Polymorphic family of injected pseudokinases is paramount in Toxoplasma virulence
Toxoplasma gondii, an obligate intracellular parasite of the phylum Apicomplexa, has the unusual ability to infect virtually any warm-blooded animal. It is an extraordinarily successful parasite, infecting an estimated 30% of humans worldwide. The outcome of Toxoplasma infection is highly dependent...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 108; no. 23; pp. 9625 - 9630 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
07.06.2011
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1015980108 |
Cover
Abstract | Toxoplasma gondii, an obligate intracellular parasite of the phylum Apicomplexa, has the unusual ability to infect virtually any warm-blooded animal. It is an extraordinarily successful parasite, infecting an estimated 30% of humans worldwide. The outcome of Toxoplasma infection is highly dependent on allelic differences in the large number of effectors that the parasite secretes into the host cell. Here, we show that the largest determinant of the virulence difference between two of the most common strains of Toxoplasma is the ROP5 locus. This is an unusual segment of the Toxoplasma genome consisting of a family of 4-10 tandem, highly divergent genes encoding pseudokinases that are injected directly into host cells. Given their hypothesized catalytic inactivity, it is striking that deletion of the ROP5 cluster in a highly virulent strain caused a complete loss of virulence, showing that ROP5 proteins are, in fact, indispensable for Toxoplasma to cause disease in mice. We find that copy number at this locus varies among the three major Toxoplasma lineages and that extensive polymorphism is clustered into hotspots within the ROP5 pseudokinase domain. We propose that the ROP5 locus represents an unusual evolutionary strategy for sampling of sequence space in which the gene encoding an important enzyme has been (i) catalytically inactivated, (ii) expanded in number, and (iii) subject to strong positive selection. Such a strategy likely contributes to Toxoplasma's successful adaptation to a wide host range and has resulted in dramatic differences in virulence. |
---|---|
AbstractList | Toxoplasma gondii, an obligate intracellular parasite of the phylum Apicomplexa, has the unusual ability to infect virtually any warm-blooded animal. It is an extraordinarily successful parasite, infecting an estimated 30% of humans worldwide. The outcome of Toxoplasma infection is highly dependent on allelic differences in the large number of effectors that the parasite secretes into the host cell. Here, we show that the largest determinant of the virulence difference between two of the most common strains of Toxoplasma is the ROP5 locus. This is an unusual segment of the Toxoplasma genome consisting of a family of 4-10 tandem, highly divergent genes encoding pseudokinases that are injected directly into host cells. Given their hypothesized catalytic inactivity, it is striking that deletion of the ROP5 cluster in a highly virulent strain caused a complete loss of virulence, showing that ROP5 proteins are, in fact, indispensable for Toxoplasma to cause disease in mice. We find that copy number at this locus varies among the three major Toxoplasma lineages and that extensive polymorphism is clustered into hotspots within the ROP5 pseudokinase domain. We propose that the ROP5 locus represents an unusual evolutionary strategy for sampling of sequence space in which the gene encoding an important enzyme has been (i) catalytically inactivated, (ii) expanded in number, and (iii) subject to strong positive selection. Such a strategy likely contributes to Toxoplasma's successful adaptation to a wide host range and has resulted in dramatic differences in virulence. Toxoplasma gondii, an obligate intracellular parasite of the phylum Apicomplexa, has the unusual ability to infect virtually any warm-blooded animal. It is an extraordinarily successful parasite, infecting an estimated 30% of humans worldwide. The outcome of Toxoplasma infection is highly dependent on allelic differences in the large number of effectors that the parasite secretes into the host cell. Here, we show that the largest determinant of the virulence difference between two of the most common strains of Toxoplasma is the ROP5 locus. This is an unusual segment of the Toxoplasma genome consisting of a family of 4-10 tandem, highly divergent genes encoding pseudokinases that are injected directly into host cells. Given their hypothesized catalytic inactivity, it is striking that deletion of the ROP5 cluster in a highly virulent strain caused a complete loss of virulence, showing that ROP5 proteins are, in fact, indispensable for Toxoplasma to cause disease in mice. We find that copy number at this locus varies among the three major Toxoplasma lineages and that extensive polymorphism is clustered into hotspots within the ROP5 pseudokinase domain. We propose that the ROP5 locus represents an unusual evolutionary strategy for sampling of sequence space in which the gene encoding an important enzyme has been (i) catalytically inactivated, (ii) expanded in number, and (iii) subject to strong positive selection. Such a strategy likely contributes to Toxoplasma's successful adaptation to a wide host range and has resulted in dramatic differences in virulence.Toxoplasma gondii, an obligate intracellular parasite of the phylum Apicomplexa, has the unusual ability to infect virtually any warm-blooded animal. It is an extraordinarily successful parasite, infecting an estimated 30% of humans worldwide. The outcome of Toxoplasma infection is highly dependent on allelic differences in the large number of effectors that the parasite secretes into the host cell. Here, we show that the largest determinant of the virulence difference between two of the most common strains of Toxoplasma is the ROP5 locus. This is an unusual segment of the Toxoplasma genome consisting of a family of 4-10 tandem, highly divergent genes encoding pseudokinases that are injected directly into host cells. Given their hypothesized catalytic inactivity, it is striking that deletion of the ROP5 cluster in a highly virulent strain caused a complete loss of virulence, showing that ROP5 proteins are, in fact, indispensable for Toxoplasma to cause disease in mice. We find that copy number at this locus varies among the three major Toxoplasma lineages and that extensive polymorphism is clustered into hotspots within the ROP5 pseudokinase domain. We propose that the ROP5 locus represents an unusual evolutionary strategy for sampling of sequence space in which the gene encoding an important enzyme has been (i) catalytically inactivated, (ii) expanded in number, and (iii) subject to strong positive selection. Such a strategy likely contributes to Toxoplasma's successful adaptation to a wide host range and has resulted in dramatic differences in virulence. Toxoplasma gondii, an obligate intracellular parasite of the phylum Apicomplexa, has the unusual ability to infect virtually any warm-blooded animal. It is an extraordinarily successful parasite, infecting an estimated 30% of humans worldwide. The outcome of Toxoplasma infection is highly dependent on allelic differences in the large number of effectors that the parasite secretes into the host cell. Here, we show that the largest determinant of the virulence difference between two of the most common strains of Toxoplasma is the ROP5 locus. This is an unusual segment of the Toxoplasma genome consisting of a family of 4 - 10 tandem, highly divergent genes encoding pseudokinases that are injected directly into host cells. Given their hypothesized catalytic inactivity, it is striking that deletion of the ROP5 cluster in a highly virulent strain caused a complete loss of virulence, showing that ROP5 proteins are, in fact, indispensable for Toxoplasma to cause disease in mice. We find that copy number at this locus varies among the three major Toxoplasma lineages and that extensive polymorphism is clustered into hotspots within the ROP5 pseudokinase domain. We propose that the ROP5 locus represents an unusual evolutionary strategy for sampling of sequence space in which the gene encoding an important enzyme has been (i) catalytically inactivated, (ii) expanded in number, and (iii) subject to strong positive selection. Such a strategy likely contributes to Toxoplasma's successful adaptation to a wide host range and has resulted in dramatic differences in virulence. [PUBLICATION ABSTRACT] Toxoplasma gondii , an obligate intracellular parasite of the phylum Apicomplexa, has the unusual ability to infect virtually any warm-blooded animal. It is an extraordinarily successful parasite, infecting an estimated 30% of humans worldwide. The outcome of Toxoplasma infection is highly dependent on allelic differences in the large number of effectors that the parasite secretes into the host cell. Here, we show that the largest determinant of the virulence difference between two of the most common strains of Toxoplasma is the ROP5 locus. This is an unusual segment of the Toxoplasma genome consisting of a family of 4–10 tandem, highly divergent genes encoding pseudokinases that are injected directly into host cells. Given their hypothesized catalytic inactivity, it is striking that deletion of the ROP5 cluster in a highly virulent strain caused a complete loss of virulence, showing that ROP5 proteins are, in fact, indispensable for Toxoplasma to cause disease in mice. We find that copy number at this locus varies among the three major Toxoplasma lineages and that extensive polymorphism is clustered into hotspots within the ROP5 pseudokinase domain. We propose that the ROP5 locus represents an unusual evolutionary strategy for sampling of sequence space in which the gene encoding an important enzyme has been ( i ) catalytically inactivated, ( ii ) expanded in number, and ( iii ) subject to strong positive selection. Such a strategy likely contributes to Toxoplasma ’s successful adaptation to a wide host range and has resulted in dramatic differences in virulence. |
Author | Saeij, Jeroen P.J Reese, Michael L Zeiner, Gusti M Boothroyd, John C Boyle, Jon P |
Author_xml | – sequence: 1 fullname: Reese, Michael L – sequence: 2 fullname: Zeiner, Gusti M – sequence: 3 fullname: Saeij, Jeroen P.J – sequence: 4 fullname: Boothroyd, John C – sequence: 5 fullname: Boyle, Jon P |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21436047$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS1URLeFMycg4gKX0Bk7H_YFCVV8SZUA0Z4tbzJpvSR2aieF_e9JtIGFHtqTLc_vvZl5PmIHzjti7CnCG4RSnPTOxOmGuZKAIB-wFYLCtMgUHLAVAC9TmfHskB3FuAEAlUt4xA45ZqKArFyxb199u-186K9slTSms-028U1i3YaqgeqkjzTW_oed-lBMbEx6E0znRzdMTHLuf_m-NbEzyY0NY0uuosfsYWPaSE-W85hdfHh_fvopPfvy8fPpu7O0yvNsSFUG1BA2gAIkbwSs6xzJ1MgNN4VUIAoiVQFUlJVUNJIT8OndFIJLsW7EMYOd7-h6s_1p2lb3wXYmbDWCntPRczp6n84kebuT9OO6o7oiNwSzl3lj9f8VZ6_0pb_RAhG5hMng1WIQ_PVIcdCdjRW1rXHkx6gVlFhkMhf3krJEUSrkaiJf30mixFJCUWI-oS9voRs_BjelPPuh5ELO0PN_l_y73Z8_n4B8B1TBxxio0ZUdzGD9vLNt70jv5Jbu_rxfLKPMhT0tNRdaFXwe9tmO2MTBh_2suRRL4ItDY7w2l8FGffGdAxYAqLiUUvwGRkrs4Q |
CitedBy_id | crossref_primary_10_1016_j_chom_2019_09_008 crossref_primary_10_1534_genetics_115_186270 crossref_primary_10_1186_s13071_017_2387_y crossref_primary_10_1111_pim_12306 crossref_primary_10_1371_journal_pbio_1001358 crossref_primary_10_7554_eLife_01298 crossref_primary_10_1101_gr_262816_120 crossref_primary_10_1016_j_mib_2011_07_002 crossref_primary_10_1128_msphere_00670_22 crossref_primary_10_1371_journal_ppat_1003779 crossref_primary_10_3389_fimmu_2018_01222 crossref_primary_10_1016_j_ijpara_2011_11_007 crossref_primary_10_1371_journal_pgen_1006189 crossref_primary_10_1371_journal_pone_0085386 crossref_primary_10_1111_jeu_12904 crossref_primary_10_3389_fcimb_2023_1130965 crossref_primary_10_1016_j_parint_2024_102997 crossref_primary_10_1016_j_bbagrm_2023_194943 crossref_primary_10_1111_cmi_12022 crossref_primary_10_1371_journal_ppat_1011021 crossref_primary_10_1073_pnas_1816161116 crossref_primary_10_1098_rstb_2012_0014 crossref_primary_10_3389_fcimb_2019_00386 crossref_primary_10_1016_j_mib_2018_09_001 crossref_primary_10_1073_pnas_1304322110 crossref_primary_10_1093_cid_cis258 crossref_primary_10_1111_cmi_12651 crossref_primary_10_1093_infdis_jiae388 crossref_primary_10_1111_cmi_12499 crossref_primary_10_3389_fimmu_2018_01572 crossref_primary_10_1093_nar_gky373 crossref_primary_10_3389_fcimb_2019_00139 crossref_primary_10_4161_viru_19004 crossref_primary_10_1038_s41467_024_47625_6 crossref_primary_10_1111_pim_12166 crossref_primary_10_1016_j_pt_2011_08_001 crossref_primary_10_1111_j_1600_0854_2011_01308_x crossref_primary_10_1016_j_chom_2011_04_015 crossref_primary_10_1016_j_vaccine_2013_07_058 crossref_primary_10_1016_j_chom_2014_05_002 crossref_primary_10_7554_eLife_85654_3 crossref_primary_10_1371_journal_ppat_1008528 crossref_primary_10_1093_gbe_evy188 crossref_primary_10_3390_metabo13040476 crossref_primary_10_7554_eLife_01599 crossref_primary_10_1007_s00436_019_06522_4 crossref_primary_10_1128_EC_00215_14 crossref_primary_10_1038_cmi_2016_21 crossref_primary_10_1093_infdis_jit313 crossref_primary_10_1016_j_heliyon_2024_e31558 crossref_primary_10_1128_mBio_00321_12 crossref_primary_10_4161_viru_3_1_18340 crossref_primary_10_1128_mBio_00589_19 crossref_primary_10_1371_journal_ppat_1002784 crossref_primary_10_1016_j_micinf_2012_09_005 crossref_primary_10_1002_bies_201100054 crossref_primary_10_1038_s41590_018_0250_8 crossref_primary_10_1016_j_ijpara_2020_11_006 crossref_primary_10_1016_j_vetpar_2013_11_001 crossref_primary_10_1007_s00436_023_08079_9 crossref_primary_10_1016_j_exppara_2015_01_006 crossref_primary_10_1016_j_jbc_2021_101468 crossref_primary_10_1016_j_pt_2020_01_003 crossref_primary_10_1016_j_intimp_2024_112857 crossref_primary_10_1128_CMR_05013_11 crossref_primary_10_1038_nrmicro2858 crossref_primary_10_1038_s41579_021_00518_7 crossref_primary_10_1042_BJ20141506 crossref_primary_10_1371_journal_pbio_1001845 crossref_primary_10_1371_journal_ppat_1011003 crossref_primary_10_7554_eLife_57861 crossref_primary_10_1128_EC_05182_11 crossref_primary_10_1007_s00436_018_5966_8 crossref_primary_10_1007_s00436_020_06746_9 crossref_primary_10_1016_j_celrep_2014_04_031 crossref_primary_10_1186_1756_3305_5_186 crossref_primary_10_1111_cmi_12794 crossref_primary_10_3389_fcimb_2024_1414067 crossref_primary_10_1016_j_ijpara_2015_10_005 crossref_primary_10_1128_IAI_01173_15 crossref_primary_10_1128_IAI_01615_14 crossref_primary_10_1371_journal_pone_0232552 crossref_primary_10_1128_mBio_00808_16 crossref_primary_10_1074_jbc_M111_253435 crossref_primary_10_1128_mBio_00842_16 crossref_primary_10_1016_j_celrep_2023_112592 crossref_primary_10_1016_j_ijpara_2020_05_001 crossref_primary_10_1002_iub_2040 crossref_primary_10_1007_s00232_014_9646_z crossref_primary_10_1007_s00436_013_3451_y crossref_primary_10_1038_s41467_019_09200_2 crossref_primary_10_3389_fcimb_2024_1359888 crossref_primary_10_1111_j_1469_8137_2011_03854_x crossref_primary_10_1371_journal_pone_0227749 crossref_primary_10_1016_j_pt_2016_04_013 crossref_primary_10_1371_journal_ppat_1008586 crossref_primary_10_1371_journal_pone_0029998 crossref_primary_10_1017_S0031182024000106 crossref_primary_10_1016_j_jmb_2013_01_039 crossref_primary_10_1016_j_pt_2017_02_007 crossref_primary_10_1111_j_1365_3024_2011_01312_x crossref_primary_10_1128_MCB_00057_14 crossref_primary_10_1111_cmi_13278 crossref_primary_10_1371_journal_ppat_1004025 crossref_primary_10_1371_journal_ppat_1003296 crossref_primary_10_1128_IAI_01170_13 crossref_primary_10_1186_s13071_017_2527_4 crossref_primary_10_1073_pnas_1801118115 crossref_primary_10_3389_fimmu_2018_02073 crossref_primary_10_1016_j_eng_2019_02_010 crossref_primary_10_1126_scisignal_2002785 crossref_primary_10_1007_s00436_015_4701_y crossref_primary_10_3389_fcimb_2022_868727 crossref_primary_10_1128_mBio_00193_16 crossref_primary_10_1007_s00436_024_08435_3 crossref_primary_10_1038_s41467_020_18991_8 crossref_primary_10_3390_life11090988 crossref_primary_10_1016_j_ijpara_2021_10_004 crossref_primary_10_1016_j_exppara_2014_02_015 crossref_primary_10_1128_IAI_00027_20 crossref_primary_10_1371_journal_pbio_3000475 crossref_primary_10_3389_fcimb_2019_00185 crossref_primary_10_1371_journal_ppat_1004779 crossref_primary_10_1128_mBio_00301_18 crossref_primary_10_1128_mBio_02280_14 crossref_primary_10_1186_s13071_018_2862_0 crossref_primary_10_1017_S0031182020001249 crossref_primary_10_1371_journal_ppat_1002992 crossref_primary_10_1093_infdis_jiu833 crossref_primary_10_7554_eLife_85654 crossref_primary_10_3389_fcimb_2021_728425 crossref_primary_10_1371_journal_ppat_1003320 crossref_primary_10_1021_acsinfecdis_5b00102 crossref_primary_10_1073_pnas_1117047109 crossref_primary_10_1016_j_pt_2011_12_004 crossref_primary_10_1371_journal_ppat_1003162 crossref_primary_10_3389_fcimb_2020_580425 crossref_primary_10_1016_j_pt_2024_07_009 crossref_primary_10_1189_jlb_1012517 crossref_primary_10_1371_journal_pone_0099744 crossref_primary_10_1073_pnas_1510031112 crossref_primary_10_1128_mBio_01331_21 crossref_primary_10_1371_journal_pone_0111297 crossref_primary_10_1016_j_ijpara_2018_08_007 crossref_primary_10_1073_pnas_1722202115 crossref_primary_10_1371_journal_ppat_1008327 crossref_primary_10_1186_1297_9716_43_39 crossref_primary_10_3389_fmicb_2017_00084 crossref_primary_10_1371_journal_pbio_3002202 crossref_primary_10_1186_s13071_023_06080_w crossref_primary_10_1146_annurev_micro_091014_104100 crossref_primary_10_1016_j_jmb_2016_04_032 crossref_primary_10_3389_fcimb_2019_00307 crossref_primary_10_1111_cmi_12644 crossref_primary_10_1128_CMR_00005_17 crossref_primary_10_1016_j_ijpara_2020_02_003 crossref_primary_10_1371_journal_pgen_1005434 crossref_primary_10_1177_1759091417724915 crossref_primary_10_1111_pim_12177 crossref_primary_10_1017_S0031182014001528 crossref_primary_10_1111_gtc_13080 crossref_primary_10_1080_21505594_2021_1932183 crossref_primary_10_1093_bfgp_elr028 crossref_primary_10_1016_j_chom_2014_04_002 crossref_primary_10_1128_mBio_01003_13 crossref_primary_10_1016_j_jprot_2012_01_039 crossref_primary_10_1146_annurev_biochem_060614_034157 crossref_primary_10_3389_fmicb_2020_589604 crossref_primary_10_1016_j_parint_2021_102368 crossref_primary_10_1099_jmm_0_000148 crossref_primary_10_3389_fmicb_2018_01936 crossref_primary_10_1128_mBio_01738_18 crossref_primary_10_1128_IAI_05974_11 crossref_primary_10_1016_j_ijmm_2012_07_011 crossref_primary_10_1111_1574_6976_12013 crossref_primary_10_3389_fcimb_2019_00046 crossref_primary_10_3389_fimmu_2019_02104 crossref_primary_10_1146_annurev_micro_091014_104353 crossref_primary_10_1074_jbc_M114_567057 crossref_primary_10_1128_EC_00316_13 crossref_primary_10_1073_pnas_1015338108 crossref_primary_10_1073_pnas_1313501111 crossref_primary_10_1371_journal_pone_0090237 crossref_primary_10_1128_AAC_00868_12 crossref_primary_10_5936_csbj_201209007 crossref_primary_10_1016_j_ijpara_2013_10_003 crossref_primary_10_3389_fimmu_2024_1356216 crossref_primary_10_7554_eLife_50598 crossref_primary_10_1128_mSphere_00045_16 crossref_primary_10_1016_j_ijpara_2012_09_009 crossref_primary_10_3390_ijms252011262 crossref_primary_10_1016_j_vaccine_2024_02_062 |
Cites_doi | 10.1084/jem.20100717 10.1016/j.tig.2009.05.005 10.1073/pnas.1930781100 10.4049/jimmunol.167.8.4574 10.1073/pnas.94.15.7799 10.1126/science.1178377 10.1126/science.1133690 10.1002/pmic.200600187 10.1128/EC.00358-08 10.1093/nar/gki604 10.1111/j.1600-0854.2009.00958.x 10.1073/pnas.0914408107 10.1016/j.pt.2005.08.001 10.1126/science.1133643 10.1016/j.tig.2007.04.004 10.1016/j.bcp.2010.06.020 10.1084/jem.20091703 10.1016/j.tcb.2006.07.003 10.1038/nrmicro2145 10.1016/j.chom.2010.11.005 10.1038/ni.1629 10.1016/j.molbiopara.2004.05.003 10.1016/j.mib.2007.09.013 10.1371/journal.ppat.0030197 10.1093/genetics/132.4.1003 10.1074/jbc.271.24.14010 10.1096/fasebj.9.8.7768349 10.1038/nsmb1195 10.1093/molbev/msm092 10.1016/j.molcel.2009.11.028 10.1073/pnas.0510319103 10.1126/science.1078035 10.1101/gr.092981.109 10.1016/j.chom.2010.07.004 10.1038/nrg1895 10.1038/nrmicro1800 10.1073/pnas.92.12.5749 10.1016/0378-1119(95)00548-K 10.3201/eid1504.081306 10.1038/nature05395 10.1038/nrmicro840 10.1126/science.1061888 10.1111/j.1462-5822.2006.00767.x 10.1016/S1369-5274(02)00349-1 10.1371/journal.pbio.1000576 10.1093/bioinformatics/btg112 10.1074/jbc.272.31.19625 10.1128/IAI.73.2.695-702.2005 10.1093/nar/22.22.4673 10.1074/jbc.M110.112359 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Jun 7, 2011 |
Copyright_xml | – notice: Copyright National Academy of Sciences Jun 7, 2011 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM ADTOC UNPAY |
DOI | 10.1073/pnas.1015980108 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic Virology and AIDS Abstracts CrossRef MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 9630 |
ExternalDocumentID | oai:dspace.mit.edu:1721.1/69611 PMC3111280 2371168341 21436047 10_1073_pnas_1015980108 108_23_9625 25831280 US201600192888 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: AI73756 – fundername: NIAID NIH HHS grantid: R01 AI080621 – fundername: NIAID NIH HHS grantid: K22 AI080977 – fundername: NIAID NIH HHS grantid: R01 AI073756 – fundername: NIAID NIH HHS grantid: K22AI080977 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM ADTOC AFHIN AFQQW UNPAY |
ID | FETCH-LOGICAL-c554t-940efe1f013082f30bd51ead12a2a689036ee9c00ce47e6f82e02689a63283bf3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Wed Aug 20 00:17:04 EDT 2025 Tue Sep 30 15:52:16 EDT 2025 Fri Sep 05 09:33:01 EDT 2025 Thu Sep 04 15:20:51 EDT 2025 Fri Sep 05 05:21:44 EDT 2025 Mon Jun 30 08:30:00 EDT 2025 Wed Feb 19 01:53:51 EST 2025 Wed Oct 01 01:21:46 EDT 2025 Thu Apr 24 22:57:06 EDT 2025 Wed Nov 11 00:29:36 EST 2020 Thu May 29 08:40:51 EDT 2025 Wed Dec 27 19:14:39 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | Freely available online through the PNAS open access option. cc-by-nc |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c554t-940efe1f013082f30bd51ead12a2a689036ee9c00ce47e6f82e02689a63283bf3 |
Notes | http://dx.doi.org/10.1073/pnas.1015980108 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 Edited by Thomas E. Wellems, National Institutes of Health, Bethesda, MD, and approved February 25, 2011 (received for review October 26, 2010) 2Present address: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139. Author contributions: M.L.R., G.M.Z., J.C.B., and J.P.B. designed research; M.L.R., G.M.Z., J.P.S., J.C.B., and J.P.B. performed research; M.L.R., G.M.Z., J.P.S., and J.P.B. analyzed data; and M.L.R., J.C.B., and J.P.B. wrote the paper. 1Present address: Molecular Tools Lab, Agilent Technologies, Santa Clara, CA 95051. 3J.C.B. and J.P.B. contributed equally to this work. |
OpenAccessLink | http://hdl.handle.net/1721.1/69611 |
PMID | 21436047 |
PQID | 871182385 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3111280 proquest_miscellaneous_871379129 pubmed_primary_21436047 fao_agris_US201600192888 proquest_journals_871182385 unpaywall_primary_10_1073_pnas_1015980108 pnas_primary_108_23_9625 proquest_miscellaneous_1817806715 crossref_citationtrail_10_1073_pnas_1015980108 proquest_miscellaneous_907164853 jstor_primary_25831280 crossref_primary_10_1073_pnas_1015980108 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-06-07 |
PublicationDateYYYYMMDD | 2011-06-07 |
PublicationDate_xml | – month: 06 year: 2011 text: 2011-06-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2011 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | El Hajj H (e_1_3_4_23_2) 2007; 9 Shaw MH (e_1_3_4_36_2) 2003; 100 Mordue DG (e_1_3_4_29_2) 2001; 167 Messina M (e_1_3_4_50_2) 1995; 165 Saeij JP (e_1_3_4_28_2) 2005; 73 Yoon S (e_1_3_4_31_2) 2009; 19 Grigg ME (e_1_3_4_8_2) 2001; 294 Saeij JP (e_1_3_4_16_2) 2007; 445 Thompson JD (e_1_3_4_48_2) 1994; 22 Huynh MH (e_1_3_4_30_2) 2009; 8 Carme B (e_1_3_4_5_2) 2009; 15 Carruthers VB (e_1_3_4_13_2) 1999; 48 Reese ML (e_1_3_4_22_2) 2009; 10 Zeqiraj E (e_1_3_4_40_2) 2009; 326 Bos JI (e_1_3_4_26_2) 2010; 107 Nei M (e_1_3_4_44_2) 1997; 94 Khan A (e_1_3_4_7_2) 2005; 33 Deitsch KW (e_1_3_4_1_2) 2009; 7 Donald RG (e_1_3_4_51_2) 1996; 271 Peixoto L (e_1_3_4_41_2) 2010; 8 Ong YC (e_1_3_4_19_2) 2010; 285 Boyle JP (e_1_3_4_32_2) 2006; 103 Boothroyd JC (e_1_3_4_11_2) 2008; 6 Steinfeldt T (e_1_3_4_18_2) 2010; 8 Marques JT (e_1_3_4_2_2) 2007; 23 Boudeau J (e_1_3_4_35_2) 2006; 16 Sawyer SL (e_1_3_4_45_2) 2007; 3 Su C (e_1_3_4_46_2) 2003; 299 Broman KW (e_1_3_4_52_2) 2003; 19 Koul A (e_1_3_4_25_2) 2004; 2 Bradley PJ (e_1_3_4_33_2) 2004; 137 Tamura K (e_1_3_4_49_2) 2007; 24 Boothroyd JC (e_1_3_4_4_2) 2002; 5 Zhang F (e_1_3_4_43_2) 2009; 25 Sibley LD (e_1_3_4_6_2) 1992; 132 Hanks SK (e_1_3_4_24_2) 1995; 9 Fukuda K (e_1_3_4_38_2) 2009; 36 Bradley PJ (e_1_3_4_12_2) 2007; 10 Taylor S (e_1_3_4_10_2) 2006; 314 Yamamoto M (e_1_3_4_20_2) 2009; 206 Fentress SJ (e_1_3_4_17_2) 2010; 8 Rosowski EE (e_1_3_4_14_2) 2011; 208 Reese ML (e_1_3_4_39_2) 2007; 14 Saeij JP (e_1_3_4_9_2) 2006; 314 Blanchard N (e_1_3_4_15_2) 2008; 9 Sambrook J (e_1_3_4_47_2) 2001 Donald RG (e_1_3_4_34_2) 1995; 92 Saeij JP (e_1_3_4_3_2) 2005; 21 Molden J (e_1_3_4_27_2) 1997; 272 Bailey JA (e_1_3_4_42_2) 2006; 7 Flannery S (e_1_3_4_37_2) 2010; 80 El Hajj H (e_1_3_4_21_2) 2006; 6 12724300 - Bioinformatics. 2003 May 1;19(7):889-90 17170305 - Science. 2006 Dec 15;314(5806):1776-80 16879455 - Cell Microbiol. 2007 Jan;9(1):54-64 15083155 - Nat Rev Microbiol. 2004 Mar;2(3):189-202 16801557 - Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10514-9 14500783 - Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11594-9 17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9 19218426 - Eukaryot Cell. 2009 Apr;8(4):530-9 7768349 - FASEB J. 1995 May;9(8):576-96 15911631 - Nucleic Acids Res. 2005;33(9):2980-92 11591786 - J Immunol. 2001 Oct 15;167(8):4574-84 18159944 - PLoS Pathog. 2007 Dec;3(12):e197 18059289 - Nat Rev Microbiol. 2008 Jan;6(1):79-88 8522178 - Gene. 1995 Nov 20;165(2):213-7 19331765 - Emerg Infect Dis. 2009 Apr;15(4):656-8 19560228 - Trends Genet. 2009 Jul;25(7):298-307 12160866 - Curr Opin Microbiol. 2002 Aug;5(4):438-42 16098810 - Trends Parasitol. 2005 Oct;21(10):476-81 17183270 - Nature. 2007 Jan 18;445(7125):324-7 20624917 - J Biol Chem. 2010 Sep 10;285(37):28731-40 7777580 - Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5749-53 9223266 - Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7799-806 15664907 - Infect Immun. 2005 Feb;73(2):695-702 19503065 - Nat Rev Microbiol. 2009 Jul;7(7):493-503 19901082 - J Exp Med. 2009 Nov 23;206(12):2747-60 20457921 - Proc Natl Acad Sci U S A. 2010 May 25;107(21):9909-14 20599782 - Biochem Pharmacol. 2010 Dec 15;80(12):1981-91 18587399 - Nat Immunol. 2008 Aug;9(8):937-44 17022100 - Proteomics. 2006 Nov;6(21):5773-84 21203588 - PLoS Biol. 2010;8(12):e1000576 1360931 - Genetics. 1992 Dec;132(4):1003-15 20005845 - Mol Cell. 2009 Dec 11;36(5):819-30 9235971 - J Biol Chem. 1997 Aug 1;272(31):19625-31 19682324 - Traffic. 2009 Oct;10(10):1458-70 11588262 - Science. 2001 Oct 5;294(5540):161-5 15279957 - Mol Biochem Parasitol. 2004 Sep;137(1):111-20 17467114 - Trends Genet. 2007 Jul;23(7):359-64 19892943 - Science. 2009 Dec 18;326(5960):1707-11 21199955 - J Exp Med. 2011 Jan 17;208(1):195-212 17220895 - Nat Struct Mol Biol. 2007 Feb;14(2):155-63 17997128 - Curr Opin Microbiol. 2007 Dec;10(6):582-7 12532022 - Science. 2003 Jan 17;299(5605):414-6 17170306 - Science. 2006 Dec 15;314(5806):1780-3 11269320 - Parasitol Int. 1999 Mar;48(1):1-10 16770338 - Nat Rev Genet. 2006 Jul;7(7):552-64 8662859 - J Biol Chem. 1996 Jun 14;271(24):14010-9 20709297 - Cell Host Microbe. 2010 Aug 19;8(2):208-18 19657104 - Genome Res. 2009 Sep;19(9):1586-92 16879967 - Trends Cell Biol. 2006 Sep;16(9):443-52 7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 21147463 - Cell Host Microbe. 2010 Dec 16;8(6):484-95 |
References_xml | – volume: 208 start-page: 195 year: 2011 ident: e_1_3_4_14_2 article-title: Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein publication-title: J Exp Med doi: 10.1084/jem.20100717 – volume: 25 start-page: 298 year: 2009 ident: e_1_3_4_43_2 article-title: Complex human chromosomal and genomic rearrangements publication-title: Trends Genet doi: 10.1016/j.tig.2009.05.005 – volume: 100 start-page: 11594 year: 2003 ident: e_1_3_4_36_2 article-title: A natural mutation in the Tyk2 pseudokinase domain underlies altered susceptibility of B10.Q/J mice to infection and autoimmunity publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1930781100 – volume: 167 start-page: 4574 year: 2001 ident: e_1_3_4_29_2 article-title: Acute toxoplasmosis leads to lethal overproduction of Th1 cytokines publication-title: J Immunol doi: 10.4049/jimmunol.167.8.4574 – volume: 94 start-page: 7799 year: 1997 ident: e_1_3_4_44_2 article-title: Evolution by the birth-and-death process in multigene families of the vertebrate immune system publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.94.15.7799 – volume: 326 start-page: 1707 year: 2009 ident: e_1_3_4_40_2 article-title: Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation publication-title: Science doi: 10.1126/science.1178377 – volume: 314 start-page: 1780 year: 2006 ident: e_1_3_4_9_2 article-title: Polymorphic secreted kinases are key virulence factors in toxoplasmosis publication-title: Science doi: 10.1126/science.1133690 – volume: 6 start-page: 5773 year: 2006 ident: e_1_3_4_21_2 article-title: The ROP2 family of Toxoplasma gondii rhoptry proteins: Proteomic and genomic characterization and molecular modeling publication-title: Proteomics doi: 10.1002/pmic.200600187 – volume: 8 start-page: 530 year: 2009 ident: e_1_3_4_30_2 article-title: Tagging of endogenous genes in a Toxoplasma gondii strain lacking Ku80 publication-title: Eukaryot Cell doi: 10.1128/EC.00358-08 – volume: 33 start-page: 2980 year: 2005 ident: e_1_3_4_7_2 article-title: Composite genome map and recombination parameters derived from three archetypal lineages of Toxoplasma gondii publication-title: Nucleic Acids Res doi: 10.1093/nar/gki604 – volume: 10 start-page: 1458 year: 2009 ident: e_1_3_4_22_2 article-title: A helical membrane-binding domain targets the Toxoplasma ROP2 family to the parasitophorous vacuole publication-title: Traffic doi: 10.1111/j.1600-0854.2009.00958.x – volume: 107 start-page: 9909 year: 2010 ident: e_1_3_4_26_2 article-title: Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0914408107 – volume: 21 start-page: 476 year: 2005 ident: e_1_3_4_3_2 article-title: Differences among the three major strains of Toxoplasma gondii and their specific interactions with the infected host publication-title: Trends Parasitol doi: 10.1016/j.pt.2005.08.001 – volume: 314 start-page: 1776 year: 2006 ident: e_1_3_4_10_2 article-title: A secreted serine-threonine kinase determines virulence in the eukaryotic pathogen Toxoplasma gondii publication-title: Science doi: 10.1126/science.1133643 – volume: 23 start-page: 359 year: 2007 ident: e_1_3_4_2_2 article-title: A call to arms: Coevolution of animal viruses and host innate immune responses publication-title: Trends Genet doi: 10.1016/j.tig.2007.04.004 – volume: 80 start-page: 1981 year: 2010 ident: e_1_3_4_37_2 article-title: The interleukin-1 receptor-associated kinases: Critical regulators of innate immune signalling publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2010.06.020 – volume: 206 start-page: 2747 year: 2009 ident: e_1_3_4_20_2 article-title: A single polymorphic amino acid on Toxoplasma gondii kinase ROP16 determines the direct and strain-specific activation of Stat3 publication-title: J Exp Med doi: 10.1084/jem.20091703 – volume: 16 start-page: 443 year: 2006 ident: e_1_3_4_35_2 article-title: Emerging roles of pseudokinases publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2006.07.003 – volume: 7 start-page: 493 year: 2009 ident: e_1_3_4_1_2 article-title: Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2145 – volume: 8 start-page: 484 year: 2010 ident: e_1_3_4_17_2 article-title: Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence publication-title: Cell Host Microbe doi: 10.1016/j.chom.2010.11.005 – volume: 9 start-page: 937 year: 2008 ident: e_1_3_4_15_2 article-title: Immunodominant, protective response to the parasite Toxoplasma gondii requires antigen processing in the endoplasmic reticulum publication-title: Nat Immunol doi: 10.1038/ni.1629 – volume: 137 start-page: 111 year: 2004 ident: e_1_3_4_33_2 article-title: A GFP-based motif-trap reveals a novel mechanism of targeting for the Toxoplasma ROP4 protein publication-title: Mol Biochem Parasitol doi: 10.1016/j.molbiopara.2004.05.003 – volume: 10 start-page: 582 year: 2007 ident: e_1_3_4_12_2 article-title: Rhoptries: An arsenal of secreted virulence factors publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2007.09.013 – volume: 3 start-page: e197 year: 2007 ident: e_1_3_4_45_2 article-title: Discordant evolution of the adjacent antiretroviral genes TRIM22 and TRIM5 in mammals publication-title: PLoS Pathog doi: 10.1371/journal.ppat.0030197 – volume: 132 start-page: 1003 year: 1992 ident: e_1_3_4_6_2 article-title: Generation of a restriction fragment length polymorphism linkage map for Toxoplasma gondii publication-title: Genetics doi: 10.1093/genetics/132.4.1003 – volume-title: Molecular Cloning: A Laboratory Manual year: 2001 ident: e_1_3_4_47_2 – volume: 271 start-page: 14010 year: 1996 ident: e_1_3_4_51_2 article-title: Insertional tagging, cloning, and expression of the Toxoplasma gondii hypoxanthine-xanthine-guanine phosphoribosyltransferase gene. Use as a selectable marker for stable transformation publication-title: J Biol Chem doi: 10.1074/jbc.271.24.14010 – volume: 9 start-page: 576 year: 1995 ident: e_1_3_4_24_2 article-title: Protein kinases 6. The eukaryotic protein kinase superfamily: Kinase (catalytic) domain structure and classification publication-title: FASEB J doi: 10.1096/fasebj.9.8.7768349 – volume: 14 start-page: 155 year: 2007 ident: e_1_3_4_39_2 article-title: The guanylate kinase domain of the MAGUK PSD-95 binds dynamically to a conserved motif in MAP1a publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb1195 – volume: 24 start-page: 1596 year: 2007 ident: e_1_3_4_49_2 article-title: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 publication-title: Mol Biol Evol doi: 10.1093/molbev/msm092 – volume: 36 start-page: 819 year: 2009 ident: e_1_3_4_38_2 article-title: The pseudoactive site of ILK is essential for its binding to alpha-Parvin and localization to focal adhesions publication-title: Mol Cell doi: 10.1016/j.molcel.2009.11.028 – volume: 103 start-page: 10514 year: 2006 ident: e_1_3_4_32_2 article-title: Just one cross appears capable of dramatically altering the population biology of a eukaryotic pathogen like Toxoplasma gondii publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0510319103 – volume: 299 start-page: 414 year: 2003 ident: e_1_3_4_46_2 article-title: Recent expansion of Toxoplasma through enhanced oral transmission publication-title: Science doi: 10.1126/science.1078035 – volume: 19 start-page: 1586 year: 2009 ident: e_1_3_4_31_2 article-title: Sensitive and accurate detection of copy number variants using read depth of coverage publication-title: Genome Res doi: 10.1101/gr.092981.109 – volume: 8 start-page: 208 year: 2010 ident: e_1_3_4_41_2 article-title: Integrative genomic approaches highlight a family of parasite-specific kinases that regulate host responses publication-title: Cell Host Microbe doi: 10.1016/j.chom.2010.07.004 – volume: 7 start-page: 552 year: 2006 ident: e_1_3_4_42_2 article-title: Primate segmental duplications: Crucibles of evolution, diversity and disease publication-title: Nat Rev Genet doi: 10.1038/nrg1895 – volume: 6 start-page: 79 year: 2008 ident: e_1_3_4_11_2 article-title: Kiss and spit: The dual roles of Toxoplasma rhoptries publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1800 – volume: 92 start-page: 5749 year: 1995 ident: e_1_3_4_34_2 article-title: Insertional mutagenesis and marker rescue in a protozoan parasite: Cloning of the uracil phosphoribosyltransferase locus from Toxoplasma gondii publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.92.12.5749 – volume: 165 start-page: 213 year: 1995 ident: e_1_3_4_50_2 article-title: Stable DNA transformation of Toxoplasma gondii using phleomycin selection publication-title: Gene doi: 10.1016/0378-1119(95)00548-K – volume: 15 start-page: 656 year: 2009 ident: e_1_3_4_5_2 article-title: Severe acquired toxoplasmosis caused by wild cycle of Toxoplasma gondii, French Guiana publication-title: Emerg Infect Dis doi: 10.3201/eid1504.081306 – volume: 445 start-page: 324 year: 2007 ident: e_1_3_4_16_2 article-title: Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue publication-title: Nature doi: 10.1038/nature05395 – volume: 2 start-page: 189 year: 2004 ident: e_1_3_4_25_2 article-title: Interplay between mycobacteria and host signalling pathways publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro840 – volume: 294 start-page: 161 year: 2001 ident: e_1_3_4_8_2 article-title: Success and virulence in Toxoplasma as the result of sexual recombination between two distinct ancestries publication-title: Science doi: 10.1126/science.1061888 – volume: 9 start-page: 54 year: 2007 ident: e_1_3_4_23_2 article-title: Inverted topology of the Toxoplasma gondii ROP5 rhoptry protein provides new insights into the association of the ROP2 protein family with the parasitophorous vacuole membrane publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2006.00767.x – volume: 5 start-page: 438 year: 2002 ident: e_1_3_4_4_2 article-title: Population biology of Toxoplasma gondii and its relevance to human infection: Do different strains cause different disease? publication-title: Curr Opin Microbiol doi: 10.1016/S1369-5274(02)00349-1 – volume: 8 start-page: e1000576 year: 2010 ident: e_1_3_4_18_2 article-title: Phosphorylation of mouse immunity-related GTPase (IRG) resistance proteins is an evasion strategy for virulent Toxoplasma gondii publication-title: PLoS Biol doi: 10.1371/journal.pbio.1000576 – volume: 19 start-page: 889 year: 2003 ident: e_1_3_4_52_2 article-title: R/qtl: QTL mapping in experimental crosses publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg112 – volume: 272 start-page: 19625 year: 1997 ident: e_1_3_4_27_2 article-title: A Kaposi's sarcoma-associated herpesvirus-encoded cytokine homolog (vIL-6) activates signaling through the shared gp130 receptor subunit publication-title: J Biol Chem doi: 10.1074/jbc.272.31.19625 – volume: 73 start-page: 695 year: 2005 ident: e_1_3_4_28_2 article-title: Bioluminescence imaging of Toxoplasma gondii infection in living mice reveals dramatic differences between strains publication-title: Infect Immun doi: 10.1128/IAI.73.2.695-702.2005 – volume: 22 start-page: 4673 year: 1994 ident: e_1_3_4_48_2 article-title: CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice publication-title: Nucleic Acids Res doi: 10.1093/nar/22.22.4673 – volume: 285 start-page: 28731 year: 2010 ident: e_1_3_4_19_2 article-title: Toxoplasma rhoptry protein 16 (ROP16) subverts host function by direct tyrosine phosphorylation of STAT6 publication-title: J Biol Chem doi: 10.1074/jbc.M110.112359 – volume: 48 start-page: 1 year: 1999 ident: e_1_3_4_13_2 article-title: Armed and dangerous: Toxoplasma gondii uses an arsenal of secretory proteins to infect host cells publication-title: Parasitol Int – reference: 17170306 - Science. 2006 Dec 15;314(5806):1780-3 – reference: 20599782 - Biochem Pharmacol. 2010 Dec 15;80(12):1981-91 – reference: 19560228 - Trends Genet. 2009 Jul;25(7):298-307 – reference: 8662859 - J Biol Chem. 1996 Jun 14;271(24):14010-9 – reference: 21147463 - Cell Host Microbe. 2010 Dec 16;8(6):484-95 – reference: 19331765 - Emerg Infect Dis. 2009 Apr;15(4):656-8 – reference: 11269320 - Parasitol Int. 1999 Mar;48(1):1-10 – reference: 11591786 - J Immunol. 2001 Oct 15;167(8):4574-84 – reference: 16098810 - Trends Parasitol. 2005 Oct;21(10):476-81 – reference: 16801557 - Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10514-9 – reference: 16879455 - Cell Microbiol. 2007 Jan;9(1):54-64 – reference: 19503065 - Nat Rev Microbiol. 2009 Jul;7(7):493-503 – reference: 20709297 - Cell Host Microbe. 2010 Aug 19;8(2):208-18 – reference: 17170305 - Science. 2006 Dec 15;314(5806):1776-80 – reference: 12532022 - Science. 2003 Jan 17;299(5605):414-6 – reference: 19901082 - J Exp Med. 2009 Nov 23;206(12):2747-60 – reference: 1360931 - Genetics. 1992 Dec;132(4):1003-15 – reference: 14500783 - Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11594-9 – reference: 17220895 - Nat Struct Mol Biol. 2007 Feb;14(2):155-63 – reference: 12724300 - Bioinformatics. 2003 May 1;19(7):889-90 – reference: 18059289 - Nat Rev Microbiol. 2008 Jan;6(1):79-88 – reference: 17467114 - Trends Genet. 2007 Jul;23(7):359-64 – reference: 7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 – reference: 16879967 - Trends Cell Biol. 2006 Sep;16(9):443-52 – reference: 18587399 - Nat Immunol. 2008 Aug;9(8):937-44 – reference: 20624917 - J Biol Chem. 2010 Sep 10;285(37):28731-40 – reference: 21199955 - J Exp Med. 2011 Jan 17;208(1):195-212 – reference: 7777580 - Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5749-53 – reference: 17997128 - Curr Opin Microbiol. 2007 Dec;10(6):582-7 – reference: 15279957 - Mol Biochem Parasitol. 2004 Sep;137(1):111-20 – reference: 19657104 - Genome Res. 2009 Sep;19(9):1586-92 – reference: 9223266 - Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7799-806 – reference: 8522178 - Gene. 1995 Nov 20;165(2):213-7 – reference: 19682324 - Traffic. 2009 Oct;10(10):1458-70 – reference: 15911631 - Nucleic Acids Res. 2005;33(9):2980-92 – reference: 17183270 - Nature. 2007 Jan 18;445(7125):324-7 – reference: 9235971 - J Biol Chem. 1997 Aug 1;272(31):19625-31 – reference: 7768349 - FASEB J. 1995 May;9(8):576-96 – reference: 19218426 - Eukaryot Cell. 2009 Apr;8(4):530-9 – reference: 19892943 - Science. 2009 Dec 18;326(5960):1707-11 – reference: 18159944 - PLoS Pathog. 2007 Dec;3(12):e197 – reference: 20457921 - Proc Natl Acad Sci U S A. 2010 May 25;107(21):9909-14 – reference: 11588262 - Science. 2001 Oct 5;294(5540):161-5 – reference: 17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9 – reference: 20005845 - Mol Cell. 2009 Dec 11;36(5):819-30 – reference: 15664907 - Infect Immun. 2005 Feb;73(2):695-702 – reference: 12160866 - Curr Opin Microbiol. 2002 Aug;5(4):438-42 – reference: 15083155 - Nat Rev Microbiol. 2004 Mar;2(3):189-202 – reference: 16770338 - Nat Rev Genet. 2006 Jul;7(7):552-64 – reference: 17022100 - Proteomics. 2006 Nov;6(21):5773-84 – reference: 21203588 - PLoS Biol. 2010;8(12):e1000576 |
SSID | ssj0009580 |
Score | 2.4735823 |
Snippet | Toxoplasma gondii, an obligate intracellular parasite of the phylum Apicomplexa, has the unusual ability to infect virtually any warm-blooded animal. It is an... Toxoplasma gondii , an obligate intracellular parasite of the phylum Apicomplexa, has the unusual ability to infect virtually any warm-blooded animal. It is an... Toxoplasma gondii , an obligate intracellular parasite of the phylum Apicomplexa, has the unusual ability to infect virtually any warm-blooded animal. It is an... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9625 |
SubjectTerms | Adaptations Alleles Amino Acid Sequence Animals Apicomplexa Bacterial infections Biological Sciences Cells, Cultured copy number Enzymes Evolution Female genes Genetic Complementation Test Genetic loci Genetic Loci - genetics Genetic Variation Genomes Genomics Host range Hot spots Humans Infection Infections loci Male Mice Mice, Inbred BALB C Molecular Sequence Data Multigene Family - genetics Mutation Parasite hosts Parasites Phenotypes Phylogeny Polymorphism, Genetic Positive selection Protein isoforms Protein Isoforms - genetics proteins Protozoan Proteins - classification Protozoan Proteins - genetics Quantitative trait loci Sampling Sequence Homology, Amino Acid Species Specificity Toxoplasma - classification Toxoplasma - genetics Toxoplasma - pathogenicity Toxoplasma gondii toxoplasmosis Toxoplasmosis, Animal - parasitology Virology Virulence Virulence - genetics virulent strains |
Title | Polymorphic family of injected pseudokinases is paramount in Toxoplasma virulence |
URI | https://www.jstor.org/stable/25831280 http://www.pnas.org/content/108/23/9625.abstract https://www.ncbi.nlm.nih.gov/pubmed/21436047 https://www.proquest.com/docview/871182385 https://www.proquest.com/docview/1817806715 https://www.proquest.com/docview/871379129 https://www.proquest.com/docview/907164853 https://pubmed.ncbi.nlm.nih.gov/PMC3111280 http://hdl.handle.net/1721.1/69611 |
UnpaywallVersion | submittedVersion |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1091-6490 dateEnd: 20250401 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: HH5 dateStart: 19150101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150115 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: DIK dateStart: 19150101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1091-6490 dateEnd: 20250401 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: RPM dateStart: 19150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe68QAviAFjZYCCxMOmKCFxUid5nCbYNLFqaK1U8RI5qT0KbVK1DTD-QP4u7uLESbdVfLxEVey4ju-Xu_P5Pgh5AxscL3JTbvmSMQskXgqflBQWY37CgyRJexLjnc_77HTon416o07nV8trqVgldvrzzriS_6Eq3AO6YpTsP1BWDwo34DfQF65AYbj-FY0v8ils3WGlJmltqSgzQKBtBRTJ-VIU4_zrJANJtcTK5Zjne4bFIdDKMch_5HPQnWfc_DZZFGXwUVtVvdCibVk7EvRry-FRE4dSMYelaZkX_aaqceWOb36wMQ6lOQE6weph5rltfhIYdqgdeMQiF8CObfPMNi-5mHxZc-05tjEoA0s6XI_bdgpX-VMFjRtHe4Z6bm3WTEFc-iqg2haKG4MyYzFf1RPV7NoJW7ikXov7RkwFUd8SC8DHsJYxLDdaK3oRiGU1Sgsk81mJEgoKJHNUFtD19Nw3xKZ2ZoShYurF-Odb5B4NGMNKGicjt5X8OVShUNUr1immAu_tjTmVuanVBNYUpS3J89pjFtPwwlN3bYlue_beL7I5v_7Op9OW2jR4RB5W-x3jSIF3h3RE9pjs1IQxDqq054dPyMcWmg2FZiOXRo1mYw3NxmRpaDRDH6NBs6HR_JQM378bHJ9aVcEPKwWtdmVFviOkcCWepodUek4y7rnA6lzKKWdhBNqWEFHqOKnwA8FkSIVD4T5nHmjJifR2yXaWZ2KPGIl05Fj6Y1j9xGdJEHEn8hmPkpSNgx6VXWLXqxunVTZ8LMoyjUuvjMCLcY3jhjJdcqAfmKtEMJu77gG5Yn4FYjoeXlJM4og7qTCEpt2ShnoI2gs9UBEdeKYcpRlag6pL9mtCxxXzWcZhgJYBL4TW17oVJAMe9_FM5AVMKHSDEJRRF_oYG_rAMF4Qgc6_uUvkoEkFtPoueabA1Uy-gmqXBGuw0x0wd_16Szb5XOaw90DHKl_7UAP0T8v6fPMS7ZMHDct5QbZXi0K8hM3CKnlVfom_AQJRESA |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polymorphic+family+of+injected+pseudokinases+is+paramount+in+Toxoplasma+virulence&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Michael+L.+Reese&rft.au=Gusti+M.+Zeiner&rft.au=Jeroen+P.+J.+Saeij&rft.au=John+C.+Boothroyd&rft.date=2011-06-07&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=108&rft.issue=23&rft.spage=9625&rft_id=info:doi/10.1073%2Fpnas.1015980108&rft_id=info%3Apmid%2F21436047&rft.externalDBID=n%2Fa&rft.externalDocID=108_23_9625 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F23.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F23.cover.gif |