Establishing Cerebral Organoids as Models of Human-Specific Brain Evolution

Direct comparisons of human and non-human primate brains can reveal molecular pathways underlying remarkable specializations of the human brain. However, chimpanzee tissue is inaccessible during neocortical neurogenesis when differences in brain size first appear. To identify human-specific features...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 176; no. 4; pp. 743 - 756.e17
Main Authors Pollen, Alex A., Bhaduri, Aparna, Andrews, Madeline G., Nowakowski, Tomasz J., Meyerson, Olivia S., Mostajo-Radji, Mohammed A., Di Lullo, Elizabeth, Alvarado, Beatriz, Bedolli, Melanie, Dougherty, Max L., Fiddes, Ian T., Kronenberg, Zev N., Shuga, Joe, Leyrat, Anne A., West, Jay A., Bershteyn, Marina, Lowe, Craig B., Pavlovic, Bryan J., Salama, Sofie R., Haussler, David, Eichler, Evan E., Kriegstein, Arnold R.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 07.02.2019
Subjects
Online AccessGet full text
ISSN0092-8674
1097-4172
1097-4172
DOI10.1016/j.cell.2019.01.017

Cover

Abstract Direct comparisons of human and non-human primate brains can reveal molecular pathways underlying remarkable specializations of the human brain. However, chimpanzee tissue is inaccessible during neocortical neurogenesis when differences in brain size first appear. To identify human-specific features of cortical development, we leveraged recent innovations that permit generating pluripotent stem cell-derived cerebral organoids from chimpanzee. Despite metabolic differences, organoid models preserve gene regulatory networks related to primary cell types and developmental processes. We further identified 261 differentially expressed genes in human compared to both chimpanzee organoids and macaque cortex, enriched for recent gene duplications, and including multiple regulators of PI3K-AKT-mTOR signaling. We observed increased activation of this pathway in human radial glia, dependent on two receptors upregulated specifically in human: INSR and ITGB8. Our findings establish a platform for systematic analysis of molecular changes contributing to human brain development and evolution. •Brain organoids preserve gene expression networks despite elevated metabolic stress•Chimpanzee organoids enable studies of the evolution of human brain development•Primary and organoid samples reveal 261 human-specific gene expression changes•Human radial glia exhibit increased mTOR activation compared to non-human primates Comparisons of cerebral organoids between chimpanzees, macaques, and humans reveal gene duplications and cell-signaling alterations that explain developmental evolutionary differences that are unique to us as a species.
AbstractList Direct comparisons of human and non-human primate brains can reveal molecular pathways underlying remarkable specializations of the human brain. However, chimpanzee tissue is inaccessible during neocortical neurogenesis when differences in brain size first appear. To identify human-specific features of cortical development, we leveraged recent innovations that permit generating pluripotent stem cell-derived cerebral organoids from chimpanzee. Despite metabolic differences, organoid models preserve gene regulatory networks related to primary cell types and developmental processes. We further identified 261 differentially-expressed genes in human compared to both chimpanzee organoids and macaque cortex, enriched for recent gene duplications, and including multiple regulators of PI3K/AKT/mTOR signaling. We observed increased activation of this pathway in human radial glia, dependent on two receptors up-regulated specifically in human, INSR and ITGB8. Our findings establish a platform for systematic analysis of molecular changes contributing to human brain development and evolution.
Direct comparisons of human and non-human primate brains can reveal molecular pathways underlying remarkable specializations of the human brain. However, chimpanzee tissue is inaccessible during neocortical neurogenesis when differences in brain size first appear. To identify human-specific features of cortical development, we leveraged recent innovations that permit generating pluripotent stem cell-derived cerebral organoids from chimpanzee. Despite metabolic differences, organoid models preserve gene regulatory networks related to primary cell types and developmental processes. We further identified 261 differentially expressed genes in human compared to both chimpanzee organoids and macaque cortex, enriched for recent gene duplications, and including multiple regulators of PI3K-AKT-mTOR signaling. We observed increased activation of this pathway in human radial glia, dependent on two receptors upregulated specifically in human: INSR and ITGB8. Our findings establish a platform for systematic analysis of molecular changes contributing to human brain development and evolution.
Direct comparisons of human and non-human primate brains can reveal molecular pathways underlying remarkable specializations of the human brain. However, chimpanzee tissue is inaccessible during neocortical neurogenesis when differences in brain size first appear. To identify human-specific features of cortical development, we leveraged recent innovations that permit generating pluripotent stem cell-derived cerebral organoids from chimpanzee. Despite metabolic differences, organoid models preserve gene regulatory networks related to primary cell types and developmental processes. We further identified 261 differentially expressed genes in human compared to both chimpanzee organoids and macaque cortex, enriched for recent gene duplications, and including multiple regulators of PI3K-AKT-mTOR signaling. We observed increased activation of this pathway in human radial glia, dependent on two receptors upregulated specifically in human: INSR and ITGB8. Our findings establish a platform for systematic analysis of molecular changes contributing to human brain development and evolution.Direct comparisons of human and non-human primate brains can reveal molecular pathways underlying remarkable specializations of the human brain. However, chimpanzee tissue is inaccessible during neocortical neurogenesis when differences in brain size first appear. To identify human-specific features of cortical development, we leveraged recent innovations that permit generating pluripotent stem cell-derived cerebral organoids from chimpanzee. Despite metabolic differences, organoid models preserve gene regulatory networks related to primary cell types and developmental processes. We further identified 261 differentially expressed genes in human compared to both chimpanzee organoids and macaque cortex, enriched for recent gene duplications, and including multiple regulators of PI3K-AKT-mTOR signaling. We observed increased activation of this pathway in human radial glia, dependent on two receptors upregulated specifically in human: INSR and ITGB8. Our findings establish a platform for systematic analysis of molecular changes contributing to human brain development and evolution.
Direct comparisons of human and non-human primate brains can reveal molecular pathways underlying remarkable specializations of the human brain. However, chimpanzee tissue is inaccessible during neocortical neurogenesis when differences in brain size first appear. To identify human-specific features of cortical development, we leveraged recent innovations that permit generating pluripotent stem cell-derived cerebral organoids from chimpanzee. Despite metabolic differences, organoid models preserve gene regulatory networks related to primary cell types and developmental processes. We further identified 261 differentially expressed genes in human compared to both chimpanzee organoids and macaque cortex, enriched for recent gene duplications, and including multiple regulators of PI3K-AKT-mTOR signaling. We observed increased activation of this pathway in human radial glia, dependent on two receptors upregulated specifically in human: INSR and ITGB8. Our findings establish a platform for systematic analysis of molecular changes contributing to human brain development and evolution. •Brain organoids preserve gene expression networks despite elevated metabolic stress•Chimpanzee organoids enable studies of the evolution of human brain development•Primary and organoid samples reveal 261 human-specific gene expression changes•Human radial glia exhibit increased mTOR activation compared to non-human primates Comparisons of cerebral organoids between chimpanzees, macaques, and humans reveal gene duplications and cell-signaling alterations that explain developmental evolutionary differences that are unique to us as a species.
Direct comparisons of human and non-human primate brains can reveal molecular pathways underlying remarkable specializations of the human brain. However, chimpanzee tissue is inaccessible during neocortical neurogenesis when differences in brain size first appear. To identify human-specific features of cortical development, we leveraged recent innovations that permit generating pluripotent stem cell-derived cerebral organoids from chimpanzee. Despite metabolic differences, organoid models preserve gene regulatory networks related to primary cell types and developmental processes. We further identified 261 differentially expressed genes in human compared to both chimpanzee organoids and macaque cortex, enriched for recent gene duplications, and including multiple regulators of PI3K-AKT-mTOR signaling. We observed increased activation of this pathway in human radial glia, dependent on two receptors upregulated specifically in human: INSR and ITGB8. Our findings establish a platform for systematic analysis of molecular changes contributing to human brain development and evolution.
Author Bedolli, Melanie
Fiddes, Ian T.
Haussler, David
West, Jay A.
Pavlovic, Bryan J.
Andrews, Madeline G.
Mostajo-Radji, Mohammed A.
Eichler, Evan E.
Alvarado, Beatriz
Bershteyn, Marina
Kronenberg, Zev N.
Kriegstein, Arnold R.
Lowe, Craig B.
Bhaduri, Aparna
Di Lullo, Elizabeth
Dougherty, Max L.
Salama, Sofie R.
Meyerson, Olivia S.
Shuga, Joe
Nowakowski, Tomasz J.
Leyrat, Anne A.
Pollen, Alex A.
AuthorAffiliation 4. Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
5. Genomics Institute, University of California, Santa Cruz, CA, USA
1. Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA
7. Department of Developmental Biology, Stanford University, Stanford CA, USA
3. Department of Anatomy, UCSF, San Francisco, CA, USA
6. New Technologies, Fluidigm, South San Francisco, CA, USA
2. The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA
8. Howard Hughes Medical Institute
AuthorAffiliation_xml – name: 5. Genomics Institute, University of California, Santa Cruz, CA, USA
– name: 7. Department of Developmental Biology, Stanford University, Stanford CA, USA
– name: 8. Howard Hughes Medical Institute
– name: 1. Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA
– name: 3. Department of Anatomy, UCSF, San Francisco, CA, USA
– name: 4. Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
– name: 2. The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA
– name: 6. New Technologies, Fluidigm, South San Francisco, CA, USA
Author_xml – sequence: 1
  givenname: Alex A.
  surname: Pollen
  fullname: Pollen, Alex A.
  email: alex.pollen@ucsf.edu
  organization: Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA
– sequence: 2
  givenname: Aparna
  surname: Bhaduri
  fullname: Bhaduri, Aparna
  organization: Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA
– sequence: 3
  givenname: Madeline G.
  surname: Andrews
  fullname: Andrews, Madeline G.
  organization: Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA
– sequence: 4
  givenname: Tomasz J.
  surname: Nowakowski
  fullname: Nowakowski, Tomasz J.
  organization: Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA
– sequence: 5
  givenname: Olivia S.
  surname: Meyerson
  fullname: Meyerson, Olivia S.
  organization: Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA
– sequence: 6
  givenname: Mohammed A.
  surname: Mostajo-Radji
  fullname: Mostajo-Radji, Mohammed A.
  organization: Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA
– sequence: 7
  givenname: Elizabeth
  surname: Di Lullo
  fullname: Di Lullo, Elizabeth
  organization: Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA
– sequence: 8
  givenname: Beatriz
  surname: Alvarado
  fullname: Alvarado, Beatriz
  organization: Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA
– sequence: 9
  givenname: Melanie
  surname: Bedolli
  fullname: Bedolli, Melanie
  organization: Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA
– sequence: 10
  givenname: Max L.
  surname: Dougherty
  fullname: Dougherty, Max L.
  organization: Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
– sequence: 11
  givenname: Ian T.
  surname: Fiddes
  fullname: Fiddes, Ian T.
  organization: Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
– sequence: 12
  givenname: Zev N.
  surname: Kronenberg
  fullname: Kronenberg, Zev N.
  organization: Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
– sequence: 13
  givenname: Joe
  surname: Shuga
  fullname: Shuga, Joe
  organization: New Technologies, Fluidigm, South San Francisco, CA, USA
– sequence: 14
  givenname: Anne A.
  surname: Leyrat
  fullname: Leyrat, Anne A.
  organization: New Technologies, Fluidigm, South San Francisco, CA, USA
– sequence: 15
  givenname: Jay A.
  surname: West
  fullname: West, Jay A.
  organization: New Technologies, Fluidigm, South San Francisco, CA, USA
– sequence: 16
  givenname: Marina
  surname: Bershteyn
  fullname: Bershteyn, Marina
  organization: The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA
– sequence: 17
  givenname: Craig B.
  surname: Lowe
  fullname: Lowe, Craig B.
  organization: Department of Developmental Biology, Stanford University, Stanford, CA, USA
– sequence: 18
  givenname: Bryan J.
  surname: Pavlovic
  fullname: Pavlovic, Bryan J.
  organization: Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA
– sequence: 19
  givenname: Sofie R.
  surname: Salama
  fullname: Salama, Sofie R.
  organization: Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
– sequence: 20
  givenname: David
  surname: Haussler
  fullname: Haussler, David
  organization: Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
– sequence: 21
  givenname: Evan E.
  surname: Eichler
  fullname: Eichler, Evan E.
  organization: Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
– sequence: 22
  givenname: Arnold R.
  surname: Kriegstein
  fullname: Kriegstein, Arnold R.
  email: arnold.kriegstein@ucsf.edu
  organization: Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30735633$$D View this record in MEDLINE/PubMed
BookMark eNqNUU1r3DAQFSGh2aT9AzkUH3vxdvRl2VAKzbJtShJyaHsWsjy70eKVtpK90H9fmU1K0kMIDAzMvPfm8eaMHPvgkZALCnMKtPq4mVvs-zkD2syB5lJHZEahUaWgih2TGUDDyrpS4pScpbQBgFpK-YacclBcVpzPyPUyDabtXbp3fl0sMGIbTV_cxbXxwXWpMKm4DR32qQir4mrcGl_-2KF1K2eLy2icL5b70I-DC_4tOVmZPuG7h35Ofn1d_lxclTd3374vvtyUVkoxlIZCa3ijlJXAu5ZzMKgEFR2rOt4aUWNDAW2rKGuaPBZGIQcmuGgFKin5Ofl80N2N7RY7i37InvUuuq2Jf3QwTj_feHev12GvKykEVzQLfHgQiOH3iGnQW5emLI3HMCbNGJsC5vwVUDpFWlOADH3_1NY_P49hZ0B9ANgYUoq40tYNZkouu3S9pqCns3qjpwN6-qsGmktlKvuP-qj-IunTgZS_h3uHUSfr0FvsXEQ76C64l-h_AUubuyA
CitedBy_id crossref_primary_10_1016_j_neulet_2021_135872
crossref_primary_10_1016_j_xhgg_2021_100033
crossref_primary_10_1093_pnasnexus_pgae051
crossref_primary_10_3390_v12091004
crossref_primary_10_1016_j_semcdb_2020_05_022
crossref_primary_10_1038_s41592_021_01344_8
crossref_primary_10_1002_wrna_1845
crossref_primary_10_3390_genes11030276
crossref_primary_10_1016_j_semcdb_2020_05_023
crossref_primary_10_3389_fncel_2019_00558
crossref_primary_10_1016_j_crmeth_2023_100686
crossref_primary_10_1016_j_isci_2024_110090
crossref_primary_10_1016_j_semcdb_2020_05_025
crossref_primary_10_3389_fcell_2020_604448
crossref_primary_10_1007_s11626_024_00853_y
crossref_primary_10_1007_s12272_020_01260_z
crossref_primary_10_3389_fnmol_2022_1017144
crossref_primary_10_1016_j_gde_2024_102267
crossref_primary_10_1101_gr_256958_119
crossref_primary_10_1038_s41586_021_03209_8
crossref_primary_10_1007_s12035_024_03998_9
crossref_primary_10_1016_j_isci_2021_102063
crossref_primary_10_3389_fcell_2021_780207
crossref_primary_10_1016_j_ceb_2019_07_010
crossref_primary_10_1016_j_cell_2019_10_041
crossref_primary_10_7554_eLife_58737
crossref_primary_10_1126_sciadv_adk1034
crossref_primary_10_1038_s41380_021_01316_6
crossref_primary_10_1523_JNEUROSCI_0620_21_2021
crossref_primary_10_3389_fncir_2021_788560
crossref_primary_10_1016_j_semcdb_2022_05_013
crossref_primary_10_1038_s41380_024_02761_9
crossref_primary_10_1016_j_ajhg_2023_03_015
crossref_primary_10_1016_j_semcdb_2022_05_012
crossref_primary_10_3389_fncel_2019_00305
crossref_primary_10_1038_s41559_023_02014_y
crossref_primary_10_1093_hmg_ddaa117
crossref_primary_10_3390_cells10102683
crossref_primary_10_1038_s41386_020_0763_3
crossref_primary_10_1186_s13229_020_00347_0
crossref_primary_10_4103_NRR_NRR_D_24_00921
crossref_primary_10_1371_journal_pone_0319701
crossref_primary_10_1016_j_neuron_2023_03_010
crossref_primary_10_1016_j_biotechadv_2023_108233
crossref_primary_10_1016_j_celrep_2024_114173
crossref_primary_10_1016_j_gde_2020_06_006
crossref_primary_10_3389_fncel_2020_607399
crossref_primary_10_1002_bies_201900011
crossref_primary_10_1038_s41576_023_00594_w
crossref_primary_10_1242_dev_200506
crossref_primary_10_1091_mbc_E19_04_0211
crossref_primary_10_3390_ijms22052659
crossref_primary_10_1177_10738584211069060
crossref_primary_10_1007_s42977_021_00070_8
crossref_primary_10_1111_cpr_13447
crossref_primary_10_1016_j_isci_2024_110430
crossref_primary_10_3390_pharmaceutics16040443
crossref_primary_10_1016_j_neuron_2020_08_029
crossref_primary_10_3389_fcell_2022_917166
crossref_primary_10_1038_s41559_021_01580_3
crossref_primary_10_15252_embr_201948204
crossref_primary_10_1016_j_gde_2022_101955
crossref_primary_10_1186_s12864_020_6706_x
crossref_primary_10_1016_j_arr_2020_101069
crossref_primary_10_1016_j_neuron_2025_02_010
crossref_primary_10_1038_s41583_023_00760_3
crossref_primary_10_1016_j_stem_2020_02_011
crossref_primary_10_1071_RD23216
crossref_primary_10_1242_dev_200831
crossref_primary_10_1093_hmg_ddac193
crossref_primary_10_1002_ajpa_24713
crossref_primary_10_1242_dev_199797
crossref_primary_10_1002_dvg_23405
crossref_primary_10_1016_j_stemcr_2022_04_007
crossref_primary_10_1038_s41593_021_00802_y
crossref_primary_10_3390_gels8060379
crossref_primary_10_1002_anbr_202300126
crossref_primary_10_1016_j_brainres_2020_147028
crossref_primary_10_1073_pnas_1912175116
crossref_primary_10_1038_s41586_021_03952_y
crossref_primary_10_1016_j_cell_2022_06_051
crossref_primary_10_1186_s11689_022_09438_w
crossref_primary_10_3390_ijms25147750
crossref_primary_10_1038_s41576_023_00626_5
crossref_primary_10_1016_j_conb_2020_12_006
crossref_primary_10_1098_rsfs_2020_0069
crossref_primary_10_1016_j_celrep_2024_114031
crossref_primary_10_1360_SSV_2021_0278
crossref_primary_10_1002_wdev_368
crossref_primary_10_1038_s41576_022_00554_w
crossref_primary_10_1016_j_gde_2024_102297
crossref_primary_10_1016_j_cels_2023_09_004
crossref_primary_10_3389_fmolb_2021_686410
crossref_primary_10_1002_ana_25950
crossref_primary_10_1016_j_bioactmat_2025_01_025
crossref_primary_10_3390_ijerph182312431
crossref_primary_10_1016_j_brainres_2019_146470
crossref_primary_10_1016_j_stem_2019_11_015
crossref_primary_10_1016_j_jmb_2021_167386
crossref_primary_10_3389_fnmol_2022_858582
crossref_primary_10_1371_journal_pcbi_1008778
crossref_primary_10_1172_jci_insight_174645
crossref_primary_10_1038_s41420_023_01523_w
crossref_primary_10_1152_physrev_00040_2021
crossref_primary_10_1111_febs_15885
crossref_primary_10_1038_s41586_024_08172_8
crossref_primary_10_1016_j_ceb_2021_04_008
crossref_primary_10_1126_science_aba4517
crossref_primary_10_1242_dev_193631
crossref_primary_10_1038_s41582_022_00723_9
crossref_primary_10_1038_s41598_022_16369_y
crossref_primary_10_1016_j_neuron_2022_10_018
crossref_primary_10_3389_fncel_2023_1114420
crossref_primary_10_3389_fnins_2022_872794
crossref_primary_10_1088_1758_5090_ad0c2c
crossref_primary_10_1038_s41586_021_03953_x
crossref_primary_10_1038_s41593_024_01814_0
crossref_primary_10_1126_science_adh0559
crossref_primary_10_3390_cells13191638
crossref_primary_10_1016_j_neuron_2020_09_001
crossref_primary_10_1111_bpa_12949
crossref_primary_10_1016_j_bbagen_2024_130747
crossref_primary_10_1097_CCO_0000000000000782
crossref_primary_10_1007_s12015_022_10497_8
crossref_primary_10_1016_j_gendis_2023_04_037
crossref_primary_10_1111_dgd_12699
crossref_primary_10_1186_s13229_020_00322_9
crossref_primary_10_1038_s41583_023_00675_z
crossref_primary_10_1523_JNEUROSCI_0744_19_2019
crossref_primary_10_3389_fcell_2023_1332901
crossref_primary_10_1002_dneu_22819
crossref_primary_10_1093_brain_awad231
crossref_primary_10_1016_j_celrep_2024_114503
crossref_primary_10_1093_icb_icaa109
crossref_primary_10_1038_s41583_022_00631_3
crossref_primary_10_1016_j_cell_2021_10_003
crossref_primary_10_1016_j_stemcr_2021_12_015
crossref_primary_10_1007_s00702_022_02570_w
crossref_primary_10_1007_s00439_020_02206_7
crossref_primary_10_1016_j_gde_2024_102240
crossref_primary_10_3390_cells10051209
crossref_primary_10_1080_21507740_2021_1896603
crossref_primary_10_1038_s41583_022_00644_y
crossref_primary_10_1038_s41586_021_03343_3
crossref_primary_10_3390_ijms241512528
crossref_primary_10_3389_fnmol_2021_787243
crossref_primary_10_1126_sciadv_abc6792
crossref_primary_10_1016_j_dcmed_2024_12_008
crossref_primary_10_1038_s41380_021_01189_9
crossref_primary_10_1186_s13229_020_00332_7
crossref_primary_10_1002_adfm_201909146
crossref_primary_10_1093_cercor_bhab067
crossref_primary_10_3389_fnmol_2022_941528
crossref_primary_10_1016_j_tics_2021_01_005
crossref_primary_10_12688_f1000research_20332_1
crossref_primary_10_3389_fncel_2022_962103
crossref_primary_10_1186_s12896_021_00718_2
crossref_primary_10_1016_j_gde_2024_102259
crossref_primary_10_1038_s41598_025_86094_9
crossref_primary_10_3390_cells11010124
crossref_primary_10_14348_molcells_2022_2019
crossref_primary_10_1111_cns_14079
crossref_primary_10_1016_j_brainres_2019_146582
crossref_primary_10_1126_science_abm1696
crossref_primary_10_1002_adma_202106829
crossref_primary_10_1093_nsr_nwae213
crossref_primary_10_1186_s13059_023_03019_3
crossref_primary_10_1016_j_brainres_2019_146458
crossref_primary_10_2147_CMAR_S449488
crossref_primary_10_3390_cells11182803
crossref_primary_10_1155_2021_2826609
crossref_primary_10_1016_j_isci_2020_101485
crossref_primary_10_1126_sciadv_adh2726
crossref_primary_10_1016_j_canlet_2019_04_039
crossref_primary_10_1126_sciadv_adf6251
crossref_primary_10_1146_annurev_neuro_111020_090812
crossref_primary_10_1038_s41398_021_01664_5
crossref_primary_10_1093_brain_awac244
crossref_primary_10_1007_s10565_021_09678_x
crossref_primary_10_1016_j_nbd_2024_106607
crossref_primary_10_3389_fbioe_2022_953031
crossref_primary_10_1038_s41380_022_01786_2
crossref_primary_10_7554_eLife_78079
crossref_primary_10_1016_j_conb_2020_09_010
crossref_primary_10_1186_s13619_021_00103_6
crossref_primary_10_1016_j_biopsych_2022_12_015
crossref_primary_10_3390_cells11142135
crossref_primary_10_1016_j_ymgme_2022_04_005
crossref_primary_10_1088_1741_2552_ac310a
crossref_primary_10_1089_dna_2019_4988
crossref_primary_10_1111_joa_13055
crossref_primary_10_12688_f1000research_18495_1
crossref_primary_10_1016_j_scr_2020_101749
crossref_primary_10_1038_s41559_022_01784_1
crossref_primary_10_1051_medsci_2024017
crossref_primary_10_1101_cshperspect_a035709
crossref_primary_10_1038_s41598_019_44877_x
crossref_primary_10_1007_s13205_021_02815_7
crossref_primary_10_1016_j_dmpk_2024_101031
crossref_primary_10_3390_jpm13081237
crossref_primary_10_1038_s41576_022_00568_4
crossref_primary_10_1523_JNEUROSCI_0519_19_2019
crossref_primary_10_3390_ijms221910184
crossref_primary_10_3390_cells10071790
crossref_primary_10_1523_ENEURO_0308_23_2023
crossref_primary_10_1089_thy_2021_0057
crossref_primary_10_1016_j_cell_2023_05_043
crossref_primary_10_3389_fnmol_2022_855786
crossref_primary_10_1002_dvdy_60
crossref_primary_10_1038_s41422_021_00486_w
crossref_primary_10_1007_s00109_021_02051_9
crossref_primary_10_1016_j_celrep_2020_01_038
crossref_primary_10_3389_fcell_2021_737429
crossref_primary_10_1088_1758_5090_acee21
crossref_primary_10_1038_s41586_022_05279_8
crossref_primary_10_1016_j_devcel_2024_05_027
crossref_primary_10_26508_lsa_202000707
crossref_primary_10_1371_journal_pgen_1010952
crossref_primary_10_1016_j_stem_2023_09_003
crossref_primary_10_1038_s41434_022_00356_z
crossref_primary_10_1080_00207454_2020_1840376
crossref_primary_10_1016_j_stem_2021_09_008
crossref_primary_10_1038_s41598_023_40107_7
crossref_primary_10_1002_advs_202400847
crossref_primary_10_1038_s41586_019_1289_x
crossref_primary_10_1093_molbev_msae186
crossref_primary_10_1111_febs_15793
crossref_primary_10_1002_dneu_22879
crossref_primary_10_21769_BioProtoc_3985
crossref_primary_10_1016_j_stem_2025_02_010
crossref_primary_10_1016_j_gde_2020_04_007
crossref_primary_10_3389_fnana_2020_00039
crossref_primary_10_1002_dneu_22876
crossref_primary_10_1016_j_conb_2023_102699
crossref_primary_10_1038_s41398_022_02279_0
crossref_primary_10_1038_s42003_023_04803_4
crossref_primary_10_1126_sciadv_adg2615
crossref_primary_10_1016_j_cell_2021_02_050
crossref_primary_10_1111_pcn_13545
crossref_primary_10_1016_j_stem_2021_02_015
crossref_primary_10_1007_s11684_021_0900_3
crossref_primary_10_3389_fcell_2023_1188905
crossref_primary_10_1242_dev_200439
crossref_primary_10_1111_cpr_13042
crossref_primary_10_3389_fncel_2019_00381
crossref_primary_10_3390_cells10040914
crossref_primary_10_1038_s41467_023_43141_1
crossref_primary_10_1038_s43018_020_0102_y
crossref_primary_10_1371_journal_pbio_3002912
crossref_primary_10_3389_fnins_2023_1172469
crossref_primary_10_1038_s41586_024_07521_x
crossref_primary_10_1007_s44272_024_00012_0
crossref_primary_10_1016_j_drudis_2019_11_010
crossref_primary_10_3390_ijms25147905
crossref_primary_10_1093_gbe_evab247
crossref_primary_10_3390_mi12121574
crossref_primary_10_1371_journal_pcbi_1007543
crossref_primary_10_1038_s41598_022_12953_4
crossref_primary_10_3389_fcell_2021_591017
crossref_primary_10_3390_bioengineering6020038
crossref_primary_10_1038_s41390_021_01806_x
crossref_primary_10_1007_s12031_021_01874_y
crossref_primary_10_1016_j_conb_2020_10_018
crossref_primary_10_1038_s41559_022_01925_6
crossref_primary_10_1186_s13567_021_00931_z
crossref_primary_10_3389_fncel_2020_00133
crossref_primary_10_1016_j_conb_2023_102710
crossref_primary_10_1002_dneu_22893
crossref_primary_10_1242_dev_202390
crossref_primary_10_1016_j_cell_2024_08_052
crossref_primary_10_1021_acsnano_4c07844
crossref_primary_10_1126_science_abi6060
crossref_primary_10_1002_smtd_202301145
crossref_primary_10_1007_s12539_020_00386_4
crossref_primary_10_1146_annurev_neuro_070918_050154
crossref_primary_10_1242_dev_201865
crossref_primary_10_1038_s41418_020_0566_4
crossref_primary_10_1038_s41467_025_58295_3
crossref_primary_10_1038_s41586_023_06686_1
crossref_primary_10_3389_fncel_2021_748849
crossref_primary_10_3389_fnins_2023_1189615
crossref_primary_10_3390_v14030634
crossref_primary_10_1016_j_ibneur_2023_12_006
crossref_primary_10_3389_fnins_2022_878950
crossref_primary_10_1016_j_neuron_2022_12_026
crossref_primary_10_1016_j_isci_2024_111379
crossref_primary_10_1038_s41586_020_1962_0
crossref_primary_10_3389_fcell_2021_640212
crossref_primary_10_1016_j_stem_2023_08_009
crossref_primary_10_1016_j_xgen_2024_100581
crossref_primary_10_1146_annurev_genet_071719_020705
crossref_primary_10_1038_s41586_019_1654_9
crossref_primary_10_1016_j_stemcr_2024_09_005
crossref_primary_10_1038_s41556_023_01296_5
crossref_primary_10_1038_s42003_023_05190_6
crossref_primary_10_1002_adbi_201900226
crossref_primary_10_1038_s41419_022_04693_0
crossref_primary_10_1186_s13059_020_02074_4
crossref_primary_10_1186_s13100_021_00250_2
crossref_primary_10_1016_j_cell_2022_09_010
crossref_primary_10_1073_pnas_2002427117
crossref_primary_10_1134_S1062360420040074
crossref_primary_10_1016_j_bbr_2019_112458
crossref_primary_10_1016_j_crmeth_2023_100409
crossref_primary_10_1186_s13059_020_02257_z
crossref_primary_10_1016_j_celrep_2022_110615
crossref_primary_10_1038_s41467_022_31403_3
crossref_primary_10_1038_s41598_022_20096_9
crossref_primary_10_3389_fnmol_2022_1005631
crossref_primary_10_1101_gad_332494_119
crossref_primary_10_1038_s41419_020_02998_6
crossref_primary_10_3390_biomedicines12040877
crossref_primary_10_3389_fsci_2023_1017235
crossref_primary_10_3389_fcell_2020_00304
crossref_primary_10_1371_journal_pbio_3002965
crossref_primary_10_1038_s41588_020_0646_x
crossref_primary_10_1111_epi_17386
crossref_primary_10_1016_j_neures_2019_05_007
crossref_primary_10_1038_s41593_020_00730_3
crossref_primary_10_3233_CBM_230486
crossref_primary_10_1016_j_brainresbull_2021_05_015
crossref_primary_10_1016_j_cell_2023_12_012
crossref_primary_10_2139_ssrn_3773789
crossref_primary_10_3389_fcell_2019_00175
crossref_primary_10_1002_2211_5463_13581
crossref_primary_10_1002_med_21922
crossref_primary_10_1176_appi_ajp_2021_21010095
crossref_primary_10_1002_cne_25394
crossref_primary_10_1021_acschemneuro_3c00246
crossref_primary_10_1016_j_biopsych_2023_01_012
crossref_primary_10_3389_fgene_2022_1009390
crossref_primary_10_1016_j_cell_2021_03_045
crossref_primary_10_1002_evan_21831
crossref_primary_10_3389_fcell_2021_661113
crossref_primary_10_1016_j_biopsych_2022_04_021
crossref_primary_10_1038_s41583_022_00576_7
crossref_primary_10_1038_s41580_024_00804_1
crossref_primary_10_1016_j_cell_2022_10_016
crossref_primary_10_1016_j_conb_2020_09_006
crossref_primary_10_1016_j_conb_2020_09_005
crossref_primary_10_1186_s13287_023_03302_x
crossref_primary_10_1016_j_tig_2023_08_005
crossref_primary_10_1242_jcs_239434
crossref_primary_10_1016_j_stem_2024_12_011
crossref_primary_10_1016_j_devcel_2024_10_005
crossref_primary_10_3389_fneur_2020_01028
crossref_primary_10_1038_s41598_024_59533_2
crossref_primary_10_26508_lsa_202302193
crossref_primary_10_1007_s13770_023_00611_3
crossref_primary_10_1016_j_stemcr_2024_04_008
crossref_primary_10_1016_j_schres_2022_04_003
crossref_primary_10_1177_1073858420943192
crossref_primary_10_1016_j_ydbio_2021_06_012
crossref_primary_10_1038_s41556_024_01393_z
Cites_doi 10.1038/nature22047
10.1186/1471-2105-14-128
10.1016/j.stem.2016.12.007
10.1186/s13059-018-1490-5
10.1073/pnas.0901854106
10.1186/s12859-016-1323-z
10.1016/j.cell.2015.12.028
10.1016/j.cub.2012.06.062
10.1073/pnas.1315710110
10.1016/j.cell.2015.09.004
10.1093/nar/gkx1020
10.1016/j.cell.2016.05.082
10.1093/nar/29.1.308
10.1016/j.cell.2012.03.033
10.1073/pnas.1520760112
10.1038/nature12517
10.1016/j.stem.2016.03.003
10.1126/science.aar6343
10.1038/35097067
10.1186/1471-2105-9-559
10.1101/gr.123356.111
10.1038/s41559-016-0069
10.1038/nature12686
10.1186/1750-1172-8-190
10.1016/j.cell.2016.07.054
10.1101/gr.233460.117
10.1073/pnas.1932072100
10.1126/science.aap8809
10.1038/nn.2207
10.1038/s41598-018-33478-9
10.1016/j.neuron.2017.07.035
10.1073/pnas.1201895109
10.1038/nrn2008
10.1093/gbe/evy016
10.1038/srep05519
10.1038/nbt.2967
10.1101/gr.158543.113
10.1126/science.1197005
10.1016/j.cell.2012.03.034
10.1038/nature09774
10.1038/nature18637
10.1038/nbt.4096
10.1016/j.pneurobio.2010.10.007
10.1016/j.celrep.2016.08.038
10.1016/j.cell.2015.08.036
10.1088/1742-5468/2008/10/P10008
10.7554/eLife.18683
10.1093/cercor/13.6.541
10.1126/sciadv.1601941
10.1038/35055553
10.1093/cercor/12.1.37
10.7554/eLife.07103
10.1002/bies.201500108
10.1016/j.stem.2008.09.002
10.1016/0166-2236(95)93934-P
10.1016/j.neuron.2012.03.010
10.1242/jcs.023465
10.1038/nature09941
10.1038/nmeth.1591
10.1038/ng.3792
10.1038/nature05113
10.1016/j.cub.2015.01.041
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.cell.2019.01.017
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 756.e17
ExternalDocumentID PMC6544371
30735633
10_1016_j_cell_2019_01_017
S0092867419300509
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R35 NS097305
– fundername: NIMH NIH HHS
  grantid: U01 MH105989
– fundername: NINDS NIH HHS
  grantid: F32 NS103266
– fundername: NIGMS NIH HHS
  grantid: T32 GM007266
– fundername: NICHD NIH HHS
  grantid: T32 HD007470
– fundername: Howard Hughes Medical Institute
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6I.
6J9
7-5
85S
AACTN
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AHHHB
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YZZ
ZA5
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
6TJ
9M8
AAEDT
AAHBH
AAIKJ
AAMRU
AAQFI
AAQXK
AAYJJ
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIDAL
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
UBW
UHB
VH1
X7M
YYP
YYQ
ZGI
ZHY
ZKB
ZY4
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c554t-a10ba3977c503db330ae7414d26d3ba48e910ecb7129914d4a7e302434b4e7553
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 18:23:36 EDT 2025
Fri Sep 05 05:07:10 EDT 2025
Fri Sep 05 08:38:31 EDT 2025
Mon Jul 21 06:04:30 EDT 2025
Tue Jul 01 02:17:02 EDT 2025
Thu Apr 24 22:54:58 EDT 2025
Fri Feb 23 02:49:41 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords single-cell RNA sequencing
cerebral organoids
macaque
radial glia
human-specific evolution
mTOR
chimpanzee
cortical development
neural progenitor cells
Language English
License This article is made available under the Elsevier license.
Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-a10ba3977c503db330ae7414d26d3ba48e910ecb7129914d4a7e302434b4e7553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Methodology: AB, TJN, MGA, JS, AAL, JAW, CL, OSM, AAP. Investigation: AAP, AB, TJN, OSM, EDL, MAMR, BA, MaB, MeB, MGA. Resources: BP, MaB. Software: CBL, ITF. Formal analysis AB, TJN, MGA, ZNK, MLD, CBL, ITF, OSM, AAP. Writing: AAP, AB, with input from all authors. Funding acquisition ARK AAP. Conceptualization AAP. Supervision: ARK, SRS, DH, EEE, AAP.
Lead contact: alex.pollen@ucsf.edu
AUTHOR CONTRIBUTIONS
These authors contributed equally
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867419300509
PMID 30735633
PQID 2185558100
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6544371
proquest_miscellaneous_2221016331
proquest_miscellaneous_2185558100
pubmed_primary_30735633
crossref_citationtrail_10_1016_j_cell_2019_01_017
crossref_primary_10_1016_j_cell_2019_01_017
elsevier_sciencedirect_doi_10_1016_j_cell_2019_01_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-07
PublicationDateYYYYMMDD 2019-02-07
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Fish, Dehay, Kennedy, Huttner (bib17) 2008; 121
Camp, Badsha, Florio, Kanton, Gerber, Wilsch-Bräuninger, Lewitus, Sykes, Hevers, Lancaster (bib6) 2015; 112
Onorati, Li, Liu, Sousa, Nakagawa, Li, Dell’Anno, Gulden, Pochareddy, Tebbenkamp (bib41) 2016; 16
Prescott, Srinivasan, Marchetto, Grishina, Narvaiza, Selleri, Gage, Swigut, Wysocka (bib50) 2015; 163
Paten, Earl, Nguyen, Diekhans, Zerbino, Haussler (bib43) 2011; 21
Peng, Meng, Wang, Zhao, Zhao, Su, Zhang, Zhang, Zhao, Miao (bib45) 2014; 4
Dennis, Nuttle, Sudmant, Antonacci, Graves, Nefedov, Rosenfeld, Sajjadian, Malig, Kotkiewicz (bib12) 2012; 149
Florio, Namba, Pääbo, Hiller, Huttner (bib18) 2016; 2
Sudmant, Kitzman, Antonacci, Alkan, Malig, Tsalenko, Sampas, Bruhn, Shendure, Eichler (bib62) 2010; 330
Kadoshima, Sakaguchi, Nakano, Soen, Ando, Eiraku, Sasai (bib23) 2013; 110
Mora-Bermúdez, Badsha, Kanton, Camp, Vernot, Köhler, Voigt, Okita, Maricic, He (bib35) 2016; 5
Rakic (bib54) 2003; 13
Gallego Romero, Pavlovic, Hernando-Herraez, Zhou, Ward, Banovich, Kagan, Burnett, Huang, Mitrano (bib19) 2015; 4
Shekhar, Lapan, Whitney, Tran, Macosko, Kowalczyk, Adiconis, Levin, Nemesh, Goldman (bib56) 2016; 166
Nowakowski, Bhaduri, Pollen, Alvarado, Mostajo-Radji, Di Lullo, Haeussler, Sandoval-Espinosa, Liu, Velmeshev (bib37) 2017; 358
Fiddes, Armstrong, Diekhans, Nachtweide, Kronenberg, Underwood, Gordon, Earl, Keane, Eichler (bib16) 2018; 28
Sloan, Darmanis, Huber, Khan, Birey, Caneda, Reimer, Quake, Barres, Paşca (bib59) 2017; 95
Rafalski, Brunet (bib52) 2011; 93
Dennis, Harshman, Nelson, Penn, Cantsilieris, Huddleston, Antonacci, Penewit, Denman, Raja (bib13) 2017; 1
Poduri, Evrony, Cai, Elhosary, Beroukhim, Lehtinen, Hills, Heinzen, Hill, Hill (bib46) 2012; 74
Blake, Thomas, Blischak, Hsiao, Chavarria, Myrthil, Gilad, Pavlovic (bib3) 2018; 19
Kreitzer, Salomonis, Sheehan, Huang, Park, Spindler, Lizarraga, Weiss, So, Conklin (bib25) 2013; 2
Lancaster, Renner, Martin, Wenzel, Bicknell, Hurles, Homfray, Penninger, Jackson, Knoblich (bib28) 2013; 501
Bakken, Miller, Ding, Sunkin, Smith, Ng, Szafer, Dalley, Royall, Lemon (bib1) 2016; 535
Marchetto, Narvaiza, Denli, Benner, Lazzarini, Nathanson, Paquola, Desai, Herai, Weitzman (bib32) 2013; 503
Pollen, Nowakowski, Chen, Retallack, Sandoval-Espinosa, Nicholas, Shuga, Liu, Oldham, Diaz (bib49) 2015; 163
Pollard, Salama, Lambert, Lambot, Coppens, Pedersen, Katzman, King, Onodera, Siepel (bib47) 2006; 443
Casper, Zweig, Villarreal, Tyner, Speir, Rosenbloom, Raney, Lee, Lee, Karolchik (bib7) 2018; 46
Liang, Musser, Cloutier, Prum, Wagner (bib31) 2018; 10
Quadrato, Nguyen, Macosko, Sherwood, Min Yang, Berger, Maria, Scholvin, Goldman, Kinney (bib51) 2017; 545
Bershteyn, Nowakowski, Pollen, Di Lullo, Nene, Wynshaw-Boris, Kriegstein (bib2) 2017; 20
Otani, Marchetto, Gage, Simons, Livesey (bib42) 2016; 18
Sherry, Ward, Kholodov, Baker, Phan, Smigielski, ad Sirotkin (bib57) 2001; 29
Boyd, Skove, Rouanet, Pilaz, Bepler, Gordân, Wray, Silver (bib4) 2015; 25
Ceccarelli, Barthel, Malta, Sabedot, Salama, Murray, Morozova, Newton, Radenbaugh, Pagnotta (bib8) 2016; 164
Kent, Baertsch, Hinrichs, Miller, Haussler (bib24) 2003; 100
Charrier, Joshi, Coutinho-Budd, Kim, Lambert, de Marchena, Jin, Vanderhaeghen, Ghosh, Sassa, Polleux (bib9) 2012; 149
Smart, Dehay, Giroud, Berland, Kennedy (bib60) 2002; 12
Butler, Hoffman, Smibert, Papalexi, Satija (bib5) 2018; 36
Okita, Matsumura, Sato, Okada, Morizane, Okamoto, Hong, Nakagawa, Tanabe, Tezuka (bib39) 2011; 8
Chen, Tan, Kou, Duan, Wang, Meirelles, Clark, Ma’ayan (bib10) 2013; 14
Johnson, Viggiano, Bailey, Abdul-Rauf, Goodwin, Rocchi, Eichler (bib22) 2001; 413
Ohno (bib38) 1970
Pavlovic, Blake, Roux, Chavarria, Gilad (bib44) 2018; 8
Kriegstein, Noctor, Martínez-Cerdeño (bib26) 2006; 7
McLean, Reno, Pollen, Bassan, Capellini, Guenther, Indjeian, Lim, Menke, Schaar (bib34) 2011; 471
Oldham, Konopka, Iwamoto, Langfelder, Kato, Horvath, Geschwind (bib40) 2008; 11
Herculano-Houzel (bib20) 2012; 109
Lefebvre (bib30) 2008; 2008
Eiraku, Takata, Ishibashi, Kawada, Sakakura, Okuda, Sekiguchi, Adachi, Sasai (bib15) 2011; 472
Rakic (bib53) 1995; 18
Clevers (bib11) 2016; 165
Langfelder, Horvath (bib29) 2008; 9
Sudmant, Huddleston, Catacchio, Malig, Hillier, Baker, Mohajeri, Kondova, Bontrop, Persengiev (bib63) 2013; 23
Silver (bib58) 2016; 38
Eiraku, Watanabe, Matsuo-Takasaki, Kawada, Yonemura, Matsumura, Wataya, Nishiyama, Muguruma, Sasai (bib14) 2008; 3
Kronenberg, Fiddes, Gordon, Murali, Cantsilieris, Meyerson, Underwood, Nelson, Chaisson, Dougherty (bib27) 2018; 360
Zhou, Su, Wang, Chen, Zimmermann, Genbacev, Afonja, Horne, Tanaka, Duan (bib64) 2009; 106
Sakai, Hirata, Fuwa, Sugama, Kusunoki, Makishima, Eguchi, Yamada, Ogihara, Takeshita (bib55) 2012; 22
Hoffman, Schadt (bib21) 2016; 17
Matsumoto, Hayashi, Schlieve, Ikeya, Kim, Nguyen, Sami, Baba, Barruet, Nasu (bib33) 2013; 8
Pollen, Nowakowski, Shuga, Wang, Leyrat, Lui, Li, Szpankowski, Fowler, Chen (bib48) 2014; 32
Noctor, Flint, Weissman, Dammerman, Kriegstein (bib36) 2001; 409
Stessman, Xiong, Coe, Wang, Hoekzema, Fenckova, Kvarnung, Gerdts, Trinh, Cosemans (bib61) 2017; 49
Blake (10.1016/j.cell.2019.01.017_bib3) 2018; 19
Ohno (10.1016/j.cell.2019.01.017_bib38) 1970
Sherry (10.1016/j.cell.2019.01.017_bib57) 2001; 29
Eiraku (10.1016/j.cell.2019.01.017_bib15) 2011; 472
Quadrato (10.1016/j.cell.2019.01.017_bib51) 2017; 545
Kadoshima (10.1016/j.cell.2019.01.017_bib23) 2013; 110
Lefebvre (10.1016/j.cell.2019.01.017_bib30) 2008; 2008
Okita (10.1016/j.cell.2019.01.017_bib39) 2011; 8
Prescott (10.1016/j.cell.2019.01.017_bib50) 2015; 163
Shekhar (10.1016/j.cell.2019.01.017_bib56) 2016; 166
Sudmant (10.1016/j.cell.2019.01.017_bib62) 2010; 330
Rakic (10.1016/j.cell.2019.01.017_bib53) 1995; 18
Onorati (10.1016/j.cell.2019.01.017_bib41) 2016; 16
McLean (10.1016/j.cell.2019.01.017_bib34) 2011; 471
Peng (10.1016/j.cell.2019.01.017_bib45) 2014; 4
Pollen (10.1016/j.cell.2019.01.017_bib49) 2015; 163
Silver (10.1016/j.cell.2019.01.017_bib58) 2016; 38
Ceccarelli (10.1016/j.cell.2019.01.017_bib8) 2016; 164
Paten (10.1016/j.cell.2019.01.017_bib43) 2011; 21
Hoffman (10.1016/j.cell.2019.01.017_bib21) 2016; 17
Camp (10.1016/j.cell.2019.01.017_bib6) 2015; 112
Marchetto (10.1016/j.cell.2019.01.017_bib32) 2013; 503
Sudmant (10.1016/j.cell.2019.01.017_bib63) 2013; 23
Sakai (10.1016/j.cell.2019.01.017_bib55) 2012; 22
Kent (10.1016/j.cell.2019.01.017_bib24) 2003; 100
Sloan (10.1016/j.cell.2019.01.017_bib59) 2017; 95
Noctor (10.1016/j.cell.2019.01.017_bib36) 2001; 409
Rafalski (10.1016/j.cell.2019.01.017_bib52) 2011; 93
Stessman (10.1016/j.cell.2019.01.017_bib61) 2017; 49
Fiddes (10.1016/j.cell.2019.01.017_bib16) 2018; 28
Liang (10.1016/j.cell.2019.01.017_bib31) 2018; 10
Zhou (10.1016/j.cell.2019.01.017_bib64) 2009; 106
Bershteyn (10.1016/j.cell.2019.01.017_bib2) 2017; 20
Casper (10.1016/j.cell.2019.01.017_bib7) 2018; 46
Gallego Romero (10.1016/j.cell.2019.01.017_bib19) 2015; 4
Charrier (10.1016/j.cell.2019.01.017_bib9) 2012; 149
Mora-Bermúdez (10.1016/j.cell.2019.01.017_bib35) 2016; 5
Nowakowski (10.1016/j.cell.2019.01.017_bib37) 2017; 358
Pavlovic (10.1016/j.cell.2019.01.017_bib44) 2018; 8
Boyd (10.1016/j.cell.2019.01.017_bib4) 2015; 25
Kreitzer (10.1016/j.cell.2019.01.017_bib25) 2013; 2
Otani (10.1016/j.cell.2019.01.017_bib42) 2016; 18
Langfelder (10.1016/j.cell.2019.01.017_bib29) 2008; 9
Butler (10.1016/j.cell.2019.01.017_bib5) 2018; 36
Pollen (10.1016/j.cell.2019.01.017_bib48) 2014; 32
Florio (10.1016/j.cell.2019.01.017_bib18) 2016; 2
Fish (10.1016/j.cell.2019.01.017_bib17) 2008; 121
Johnson (10.1016/j.cell.2019.01.017_bib22) 2001; 413
Smart (10.1016/j.cell.2019.01.017_bib60) 2002; 12
Eiraku (10.1016/j.cell.2019.01.017_bib14) 2008; 3
Chen (10.1016/j.cell.2019.01.017_bib10) 2013; 14
Lancaster (10.1016/j.cell.2019.01.017_bib28) 2013; 501
Clevers (10.1016/j.cell.2019.01.017_bib11) 2016; 165
Herculano-Houzel (10.1016/j.cell.2019.01.017_bib20) 2012; 109
Matsumoto (10.1016/j.cell.2019.01.017_bib33) 2013; 8
Kronenberg (10.1016/j.cell.2019.01.017_bib27) 2018; 360
Dennis (10.1016/j.cell.2019.01.017_bib13) 2017; 1
Oldham (10.1016/j.cell.2019.01.017_bib40) 2008; 11
Kriegstein (10.1016/j.cell.2019.01.017_bib26) 2006; 7
Bakken (10.1016/j.cell.2019.01.017_bib1) 2016; 535
Poduri (10.1016/j.cell.2019.01.017_bib46) 2012; 74
Dennis (10.1016/j.cell.2019.01.017_bib12) 2012; 149
Pollard (10.1016/j.cell.2019.01.017_bib47) 2006; 443
Rakic (10.1016/j.cell.2019.01.017_bib54) 2003; 13
References_xml – volume: 443
  start-page: 167
  year: 2006
  end-page: 172
  ident: bib47
  article-title: An RNA gene expressed during cortical development evolved rapidly in humans
  publication-title: Nature
– volume: 503
  start-page: 525
  year: 2013
  end-page: 529
  ident: bib32
  article-title: Differential L1 regulation in pluripotent stem cells of humans and apes
  publication-title: Nature
– volume: 8
  start-page: 190
  year: 2013
  ident: bib33
  article-title: Induced pluripotent stem cells from patients with human fibrodysplasia ossificans progressive show increased mineralization and cartilage formation
  publication-title: Orphanet. J. Rare Dis.
– volume: 165
  start-page: 1586
  year: 2016
  end-page: 1597
  ident: bib11
  article-title: Modeling development and disease with organoids
  publication-title: Cell
– volume: 18
  start-page: 467
  year: 2016
  end-page: 480
  ident: bib42
  article-title: 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size
  publication-title: Cell Stem Cell
– volume: 4
  start-page: 5519
  year: 2014
  ident: bib45
  article-title: An activator of mTOR inhibits oxLDL-induced autophagy and apoptosis in vascular endothelial cells and restricts atherosclerosis in apolipoprotein E
  publication-title: Sci. Rep.
– volume: 16
  start-page: 2576
  year: 2016
  end-page: 2592
  ident: bib41
  article-title: Zika virus disrupts phospho-tbk1 localization and mitosis in human neuroepithelial stem cells and radial glia
  publication-title: Cell Rep.
– volume: 535
  start-page: 367
  year: 2016
  end-page: 375
  ident: bib1
  article-title: A comprehensive transcriptional map of primate brain development
  publication-title: Nature
– volume: 9
  start-page: 559
  year: 2008
  ident: bib29
  article-title: WGCNA: An R package for weighted correlation network analysis
  publication-title: BMC Bioinformatics
– volume: 2008
  start-page: P10008
  year: 2008
  ident: bib30
  article-title: Fast unfolding of communities in large networks
  publication-title: J. Stat. Mech.
– volume: 95
  start-page: 779
  year: 2017
  end-page: 790
  ident: bib59
  article-title: Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells
  publication-title: Neuron
– volume: 22
  start-page: R791
  year: 2012
  end-page: R792
  ident: bib55
  article-title: Fetal brain development in chimpanzees versus humans
  publication-title: Curr. Biol.
– volume: 49
  start-page: 515
  year: 2017
  end-page: 526
  ident: bib61
  article-title: Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases
  publication-title: Nat. Genet.
– volume: 110
  start-page: 20284
  year: 2013
  end-page: 20289
  ident: bib23
  article-title: Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: 15312
  year: 2018
  ident: bib44
  article-title: A comparative assessment of human and chimpanzee iPSC-derived cardiomyocytes with primary heart tissues
  publication-title: Sci. Rep.
– volume: 8
  start-page: 409
  year: 2011
  end-page: 412
  ident: bib39
  article-title: A more efficient method to generate integration-free human iPSC cells
  publication-title: Nat. Methods
– volume: 28
  start-page: 1029
  year: 2018
  end-page: 1038
  ident: bib16
  article-title: Comparative Annotation Toolkit (CAT)-simultaneous clade and personal genome annotation
  publication-title: Genome Res.
– volume: 17
  start-page: 483
  year: 2016
  ident: bib21
  article-title: variancePartition: Interpreting drivers of variation in complex gene expression studies
  publication-title: BMC Bioinformatics
– volume: 112
  start-page: 15672
  year: 2015
  end-page: 15677
  ident: bib6
  article-title: Human cerebral organoids recapitulate gene expression programs of fetal neocortex development
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 21
  start-page: 1512
  year: 2011
  end-page: 1528
  ident: bib43
  article-title: Cactus: Algorithms for genome multiple sequence alignment
  publication-title: Genome Res.
– volume: 11
  start-page: 1271
  year: 2008
  end-page: 1282
  ident: bib40
  article-title: Functional organization of the transcriptome in human brain
  publication-title: Nat. Neurosci.
– volume: 18
  start-page: 383
  year: 1995
  end-page: 388
  ident: bib53
  article-title: A small step for the cell, a giant leap for mankind: A hypothesis of neocortical expansion during evolution
  publication-title: Trends Neurosci.
– volume: 163
  start-page: 68
  year: 2015
  end-page: 83
  ident: bib50
  article-title: Enhancer divergence and cis-regulatory evolution in the human and chimp neural crest
  publication-title: Cell
– volume: 2
  start-page: 119
  year: 2013
  end-page: 131
  ident: bib25
  article-title: A robust method to derive functional neural crest cells from human pluripotent stem cells
  publication-title: Am. J. Stem Cells
– volume: 121
  start-page: 2783
  year: 2008
  end-page: 2793
  ident: bib17
  article-title: Making bigger brains-the evolution of neural-progenitor-cell division
  publication-title: J. Cell Sci.
– volume: 100
  start-page: 11484
  year: 2003
  end-page: 11489
  ident: bib24
  article-title: Evolution’s cauldron: duplication, deletion, and rearrangement in the mouse and human genomes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 409
  start-page: 714
  year: 2001
  end-page: 720
  ident: bib36
  article-title: Neurons derived from radial glial cells establish radial units in neocortex
  publication-title: Nature
– volume: 19
  start-page: 162
  year: 2018
  ident: bib3
  article-title: A comparative study of endoderm differentiation in humans and chimpanzees
  publication-title: Genome Biol.
– volume: 32
  start-page: 1053
  year: 2014
  end-page: 1058
  ident: bib48
  article-title: Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
  publication-title: Nat. Biotechnol.
– volume: 471
  start-page: 216
  year: 2011
  end-page: 219
  ident: bib34
  article-title: Human-specific loss of regulatory DNA and the evolution of human-specific traits
  publication-title: Nature
– volume: 358
  start-page: 1318
  year: 2017
  end-page: 1323
  ident: bib37
  article-title: Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex
  publication-title: Science
– volume: 3
  start-page: 519
  year: 2008
  end-page: 532
  ident: bib14
  article-title: Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals
  publication-title: Cell Stem Cell
– volume: 5
  start-page: 166
  year: 2016
  ident: bib35
  article-title: Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development
  publication-title: eLife
– volume: 413
  start-page: 514
  year: 2001
  end-page: 519
  ident: bib22
  article-title: Positive selection of a gene family during the emergence of humans and African apes
  publication-title: Nature
– volume: 163
  start-page: 55
  year: 2015
  end-page: 67
  ident: bib49
  article-title: Molecular identity of human outer radial glia during cortical development
  publication-title: Cell
– volume: 2
  start-page: e1601941
  year: 2016
  ident: bib18
  article-title: A single splice site mutation in human-specific
  publication-title: Sci. Adv.
– volume: 149
  start-page: 912
  year: 2012
  end-page: 922
  ident: bib12
  article-title: Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication
  publication-title: Cell
– volume: 1
  start-page: 69
  year: 2017
  ident: bib13
  article-title: The evolution and population diversity of human-specific segmental duplications
  publication-title: Nat. Ecol. Evol.
– volume: 46
  start-page: D762
  year: 2018
  end-page: D769
  ident: bib7
  article-title: The UCSC Genome Browser database: 2018 update
  publication-title: Nucleic Acids Res.
– volume: 472
  start-page: 51
  year: 2011
  end-page: 56
  ident: bib15
  article-title: Self-organizing optic-cup morphogenesis in three-dimensional culture
  publication-title: Nature
– volume: 36
  start-page: 411
  year: 2018
  end-page: 420
  ident: bib5
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat. Biotechnol.
– volume: 501
  start-page: 373
  year: 2013
  end-page: 379
  ident: bib28
  article-title: Cerebral organoids model human brain development and microcephaly
  publication-title: Nature
– volume: 25
  start-page: 772
  year: 2015
  end-page: 779
  ident: bib4
  article-title: Human-chimpanzee differences in a FZD8 enhancer alter cell-cycle dynamics in the developing neocortex
  publication-title: Curr. Biol.
– volume: 38
  start-page: 162
  year: 2016
  end-page: 171
  ident: bib58
  article-title: Genomic divergence and brain evolution: How regulatory DNA influences development of the cerebral cortex
  publication-title: BioEssays
– volume: 4
  start-page: e07103
  year: 2015
  ident: bib19
  article-title: A panel of induced pluripotent stem cells from chimpanzees: A resource for comparative functional genomics
  publication-title: eLife
– volume: 74
  start-page: 41
  year: 2012
  end-page: 48
  ident: bib46
  article-title: Somatic activation of AKT3 causes hemispheric developmental brain malformations
  publication-title: Neuron
– volume: 545
  start-page: 48
  year: 2017
  end-page: 53
  ident: bib51
  article-title: Cell diversity and network dynamics in photosensitive human brain organoids
  publication-title: Nature
– volume: 360
  start-page: eaar6343
  year: 2018
  ident: bib27
  article-title: High-resolution comparative analysis of great ape genomes
  publication-title: Science
– volume: 93
  start-page: 182
  year: 2011
  end-page: 203
  ident: bib52
  article-title: Energy metabolism in adult neural stem cell fate
  publication-title: Prog. Neurobiol.
– volume: 10
  year: 2018
  ident: bib31
  article-title: Pervasive Correlated Evolution in Gene Expression Shapes Cell and Tissue Type Transcriptomes
  publication-title: Genome Biol. Evol.
– volume: 149
  start-page: 923
  year: 2012
  end-page: 935
  ident: bib9
  article-title: Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation
  publication-title: Cell
– volume: 29
  start-page: 308
  year: 2001
  end-page: 311
  ident: bib57
  article-title: dbSNP: the NCBI database of genetic variation
  publication-title: Nucleic Acids Res.
– volume: 106
  start-page: 7840
  year: 2009
  end-page: 7845
  ident: bib64
  article-title: mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 109
  start-page: 10661
  year: 2012
  end-page: 10668
  ident: bib20
  article-title: The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 166
  start-page: 1308
  year: 2016
  end-page: 1323
  ident: bib56
  article-title: Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics
  publication-title: Cell
– volume: 12
  start-page: 37
  year: 2002
  end-page: 53
  ident: bib60
  article-title: Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey
  publication-title: Cereb. Cortex
– volume: 164
  start-page: 550
  year: 2016
  end-page: 563
  ident: bib8
  article-title: Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma
  publication-title: Cell
– volume: 14
  start-page: 128
  year: 2013
  ident: bib10
  article-title: Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool
  publication-title: BMC Bioinformatics
– volume: 330
  start-page: 641
  year: 2010
  end-page: 646
  ident: bib62
  article-title: Diversity of human copy number variation and multicopy genes
  publication-title: Science
– volume: 13
  start-page: 541
  year: 2003
  end-page: 549
  ident: bib54
  article-title: Developmental and evolutionary adaptations of cortical radial glia
  publication-title: Cereb. Cortex
– volume: 23
  start-page: 1373
  year: 2013
  end-page: 1382
  ident: bib63
  article-title: Evolution and diversity of copy number variation in the great ape lineage
  publication-title: Genome Res.
– volume: 20
  start-page: 435
  year: 2017
  end-page: 449
  ident: bib2
  article-title: Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia
  publication-title: Cell Stem Cell
– volume: 7
  start-page: 883
  year: 2006
  end-page: 890
  ident: bib26
  article-title: Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion
  publication-title: Nat. Rev. Neurosci.
– year: 1970
  ident: bib38
  article-title: Evolution by Gene Duplication
– volume: 545
  start-page: 48
  year: 2017
  ident: 10.1016/j.cell.2019.01.017_bib51
  article-title: Cell diversity and network dynamics in photosensitive human brain organoids
  publication-title: Nature
  doi: 10.1038/nature22047
– volume: 14
  start-page: 128
  year: 2013
  ident: 10.1016/j.cell.2019.01.017_bib10
  article-title: Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-128
– volume: 20
  start-page: 435
  year: 2017
  ident: 10.1016/j.cell.2019.01.017_bib2
  article-title: Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.12.007
– volume: 19
  start-page: 162
  year: 2018
  ident: 10.1016/j.cell.2019.01.017_bib3
  article-title: A comparative study of endoderm differentiation in humans and chimpanzees
  publication-title: Genome Biol.
  doi: 10.1186/s13059-018-1490-5
– volume: 106
  start-page: 7840
  year: 2009
  ident: 10.1016/j.cell.2019.01.017_bib64
  article-title: mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0901854106
– volume: 17
  start-page: 483
  year: 2016
  ident: 10.1016/j.cell.2019.01.017_bib21
  article-title: variancePartition: Interpreting drivers of variation in complex gene expression studies
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1323-z
– volume: 164
  start-page: 550
  year: 2016
  ident: 10.1016/j.cell.2019.01.017_bib8
  article-title: Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.028
– volume: 22
  start-page: R791
  year: 2012
  ident: 10.1016/j.cell.2019.01.017_bib55
  article-title: Fetal brain development in chimpanzees versus humans
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2012.06.062
– volume: 110
  start-page: 20284
  year: 2013
  ident: 10.1016/j.cell.2019.01.017_bib23
  article-title: Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1315710110
– volume: 163
  start-page: 55
  year: 2015
  ident: 10.1016/j.cell.2019.01.017_bib49
  article-title: Molecular identity of human outer radial glia during cortical development
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.004
– volume: 46
  start-page: D762
  year: 2018
  ident: 10.1016/j.cell.2019.01.017_bib7
  article-title: The UCSC Genome Browser database: 2018 update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1020
– volume: 165
  start-page: 1586
  year: 2016
  ident: 10.1016/j.cell.2019.01.017_bib11
  article-title: Modeling development and disease with organoids
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.082
– volume: 29
  start-page: 308
  year: 2001
  ident: 10.1016/j.cell.2019.01.017_bib57
  article-title: dbSNP: the NCBI database of genetic variation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/29.1.308
– volume: 149
  start-page: 912
  year: 2012
  ident: 10.1016/j.cell.2019.01.017_bib12
  article-title: Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.033
– volume: 112
  start-page: 15672
  year: 2015
  ident: 10.1016/j.cell.2019.01.017_bib6
  article-title: Human cerebral organoids recapitulate gene expression programs of fetal neocortex development
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1520760112
– volume: 501
  start-page: 373
  year: 2013
  ident: 10.1016/j.cell.2019.01.017_bib28
  article-title: Cerebral organoids model human brain development and microcephaly
  publication-title: Nature
  doi: 10.1038/nature12517
– volume: 18
  start-page: 467
  year: 2016
  ident: 10.1016/j.cell.2019.01.017_bib42
  article-title: 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.03.003
– volume: 360
  start-page: eaar6343
  year: 2018
  ident: 10.1016/j.cell.2019.01.017_bib27
  article-title: High-resolution comparative analysis of great ape genomes
  publication-title: Science
  doi: 10.1126/science.aar6343
– volume: 413
  start-page: 514
  year: 2001
  ident: 10.1016/j.cell.2019.01.017_bib22
  article-title: Positive selection of a gene family during the emergence of humans and African apes
  publication-title: Nature
  doi: 10.1038/35097067
– volume: 9
  start-page: 559
  year: 2008
  ident: 10.1016/j.cell.2019.01.017_bib29
  article-title: WGCNA: An R package for weighted correlation network analysis
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-559
– volume: 21
  start-page: 1512
  year: 2011
  ident: 10.1016/j.cell.2019.01.017_bib43
  article-title: Cactus: Algorithms for genome multiple sequence alignment
  publication-title: Genome Res.
  doi: 10.1101/gr.123356.111
– volume: 1
  start-page: 69
  year: 2017
  ident: 10.1016/j.cell.2019.01.017_bib13
  article-title: The evolution and population diversity of human-specific segmental duplications
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-016-0069
– volume: 503
  start-page: 525
  year: 2013
  ident: 10.1016/j.cell.2019.01.017_bib32
  article-title: Differential L1 regulation in pluripotent stem cells of humans and apes
  publication-title: Nature
  doi: 10.1038/nature12686
– volume: 8
  start-page: 190
  year: 2013
  ident: 10.1016/j.cell.2019.01.017_bib33
  article-title: Induced pluripotent stem cells from patients with human fibrodysplasia ossificans progressive show increased mineralization and cartilage formation
  publication-title: Orphanet. J. Rare Dis.
  doi: 10.1186/1750-1172-8-190
– volume: 166
  start-page: 1308
  year: 2016
  ident: 10.1016/j.cell.2019.01.017_bib56
  article-title: Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics
  publication-title: Cell
  doi: 10.1016/j.cell.2016.07.054
– volume: 28
  start-page: 1029
  year: 2018
  ident: 10.1016/j.cell.2019.01.017_bib16
  article-title: Comparative Annotation Toolkit (CAT)-simultaneous clade and personal genome annotation
  publication-title: Genome Res.
  doi: 10.1101/gr.233460.117
– volume: 100
  start-page: 11484
  year: 2003
  ident: 10.1016/j.cell.2019.01.017_bib24
  article-title: Evolution’s cauldron: duplication, deletion, and rearrangement in the mouse and human genomes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1932072100
– volume: 358
  start-page: 1318
  year: 2017
  ident: 10.1016/j.cell.2019.01.017_bib37
  article-title: Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex
  publication-title: Science
  doi: 10.1126/science.aap8809
– year: 1970
  ident: 10.1016/j.cell.2019.01.017_bib38
– volume: 11
  start-page: 1271
  year: 2008
  ident: 10.1016/j.cell.2019.01.017_bib40
  article-title: Functional organization of the transcriptome in human brain
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2207
– volume: 8
  start-page: 15312
  year: 2018
  ident: 10.1016/j.cell.2019.01.017_bib44
  article-title: A comparative assessment of human and chimpanzee iPSC-derived cardiomyocytes with primary heart tissues
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-33478-9
– volume: 95
  start-page: 779
  year: 2017
  ident: 10.1016/j.cell.2019.01.017_bib59
  article-title: Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.07.035
– volume: 109
  start-page: 10661
  issue: Suppl 1
  year: 2012
  ident: 10.1016/j.cell.2019.01.017_bib20
  article-title: The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1201895109
– volume: 7
  start-page: 883
  year: 2006
  ident: 10.1016/j.cell.2019.01.017_bib26
  article-title: Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2008
– volume: 10
  year: 2018
  ident: 10.1016/j.cell.2019.01.017_bib31
  article-title: Pervasive Correlated Evolution in Gene Expression Shapes Cell and Tissue Type Transcriptomes
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evy016
– volume: 4
  start-page: 5519
  year: 2014
  ident: 10.1016/j.cell.2019.01.017_bib45
  article-title: An activator of mTOR inhibits oxLDL-induced autophagy and apoptosis in vascular endothelial cells and restricts atherosclerosis in apolipoprotein E−/− mice
  publication-title: Sci. Rep.
  doi: 10.1038/srep05519
– volume: 32
  start-page: 1053
  year: 2014
  ident: 10.1016/j.cell.2019.01.017_bib48
  article-title: Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2967
– volume: 23
  start-page: 1373
  year: 2013
  ident: 10.1016/j.cell.2019.01.017_bib63
  article-title: Evolution and diversity of copy number variation in the great ape lineage
  publication-title: Genome Res.
  doi: 10.1101/gr.158543.113
– volume: 330
  start-page: 641
  year: 2010
  ident: 10.1016/j.cell.2019.01.017_bib62
  article-title: Diversity of human copy number variation and multicopy genes
  publication-title: Science
  doi: 10.1126/science.1197005
– volume: 149
  start-page: 923
  year: 2012
  ident: 10.1016/j.cell.2019.01.017_bib9
  article-title: Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.034
– volume: 471
  start-page: 216
  year: 2011
  ident: 10.1016/j.cell.2019.01.017_bib34
  article-title: Human-specific loss of regulatory DNA and the evolution of human-specific traits
  publication-title: Nature
  doi: 10.1038/nature09774
– volume: 535
  start-page: 367
  year: 2016
  ident: 10.1016/j.cell.2019.01.017_bib1
  article-title: A comprehensive transcriptional map of primate brain development
  publication-title: Nature
  doi: 10.1038/nature18637
– volume: 36
  start-page: 411
  year: 2018
  ident: 10.1016/j.cell.2019.01.017_bib5
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4096
– volume: 93
  start-page: 182
  year: 2011
  ident: 10.1016/j.cell.2019.01.017_bib52
  article-title: Energy metabolism in adult neural stem cell fate
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2010.10.007
– volume: 16
  start-page: 2576
  year: 2016
  ident: 10.1016/j.cell.2019.01.017_bib41
  article-title: Zika virus disrupts phospho-tbk1 localization and mitosis in human neuroepithelial stem cells and radial glia
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.08.038
– volume: 163
  start-page: 68
  year: 2015
  ident: 10.1016/j.cell.2019.01.017_bib50
  article-title: Enhancer divergence and cis-regulatory evolution in the human and chimp neural crest
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.036
– volume: 2008
  start-page: P10008
  year: 2008
  ident: 10.1016/j.cell.2019.01.017_bib30
  article-title: Fast unfolding of communities in large networks
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/2008/10/P10008
– volume: 5
  start-page: 166
  year: 2016
  ident: 10.1016/j.cell.2019.01.017_bib35
  article-title: Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development
  publication-title: eLife
  doi: 10.7554/eLife.18683
– volume: 13
  start-page: 541
  year: 2003
  ident: 10.1016/j.cell.2019.01.017_bib54
  article-title: Developmental and evolutionary adaptations of cortical radial glia
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/13.6.541
– volume: 2
  start-page: e1601941
  year: 2016
  ident: 10.1016/j.cell.2019.01.017_bib18
  article-title: A single splice site mutation in human-specific ARHGAP11B causes basal progenitor amplification
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601941
– volume: 409
  start-page: 714
  year: 2001
  ident: 10.1016/j.cell.2019.01.017_bib36
  article-title: Neurons derived from radial glial cells establish radial units in neocortex
  publication-title: Nature
  doi: 10.1038/35055553
– volume: 12
  start-page: 37
  year: 2002
  ident: 10.1016/j.cell.2019.01.017_bib60
  article-title: Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/12.1.37
– volume: 4
  start-page: e07103
  year: 2015
  ident: 10.1016/j.cell.2019.01.017_bib19
  article-title: A panel of induced pluripotent stem cells from chimpanzees: A resource for comparative functional genomics
  publication-title: eLife
  doi: 10.7554/eLife.07103
– volume: 38
  start-page: 162
  year: 2016
  ident: 10.1016/j.cell.2019.01.017_bib58
  article-title: Genomic divergence and brain evolution: How regulatory DNA influences development of the cerebral cortex
  publication-title: BioEssays
  doi: 10.1002/bies.201500108
– volume: 3
  start-page: 519
  year: 2008
  ident: 10.1016/j.cell.2019.01.017_bib14
  article-title: Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.09.002
– volume: 18
  start-page: 383
  year: 1995
  ident: 10.1016/j.cell.2019.01.017_bib53
  article-title: A small step for the cell, a giant leap for mankind: A hypothesis of neocortical expansion during evolution
  publication-title: Trends Neurosci.
  doi: 10.1016/0166-2236(95)93934-P
– volume: 2
  start-page: 119
  year: 2013
  ident: 10.1016/j.cell.2019.01.017_bib25
  article-title: A robust method to derive functional neural crest cells from human pluripotent stem cells
  publication-title: Am. J. Stem Cells
– volume: 74
  start-page: 41
  year: 2012
  ident: 10.1016/j.cell.2019.01.017_bib46
  article-title: Somatic activation of AKT3 causes hemispheric developmental brain malformations
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.03.010
– volume: 121
  start-page: 2783
  year: 2008
  ident: 10.1016/j.cell.2019.01.017_bib17
  article-title: Making bigger brains-the evolution of neural-progenitor-cell division
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.023465
– volume: 472
  start-page: 51
  year: 2011
  ident: 10.1016/j.cell.2019.01.017_bib15
  article-title: Self-organizing optic-cup morphogenesis in three-dimensional culture
  publication-title: Nature
  doi: 10.1038/nature09941
– volume: 8
  start-page: 409
  year: 2011
  ident: 10.1016/j.cell.2019.01.017_bib39
  article-title: A more efficient method to generate integration-free human iPSC cells
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1591
– volume: 49
  start-page: 515
  year: 2017
  ident: 10.1016/j.cell.2019.01.017_bib61
  article-title: Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3792
– volume: 443
  start-page: 167
  year: 2006
  ident: 10.1016/j.cell.2019.01.017_bib47
  article-title: An RNA gene expressed during cortical development evolved rapidly in humans
  publication-title: Nature
  doi: 10.1038/nature05113
– volume: 25
  start-page: 772
  year: 2015
  ident: 10.1016/j.cell.2019.01.017_bib4
  article-title: Human-chimpanzee differences in a FZD8 enhancer alter cell-cycle dynamics in the developing neocortex
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.01.041
SSID ssj0008555
Score 2.685002
Snippet Direct comparisons of human and non-human primate brains can reveal molecular pathways underlying remarkable specializations of the human brain. However,...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 743
SubjectTerms Animals
Biological Evolution
brain
Brain - cytology
Cell Culture Techniques - methods
Cell Differentiation - genetics
Cerebral Cortex - cytology
Cerebral Cortex - metabolism
cerebral organoids
chimpanzee
cortex
cortical development
evolution
gene duplication
gene regulatory networks
Gene Regulatory Networks - genetics
genes
human-specific evolution
Humans
Induced Pluripotent Stem Cells - cytology
Macaca
macaque
mTOR
neural progenitor cells
neurogenesis
Neurogenesis - genetics
Organoids - growth & development
Organoids - metabolism
Pan troglodytes
Pluripotent Stem Cells - cytology
radial glia
receptors
Single-Cell Analysis
single-cell RNA sequencing
Species Specificity
Transcriptome - genetics
Title Establishing Cerebral Organoids as Models of Human-Specific Brain Evolution
URI https://dx.doi.org/10.1016/j.cell.2019.01.017
https://www.ncbi.nlm.nih.gov/pubmed/30735633
https://www.proquest.com/docview/2185558100
https://www.proquest.com/docview/2221016331
https://pubmed.ncbi.nlm.nih.gov/PMC6544371
Volume 176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7Et-uLCN6k2DZJ0xx1WfGBnhT2FpImxcrSFXcV_PfOpO3iquxB6KVNUtKZZPIlnfmGkFMLc4aXPI8yV6qIW9iwWmVAIanMSg-AtzQY4Hz_kF0_8duhGC6RfhcLg26Vre1vbHqw1u2T81aa569VhTG-Ks0zWBEVCywmYIcxqhSD-IaXM2ucC9FkMVAw86F2GzjT-Hjh4Ti6d6lA3RmSlv25OP0Gnz99KL8tSlfrZK1Fk_Si6fAGWfL1Jllp8kt-bpG7AWC_7piJ9v0b_iUe0RB_Oa7chJoJxWRoowkdlzSc50chIX1ZFfQSk0fQwUc7NrfJ09XgsX8dtdkTogIgwjQySWwNwrtCxMxZxmLjQVjcpZlj1vDcA1LwhZWw4it4zI30DPkJueVeCsF2yHI9rv0eoZaL3KaFc7lwvEhAl1x6Z5XLXKYKZnok6cSmi5ZaHDNcjHTnQ_aiUdQaRa3jBC7ZI2ezNq8NscbC2qLThp4bHhos_8J2J53qNMwbLDa1H79PNEAbpDpL4nhBnTTF9zKW9Mhuo-5ZX9E2CijqETk3EGYVkLd7vqSungN_d4acgzLZ_-c3HZBVvAuu4_KQLE_f3v0RIKOpPYY9wc3dcZgAX-sxDV8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SlNJeQvreNG1V6K2Y2JZkWcdm2bBpHqcE9iYkS6YOizdkN4X8-8zI9tJtyx4KPkkjY89Io8_yzDcAXx2uGVGLMil8rRPh8IPVaYsGyVVRBwS8taUE54vLYnotfszkbAfGQy4MhVX2vr_z6dFb9y1HvTaPbpuGcnx1Xha4I2oeWUyewFNEAylN7dPZ8dodl1J2ZQw0Ln0U7zNnuiAvOh2n-C4duTtj1bJ_7k5_o88_gyh_25VO9mGvh5Pse_fEL2EntK_gWVdg8uE1nE0Q_A3nTGwc7ug38ZzFBMxF45fMLhlVQ5sv2aJm8UA_iRXp66Zix1Q9gk1-9ZPzDVyfTK7G06Qvn5BUiBFWic1SZwnfVTLl3nGe2oDaEj4vPHdWlAGhQqicwi1fY7OwKnAiKBROBCUlfwu77aIN74E5IUuXV96X0osqQ2MKFbzTvvCFrrgdQTaozVQ9tziVuJibIYjsxpCqDanapBleagTf1mNuO2aNrdJysIbZmB8GXf_WcV8G0xlcONRt27C4XxrENsR1lqXpFpk8p_tyno3gXWfu9bOSc5TYNQK1MRHWAkTcvdnTNj8jgXdBpIMqO_jPd_oMz6dXF-fm_PTy7AO8oJ4YR64OYXd1dx8-IkxauU9xGTwCJowPiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Establishing+Cerebral+Organoids+as+Models+of+Human-Specific+Brain+Evolution&rft.jtitle=Cell&rft.au=Pollen%2C+Alex+A&rft.au=Bhaduri%2C+Aparna&rft.au=Andrews%2C+Madeline+G&rft.au=Nowakowski%2C+Tomasz+J&rft.date=2019-02-07&rft.eissn=1097-4172&rft.volume=176&rft.issue=4&rft.spage=743&rft_id=info:doi/10.1016%2Fj.cell.2019.01.017&rft_id=info%3Apmid%2F30735633&rft.externalDocID=30735633
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon