Use of artificial neural networks and genetic algorithms for prediction of sorption of an azo-metal complex dye onto lentil straw

[Display omitted] ► Predictive modeling of sorption of Lanaset Red (LR)G on lentil straw was studied. ► Artificial neural network (ANN) was found to be excellent model in representing the sorption kinetics data. ► The sorption at various operating factors in a single equation was described by gene e...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 129; pp. 396 - 401
Main Authors Çelekli, Abuzer, Bozkurt, Hüseyin, Geyik, Faruk
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.02.2013
Elsevier
Subjects
Online AccessGet full text
ISSN0960-8524
1873-2976
1873-2976
DOI10.1016/j.biortech.2012.11.085

Cover

Abstract [Display omitted] ► Predictive modeling of sorption of Lanaset Red (LR)G on lentil straw was studied. ► Artificial neural network (ANN) was found to be excellent model in representing the sorption kinetics data. ► The sorption at various operating factors in a single equation was described by gene expression programming (GEP). Artificial neural network (ANN), pseudo second-order kinetic, and gene expression programming (GEP) models were constructed to predict removal efficiency of Lanaset Red G (LR G) using lentil straw (LS) based on 1152 experimental sets. The sorption process was dependent on adsorbent particle size, pH, initial dye concentration, and contact time. These variables were used as input to construct a neural network for prediction of dye uptake as output. ANN was an excellent model because of the lowest error and the highest coefficient values. ANN indicated that initial dye concentration had the strongest effect on dye uptake, followed by pH. The GEP model successfully described the sorption kinetic process as function of adsorbent particle size, pH, initial dye concentration, and contact time in a single equation. Low cost adsorbent, LS, had a great potential to remove LR G as an eco-friendly process, which was well described by GEP and ANN.
AbstractList Artificial neural network (ANN), pseudo second-order kinetic, and gene expression programming (GEP) models were constructed to predict removal efficiency of Lanaset Red G (LR G) using lentil straw (LS) based on 1152 experimental sets. The sorption process was dependent on adsorbent particle size, pH, initial dye concentration, and contact time. These variables were used as input to construct a neural network for prediction of dye uptake as output. ANN was an excellent model because of the lowest error and the highest coefficient values. ANN indicated that initial dye concentration had the strongest effect on dye uptake, followed by pH. The GEP model successfully described the sorption kinetic process as function of adsorbent particle size, pH, initial dye concentration, and contact time in a single equation. Low cost adsorbent, LS, had a great potential to remove LR G as an eco-friendly process, which was well described by GEP and ANN.Artificial neural network (ANN), pseudo second-order kinetic, and gene expression programming (GEP) models were constructed to predict removal efficiency of Lanaset Red G (LR G) using lentil straw (LS) based on 1152 experimental sets. The sorption process was dependent on adsorbent particle size, pH, initial dye concentration, and contact time. These variables were used as input to construct a neural network for prediction of dye uptake as output. ANN was an excellent model because of the lowest error and the highest coefficient values. ANN indicated that initial dye concentration had the strongest effect on dye uptake, followed by pH. The GEP model successfully described the sorption kinetic process as function of adsorbent particle size, pH, initial dye concentration, and contact time in a single equation. Low cost adsorbent, LS, had a great potential to remove LR G as an eco-friendly process, which was well described by GEP and ANN.
Artificial neural network (ANN), pseudo second-order kinetic, and gene expression programming (GEP) models were constructed to predict removal efficiency of Lanaset Red G (LR G) using lentil straw (LS) based on 1152 experimental sets. The sorption process was dependent on adsorbent particle size, pH, initial dye concentration, and contact time. These variables were used as input to construct a neural network for prediction of dye uptake as output. ANN was an excellent model because of the lowest error and the highest coefficient values. ANN indicated that initial dye concentration had the strongest effect on dye uptake, followed by pH. The GEP model successfully described the sorption kinetic process as function of adsorbent particle size, pH, initial dye concentration, and contact time in a single equation. Low cost adsorbent, LS, had a great potential to remove LR G as an eco-friendly process, which was well described by GEP and ANN.
[Display omitted] ► Predictive modeling of sorption of Lanaset Red (LR)G on lentil straw was studied. ► Artificial neural network (ANN) was found to be excellent model in representing the sorption kinetics data. ► The sorption at various operating factors in a single equation was described by gene expression programming (GEP). Artificial neural network (ANN), pseudo second-order kinetic, and gene expression programming (GEP) models were constructed to predict removal efficiency of Lanaset Red G (LR G) using lentil straw (LS) based on 1152 experimental sets. The sorption process was dependent on adsorbent particle size, pH, initial dye concentration, and contact time. These variables were used as input to construct a neural network for prediction of dye uptake as output. ANN was an excellent model because of the lowest error and the highest coefficient values. ANN indicated that initial dye concentration had the strongest effect on dye uptake, followed by pH. The GEP model successfully described the sorption kinetic process as function of adsorbent particle size, pH, initial dye concentration, and contact time in a single equation. Low cost adsorbent, LS, had a great potential to remove LR G as an eco-friendly process, which was well described by GEP and ANN.
Author Bozkurt, Hüseyin
Geyik, Faruk
Çelekli, Abuzer
Author_xml – sequence: 1
  givenname: Abuzer
  surname: Çelekli
  fullname: Çelekli, Abuzer
  email: celekli.a@gmail.com
  organization: Department of Biology, Faculty of Art and Science, University of Gaziantep, 27310 Gaziantep, Turkey
– sequence: 2
  givenname: Hüseyin
  surname: Bozkurt
  fullname: Bozkurt, Hüseyin
  email: hbozkurt@gantep.edu.tr
  organization: Department of Food Engineering, Faculty of Engineering, University of Gaziantep, 27310 Gaziantep, Turkey
– sequence: 3
  givenname: Faruk
  surname: Geyik
  fullname: Geyik, Faruk
  email: fgeyik@gantep.edu.tr
  organization: Department of Industrial Engineering, Faculty of Engineering, University of Gaziantep, 27310 Gaziantep, Turkey
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27096648$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23262017$$D View this record in MEDLINE/PubMed
BookMark eNqNkktvEzEUhS1URNPCXyjeILGZwY-xxyOxAFW8pEosIGvL47mTOszYwXYoZcc_xyEJSGzC6tryd861dM4FOvPBA0JXlNSUUPliXfcuxAz2tmaEsprSmijxAC2oannFulaeoQXpJKmUYM05ukhpTQjhtGWP0DnjTBZZu0A_lwlwGLGJ2Y3OOjNhD9v4e-S7EL8kbPyAV1CuzmIzrUJ0-XZOeAwRbyIMzmYX_M4jhbg5no3H5keoZsjFyoZ5M8F3PNyXXT4HPIHPbsIpR3P3GD0czZTgyWFeouXbN5-v31c3H999uH59U1khmlzJfhBtP_QcKDM96TramUESNXIKIxmNUD21tGFjeWIdbxUowy0zjIKSvOf8Ej3f-25i-LqFlPXskoVpMh7CNmkqGOGKyuY_UC4FaRQX5DTKlOJEtUIV9OqAbvsZBr2JbjbxXh_DKMCzA2CSNdMYjbcu_eXakqdsdkZyz9kYUoow_kEo0bt26LU-tkPv2qEp1aUdRfjyH6F12ewiK0G46bT86V4-mqDNKpa_LT8VoCGEdlR0shCv9gSUIL85iDpZB96WlkSwWQ_BnVryC4-a484
CitedBy_id crossref_primary_10_1016_j_cej_2014_03_073
crossref_primary_10_1007_s10661_022_10904_0
crossref_primary_10_1016_j_chemosphere_2023_138394
crossref_primary_10_1016_j_wasman_2019_07_010
crossref_primary_10_1007_s10450_014_9641_9
crossref_primary_10_1016_j_jclepro_2016_07_068
crossref_primary_10_1007_s13762_017_1315_1
crossref_primary_10_1080_00986445_2014_952813
crossref_primary_10_5004_dwt_2018_21920
crossref_primary_10_1021_acs_iecr_3c01743
crossref_primary_10_1016_j_jece_2013_09_021
crossref_primary_10_1007_s13762_020_02912_9
crossref_primary_10_1016_j_scitotenv_2018_02_134
crossref_primary_10_1007_s11082_017_1173_6
crossref_primary_10_1016_j_jenvman_2021_114334
crossref_primary_10_1016_j_jclepro_2022_135522
crossref_primary_10_1007_s13201_018_0712_z
crossref_primary_10_1016_j_biortech_2016_05_091
crossref_primary_10_1016_j_seppur_2018_08_065
crossref_primary_10_1016_j_biortech_2016_11_045
crossref_primary_10_1080_01496395_2019_1577437
crossref_primary_10_1080_19443994_2015_1070759
crossref_primary_10_1016_j_biortech_2019_121461
crossref_primary_10_1016_j_psep_2024_06_123
crossref_primary_10_1021_ie503619j
crossref_primary_10_1038_s41598_017_18223_y
crossref_primary_10_2298_JSC230920022A
crossref_primary_10_1061__ASCE_EE_1943_7870_0001806
crossref_primary_10_1515_zpch_2020_1677
crossref_primary_10_1016_j_sajce_2020_11_007
crossref_primary_10_1155_2022_9384871
crossref_primary_10_1016_j_saa_2016_07_049
crossref_primary_10_3390_ma13235422
crossref_primary_10_17341_gazimmfd_418184
crossref_primary_10_1088_1742_6596_1885_3_032074
crossref_primary_10_1016_j_fuel_2017_12_028
crossref_primary_10_1016_j_jenvman_2019_109428
crossref_primary_10_1002_cem_3283
crossref_primary_10_1016_j_applthermaleng_2017_07_008
crossref_primary_10_1016_j_biortech_2013_08_149
crossref_primary_10_1016_j_biortech_2016_09_060
crossref_primary_10_1016_j_eti_2015_05_001
crossref_primary_10_1039_C9TA07684K
crossref_primary_10_1016_j_apenergy_2016_02_045
crossref_primary_10_1016_j_microc_2016_04_022
crossref_primary_10_1246_cl_220255
Cites_doi 10.1016/j.jhazmat.2007.09.092
10.1016/j.biortech.2009.11.079
10.1016/j.cis.2009.07.009
10.1016/j.molcata.2010.07.016
10.1016/j.cej.2008.07.026
10.1016/j.biortech.2011.02.052
10.1142/S0219525902000626
10.1016/j.cej.2011.04.030
10.1016/j.jtice.2010.08.006
10.1016/j.eswa.2010.07.084
10.1016/j.cej.2009.04.016
10.1016/j.jenvman.2010.05.003
10.1016/j.cej.2012.03.007
10.1016/j.cherd.2010.05.009
10.1016/j.eswa.2010.06.090
10.1016/j.biortech.2010.08.125
10.1016/j.biortech.2011.09.106
10.1016/j.cej.2011.02.077
10.1016/S0032-9592(98)00112-5
ContentType Journal Article
Copyright 2012
2014 INIST-CNRS
Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2012
– notice: 2014 INIST-CNRS
– notice: Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
7QO
8FD
FR3
P64
DOI 10.1016/j.biortech.2012.11.085
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE - Academic
AGRICOLA
MEDLINE


Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 401
ExternalDocumentID 23262017
27096648
10_1016_j_biortech_2012_11_085
US201400191596
S0960852412017804
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
ABPIF
ABPTK
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
BNPGV
IQODW
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c554t-6bd57bdb3e12ab09919ad608f31ef0fa58b1c142f09929378e8a3c2a21e863b33
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Tue Oct 07 09:57:58 EDT 2025
Sun Sep 28 05:02:07 EDT 2025
Thu Oct 02 05:56:45 EDT 2025
Thu Apr 03 07:00:07 EDT 2025
Mon Jul 21 09:12:07 EDT 2025
Wed Oct 01 03:22:41 EDT 2025
Thu Apr 24 22:53:16 EDT 2025
Wed Dec 27 19:09:30 EST 2023
Fri Feb 23 02:34:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sorption
Lanaset Red G
Gene expression programming (GEP)
Lentil straw
Artificial neural network (ANN)
Dyes
Prediction
Metal complex
Programming
Lens culinaris
Neural network
Gene expression
Straw
Grain legume
Lentil
Leguminosae
Vegetable crop
Genetic algorithm
Dicotyledones
Angiospermae
Spermatophyta
Artificial intelligence
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-6bd57bdb3e12ab09919ad608f31ef0fa58b1c142f09929378e8a3c2a21e863b33
Notes http://dx.doi.org/10.1016/j.biortech.2012.11.085
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23262017
PQID 1288308758
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1520381643
proquest_miscellaneous_1365048350
proquest_miscellaneous_1288308758
pubmed_primary_23262017
pascalfrancis_primary_27096648
crossref_primary_10_1016_j_biortech_2012_11_085
crossref_citationtrail_10_1016_j_biortech_2012_11_085
fao_agris_US201400191596
elsevier_sciencedirect_doi_10_1016_j_biortech_2012_11_085
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-02-01
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Dutta, Parsons, Bhattacharjee, Bandhyopadhyay, Data (b0045) 2010; 37
Khataee, Dehghan, Ebadi, Zarei, Pourhassan (b0075) 2010; 101
Koza (b0070) 1992
Srinivasan, Viraraghavan (b0110) 2010; 91
Khataee, Zarei, Dehghan, Ebadi, Pourhassan (b0090) 2011; 42
Yang, Wang, Wang, Li, Jia, Zhou, Zhao (b0120) 2011; 102
Yetilmezsoy, Demirel (b0125) 2008; 153
Çelekli, Yavuzatmaca, Bozkurt (b0020) 2010; 38
Kumar, Porkodi (b0095) 2009; 148
Balcı, Keskinkan, Avcı (b0005) 2011; 38
Ho, McKay (b0065) 1999; 34
Plazinski, Rudzinski, Plazinska (b0100) 2009; 152
Khataee, Kasiri (b0080) 2010; 331
Çelekli, Birecikligil, Geyik, Bozkurt (b0040) 2012; 103
Ferreira (b0050) 2001; 13
Ferreira (b0055) 2002; 5
Çelekli, İlgün, Bozkurt (b0035) 2012; 191
Çelekli, Tanrıverdi, Bozkurt (b0030) 2011; 169
Khataee, Dehghan, Zarei, Ebadia, Pourhassan (b0085) 2011; 89
Çelekli, Yavuzatmaca, Bozkurt (b0015) 2009; 152
Cavas, Karabaya, Alyuruka, Doğan, Demir (b0010) 2011; 171
Çelekli, Geyik (b0025) 2011; 102
Goldberg (b0130) 1989
Yetilmezsoy (10.1016/j.biortech.2012.11.085_b0125) 2008; 153
Çelekli (10.1016/j.biortech.2012.11.085_b0035) 2012; 191
Ferreira (10.1016/j.biortech.2012.11.085_b0050) 2001; 13
Khataee (10.1016/j.biortech.2012.11.085_b0085) 2011; 89
Çelekli (10.1016/j.biortech.2012.11.085_b0020) 2010; 38
Çelekli (10.1016/j.biortech.2012.11.085_b0025) 2011; 102
Çelekli (10.1016/j.biortech.2012.11.085_b0030) 2011; 169
Khataee (10.1016/j.biortech.2012.11.085_b0075) 2010; 101
Khataee (10.1016/j.biortech.2012.11.085_b0080) 2010; 331
Dutta (10.1016/j.biortech.2012.11.085_b0045) 2010; 37
Kumar (10.1016/j.biortech.2012.11.085_b0095) 2009; 148
Plazinski (10.1016/j.biortech.2012.11.085_b0100) 2009; 152
Balcı (10.1016/j.biortech.2012.11.085_b0005) 2011; 38
Srinivasan (10.1016/j.biortech.2012.11.085_b0110) 2010; 91
Koza (10.1016/j.biortech.2012.11.085_b0070) 1992
Goldberg (10.1016/j.biortech.2012.11.085_b0130) 1989
Ferreira (10.1016/j.biortech.2012.11.085_b0055) 2002; 5
Ho (10.1016/j.biortech.2012.11.085_b0065) 1999; 34
Khataee (10.1016/j.biortech.2012.11.085_b0090) 2011; 42
Cavas (10.1016/j.biortech.2012.11.085_b0010) 2011; 171
Çelekli (10.1016/j.biortech.2012.11.085_b0015) 2009; 152
Yang (10.1016/j.biortech.2012.11.085_b0120) 2011; 102
Çelekli (10.1016/j.biortech.2012.11.085_b0040) 2012; 103
References_xml – volume: 38
  start-page: 949
  year: 2011
  end-page: 956
  ident: b0005
  article-title: Use of BDST and an ANN model for prediction of dye adsorption efficiency of
  publication-title: Expert Syst. Appl.
– volume: 152
  start-page: 139
  year: 2009
  end-page: 145
  ident: b0015
  article-title: Kinetic and equilibrium studies on biosorption of reactive red 120 from aqueous solution on
  publication-title: Chem. Eng. J.
– year: 1992
  ident: b0070
  article-title: Genetic Programming: On the Programming of Computers by Means of Natural Selection
– volume: 37
  start-page: 8634
  year: 2010
  end-page: 8638
  ident: b0045
  article-title: Development of an artificial neural network model for adsorption and photocatalysis of reactive dye on TiO
  publication-title: Expert Syst. Appl.
– volume: 331
  start-page: 86
  year: 2010
  end-page: 100
  ident: b0080
  article-title: Artificial neural networks modeling of contaminated water treatment processes by homogeneous and heterogeneous nanocatalysis
  publication-title: J. Mol. Catal. A Chem.
– year: 1989
  ident: b0130
  article-title: Genetic Algorithms in Search, Optimization and Machine Learning
– volume: 152
  start-page: 2
  year: 2009
  end-page: 13
  ident: b0100
  article-title: Theoretical models of sorption kinetics including a surface reaction mechanism: a review
  publication-title: Adv. Colloid. Interface Sci.
– volume: 91
  start-page: 1915
  year: 2010
  end-page: 1929
  ident: b0110
  article-title: Decolorization of dye wastewaters by biosorbents: a review
  publication-title: J. Environ. Manage.
– volume: 38
  start-page: 173
  year: 2010
  end-page: 180
  ident: b0020
  article-title: Modelling for removing of reactive red 120 on pistachio husk
  publication-title: Clean
– volume: 148
  start-page: 20
  year: 2009
  end-page: 25
  ident: b0095
  article-title: Modelling the solid–liquid adsorption processes using artificial neural networks rained by pseudo second order kinetics
  publication-title: Chem. Eng. J.
– volume: 102
  start-page: 5634
  year: 2011
  end-page: 5638
  ident: b0025
  article-title: Artificial neural networks (ANN) approach for modeling of removal of Lanaset Red G on
  publication-title: Bioresour. Technol.
– volume: 153
  start-page: 1288
  year: 2008
  end-page: 1300
  ident: b0125
  article-title: Artificial neural network (ANN) approach for modeling of Pb(II) adsorption from aqueous solution by Antep pistachio (
  publication-title: J. Hazard. Mater.
– volume: 103
  start-page: 64
  year: 2012
  end-page: 70
  ident: b0040
  article-title: Prediction of removal efficiency of Lanaset Red G on walnut husk using artificial neural network model
  publication-title: Bioresour. Technol.
– volume: 5
  start-page: 389
  year: 2002
  end-page: 408
  ident: b0055
  article-title: Genetic representation and genetic neutrality in gene expression programming
  publication-title: Adv. Complex Syst.
– volume: 89
  start-page: 172
  year: 2011
  end-page: 178
  ident: b0085
  article-title: Neural network modeling of biotreatment of triphenylmethane dye solution by a green macroalgae
  publication-title: Chem. Eng. Res. Des.
– volume: 171
  start-page: 557
  year: 2011
  end-page: 562
  ident: b0010
  article-title: Thomas and artificial neural network models for the fixed-bed adsorption of methylene blue by a beach waste
  publication-title: Chem. Eng. J.
– volume: 191
  start-page: 228
  year: 2012
  end-page: 235
  ident: b0035
  article-title: Sorption equilibrium, kinetic, thermodynamic, and desorption studies of reactive red 120 on
  publication-title: Chem. Eng. J.
– volume: 42
  start-page: 380
  year: 2011
  end-page: 386
  ident: b0090
  article-title: Biotreatment of a triphenylmethane dye solution using a
  publication-title: J. Taiwan Inst. Chem. E.
– volume: 102
  start-page: 828
  year: 2011
  end-page: 834
  ident: b0120
  article-title: Biosorption of Acid Black 172 and Congo Red from aqueous solution by nonviable
  publication-title: Bioresour. Technol.
– volume: 169
  start-page: 166
  year: 2011
  end-page: 172
  ident: b0030
  article-title: Predictive modeling of removal of Lanaset Red G on
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 87
  year: 2001
  end-page: 129
  ident: b0050
  article-title: Gene expression programming: a new adaptive algorithm for solving problems
  publication-title: Complex Syst.
– volume: 101
  start-page: 2252
  year: 2010
  end-page: 2258
  ident: b0075
  article-title: Biological treatment of a dye solution by macroalgae
  publication-title: Bioresour. Technol.
– volume: 34
  start-page: 451
  year: 1999
  end-page: 465
  ident: b0065
  article-title: Pseudo second-order model for sorption processes
  publication-title: Process Biochem.
– volume: 153
  start-page: 1288
  year: 2008
  ident: 10.1016/j.biortech.2012.11.085_b0125
  article-title: Artificial neural network (ANN) approach for modeling of Pb(II) adsorption from aqueous solution by Antep pistachio (Pistacia vera L.) shells
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.09.092
– volume: 101
  start-page: 2252
  year: 2010
  ident: 10.1016/j.biortech.2012.11.085_b0075
  article-title: Biological treatment of a dye solution by macroalgae Chara sp.: effect of operational parameters, intermediates identification and artificial neural network modeling
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.11.079
– volume: 152
  start-page: 2
  year: 2009
  ident: 10.1016/j.biortech.2012.11.085_b0100
  article-title: Theoretical models of sorption kinetics including a surface reaction mechanism: a review
  publication-title: Adv. Colloid. Interface Sci.
  doi: 10.1016/j.cis.2009.07.009
– volume: 331
  start-page: 86
  year: 2010
  ident: 10.1016/j.biortech.2012.11.085_b0080
  article-title: Artificial neural networks modeling of contaminated water treatment processes by homogeneous and heterogeneous nanocatalysis
  publication-title: J. Mol. Catal. A Chem.
  doi: 10.1016/j.molcata.2010.07.016
– volume: 148
  start-page: 20
  year: 2009
  ident: 10.1016/j.biortech.2012.11.085_b0095
  article-title: Modelling the solid–liquid adsorption processes using artificial neural networks rained by pseudo second order kinetics
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2008.07.026
– volume: 102
  start-page: 5634
  year: 2011
  ident: 10.1016/j.biortech.2012.11.085_b0025
  article-title: Artificial neural networks (ANN) approach for modeling of removal of Lanaset Red G on Chara contraria
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.02.052
– volume: 5
  start-page: 389
  issue: 4
  year: 2002
  ident: 10.1016/j.biortech.2012.11.085_b0055
  article-title: Genetic representation and genetic neutrality in gene expression programming
  publication-title: Adv. Complex Syst.
  doi: 10.1142/S0219525902000626
– volume: 171
  start-page: 557
  year: 2011
  ident: 10.1016/j.biortech.2012.11.085_b0010
  article-title: Thomas and artificial neural network models for the fixed-bed adsorption of methylene blue by a beach waste Posidonia oceanica (L.) dead leaves
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.04.030
– volume: 42
  start-page: 380
  year: 2011
  ident: 10.1016/j.biortech.2012.11.085_b0090
  article-title: Biotreatment of a triphenylmethane dye solution using a Xanthophyta alga: modeling of key factors by neural network
  publication-title: J. Taiwan Inst. Chem. E.
  doi: 10.1016/j.jtice.2010.08.006
– volume: 38
  start-page: 949
  year: 2011
  ident: 10.1016/j.biortech.2012.11.085_b0005
  article-title: Use of BDST and an ANN model for prediction of dye adsorption efficiency of Eucalyptus camaldulensis barks in fixed-bed system
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.07.084
– volume: 152
  start-page: 139
  year: 2009
  ident: 10.1016/j.biortech.2012.11.085_b0015
  article-title: Kinetic and equilibrium studies on biosorption of reactive red 120 from aqueous solution on Spirogyra majuscule
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2009.04.016
– year: 1989
  ident: 10.1016/j.biortech.2012.11.085_b0130
– volume: 91
  start-page: 1915
  year: 2010
  ident: 10.1016/j.biortech.2012.11.085_b0110
  article-title: Decolorization of dye wastewaters by biosorbents: a review
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2010.05.003
– volume: 191
  start-page: 228
  year: 2012
  ident: 10.1016/j.biortech.2012.11.085_b0035
  article-title: Sorption equilibrium, kinetic, thermodynamic, and desorption studies of reactive red 120 on Chara contraria
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.03.007
– volume: 89
  start-page: 172
  year: 2011
  ident: 10.1016/j.biortech.2012.11.085_b0085
  article-title: Neural network modeling of biotreatment of triphenylmethane dye solution by a green macroalgae
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2010.05.009
– volume: 37
  start-page: 8634
  year: 2010
  ident: 10.1016/j.biortech.2012.11.085_b0045
  article-title: Development of an artificial neural network model for adsorption and photocatalysis of reactive dye on TiO2 surface
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.06.090
– year: 1992
  ident: 10.1016/j.biortech.2012.11.085_b0070
– volume: 102
  start-page: 828
  year: 2011
  ident: 10.1016/j.biortech.2012.11.085_b0120
  article-title: Biosorption of Acid Black 172 and Congo Red from aqueous solution by nonviable Penicillium YW 01: kinetic study, equilibrium isotherm and artificial neural network modeling
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.08.125
– volume: 103
  start-page: 64
  year: 2012
  ident: 10.1016/j.biortech.2012.11.085_b0040
  article-title: Prediction of removal efficiency of Lanaset Red G on walnut husk using artificial neural network model
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.09.106
– volume: 13
  start-page: 87
  issue: 2
  year: 2001
  ident: 10.1016/j.biortech.2012.11.085_b0050
  article-title: Gene expression programming: a new adaptive algorithm for solving problems
  publication-title: Complex Syst.
– volume: 169
  start-page: 166
  year: 2011
  ident: 10.1016/j.biortech.2012.11.085_b0030
  article-title: Predictive modeling of removal of Lanaset Red G on Chara contraria; kinetic, equilibrium, and thermodynamic studies
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.02.077
– volume: 38
  start-page: 173
  year: 2010
  ident: 10.1016/j.biortech.2012.11.085_b0020
  article-title: Modelling for removing of reactive red 120 on pistachio husk
  publication-title: Clean
– volume: 34
  start-page: 451
  year: 1999
  ident: 10.1016/j.biortech.2012.11.085_b0065
  article-title: Pseudo second-order model for sorption processes
  publication-title: Process Biochem.
  doi: 10.1016/S0032-9592(98)00112-5
SSID ssj0003172
Score 2.309033
Snippet [Display omitted] ► Predictive modeling of sorption of Lanaset Red (LR)G on lentil straw was studied. ► Artificial neural network (ANN) was found to be...
Artificial neural network (ANN), pseudo second-order kinetic, and gene expression programming (GEP) models were constructed to predict removal efficiency of...
SourceID proquest
pubmed
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 396
SubjectTerms Absorption
Agronomy. Soil science and plant productions
Algorithms
Artificial neural network (ANN)
Azo Compounds
Azo Compounds - chemistry
Azo Compounds - isolation & purification
Biodegradation, Environmental
Biological and medical sciences
chemistry
Coloring Agents
Coloring Agents - chemistry
Coloring Agents - isolation & purification
Computer Simulation
dyes
equations
Fundamental and applied biological sciences. Psychology
gene expression
Gene expression programming (GEP)
General agronomy. Plant production
isolation & purification
Lanaset Red G
Lens Plant
Lens Plant - chemistry
Lentil straw
lentils
Metals
Metals - chemistry
Metals - isolation & purification
Models, Chemical
Nerve Net
neural networks
particle size
Plant Components, Aerial
Plant Components, Aerial - chemistry
prediction
Sorption
straw
Use of agricultural and forest wastes. Biomass use, bioconversion
Water
Water - chemistry
Water Pollutants, Chemical
Water Pollutants, Chemical - chemistry
Water Pollutants, Chemical - isolation & purification
Title Use of artificial neural networks and genetic algorithms for prediction of sorption of an azo-metal complex dye onto lentil straw
URI https://dx.doi.org/10.1016/j.biortech.2012.11.085
https://www.ncbi.nlm.nih.gov/pubmed/23262017
https://www.proquest.com/docview/1288308758
https://www.proquest.com/docview/1365048350
https://www.proquest.com/docview/1520381643
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: AKRWK
  dateStart: 19910101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKOQAHBAXapbAyEtfsNn7kcVytWi0geikr9WbZiV1SbZNVkoq2h0r8c2acpI9D2wOnjTZ21s588XzZGc9HyFcmHfBkYG5J4tJAaHjStUlZAM7BxTJzQvpA-8_DaLEU34_l8QaZD3thMK2yX_u7Nd2v1v030_5uTtdFMT1C8p1I8EAMJeZ9TVAhYlQxmFzfpnmAf_SRBGgcYOs7u4RPJ6bAjFYflAjZxFfzlA85qGdOV5g5qRu4ea5TvXiYlnr3dPCGvO55JZ11Q39LNmy5RV7NTuq-tobdIi_mg7gbnLlTh_Ad-btsLK0cxYl3FSUo1rn0Hz5LvKG6zClgDbc8Ur06qeqi_X3WUKC8dF1jsAcNjNdoqno9HOuS6qsqOLPA8KlPXrcXNL-E3yrbiqK_K1YU_2v5854sD_Z_zRdBr80QZEBA2iAyuYxNbrgNmTZAM8NU52APx0Pr9pyWiQmzUDAHp4BRxIlNNM-YZqFNIm44_0A2y6q0O4TmmY2stUDzrRQuSo2IY24EB3AJIW00InIwiMr6wuWon7FSQ4baqRoMqdCQ8FajwJAjMr3pt-5KdzzZIx3sre6BUIF_ebLvDgBEabBro5ZHDN9cgT4DW4QJjO-h5mY0LAZYRiIZkS8DjBTgAEM2urTVeaNCFING0YHH2nBg2QKY9N4jbSTzIWLBR2S7w-ntKDiKEoTxx_-Y_S55ybxOCOb5fCKbbX1uPwNba83YP45j8nz27cfi8B9nPT6M
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoPdAeKkofbAvUlXrNLvEjjyNagbYtcIGVuFl2YkPQkqySoD4OlfrPO-MkPA7AoaddbexdO_PF83lnPB8hX5h0wJOBuSWJSwOh4UnXJmUBOAcXy8wJ6QPtR8fRbC6-ncmzFTIdzsJgWmW_9ndrul-t-08m_d2cLIticoLkO5HggRhKzGNN0OdCshh3YOM_t3ke4CB9KAFaB9j8zjHhy7EpMKXVRyVCNvblPOVDHuqZ0xWmTuoG7p7rZC8e5qXePx2sk1c9saR73dhfkxVbbpCXe-d1X1zDbpC16aDuBlfuFCJ8Q_7OG0srR3HmXUkJioUu_YtPE2-oLnMKYMMzj1Qvzqu6aC-uGgqcly5rjPaghfE7mqpeDu91SfXvKriyQPGpz163P2n-C36rbCuKDq9YUPyz5cdbMj_YP53Ogl6cIciAgbRBZHIZm9xwGzJtgGeGqc7BII6H1u06LRMTZqFgDi4BpYgTm2ieMc1Cm0TccP6OrJZVaTcJzTMbWWuB51spXJQaEcfcCA7oEkLaaETkYBCV9ZXLUUBjoYYUtUs1GFKhIWFbo8CQIzK56bfsanc82SMd7K3uoVCBg3my7yYARGmwa6PmJwy3rsCfgS7CBHbuoeZmNCwGWEYiGZHPA4wU4ABjNrq01XWjQlSDRtWBx9pwoNkCqPTuI20k8zFiwUfkfYfT21FwVCUI4w__MftPZG12enSoDr8ef_9IXjAvGoJJP1tkta2v7TZQt9bs-EfzH2mdQCE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+artificial+neural+networks+and+genetic+algorithms+for+prediction+of+sorption+of+an+azo-metal+complex+dye+onto+lentil+straw&rft.jtitle=Bioresource+technology&rft.au=%C3%87elekli%2C+Abuzer&rft.au=Bozkurt%2C+H%C3%BCseyin&rft.au=Geyik%2C+Faruk&rft.date=2013-02-01&rft.issn=0960-8524&rft.volume=129&rft.spage=396&rft.epage=401&rft_id=info:doi/10.1016%2Fj.biortech.2012.11.085&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biortech_2012_11_085
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon