Polymorphic family of injected pseudokinases is paramount in Toxoplasma virulence

Toxoplasma gondii, an obligate intracellular parasite of the phylum Apicomplexa, has the unusual ability to infect virtually any warm-blooded animal. It is an extraordinarily successful parasite, infecting an estimated 30% of humans worldwide. The outcome of Toxoplasma infection is highly dependent...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 108; no. 23; pp. 9625 - 9630
Main Authors Reese, Michael L, Zeiner, Gusti M, Saeij, Jeroen P.J, Boothroyd, John C, Boyle, Jon P
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 07.06.2011
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1015980108

Cover

Abstract Toxoplasma gondii, an obligate intracellular parasite of the phylum Apicomplexa, has the unusual ability to infect virtually any warm-blooded animal. It is an extraordinarily successful parasite, infecting an estimated 30% of humans worldwide. The outcome of Toxoplasma infection is highly dependent on allelic differences in the large number of effectors that the parasite secretes into the host cell. Here, we show that the largest determinant of the virulence difference between two of the most common strains of Toxoplasma is the ROP5 locus. This is an unusual segment of the Toxoplasma genome consisting of a family of 4-10 tandem, highly divergent genes encoding pseudokinases that are injected directly into host cells. Given their hypothesized catalytic inactivity, it is striking that deletion of the ROP5 cluster in a highly virulent strain caused a complete loss of virulence, showing that ROP5 proteins are, in fact, indispensable for Toxoplasma to cause disease in mice. We find that copy number at this locus varies among the three major Toxoplasma lineages and that extensive polymorphism is clustered into hotspots within the ROP5 pseudokinase domain. We propose that the ROP5 locus represents an unusual evolutionary strategy for sampling of sequence space in which the gene encoding an important enzyme has been (i) catalytically inactivated, (ii) expanded in number, and (iii) subject to strong positive selection. Such a strategy likely contributes to Toxoplasma's successful adaptation to a wide host range and has resulted in dramatic differences in virulence.
AbstractList Toxoplasma gondii, an obligate intracellular parasite of the phylum Apicomplexa, has the unusual ability to infect virtually any warm-blooded animal. It is an extraordinarily successful parasite, infecting an estimated 30% of humans worldwide. The outcome of Toxoplasma infection is highly dependent on allelic differences in the large number of effectors that the parasite secretes into the host cell. Here, we show that the largest determinant of the virulence difference between two of the most common strains of Toxoplasma is the ROP5 locus. This is an unusual segment of the Toxoplasma genome consisting of a family of 4-10 tandem, highly divergent genes encoding pseudokinases that are injected directly into host cells. Given their hypothesized catalytic inactivity, it is striking that deletion of the ROP5 cluster in a highly virulent strain caused a complete loss of virulence, showing that ROP5 proteins are, in fact, indispensable for Toxoplasma to cause disease in mice. We find that copy number at this locus varies among the three major Toxoplasma lineages and that extensive polymorphism is clustered into hotspots within the ROP5 pseudokinase domain. We propose that the ROP5 locus represents an unusual evolutionary strategy for sampling of sequence space in which the gene encoding an important enzyme has been (i) catalytically inactivated, (ii) expanded in number, and (iii) subject to strong positive selection. Such a strategy likely contributes to Toxoplasma's successful adaptation to a wide host range and has resulted in dramatic differences in virulence.
Toxoplasma gondii, an obligate intracellular parasite of the phylum Apicomplexa, has the unusual ability to infect virtually any warm-blooded animal. It is an extraordinarily successful parasite, infecting an estimated 30% of humans worldwide. The outcome of Toxoplasma infection is highly dependent on allelic differences in the large number of effectors that the parasite secretes into the host cell. Here, we show that the largest determinant of the virulence difference between two of the most common strains of Toxoplasma is the ROP5 locus. This is an unusual segment of the Toxoplasma genome consisting of a family of 4-10 tandem, highly divergent genes encoding pseudokinases that are injected directly into host cells. Given their hypothesized catalytic inactivity, it is striking that deletion of the ROP5 cluster in a highly virulent strain caused a complete loss of virulence, showing that ROP5 proteins are, in fact, indispensable for Toxoplasma to cause disease in mice. We find that copy number at this locus varies among the three major Toxoplasma lineages and that extensive polymorphism is clustered into hotspots within the ROP5 pseudokinase domain. We propose that the ROP5 locus represents an unusual evolutionary strategy for sampling of sequence space in which the gene encoding an important enzyme has been (i) catalytically inactivated, (ii) expanded in number, and (iii) subject to strong positive selection. Such a strategy likely contributes to Toxoplasma's successful adaptation to a wide host range and has resulted in dramatic differences in virulence.Toxoplasma gondii, an obligate intracellular parasite of the phylum Apicomplexa, has the unusual ability to infect virtually any warm-blooded animal. It is an extraordinarily successful parasite, infecting an estimated 30% of humans worldwide. The outcome of Toxoplasma infection is highly dependent on allelic differences in the large number of effectors that the parasite secretes into the host cell. Here, we show that the largest determinant of the virulence difference between two of the most common strains of Toxoplasma is the ROP5 locus. This is an unusual segment of the Toxoplasma genome consisting of a family of 4-10 tandem, highly divergent genes encoding pseudokinases that are injected directly into host cells. Given their hypothesized catalytic inactivity, it is striking that deletion of the ROP5 cluster in a highly virulent strain caused a complete loss of virulence, showing that ROP5 proteins are, in fact, indispensable for Toxoplasma to cause disease in mice. We find that copy number at this locus varies among the three major Toxoplasma lineages and that extensive polymorphism is clustered into hotspots within the ROP5 pseudokinase domain. We propose that the ROP5 locus represents an unusual evolutionary strategy for sampling of sequence space in which the gene encoding an important enzyme has been (i) catalytically inactivated, (ii) expanded in number, and (iii) subject to strong positive selection. Such a strategy likely contributes to Toxoplasma's successful adaptation to a wide host range and has resulted in dramatic differences in virulence.
Toxoplasma gondii, an obligate intracellular parasite of the phylum Apicomplexa, has the unusual ability to infect virtually any warm-blooded animal. It is an extraordinarily successful parasite, infecting an estimated 30% of humans worldwide. The outcome of Toxoplasma infection is highly dependent on allelic differences in the large number of effectors that the parasite secretes into the host cell. Here, we show that the largest determinant of the virulence difference between two of the most common strains of Toxoplasma is the ROP5 locus. This is an unusual segment of the Toxoplasma genome consisting of a family of 4 - 10 tandem, highly divergent genes encoding pseudokinases that are injected directly into host cells. Given their hypothesized catalytic inactivity, it is striking that deletion of the ROP5 cluster in a highly virulent strain caused a complete loss of virulence, showing that ROP5 proteins are, in fact, indispensable for Toxoplasma to cause disease in mice. We find that copy number at this locus varies among the three major Toxoplasma lineages and that extensive polymorphism is clustered into hotspots within the ROP5 pseudokinase domain. We propose that the ROP5 locus represents an unusual evolutionary strategy for sampling of sequence space in which the gene encoding an important enzyme has been (i) catalytically inactivated, (ii) expanded in number, and (iii) subject to strong positive selection. Such a strategy likely contributes to Toxoplasma's successful adaptation to a wide host range and has resulted in dramatic differences in virulence. [PUBLICATION ABSTRACT]
Toxoplasma gondii , an obligate intracellular parasite of the phylum Apicomplexa, has the unusual ability to infect virtually any warm-blooded animal. It is an extraordinarily successful parasite, infecting an estimated 30% of humans worldwide. The outcome of Toxoplasma infection is highly dependent on allelic differences in the large number of effectors that the parasite secretes into the host cell. Here, we show that the largest determinant of the virulence difference between two of the most common strains of Toxoplasma is the ROP5 locus. This is an unusual segment of the Toxoplasma genome consisting of a family of 4–10 tandem, highly divergent genes encoding pseudokinases that are injected directly into host cells. Given their hypothesized catalytic inactivity, it is striking that deletion of the ROP5 cluster in a highly virulent strain caused a complete loss of virulence, showing that ROP5 proteins are, in fact, indispensable for Toxoplasma to cause disease in mice. We find that copy number at this locus varies among the three major Toxoplasma lineages and that extensive polymorphism is clustered into hotspots within the ROP5 pseudokinase domain. We propose that the ROP5 locus represents an unusual evolutionary strategy for sampling of sequence space in which the gene encoding an important enzyme has been ( i ) catalytically inactivated, ( ii ) expanded in number, and ( iii ) subject to strong positive selection. Such a strategy likely contributes to Toxoplasma ’s successful adaptation to a wide host range and has resulted in dramatic differences in virulence.
Author Saeij, Jeroen P.J
Reese, Michael L
Zeiner, Gusti M
Boothroyd, John C
Boyle, Jon P
Author_xml – sequence: 1
  fullname: Reese, Michael L
– sequence: 2
  fullname: Zeiner, Gusti M
– sequence: 3
  fullname: Saeij, Jeroen P.J
– sequence: 4
  fullname: Boothroyd, John C
– sequence: 5
  fullname: Boyle, Jon P
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21436047$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS1URLeFMycg4gKX0Bk7H_YFCVV8SZUA0Z4tbzJpvSR2aieF_e9JtIGFHtqTLc_vvZl5PmIHzjti7CnCG4RSnPTOxOmGuZKAIB-wFYLCtMgUHLAVAC9TmfHskB3FuAEAlUt4xA45ZqKArFyxb199u-186K9slTSms-028U1i3YaqgeqkjzTW_oed-lBMbEx6E0znRzdMTHLuf_m-NbEzyY0NY0uuosfsYWPaSE-W85hdfHh_fvopPfvy8fPpu7O0yvNsSFUG1BA2gAIkbwSs6xzJ1MgNN4VUIAoiVQFUlJVUNJIT8OndFIJLsW7EMYOd7-h6s_1p2lb3wXYmbDWCntPRczp6n84kebuT9OO6o7oiNwSzl3lj9f8VZ6_0pb_RAhG5hMng1WIQ_PVIcdCdjRW1rXHkx6gVlFhkMhf3krJEUSrkaiJf30mixFJCUWI-oS9voRs_BjelPPuh5ELO0PN_l_y73Z8_n4B8B1TBxxio0ZUdzGD9vLNt70jv5Jbu_rxfLKPMhT0tNRdaFXwe9tmO2MTBh_2suRRL4ItDY7w2l8FGffGdAxYAqLiUUvwGRkrs4Q
CitedBy_id crossref_primary_10_1016_j_chom_2019_09_008
crossref_primary_10_1534_genetics_115_186270
crossref_primary_10_1186_s13071_017_2387_y
crossref_primary_10_1111_pim_12306
crossref_primary_10_1371_journal_pbio_1001358
crossref_primary_10_7554_eLife_01298
crossref_primary_10_1101_gr_262816_120
crossref_primary_10_1016_j_mib_2011_07_002
crossref_primary_10_1128_msphere_00670_22
crossref_primary_10_1371_journal_ppat_1003779
crossref_primary_10_3389_fimmu_2018_01222
crossref_primary_10_1016_j_ijpara_2011_11_007
crossref_primary_10_1371_journal_pgen_1006189
crossref_primary_10_1371_journal_pone_0085386
crossref_primary_10_1111_jeu_12904
crossref_primary_10_3389_fcimb_2023_1130965
crossref_primary_10_1016_j_parint_2024_102997
crossref_primary_10_1016_j_bbagrm_2023_194943
crossref_primary_10_1111_cmi_12022
crossref_primary_10_1371_journal_ppat_1011021
crossref_primary_10_1073_pnas_1816161116
crossref_primary_10_1098_rstb_2012_0014
crossref_primary_10_3389_fcimb_2019_00386
crossref_primary_10_1016_j_mib_2018_09_001
crossref_primary_10_1073_pnas_1304322110
crossref_primary_10_1093_cid_cis258
crossref_primary_10_1111_cmi_12651
crossref_primary_10_1093_infdis_jiae388
crossref_primary_10_1111_cmi_12499
crossref_primary_10_3389_fimmu_2018_01572
crossref_primary_10_1093_nar_gky373
crossref_primary_10_3389_fcimb_2019_00139
crossref_primary_10_4161_viru_19004
crossref_primary_10_1038_s41467_024_47625_6
crossref_primary_10_1111_pim_12166
crossref_primary_10_1016_j_pt_2011_08_001
crossref_primary_10_1111_j_1600_0854_2011_01308_x
crossref_primary_10_1016_j_chom_2011_04_015
crossref_primary_10_1016_j_vaccine_2013_07_058
crossref_primary_10_1016_j_chom_2014_05_002
crossref_primary_10_7554_eLife_85654_3
crossref_primary_10_1371_journal_ppat_1008528
crossref_primary_10_1093_gbe_evy188
crossref_primary_10_3390_metabo13040476
crossref_primary_10_7554_eLife_01599
crossref_primary_10_1007_s00436_019_06522_4
crossref_primary_10_1128_EC_00215_14
crossref_primary_10_1038_cmi_2016_21
crossref_primary_10_1093_infdis_jit313
crossref_primary_10_1016_j_heliyon_2024_e31558
crossref_primary_10_1128_mBio_00321_12
crossref_primary_10_4161_viru_3_1_18340
crossref_primary_10_1128_mBio_00589_19
crossref_primary_10_1371_journal_ppat_1002784
crossref_primary_10_1016_j_micinf_2012_09_005
crossref_primary_10_1002_bies_201100054
crossref_primary_10_1038_s41590_018_0250_8
crossref_primary_10_1016_j_ijpara_2020_11_006
crossref_primary_10_1016_j_vetpar_2013_11_001
crossref_primary_10_1007_s00436_023_08079_9
crossref_primary_10_1016_j_exppara_2015_01_006
crossref_primary_10_1016_j_jbc_2021_101468
crossref_primary_10_1016_j_pt_2020_01_003
crossref_primary_10_1016_j_intimp_2024_112857
crossref_primary_10_1128_CMR_05013_11
crossref_primary_10_1038_nrmicro2858
crossref_primary_10_1038_s41579_021_00518_7
crossref_primary_10_1042_BJ20141506
crossref_primary_10_1371_journal_pbio_1001845
crossref_primary_10_1371_journal_ppat_1011003
crossref_primary_10_7554_eLife_57861
crossref_primary_10_1128_EC_05182_11
crossref_primary_10_1007_s00436_018_5966_8
crossref_primary_10_1007_s00436_020_06746_9
crossref_primary_10_1016_j_celrep_2014_04_031
crossref_primary_10_1186_1756_3305_5_186
crossref_primary_10_1111_cmi_12794
crossref_primary_10_3389_fcimb_2024_1414067
crossref_primary_10_1016_j_ijpara_2015_10_005
crossref_primary_10_1128_IAI_01173_15
crossref_primary_10_1128_IAI_01615_14
crossref_primary_10_1371_journal_pone_0232552
crossref_primary_10_1128_mBio_00808_16
crossref_primary_10_1074_jbc_M111_253435
crossref_primary_10_1128_mBio_00842_16
crossref_primary_10_1016_j_celrep_2023_112592
crossref_primary_10_1016_j_ijpara_2020_05_001
crossref_primary_10_1002_iub_2040
crossref_primary_10_1007_s00232_014_9646_z
crossref_primary_10_1007_s00436_013_3451_y
crossref_primary_10_1038_s41467_019_09200_2
crossref_primary_10_3389_fcimb_2024_1359888
crossref_primary_10_1111_j_1469_8137_2011_03854_x
crossref_primary_10_1371_journal_pone_0227749
crossref_primary_10_1016_j_pt_2016_04_013
crossref_primary_10_1371_journal_ppat_1008586
crossref_primary_10_1371_journal_pone_0029998
crossref_primary_10_1017_S0031182024000106
crossref_primary_10_1016_j_jmb_2013_01_039
crossref_primary_10_1016_j_pt_2017_02_007
crossref_primary_10_1111_j_1365_3024_2011_01312_x
crossref_primary_10_1128_MCB_00057_14
crossref_primary_10_1111_cmi_13278
crossref_primary_10_1371_journal_ppat_1004025
crossref_primary_10_1371_journal_ppat_1003296
crossref_primary_10_1128_IAI_01170_13
crossref_primary_10_1186_s13071_017_2527_4
crossref_primary_10_1073_pnas_1801118115
crossref_primary_10_3389_fimmu_2018_02073
crossref_primary_10_1016_j_eng_2019_02_010
crossref_primary_10_1126_scisignal_2002785
crossref_primary_10_1007_s00436_015_4701_y
crossref_primary_10_3389_fcimb_2022_868727
crossref_primary_10_1128_mBio_00193_16
crossref_primary_10_1007_s00436_024_08435_3
crossref_primary_10_1038_s41467_020_18991_8
crossref_primary_10_3390_life11090988
crossref_primary_10_1016_j_ijpara_2021_10_004
crossref_primary_10_1016_j_exppara_2014_02_015
crossref_primary_10_1128_IAI_00027_20
crossref_primary_10_1371_journal_pbio_3000475
crossref_primary_10_3389_fcimb_2019_00185
crossref_primary_10_1371_journal_ppat_1004779
crossref_primary_10_1128_mBio_00301_18
crossref_primary_10_1128_mBio_02280_14
crossref_primary_10_1186_s13071_018_2862_0
crossref_primary_10_1017_S0031182020001249
crossref_primary_10_1371_journal_ppat_1002992
crossref_primary_10_1093_infdis_jiu833
crossref_primary_10_7554_eLife_85654
crossref_primary_10_3389_fcimb_2021_728425
crossref_primary_10_1371_journal_ppat_1003320
crossref_primary_10_1021_acsinfecdis_5b00102
crossref_primary_10_1073_pnas_1117047109
crossref_primary_10_1016_j_pt_2011_12_004
crossref_primary_10_1371_journal_ppat_1003162
crossref_primary_10_3389_fcimb_2020_580425
crossref_primary_10_1016_j_pt_2024_07_009
crossref_primary_10_1189_jlb_1012517
crossref_primary_10_1371_journal_pone_0099744
crossref_primary_10_1073_pnas_1510031112
crossref_primary_10_1128_mBio_01331_21
crossref_primary_10_1371_journal_pone_0111297
crossref_primary_10_1016_j_ijpara_2018_08_007
crossref_primary_10_1073_pnas_1722202115
crossref_primary_10_1371_journal_ppat_1008327
crossref_primary_10_1186_1297_9716_43_39
crossref_primary_10_3389_fmicb_2017_00084
crossref_primary_10_1371_journal_pbio_3002202
crossref_primary_10_1186_s13071_023_06080_w
crossref_primary_10_1146_annurev_micro_091014_104100
crossref_primary_10_1016_j_jmb_2016_04_032
crossref_primary_10_3389_fcimb_2019_00307
crossref_primary_10_1111_cmi_12644
crossref_primary_10_1128_CMR_00005_17
crossref_primary_10_1016_j_ijpara_2020_02_003
crossref_primary_10_1371_journal_pgen_1005434
crossref_primary_10_1177_1759091417724915
crossref_primary_10_1111_pim_12177
crossref_primary_10_1017_S0031182014001528
crossref_primary_10_1111_gtc_13080
crossref_primary_10_1080_21505594_2021_1932183
crossref_primary_10_1093_bfgp_elr028
crossref_primary_10_1016_j_chom_2014_04_002
crossref_primary_10_1128_mBio_01003_13
crossref_primary_10_1016_j_jprot_2012_01_039
crossref_primary_10_1146_annurev_biochem_060614_034157
crossref_primary_10_3389_fmicb_2020_589604
crossref_primary_10_1016_j_parint_2021_102368
crossref_primary_10_1099_jmm_0_000148
crossref_primary_10_3389_fmicb_2018_01936
crossref_primary_10_1128_mBio_01738_18
crossref_primary_10_1128_IAI_05974_11
crossref_primary_10_1016_j_ijmm_2012_07_011
crossref_primary_10_1111_1574_6976_12013
crossref_primary_10_3389_fcimb_2019_00046
crossref_primary_10_3389_fimmu_2019_02104
crossref_primary_10_1146_annurev_micro_091014_104353
crossref_primary_10_1074_jbc_M114_567057
crossref_primary_10_1128_EC_00316_13
crossref_primary_10_1073_pnas_1015338108
crossref_primary_10_1073_pnas_1313501111
crossref_primary_10_1371_journal_pone_0090237
crossref_primary_10_1128_AAC_00868_12
crossref_primary_10_5936_csbj_201209007
crossref_primary_10_1016_j_ijpara_2013_10_003
crossref_primary_10_3389_fimmu_2024_1356216
crossref_primary_10_7554_eLife_50598
crossref_primary_10_1128_mSphere_00045_16
crossref_primary_10_1016_j_ijpara_2012_09_009
crossref_primary_10_3390_ijms252011262
crossref_primary_10_1016_j_vaccine_2024_02_062
Cites_doi 10.1084/jem.20100717
10.1016/j.tig.2009.05.005
10.1073/pnas.1930781100
10.4049/jimmunol.167.8.4574
10.1073/pnas.94.15.7799
10.1126/science.1178377
10.1126/science.1133690
10.1002/pmic.200600187
10.1128/EC.00358-08
10.1093/nar/gki604
10.1111/j.1600-0854.2009.00958.x
10.1073/pnas.0914408107
10.1016/j.pt.2005.08.001
10.1126/science.1133643
10.1016/j.tig.2007.04.004
10.1016/j.bcp.2010.06.020
10.1084/jem.20091703
10.1016/j.tcb.2006.07.003
10.1038/nrmicro2145
10.1016/j.chom.2010.11.005
10.1038/ni.1629
10.1016/j.molbiopara.2004.05.003
10.1016/j.mib.2007.09.013
10.1371/journal.ppat.0030197
10.1093/genetics/132.4.1003
10.1074/jbc.271.24.14010
10.1096/fasebj.9.8.7768349
10.1038/nsmb1195
10.1093/molbev/msm092
10.1016/j.molcel.2009.11.028
10.1073/pnas.0510319103
10.1126/science.1078035
10.1101/gr.092981.109
10.1016/j.chom.2010.07.004
10.1038/nrg1895
10.1038/nrmicro1800
10.1073/pnas.92.12.5749
10.1016/0378-1119(95)00548-K
10.3201/eid1504.081306
10.1038/nature05395
10.1038/nrmicro840
10.1126/science.1061888
10.1111/j.1462-5822.2006.00767.x
10.1016/S1369-5274(02)00349-1
10.1371/journal.pbio.1000576
10.1093/bioinformatics/btg112
10.1074/jbc.272.31.19625
10.1128/IAI.73.2.695-702.2005
10.1093/nar/22.22.4673
10.1074/jbc.M110.112359
ContentType Journal Article
Copyright Copyright National Academy of Sciences Jun 7, 2011
Copyright_xml – notice: Copyright National Academy of Sciences Jun 7, 2011
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ADTOC
UNPAY
DOI 10.1073/pnas.1015980108
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
Virology and AIDS Abstracts

CrossRef

MEDLINE
AGRICOLA


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 9630
ExternalDocumentID oai:dspace.mit.edu:1721.1/69611
PMC3111280
2371168341
21436047
10_1073_pnas_1015980108
108_23_9625
25831280
US201600192888
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: AI73756
– fundername: NIAID NIH HHS
  grantid: R01 AI080621
– fundername: NIAID NIH HHS
  grantid: K22 AI080977
– fundername: NIAID NIH HHS
  grantid: R01 AI073756
– fundername: NIAID NIH HHS
  grantid: K22AI080977
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ADTOC
AFHIN
AFQQW
UNPAY
ID FETCH-LOGICAL-c554t-940efe1f013082f30bd51ead12a2a689036ee9c00ce47e6f82e02689a63283bf3
ISSN 0027-8424
1091-6490
IngestDate Wed Aug 20 00:17:04 EDT 2025
Tue Sep 30 15:52:16 EDT 2025
Fri Sep 05 09:33:01 EDT 2025
Thu Sep 04 15:20:51 EDT 2025
Fri Sep 05 05:21:44 EDT 2025
Mon Jun 30 08:30:00 EDT 2025
Wed Feb 19 01:53:51 EST 2025
Wed Oct 01 01:21:46 EDT 2025
Thu Apr 24 22:57:06 EDT 2025
Wed Nov 11 00:29:36 EST 2020
Thu May 29 08:40:51 EDT 2025
Wed Dec 27 19:14:39 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License Freely available online through the PNAS open access option.
cc-by-nc
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c554t-940efe1f013082f30bd51ead12a2a689036ee9c00ce47e6f82e02689a63283bf3
Notes http://dx.doi.org/10.1073/pnas.1015980108
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
Edited by Thomas E. Wellems, National Institutes of Health, Bethesda, MD, and approved February 25, 2011 (received for review October 26, 2010)
2Present address: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139.
Author contributions: M.L.R., G.M.Z., J.C.B., and J.P.B. designed research; M.L.R., G.M.Z., J.P.S., J.C.B., and J.P.B. performed research; M.L.R., G.M.Z., J.P.S., and J.P.B. analyzed data; and M.L.R., J.C.B., and J.P.B. wrote the paper.
1Present address: Molecular Tools Lab, Agilent Technologies, Santa Clara, CA 95051.
3J.C.B. and J.P.B. contributed equally to this work.
OpenAccessLink http://hdl.handle.net/1721.1/69611
PMID 21436047
PQID 871182385
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3111280
proquest_miscellaneous_871379129
pubmed_primary_21436047
fao_agris_US201600192888
proquest_journals_871182385
unpaywall_primary_10_1073_pnas_1015980108
pnas_primary_108_23_9625
proquest_miscellaneous_1817806715
crossref_citationtrail_10_1073_pnas_1015980108
proquest_miscellaneous_907164853
jstor_primary_25831280
crossref_primary_10_1073_pnas_1015980108
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-06-07
PublicationDateYYYYMMDD 2011-06-07
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2011
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References El Hajj H (e_1_3_4_23_2) 2007; 9
Shaw MH (e_1_3_4_36_2) 2003; 100
Mordue DG (e_1_3_4_29_2) 2001; 167
Messina M (e_1_3_4_50_2) 1995; 165
Saeij JP (e_1_3_4_28_2) 2005; 73
Yoon S (e_1_3_4_31_2) 2009; 19
Grigg ME (e_1_3_4_8_2) 2001; 294
Saeij JP (e_1_3_4_16_2) 2007; 445
Thompson JD (e_1_3_4_48_2) 1994; 22
Huynh MH (e_1_3_4_30_2) 2009; 8
Carme B (e_1_3_4_5_2) 2009; 15
Carruthers VB (e_1_3_4_13_2) 1999; 48
Reese ML (e_1_3_4_22_2) 2009; 10
Zeqiraj E (e_1_3_4_40_2) 2009; 326
Bos JI (e_1_3_4_26_2) 2010; 107
Nei M (e_1_3_4_44_2) 1997; 94
Khan A (e_1_3_4_7_2) 2005; 33
Deitsch KW (e_1_3_4_1_2) 2009; 7
Donald RG (e_1_3_4_51_2) 1996; 271
Peixoto L (e_1_3_4_41_2) 2010; 8
Ong YC (e_1_3_4_19_2) 2010; 285
Boyle JP (e_1_3_4_32_2) 2006; 103
Boothroyd JC (e_1_3_4_11_2) 2008; 6
Steinfeldt T (e_1_3_4_18_2) 2010; 8
Marques JT (e_1_3_4_2_2) 2007; 23
Boudeau J (e_1_3_4_35_2) 2006; 16
Sawyer SL (e_1_3_4_45_2) 2007; 3
Su C (e_1_3_4_46_2) 2003; 299
Broman KW (e_1_3_4_52_2) 2003; 19
Koul A (e_1_3_4_25_2) 2004; 2
Bradley PJ (e_1_3_4_33_2) 2004; 137
Tamura K (e_1_3_4_49_2) 2007; 24
Boothroyd JC (e_1_3_4_4_2) 2002; 5
Zhang F (e_1_3_4_43_2) 2009; 25
Sibley LD (e_1_3_4_6_2) 1992; 132
Hanks SK (e_1_3_4_24_2) 1995; 9
Fukuda K (e_1_3_4_38_2) 2009; 36
Bradley PJ (e_1_3_4_12_2) 2007; 10
Taylor S (e_1_3_4_10_2) 2006; 314
Yamamoto M (e_1_3_4_20_2) 2009; 206
Fentress SJ (e_1_3_4_17_2) 2010; 8
Rosowski EE (e_1_3_4_14_2) 2011; 208
Reese ML (e_1_3_4_39_2) 2007; 14
Saeij JP (e_1_3_4_9_2) 2006; 314
Blanchard N (e_1_3_4_15_2) 2008; 9
Sambrook J (e_1_3_4_47_2) 2001
Donald RG (e_1_3_4_34_2) 1995; 92
Saeij JP (e_1_3_4_3_2) 2005; 21
Molden J (e_1_3_4_27_2) 1997; 272
Bailey JA (e_1_3_4_42_2) 2006; 7
Flannery S (e_1_3_4_37_2) 2010; 80
El Hajj H (e_1_3_4_21_2) 2006; 6
12724300 - Bioinformatics. 2003 May 1;19(7):889-90
17170305 - Science. 2006 Dec 15;314(5806):1776-80
16879455 - Cell Microbiol. 2007 Jan;9(1):54-64
15083155 - Nat Rev Microbiol. 2004 Mar;2(3):189-202
16801557 - Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10514-9
14500783 - Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11594-9
17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9
19218426 - Eukaryot Cell. 2009 Apr;8(4):530-9
7768349 - FASEB J. 1995 May;9(8):576-96
15911631 - Nucleic Acids Res. 2005;33(9):2980-92
11591786 - J Immunol. 2001 Oct 15;167(8):4574-84
18159944 - PLoS Pathog. 2007 Dec;3(12):e197
18059289 - Nat Rev Microbiol. 2008 Jan;6(1):79-88
8522178 - Gene. 1995 Nov 20;165(2):213-7
19331765 - Emerg Infect Dis. 2009 Apr;15(4):656-8
19560228 - Trends Genet. 2009 Jul;25(7):298-307
12160866 - Curr Opin Microbiol. 2002 Aug;5(4):438-42
16098810 - Trends Parasitol. 2005 Oct;21(10):476-81
17183270 - Nature. 2007 Jan 18;445(7125):324-7
20624917 - J Biol Chem. 2010 Sep 10;285(37):28731-40
7777580 - Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5749-53
9223266 - Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7799-806
15664907 - Infect Immun. 2005 Feb;73(2):695-702
19503065 - Nat Rev Microbiol. 2009 Jul;7(7):493-503
19901082 - J Exp Med. 2009 Nov 23;206(12):2747-60
20457921 - Proc Natl Acad Sci U S A. 2010 May 25;107(21):9909-14
20599782 - Biochem Pharmacol. 2010 Dec 15;80(12):1981-91
18587399 - Nat Immunol. 2008 Aug;9(8):937-44
17022100 - Proteomics. 2006 Nov;6(21):5773-84
21203588 - PLoS Biol. 2010;8(12):e1000576
1360931 - Genetics. 1992 Dec;132(4):1003-15
20005845 - Mol Cell. 2009 Dec 11;36(5):819-30
9235971 - J Biol Chem. 1997 Aug 1;272(31):19625-31
19682324 - Traffic. 2009 Oct;10(10):1458-70
11588262 - Science. 2001 Oct 5;294(5540):161-5
15279957 - Mol Biochem Parasitol. 2004 Sep;137(1):111-20
17467114 - Trends Genet. 2007 Jul;23(7):359-64
19892943 - Science. 2009 Dec 18;326(5960):1707-11
21199955 - J Exp Med. 2011 Jan 17;208(1):195-212
17220895 - Nat Struct Mol Biol. 2007 Feb;14(2):155-63
17997128 - Curr Opin Microbiol. 2007 Dec;10(6):582-7
12532022 - Science. 2003 Jan 17;299(5605):414-6
17170306 - Science. 2006 Dec 15;314(5806):1780-3
11269320 - Parasitol Int. 1999 Mar;48(1):1-10
16770338 - Nat Rev Genet. 2006 Jul;7(7):552-64
8662859 - J Biol Chem. 1996 Jun 14;271(24):14010-9
20709297 - Cell Host Microbe. 2010 Aug 19;8(2):208-18
19657104 - Genome Res. 2009 Sep;19(9):1586-92
16879967 - Trends Cell Biol. 2006 Sep;16(9):443-52
7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80
21147463 - Cell Host Microbe. 2010 Dec 16;8(6):484-95
References_xml – volume: 208
  start-page: 195
  year: 2011
  ident: e_1_3_4_14_2
  article-title: Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein
  publication-title: J Exp Med
  doi: 10.1084/jem.20100717
– volume: 25
  start-page: 298
  year: 2009
  ident: e_1_3_4_43_2
  article-title: Complex human chromosomal and genomic rearrangements
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2009.05.005
– volume: 100
  start-page: 11594
  year: 2003
  ident: e_1_3_4_36_2
  article-title: A natural mutation in the Tyk2 pseudokinase domain underlies altered susceptibility of B10.Q/J mice to infection and autoimmunity
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1930781100
– volume: 167
  start-page: 4574
  year: 2001
  ident: e_1_3_4_29_2
  article-title: Acute toxoplasmosis leads to lethal overproduction of Th1 cytokines
  publication-title: J Immunol
  doi: 10.4049/jimmunol.167.8.4574
– volume: 94
  start-page: 7799
  year: 1997
  ident: e_1_3_4_44_2
  article-title: Evolution by the birth-and-death process in multigene families of the vertebrate immune system
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.94.15.7799
– volume: 326
  start-page: 1707
  year: 2009
  ident: e_1_3_4_40_2
  article-title: Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation
  publication-title: Science
  doi: 10.1126/science.1178377
– volume: 314
  start-page: 1780
  year: 2006
  ident: e_1_3_4_9_2
  article-title: Polymorphic secreted kinases are key virulence factors in toxoplasmosis
  publication-title: Science
  doi: 10.1126/science.1133690
– volume: 6
  start-page: 5773
  year: 2006
  ident: e_1_3_4_21_2
  article-title: The ROP2 family of Toxoplasma gondii rhoptry proteins: Proteomic and genomic characterization and molecular modeling
  publication-title: Proteomics
  doi: 10.1002/pmic.200600187
– volume: 8
  start-page: 530
  year: 2009
  ident: e_1_3_4_30_2
  article-title: Tagging of endogenous genes in a Toxoplasma gondii strain lacking Ku80
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.00358-08
– volume: 33
  start-page: 2980
  year: 2005
  ident: e_1_3_4_7_2
  article-title: Composite genome map and recombination parameters derived from three archetypal lineages of Toxoplasma gondii
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki604
– volume: 10
  start-page: 1458
  year: 2009
  ident: e_1_3_4_22_2
  article-title: A helical membrane-binding domain targets the Toxoplasma ROP2 family to the parasitophorous vacuole
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2009.00958.x
– volume: 107
  start-page: 9909
  year: 2010
  ident: e_1_3_4_26_2
  article-title: Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0914408107
– volume: 21
  start-page: 476
  year: 2005
  ident: e_1_3_4_3_2
  article-title: Differences among the three major strains of Toxoplasma gondii and their specific interactions with the infected host
  publication-title: Trends Parasitol
  doi: 10.1016/j.pt.2005.08.001
– volume: 314
  start-page: 1776
  year: 2006
  ident: e_1_3_4_10_2
  article-title: A secreted serine-threonine kinase determines virulence in the eukaryotic pathogen Toxoplasma gondii
  publication-title: Science
  doi: 10.1126/science.1133643
– volume: 23
  start-page: 359
  year: 2007
  ident: e_1_3_4_2_2
  article-title: A call to arms: Coevolution of animal viruses and host innate immune responses
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2007.04.004
– volume: 80
  start-page: 1981
  year: 2010
  ident: e_1_3_4_37_2
  article-title: The interleukin-1 receptor-associated kinases: Critical regulators of innate immune signalling
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2010.06.020
– volume: 206
  start-page: 2747
  year: 2009
  ident: e_1_3_4_20_2
  article-title: A single polymorphic amino acid on Toxoplasma gondii kinase ROP16 determines the direct and strain-specific activation of Stat3
  publication-title: J Exp Med
  doi: 10.1084/jem.20091703
– volume: 16
  start-page: 443
  year: 2006
  ident: e_1_3_4_35_2
  article-title: Emerging roles of pseudokinases
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2006.07.003
– volume: 7
  start-page: 493
  year: 2009
  ident: e_1_3_4_1_2
  article-title: Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2145
– volume: 8
  start-page: 484
  year: 2010
  ident: e_1_3_4_17_2
  article-title: Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2010.11.005
– volume: 9
  start-page: 937
  year: 2008
  ident: e_1_3_4_15_2
  article-title: Immunodominant, protective response to the parasite Toxoplasma gondii requires antigen processing in the endoplasmic reticulum
  publication-title: Nat Immunol
  doi: 10.1038/ni.1629
– volume: 137
  start-page: 111
  year: 2004
  ident: e_1_3_4_33_2
  article-title: A GFP-based motif-trap reveals a novel mechanism of targeting for the Toxoplasma ROP4 protein
  publication-title: Mol Biochem Parasitol
  doi: 10.1016/j.molbiopara.2004.05.003
– volume: 10
  start-page: 582
  year: 2007
  ident: e_1_3_4_12_2
  article-title: Rhoptries: An arsenal of secreted virulence factors
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2007.09.013
– volume: 3
  start-page: e197
  year: 2007
  ident: e_1_3_4_45_2
  article-title: Discordant evolution of the adjacent antiretroviral genes TRIM22 and TRIM5 in mammals
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.0030197
– volume: 132
  start-page: 1003
  year: 1992
  ident: e_1_3_4_6_2
  article-title: Generation of a restriction fragment length polymorphism linkage map for Toxoplasma gondii
  publication-title: Genetics
  doi: 10.1093/genetics/132.4.1003
– volume-title: Molecular Cloning: A Laboratory Manual
  year: 2001
  ident: e_1_3_4_47_2
– volume: 271
  start-page: 14010
  year: 1996
  ident: e_1_3_4_51_2
  article-title: Insertional tagging, cloning, and expression of the Toxoplasma gondii hypoxanthine-xanthine-guanine phosphoribosyltransferase gene. Use as a selectable marker for stable transformation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.271.24.14010
– volume: 9
  start-page: 576
  year: 1995
  ident: e_1_3_4_24_2
  article-title: Protein kinases 6. The eukaryotic protein kinase superfamily: Kinase (catalytic) domain structure and classification
  publication-title: FASEB J
  doi: 10.1096/fasebj.9.8.7768349
– volume: 14
  start-page: 155
  year: 2007
  ident: e_1_3_4_39_2
  article-title: The guanylate kinase domain of the MAGUK PSD-95 binds dynamically to a conserved motif in MAP1a
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb1195
– volume: 24
  start-page: 1596
  year: 2007
  ident: e_1_3_4_49_2
  article-title: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msm092
– volume: 36
  start-page: 819
  year: 2009
  ident: e_1_3_4_38_2
  article-title: The pseudoactive site of ILK is essential for its binding to alpha-Parvin and localization to focal adhesions
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2009.11.028
– volume: 103
  start-page: 10514
  year: 2006
  ident: e_1_3_4_32_2
  article-title: Just one cross appears capable of dramatically altering the population biology of a eukaryotic pathogen like Toxoplasma gondii
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0510319103
– volume: 299
  start-page: 414
  year: 2003
  ident: e_1_3_4_46_2
  article-title: Recent expansion of Toxoplasma through enhanced oral transmission
  publication-title: Science
  doi: 10.1126/science.1078035
– volume: 19
  start-page: 1586
  year: 2009
  ident: e_1_3_4_31_2
  article-title: Sensitive and accurate detection of copy number variants using read depth of coverage
  publication-title: Genome Res
  doi: 10.1101/gr.092981.109
– volume: 8
  start-page: 208
  year: 2010
  ident: e_1_3_4_41_2
  article-title: Integrative genomic approaches highlight a family of parasite-specific kinases that regulate host responses
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2010.07.004
– volume: 7
  start-page: 552
  year: 2006
  ident: e_1_3_4_42_2
  article-title: Primate segmental duplications: Crucibles of evolution, diversity and disease
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1895
– volume: 6
  start-page: 79
  year: 2008
  ident: e_1_3_4_11_2
  article-title: Kiss and spit: The dual roles of Toxoplasma rhoptries
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro1800
– volume: 92
  start-page: 5749
  year: 1995
  ident: e_1_3_4_34_2
  article-title: Insertional mutagenesis and marker rescue in a protozoan parasite: Cloning of the uracil phosphoribosyltransferase locus from Toxoplasma gondii
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.92.12.5749
– volume: 165
  start-page: 213
  year: 1995
  ident: e_1_3_4_50_2
  article-title: Stable DNA transformation of Toxoplasma gondii using phleomycin selection
  publication-title: Gene
  doi: 10.1016/0378-1119(95)00548-K
– volume: 15
  start-page: 656
  year: 2009
  ident: e_1_3_4_5_2
  article-title: Severe acquired toxoplasmosis caused by wild cycle of Toxoplasma gondii, French Guiana
  publication-title: Emerg Infect Dis
  doi: 10.3201/eid1504.081306
– volume: 445
  start-page: 324
  year: 2007
  ident: e_1_3_4_16_2
  article-title: Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue
  publication-title: Nature
  doi: 10.1038/nature05395
– volume: 2
  start-page: 189
  year: 2004
  ident: e_1_3_4_25_2
  article-title: Interplay between mycobacteria and host signalling pathways
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro840
– volume: 294
  start-page: 161
  year: 2001
  ident: e_1_3_4_8_2
  article-title: Success and virulence in Toxoplasma as the result of sexual recombination between two distinct ancestries
  publication-title: Science
  doi: 10.1126/science.1061888
– volume: 9
  start-page: 54
  year: 2007
  ident: e_1_3_4_23_2
  article-title: Inverted topology of the Toxoplasma gondii ROP5 rhoptry protein provides new insights into the association of the ROP2 protein family with the parasitophorous vacuole membrane
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2006.00767.x
– volume: 5
  start-page: 438
  year: 2002
  ident: e_1_3_4_4_2
  article-title: Population biology of Toxoplasma gondii and its relevance to human infection: Do different strains cause different disease?
  publication-title: Curr Opin Microbiol
  doi: 10.1016/S1369-5274(02)00349-1
– volume: 8
  start-page: e1000576
  year: 2010
  ident: e_1_3_4_18_2
  article-title: Phosphorylation of mouse immunity-related GTPase (IRG) resistance proteins is an evasion strategy for virulent Toxoplasma gondii
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1000576
– volume: 19
  start-page: 889
  year: 2003
  ident: e_1_3_4_52_2
  article-title: R/qtl: QTL mapping in experimental crosses
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg112
– volume: 272
  start-page: 19625
  year: 1997
  ident: e_1_3_4_27_2
  article-title: A Kaposi's sarcoma-associated herpesvirus-encoded cytokine homolog (vIL-6) activates signaling through the shared gp130 receptor subunit
  publication-title: J Biol Chem
  doi: 10.1074/jbc.272.31.19625
– volume: 73
  start-page: 695
  year: 2005
  ident: e_1_3_4_28_2
  article-title: Bioluminescence imaging of Toxoplasma gondii infection in living mice reveals dramatic differences between strains
  publication-title: Infect Immun
  doi: 10.1128/IAI.73.2.695-702.2005
– volume: 22
  start-page: 4673
  year: 1994
  ident: e_1_3_4_48_2
  article-title: CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/22.22.4673
– volume: 285
  start-page: 28731
  year: 2010
  ident: e_1_3_4_19_2
  article-title: Toxoplasma rhoptry protein 16 (ROP16) subverts host function by direct tyrosine phosphorylation of STAT6
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.112359
– volume: 48
  start-page: 1
  year: 1999
  ident: e_1_3_4_13_2
  article-title: Armed and dangerous: Toxoplasma gondii uses an arsenal of secretory proteins to infect host cells
  publication-title: Parasitol Int
– reference: 17170306 - Science. 2006 Dec 15;314(5806):1780-3
– reference: 20599782 - Biochem Pharmacol. 2010 Dec 15;80(12):1981-91
– reference: 19560228 - Trends Genet. 2009 Jul;25(7):298-307
– reference: 8662859 - J Biol Chem. 1996 Jun 14;271(24):14010-9
– reference: 21147463 - Cell Host Microbe. 2010 Dec 16;8(6):484-95
– reference: 19331765 - Emerg Infect Dis. 2009 Apr;15(4):656-8
– reference: 11269320 - Parasitol Int. 1999 Mar;48(1):1-10
– reference: 11591786 - J Immunol. 2001 Oct 15;167(8):4574-84
– reference: 16098810 - Trends Parasitol. 2005 Oct;21(10):476-81
– reference: 16801557 - Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10514-9
– reference: 16879455 - Cell Microbiol. 2007 Jan;9(1):54-64
– reference: 19503065 - Nat Rev Microbiol. 2009 Jul;7(7):493-503
– reference: 20709297 - Cell Host Microbe. 2010 Aug 19;8(2):208-18
– reference: 17170305 - Science. 2006 Dec 15;314(5806):1776-80
– reference: 12532022 - Science. 2003 Jan 17;299(5605):414-6
– reference: 19901082 - J Exp Med. 2009 Nov 23;206(12):2747-60
– reference: 1360931 - Genetics. 1992 Dec;132(4):1003-15
– reference: 14500783 - Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11594-9
– reference: 17220895 - Nat Struct Mol Biol. 2007 Feb;14(2):155-63
– reference: 12724300 - Bioinformatics. 2003 May 1;19(7):889-90
– reference: 18059289 - Nat Rev Microbiol. 2008 Jan;6(1):79-88
– reference: 17467114 - Trends Genet. 2007 Jul;23(7):359-64
– reference: 7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80
– reference: 16879967 - Trends Cell Biol. 2006 Sep;16(9):443-52
– reference: 18587399 - Nat Immunol. 2008 Aug;9(8):937-44
– reference: 20624917 - J Biol Chem. 2010 Sep 10;285(37):28731-40
– reference: 21199955 - J Exp Med. 2011 Jan 17;208(1):195-212
– reference: 7777580 - Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5749-53
– reference: 17997128 - Curr Opin Microbiol. 2007 Dec;10(6):582-7
– reference: 15279957 - Mol Biochem Parasitol. 2004 Sep;137(1):111-20
– reference: 19657104 - Genome Res. 2009 Sep;19(9):1586-92
– reference: 9223266 - Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7799-806
– reference: 8522178 - Gene. 1995 Nov 20;165(2):213-7
– reference: 19682324 - Traffic. 2009 Oct;10(10):1458-70
– reference: 15911631 - Nucleic Acids Res. 2005;33(9):2980-92
– reference: 17183270 - Nature. 2007 Jan 18;445(7125):324-7
– reference: 9235971 - J Biol Chem. 1997 Aug 1;272(31):19625-31
– reference: 7768349 - FASEB J. 1995 May;9(8):576-96
– reference: 19218426 - Eukaryot Cell. 2009 Apr;8(4):530-9
– reference: 19892943 - Science. 2009 Dec 18;326(5960):1707-11
– reference: 18159944 - PLoS Pathog. 2007 Dec;3(12):e197
– reference: 20457921 - Proc Natl Acad Sci U S A. 2010 May 25;107(21):9909-14
– reference: 11588262 - Science. 2001 Oct 5;294(5540):161-5
– reference: 17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9
– reference: 20005845 - Mol Cell. 2009 Dec 11;36(5):819-30
– reference: 15664907 - Infect Immun. 2005 Feb;73(2):695-702
– reference: 12160866 - Curr Opin Microbiol. 2002 Aug;5(4):438-42
– reference: 15083155 - Nat Rev Microbiol. 2004 Mar;2(3):189-202
– reference: 16770338 - Nat Rev Genet. 2006 Jul;7(7):552-64
– reference: 17022100 - Proteomics. 2006 Nov;6(21):5773-84
– reference: 21203588 - PLoS Biol. 2010;8(12):e1000576
SSID ssj0009580
Score 2.4735823
Snippet Toxoplasma gondii, an obligate intracellular parasite of the phylum Apicomplexa, has the unusual ability to infect virtually any warm-blooded animal. It is an...
Toxoplasma gondii , an obligate intracellular parasite of the phylum Apicomplexa, has the unusual ability to infect virtually any warm-blooded animal. It is an...
Toxoplasma gondii , an obligate intracellular parasite of the phylum Apicomplexa, has the unusual ability to infect virtually any warm-blooded animal. It is an...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9625
SubjectTerms Adaptations
Alleles
Amino Acid Sequence
Animals
Apicomplexa
Bacterial infections
Biological Sciences
Cells, Cultured
copy number
Enzymes
Evolution
Female
genes
Genetic Complementation Test
Genetic loci
Genetic Loci - genetics
Genetic Variation
Genomes
Genomics
Host range
Hot spots
Humans
Infection
Infections
loci
Male
Mice
Mice, Inbred BALB C
Molecular Sequence Data
Multigene Family - genetics
Mutation
Parasite hosts
Parasites
Phenotypes
Phylogeny
Polymorphism, Genetic
Positive selection
Protein isoforms
Protein Isoforms - genetics
proteins
Protozoan Proteins - classification
Protozoan Proteins - genetics
Quantitative trait loci
Sampling
Sequence Homology, Amino Acid
Species Specificity
Toxoplasma - classification
Toxoplasma - genetics
Toxoplasma - pathogenicity
Toxoplasma gondii
toxoplasmosis
Toxoplasmosis, Animal - parasitology
Virology
Virulence
Virulence - genetics
virulent strains
Title Polymorphic family of injected pseudokinases is paramount in Toxoplasma virulence
URI https://www.jstor.org/stable/25831280
http://www.pnas.org/content/108/23/9625.abstract
https://www.ncbi.nlm.nih.gov/pubmed/21436047
https://www.proquest.com/docview/871182385
https://www.proquest.com/docview/1817806715
https://www.proquest.com/docview/871379129
https://www.proquest.com/docview/907164853
https://pubmed.ncbi.nlm.nih.gov/PMC3111280
http://hdl.handle.net/1721.1/69611
UnpaywallVersion submittedVersion
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250401
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: HH5
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150115
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: DIK
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250401
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: RPM
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe68QAviAFjZYCCxMOmKCFxUid5nCbYNLFqaK1U8RI5qT0KbVK1DTD-QP4u7uLESbdVfLxEVey4ju-Xu_P5Pgh5AxscL3JTbvmSMQskXgqflBQWY37CgyRJexLjnc_77HTon416o07nV8trqVgldvrzzriS_6Eq3AO6YpTsP1BWDwo34DfQF65AYbj-FY0v8ils3WGlJmltqSgzQKBtBRTJ-VIU4_zrJANJtcTK5Zjne4bFIdDKMch_5HPQnWfc_DZZFGXwUVtVvdCibVk7EvRry-FRE4dSMYelaZkX_aaqceWOb36wMQ6lOQE6weph5rltfhIYdqgdeMQiF8CObfPMNi-5mHxZc-05tjEoA0s6XI_bdgpX-VMFjRtHe4Z6bm3WTEFc-iqg2haKG4MyYzFf1RPV7NoJW7ikXov7RkwFUd8SC8DHsJYxLDdaK3oRiGU1Sgsk81mJEgoKJHNUFtD19Nw3xKZ2ZoShYurF-Odb5B4NGMNKGicjt5X8OVShUNUr1immAu_tjTmVuanVBNYUpS3J89pjFtPwwlN3bYlue_beL7I5v_7Op9OW2jR4RB5W-x3jSIF3h3RE9pjs1IQxDqq054dPyMcWmg2FZiOXRo1mYw3NxmRpaDRDH6NBs6HR_JQM378bHJ9aVcEPKwWtdmVFviOkcCWepodUek4y7rnA6lzKKWdhBNqWEFHqOKnwA8FkSIVD4T5nHmjJifR2yXaWZ2KPGIl05Fj6Y1j9xGdJEHEn8hmPkpSNgx6VXWLXqxunVTZ8LMoyjUuvjMCLcY3jhjJdcqAfmKtEMJu77gG5Yn4FYjoeXlJM4og7qTCEpt2ShnoI2gs9UBEdeKYcpRlag6pL9mtCxxXzWcZhgJYBL4TW17oVJAMe9_FM5AVMKHSDEJRRF_oYG_rAMF4Qgc6_uUvkoEkFtPoueabA1Uy-gmqXBGuw0x0wd_16Szb5XOaw90DHKl_7UAP0T8v6fPMS7ZMHDct5QbZXi0K8hM3CKnlVfom_AQJRESA
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polymorphic+family+of+injected+pseudokinases+is+paramount+in+Toxoplasma+virulence&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Michael+L.+Reese&rft.au=Gusti+M.+Zeiner&rft.au=Jeroen+P.+J.+Saeij&rft.au=John+C.+Boothroyd&rft.date=2011-06-07&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=108&rft.issue=23&rft.spage=9625&rft_id=info:doi/10.1073%2Fpnas.1015980108&rft_id=info%3Apmid%2F21436047&rft.externalDBID=n%2Fa&rft.externalDocID=108_23_9625
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F23.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F23.cover.gif