Establishing Cerebral Organoids as Models of Human-Specific Brain Evolution
Direct comparisons of human and non-human primate brains can reveal molecular pathways underlying remarkable specializations of the human brain. However, chimpanzee tissue is inaccessible during neocortical neurogenesis when differences in brain size first appear. To identify human-specific features...
Saved in:
Published in | Cell Vol. 176; no. 4; pp. 743 - 756.e17 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
07.02.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0092-8674 1097-4172 1097-4172 |
DOI | 10.1016/j.cell.2019.01.017 |
Cover
Abstract | Direct comparisons of human and non-human primate brains can reveal molecular pathways underlying remarkable specializations of the human brain. However, chimpanzee tissue is inaccessible during neocortical neurogenesis when differences in brain size first appear. To identify human-specific features of cortical development, we leveraged recent innovations that permit generating pluripotent stem cell-derived cerebral organoids from chimpanzee. Despite metabolic differences, organoid models preserve gene regulatory networks related to primary cell types and developmental processes. We further identified 261 differentially expressed genes in human compared to both chimpanzee organoids and macaque cortex, enriched for recent gene duplications, and including multiple regulators of PI3K-AKT-mTOR signaling. We observed increased activation of this pathway in human radial glia, dependent on two receptors upregulated specifically in human: INSR and ITGB8. Our findings establish a platform for systematic analysis of molecular changes contributing to human brain development and evolution.
•Brain organoids preserve gene expression networks despite elevated metabolic stress•Chimpanzee organoids enable studies of the evolution of human brain development•Primary and organoid samples reveal 261 human-specific gene expression changes•Human radial glia exhibit increased mTOR activation compared to non-human primates
Comparisons of cerebral organoids between chimpanzees, macaques, and humans reveal gene duplications and cell-signaling alterations that explain developmental evolutionary differences that are unique to us as a species. |
---|---|
AbstractList | Direct comparisons of human and non-human primate brains can reveal molecular pathways underlying remarkable specializations of the human brain. However, chimpanzee tissue is inaccessible during neocortical neurogenesis when differences in brain size first appear. To identify human-specific features of cortical development, we leveraged recent innovations that permit generating pluripotent stem cell-derived cerebral organoids from chimpanzee. Despite metabolic differences, organoid models preserve gene regulatory networks related to primary cell types and developmental processes. We further identified 261 differentially-expressed genes in human compared to both chimpanzee organoids and macaque cortex, enriched for recent gene duplications, and including multiple regulators of PI3K/AKT/mTOR signaling. We observed increased activation of this pathway in human radial glia, dependent on two receptors up-regulated specifically in human, INSR and ITGB8. Our findings establish a platform for systematic analysis of molecular changes contributing to human brain development and evolution. Direct comparisons of human and non-human primate brains can reveal molecular pathways underlying remarkable specializations of the human brain. However, chimpanzee tissue is inaccessible during neocortical neurogenesis when differences in brain size first appear. To identify human-specific features of cortical development, we leveraged recent innovations that permit generating pluripotent stem cell-derived cerebral organoids from chimpanzee. Despite metabolic differences, organoid models preserve gene regulatory networks related to primary cell types and developmental processes. We further identified 261 differentially expressed genes in human compared to both chimpanzee organoids and macaque cortex, enriched for recent gene duplications, and including multiple regulators of PI3K-AKT-mTOR signaling. We observed increased activation of this pathway in human radial glia, dependent on two receptors upregulated specifically in human: INSR and ITGB8. Our findings establish a platform for systematic analysis of molecular changes contributing to human brain development and evolution. Direct comparisons of human and non-human primate brains can reveal molecular pathways underlying remarkable specializations of the human brain. However, chimpanzee tissue is inaccessible during neocortical neurogenesis when differences in brain size first appear. To identify human-specific features of cortical development, we leveraged recent innovations that permit generating pluripotent stem cell-derived cerebral organoids from chimpanzee. Despite metabolic differences, organoid models preserve gene regulatory networks related to primary cell types and developmental processes. We further identified 261 differentially expressed genes in human compared to both chimpanzee organoids and macaque cortex, enriched for recent gene duplications, and including multiple regulators of PI3K-AKT-mTOR signaling. We observed increased activation of this pathway in human radial glia, dependent on two receptors upregulated specifically in human: INSR and ITGB8. Our findings establish a platform for systematic analysis of molecular changes contributing to human brain development and evolution.Direct comparisons of human and non-human primate brains can reveal molecular pathways underlying remarkable specializations of the human brain. However, chimpanzee tissue is inaccessible during neocortical neurogenesis when differences in brain size first appear. To identify human-specific features of cortical development, we leveraged recent innovations that permit generating pluripotent stem cell-derived cerebral organoids from chimpanzee. Despite metabolic differences, organoid models preserve gene regulatory networks related to primary cell types and developmental processes. We further identified 261 differentially expressed genes in human compared to both chimpanzee organoids and macaque cortex, enriched for recent gene duplications, and including multiple regulators of PI3K-AKT-mTOR signaling. We observed increased activation of this pathway in human radial glia, dependent on two receptors upregulated specifically in human: INSR and ITGB8. Our findings establish a platform for systematic analysis of molecular changes contributing to human brain development and evolution. Direct comparisons of human and non-human primate brains can reveal molecular pathways underlying remarkable specializations of the human brain. However, chimpanzee tissue is inaccessible during neocortical neurogenesis when differences in brain size first appear. To identify human-specific features of cortical development, we leveraged recent innovations that permit generating pluripotent stem cell-derived cerebral organoids from chimpanzee. Despite metabolic differences, organoid models preserve gene regulatory networks related to primary cell types and developmental processes. We further identified 261 differentially expressed genes in human compared to both chimpanzee organoids and macaque cortex, enriched for recent gene duplications, and including multiple regulators of PI3K-AKT-mTOR signaling. We observed increased activation of this pathway in human radial glia, dependent on two receptors upregulated specifically in human: INSR and ITGB8. Our findings establish a platform for systematic analysis of molecular changes contributing to human brain development and evolution. •Brain organoids preserve gene expression networks despite elevated metabolic stress•Chimpanzee organoids enable studies of the evolution of human brain development•Primary and organoid samples reveal 261 human-specific gene expression changes•Human radial glia exhibit increased mTOR activation compared to non-human primates Comparisons of cerebral organoids between chimpanzees, macaques, and humans reveal gene duplications and cell-signaling alterations that explain developmental evolutionary differences that are unique to us as a species. Direct comparisons of human and non-human primate brains can reveal molecular pathways underlying remarkable specializations of the human brain. However, chimpanzee tissue is inaccessible during neocortical neurogenesis when differences in brain size first appear. To identify human-specific features of cortical development, we leveraged recent innovations that permit generating pluripotent stem cell-derived cerebral organoids from chimpanzee. Despite metabolic differences, organoid models preserve gene regulatory networks related to primary cell types and developmental processes. We further identified 261 differentially expressed genes in human compared to both chimpanzee organoids and macaque cortex, enriched for recent gene duplications, and including multiple regulators of PI3K-AKT-mTOR signaling. We observed increased activation of this pathway in human radial glia, dependent on two receptors upregulated specifically in human: INSR and ITGB8. Our findings establish a platform for systematic analysis of molecular changes contributing to human brain development and evolution. |
Author | Bedolli, Melanie Fiddes, Ian T. Haussler, David West, Jay A. Pavlovic, Bryan J. Andrews, Madeline G. Mostajo-Radji, Mohammed A. Eichler, Evan E. Alvarado, Beatriz Bershteyn, Marina Kronenberg, Zev N. Kriegstein, Arnold R. Lowe, Craig B. Bhaduri, Aparna Di Lullo, Elizabeth Dougherty, Max L. Salama, Sofie R. Meyerson, Olivia S. Shuga, Joe Nowakowski, Tomasz J. Leyrat, Anne A. Pollen, Alex A. |
AuthorAffiliation | 4. Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA 5. Genomics Institute, University of California, Santa Cruz, CA, USA 1. Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA 7. Department of Developmental Biology, Stanford University, Stanford CA, USA 3. Department of Anatomy, UCSF, San Francisco, CA, USA 6. New Technologies, Fluidigm, South San Francisco, CA, USA 2. The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA 8. Howard Hughes Medical Institute |
AuthorAffiliation_xml | – name: 5. Genomics Institute, University of California, Santa Cruz, CA, USA – name: 7. Department of Developmental Biology, Stanford University, Stanford CA, USA – name: 8. Howard Hughes Medical Institute – name: 1. Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA – name: 3. Department of Anatomy, UCSF, San Francisco, CA, USA – name: 4. Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA – name: 2. The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA – name: 6. New Technologies, Fluidigm, South San Francisco, CA, USA |
Author_xml | – sequence: 1 givenname: Alex A. surname: Pollen fullname: Pollen, Alex A. email: alex.pollen@ucsf.edu organization: Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA – sequence: 2 givenname: Aparna surname: Bhaduri fullname: Bhaduri, Aparna organization: Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA – sequence: 3 givenname: Madeline G. surname: Andrews fullname: Andrews, Madeline G. organization: Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA – sequence: 4 givenname: Tomasz J. surname: Nowakowski fullname: Nowakowski, Tomasz J. organization: Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA – sequence: 5 givenname: Olivia S. surname: Meyerson fullname: Meyerson, Olivia S. organization: Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA – sequence: 6 givenname: Mohammed A. surname: Mostajo-Radji fullname: Mostajo-Radji, Mohammed A. organization: Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA – sequence: 7 givenname: Elizabeth surname: Di Lullo fullname: Di Lullo, Elizabeth organization: Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA – sequence: 8 givenname: Beatriz surname: Alvarado fullname: Alvarado, Beatriz organization: Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA – sequence: 9 givenname: Melanie surname: Bedolli fullname: Bedolli, Melanie organization: Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA – sequence: 10 givenname: Max L. surname: Dougherty fullname: Dougherty, Max L. organization: Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA – sequence: 11 givenname: Ian T. surname: Fiddes fullname: Fiddes, Ian T. organization: Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA – sequence: 12 givenname: Zev N. surname: Kronenberg fullname: Kronenberg, Zev N. organization: Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA – sequence: 13 givenname: Joe surname: Shuga fullname: Shuga, Joe organization: New Technologies, Fluidigm, South San Francisco, CA, USA – sequence: 14 givenname: Anne A. surname: Leyrat fullname: Leyrat, Anne A. organization: New Technologies, Fluidigm, South San Francisco, CA, USA – sequence: 15 givenname: Jay A. surname: West fullname: West, Jay A. organization: New Technologies, Fluidigm, South San Francisco, CA, USA – sequence: 16 givenname: Marina surname: Bershteyn fullname: Bershteyn, Marina organization: The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA – sequence: 17 givenname: Craig B. surname: Lowe fullname: Lowe, Craig B. organization: Department of Developmental Biology, Stanford University, Stanford, CA, USA – sequence: 18 givenname: Bryan J. surname: Pavlovic fullname: Pavlovic, Bryan J. organization: Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA – sequence: 19 givenname: Sofie R. surname: Salama fullname: Salama, Sofie R. organization: Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA – sequence: 20 givenname: David surname: Haussler fullname: Haussler, David organization: Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA – sequence: 21 givenname: Evan E. surname: Eichler fullname: Eichler, Evan E. organization: Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA – sequence: 22 givenname: Arnold R. surname: Kriegstein fullname: Kriegstein, Arnold R. email: arnold.kriegstein@ucsf.edu organization: Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30735633$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUU1r3DAQFSGh2aT9AzkUH3vxdvRl2VAKzbJtShJyaHsWsjy70eKVtpK90H9fmU1K0kMIDAzMvPfm8eaMHPvgkZALCnMKtPq4mVvs-zkD2syB5lJHZEahUaWgih2TGUDDyrpS4pScpbQBgFpK-YacclBcVpzPyPUyDabtXbp3fl0sMGIbTV_cxbXxwXWpMKm4DR32qQir4mrcGl_-2KF1K2eLy2icL5b70I-DC_4tOVmZPuG7h35Ofn1d_lxclTd3374vvtyUVkoxlIZCa3ijlJXAu5ZzMKgEFR2rOt4aUWNDAW2rKGuaPBZGIQcmuGgFKin5Ofl80N2N7RY7i37InvUuuq2Jf3QwTj_feHev12GvKykEVzQLfHgQiOH3iGnQW5emLI3HMCbNGJsC5vwVUDpFWlOADH3_1NY_P49hZ0B9ANgYUoq40tYNZkouu3S9pqCns3qjpwN6-qsGmktlKvuP-qj-IunTgZS_h3uHUSfr0FvsXEQ76C64l-h_AUubuyA |
CitedBy_id | crossref_primary_10_1016_j_neulet_2021_135872 crossref_primary_10_1016_j_xhgg_2021_100033 crossref_primary_10_1093_pnasnexus_pgae051 crossref_primary_10_3390_v12091004 crossref_primary_10_1016_j_semcdb_2020_05_022 crossref_primary_10_1038_s41592_021_01344_8 crossref_primary_10_1002_wrna_1845 crossref_primary_10_3390_genes11030276 crossref_primary_10_1016_j_semcdb_2020_05_023 crossref_primary_10_3389_fncel_2019_00558 crossref_primary_10_1016_j_crmeth_2023_100686 crossref_primary_10_1016_j_isci_2024_110090 crossref_primary_10_1016_j_semcdb_2020_05_025 crossref_primary_10_3389_fcell_2020_604448 crossref_primary_10_1007_s11626_024_00853_y crossref_primary_10_1007_s12272_020_01260_z crossref_primary_10_3389_fnmol_2022_1017144 crossref_primary_10_1016_j_gde_2024_102267 crossref_primary_10_1101_gr_256958_119 crossref_primary_10_1038_s41586_021_03209_8 crossref_primary_10_1007_s12035_024_03998_9 crossref_primary_10_1016_j_isci_2021_102063 crossref_primary_10_3389_fcell_2021_780207 crossref_primary_10_1016_j_ceb_2019_07_010 crossref_primary_10_1016_j_cell_2019_10_041 crossref_primary_10_7554_eLife_58737 crossref_primary_10_1126_sciadv_adk1034 crossref_primary_10_1038_s41380_021_01316_6 crossref_primary_10_1523_JNEUROSCI_0620_21_2021 crossref_primary_10_3389_fncir_2021_788560 crossref_primary_10_1016_j_semcdb_2022_05_013 crossref_primary_10_1038_s41380_024_02761_9 crossref_primary_10_1016_j_ajhg_2023_03_015 crossref_primary_10_1016_j_semcdb_2022_05_012 crossref_primary_10_3389_fncel_2019_00305 crossref_primary_10_1038_s41559_023_02014_y crossref_primary_10_1093_hmg_ddaa117 crossref_primary_10_3390_cells10102683 crossref_primary_10_1038_s41386_020_0763_3 crossref_primary_10_1186_s13229_020_00347_0 crossref_primary_10_4103_NRR_NRR_D_24_00921 crossref_primary_10_1371_journal_pone_0319701 crossref_primary_10_1016_j_neuron_2023_03_010 crossref_primary_10_1016_j_biotechadv_2023_108233 crossref_primary_10_1016_j_celrep_2024_114173 crossref_primary_10_1016_j_gde_2020_06_006 crossref_primary_10_3389_fncel_2020_607399 crossref_primary_10_1002_bies_201900011 crossref_primary_10_1038_s41576_023_00594_w crossref_primary_10_1242_dev_200506 crossref_primary_10_1091_mbc_E19_04_0211 crossref_primary_10_3390_ijms22052659 crossref_primary_10_1177_10738584211069060 crossref_primary_10_1007_s42977_021_00070_8 crossref_primary_10_1111_cpr_13447 crossref_primary_10_1016_j_isci_2024_110430 crossref_primary_10_3390_pharmaceutics16040443 crossref_primary_10_1016_j_neuron_2020_08_029 crossref_primary_10_3389_fcell_2022_917166 crossref_primary_10_1038_s41559_021_01580_3 crossref_primary_10_15252_embr_201948204 crossref_primary_10_1016_j_gde_2022_101955 crossref_primary_10_1186_s12864_020_6706_x crossref_primary_10_1016_j_arr_2020_101069 crossref_primary_10_1016_j_neuron_2025_02_010 crossref_primary_10_1038_s41583_023_00760_3 crossref_primary_10_1016_j_stem_2020_02_011 crossref_primary_10_1071_RD23216 crossref_primary_10_1242_dev_200831 crossref_primary_10_1093_hmg_ddac193 crossref_primary_10_1002_ajpa_24713 crossref_primary_10_1242_dev_199797 crossref_primary_10_1002_dvg_23405 crossref_primary_10_1016_j_stemcr_2022_04_007 crossref_primary_10_1038_s41593_021_00802_y crossref_primary_10_3390_gels8060379 crossref_primary_10_1002_anbr_202300126 crossref_primary_10_1016_j_brainres_2020_147028 crossref_primary_10_1073_pnas_1912175116 crossref_primary_10_1038_s41586_021_03952_y crossref_primary_10_1016_j_cell_2022_06_051 crossref_primary_10_1186_s11689_022_09438_w crossref_primary_10_3390_ijms25147750 crossref_primary_10_1038_s41576_023_00626_5 crossref_primary_10_1016_j_conb_2020_12_006 crossref_primary_10_1098_rsfs_2020_0069 crossref_primary_10_1016_j_celrep_2024_114031 crossref_primary_10_1360_SSV_2021_0278 crossref_primary_10_1002_wdev_368 crossref_primary_10_1038_s41576_022_00554_w crossref_primary_10_1016_j_gde_2024_102297 crossref_primary_10_1016_j_cels_2023_09_004 crossref_primary_10_3389_fmolb_2021_686410 crossref_primary_10_1002_ana_25950 crossref_primary_10_1016_j_bioactmat_2025_01_025 crossref_primary_10_3390_ijerph182312431 crossref_primary_10_1016_j_brainres_2019_146470 crossref_primary_10_1016_j_stem_2019_11_015 crossref_primary_10_1016_j_jmb_2021_167386 crossref_primary_10_3389_fnmol_2022_858582 crossref_primary_10_1371_journal_pcbi_1008778 crossref_primary_10_1172_jci_insight_174645 crossref_primary_10_1038_s41420_023_01523_w crossref_primary_10_1152_physrev_00040_2021 crossref_primary_10_1111_febs_15885 crossref_primary_10_1038_s41586_024_08172_8 crossref_primary_10_1016_j_ceb_2021_04_008 crossref_primary_10_1126_science_aba4517 crossref_primary_10_1242_dev_193631 crossref_primary_10_1038_s41582_022_00723_9 crossref_primary_10_1038_s41598_022_16369_y crossref_primary_10_1016_j_neuron_2022_10_018 crossref_primary_10_3389_fncel_2023_1114420 crossref_primary_10_3389_fnins_2022_872794 crossref_primary_10_1088_1758_5090_ad0c2c crossref_primary_10_1038_s41586_021_03953_x crossref_primary_10_1038_s41593_024_01814_0 crossref_primary_10_1126_science_adh0559 crossref_primary_10_3390_cells13191638 crossref_primary_10_1016_j_neuron_2020_09_001 crossref_primary_10_1111_bpa_12949 crossref_primary_10_1016_j_bbagen_2024_130747 crossref_primary_10_1097_CCO_0000000000000782 crossref_primary_10_1007_s12015_022_10497_8 crossref_primary_10_1016_j_gendis_2023_04_037 crossref_primary_10_1111_dgd_12699 crossref_primary_10_1186_s13229_020_00322_9 crossref_primary_10_1038_s41583_023_00675_z crossref_primary_10_1523_JNEUROSCI_0744_19_2019 crossref_primary_10_3389_fcell_2023_1332901 crossref_primary_10_1002_dneu_22819 crossref_primary_10_1093_brain_awad231 crossref_primary_10_1016_j_celrep_2024_114503 crossref_primary_10_1093_icb_icaa109 crossref_primary_10_1038_s41583_022_00631_3 crossref_primary_10_1016_j_cell_2021_10_003 crossref_primary_10_1016_j_stemcr_2021_12_015 crossref_primary_10_1007_s00702_022_02570_w crossref_primary_10_1007_s00439_020_02206_7 crossref_primary_10_1016_j_gde_2024_102240 crossref_primary_10_3390_cells10051209 crossref_primary_10_1080_21507740_2021_1896603 crossref_primary_10_1038_s41583_022_00644_y crossref_primary_10_1038_s41586_021_03343_3 crossref_primary_10_3390_ijms241512528 crossref_primary_10_3389_fnmol_2021_787243 crossref_primary_10_1126_sciadv_abc6792 crossref_primary_10_1016_j_dcmed_2024_12_008 crossref_primary_10_1038_s41380_021_01189_9 crossref_primary_10_1186_s13229_020_00332_7 crossref_primary_10_1002_adfm_201909146 crossref_primary_10_1093_cercor_bhab067 crossref_primary_10_3389_fnmol_2022_941528 crossref_primary_10_1016_j_tics_2021_01_005 crossref_primary_10_12688_f1000research_20332_1 crossref_primary_10_3389_fncel_2022_962103 crossref_primary_10_1186_s12896_021_00718_2 crossref_primary_10_1016_j_gde_2024_102259 crossref_primary_10_1038_s41598_025_86094_9 crossref_primary_10_3390_cells11010124 crossref_primary_10_14348_molcells_2022_2019 crossref_primary_10_1111_cns_14079 crossref_primary_10_1016_j_brainres_2019_146582 crossref_primary_10_1126_science_abm1696 crossref_primary_10_1002_adma_202106829 crossref_primary_10_1093_nsr_nwae213 crossref_primary_10_1186_s13059_023_03019_3 crossref_primary_10_1016_j_brainres_2019_146458 crossref_primary_10_2147_CMAR_S449488 crossref_primary_10_3390_cells11182803 crossref_primary_10_1155_2021_2826609 crossref_primary_10_1016_j_isci_2020_101485 crossref_primary_10_1126_sciadv_adh2726 crossref_primary_10_1016_j_canlet_2019_04_039 crossref_primary_10_1126_sciadv_adf6251 crossref_primary_10_1146_annurev_neuro_111020_090812 crossref_primary_10_1038_s41398_021_01664_5 crossref_primary_10_1093_brain_awac244 crossref_primary_10_1007_s10565_021_09678_x crossref_primary_10_1016_j_nbd_2024_106607 crossref_primary_10_3389_fbioe_2022_953031 crossref_primary_10_1038_s41380_022_01786_2 crossref_primary_10_7554_eLife_78079 crossref_primary_10_1016_j_conb_2020_09_010 crossref_primary_10_1186_s13619_021_00103_6 crossref_primary_10_1016_j_biopsych_2022_12_015 crossref_primary_10_3390_cells11142135 crossref_primary_10_1016_j_ymgme_2022_04_005 crossref_primary_10_1088_1741_2552_ac310a crossref_primary_10_1089_dna_2019_4988 crossref_primary_10_1111_joa_13055 crossref_primary_10_12688_f1000research_18495_1 crossref_primary_10_1016_j_scr_2020_101749 crossref_primary_10_1038_s41559_022_01784_1 crossref_primary_10_1051_medsci_2024017 crossref_primary_10_1101_cshperspect_a035709 crossref_primary_10_1038_s41598_019_44877_x crossref_primary_10_1007_s13205_021_02815_7 crossref_primary_10_1016_j_dmpk_2024_101031 crossref_primary_10_3390_jpm13081237 crossref_primary_10_1038_s41576_022_00568_4 crossref_primary_10_1523_JNEUROSCI_0519_19_2019 crossref_primary_10_3390_ijms221910184 crossref_primary_10_3390_cells10071790 crossref_primary_10_1523_ENEURO_0308_23_2023 crossref_primary_10_1089_thy_2021_0057 crossref_primary_10_1016_j_cell_2023_05_043 crossref_primary_10_3389_fnmol_2022_855786 crossref_primary_10_1002_dvdy_60 crossref_primary_10_1038_s41422_021_00486_w crossref_primary_10_1007_s00109_021_02051_9 crossref_primary_10_1016_j_celrep_2020_01_038 crossref_primary_10_3389_fcell_2021_737429 crossref_primary_10_1088_1758_5090_acee21 crossref_primary_10_1038_s41586_022_05279_8 crossref_primary_10_1016_j_devcel_2024_05_027 crossref_primary_10_26508_lsa_202000707 crossref_primary_10_1371_journal_pgen_1010952 crossref_primary_10_1016_j_stem_2023_09_003 crossref_primary_10_1038_s41434_022_00356_z crossref_primary_10_1080_00207454_2020_1840376 crossref_primary_10_1016_j_stem_2021_09_008 crossref_primary_10_1038_s41598_023_40107_7 crossref_primary_10_1002_advs_202400847 crossref_primary_10_1038_s41586_019_1289_x crossref_primary_10_1093_molbev_msae186 crossref_primary_10_1111_febs_15793 crossref_primary_10_1002_dneu_22879 crossref_primary_10_21769_BioProtoc_3985 crossref_primary_10_1016_j_stem_2025_02_010 crossref_primary_10_1016_j_gde_2020_04_007 crossref_primary_10_3389_fnana_2020_00039 crossref_primary_10_1002_dneu_22876 crossref_primary_10_1016_j_conb_2023_102699 crossref_primary_10_1038_s41398_022_02279_0 crossref_primary_10_1038_s42003_023_04803_4 crossref_primary_10_1126_sciadv_adg2615 crossref_primary_10_1016_j_cell_2021_02_050 crossref_primary_10_1111_pcn_13545 crossref_primary_10_1016_j_stem_2021_02_015 crossref_primary_10_1007_s11684_021_0900_3 crossref_primary_10_3389_fcell_2023_1188905 crossref_primary_10_1242_dev_200439 crossref_primary_10_1111_cpr_13042 crossref_primary_10_3389_fncel_2019_00381 crossref_primary_10_3390_cells10040914 crossref_primary_10_1038_s41467_023_43141_1 crossref_primary_10_1038_s43018_020_0102_y crossref_primary_10_1371_journal_pbio_3002912 crossref_primary_10_3389_fnins_2023_1172469 crossref_primary_10_1038_s41586_024_07521_x crossref_primary_10_1007_s44272_024_00012_0 crossref_primary_10_1016_j_drudis_2019_11_010 crossref_primary_10_3390_ijms25147905 crossref_primary_10_1093_gbe_evab247 crossref_primary_10_3390_mi12121574 crossref_primary_10_1371_journal_pcbi_1007543 crossref_primary_10_1038_s41598_022_12953_4 crossref_primary_10_3389_fcell_2021_591017 crossref_primary_10_3390_bioengineering6020038 crossref_primary_10_1038_s41390_021_01806_x crossref_primary_10_1007_s12031_021_01874_y crossref_primary_10_1016_j_conb_2020_10_018 crossref_primary_10_1038_s41559_022_01925_6 crossref_primary_10_1186_s13567_021_00931_z crossref_primary_10_3389_fncel_2020_00133 crossref_primary_10_1016_j_conb_2023_102710 crossref_primary_10_1002_dneu_22893 crossref_primary_10_1242_dev_202390 crossref_primary_10_1016_j_cell_2024_08_052 crossref_primary_10_1021_acsnano_4c07844 crossref_primary_10_1126_science_abi6060 crossref_primary_10_1002_smtd_202301145 crossref_primary_10_1007_s12539_020_00386_4 crossref_primary_10_1146_annurev_neuro_070918_050154 crossref_primary_10_1242_dev_201865 crossref_primary_10_1038_s41418_020_0566_4 crossref_primary_10_1038_s41467_025_58295_3 crossref_primary_10_1038_s41586_023_06686_1 crossref_primary_10_3389_fncel_2021_748849 crossref_primary_10_3389_fnins_2023_1189615 crossref_primary_10_3390_v14030634 crossref_primary_10_1016_j_ibneur_2023_12_006 crossref_primary_10_3389_fnins_2022_878950 crossref_primary_10_1016_j_neuron_2022_12_026 crossref_primary_10_1016_j_isci_2024_111379 crossref_primary_10_1038_s41586_020_1962_0 crossref_primary_10_3389_fcell_2021_640212 crossref_primary_10_1016_j_stem_2023_08_009 crossref_primary_10_1016_j_xgen_2024_100581 crossref_primary_10_1146_annurev_genet_071719_020705 crossref_primary_10_1038_s41586_019_1654_9 crossref_primary_10_1016_j_stemcr_2024_09_005 crossref_primary_10_1038_s41556_023_01296_5 crossref_primary_10_1038_s42003_023_05190_6 crossref_primary_10_1002_adbi_201900226 crossref_primary_10_1038_s41419_022_04693_0 crossref_primary_10_1186_s13059_020_02074_4 crossref_primary_10_1186_s13100_021_00250_2 crossref_primary_10_1016_j_cell_2022_09_010 crossref_primary_10_1073_pnas_2002427117 crossref_primary_10_1134_S1062360420040074 crossref_primary_10_1016_j_bbr_2019_112458 crossref_primary_10_1016_j_crmeth_2023_100409 crossref_primary_10_1186_s13059_020_02257_z crossref_primary_10_1016_j_celrep_2022_110615 crossref_primary_10_1038_s41467_022_31403_3 crossref_primary_10_1038_s41598_022_20096_9 crossref_primary_10_3389_fnmol_2022_1005631 crossref_primary_10_1101_gad_332494_119 crossref_primary_10_1038_s41419_020_02998_6 crossref_primary_10_3390_biomedicines12040877 crossref_primary_10_3389_fsci_2023_1017235 crossref_primary_10_3389_fcell_2020_00304 crossref_primary_10_1371_journal_pbio_3002965 crossref_primary_10_1038_s41588_020_0646_x crossref_primary_10_1111_epi_17386 crossref_primary_10_1016_j_neures_2019_05_007 crossref_primary_10_1038_s41593_020_00730_3 crossref_primary_10_3233_CBM_230486 crossref_primary_10_1016_j_brainresbull_2021_05_015 crossref_primary_10_1016_j_cell_2023_12_012 crossref_primary_10_2139_ssrn_3773789 crossref_primary_10_3389_fcell_2019_00175 crossref_primary_10_1002_2211_5463_13581 crossref_primary_10_1002_med_21922 crossref_primary_10_1176_appi_ajp_2021_21010095 crossref_primary_10_1002_cne_25394 crossref_primary_10_1021_acschemneuro_3c00246 crossref_primary_10_1016_j_biopsych_2023_01_012 crossref_primary_10_3389_fgene_2022_1009390 crossref_primary_10_1016_j_cell_2021_03_045 crossref_primary_10_1002_evan_21831 crossref_primary_10_3389_fcell_2021_661113 crossref_primary_10_1016_j_biopsych_2022_04_021 crossref_primary_10_1038_s41583_022_00576_7 crossref_primary_10_1038_s41580_024_00804_1 crossref_primary_10_1016_j_cell_2022_10_016 crossref_primary_10_1016_j_conb_2020_09_006 crossref_primary_10_1016_j_conb_2020_09_005 crossref_primary_10_1186_s13287_023_03302_x crossref_primary_10_1016_j_tig_2023_08_005 crossref_primary_10_1242_jcs_239434 crossref_primary_10_1016_j_stem_2024_12_011 crossref_primary_10_1016_j_devcel_2024_10_005 crossref_primary_10_3389_fneur_2020_01028 crossref_primary_10_1038_s41598_024_59533_2 crossref_primary_10_26508_lsa_202302193 crossref_primary_10_1007_s13770_023_00611_3 crossref_primary_10_1016_j_stemcr_2024_04_008 crossref_primary_10_1016_j_schres_2022_04_003 crossref_primary_10_1177_1073858420943192 crossref_primary_10_1016_j_ydbio_2021_06_012 crossref_primary_10_1038_s41556_024_01393_z |
Cites_doi | 10.1038/nature22047 10.1186/1471-2105-14-128 10.1016/j.stem.2016.12.007 10.1186/s13059-018-1490-5 10.1073/pnas.0901854106 10.1186/s12859-016-1323-z 10.1016/j.cell.2015.12.028 10.1016/j.cub.2012.06.062 10.1073/pnas.1315710110 10.1016/j.cell.2015.09.004 10.1093/nar/gkx1020 10.1016/j.cell.2016.05.082 10.1093/nar/29.1.308 10.1016/j.cell.2012.03.033 10.1073/pnas.1520760112 10.1038/nature12517 10.1016/j.stem.2016.03.003 10.1126/science.aar6343 10.1038/35097067 10.1186/1471-2105-9-559 10.1101/gr.123356.111 10.1038/s41559-016-0069 10.1038/nature12686 10.1186/1750-1172-8-190 10.1016/j.cell.2016.07.054 10.1101/gr.233460.117 10.1073/pnas.1932072100 10.1126/science.aap8809 10.1038/nn.2207 10.1038/s41598-018-33478-9 10.1016/j.neuron.2017.07.035 10.1073/pnas.1201895109 10.1038/nrn2008 10.1093/gbe/evy016 10.1038/srep05519 10.1038/nbt.2967 10.1101/gr.158543.113 10.1126/science.1197005 10.1016/j.cell.2012.03.034 10.1038/nature09774 10.1038/nature18637 10.1038/nbt.4096 10.1016/j.pneurobio.2010.10.007 10.1016/j.celrep.2016.08.038 10.1016/j.cell.2015.08.036 10.1088/1742-5468/2008/10/P10008 10.7554/eLife.18683 10.1093/cercor/13.6.541 10.1126/sciadv.1601941 10.1038/35055553 10.1093/cercor/12.1.37 10.7554/eLife.07103 10.1002/bies.201500108 10.1016/j.stem.2008.09.002 10.1016/0166-2236(95)93934-P 10.1016/j.neuron.2012.03.010 10.1242/jcs.023465 10.1038/nature09941 10.1038/nmeth.1591 10.1038/ng.3792 10.1038/nature05113 10.1016/j.cub.2015.01.041 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.cell.2019.01.017 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 756.e17 |
ExternalDocumentID | PMC6544371 30735633 10_1016_j_cell_2019_01_017 S0092867419300509 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R35 NS097305 – fundername: NIMH NIH HHS grantid: U01 MH105989 – fundername: NINDS NIH HHS grantid: F32 NS103266 – fundername: NIGMS NIH HHS grantid: T32 GM007266 – fundername: NICHD NIH HHS grantid: T32 HD007470 – fundername: Howard Hughes Medical Institute |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6I. 6J9 7-5 85S AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABCQX ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YZZ ZA5 ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYJJ AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AI. AIDAL AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c554t-a10ba3977c503db330ae7414d26d3ba48e910ecb7129914d4a7e302434b4e7553 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 18:23:36 EDT 2025 Fri Sep 05 05:07:10 EDT 2025 Fri Sep 05 08:38:31 EDT 2025 Mon Jul 21 06:04:30 EDT 2025 Tue Jul 01 02:17:02 EDT 2025 Thu Apr 24 22:54:58 EDT 2025 Fri Feb 23 02:49:41 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | single-cell RNA sequencing cerebral organoids macaque radial glia human-specific evolution mTOR chimpanzee cortical development neural progenitor cells |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c554t-a10ba3977c503db330ae7414d26d3ba48e910ecb7129914d4a7e302434b4e7553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Methodology: AB, TJN, MGA, JS, AAL, JAW, CL, OSM, AAP. Investigation: AAP, AB, TJN, OSM, EDL, MAMR, BA, MaB, MeB, MGA. Resources: BP, MaB. Software: CBL, ITF. Formal analysis AB, TJN, MGA, ZNK, MLD, CBL, ITF, OSM, AAP. Writing: AAP, AB, with input from all authors. Funding acquisition ARK AAP. Conceptualization AAP. Supervision: ARK, SRS, DH, EEE, AAP. Lead contact: alex.pollen@ucsf.edu AUTHOR CONTRIBUTIONS These authors contributed equally |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0092867419300509 |
PMID | 30735633 |
PQID | 2185558100 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6544371 proquest_miscellaneous_2221016331 proquest_miscellaneous_2185558100 pubmed_primary_30735633 crossref_citationtrail_10_1016_j_cell_2019_01_017 crossref_primary_10_1016_j_cell_2019_01_017 elsevier_sciencedirect_doi_10_1016_j_cell_2019_01_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-07 |
PublicationDateYYYYMMDD | 2019-02-07 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Fish, Dehay, Kennedy, Huttner (bib17) 2008; 121 Camp, Badsha, Florio, Kanton, Gerber, Wilsch-Bräuninger, Lewitus, Sykes, Hevers, Lancaster (bib6) 2015; 112 Onorati, Li, Liu, Sousa, Nakagawa, Li, Dell’Anno, Gulden, Pochareddy, Tebbenkamp (bib41) 2016; 16 Prescott, Srinivasan, Marchetto, Grishina, Narvaiza, Selleri, Gage, Swigut, Wysocka (bib50) 2015; 163 Paten, Earl, Nguyen, Diekhans, Zerbino, Haussler (bib43) 2011; 21 Peng, Meng, Wang, Zhao, Zhao, Su, Zhang, Zhang, Zhao, Miao (bib45) 2014; 4 Dennis, Nuttle, Sudmant, Antonacci, Graves, Nefedov, Rosenfeld, Sajjadian, Malig, Kotkiewicz (bib12) 2012; 149 Florio, Namba, Pääbo, Hiller, Huttner (bib18) 2016; 2 Sudmant, Kitzman, Antonacci, Alkan, Malig, Tsalenko, Sampas, Bruhn, Shendure, Eichler (bib62) 2010; 330 Kadoshima, Sakaguchi, Nakano, Soen, Ando, Eiraku, Sasai (bib23) 2013; 110 Mora-Bermúdez, Badsha, Kanton, Camp, Vernot, Köhler, Voigt, Okita, Maricic, He (bib35) 2016; 5 Rakic (bib54) 2003; 13 Gallego Romero, Pavlovic, Hernando-Herraez, Zhou, Ward, Banovich, Kagan, Burnett, Huang, Mitrano (bib19) 2015; 4 Shekhar, Lapan, Whitney, Tran, Macosko, Kowalczyk, Adiconis, Levin, Nemesh, Goldman (bib56) 2016; 166 Nowakowski, Bhaduri, Pollen, Alvarado, Mostajo-Radji, Di Lullo, Haeussler, Sandoval-Espinosa, Liu, Velmeshev (bib37) 2017; 358 Fiddes, Armstrong, Diekhans, Nachtweide, Kronenberg, Underwood, Gordon, Earl, Keane, Eichler (bib16) 2018; 28 Sloan, Darmanis, Huber, Khan, Birey, Caneda, Reimer, Quake, Barres, Paşca (bib59) 2017; 95 Rafalski, Brunet (bib52) 2011; 93 Dennis, Harshman, Nelson, Penn, Cantsilieris, Huddleston, Antonacci, Penewit, Denman, Raja (bib13) 2017; 1 Poduri, Evrony, Cai, Elhosary, Beroukhim, Lehtinen, Hills, Heinzen, Hill, Hill (bib46) 2012; 74 Blake, Thomas, Blischak, Hsiao, Chavarria, Myrthil, Gilad, Pavlovic (bib3) 2018; 19 Kreitzer, Salomonis, Sheehan, Huang, Park, Spindler, Lizarraga, Weiss, So, Conklin (bib25) 2013; 2 Lancaster, Renner, Martin, Wenzel, Bicknell, Hurles, Homfray, Penninger, Jackson, Knoblich (bib28) 2013; 501 Bakken, Miller, Ding, Sunkin, Smith, Ng, Szafer, Dalley, Royall, Lemon (bib1) 2016; 535 Marchetto, Narvaiza, Denli, Benner, Lazzarini, Nathanson, Paquola, Desai, Herai, Weitzman (bib32) 2013; 503 Pollen, Nowakowski, Chen, Retallack, Sandoval-Espinosa, Nicholas, Shuga, Liu, Oldham, Diaz (bib49) 2015; 163 Pollard, Salama, Lambert, Lambot, Coppens, Pedersen, Katzman, King, Onodera, Siepel (bib47) 2006; 443 Casper, Zweig, Villarreal, Tyner, Speir, Rosenbloom, Raney, Lee, Lee, Karolchik (bib7) 2018; 46 Liang, Musser, Cloutier, Prum, Wagner (bib31) 2018; 10 Quadrato, Nguyen, Macosko, Sherwood, Min Yang, Berger, Maria, Scholvin, Goldman, Kinney (bib51) 2017; 545 Bershteyn, Nowakowski, Pollen, Di Lullo, Nene, Wynshaw-Boris, Kriegstein (bib2) 2017; 20 Otani, Marchetto, Gage, Simons, Livesey (bib42) 2016; 18 Sherry, Ward, Kholodov, Baker, Phan, Smigielski, ad Sirotkin (bib57) 2001; 29 Boyd, Skove, Rouanet, Pilaz, Bepler, Gordân, Wray, Silver (bib4) 2015; 25 Ceccarelli, Barthel, Malta, Sabedot, Salama, Murray, Morozova, Newton, Radenbaugh, Pagnotta (bib8) 2016; 164 Kent, Baertsch, Hinrichs, Miller, Haussler (bib24) 2003; 100 Charrier, Joshi, Coutinho-Budd, Kim, Lambert, de Marchena, Jin, Vanderhaeghen, Ghosh, Sassa, Polleux (bib9) 2012; 149 Smart, Dehay, Giroud, Berland, Kennedy (bib60) 2002; 12 Butler, Hoffman, Smibert, Papalexi, Satija (bib5) 2018; 36 Okita, Matsumura, Sato, Okada, Morizane, Okamoto, Hong, Nakagawa, Tanabe, Tezuka (bib39) 2011; 8 Chen, Tan, Kou, Duan, Wang, Meirelles, Clark, Ma’ayan (bib10) 2013; 14 Johnson, Viggiano, Bailey, Abdul-Rauf, Goodwin, Rocchi, Eichler (bib22) 2001; 413 Ohno (bib38) 1970 Pavlovic, Blake, Roux, Chavarria, Gilad (bib44) 2018; 8 Kriegstein, Noctor, Martínez-Cerdeño (bib26) 2006; 7 McLean, Reno, Pollen, Bassan, Capellini, Guenther, Indjeian, Lim, Menke, Schaar (bib34) 2011; 471 Oldham, Konopka, Iwamoto, Langfelder, Kato, Horvath, Geschwind (bib40) 2008; 11 Herculano-Houzel (bib20) 2012; 109 Lefebvre (bib30) 2008; 2008 Eiraku, Takata, Ishibashi, Kawada, Sakakura, Okuda, Sekiguchi, Adachi, Sasai (bib15) 2011; 472 Rakic (bib53) 1995; 18 Clevers (bib11) 2016; 165 Langfelder, Horvath (bib29) 2008; 9 Sudmant, Huddleston, Catacchio, Malig, Hillier, Baker, Mohajeri, Kondova, Bontrop, Persengiev (bib63) 2013; 23 Silver (bib58) 2016; 38 Eiraku, Watanabe, Matsuo-Takasaki, Kawada, Yonemura, Matsumura, Wataya, Nishiyama, Muguruma, Sasai (bib14) 2008; 3 Kronenberg, Fiddes, Gordon, Murali, Cantsilieris, Meyerson, Underwood, Nelson, Chaisson, Dougherty (bib27) 2018; 360 Zhou, Su, Wang, Chen, Zimmermann, Genbacev, Afonja, Horne, Tanaka, Duan (bib64) 2009; 106 Sakai, Hirata, Fuwa, Sugama, Kusunoki, Makishima, Eguchi, Yamada, Ogihara, Takeshita (bib55) 2012; 22 Hoffman, Schadt (bib21) 2016; 17 Matsumoto, Hayashi, Schlieve, Ikeya, Kim, Nguyen, Sami, Baba, Barruet, Nasu (bib33) 2013; 8 Pollen, Nowakowski, Shuga, Wang, Leyrat, Lui, Li, Szpankowski, Fowler, Chen (bib48) 2014; 32 Noctor, Flint, Weissman, Dammerman, Kriegstein (bib36) 2001; 409 Stessman, Xiong, Coe, Wang, Hoekzema, Fenckova, Kvarnung, Gerdts, Trinh, Cosemans (bib61) 2017; 49 Blake (10.1016/j.cell.2019.01.017_bib3) 2018; 19 Ohno (10.1016/j.cell.2019.01.017_bib38) 1970 Sherry (10.1016/j.cell.2019.01.017_bib57) 2001; 29 Eiraku (10.1016/j.cell.2019.01.017_bib15) 2011; 472 Quadrato (10.1016/j.cell.2019.01.017_bib51) 2017; 545 Kadoshima (10.1016/j.cell.2019.01.017_bib23) 2013; 110 Lefebvre (10.1016/j.cell.2019.01.017_bib30) 2008; 2008 Okita (10.1016/j.cell.2019.01.017_bib39) 2011; 8 Prescott (10.1016/j.cell.2019.01.017_bib50) 2015; 163 Shekhar (10.1016/j.cell.2019.01.017_bib56) 2016; 166 Sudmant (10.1016/j.cell.2019.01.017_bib62) 2010; 330 Rakic (10.1016/j.cell.2019.01.017_bib53) 1995; 18 Onorati (10.1016/j.cell.2019.01.017_bib41) 2016; 16 McLean (10.1016/j.cell.2019.01.017_bib34) 2011; 471 Peng (10.1016/j.cell.2019.01.017_bib45) 2014; 4 Pollen (10.1016/j.cell.2019.01.017_bib49) 2015; 163 Silver (10.1016/j.cell.2019.01.017_bib58) 2016; 38 Ceccarelli (10.1016/j.cell.2019.01.017_bib8) 2016; 164 Paten (10.1016/j.cell.2019.01.017_bib43) 2011; 21 Hoffman (10.1016/j.cell.2019.01.017_bib21) 2016; 17 Camp (10.1016/j.cell.2019.01.017_bib6) 2015; 112 Marchetto (10.1016/j.cell.2019.01.017_bib32) 2013; 503 Sudmant (10.1016/j.cell.2019.01.017_bib63) 2013; 23 Sakai (10.1016/j.cell.2019.01.017_bib55) 2012; 22 Kent (10.1016/j.cell.2019.01.017_bib24) 2003; 100 Sloan (10.1016/j.cell.2019.01.017_bib59) 2017; 95 Noctor (10.1016/j.cell.2019.01.017_bib36) 2001; 409 Rafalski (10.1016/j.cell.2019.01.017_bib52) 2011; 93 Stessman (10.1016/j.cell.2019.01.017_bib61) 2017; 49 Fiddes (10.1016/j.cell.2019.01.017_bib16) 2018; 28 Liang (10.1016/j.cell.2019.01.017_bib31) 2018; 10 Zhou (10.1016/j.cell.2019.01.017_bib64) 2009; 106 Bershteyn (10.1016/j.cell.2019.01.017_bib2) 2017; 20 Casper (10.1016/j.cell.2019.01.017_bib7) 2018; 46 Gallego Romero (10.1016/j.cell.2019.01.017_bib19) 2015; 4 Charrier (10.1016/j.cell.2019.01.017_bib9) 2012; 149 Mora-Bermúdez (10.1016/j.cell.2019.01.017_bib35) 2016; 5 Nowakowski (10.1016/j.cell.2019.01.017_bib37) 2017; 358 Pavlovic (10.1016/j.cell.2019.01.017_bib44) 2018; 8 Boyd (10.1016/j.cell.2019.01.017_bib4) 2015; 25 Kreitzer (10.1016/j.cell.2019.01.017_bib25) 2013; 2 Otani (10.1016/j.cell.2019.01.017_bib42) 2016; 18 Langfelder (10.1016/j.cell.2019.01.017_bib29) 2008; 9 Butler (10.1016/j.cell.2019.01.017_bib5) 2018; 36 Pollen (10.1016/j.cell.2019.01.017_bib48) 2014; 32 Florio (10.1016/j.cell.2019.01.017_bib18) 2016; 2 Fish (10.1016/j.cell.2019.01.017_bib17) 2008; 121 Johnson (10.1016/j.cell.2019.01.017_bib22) 2001; 413 Smart (10.1016/j.cell.2019.01.017_bib60) 2002; 12 Eiraku (10.1016/j.cell.2019.01.017_bib14) 2008; 3 Chen (10.1016/j.cell.2019.01.017_bib10) 2013; 14 Lancaster (10.1016/j.cell.2019.01.017_bib28) 2013; 501 Clevers (10.1016/j.cell.2019.01.017_bib11) 2016; 165 Herculano-Houzel (10.1016/j.cell.2019.01.017_bib20) 2012; 109 Matsumoto (10.1016/j.cell.2019.01.017_bib33) 2013; 8 Kronenberg (10.1016/j.cell.2019.01.017_bib27) 2018; 360 Dennis (10.1016/j.cell.2019.01.017_bib13) 2017; 1 Oldham (10.1016/j.cell.2019.01.017_bib40) 2008; 11 Kriegstein (10.1016/j.cell.2019.01.017_bib26) 2006; 7 Bakken (10.1016/j.cell.2019.01.017_bib1) 2016; 535 Poduri (10.1016/j.cell.2019.01.017_bib46) 2012; 74 Dennis (10.1016/j.cell.2019.01.017_bib12) 2012; 149 Pollard (10.1016/j.cell.2019.01.017_bib47) 2006; 443 Rakic (10.1016/j.cell.2019.01.017_bib54) 2003; 13 |
References_xml | – volume: 443 start-page: 167 year: 2006 end-page: 172 ident: bib47 article-title: An RNA gene expressed during cortical development evolved rapidly in humans publication-title: Nature – volume: 503 start-page: 525 year: 2013 end-page: 529 ident: bib32 article-title: Differential L1 regulation in pluripotent stem cells of humans and apes publication-title: Nature – volume: 8 start-page: 190 year: 2013 ident: bib33 article-title: Induced pluripotent stem cells from patients with human fibrodysplasia ossificans progressive show increased mineralization and cartilage formation publication-title: Orphanet. J. Rare Dis. – volume: 165 start-page: 1586 year: 2016 end-page: 1597 ident: bib11 article-title: Modeling development and disease with organoids publication-title: Cell – volume: 18 start-page: 467 year: 2016 end-page: 480 ident: bib42 article-title: 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size publication-title: Cell Stem Cell – volume: 4 start-page: 5519 year: 2014 ident: bib45 article-title: An activator of mTOR inhibits oxLDL-induced autophagy and apoptosis in vascular endothelial cells and restricts atherosclerosis in apolipoprotein E publication-title: Sci. Rep. – volume: 16 start-page: 2576 year: 2016 end-page: 2592 ident: bib41 article-title: Zika virus disrupts phospho-tbk1 localization and mitosis in human neuroepithelial stem cells and radial glia publication-title: Cell Rep. – volume: 535 start-page: 367 year: 2016 end-page: 375 ident: bib1 article-title: A comprehensive transcriptional map of primate brain development publication-title: Nature – volume: 9 start-page: 559 year: 2008 ident: bib29 article-title: WGCNA: An R package for weighted correlation network analysis publication-title: BMC Bioinformatics – volume: 2008 start-page: P10008 year: 2008 ident: bib30 article-title: Fast unfolding of communities in large networks publication-title: J. Stat. Mech. – volume: 95 start-page: 779 year: 2017 end-page: 790 ident: bib59 article-title: Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells publication-title: Neuron – volume: 22 start-page: R791 year: 2012 end-page: R792 ident: bib55 article-title: Fetal brain development in chimpanzees versus humans publication-title: Curr. Biol. – volume: 49 start-page: 515 year: 2017 end-page: 526 ident: bib61 article-title: Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases publication-title: Nat. Genet. – volume: 110 start-page: 20284 year: 2013 end-page: 20289 ident: bib23 article-title: Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: 15312 year: 2018 ident: bib44 article-title: A comparative assessment of human and chimpanzee iPSC-derived cardiomyocytes with primary heart tissues publication-title: Sci. Rep. – volume: 8 start-page: 409 year: 2011 end-page: 412 ident: bib39 article-title: A more efficient method to generate integration-free human iPSC cells publication-title: Nat. Methods – volume: 28 start-page: 1029 year: 2018 end-page: 1038 ident: bib16 article-title: Comparative Annotation Toolkit (CAT)-simultaneous clade and personal genome annotation publication-title: Genome Res. – volume: 17 start-page: 483 year: 2016 ident: bib21 article-title: variancePartition: Interpreting drivers of variation in complex gene expression studies publication-title: BMC Bioinformatics – volume: 112 start-page: 15672 year: 2015 end-page: 15677 ident: bib6 article-title: Human cerebral organoids recapitulate gene expression programs of fetal neocortex development publication-title: Proc. Natl. Acad. Sci. USA – volume: 21 start-page: 1512 year: 2011 end-page: 1528 ident: bib43 article-title: Cactus: Algorithms for genome multiple sequence alignment publication-title: Genome Res. – volume: 11 start-page: 1271 year: 2008 end-page: 1282 ident: bib40 article-title: Functional organization of the transcriptome in human brain publication-title: Nat. Neurosci. – volume: 18 start-page: 383 year: 1995 end-page: 388 ident: bib53 article-title: A small step for the cell, a giant leap for mankind: A hypothesis of neocortical expansion during evolution publication-title: Trends Neurosci. – volume: 163 start-page: 68 year: 2015 end-page: 83 ident: bib50 article-title: Enhancer divergence and cis-regulatory evolution in the human and chimp neural crest publication-title: Cell – volume: 2 start-page: 119 year: 2013 end-page: 131 ident: bib25 article-title: A robust method to derive functional neural crest cells from human pluripotent stem cells publication-title: Am. J. Stem Cells – volume: 121 start-page: 2783 year: 2008 end-page: 2793 ident: bib17 article-title: Making bigger brains-the evolution of neural-progenitor-cell division publication-title: J. Cell Sci. – volume: 100 start-page: 11484 year: 2003 end-page: 11489 ident: bib24 article-title: Evolution’s cauldron: duplication, deletion, and rearrangement in the mouse and human genomes publication-title: Proc. Natl. Acad. Sci. USA – volume: 409 start-page: 714 year: 2001 end-page: 720 ident: bib36 article-title: Neurons derived from radial glial cells establish radial units in neocortex publication-title: Nature – volume: 19 start-page: 162 year: 2018 ident: bib3 article-title: A comparative study of endoderm differentiation in humans and chimpanzees publication-title: Genome Biol. – volume: 32 start-page: 1053 year: 2014 end-page: 1058 ident: bib48 article-title: Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex publication-title: Nat. Biotechnol. – volume: 471 start-page: 216 year: 2011 end-page: 219 ident: bib34 article-title: Human-specific loss of regulatory DNA and the evolution of human-specific traits publication-title: Nature – volume: 358 start-page: 1318 year: 2017 end-page: 1323 ident: bib37 article-title: Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex publication-title: Science – volume: 3 start-page: 519 year: 2008 end-page: 532 ident: bib14 article-title: Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals publication-title: Cell Stem Cell – volume: 5 start-page: 166 year: 2016 ident: bib35 article-title: Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development publication-title: eLife – volume: 413 start-page: 514 year: 2001 end-page: 519 ident: bib22 article-title: Positive selection of a gene family during the emergence of humans and African apes publication-title: Nature – volume: 163 start-page: 55 year: 2015 end-page: 67 ident: bib49 article-title: Molecular identity of human outer radial glia during cortical development publication-title: Cell – volume: 2 start-page: e1601941 year: 2016 ident: bib18 article-title: A single splice site mutation in human-specific publication-title: Sci. Adv. – volume: 149 start-page: 912 year: 2012 end-page: 922 ident: bib12 article-title: Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication publication-title: Cell – volume: 1 start-page: 69 year: 2017 ident: bib13 article-title: The evolution and population diversity of human-specific segmental duplications publication-title: Nat. Ecol. Evol. – volume: 46 start-page: D762 year: 2018 end-page: D769 ident: bib7 article-title: The UCSC Genome Browser database: 2018 update publication-title: Nucleic Acids Res. – volume: 472 start-page: 51 year: 2011 end-page: 56 ident: bib15 article-title: Self-organizing optic-cup morphogenesis in three-dimensional culture publication-title: Nature – volume: 36 start-page: 411 year: 2018 end-page: 420 ident: bib5 article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species publication-title: Nat. Biotechnol. – volume: 501 start-page: 373 year: 2013 end-page: 379 ident: bib28 article-title: Cerebral organoids model human brain development and microcephaly publication-title: Nature – volume: 25 start-page: 772 year: 2015 end-page: 779 ident: bib4 article-title: Human-chimpanzee differences in a FZD8 enhancer alter cell-cycle dynamics in the developing neocortex publication-title: Curr. Biol. – volume: 38 start-page: 162 year: 2016 end-page: 171 ident: bib58 article-title: Genomic divergence and brain evolution: How regulatory DNA influences development of the cerebral cortex publication-title: BioEssays – volume: 4 start-page: e07103 year: 2015 ident: bib19 article-title: A panel of induced pluripotent stem cells from chimpanzees: A resource for comparative functional genomics publication-title: eLife – volume: 74 start-page: 41 year: 2012 end-page: 48 ident: bib46 article-title: Somatic activation of AKT3 causes hemispheric developmental brain malformations publication-title: Neuron – volume: 545 start-page: 48 year: 2017 end-page: 53 ident: bib51 article-title: Cell diversity and network dynamics in photosensitive human brain organoids publication-title: Nature – volume: 360 start-page: eaar6343 year: 2018 ident: bib27 article-title: High-resolution comparative analysis of great ape genomes publication-title: Science – volume: 93 start-page: 182 year: 2011 end-page: 203 ident: bib52 article-title: Energy metabolism in adult neural stem cell fate publication-title: Prog. Neurobiol. – volume: 10 year: 2018 ident: bib31 article-title: Pervasive Correlated Evolution in Gene Expression Shapes Cell and Tissue Type Transcriptomes publication-title: Genome Biol. Evol. – volume: 149 start-page: 923 year: 2012 end-page: 935 ident: bib9 article-title: Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation publication-title: Cell – volume: 29 start-page: 308 year: 2001 end-page: 311 ident: bib57 article-title: dbSNP: the NCBI database of genetic variation publication-title: Nucleic Acids Res. – volume: 106 start-page: 7840 year: 2009 end-page: 7845 ident: bib64 article-title: mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 109 start-page: 10661 year: 2012 end-page: 10668 ident: bib20 article-title: The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost publication-title: Proc. Natl. Acad. Sci. USA – volume: 166 start-page: 1308 year: 2016 end-page: 1323 ident: bib56 article-title: Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics publication-title: Cell – volume: 12 start-page: 37 year: 2002 end-page: 53 ident: bib60 article-title: Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey publication-title: Cereb. Cortex – volume: 164 start-page: 550 year: 2016 end-page: 563 ident: bib8 article-title: Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma publication-title: Cell – volume: 14 start-page: 128 year: 2013 ident: bib10 article-title: Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool publication-title: BMC Bioinformatics – volume: 330 start-page: 641 year: 2010 end-page: 646 ident: bib62 article-title: Diversity of human copy number variation and multicopy genes publication-title: Science – volume: 13 start-page: 541 year: 2003 end-page: 549 ident: bib54 article-title: Developmental and evolutionary adaptations of cortical radial glia publication-title: Cereb. Cortex – volume: 23 start-page: 1373 year: 2013 end-page: 1382 ident: bib63 article-title: Evolution and diversity of copy number variation in the great ape lineage publication-title: Genome Res. – volume: 20 start-page: 435 year: 2017 end-page: 449 ident: bib2 article-title: Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia publication-title: Cell Stem Cell – volume: 7 start-page: 883 year: 2006 end-page: 890 ident: bib26 article-title: Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion publication-title: Nat. Rev. Neurosci. – year: 1970 ident: bib38 article-title: Evolution by Gene Duplication – volume: 545 start-page: 48 year: 2017 ident: 10.1016/j.cell.2019.01.017_bib51 article-title: Cell diversity and network dynamics in photosensitive human brain organoids publication-title: Nature doi: 10.1038/nature22047 – volume: 14 start-page: 128 year: 2013 ident: 10.1016/j.cell.2019.01.017_bib10 article-title: Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-128 – volume: 20 start-page: 435 year: 2017 ident: 10.1016/j.cell.2019.01.017_bib2 article-title: Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.12.007 – volume: 19 start-page: 162 year: 2018 ident: 10.1016/j.cell.2019.01.017_bib3 article-title: A comparative study of endoderm differentiation in humans and chimpanzees publication-title: Genome Biol. doi: 10.1186/s13059-018-1490-5 – volume: 106 start-page: 7840 year: 2009 ident: 10.1016/j.cell.2019.01.017_bib64 article-title: mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0901854106 – volume: 17 start-page: 483 year: 2016 ident: 10.1016/j.cell.2019.01.017_bib21 article-title: variancePartition: Interpreting drivers of variation in complex gene expression studies publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1323-z – volume: 164 start-page: 550 year: 2016 ident: 10.1016/j.cell.2019.01.017_bib8 article-title: Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma publication-title: Cell doi: 10.1016/j.cell.2015.12.028 – volume: 22 start-page: R791 year: 2012 ident: 10.1016/j.cell.2019.01.017_bib55 article-title: Fetal brain development in chimpanzees versus humans publication-title: Curr. Biol. doi: 10.1016/j.cub.2012.06.062 – volume: 110 start-page: 20284 year: 2013 ident: 10.1016/j.cell.2019.01.017_bib23 article-title: Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1315710110 – volume: 163 start-page: 55 year: 2015 ident: 10.1016/j.cell.2019.01.017_bib49 article-title: Molecular identity of human outer radial glia during cortical development publication-title: Cell doi: 10.1016/j.cell.2015.09.004 – volume: 46 start-page: D762 year: 2018 ident: 10.1016/j.cell.2019.01.017_bib7 article-title: The UCSC Genome Browser database: 2018 update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1020 – volume: 165 start-page: 1586 year: 2016 ident: 10.1016/j.cell.2019.01.017_bib11 article-title: Modeling development and disease with organoids publication-title: Cell doi: 10.1016/j.cell.2016.05.082 – volume: 29 start-page: 308 year: 2001 ident: 10.1016/j.cell.2019.01.017_bib57 article-title: dbSNP: the NCBI database of genetic variation publication-title: Nucleic Acids Res. doi: 10.1093/nar/29.1.308 – volume: 149 start-page: 912 year: 2012 ident: 10.1016/j.cell.2019.01.017_bib12 article-title: Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication publication-title: Cell doi: 10.1016/j.cell.2012.03.033 – volume: 112 start-page: 15672 year: 2015 ident: 10.1016/j.cell.2019.01.017_bib6 article-title: Human cerebral organoids recapitulate gene expression programs of fetal neocortex development publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1520760112 – volume: 501 start-page: 373 year: 2013 ident: 10.1016/j.cell.2019.01.017_bib28 article-title: Cerebral organoids model human brain development and microcephaly publication-title: Nature doi: 10.1038/nature12517 – volume: 18 start-page: 467 year: 2016 ident: 10.1016/j.cell.2019.01.017_bib42 article-title: 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.03.003 – volume: 360 start-page: eaar6343 year: 2018 ident: 10.1016/j.cell.2019.01.017_bib27 article-title: High-resolution comparative analysis of great ape genomes publication-title: Science doi: 10.1126/science.aar6343 – volume: 413 start-page: 514 year: 2001 ident: 10.1016/j.cell.2019.01.017_bib22 article-title: Positive selection of a gene family during the emergence of humans and African apes publication-title: Nature doi: 10.1038/35097067 – volume: 9 start-page: 559 year: 2008 ident: 10.1016/j.cell.2019.01.017_bib29 article-title: WGCNA: An R package for weighted correlation network analysis publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-559 – volume: 21 start-page: 1512 year: 2011 ident: 10.1016/j.cell.2019.01.017_bib43 article-title: Cactus: Algorithms for genome multiple sequence alignment publication-title: Genome Res. doi: 10.1101/gr.123356.111 – volume: 1 start-page: 69 year: 2017 ident: 10.1016/j.cell.2019.01.017_bib13 article-title: The evolution and population diversity of human-specific segmental duplications publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-016-0069 – volume: 503 start-page: 525 year: 2013 ident: 10.1016/j.cell.2019.01.017_bib32 article-title: Differential L1 regulation in pluripotent stem cells of humans and apes publication-title: Nature doi: 10.1038/nature12686 – volume: 8 start-page: 190 year: 2013 ident: 10.1016/j.cell.2019.01.017_bib33 article-title: Induced pluripotent stem cells from patients with human fibrodysplasia ossificans progressive show increased mineralization and cartilage formation publication-title: Orphanet. J. Rare Dis. doi: 10.1186/1750-1172-8-190 – volume: 166 start-page: 1308 year: 2016 ident: 10.1016/j.cell.2019.01.017_bib56 article-title: Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics publication-title: Cell doi: 10.1016/j.cell.2016.07.054 – volume: 28 start-page: 1029 year: 2018 ident: 10.1016/j.cell.2019.01.017_bib16 article-title: Comparative Annotation Toolkit (CAT)-simultaneous clade and personal genome annotation publication-title: Genome Res. doi: 10.1101/gr.233460.117 – volume: 100 start-page: 11484 year: 2003 ident: 10.1016/j.cell.2019.01.017_bib24 article-title: Evolution’s cauldron: duplication, deletion, and rearrangement in the mouse and human genomes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1932072100 – volume: 358 start-page: 1318 year: 2017 ident: 10.1016/j.cell.2019.01.017_bib37 article-title: Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex publication-title: Science doi: 10.1126/science.aap8809 – year: 1970 ident: 10.1016/j.cell.2019.01.017_bib38 – volume: 11 start-page: 1271 year: 2008 ident: 10.1016/j.cell.2019.01.017_bib40 article-title: Functional organization of the transcriptome in human brain publication-title: Nat. Neurosci. doi: 10.1038/nn.2207 – volume: 8 start-page: 15312 year: 2018 ident: 10.1016/j.cell.2019.01.017_bib44 article-title: A comparative assessment of human and chimpanzee iPSC-derived cardiomyocytes with primary heart tissues publication-title: Sci. Rep. doi: 10.1038/s41598-018-33478-9 – volume: 95 start-page: 779 year: 2017 ident: 10.1016/j.cell.2019.01.017_bib59 article-title: Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells publication-title: Neuron doi: 10.1016/j.neuron.2017.07.035 – volume: 109 start-page: 10661 issue: Suppl 1 year: 2012 ident: 10.1016/j.cell.2019.01.017_bib20 article-title: The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1201895109 – volume: 7 start-page: 883 year: 2006 ident: 10.1016/j.cell.2019.01.017_bib26 article-title: Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2008 – volume: 10 year: 2018 ident: 10.1016/j.cell.2019.01.017_bib31 article-title: Pervasive Correlated Evolution in Gene Expression Shapes Cell and Tissue Type Transcriptomes publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evy016 – volume: 4 start-page: 5519 year: 2014 ident: 10.1016/j.cell.2019.01.017_bib45 article-title: An activator of mTOR inhibits oxLDL-induced autophagy and apoptosis in vascular endothelial cells and restricts atherosclerosis in apolipoprotein E−/− mice publication-title: Sci. Rep. doi: 10.1038/srep05519 – volume: 32 start-page: 1053 year: 2014 ident: 10.1016/j.cell.2019.01.017_bib48 article-title: Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2967 – volume: 23 start-page: 1373 year: 2013 ident: 10.1016/j.cell.2019.01.017_bib63 article-title: Evolution and diversity of copy number variation in the great ape lineage publication-title: Genome Res. doi: 10.1101/gr.158543.113 – volume: 330 start-page: 641 year: 2010 ident: 10.1016/j.cell.2019.01.017_bib62 article-title: Diversity of human copy number variation and multicopy genes publication-title: Science doi: 10.1126/science.1197005 – volume: 149 start-page: 923 year: 2012 ident: 10.1016/j.cell.2019.01.017_bib9 article-title: Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation publication-title: Cell doi: 10.1016/j.cell.2012.03.034 – volume: 471 start-page: 216 year: 2011 ident: 10.1016/j.cell.2019.01.017_bib34 article-title: Human-specific loss of regulatory DNA and the evolution of human-specific traits publication-title: Nature doi: 10.1038/nature09774 – volume: 535 start-page: 367 year: 2016 ident: 10.1016/j.cell.2019.01.017_bib1 article-title: A comprehensive transcriptional map of primate brain development publication-title: Nature doi: 10.1038/nature18637 – volume: 36 start-page: 411 year: 2018 ident: 10.1016/j.cell.2019.01.017_bib5 article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4096 – volume: 93 start-page: 182 year: 2011 ident: 10.1016/j.cell.2019.01.017_bib52 article-title: Energy metabolism in adult neural stem cell fate publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2010.10.007 – volume: 16 start-page: 2576 year: 2016 ident: 10.1016/j.cell.2019.01.017_bib41 article-title: Zika virus disrupts phospho-tbk1 localization and mitosis in human neuroepithelial stem cells and radial glia publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.08.038 – volume: 163 start-page: 68 year: 2015 ident: 10.1016/j.cell.2019.01.017_bib50 article-title: Enhancer divergence and cis-regulatory evolution in the human and chimp neural crest publication-title: Cell doi: 10.1016/j.cell.2015.08.036 – volume: 2008 start-page: P10008 year: 2008 ident: 10.1016/j.cell.2019.01.017_bib30 article-title: Fast unfolding of communities in large networks publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2008/10/P10008 – volume: 5 start-page: 166 year: 2016 ident: 10.1016/j.cell.2019.01.017_bib35 article-title: Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development publication-title: eLife doi: 10.7554/eLife.18683 – volume: 13 start-page: 541 year: 2003 ident: 10.1016/j.cell.2019.01.017_bib54 article-title: Developmental and evolutionary adaptations of cortical radial glia publication-title: Cereb. Cortex doi: 10.1093/cercor/13.6.541 – volume: 2 start-page: e1601941 year: 2016 ident: 10.1016/j.cell.2019.01.017_bib18 article-title: A single splice site mutation in human-specific ARHGAP11B causes basal progenitor amplification publication-title: Sci. Adv. doi: 10.1126/sciadv.1601941 – volume: 409 start-page: 714 year: 2001 ident: 10.1016/j.cell.2019.01.017_bib36 article-title: Neurons derived from radial glial cells establish radial units in neocortex publication-title: Nature doi: 10.1038/35055553 – volume: 12 start-page: 37 year: 2002 ident: 10.1016/j.cell.2019.01.017_bib60 article-title: Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey publication-title: Cereb. Cortex doi: 10.1093/cercor/12.1.37 – volume: 4 start-page: e07103 year: 2015 ident: 10.1016/j.cell.2019.01.017_bib19 article-title: A panel of induced pluripotent stem cells from chimpanzees: A resource for comparative functional genomics publication-title: eLife doi: 10.7554/eLife.07103 – volume: 38 start-page: 162 year: 2016 ident: 10.1016/j.cell.2019.01.017_bib58 article-title: Genomic divergence and brain evolution: How regulatory DNA influences development of the cerebral cortex publication-title: BioEssays doi: 10.1002/bies.201500108 – volume: 3 start-page: 519 year: 2008 ident: 10.1016/j.cell.2019.01.017_bib14 article-title: Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals publication-title: Cell Stem Cell doi: 10.1016/j.stem.2008.09.002 – volume: 18 start-page: 383 year: 1995 ident: 10.1016/j.cell.2019.01.017_bib53 article-title: A small step for the cell, a giant leap for mankind: A hypothesis of neocortical expansion during evolution publication-title: Trends Neurosci. doi: 10.1016/0166-2236(95)93934-P – volume: 2 start-page: 119 year: 2013 ident: 10.1016/j.cell.2019.01.017_bib25 article-title: A robust method to derive functional neural crest cells from human pluripotent stem cells publication-title: Am. J. Stem Cells – volume: 74 start-page: 41 year: 2012 ident: 10.1016/j.cell.2019.01.017_bib46 article-title: Somatic activation of AKT3 causes hemispheric developmental brain malformations publication-title: Neuron doi: 10.1016/j.neuron.2012.03.010 – volume: 121 start-page: 2783 year: 2008 ident: 10.1016/j.cell.2019.01.017_bib17 article-title: Making bigger brains-the evolution of neural-progenitor-cell division publication-title: J. Cell Sci. doi: 10.1242/jcs.023465 – volume: 472 start-page: 51 year: 2011 ident: 10.1016/j.cell.2019.01.017_bib15 article-title: Self-organizing optic-cup morphogenesis in three-dimensional culture publication-title: Nature doi: 10.1038/nature09941 – volume: 8 start-page: 409 year: 2011 ident: 10.1016/j.cell.2019.01.017_bib39 article-title: A more efficient method to generate integration-free human iPSC cells publication-title: Nat. Methods doi: 10.1038/nmeth.1591 – volume: 49 start-page: 515 year: 2017 ident: 10.1016/j.cell.2019.01.017_bib61 article-title: Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases publication-title: Nat. Genet. doi: 10.1038/ng.3792 – volume: 443 start-page: 167 year: 2006 ident: 10.1016/j.cell.2019.01.017_bib47 article-title: An RNA gene expressed during cortical development evolved rapidly in humans publication-title: Nature doi: 10.1038/nature05113 – volume: 25 start-page: 772 year: 2015 ident: 10.1016/j.cell.2019.01.017_bib4 article-title: Human-chimpanzee differences in a FZD8 enhancer alter cell-cycle dynamics in the developing neocortex publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.01.041 |
SSID | ssj0008555 |
Score | 2.685002 |
Snippet | Direct comparisons of human and non-human primate brains can reveal molecular pathways underlying remarkable specializations of the human brain. However,... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 743 |
SubjectTerms | Animals Biological Evolution brain Brain - cytology Cell Culture Techniques - methods Cell Differentiation - genetics Cerebral Cortex - cytology Cerebral Cortex - metabolism cerebral organoids chimpanzee cortex cortical development evolution gene duplication gene regulatory networks Gene Regulatory Networks - genetics genes human-specific evolution Humans Induced Pluripotent Stem Cells - cytology Macaca macaque mTOR neural progenitor cells neurogenesis Neurogenesis - genetics Organoids - growth & development Organoids - metabolism Pan troglodytes Pluripotent Stem Cells - cytology radial glia receptors Single-Cell Analysis single-cell RNA sequencing Species Specificity Transcriptome - genetics |
Title | Establishing Cerebral Organoids as Models of Human-Specific Brain Evolution |
URI | https://dx.doi.org/10.1016/j.cell.2019.01.017 https://www.ncbi.nlm.nih.gov/pubmed/30735633 https://www.proquest.com/docview/2185558100 https://www.proquest.com/docview/2221016331 https://pubmed.ncbi.nlm.nih.gov/PMC6544371 |
Volume | 176 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7Et-uLCN6k2DZJ0xx1WfGBnhT2FpImxcrSFXcV_PfOpO3iquxB6KVNUtKZZPIlnfmGkFMLc4aXPI8yV6qIW9iwWmVAIanMSg-AtzQY4Hz_kF0_8duhGC6RfhcLg26Vre1vbHqw1u2T81aa569VhTG-Ks0zWBEVCywmYIcxqhSD-IaXM2ucC9FkMVAw86F2GzjT-Hjh4Ti6d6lA3RmSlv25OP0Gnz99KL8tSlfrZK1Fk_Si6fAGWfL1Jllp8kt-bpG7AWC_7piJ9v0b_iUe0RB_Oa7chJoJxWRoowkdlzSc50chIX1ZFfQSk0fQwUc7NrfJ09XgsX8dtdkTogIgwjQySWwNwrtCxMxZxmLjQVjcpZlj1vDcA1LwhZWw4it4zI30DPkJueVeCsF2yHI9rv0eoZaL3KaFc7lwvEhAl1x6Z5XLXKYKZnok6cSmi5ZaHDNcjHTnQ_aiUdQaRa3jBC7ZI2ezNq8NscbC2qLThp4bHhos_8J2J53qNMwbLDa1H79PNEAbpDpL4nhBnTTF9zKW9Mhuo-5ZX9E2CijqETk3EGYVkLd7vqSungN_d4acgzLZ_-c3HZBVvAuu4_KQLE_f3v0RIKOpPYY9wc3dcZgAX-sxDV8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SlNJeQvreNG1V6K2Y2JZkWcdm2bBpHqcE9iYkS6YOizdkN4X8-8zI9tJtyx4KPkkjY89Io8_yzDcAXx2uGVGLMil8rRPh8IPVaYsGyVVRBwS8taUE54vLYnotfszkbAfGQy4MhVX2vr_z6dFb9y1HvTaPbpuGcnx1Xha4I2oeWUyewFNEAylN7dPZ8dodl1J2ZQw0Ln0U7zNnuiAvOh2n-C4duTtj1bJ_7k5_o88_gyh_25VO9mGvh5Pse_fEL2EntK_gWVdg8uE1nE0Q_A3nTGwc7ug38ZzFBMxF45fMLhlVQ5sv2aJm8UA_iRXp66Zix1Q9gk1-9ZPzDVyfTK7G06Qvn5BUiBFWic1SZwnfVTLl3nGe2oDaEj4vPHdWlAGhQqicwi1fY7OwKnAiKBROBCUlfwu77aIN74E5IUuXV96X0osqQ2MKFbzTvvCFrrgdQTaozVQ9tziVuJibIYjsxpCqDanapBleagTf1mNuO2aNrdJysIbZmB8GXf_WcV8G0xlcONRt27C4XxrENsR1lqXpFpk8p_tyno3gXWfu9bOSc5TYNQK1MRHWAkTcvdnTNj8jgXdBpIMqO_jPd_oMz6dXF-fm_PTy7AO8oJ4YR64OYXd1dx8-IkxauU9xGTwCJowPiQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Establishing+Cerebral+Organoids+as+Models+of+Human-Specific+Brain+Evolution&rft.jtitle=Cell&rft.au=Pollen%2C+Alex+A&rft.au=Bhaduri%2C+Aparna&rft.au=Andrews%2C+Madeline+G&rft.au=Nowakowski%2C+Tomasz+J&rft.date=2019-02-07&rft.eissn=1097-4172&rft.volume=176&rft.issue=4&rft.spage=743&rft_id=info:doi/10.1016%2Fj.cell.2019.01.017&rft_id=info%3Apmid%2F30735633&rft.externalDocID=30735633 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |