_10_1371_journal_pcbi_1002374 crossref_primary_10_1371_journal_pone_0180973 crossref_primary_10_1002_hbm_24346 crossref_primary_10_1007_s00330_015_4178_1 crossref_primary_10_1007_s11682_019_00211_7 crossref_primary_10_1007_s40259_022_00519_9 crossref_primary_10_1093_cercor_bhaa220 crossref_primary_10_1016_j_bandl_2018_05_007 crossref_primary_10_1016_j_dcn_2015_10_004 crossref_primary_10_3390_brainsci8010007 crossref_primary_10_1002_hbm_26528 crossref_primary_10_1016_j_neubiorev_2017_10_007 crossref_primary_10_1002_hbm_21030 crossref_primary_10_1002_jmri_23631 crossref_primary_10_1002_hbm_24542 crossref_primary_10_1371_journal_pone_0175143 crossref_primary_10_1016_j_nicl_2017_10_006 crossref_primary_10_1016_j_dcn_2017_12_002 crossref_primary_10_1007_s00784_022_04770_w crossref_primary_10_1038_s41598_017_11497_2 crossref_primary_10_1016_j_neubiorev_2011_04_013 crossref_primary_10_1002_glia_23629 crossref_primary_10_1016_j_ijrobp_2011_03_057 crossref_primary_10_1016_j_lansea_2024_100388 crossref_primary_10_3389_fnins_2023_1154637 crossref_primary_10_1016_j_ejpn_2011_05_002 crossref_primary_10_1089_can_2022_0144 crossref_primary_10_1002_hbm_24771 crossref_primary_10_1002_acn3_51793 crossref_primary_10_1523_JNEUROSCI_0026_14_2014 crossref_primary_10_1016_j_neuroimage_2013_08_018 crossref_primary_10_1007_s00221_022_06448_x crossref_primary_10_1016_j_brainres_2009_04_025 crossref_primary_10_1093_brain_awu154 crossref_primary_10_1002_hbm_24525 crossref_primary_10_1002_hbm_24522 crossref_primary_10_1002_hbm_21257 crossref_primary_10_1371_journal_pone_0075115 crossref_primary_10_1007_s11065_010_9146_6 crossref_primary_10_1016_j_neubiorev_2013_07_005 crossref_primary_10_1111_ejn_12869 crossref_primary_10_1111_jon_12854 crossref_primary_10_1523_JNEUROSCI_5781_10_2011 crossref_primary_10_1002_hbm_25654 crossref_primary_10_3389_fnut_2022_820224 crossref_primary_10_1016_j_nicl_2015_01_016 crossref_primary_10_1097_MD_0000000000020492 crossref_primary_10_1007_s11065_020_09442_8 crossref_primary_10_1093_brain_awt094 crossref_primary_10_1016_j_neuroimage_2020_116552 crossref_primary_10_1016_j_neuroimage_2019_04_004 crossref_primary_10_1016_j_neuroimage_2020_117643 crossref_primary_10_3389_fpsyg_2018_02758 crossref_primary_10_1016_j_pscychresns_2012_11_003 crossref_primary_10_1203_PDR_0b013e3181b1bd6a crossref_primary_10_1002_aur_1243 crossref_primary_10_1146_annurev_neuro_070815_013815 crossref_primary_10_3390_cancers13081939 crossref_primary_10_1002_hbm_22139 crossref_primary_10_3389_fneur_2021_645534 crossref_primary_10_1002_hbm_21280 crossref_primary_10_1016_j_tins_2009_01_005 crossref_primary_10_3390_math9131549 crossref_primary_10_1073_pnas_1904931116 crossref_primary_10_1016_j_neuroimage_2017_01_023 crossref_primary_10_1134_S0362119712010136 crossref_primary_10_1038_s42003_024_06641_4 crossref_primary_10_3389_fpsyg_2020_00931 crossref_primary_10_1016_j_biopsych_2019_06_018 crossref_primary_10_1016_j_neuroimage_2014_11_029 crossref_primary_10_1016_j_cortex_2020_11_022 crossref_primary_10_1016_j_neuroimage_2011_05_050 crossref_primary_10_1093_cercor_bht335 crossref_primary_10_1523_ENEURO_0003_15_2015 crossref_primary_10_1007_s00234_014_1342_2 crossref_primary_10_1002_hbm_22368 crossref_primary_10_1016_j_neuroscience_2012_01_016 crossref_primary_10_1080_17482631_2024_2408831 crossref_primary_10_1016_j_dcn_2020_100767 crossref_primary_10_1016_j_psyneuen_2011_12_019 crossref_primary_10_1016_j_dcn_2017_11_001 crossref_primary_10_1016_j_schres_2013_06_014 crossref_primary_10_1016_j_neuroimage_2011_09_086 crossref_primary_10_1080_01942638_2021_1982839 crossref_primary_10_1111_j_1365_2869_2011_00930_x crossref_primary_10_3389_fnana_2018_00077 crossref_primary_10_1089_brain_2012_0106 crossref_primary_10_1017_cjn_2019_243 crossref_primary_10_1002_hbm_22317 crossref_primary_10_1016_j_nicl_2017_05_006 crossref_primary_10_1038_mp_2016_147 crossref_primary_10_2463_mrms_mp_2022_0099 crossref_primary_10_4103_1673_5374_135309 crossref_primary_10_1016_j_neubiorev_2018_08_002 crossref_primary_10_1007_s11682_012_9220_1 crossref_primary_10_1016_j_dcn_2012_05_002 crossref_primary_10_1055_s_0041_1726127 crossref_primary_10_3389_fnhum_2018_00268 crossref_primary_10_1016_j_brainres_2016_08_042 crossref_primary_10_1073_pnas_1009073107 crossref_primary_10_1080_14737175_2022_2064743 crossref_primary_10_1002_hbm_24726 crossref_primary_10_1016_j_neuroimage_2014_10_005 crossref_primary_10_1016_j_neuropsychologia_2017_10_017 crossref_primary_10_1016_j_bja_2024_05_007 crossref_primary_10_1093_cercor_bhaa051 crossref_primary_10_1016_j_nicl_2013_08_005 crossref_primary_10_1017_S0033291709005728 crossref_primary_10_1186_s12880_016_0163_7 crossref_primary_10_3390_e20070506 crossref_primary_10_1038_s41380_021_01153_7 crossref_primary_10_1016_j_neuroimage_2014_12_084 crossref_primary_10_1146_annurev_psych_120710_100434 crossref_primary_10_1176_appi_ajp_2014_13101427 crossref_primary_10_1089_brain_2012_0127 crossref_primary_10_1016_j_jaac_2010_12_003 crossref_primary_10_1016_j_neuroimage_2016_05_017 crossref_primary_10_1016_j_nicl_2016_06_009 crossref_primary_10_1016_j_pscychresns_2015_02_009 crossref_primary_10_1002_hbm_21486 crossref_primary_10_1002_hbm_21004 crossref_primary_10_1523_JNEUROSCI_1864_17_2018 crossref_primary_10_1203_PDR_0b013e3181bbc6b5 crossref_primary_10_1093_braincomms_fcad111 crossref_primary_10_1371_journal_pone_0182340 crossref_primary_10_1093_cercor_bhac482 crossref_primary_10_1016_j_neuroimage_2011_07_006 crossref_primary_10_1038_s41562_017_0184_4 crossref_primary_10_1016_j_neuroimage_2014_01_002 crossref_primary_10_1016_j_neuroimage_2011_11_004 crossref_primary_10_1089_brain_2012_0111 crossref_primary_10_1089_neu_2017_5145 crossref_primary_10_3389_fnana_2017_00088 crossref_primary_10_1016_j_jneumeth_2017_12_017 crossref_primary_10_1089_brain_2016_0451 crossref_primary_10_1093_brain_awp126 crossref_primary_10_1186_s12888_022_03734_4 crossref_primary_10_1016_j_pscychresns_2011_07_015 crossref_primary_10_1016_j_dcn_2020_100765 crossref_primary_10_1016_j_clinph_2023_03_357 crossref_primary_10_1111_jcpp_14069 crossref_primary_10_1016_j_neuroimage_2011_07_032 crossref_primary_10_1016_j_schres_2013_07_018 crossref_primary_10_3390_e19040141 crossref_primary_10_1016_j_nicl_2024_103712 crossref_primary_10_1111_adb_12332 crossref_primary_10_1007_s00429_015_1178_5 crossref_primary_10_1016_j_neuroimage_2022_118909 crossref_primary_10_1093_jncics_pkab069 crossref_primary_10_1016_j_neuroimage_2020_117268 crossref_primary_10_1016_j_chc_2012_01_004 crossref_primary_10_1089_brain_2016_0442 crossref_primary_10_1371_journal_pone_0117666 crossref_primary_10_1212_WNL_0000000000001358 crossref_primary_10_1093_jpepsy_jss070 crossref_primary_10_1134_S036211971504012X crossref_primary_10_1093_cercor_bhz268 crossref_primary_10_1016_j_neuroimage_2016_06_008 crossref_primary_10_1001_jamapsychiatry_2020_4064 crossref_primary_10_1016_j_cortex_2011_05_018 crossref_primary_10_1016_j_neuroimage_2023_120287 crossref_primary_10_1007_s00429_023_02642_x crossref_primary_10_3389_fnsys_2017_00018 crossref_primary_10_1200_JCO_20_02444 crossref_primary_10_1017_S1355617713001148 crossref_primary_10_1016_j_brainres_2008_06_030 crossref_primary_10_1093_cercor_bhp118 crossref_primary_10_1038_ejhg_2012_138 crossref_primary_10_1002_hbm_23836 crossref_primary_10_1016_j_cpet_2013_04_002 crossref_primary_10_1002_hbm_23833 crossref_primary_10_1186_s12888_023_04597_z crossref_primary_10_3389_fpsyg_2020_543773 crossref_primary_10_1016_j_dcn_2020_100788 crossref_primary_10_1016_j_neubiorev_2016_12_032 crossref_primary_10_3389_fnagi_2015_00255 crossref_primary_10_1111_desc_12316 crossref_primary_10_3389_fnins_2023_1285396 crossref_primary_10_1016_j_ntt_2014_11_009 crossref_primary_10_1093_cercor_bhz053 crossref_primary_10_1111_jon_12215 crossref_primary_10_1007_s00586_014_3435_3 crossref_primary_10_1159_000356219 crossref_primary_10_1162_jocn_a_00896 crossref_primary_10_1177_0883073809339394 crossref_primary_10_1016_j_dcn_2024_101363 crossref_primary_10_1002_eat_22154 crossref_primary_10_1148_rg_335125212 crossref_primary_10_1073_pnas_1001229107 crossref_primary_10_3390_nu13072435 crossref_primary_10_1017_S0033291716003585 crossref_primary_10_1016_j_dcn_2024_101368 crossref_primary_10_1134_S0362119715050151 crossref_primary_10_1007_s00381_013_2315_1 crossref_primary_10_1002_hbm_22538 crossref_primary_10_1002_hbm_23624 crossref_primary_10_1038_s41598_024_80372_8 crossref_primary_10_1016_j_cpr_2016_11_003 crossref_primary_10_1073_pnas_1604658114 crossref_primary_10_1002_jmri_22397 crossref_primary_10_1186_2045_5380_3_21 crossref_primary_10_1007_s00429_015_1078_8 crossref_primary_10_1177_0883073812452917 crossref_primary_10_1002_mds_22264 crossref_primary_10_1016_j_nicl_2019_101825 crossref_primary_10_1002_hbm_24706 crossref_primary_10_1016_j_neuroimage_2018_09_004 crossref_primary_10_1523_JNEUROSCI_3185_16_2017 crossref_primary_10_3390_brainsci12121622 crossref_primary_10_1002_hbm_22524 crossref_primary_10_1016_j_brainres_2009_07_046 crossref_primary_10_1016_j_alcohol_2021_07_003 crossref_primary_10_1007_s40279_019_01069_x crossref_primary_10_1017_S0140525X10000804 crossref_primary_10_1007_s11065_011_9162_1 crossref_primary_10_1016_j_biopsych_2020_06_028 crossref_primary_10_1007_s11055_022_01237_z crossref_primary_10_1016_j_clinph_2011_03_016 crossref_primary_10_1523_JNEUROSCI_1745_22_2023 crossref_primary_10_3389_fped_2023_1112121 crossref_primary_10_1007_s00429_018_1658_5 crossref_primary_10_1016_j_bandc_2009_06_002 crossref_primary_10_1007_s00221_024_06925_5 crossref_primary_10_1016_j_bandc_2009_06_005 crossref_primary_10_1016_j_neuroimage_2018_08_043 crossref_primary_10_1162_jocn_a_00517 crossref_primary_10_1148_radiol_12112420 crossref_primary_10_1017_S0954579408000527 crossref_primary_10_1016_j_nicl_2015_03_012 crossref_primary_10_1177_0883073813520503 crossref_primary_10_1016_j_neuroimage_2015_09_017 crossref_primary_10_1016_j_neuroimage_2013_07_067 crossref_primary_10_1016_j_pediatrneurol_2010_11_006 crossref_primary_10_1016_j_dcn_2010_11_001 crossref_primary_10_1371_journal_pone_0023437 crossref_primary_10_1016_j_nic_2012_12_002 crossref_primary_10_3389_fnhum_2017_00475 crossref_primary_10_1093_braincomms_fcaa032 crossref_primary_10_1162_jocn_a_00527 crossref_primary_10_1002_jcph_1139 crossref_primary_10_1089_brain_2015_0340 crossref_primary_10_3389_fnsys_2021_692152 crossref_primary_10_3390_ijms24043343 crossref_primary_10_3389_fpsyg_2020_01534 crossref_primary_10_1016_j_cortex_2019_09_014 crossref_primary_10_1016_j_jad_2018_11_068 crossref_primary_10_1016_j_pscychresns_2011_05_012 crossref_primary_10_1016_j_pscychresns_2014_11_009 crossref_primary_10_1073_pnas_1208243109 crossref_primary_10_7763_IJIET_2015_V5_640 crossref_primary_10_1007_s00062_015_0490_z crossref_primary_10_1007_s11682_022_00700_2 crossref_primary_10_1016_j_drugalcdep_2016_02_015 crossref_primary_10_3390_jcm10040861 crossref_primary_10_1016_j_pnpbp_2014_01_006 crossref_primary_10_3389_fpsyg_2021_750559 crossref_primary_10_1038_s41380_021_01330_8 crossref_primary_10_1146_annurev_neuro_071714_034054 crossref_primary_10_1093_cercor_bhx223 crossref_primary_10_1016_j_neuroimage_2010_08_014 crossref_primary_10_1080_09297049_2016_1186616 crossref_primary_10_1002_hbm_22848 crossref_primary_10_1038_s41380_019_0450_0 crossref_primary_10_3389_fpsyg_2017_01643 crossref_primary_10_1007_s00221_017_5029_x crossref_primary_10_1016_j_tine_2019_02_004 crossref_primary_10_1097_YCO_0b013e328325aa23 crossref_primary_10_1523_ENEURO_0362_24_2024 crossref_primary_10_3389_fnhum_2022_859358 crossref_primary_10_1016_j_jneumeth_2018_08_008 crossref_primary_10_1089_brain_2018_0580 crossref_primary_10_1007_s10237_019_01157_x crossref_primary_10_1097_j_pain_0000000000002923 crossref_primary_10_1038_s41398_024_02961_5 crossref_primary_10_1007_s00702_013_0971_7 crossref_primary_10_1002_aur_1909 crossref_primary_10_1093_psyrad_kkab021 crossref_primary_10_1016_j_neuropsychologia_2010_05_001 crossref_primary_10_1093_schbul_sbs054 crossref_primary_10_1016_j_ntt_2019_106834 crossref_primary_10_1093_cercor_bhn102 crossref_primary_10_1080_19585969_2022_2043128 crossref_primary_10_1371_journal_pone_0222620 crossref_primary_10_1007_s00429_021_02414_5 crossref_primary_10_1016_j_nicl_2019_102050 crossref_primary_10_1016_j_neuroscience_2010_08_071 crossref_primary_10_1016_j_schres_2015_11_001 crossref_primary_10_1002_hbm_26157 crossref_primary_10_1111_j_1749_6632_2010_05954_x crossref_primary_10_1016_j_neubiorev_2018_06_017 crossref_primary_10_1016_j_psychres_2024_116343 crossref_primary_10_1002_wcs_114 crossref_primary_10_1007_s00213_016_4398_3 crossref_primary_10_1016_j_jad_2018_08_029 crossref_primary_10_1111_dmcn_12618 crossref_primary_10_3389_fnhum_2019_00214 crossref_primary_10_1016_j_cortex_2017_05_007 crossref_primary_10_1016_j_pscychresns_2015_05_001 crossref_primary_10_1007_s00330_009_1534_z crossref_primary_10_1007_s00429_011_0321_1 crossref_primary_10_1016_j_neuroimage_2018_08_073 crossref_primary_10_1016_j_neuroimage_2010_10_048 crossref_primary_10_1177_1533317515578257 crossref_primary_10_1093_cercor_bhac155 crossref_primary_10_1016_j_jaac_2015_10_004 crossref_primary_10_1016_j_sleep_2024_12_001 crossref_primary_10_1002_hbm_20880 crossref_primary_10_1016_j_neurobiolaging_2012_07_013 crossref_primary_10_1007_s40817_021_00099_6 crossref_primary_10_1016_j_brainres_2012_05_035 crossref_primary_10_1016_j_brainres_2010_02_066 crossref_primary_10_1016_j_cortex_2012_05_020 crossref_primary_10_1002_hbm_23907 crossref_primary_10_1002_jmri_24065 crossref_primary_10_1093_cercor_bhab069 crossref_primary_10_1371_journal_pone_0117968 crossref_primary_10_3389_fnhum_2015_00039 crossref_primary_10_1371_journal_pone_0049790 crossref_primary_10_1002_hbm_70091 crossref_primary_10_1016_j_dcn_2017_02_010 crossref_primary_10_1016_j_neuroimage_2019_116348 crossref_primary_10_1017_S0954579416000444 crossref_primary_10_3389_fneur_2022_948830 crossref_primary_10_1007_s00429_009_0238_0 crossref_primary_10_1111_ejn_70026 crossref_primary_10_1002_nbm_4222 crossref_primary_10_1038_s41380_023_02343_1 crossref_primary_10_1016_j_cortex_2020_05_020 crossref_primary_10_1016_j_envint_2023_107905 crossref_primary_10_1016_j_neuroimage_2021_118101 crossref_primary_10_1038_s41467_022_29770_y crossref_primary_10_1016_j_jaac_2010_09_007 crossref_primary_10_1016_j_neuroimage_2020_117195 crossref_primary_10_1038_s41598_017_17352_8 crossref_primary_10_1111_jcpp_13578 crossref_primary_10_1002_hbm_25031 crossref_primary_10_1007_s00429_014_0975_6 crossref_primary_10_1016_j_ymeth_2014_10_016 crossref_primary_10_1016_j_neuroimage_2013_04_028 crossref_primary_10_1038_npp_2015_354 crossref_primary_10_1016_j_jpsychires_2010_11_007 crossref_primary_10_1111_dmcn_13072 crossref_primary_10_1016_j_mri_2011_07_027 crossref_primary_10_1097_CHI_0b013e318185e703 crossref_primary_10_3174_ajnr_A2184 crossref_primary_10_1016_j_neuroimage_2011_05_063 crossref_primary_10_1016_j_neuroimage_2012_11_056 crossref_primary_10_3389_fpsyg_2018_00955 crossref_primary_10_1080_02699052_2016_1200143 crossref_primary_10_1016_j_neuropsychologia_2011_10_001 crossref_primary_10_1016_j_ymeth_2014_10_025 crossref_primary_10_3174_ajnr_A2188 crossref_primary_10_1523_JNEUROSCI_4184_11_2011 crossref_primary_10_1002_ana_25245 crossref_primary_10_1016_j_brainres_2012_08_038 crossref_primary_10_3389_fneur_2014_00053 crossref_primary_10_1016_j_ejrad_2019_108690 crossref_primary_10_1016_j_concog_2010_06_024 crossref_primary_10_1002_hbm_23082 crossref_primary_10_1007_s00787_024_02416_8 crossref_primary_10_1007_s00429_017_1600_2 crossref_primary_10_1016_j_jpsychires_2011_09_016 crossref_primary_10_1523_ENEURO_0044_19_2019 crossref_primary_10_3389_fnins_2018_00288 crossref_primary_10_1016_j_neuroimage_2011_01_048 crossref_primary_10_1186_s13229_023_00573_2 crossref_primary_10_1093_brain_awu113 crossref_primary_10_1016_j_neuroimage_2022_119590 crossref_primary_10_1007_s11065_010_9148_4 crossref_primary_10_1016_S2215_0366_16_30283_8 crossref_primary_10_1016_j_actbio_2024_10_003 crossref_primary_10_1007_s11427_020_1863_6 crossref_primary_10_1016_j_asieco_2021_101423 crossref_primary_10_1007_s40279_020_01261_4 crossref_primary_10_1016_S0013_7006_19_30072_7 crossref_primary_10_1109_TMI_2013_2274051 crossref_primary_10_1007_s11682_012_9150_y crossref_primary_10_1038_npp_2016_130 crossref_primary_10_1162_imag_a_00221 crossref_primary_10_1016_j_dcn_2021_101008 crossref_primary_10_3389_fneur_2018_00445 crossref_primary_10_1155_2012_250196 crossref_primary_10_2217_fnl_14_70 crossref_primary_10_1016_j_neuroimage_2018_07_050 crossref_primary_10_1186_2040_2392_6_4 crossref_primary_10_1111_dmcn_13042 crossref_primary_10_1002_nbm_1551 crossref_primary_10_1162_jocn_2010_21592 crossref_primary_10_1016_j_trf_2013_05_004 crossref_primary_10_1016_j_schres_2008_04_042 crossref_primary_10_1016_j_yebeh_2014_06_020 crossref_primary_10_1038_s41380_021_01018_z crossref_primary_10_1093_texcom_tgab057 crossref_primary_10_1002_hbm_26321 crossref_primary_10_1002_hbm_23296 crossref_primary_10_1111_psyp_12227 crossref_primary_10_3389_fnana_2016_00009 crossref_primary_10_1016_j_cortex_2014_07_018 crossref_primary_10_1523_ENEURO_0353_19_2019 crossref_primary_10_1007_s00429_022_02571_1 crossref_primary_10_1016_j_nicl_2014_06_011 crossref_primary_10_1016_j_tics_2009_12_006 crossref_primary_10_1093_braincomms_fcaa224 crossref_primary_10_3174_ajnr_A2380 crossref_primary_10_1007_s00429_022_02605_8 crossref_primary_10_1016_j_dcn_2014_04_004 crossref_primary_10_1111_acer_12132 crossref_primary_10_1016_j_bpsc_2018_08_006 crossref_primary_10_1016_j_neuropsychologia_2020_107438 crossref_primary_10_1080_02640414_2020_1794763 crossref_primary_10_1002_hbm_25224 crossref_primary_10_1002_hbm_23286 crossref_primary_10_1016_j_bpsc_2021_10_003 crossref_primary_10_1016_j_neubiorev_2011_02_011 crossref_primary_10_1016_j_neulet_2008_07_056 crossref_primary_10_1016_j_cobme_2019_12_009 crossref_primary_10_1111_j_1460_9568_2008_06545_x crossref_primary_10_1016_j_ymgmr_2016_03_003 crossref_primary_10_1016_j_neurobiolaging_2009_05_013 crossref_primary_10_1002_hbm_25458 crossref_primary_10_1016_j_jaac_2017_11_014 crossref_primary_10_1093_brain_awu311 crossref_primary_10_1093_scan_nsv156 crossref_primary_10_1371_journal_pone_0097445 crossref_primary_10_1016_j_pscychresns_2010_09_007 crossref_primary_10_1016_j_neuroimage_2009_08_003 crossref_primary_10_1016_j_neuropsychologia_2010_04_024 crossref_primary_10_1111_pcn_12530 crossref_primary_10_1016_j_neuroimage_2022_119101 crossref_primary_10_1097_DBP_0b013e3181dcaa8b crossref_primary_10_3390_biomedicines10112740 crossref_primary_10_1371_journal_pone_0216554 crossref_primary_10_1016_j_neuroimage_2015_09_022 crossref_primary_10_1016_j_neuroimage_2020_116703 crossref_primary_10_1016_j_neurobiolaging_2024_02_014 crossref_primary_10_1016_j_dcn_2021_101044 crossref_primary_10_1002_ab_21820 crossref_primary_10_1073_pnas_2410341121 crossref_primary_10_3389_fendo_2019_00918 crossref_primary_10_3389_fnins_2017_00029 crossref_primary_10_1002_hbm_23062 crossref_primary_10_1016_j_mri_2015_12_021 crossref_primary_10_1016_j_schres_2014_05_021 crossref_primary_10_1016_j_nicl_2021_102730 crossref_primary_10_1016_j_pscychresns_2015_08_003 crossref_primary_10_1016_j_psychsport_2021_102060 crossref_primary_10_1007_s00234_017_1858_3 crossref_primary_10_1038_tp_2017_197 crossref_primary_10_1002_nbm_3778 crossref_primary_10_1016_j_neuroimage_2012_11_063 crossref_primary_10_1016_j_pscychresns_2021_111324 crossref_primary_10_5863_1551_6776_15_3_160 crossref_primary_10_1016_j_neuroscience_2017_10_050 crossref_primary_10_1002_hbm_24461 crossref_primary_10_1016_j_biopha_2024_117377 crossref_primary_10_1016_j_tics_2008_11_003 crossref_primary_10_3389_fnhum_2014_01047 crossref_primary_10_1371_journal_pbio_1002328 crossref_primary_10_1523_JNEUROSCI_1968_13_2013 crossref_primary_10_1093_schbul_sbq105 crossref_primary_10_1016_j_dcn_2016_11_008 crossref_primary_10_1002_jnr_24851 crossref_primary_10_1016_j_bpsc_2025_03_003 crossref_primary_10_1016_j_cortex_2024_02_014 crossref_primary_10_1111_ejn_15199 crossref_primary_10_1007_s11065_012_9214_1 crossref_primary_10_1016_j_neuroimage_2020_117105 crossref_primary_10_1111_desc_13340 crossref_primary_10_1016_j_pupt_2019_03_001 crossref_primary_10_1016_j_nicl_2025_103758 crossref_primary_10_1371_journal_pone_0259422 crossref_primary_10_1016_j_biopsych_2012_08_001 crossref_primary_10_1016_j_bbi_2024_12_028 crossref_primary_10_1038_s41598_024_58648_w crossref_primary_10_1177_19714009090220S106 crossref_primary_10_1016_j_ijrobp_2023_11_038 crossref_primary_10_1016_j_jecp_2021_105094 crossref_primary_10_1016_j_dcn_2021_100999 crossref_primary_10_1002_brb3_237 crossref_primary_10_3389_fpsyg_2019_01198 crossref_primary_10_3390_nu12040909 crossref_primary_10_1016_j_braindev_2022_04_003 crossref_primary_10_1016_j_neuroimage_2009_08_031 crossref_primary_10_1017_S135561771300129X crossref_primary_10_1093_cercor_bhp280 crossref_primary_10_3390_cells11182789 crossref_primary_10_3389_fnagi_2022_787516 crossref_primary_10_1088_1741_2552_ac9a76 crossref_primary_10_1016_j_neuroimage_2016_01_061 crossref_primary_10_1203_PDR_0b013e3181fcb285 crossref_primary_10_1159_000492859 crossref_primary_10_1038_s41598_018_38430_5 crossref_primary_10_3389_fneur_2018_00836 crossref_primary_10_1016_j_neuroimage_2018_04_017 crossref_primary_10_1093_cercor_bhy090 crossref_primary_10_1155_2013_176027 crossref_primary_10_1523_JNEUROSCI_1242_09_2009 crossref_primary_10_1002_hbm_22027 crossref_primary_10_1016_j_neuroimage_2013_10_026 crossref_primary_10_1016_j_schres_2012_02_016 crossref_primary_10_1371_journal_pone_0020726 crossref_primary_10_3389_fnhum_2014_00197 crossref_primary_10_1016_j_cub_2011_07_019 crossref_primary_10_1016_j_ijdevneu_2015_04_301 crossref_primary_10_1007_s40894_021_00153_6 crossref_primary_10_3389_fnsys_2016_00093 crossref_primary_10_1002_hbm_24002 crossref_primary_10_1016_j_bandc_2009_10_012 crossref_primary_10_1002_mabi_202000004 crossref_primary_10_1002_eat_22083 crossref_primary_10_1016_j_dcn_2025_101520 crossref_primary_10_1016_j_nicl_2012_09_010 crossref_primary_10_1016_j_cortex_2012_08_004 crossref_primary_10_1038_s41598_017_09915_6 crossref_primary_10_1038_s41598_019_44150_1 crossref_primary_10_1007_s00787_017_0990_2 crossref_primary_10_1016_j_neuroimage_2010_12_008 crossref_primary_10_3389_fpsyt_2020_00342 crossref_primary_10_1002_brb3_1165 crossref_primary_10_1016_j_nicl_2020_102236 crossref_primary_10_3389_fnhum_2016_00464 crossref_primary_10_1111_acer_14929 crossref_primary_10_1093_cercor_bhr243 crossref_primary_10_1038_s41380_020_00969_z crossref_primary_10_1152_jn_00320_2013 crossref_primary_10_1016_j_jad_2020_12_075 crossref_primary_10_1371_journal_pone_0233244 crossref_primary_10_7202_1036965ar crossref_primary_10_1007_BF03379543 crossref_primary_10_1016_j_schres_2019_08_022 crossref_primary_10_1371_journal_pone_0179624 crossref_primary_10_1111_desc_13557 crossref_primary_10_1016_j_jpsychires_2014_08_023 crossref_primary_10_1007_s00247_012_2496_x crossref_primary_10_11603_bmbr_2706_6290_2020_3_11528 crossref_primary_10_1016_j_ijdevneu_2011_12_008 crossref_primary_10_1016_j_neuroimage_2015_07_046 crossref_primary_10_1016_j_neuroimage_2015_07_048 crossref_primary_10_1016_j_brainres_2008_10_026 crossref_primary_10_1016_j_neuroimage_2012_08_086 crossref_primary_10_1002_hbm_21147 crossref_primary_10_1073_pnas_1206792109 crossref_primary_10_1016_j_ymeth_2022_06_001 crossref_primary_10_1007_s10508_016_0768_5 crossref_primary_10_1089_brain_2014_0285 crossref_primary_10_1002_dneu_22821 crossref_primary_10_3917_cdlj_2002_0311 crossref_primary_10_1016_j_neuroimage_2021_117825 crossref_primary_10_1176_appi_ajp_2018_17070825 crossref_primary_10_1176_appi_ajp_2018_18040425 crossref_primary_10_1002_hbm_24409 crossref_primary_10_1155_2011_542896 crossref_primary_10_1111_acer_13854 crossref_primary_10_1016_j_neuroimage_2010_03_017 crossref_primary_10_1016_j_neulet_2010_09_066 crossref_primary_10_1097_CCM_0000000000002553 crossref_primary_10_1002_hbm_24407 crossref_primary_10_1016_j_nicl_2012_09_001 crossref_primary_10_1016_j_earlhumdev_2008_09_004 crossref_primary_10_1016_j_neuroimage_2015_06_014 crossref_primary_10_1002_hbm_22022 crossref_primary_10_1016_j_nicl_2019_101781 crossref_primary_10_3109_15622975_2014_903336 crossref_primary_10_1371_journal_pone_0300139 crossref_primary_10_1093_cercor_bhr292 crossref_primary_10_1192_bjp_bp_108_055376 crossref_primary_10_3390_diagnostics11030560 crossref_primary_10_1088_0031_9155_60_2_453 crossref_primary_10_1016_j_neuroimage_2020_116672 crossref_primary_10_1016_j_neuroimage_2019_01_077 crossref_primary_10_1016_j_nicl_2018_06_002 crossref_primary_10_3389_fnana_2019_00024 crossref_primary_10_1016_j_envres_2019_109093 crossref_primary_10_1038_tp_2015_23 crossref_primary_10_1002_hbm_24435 crossref_primary_10_25259_SNI_955_2024 crossref_primary_10_1016_j_ejpn_2010_03_012 crossref_primary_10_1111_jcpp_13268 crossref_primary_10_1371_journal_pbio_1000157 crossref_primary_10_1177_1744629521995378 crossref_primary_10_1016_j_jpsychires_2020_07_012 crossref_primary_10_1016_j_psyneuen_2020_104722 crossref_primary_10_1038_s41598_017_08107_6 crossref_primary_10_1051_jbio_2015026 crossref_primary_10_3233_JAD_210495 crossref_primary_10_1002_hbm_23530 crossref_primary_10_1002_pbc_24958 crossref_primary_10_1542_peds_2018_4032 crossref_primary_10_1002_hbm_22441 crossref_primary_10_1016_j_ejpn_2023_07_004 crossref_primary_10_1515_REVNEURO_2010_21_3_187 crossref_primary_10_1007_s00330_012_2572_5 crossref_primary_10_1212_WNL_0000000000013250 crossref_primary_10_3389_fnhum_2017_00063 crossref_primary_10_1017_S0954579413000643 crossref_primary_10_3389_fnsys_2021_724805 crossref_primary_10_1177_1352458515596600 crossref_primary_10_1111_j_1467_8624_2009_01324_x crossref_primary_10_1002_hbm_23526 crossref_primary_10_1111_adb_12493 crossref_primary_10_3389_fped_2014_00123 crossref_primary_10_1007_s00234_018_2017_1 crossref_primary_10_1016_j_biopsych_2018_11_026 crossref_primary_10_1111_desc_12647 crossref_primary_10_1111_desc_12648 crossref_primary_10_1016_j_pscychresns_2016_12_003 crossref_primary_10_1016_j_bandl_2017_10_008 crossref_primary_10_1002_mrm_28216 crossref_primary_10_1097_JSM_0000000000000753 crossref_primary_10_1523_JNEUROSCI_1321_21_2021 crossref_primary_10_1002_hbm_21335 crossref_primary_10_1016_j_pscychresns_2016_12_010 crossref_primary_10_1002_hbm_24842 crossref_primary_10_1093_cercor_bhab012 crossref_primary_10_1523_JNEUROSCI_2422_18_2019 crossref_primary_10_1086_714366 crossref_primary_10_1093_schbul_sbw062 crossref_primary_10_1038_s41537_023_00411_7 crossref_primary_10_1093_cercor_bhy046 crossref_primary_10_1093_cercor_bhab021 crossref_primary_10_1016_j_neuroimage_2010_12_087 crossref_primary_10_1097_INF_0000000000004796 crossref_primary_10_1016_j_neuroimage_2012_09_021 crossref_primary_10_1080_13607863_2018_1455804 crossref_primary_10_1016_j_ridd_2014_10_013 crossref_primary_10_3109_02699052_2015_1075172 crossref_primary_10_3945_ajcn_110_001206 crossref_primary_10_1016_j_neuroimage_2010_07_055 crossref_primary_10_1093_scan_nss113 crossref_primary_10_1111_j_1530_0277_2008_00750_x crossref_primary_10_1016_j_pscychresns_2011_11_005 crossref_primary_10_1089_neu_2016_4584 crossref_primary_10_1002_hbm_23545 crossref_primary_10_1002_hbm_23546 crossref_primary_10_15388_CrimLithuan_2020_8_4 crossref_primary_10_1016_j_neuroimage_2010_10_037 crossref_primary_10_1016_j_pse_2015_08_001 crossref_primary_10_1177_15459683211011220 crossref_primary_10_1016_j_clinph_2019_08_029 crossref_primary_10_1038_npp_2012_133 crossref_primary_10_1007_s10548_020_00811_3 crossref_primary_10_1002_nbm_5114 crossref_primary_10_7554_eLife_77571 crossref_primary_10_1038_s41390_021_01394_w crossref_primary_10_1371_journal_pone_0195540 crossref_primary_10_1007_s00234_024_03367_2 crossref_primary_10_1016_j_dcn_2020_100881 crossref_primary_10_1002_hbm_25959 crossref_primary_10_1186_s12888_024_05852_7 crossref_primary_10_3174_ajnr_A8033 crossref_primary_10_1589_rika_25_171 crossref_primary_10_1016_j_schres_2014_09_040 crossref_primary_10_1007_s00429_013_0517_7 crossref_primary_10_1111_ejn_13655 crossref_primary_10_1186_s40478_019_0684_8 crossref_primary_10_1111_j_1752_4571_2010_00164_x crossref_primary_10_1002_ana_27180 crossref_primary_10_1111_eip_12359 crossref_primary_10_1016_j_ijdevneu_2013_06_007 crossref_primary_10_1016_j_tics_2013_09_015 crossref_primary_10_3109_15622975_2011_591824 crossref_primary_10_1007_s00429_019_01973_y crossref_primary_10_1016_j_neuroimage_2013_02_055 crossref_primary_10_1016_j_psyneuen_2017_11_009 crossref_primary_10_1016_j_clinph_2012_04_025 crossref_primary_10_1016_j_neuroimage_2018_02_050 crossref_primary_10_1089_neu_2016_4527 crossref_primary_10_1523_JNEUROSCI_4122_13_2013 crossref_primary_10_1016_j_neuroimage_2015_06_068 crossref_primary_10_1016_j_neuroimage_2010_05_019 crossref_primary_10_1016_j_nicl_2022_103306 crossref_primary_10_3390_brainsci11050664 crossref_primary_10_1038_s41598_019_44198_z crossref_primary_10_3109_00207454_2010_531894 crossref_primary_10_1016_j_bandl_2023_105270 crossref_primary_10_1111_j_1552_6569_2012_00779_x crossref_primary_10_1002_hbm_22620 crossref_primary_10_1111_jcpp_13085 crossref_primary_10_3390_brainsci4010150 crossref_primary_10_1134_S0362119715050035 crossref_primary_10_1016_j_bpsc_2021_09_009 crossref_primary_10_1016_j_neuroimage_2015_05_054 crossref_primary_10_3389_fnbeh_2015_00252 crossref_primary_10_1162_jocn_a_00534 crossref_primary_10_3389_fpsyg_2018_01147 crossref_primary_10_3389_fnins_2018_00950 crossref_primary_10_1016_j_neuroimage_2013_02_078 crossref_primary_10_3174_ajnr_A2924 crossref_primary_10_1155_2016_4724792 crossref_primary_10_1016_j_bandc_2009_11_002 crossref_primary_10_1016_j_pscychresns_2025_111960 crossref_primary_10_1038_nrneurol_2015_30 crossref_primary_10_1007_s11682_017_9685_z crossref_primary_10_1016_j_cortex_2012_07_001 crossref_primary_10_5665_SLEEP_1284 crossref_primary_10_1080_03004430_2013_871275 crossref_primary_10_1016_j_dcn_2025_101552 crossref_primary_10_1371_journal_pone_0233684 crossref_primary_10_1016_j_neuroimage_2021_118744 crossref_primary_10_1016_j_dcn_2021_100982 crossref_primary_10_1007_s00234_008_0488_1 crossref_primary_10_1093_cercor_bhq108 crossref_primary_10_1371_journal_pone_0125170 crossref_primary_10_1016_j_artmed_2022_102330 crossref_primary_10_1371_journal_pone_0056113 crossref_primary_10_1016_j_dcn_2018_03_007 crossref_primary_10_1016_j_neuroimage_2019_116477 crossref_primary_10_1007_s00429_019_01955_0 crossref_primary_10_1371_journal_pone_0083516 crossref_primary_10_1007_s00429_024_02884_3 crossref_primary_10_1089_neu_2020_6993 crossref_primary_10_1111_cdep_12084 crossref_primary_10_1093_cercor_bhu065 crossref_primary_10_1002_hbm_20779 crossref_primary_10_1016_j_chc_2016_12_017 crossref_primary_10_1016_j_neuroimage_2019_02_014 crossref_primary_10_1016_j_jpsychires_2010_05_006 crossref_primary_10_1007_s10803_014_2131_9 crossref_primary_10_1038_s41380_019_0509_y crossref_primary_10_1016_j_dcn_2020_100812 crossref_primary_10_1016_j_spen_2019_03_016 crossref_primary_10_1016_j_dcn_2020_100815 crossref_primary_10_3390_cells10102679 crossref_primary_10_3389_fnins_2018_00318 crossref_primary_10_1007_s11065_010_9129_7 crossref_primary_10_1007_s10865_019_00010_x crossref_primary_10_1093_cercor_bhu084 crossref_primary_10_1186_s40359_024_02297_1 crossref_primary_10_1017_S1355617722000170 crossref_primary_10_1016_j_jad_2018_02_024 crossref_primary_10_17816_ACEN_2017_3_10 crossref_primary_10_1007_s11682_021_00530_8 crossref_primary_10_1002_brb3_1975 crossref_primary_10_1016_j_ntt_2009_07_006 crossref_primary_10_1016_j_neuroimage_2014_09_063 crossref_primary_10_1007_s00429_014_0947_x crossref_primary_10_1111_j_1753_4887_2010_00327_x crossref_primary_10_1007_s11682_017_9761_4 crossref_primary_10_1016_j_dcn_2019_100682 crossref_primary_10_1146_annurev_clinpsy_032210_104507 crossref_primary_10_1371_journal_pone_0048789 crossref_primary_10_1038_pr_2012_129 crossref_primary_10_1016_j_nicl_2023_103427 crossref_primary_10_1002_nbm_3450 crossref_primary_10_1016_j_neuroimage_2014_09_057 crossref_primary_10_3389_fpsyg_2017_00674 crossref_primary_10_1371_journal_pone_0255892 crossref_primary_10_1016_j_disamonth_2019_02_008 crossref_primary_10_3389_fpsyt_2021_686967 crossref_primary_10_1038_mp_2013_44 crossref_primary_10_3174_ajnr_A2417 crossref_primary_10_1111_ane_12183 crossref_primary_10_1016_j_neuroimage_2011_09_041 crossref_primary_10_1111_j_1467_7687_2010_00980_x crossref_primary_10_1016_j_dcn_2019_100678 crossref_primary_10_1016_j_neurobiolaging_2014_05_024 crossref_primary_10_3389_fnhum_2019_00320 crossref_primary_10_1111_acer_12097 crossref_primary_10_1016_j_neuroimage_2015_02_051 crossref_primary_10_1038_s41398_024_02810_5 crossref_primary_10_1136_bjsports_2012_091441 crossref_primary_10_1016_j_neuroimage_2014_09_039 crossref_primary_10_1093_cercor_bhac022 crossref_primary_10_1016_j_neuroimage_2019_116207 crossref_primary_10_1016_j_jaac_2018_01_014 crossref_primary_10_1111_desc_12965 crossref_primary_10_1016_j_brainres_2010_12_051 crossref_primary_10_1016_j_cobeha_2016_04_008 crossref_primary_10_1371_journal_pone_0084650 crossref_primary_10_1002_hbm_26271 crossref_primary_10_1097_QAD_0000000000000648 crossref_primary_10_1007_s10803_016_2803_8 crossref_primary_10_1093_noajnl_vdac016 crossref_primary_10_1111_psyp_13281 crossref_primary_10_1124_jpet_116_234476 crossref_primary_10_1007_s11571_018_9476_2 crossref_primary_10_3174_ajnr_A3764 crossref_primary_10_1016_j_pscychresns_2014_09_001 crossref_primary_10_1038_nmeth_3098 crossref_primary_10_1002_hbm_20962 crossref_primary_10_1016_j_pneurobio_2011_08_003 crossref_primary_10_1016_j_neubiorev_2009_12_007 crossref_primary_10_1016_j_neuroimage_2019_116440 crossref_primary_10_1016_j_neuropsychologia_2009_11_001 crossref_primary_10_1016_j_ultrasmedbio_2020_04_004 crossref_primary_10_1038_npp_2010_199 crossref_primary_10_1007_s00429_015_1001_3 crossref_primary_10_24193_cbb_2023_27_03 crossref_primary_10_1016_j_neuint_2017_03_022 crossref_primary_10_1002_hbm_26064 crossref_primary_10_1007_s00381_010_1329_1 crossref_primary_10_1111_j_1530_0277_2011_01476_x crossref_primary_10_1038_s41598_022_24803_4 crossref_primary_10_1186_s12880_021_00549_9 crossref_primary_10_1177_0963721419848672 crossref_primary_10_1016_j_neuroimage_2017_05_017 crossref_primary_10_1109_TMI_2019_2901712 crossref_primary_10_1016_j_brainres_2013_06_003 crossref_primary_10_3389_fnint_2015_00065 crossref_primary_10_1016_j_cortex_2014_10_014 crossref_primary_10_1016_j_neurad_2011_05_002 crossref_primary_10_3917_ado_077_0479 crossref_primary_10_1016_j_neuroimage_2011_12_079 crossref_primary_10_1111_j_1749_6632_2009_04420_x crossref_primary_10_1111_jon_13155 crossref_primary_10_18699_VJ21_064 crossref_primary_10_1016_j_jad_2024_08_146 crossref_primary_10_1016_j_neuropsychologia_2011_08_022 crossref_primary_10_1016_j_neubiorev_2020_05_015 crossref_primary_10_1016_j_neuron_2014_09_035 crossref_primary_10_1016_j_jpsychires_2021_07_042 crossref_primary_10_1111_j_1399_5618_2012_01045_x crossref_primary_10_1111_epi_12871 crossref_primary_10_1007_s00426_011_0357_0 crossref_primary_10_1016_j_dcn_2019_100633 crossref_primary_10_1016_j_dcn_2019_100630 crossref_primary_10_1111_acer_14633 crossref_primary_10_1089_neu_2018_6071 crossref_primary_10_1007_s11682_016_9555_0 crossref_primary_10_1161_CIRCOUTCOMES_108_819235 crossref_primary_10_3389_fnhum_2022_965602 crossref_primary_10_1002_hbm_26238 crossref_primary_10_1080_13803395_2020_1813257 crossref_primary_10_3390_ijerph18126300 crossref_primary_10_1016_j_nicl_2014_11_004 crossref_primary_10_3389_fnana_2015_00115 crossref_primary_10_1027_0044_3409_a000017 crossref_primary_10_1038_s41598_020_72802_0 crossref_primary_10_1186_s12984_017_0221_6 crossref_primary_10_1016_j_jad_2020_11_098 crossref_primary_10_1007_s11689_010_9059_y crossref_primary_10_1159_000485376 crossref_primary_10_1016_j_neuroimage_2010_03_056 crossref_primary_10_1016_j_neuroimage_2012_03_057 crossref_primary_10_1093_brain_awu230 crossref_primary_10_1038_s41380_024_02850_9 crossref_primary_10_1097_NPT_0000000000000226 crossref_primary_10_1093_texcom_tgac004 crossref_primary_10_1111_desc_12088 crossref_primary_10_1016_j_neuroimage_2018_11_043 crossref_primary_10_1080_17470919_2016_1256832 crossref_primary_10_1016_j_pscychresns_2012_04_017 crossref_primary_10_1016_j_pscychresns_2013_10_006 crossref_primary_10_3390_brainsci11040474 crossref_primary_10_1111_epi_12859 crossref_primary_10_1007_s00117_018_0388_2 crossref_primary_10_1016_j_bbr_2020_113079 crossref_primary_10_1162_imag_a_00102 crossref_primary_10_1038_s41598_017_01263_9 crossref_primary_10_3390_ijerph191912972 crossref_primary_10_1016_j_neubiorev_2012_04_002 crossref_primary_10_1093_cercor_bhv323 crossref_primary_10_1016_j_neuroimage_2010_03_072 crossref_primary_10_1159_000373885 crossref_primary_10_1016_j_pscychresns_2022_111543 crossref_primary_10_1016_j_drugalcdep_2017_01_011 crossref_primary_10_1093_cercor_bhu227 crossref_primary_10_1016_j_pscychresns_2020_111105 crossref_primary_10_1016_j_dcn_2015_06_003 crossref_primary_10_1002_aur_2789 crossref_primary_10_5812_iranjradiol_56115 crossref_primary_10_1002_ana_24222 crossref_primary_10_1016_j_nicl_2021_102627 crossref_primary_10_1038_s41598_024_61253_6 crossref_primary_10_1371_journal_pone_0282363 crossref_primary_10_3389_fnagi_2020_594002 crossref_primary_10_1371_journal_pone_0123656 crossref_primary_10_1016_j_envres_2024_120638 crossref_primary_10_3174_ajnr_A3350 crossref_primary_10_1002_mrm_23254 crossref_primary_10_3389_fnhum_2018_00512 crossref_primary_10_1007_s11682_024_00963_x crossref_primary_10_3389_fnhum_2020_00233 crossref_primary_10_3389_fpsyg_2019_01708 crossref_primary_10_3390_brainsci14050495 crossref_primary_10_1016_j_dcn_2015_04_004 crossref_primary_10_1016_j_neuroimage_2021_118079 crossref_primary_10_1016_j_dcn_2023_101301 crossref_primary_10_1016_j_neuroimage_2011_11_094 crossref_primary_10_1089_brain_2020_0749 crossref_primary_10_1093_cercor_bhae046 crossref_primary_10_1124_pr_115_012138 crossref_primary_10_1002_hbm_22075 crossref_primary_10_1002_hbm_26671 crossref_primary_10_1016_j_neuroimage_2023_119974 crossref_primary_10_1089_neu_2014_3822 crossref_primary_10_1016_j_pnpbp_2011_11_015 crossref_primary_10_1016_j_neuroimage_2009_01_068 crossref_primary_10_1016_j_nicl_2014_12_019 crossref_primary_10_1016_j_neuroimage_2022_119439 crossref_primary_10_1016_j_nicl_2021_102872 crossref_primary_10_3390_life13010119 crossref_primary_10_3390_brainsci11070920 crossref_primary_10_1016_j_dcn_2014_10_002 crossref_primary_10_1016_j_neuroimage_2013_11_025 crossref_primary_10_1176_appi_ajp_2013_12111462 crossref_primary_10_3389_fneur_2021_681467 crossref_primary_10_1016_j_neuroimage_2021_118084 crossref_primary_10_1002_hbm_25130 crossref_primary_10_1016_j_pscychresns_2017_03_015 crossref_primary_10_1146_annurev_psych_010213_115202 crossref_primary_10_1038_s41386_019_0343_6 crossref_primary_10_1002_hbm_24287 crossref_primary_10_1016_j_neuroimage_2013_12_044 crossref_primary_10_1016_j_neuroscience_2013_11_029 crossref_primary_10_1016_j_jphysparis_2010_08_007 crossref_primary_10_1016_j_neuroimage_2010_01_033 crossref_primary_10_3174_ajnr_A4417 crossref_primary_10_1016_j_jpsychires_2013_03_021 crossref_primary_10_1016_j_pscychresns_2013_11_006 crossref_primary_10_1007_s00429_013_0655_y crossref_primary_10_3390_biom11060823 crossref_primary_10_1073_pnas_2205162119 crossref_primary_10_1016_j_neuroimage_2019_06_016 crossref_primary_10_1016_j_dcn_2017_08_003 crossref_primary_10_3389_fnhum_2017_00528 crossref_primary_10_1016_j_neuropsychologia_2010_10_007 crossref_primary_10_1089_brain_2021_0058 crossref_primary_10_1176_appi_ajp_2016_15111435 crossref_primary_10_18454_ACEN_2017_3_10 crossref_primary_10_1016_j_nicl_2019_102123 crossref_primary_10_1038_s41598_024_78351_0 crossref_primary_10_1093_cercor_bht187 crossref_primary_10_1007_s11682_024_00876_9 crossref_primary_10_1016_j_seizure_2018_04_002 crossref_primary_10_1016_j_mri_2009_05_006 crossref_primary_10_1007_s11682_016_9666_7 crossref_primary_10_1038_s41467_023_44591_3 crossref_primary_10_1097_00004583_201012000_00010 crossref_primary_10_1016_j_dcn_2018_01_004 crossref_primary_10_1016_j_neuroimage_2017_04_057 crossref_primary_10_1016_j_neuroimage_2017_04_059 crossref_primary_10_1016_j_neuropsychologia_2016_05_018 crossref_primary_10_1016_j_dcn_2015_05_006 crossref_primary_10_1016_j_neuroimage_2014_08_059 crossref_primary_10_3389_fneur_2023_1305071 crossref_primary_10_1007_s00234_021_02713_y crossref_primary_10_1016_j_neuroscience_2013_12_044 |
Cites_doi | 10.1016/j.ijdevneu.2007.03.008 10.1097/01.wnr.0000183327.98370.6a 10.1016/j.neuroimage.2005.01.028 10.1016/j.neuroimage.2005.03.016 10.1038/35004593 10.1093/cercor/bhi062 10.1126/science.283.5409.1908 10.1002/jmri.20410 10.1006/nimg.2001.0786 10.1016/j.neuroimage.2006.01.042 10.1002/jmri.20281 10.1016/S0006-3495(94)80775-1 10.1002/hbm.20363 10.1093/schbul/15.4.585 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 10.1016/j.neuroimage.2007.03.053 10.1148/radiol.2212001702 10.1093/cercor/bhh055 10.1007/s002340050869 10.1148/radiol.2301021640 10.1093/brain/awg203 10.1177/1073858404263960 10.1016/j.neuroimage.2005.04.027 10.1038/13158 10.1002/(SICI)1522-2594(199907)42:1<37::AID-MRM7>3.0.CO;2-O 10.2214/AJR.07.2132 10.1148/radiol.2221010626 10.1006/jecp.1993.1034 10.1038/nn1008 10.1002/hbm.20273 10.1016/j.neuroimage.2005.08.017 10.1002/hbm.20431 10.1038/nrn1119 10.1073/pnas.96.18.10422 10.1016/j.neuroimage.2007.07.043 10.1016/j.neuroimage.2005.11.022 10.1093/cercor/12.12.1237 10.1016/j.tins.2006.01.007 10.1007/s00234-003-1154-2 10.1093/cercor/bhm003 10.1016/j.neuroimage.2006.10.047 10.1159/000104277 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O 10.1111/j.1467-8624.2004.00745.x 10.1002/nbm.782 |
ContentType | Journal Article |
Copyright | 2007 Elsevier Inc. Copyright Elsevier Limited Apr 15, 2008 |
Copyright_xml | – notice: 2007 Elsevier Inc. – notice: Copyright Elsevier Limited Apr 15, 2008 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7QO 7X8 |
DOI | 10.1016/j.neuroimage.2007.12.053 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Psychology Database ProQuest Biological Science Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts Biotechnology Research Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Biotechnology Research Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Engineering Research Database ProQuest One Psychology MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 1055 |
ExternalDocumentID | 3244645361 18295509 10_1016_j_neuroimage_2007_12_053 S1053811907011779 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GNUQQ GROUPED_DOAJ HCIFZ HMCUK HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 .1- .FO 29N AAFWJ AAQXK AAYXX ABMZM ACLOT ADFGL ADVLN ADXHL AFPKN AFRHN AGHFR AGQPQ AIGII AJUYK AKRLJ APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 GBLVA HDW HEI HMK HMO HVGLF OK1 P-8 R2- SEW WUQ XPP Z5R ZMT ~HD AGRNS ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7QO 7X8 |
ID | FETCH-LOGICAL-c554t-b72309f051a0e26a6ec5748ac5dfeddbde537a16ff2b160482a2e1acf2fd4cfa3 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 |
IngestDate | Sun Sep 28 04:11:23 EDT 2025 Sat Sep 27 18:35:50 EDT 2025 Wed Aug 13 04:42:07 EDT 2025 Mon Jul 21 06:00:59 EDT 2025 Thu Apr 24 23:03:32 EDT 2025 Wed Oct 01 02:57:43 EDT 2025 Fri Feb 23 02:31:38 EST 2024 Tue Aug 26 17:34:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c554t-b72309f051a0e26a6ec5748ac5dfeddbde537a16ff2b160482a2e1acf2fd4cfa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PMID | 18295509 |
PQID | 1506782134 |
PQPubID | 2031077 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_70434507 proquest_miscellaneous_21038615 proquest_journals_1506782134 pubmed_primary_18295509 crossref_citationtrail_10_1016_j_neuroimage_2007_12_053 crossref_primary_10_1016_j_neuroimage_2007_12_053 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2007_12_053 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2007_12_053 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-04-15 |
PublicationDateYYYYMMDD | 2008-04-15 |
PublicationDate_xml | – month: 04 year: 2008 text: 2008-04-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2008 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Basser, Pajevic, Pierpaoli, Duda, Aldroubi (bib3) 2000; 44 Catani, Jones, Donato, Ffytche (bib9) 2003; 126 Schmithorst, V.J., Holland, S.K., Dardzinski, B.J., in press. Developmental differences in white matter architecture between boys and girls. Hum. Brain Mapp. Barnea-Goraly, Menon, Eckert, Tamm, Bammer, Karchemskiy (bib2) 2005; 15 Beaulieu (bib5) 2002; 15 Benes (bib7) 1989; 15 Sowell, Peterson, Thompson, Welcome, Henkenius, Toga (bib42) 2003; 6 Mukherjee, Miller, Shimony, Conturo, Lee, Almli (bib31) 2001; 221 McLaughlin, Paul, Grieve, Williams, Laidlaw, DiCarlo (bib28) 2007; 25 Ashtari, Cervellione, Hasan, Wu, McIlree, Kester (bib1) 2007; 35 Giorgio, Watkins, Douaud, James, James, De Stefano (bib16) 2008; 39 Good, Johnsrude, Ashburner, Henson, Friston, Frackowiak (bib18) 2001; 14 Deipolyi, Mukherjee, Gill, Henry, Partridge, Veeraraghavan (bib11) 2005; 27 Provenzale, Liang, DeLong, White (bib34) 2007; 189 McKinstry, Mathur, Miller, Ozcan, Snyder, Schefft (bib27) 2002; 12 Schneider, Il'yasov, Hennig, Martin (bib37) 2004; 46 Eluvathingal, Hasan, Kramer, Fletcher, Ewing-Cobbs (bib14) 2007; 17 Luna, Garver, Urban, Lazar, Sweeney (bib26) 2004; 75 Partridge, Mukherjee, Berman, Henry, Miller, Lu (bib32) 2005; 22 Schmithorst, Wilke, Dardzinski, Holland (bib36) 2002; 222 Kretschmann (bib22) 1988; 160 Dubois, Dehaene-Lambertz, Perrin, Mangin, Cointepas, Duchesnay (bib12) 2008; 29 Song, Yoshino, Le, Lin, Sun, Cross (bib40) 2005; 26 Dubois, Hertz-Pannier, Dehaene-Lambertz, Cointepas, Le Bihan (bib13) 2006; 30 Toga, Thompson, Sowell (bib44) 2006; 29 Basser, Mattiello, LeBihan (bib4) 1994; 66 Hermoye, Saint-Martin, Cosnard, Lee, Kim, Nassogne (bib19) 2006; 29 Wakana, Jiang, Nagae-Poetscher, van Zijl, Mori (bib45) 2004; 230 Thompson, Giedd, Woods, MacDonald, Evans, Toga (bib43) 2000; 404 Snook, Paulson, Roy, Phillips, Beaulieu (bib39) 2005; 26 Sowell, Thompson, Toga (bib41) 2004; 10 Yakovlev, Lecours (bib47) 1967 Lenroot, Gogtay, Greenstein, Wells, Wallace, Clasen (bib24) 2007; 36 Buchel, Raedler, Sommer, Sach, Weiller, Koch (bib8) 2004; 14 . Schneiderman, Buchsbaum, Haznedar, Hazlett, Brickman, Shihabuddin (bib38) 2007; 55 Mori, Crain, Chacko, van Zijl (bib29) 1999; 45 Le Bihan (bib23) 2003; 4 Kail (bib21) 1993; 56 Jones, Simmons, Williams, Horsfield (bib20) 1999; 42 Whitford, Rennie, Grieve, Clark, Gordon, Williams (bib46) 2007; 28 Morriss, Zimmerman, Bilaniuk, Hunter, Haselgrove (bib30) 1999; 41 Gong, Jiang, Zhu, Zang, He, Xie (bib17) 2005; 16 Conturo, Lori, Cull, Akbudak, Snyder, Shimony (bib10) 1999; 96 Lerch, Worsley, Shaw, Greenstein, Lenroot, Giedd (bib25) 2006; 31 Giedd, Blumenthal, Jeffries, Castellanos, Liu, Zijdenbos (bib15) 1999; 2 Paus, Zijdenbos, Worsley, Collins, Blumenthal, Giedd (bib33) 1999; 283 Ben Bashat, Ben Sira, Graif, Pianka, Hendler, Cohen (bib6) 2005; 21 Morriss (10.1016/j.neuroimage.2007.12.053_bib30) 1999; 41 10.1016/j.neuroimage.2007.12.053_bib35 Lerch (10.1016/j.neuroimage.2007.12.053_bib25) 2006; 31 Buchel (10.1016/j.neuroimage.2007.12.053_bib8) 2004; 14 Catani (10.1016/j.neuroimage.2007.12.053_bib9) 2003; 126 Luna (10.1016/j.neuroimage.2007.12.053_bib26) 2004; 75 Song (10.1016/j.neuroimage.2007.12.053_bib40) 2005; 26 Paus (10.1016/j.neuroimage.2007.12.053_bib33) 1999; 283 Thompson (10.1016/j.neuroimage.2007.12.053_bib43) 2000; 404 Hermoye (10.1016/j.neuroimage.2007.12.053_bib19) 2006; 29 Partridge (10.1016/j.neuroimage.2007.12.053_bib32) 2005; 22 Provenzale (10.1016/j.neuroimage.2007.12.053_bib34) 2007; 189 Whitford (10.1016/j.neuroimage.2007.12.053_bib46) 2007; 28 Basser (10.1016/j.neuroimage.2007.12.053_bib4) 1994; 66 Ben Bashat (10.1016/j.neuroimage.2007.12.053_bib6) 2005; 21 Deipolyi (10.1016/j.neuroimage.2007.12.053_bib11) 2005; 27 Schneider (10.1016/j.neuroimage.2007.12.053_bib37) 2004; 46 Giedd (10.1016/j.neuroimage.2007.12.053_bib15) 1999; 2 Le Bihan (10.1016/j.neuroimage.2007.12.053_bib23) 2003; 4 Snook (10.1016/j.neuroimage.2007.12.053_bib39) 2005; 26 Wakana (10.1016/j.neuroimage.2007.12.053_bib45) 2004; 230 Basser (10.1016/j.neuroimage.2007.12.053_bib3) 2000; 44 Good (10.1016/j.neuroimage.2007.12.053_bib18) 2001; 14 Dubois (10.1016/j.neuroimage.2007.12.053_bib13) 2006; 30 Schneiderman (10.1016/j.neuroimage.2007.12.053_bib38) 2007; 55 Gong (10.1016/j.neuroimage.2007.12.053_bib17) 2005; 16 Dubois (10.1016/j.neuroimage.2007.12.053_bib12) 2008; 29 Kail (10.1016/j.neuroimage.2007.12.053_bib21) 1993; 56 Sowell (10.1016/j.neuroimage.2007.12.053_bib42) 2003; 6 Ashtari (10.1016/j.neuroimage.2007.12.053_bib1) 2007; 35 Kretschmann (10.1016/j.neuroimage.2007.12.053_bib22) 1988; 160 Lenroot (10.1016/j.neuroimage.2007.12.053_bib24) 2007; 36 Yakovlev (10.1016/j.neuroimage.2007.12.053_bib47) 1967 McKinstry (10.1016/j.neuroimage.2007.12.053_bib27) 2002; 12 Eluvathingal (10.1016/j.neuroimage.2007.12.053_bib14) 2007; 17 Beaulieu (10.1016/j.neuroimage.2007.12.053_bib5) 2002; 15 Schmithorst (10.1016/j.neuroimage.2007.12.053_bib36) 2002; 222 McLaughlin (10.1016/j.neuroimage.2007.12.053_bib28) 2007; 25 Mukherjee (10.1016/j.neuroimage.2007.12.053_bib31) 2001; 221 Sowell (10.1016/j.neuroimage.2007.12.053_bib41) 2004; 10 Benes (10.1016/j.neuroimage.2007.12.053_bib7) 1989; 15 Conturo (10.1016/j.neuroimage.2007.12.053_bib10) 1999; 96 Giorgio (10.1016/j.neuroimage.2007.12.053_bib16) 2008; 39 Jones (10.1016/j.neuroimage.2007.12.053_bib20) 1999; 42 Mori (10.1016/j.neuroimage.2007.12.053_bib29) 1999; 45 Toga (10.1016/j.neuroimage.2007.12.053_bib44) 2006; 29 Barnea-Goraly (10.1016/j.neuroimage.2007.12.053_bib2) 2005; 15 |
References_xml | – volume: 29 start-page: 148 year: 2006 end-page: 159 ident: bib44 article-title: Mapping brain maturation publication-title: Trends Neurosci. – volume: 17 start-page: 2760 year: 2007 end-page: 2768 ident: bib14 article-title: Quantitative diffusion tensor tractography of association and projection fibers in normally developing children and adolescents publication-title: Cereb. Cortex. – volume: 10 start-page: 372 year: 2004 end-page: 392 ident: bib41 article-title: Mapping changes in the human cortex throughout the span of life publication-title: Neuroscientist – reference: Schmithorst, V.J., Holland, S.K., Dardzinski, B.J., in press. Developmental differences in white matter architecture between boys and girls. Hum. Brain Mapp. – volume: 4 start-page: 469 year: 2003 end-page: 480 ident: bib23 article-title: Looking into the functional architecture of the brain with diffusion MRI publication-title: Nat. Rev., Neurosci. – volume: 28 start-page: 228 year: 2007 end-page: 237 ident: bib46 article-title: Brain maturation in adolescence: concurrent changes in neuroanatomy and neurophysiology publication-title: Hum. Brain Mapp. – volume: 404 start-page: 190 year: 2000 end-page: 193 ident: bib43 article-title: Growth patterns in the developing brain detected by using continuum mechanical tensor maps publication-title: Nature – volume: 30 start-page: 1121 year: 2006 end-page: 1132 ident: bib13 article-title: Assessment of the early organization and maturation of infants' cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography publication-title: Neuroimage – volume: 26 start-page: 1164 year: 2005 end-page: 1173 ident: bib39 article-title: Diffusion tensor imaging of neurodevelopment in children and young adults publication-title: Neuroimage – volume: 21 start-page: 503 year: 2005 end-page: 511 ident: bib6 article-title: Normal white matter development from infancy to adulthood: comparing diffusion tensor and high b value diffusion weighted MR images publication-title: J. Magn. Reson. Imaging – volume: 29 start-page: 14 year: 2008 end-page: 27 ident: bib12 article-title: Asynchrony of the early maturation of white matter bundles in healthy infants: Quantitative landmarks revealed noninvasively by diffusion tensor imaging publication-title: Hum. Brain Mapp. – volume: 2 start-page: 861 year: 1999 end-page: 863 ident: bib15 article-title: Brain development during childhood and adolescence: a longitudinal MRI study publication-title: Nat. Neurosci. – volume: 96 start-page: 10422 year: 1999 end-page: 10427 ident: bib10 article-title: Tracking neuronal fiber pathways in the living human brain publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 26 start-page: 132 year: 2005 end-page: 140 ident: bib40 article-title: Demyelination increases radial diffusivity in corpus callosum of mouse brain publication-title: Neuroimage – start-page: 3 year: 1967 end-page: 70 ident: bib47 article-title: The myelogenetic cycles of regional maturation of the brain publication-title: Regional Development of the Brain Early in Life – volume: 42 start-page: 37 year: 1999 end-page: 41 ident: bib20 article-title: Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI publication-title: Magn. Reson. Med. – volume: 56 start-page: 254 year: 1993 end-page: 265 ident: bib21 article-title: Processing time decreases globally at an exponential rate during childhood and adolescence publication-title: J. Exp. Child Psychol. – volume: 160 start-page: 219 year: 1988 end-page: 225 ident: bib22 article-title: Localisation of the corticospinal fibres in the internal capsule in man publication-title: J. Anat. – volume: 55 start-page: 96 year: 2007 end-page: 111 ident: bib38 article-title: Diffusion tensor anisotropy in adolescents and adults publication-title: Neuropsychobiology – volume: 75 start-page: 1357 year: 2004 end-page: 1372 ident: bib26 article-title: Maturation of cognitive processes from late childhood to adulthood publication-title: Child Dev. – volume: 15 start-page: 1848 year: 2005 end-page: 1854 ident: bib2 article-title: White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study publication-title: Cereb. Cortex – volume: 16 start-page: 1701 year: 2005 end-page: 1705 ident: bib17 article-title: Side and handedness effects on the cingulum from diffusion tensor imaging publication-title: Neuroreport – volume: 25 start-page: 215 year: 2007 end-page: 221 ident: bib28 article-title: Diffusion tensor imaging of the corpus callosum: a cross-sectional study across the lifespan publication-title: Int. J. Dev. Neurosci. – volume: 126 start-page: 2093 year: 2003 end-page: 2107 ident: bib9 article-title: Occipito-temporal connections in the human brain publication-title: Brain – volume: 29 start-page: 493 year: 2006 end-page: 504 ident: bib19 article-title: Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood publication-title: Neuroimage – volume: 45 start-page: 265 year: 1999 end-page: 269 ident: bib29 article-title: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging publication-title: Ann. Neurol. – volume: 46 start-page: 258 year: 2004 end-page: 266 ident: bib37 article-title: Fast quantitative diffusion-tensor imaging of cerebral white matter from the neonatal period to adolescence publication-title: Neuroradiology – volume: 22 start-page: 467 year: 2005 end-page: 474 ident: bib32 article-title: Tractography-based quantitation of diffusion tensor imaging parameters in white matter tracts of preterm newborns publication-title: J. Magn. Reson. Imaging – volume: 39 start-page: 52 year: 2008 end-page: 61 ident: bib16 article-title: Changes in white matter microstructure during adolescence publication-title: Neuroimage – volume: 14 start-page: 945 year: 2004 end-page: 951 ident: bib8 article-title: White matter asymmetry in the human brain: a diffusion tensor MRI study publication-title: Cereb. Cortex – volume: 283 start-page: 1908 year: 1999 end-page: 1911 ident: bib33 article-title: Structural maturation of neural pathways in children and adolescents: in vivo study publication-title: Science – reference: . – volume: 36 start-page: 1065 year: 2007 end-page: 1073 ident: bib24 article-title: Sexual dimorphism of brain developmental trajectories during childhood and adolescence publication-title: Neuroimage – volume: 189 start-page: 476 year: 2007 end-page: 486 ident: bib34 article-title: Diffusion tensor imaging assessment of brain white matter maturation during the first postnatal year publication-title: AJR. Am. J. Roentgenol. – volume: 222 start-page: 212 year: 2002 end-page: 218 ident: bib36 article-title: Correlation of white matter diffusivity and anisotropy with age during childhood and adolescence: a cross-sectional diffusion-tensor MR imaging study publication-title: Radiology – volume: 66 start-page: 259 year: 1994 end-page: 267 ident: bib4 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophys. J. – volume: 44 start-page: 625 year: 2000 end-page: 632 ident: bib3 article-title: In vivo fiber tractography using DT-MRI data publication-title: Magn. Reson. Med. – volume: 35 start-page: 501 year: 2007 end-page: 510 ident: bib1 article-title: White matter development during late adolescence in healthy males: a cross-sectional diffusion tensor imaging study publication-title: Neuroimage – volume: 27 start-page: 579 year: 2005 end-page: 586 ident: bib11 article-title: Comparing microstructural and macrostructural development of the cerebral cortex in premature newborns: diffusion tensor imaging versus cortical gyration publication-title: Neuroimage – volume: 6 start-page: 309 year: 2003 end-page: 315 ident: bib42 article-title: Mapping cortical change across the human life span publication-title: Nat. Neurosci. – volume: 15 start-page: 585 year: 1989 end-page: 593 ident: bib7 article-title: Myelination of cortical-hippocampal relays during late adolescence publication-title: Schizophr. Bull – volume: 31 start-page: 993 year: 2006 end-page: 1003 ident: bib25 article-title: Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI publication-title: Neuroimage – volume: 12 start-page: 1237 year: 2002 end-page: 1243 ident: bib27 article-title: Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI publication-title: Cereb. Cortex – volume: 14 start-page: 21 year: 2001 end-page: 36 ident: bib18 article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains publication-title: Neuroimage – volume: 41 start-page: 929 year: 1999 end-page: 934 ident: bib30 article-title: Changes in brain water diffusion during childhood publication-title: Neuroradiology – volume: 15 start-page: 435 year: 2002 end-page: 455 ident: bib5 article-title: The basis of anisotropic water diffusion in the nervous system—a technical review publication-title: NMR Biomed. – volume: 230 start-page: 77 year: 2004 end-page: 87 ident: bib45 article-title: Fiber tract-based atlas of human white matter anatomy publication-title: Radiology – volume: 221 start-page: 349 year: 2001 end-page: 358 ident: bib31 article-title: Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging publication-title: Radiology – volume: 25 start-page: 215 year: 2007 ident: 10.1016/j.neuroimage.2007.12.053_bib28 article-title: Diffusion tensor imaging of the corpus callosum: a cross-sectional study across the lifespan publication-title: Int. J. Dev. Neurosci. doi: 10.1016/j.ijdevneu.2007.03.008 – volume: 16 start-page: 1701 year: 2005 ident: 10.1016/j.neuroimage.2007.12.053_bib17 article-title: Side and handedness effects on the cingulum from diffusion tensor imaging publication-title: Neuroreport doi: 10.1097/01.wnr.0000183327.98370.6a – volume: 26 start-page: 132 year: 2005 ident: 10.1016/j.neuroimage.2007.12.053_bib40 article-title: Demyelination increases radial diffusivity in corpus callosum of mouse brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.01.028 – volume: 26 start-page: 1164 year: 2005 ident: 10.1016/j.neuroimage.2007.12.053_bib39 article-title: Diffusion tensor imaging of neurodevelopment in children and young adults publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.03.016 – volume: 404 start-page: 190 year: 2000 ident: 10.1016/j.neuroimage.2007.12.053_bib43 article-title: Growth patterns in the developing brain detected by using continuum mechanical tensor maps publication-title: Nature doi: 10.1038/35004593 – volume: 15 start-page: 1848 year: 2005 ident: 10.1016/j.neuroimage.2007.12.053_bib2 article-title: White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study publication-title: Cereb. Cortex doi: 10.1093/cercor/bhi062 – volume: 283 start-page: 1908 year: 1999 ident: 10.1016/j.neuroimage.2007.12.053_bib33 article-title: Structural maturation of neural pathways in children and adolescents: in vivo study publication-title: Science doi: 10.1126/science.283.5409.1908 – volume: 22 start-page: 467 year: 2005 ident: 10.1016/j.neuroimage.2007.12.053_bib32 article-title: Tractography-based quantitation of diffusion tensor imaging parameters in white matter tracts of preterm newborns publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.20410 – volume: 14 start-page: 21 year: 2001 ident: 10.1016/j.neuroimage.2007.12.053_bib18 article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains publication-title: Neuroimage doi: 10.1006/nimg.2001.0786 – volume: 31 start-page: 993 year: 2006 ident: 10.1016/j.neuroimage.2007.12.053_bib25 article-title: Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.042 – volume: 21 start-page: 503 year: 2005 ident: 10.1016/j.neuroimage.2007.12.053_bib6 article-title: Normal white matter development from infancy to adulthood: comparing diffusion tensor and high b value diffusion weighted MR images publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.20281 – volume: 66 start-page: 259 year: 1994 ident: 10.1016/j.neuroimage.2007.12.053_bib4 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophys. J. doi: 10.1016/S0006-3495(94)80775-1 – volume: 29 start-page: 14 year: 2008 ident: 10.1016/j.neuroimage.2007.12.053_bib12 article-title: Asynchrony of the early maturation of white matter bundles in healthy infants: Quantitative landmarks revealed noninvasively by diffusion tensor imaging publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20363 – volume: 15 start-page: 585 year: 1989 ident: 10.1016/j.neuroimage.2007.12.053_bib7 article-title: Myelination of cortical-hippocampal relays during late adolescence publication-title: Schizophr. Bull doi: 10.1093/schbul/15.4.585 – volume: 45 start-page: 265 year: 1999 ident: 10.1016/j.neuroimage.2007.12.053_bib29 article-title: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging publication-title: Ann. Neurol. doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 – volume: 36 start-page: 1065 year: 2007 ident: 10.1016/j.neuroimage.2007.12.053_bib24 article-title: Sexual dimorphism of brain developmental trajectories during childhood and adolescence publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.03.053 – volume: 221 start-page: 349 year: 2001 ident: 10.1016/j.neuroimage.2007.12.053_bib31 article-title: Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging publication-title: Radiology doi: 10.1148/radiol.2212001702 – volume: 14 start-page: 945 year: 2004 ident: 10.1016/j.neuroimage.2007.12.053_bib8 article-title: White matter asymmetry in the human brain: a diffusion tensor MRI study publication-title: Cereb. Cortex doi: 10.1093/cercor/bhh055 – volume: 41 start-page: 929 year: 1999 ident: 10.1016/j.neuroimage.2007.12.053_bib30 article-title: Changes in brain water diffusion during childhood publication-title: Neuroradiology doi: 10.1007/s002340050869 – volume: 230 start-page: 77 year: 2004 ident: 10.1016/j.neuroimage.2007.12.053_bib45 article-title: Fiber tract-based atlas of human white matter anatomy publication-title: Radiology doi: 10.1148/radiol.2301021640 – volume: 126 start-page: 2093 year: 2003 ident: 10.1016/j.neuroimage.2007.12.053_bib9 article-title: Occipito-temporal connections in the human brain publication-title: Brain doi: 10.1093/brain/awg203 – volume: 10 start-page: 372 year: 2004 ident: 10.1016/j.neuroimage.2007.12.053_bib41 article-title: Mapping changes in the human cortex throughout the span of life publication-title: Neuroscientist doi: 10.1177/1073858404263960 – volume: 27 start-page: 579 year: 2005 ident: 10.1016/j.neuroimage.2007.12.053_bib11 article-title: Comparing microstructural and macrostructural development of the cerebral cortex in premature newborns: diffusion tensor imaging versus cortical gyration publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.04.027 – volume: 2 start-page: 861 year: 1999 ident: 10.1016/j.neuroimage.2007.12.053_bib15 article-title: Brain development during childhood and adolescence: a longitudinal MRI study publication-title: Nat. Neurosci. doi: 10.1038/13158 – volume: 42 start-page: 37 year: 1999 ident: 10.1016/j.neuroimage.2007.12.053_bib20 article-title: Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199907)42:1<37::AID-MRM7>3.0.CO;2-O – volume: 189 start-page: 476 year: 2007 ident: 10.1016/j.neuroimage.2007.12.053_bib34 article-title: Diffusion tensor imaging assessment of brain white matter maturation during the first postnatal year publication-title: AJR. Am. J. Roentgenol. doi: 10.2214/AJR.07.2132 – volume: 160 start-page: 219 year: 1988 ident: 10.1016/j.neuroimage.2007.12.053_bib22 article-title: Localisation of the corticospinal fibres in the internal capsule in man publication-title: J. Anat. – volume: 222 start-page: 212 year: 2002 ident: 10.1016/j.neuroimage.2007.12.053_bib36 article-title: Correlation of white matter diffusivity and anisotropy with age during childhood and adolescence: a cross-sectional diffusion-tensor MR imaging study publication-title: Radiology doi: 10.1148/radiol.2221010626 – volume: 56 start-page: 254 year: 1993 ident: 10.1016/j.neuroimage.2007.12.053_bib21 article-title: Processing time decreases globally at an exponential rate during childhood and adolescence publication-title: J. Exp. Child Psychol. doi: 10.1006/jecp.1993.1034 – volume: 6 start-page: 309 year: 2003 ident: 10.1016/j.neuroimage.2007.12.053_bib42 article-title: Mapping cortical change across the human life span publication-title: Nat. Neurosci. doi: 10.1038/nn1008 – volume: 28 start-page: 228 year: 2007 ident: 10.1016/j.neuroimage.2007.12.053_bib46 article-title: Brain maturation in adolescence: concurrent changes in neuroanatomy and neurophysiology publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20273 – volume: 29 start-page: 493 year: 2006 ident: 10.1016/j.neuroimage.2007.12.053_bib19 article-title: Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.08.017 – ident: 10.1016/j.neuroimage.2007.12.053_bib35 doi: 10.1002/hbm.20431 – volume: 4 start-page: 469 year: 2003 ident: 10.1016/j.neuroimage.2007.12.053_bib23 article-title: Looking into the functional architecture of the brain with diffusion MRI publication-title: Nat. Rev., Neurosci. doi: 10.1038/nrn1119 – volume: 96 start-page: 10422 year: 1999 ident: 10.1016/j.neuroimage.2007.12.053_bib10 article-title: Tracking neuronal fiber pathways in the living human brain publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.96.18.10422 – volume: 39 start-page: 52 year: 2008 ident: 10.1016/j.neuroimage.2007.12.053_bib16 article-title: Changes in white matter microstructure during adolescence publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.07.043 – volume: 30 start-page: 1121 year: 2006 ident: 10.1016/j.neuroimage.2007.12.053_bib13 article-title: Assessment of the early organization and maturation of infants' cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.11.022 – volume: 12 start-page: 1237 year: 2002 ident: 10.1016/j.neuroimage.2007.12.053_bib27 article-title: Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI publication-title: Cereb. Cortex doi: 10.1093/cercor/12.12.1237 – volume: 29 start-page: 148 year: 2006 ident: 10.1016/j.neuroimage.2007.12.053_bib44 article-title: Mapping brain maturation publication-title: Trends Neurosci. doi: 10.1016/j.tins.2006.01.007 – volume: 46 start-page: 258 year: 2004 ident: 10.1016/j.neuroimage.2007.12.053_bib37 article-title: Fast quantitative diffusion-tensor imaging of cerebral white matter from the neonatal period to adolescence publication-title: Neuroradiology doi: 10.1007/s00234-003-1154-2 – start-page: 3 year: 1967 ident: 10.1016/j.neuroimage.2007.12.053_bib47 article-title: The myelogenetic cycles of regional maturation of the brain – volume: 17 start-page: 2760 year: 2007 ident: 10.1016/j.neuroimage.2007.12.053_bib14 article-title: Quantitative diffusion tensor tractography of association and projection fibers in normally developing children and adolescents publication-title: Cereb. Cortex. doi: 10.1093/cercor/bhm003 – volume: 35 start-page: 501 year: 2007 ident: 10.1016/j.neuroimage.2007.12.053_bib1 article-title: White matter development during late adolescence in healthy males: a cross-sectional diffusion tensor imaging study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.10.047 – volume: 55 start-page: 96 year: 2007 ident: 10.1016/j.neuroimage.2007.12.053_bib38 article-title: Diffusion tensor anisotropy in adolescents and adults publication-title: Neuropsychobiology doi: 10.1159/000104277 – volume: 44 start-page: 625 year: 2000 ident: 10.1016/j.neuroimage.2007.12.053_bib3 article-title: In vivo fiber tractography using DT-MRI data publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O – volume: 75 start-page: 1357 year: 2004 ident: 10.1016/j.neuroimage.2007.12.053_bib26 article-title: Maturation of cognitive processes from late childhood to adulthood publication-title: Child Dev. doi: 10.1111/j.1467-8624.2004.00745.x – volume: 15 start-page: 435 year: 2002 ident: 10.1016/j.neuroimage.2007.12.053_bib5 article-title: The basis of anisotropic water diffusion in the nervous system—a technical review publication-title: NMR Biomed. doi: 10.1002/nbm.782 |
SSID | ssj0009148 |
Score | 2.5219657 |
Snippet | Brain maturation is a complex process that continues well beyond infancy, and adolescence is thought to be a key period of brain rewiring. To assess structural... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1044 |
SubjectTerms | Adolescent Adult Age Aging - physiology Attention deficit hyperactivity disorder Brain - growth & development Brain - ultrastructure Brain damage Brain research Child Child development Child, Preschool Cognitive ability Diffusion Magnetic Resonance Imaging Female Humans Image Processing, Computer-Assisted Male Methods Nerve Fibers - physiology Neural Pathways - growth & development Neural Pathways - ultrastructure Studies |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7iQbyIb-szB69rzXsXTyKKCvWigreQzSZQ0bZgvfrbndlkWzwUCh43m4EwmZl8u5n5hpBzbgLTpoEdYD4WEmyocCWPRS1ddL6JotRYOzx40vev8vFNva2Qm64WBtMqc-xPMb2N1nmkn7XZnwyH_WdABnDcwIFmkNfMYBEfsn-BTV_8zNM8KiZTOZwSBc7O2Twpx6vljBx-gucmMkP8MajEoiNqEQRtj6K7TbKRMSS9TsvcIithtE3WBvmWfIc8DDDLLjHDIqsG_UT2znYL6DhSgHy0bc1Ha-wPQbHChPqO4phOx7Ql5cCHXfJ6d_tyc1_klgmFB1wwLWoDnxRVBE9zl4Frp4NXRpbOqyaGpqmboIRxTMfIa6bBe7njgTkfeWykj07skdXReBQOCFXBqQjThVFOOhErbRyEtxJGmdOq6hHTacn6zCeObS0-bJc49m7n-sV2l8YybkG_PcJmkpPEqbGETNVthO1qRiHKWQj8S8hezWT_2NaS0sfdvtvs318WeRkBWzEhe-Rs9ho8E69b3CiMv78sR-55AIyLZ5hLKSQA8h7ZT_Y0V0fJK_h2rA7_tfQjsp7SW2TB1DFZBbsLJ4ChpvVp6yS_zcgdFQ priority: 102 providerName: Elsevier |
Title | Microstructural maturation of the human brain from childhood to adulthood |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811907011779 https://dx.doi.org/10.1016/j.neuroimage.2007.12.053 https://www.ncbi.nlm.nih.gov/pubmed/18295509 https://www.proquest.com/docview/1506782134 https://www.proquest.com/docview/21038615 https://www.proquest.com/docview/70434507 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20250803 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250803 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZoKyEuqLwDJfjA1VC_d8WhKlWrFEhUVVTKzfJ6bQlEs0UJ1_72zqy9ySkoJ2t3PVppPDP-bI-_IeSjsJEb28II8JCYAhtivhKJNconH9okK4N3h6czM7lR3-Z6XjbcliWtcoiJfaBuu4B75J-RCQ9mMy7Vyd1fhlWj8HS1lNDYIwccoApatZ3bDekuV_kqnJasgg4lkyfnd_V8kb9uwWszkSFuCmq5bXraBj_7aejikDwt-JGe5gF_Rh7FxXPyeFpOyF-Qyylm2GVWWGTUoLfI3Nmrn3aJAtyjfVk-2mBtCIq3S2gY6I3pqqM9IQc-vCQ3F-c_zyaslEtgATDBijUWlhN1Ai_zx1EYb2LQVlU-6DbFtm3aqKX13KQkGm7Ac4UXkfuQRGpVSF6-IvuLbhHfEKqj1wm6S6u98jLVxnoIbRW85d7oekTsoCUXCpc4lrT444aksd9uo18sdWkdFw70OyJ8LXmX-TR2kKmHgXDDfVGIcA6C_g6yX9ayBVNkrLCj9NEw7q749tJtLHFEPqw_g1fiUYtfxO7f0gnknQewuL2HPVZSARgfkdfZnjbqqEQN68b67f9__o48ybkrinF9RPbBsOJ7AEirZkz2Pt3zce8LY3Jwenb94wrby--TGbRfz2dX1w96KBdi |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIgEXxJtAoT7A0SJ-7wohhIAqoU1PrZSb8XptCUSzrZIK8af4jYzX6-QUlEuP-5hdaWZ25lt75huAN9wEpk2LFmA-Uok-RF3FI22ki863UVQ69Q7PTvXkXH6bq_ke_C29MKmsssTEPlC3nU9r5O8SEx5mMybkx8srmqZGpd3VMkIju8Vx-PMbf9mWH6Zf0L5vOT_6evZ5QoepAtRj6lzRxiDqriM6oxsHrp0OXhlZOa_aGNq2aYMSxjEdI2-YRgfnjgfmfOSxlT46gc-9BbelGMvE1W_mZkPyy2RuvVOCVozVQ-VQrifr-Sl_XGCUyMSJaRFSiW3pcBvc7dPe0QO4P-BV8ik72EPYC4tHcGc27Mg_huksVfRlFtrE4EEuElNob27SRYLwkvRjAEmTZlGQ1M1CfKFTJquO9AQg6eAJnN-IIp_C_qJbhOdAVHAq4u3CKCediLU2DkNphWeZ06oegSlasn7gLk8jNH7ZUqT20270m0ZrGsu4Rf2OgK0lLzN_xw4ydTGELf2pGFEtJpkdZN-vZQcMk7HJjtIHxe52iCVLu_H8ERyuL2MUSFs7bhG666Xliecewen2O8xYCongfwTPsj9t1FHxGv9T6xf_f_kh3J2czU7syfT0-CXcy3UzkjJ1APvoZOEVgrNV87r_Igh8v-lP8B-NvFC7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIlVcEG9SCvUBjlbr964QQogSNZRUHKiUm_F6bamIZlslCPHX-HWM1-vkFJRLj_uYXWnetme-AXjNTWDatCgB5iOVqEPUVTzSRrrofBtFpVPv8PRcn17IzzM124G_pRcmlVUWn9g76rbzaY_8KCHhYTRjQh7FoSzi68n4_fUNTROk0klrGaeRVeQs_PmNy7fFu8kJyvoN5-NP3z6e0mHCAPUYRpe0MZiB1xEV0x0Hrp0OXhlZOa_aGNq2aYMSxjEdI2-YRmXnjgfmfOSxlT46gd-9A3eNkCKVk5mZWQP-Mpnb8JSgFWP1UEWUa8t6rMrLK_QYGUQxbUgqsSk0bkp9-xA4fgD3h9yVfMjK9hB2wvwR7E2H0_nHMJmm6r6MSJvQPMhVQg3tRU-6SDDVJP1IQNKkuRQkdbYQX6CVybIjPRhIungCF7fCyKewO-_m4TkQFZyK-LowykknYq2NQ7da4V3mtKpHYAqXrB9wzNM4jZ-2FKz9sGv-pjGbxjJukb8jYCvK64zlsQVNXQRhS68qeleLAWcL2rcr2iGfyXnKltQHRe528CsLu7aCERyuHqNHSMc8bh66XwvLE-Y9Jqqb3zDHUkhcCIzgWdanNTsqXuOatd7__88PYQ-Nz36ZnJ-9gHu5hEZSpg5gF3UsvMQ8bdm86g2CwPfbtsB_D-5U9g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructural+maturation+of+the+human+brain+from+childhood+to+adulthood&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Lebel%2C+C&rft.au=Walker%2C+L&rft.au=Leemans%2C+A&rft.au=Phillips%2C+L&rft.date=2008-04-15&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=40&rft.issue=3&rft.spage=1044&rft.epage=1055&rft_id=info:doi/10.1016%2Fj.neuroimage.2007.12.053&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |