Use of artificial neural networks and genetic algorithms for prediction of sorption of an azo-metal complex dye onto lentil straw
[Display omitted] ► Predictive modeling of sorption of Lanaset Red (LR)G on lentil straw was studied. ► Artificial neural network (ANN) was found to be excellent model in representing the sorption kinetics data. ► The sorption at various operating factors in a single equation was described by gene e...
Saved in:
| Published in | Bioresource technology Vol. 129; pp. 396 - 401 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Kidlington
Elsevier Ltd
01.02.2013
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0960-8524 1873-2976 1873-2976 |
| DOI | 10.1016/j.biortech.2012.11.085 |
Cover
| Abstract | [Display omitted]
► Predictive modeling of sorption of Lanaset Red (LR)G on lentil straw was studied. ► Artificial neural network (ANN) was found to be excellent model in representing the sorption kinetics data. ► The sorption at various operating factors in a single equation was described by gene expression programming (GEP).
Artificial neural network (ANN), pseudo second-order kinetic, and gene expression programming (GEP) models were constructed to predict removal efficiency of Lanaset Red G (LR G) using lentil straw (LS) based on 1152 experimental sets. The sorption process was dependent on adsorbent particle size, pH, initial dye concentration, and contact time. These variables were used as input to construct a neural network for prediction of dye uptake as output. ANN was an excellent model because of the lowest error and the highest coefficient values. ANN indicated that initial dye concentration had the strongest effect on dye uptake, followed by pH. The GEP model successfully described the sorption kinetic process as function of adsorbent particle size, pH, initial dye concentration, and contact time in a single equation. Low cost adsorbent, LS, had a great potential to remove LR G as an eco-friendly process, which was well described by GEP and ANN. |
|---|---|
| AbstractList | Artificial neural network (ANN), pseudo second-order kinetic, and gene expression programming (GEP) models were constructed to predict removal efficiency of Lanaset Red G (LR G) using lentil straw (LS) based on 1152 experimental sets. The sorption process was dependent on adsorbent particle size, pH, initial dye concentration, and contact time. These variables were used as input to construct a neural network for prediction of dye uptake as output. ANN was an excellent model because of the lowest error and the highest coefficient values. ANN indicated that initial dye concentration had the strongest effect on dye uptake, followed by pH. The GEP model successfully described the sorption kinetic process as function of adsorbent particle size, pH, initial dye concentration, and contact time in a single equation. Low cost adsorbent, LS, had a great potential to remove LR G as an eco-friendly process, which was well described by GEP and ANN.Artificial neural network (ANN), pseudo second-order kinetic, and gene expression programming (GEP) models were constructed to predict removal efficiency of Lanaset Red G (LR G) using lentil straw (LS) based on 1152 experimental sets. The sorption process was dependent on adsorbent particle size, pH, initial dye concentration, and contact time. These variables were used as input to construct a neural network for prediction of dye uptake as output. ANN was an excellent model because of the lowest error and the highest coefficient values. ANN indicated that initial dye concentration had the strongest effect on dye uptake, followed by pH. The GEP model successfully described the sorption kinetic process as function of adsorbent particle size, pH, initial dye concentration, and contact time in a single equation. Low cost adsorbent, LS, had a great potential to remove LR G as an eco-friendly process, which was well described by GEP and ANN. Artificial neural network (ANN), pseudo second-order kinetic, and gene expression programming (GEP) models were constructed to predict removal efficiency of Lanaset Red G (LR G) using lentil straw (LS) based on 1152 experimental sets. The sorption process was dependent on adsorbent particle size, pH, initial dye concentration, and contact time. These variables were used as input to construct a neural network for prediction of dye uptake as output. ANN was an excellent model because of the lowest error and the highest coefficient values. ANN indicated that initial dye concentration had the strongest effect on dye uptake, followed by pH. The GEP model successfully described the sorption kinetic process as function of adsorbent particle size, pH, initial dye concentration, and contact time in a single equation. Low cost adsorbent, LS, had a great potential to remove LR G as an eco-friendly process, which was well described by GEP and ANN. [Display omitted] ► Predictive modeling of sorption of Lanaset Red (LR)G on lentil straw was studied. ► Artificial neural network (ANN) was found to be excellent model in representing the sorption kinetics data. ► The sorption at various operating factors in a single equation was described by gene expression programming (GEP). Artificial neural network (ANN), pseudo second-order kinetic, and gene expression programming (GEP) models were constructed to predict removal efficiency of Lanaset Red G (LR G) using lentil straw (LS) based on 1152 experimental sets. The sorption process was dependent on adsorbent particle size, pH, initial dye concentration, and contact time. These variables were used as input to construct a neural network for prediction of dye uptake as output. ANN was an excellent model because of the lowest error and the highest coefficient values. ANN indicated that initial dye concentration had the strongest effect on dye uptake, followed by pH. The GEP model successfully described the sorption kinetic process as function of adsorbent particle size, pH, initial dye concentration, and contact time in a single equation. Low cost adsorbent, LS, had a great potential to remove LR G as an eco-friendly process, which was well described by GEP and ANN. |
| Author | Bozkurt, Hüseyin Geyik, Faruk Çelekli, Abuzer |
| Author_xml | – sequence: 1 givenname: Abuzer surname: Çelekli fullname: Çelekli, Abuzer email: celekli.a@gmail.com organization: Department of Biology, Faculty of Art and Science, University of Gaziantep, 27310 Gaziantep, Turkey – sequence: 2 givenname: Hüseyin surname: Bozkurt fullname: Bozkurt, Hüseyin email: hbozkurt@gantep.edu.tr organization: Department of Food Engineering, Faculty of Engineering, University of Gaziantep, 27310 Gaziantep, Turkey – sequence: 3 givenname: Faruk surname: Geyik fullname: Geyik, Faruk email: fgeyik@gantep.edu.tr organization: Department of Industrial Engineering, Faculty of Engineering, University of Gaziantep, 27310 Gaziantep, Turkey |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27096648$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23262017$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktvEzEUhS1URNPCXyjeILGZwY-xxyOxAFW8pEosIGvL47mTOszYwXYoZcc_xyEJSGzC6tryd861dM4FOvPBA0JXlNSUUPliXfcuxAz2tmaEsprSmijxAC2oannFulaeoQXpJKmUYM05ukhpTQjhtGWP0DnjTBZZu0A_lwlwGLGJ2Y3OOjNhD9v4e-S7EL8kbPyAV1CuzmIzrUJ0-XZOeAwRbyIMzmYX_M4jhbg5no3H5keoZsjFyoZ5M8F3PNyXXT4HPIHPbsIpR3P3GD0czZTgyWFeouXbN5-v31c3H999uH59U1khmlzJfhBtP_QcKDM96TramUESNXIKIxmNUD21tGFjeWIdbxUowy0zjIKSvOf8Ej3f-25i-LqFlPXskoVpMh7CNmkqGOGKyuY_UC4FaRQX5DTKlOJEtUIV9OqAbvsZBr2JbjbxXh_DKMCzA2CSNdMYjbcu_eXakqdsdkZyz9kYUoow_kEo0bt26LU-tkPv2qEp1aUdRfjyH6F12ewiK0G46bT86V4-mqDNKpa_LT8VoCGEdlR0shCv9gSUIL85iDpZB96WlkSwWQ_BnVryC4-a484 |
| CitedBy_id | crossref_primary_10_1016_j_cej_2014_03_073 crossref_primary_10_1007_s10661_022_10904_0 crossref_primary_10_1016_j_chemosphere_2023_138394 crossref_primary_10_1016_j_wasman_2019_07_010 crossref_primary_10_1007_s10450_014_9641_9 crossref_primary_10_1016_j_jclepro_2016_07_068 crossref_primary_10_1007_s13762_017_1315_1 crossref_primary_10_1080_00986445_2014_952813 crossref_primary_10_5004_dwt_2018_21920 crossref_primary_10_1021_acs_iecr_3c01743 crossref_primary_10_1016_j_jece_2013_09_021 crossref_primary_10_1007_s13762_020_02912_9 crossref_primary_10_1016_j_scitotenv_2018_02_134 crossref_primary_10_1007_s11082_017_1173_6 crossref_primary_10_1016_j_jenvman_2021_114334 crossref_primary_10_1016_j_jclepro_2022_135522 crossref_primary_10_1007_s13201_018_0712_z crossref_primary_10_1016_j_biortech_2016_05_091 crossref_primary_10_1016_j_seppur_2018_08_065 crossref_primary_10_1016_j_biortech_2016_11_045 crossref_primary_10_1080_01496395_2019_1577437 crossref_primary_10_1080_19443994_2015_1070759 crossref_primary_10_1016_j_biortech_2019_121461 crossref_primary_10_1016_j_psep_2024_06_123 crossref_primary_10_1021_ie503619j crossref_primary_10_1038_s41598_017_18223_y crossref_primary_10_2298_JSC230920022A crossref_primary_10_1061__ASCE_EE_1943_7870_0001806 crossref_primary_10_1515_zpch_2020_1677 crossref_primary_10_1016_j_sajce_2020_11_007 crossref_primary_10_1155_2022_9384871 crossref_primary_10_1016_j_saa_2016_07_049 crossref_primary_10_3390_ma13235422 crossref_primary_10_17341_gazimmfd_418184 crossref_primary_10_1088_1742_6596_1885_3_032074 crossref_primary_10_1016_j_fuel_2017_12_028 crossref_primary_10_1016_j_jenvman_2019_109428 crossref_primary_10_1002_cem_3283 crossref_primary_10_1016_j_applthermaleng_2017_07_008 crossref_primary_10_1016_j_biortech_2013_08_149 crossref_primary_10_1016_j_biortech_2016_09_060 crossref_primary_10_1016_j_eti_2015_05_001 crossref_primary_10_1039_C9TA07684K crossref_primary_10_1016_j_apenergy_2016_02_045 crossref_primary_10_1016_j_microc_2016_04_022 crossref_primary_10_1246_cl_220255 |
| Cites_doi | 10.1016/j.jhazmat.2007.09.092 10.1016/j.biortech.2009.11.079 10.1016/j.cis.2009.07.009 10.1016/j.molcata.2010.07.016 10.1016/j.cej.2008.07.026 10.1016/j.biortech.2011.02.052 10.1142/S0219525902000626 10.1016/j.cej.2011.04.030 10.1016/j.jtice.2010.08.006 10.1016/j.eswa.2010.07.084 10.1016/j.cej.2009.04.016 10.1016/j.jenvman.2010.05.003 10.1016/j.cej.2012.03.007 10.1016/j.cherd.2010.05.009 10.1016/j.eswa.2010.06.090 10.1016/j.biortech.2010.08.125 10.1016/j.biortech.2011.09.106 10.1016/j.cej.2011.02.077 10.1016/S0032-9592(98)00112-5 |
| ContentType | Journal Article |
| Copyright | 2012 2014 INIST-CNRS Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2012 – notice: 2014 INIST-CNRS – notice: Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved. |
| DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 7QO 8FD FR3 P64 |
| DOI | 10.1016/j.biortech.2012.11.085 |
| DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE Engineering Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Agriculture |
| EISSN | 1873-2976 |
| EndPage | 401 |
| ExternalDocumentID | 23262017 27096648 10_1016_j_biortech_2012_11_085 US201400191596 S0960852412017804 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM ABPIF ABPTK FBQ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS BNPGV IQODW SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 7QO 8FD FR3 P64 |
| ID | FETCH-LOGICAL-c554t-6bd57bdb3e12ab09919ad608f31ef0fa58b1c142f09929378e8a3c2a21e863b33 |
| IEDL.DBID | .~1 |
| ISSN | 0960-8524 1873-2976 |
| IngestDate | Tue Oct 07 09:57:58 EDT 2025 Sun Sep 28 05:02:07 EDT 2025 Thu Oct 02 05:56:45 EDT 2025 Thu Apr 03 07:00:07 EDT 2025 Mon Jul 21 09:12:07 EDT 2025 Wed Oct 01 03:22:41 EDT 2025 Thu Apr 24 22:53:16 EDT 2025 Wed Dec 27 19:09:30 EST 2023 Fri Feb 23 02:34:24 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Sorption Lanaset Red G Gene expression programming (GEP) Lentil straw Artificial neural network (ANN) Dyes Prediction Metal complex Programming Lens culinaris Neural network Gene expression Straw Grain legume Lentil Leguminosae Vegetable crop Genetic algorithm Dicotyledones Angiospermae Spermatophyta Artificial intelligence |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c554t-6bd57bdb3e12ab09919ad608f31ef0fa58b1c142f09929378e8a3c2a21e863b33 |
| Notes | http://dx.doi.org/10.1016/j.biortech.2012.11.085 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 23262017 |
| PQID | 1288308758 |
| PQPubID | 23479 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_1520381643 proquest_miscellaneous_1365048350 proquest_miscellaneous_1288308758 pubmed_primary_23262017 pascalfrancis_primary_27096648 crossref_primary_10_1016_j_biortech_2012_11_085 crossref_citationtrail_10_1016_j_biortech_2012_11_085 fao_agris_US201400191596 elsevier_sciencedirect_doi_10_1016_j_biortech_2012_11_085 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-02-01 |
| PublicationDateYYYYMMDD | 2013-02-01 |
| PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington – name: England |
| PublicationTitle | Bioresource technology |
| PublicationTitleAlternate | Bioresour Technol |
| PublicationYear | 2013 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Dutta, Parsons, Bhattacharjee, Bandhyopadhyay, Data (b0045) 2010; 37 Khataee, Dehghan, Ebadi, Zarei, Pourhassan (b0075) 2010; 101 Koza (b0070) 1992 Srinivasan, Viraraghavan (b0110) 2010; 91 Khataee, Zarei, Dehghan, Ebadi, Pourhassan (b0090) 2011; 42 Yang, Wang, Wang, Li, Jia, Zhou, Zhao (b0120) 2011; 102 Yetilmezsoy, Demirel (b0125) 2008; 153 Çelekli, Yavuzatmaca, Bozkurt (b0020) 2010; 38 Kumar, Porkodi (b0095) 2009; 148 Balcı, Keskinkan, Avcı (b0005) 2011; 38 Ho, McKay (b0065) 1999; 34 Plazinski, Rudzinski, Plazinska (b0100) 2009; 152 Khataee, Kasiri (b0080) 2010; 331 Çelekli, Birecikligil, Geyik, Bozkurt (b0040) 2012; 103 Ferreira (b0050) 2001; 13 Ferreira (b0055) 2002; 5 Çelekli, İlgün, Bozkurt (b0035) 2012; 191 Çelekli, Tanrıverdi, Bozkurt (b0030) 2011; 169 Khataee, Dehghan, Zarei, Ebadia, Pourhassan (b0085) 2011; 89 Çelekli, Yavuzatmaca, Bozkurt (b0015) 2009; 152 Cavas, Karabaya, Alyuruka, Doğan, Demir (b0010) 2011; 171 Çelekli, Geyik (b0025) 2011; 102 Goldberg (b0130) 1989 Yetilmezsoy (10.1016/j.biortech.2012.11.085_b0125) 2008; 153 Çelekli (10.1016/j.biortech.2012.11.085_b0035) 2012; 191 Ferreira (10.1016/j.biortech.2012.11.085_b0050) 2001; 13 Khataee (10.1016/j.biortech.2012.11.085_b0085) 2011; 89 Çelekli (10.1016/j.biortech.2012.11.085_b0020) 2010; 38 Çelekli (10.1016/j.biortech.2012.11.085_b0025) 2011; 102 Çelekli (10.1016/j.biortech.2012.11.085_b0030) 2011; 169 Khataee (10.1016/j.biortech.2012.11.085_b0075) 2010; 101 Khataee (10.1016/j.biortech.2012.11.085_b0080) 2010; 331 Dutta (10.1016/j.biortech.2012.11.085_b0045) 2010; 37 Kumar (10.1016/j.biortech.2012.11.085_b0095) 2009; 148 Plazinski (10.1016/j.biortech.2012.11.085_b0100) 2009; 152 Balcı (10.1016/j.biortech.2012.11.085_b0005) 2011; 38 Srinivasan (10.1016/j.biortech.2012.11.085_b0110) 2010; 91 Koza (10.1016/j.biortech.2012.11.085_b0070) 1992 Goldberg (10.1016/j.biortech.2012.11.085_b0130) 1989 Ferreira (10.1016/j.biortech.2012.11.085_b0055) 2002; 5 Ho (10.1016/j.biortech.2012.11.085_b0065) 1999; 34 Khataee (10.1016/j.biortech.2012.11.085_b0090) 2011; 42 Cavas (10.1016/j.biortech.2012.11.085_b0010) 2011; 171 Çelekli (10.1016/j.biortech.2012.11.085_b0015) 2009; 152 Yang (10.1016/j.biortech.2012.11.085_b0120) 2011; 102 Çelekli (10.1016/j.biortech.2012.11.085_b0040) 2012; 103 |
| References_xml | – volume: 38 start-page: 949 year: 2011 end-page: 956 ident: b0005 article-title: Use of BDST and an ANN model for prediction of dye adsorption efficiency of publication-title: Expert Syst. Appl. – volume: 152 start-page: 139 year: 2009 end-page: 145 ident: b0015 article-title: Kinetic and equilibrium studies on biosorption of reactive red 120 from aqueous solution on publication-title: Chem. Eng. J. – year: 1992 ident: b0070 article-title: Genetic Programming: On the Programming of Computers by Means of Natural Selection – volume: 37 start-page: 8634 year: 2010 end-page: 8638 ident: b0045 article-title: Development of an artificial neural network model for adsorption and photocatalysis of reactive dye on TiO publication-title: Expert Syst. Appl. – volume: 331 start-page: 86 year: 2010 end-page: 100 ident: b0080 article-title: Artificial neural networks modeling of contaminated water treatment processes by homogeneous and heterogeneous nanocatalysis publication-title: J. Mol. Catal. A Chem. – year: 1989 ident: b0130 article-title: Genetic Algorithms in Search, Optimization and Machine Learning – volume: 152 start-page: 2 year: 2009 end-page: 13 ident: b0100 article-title: Theoretical models of sorption kinetics including a surface reaction mechanism: a review publication-title: Adv. Colloid. Interface Sci. – volume: 91 start-page: 1915 year: 2010 end-page: 1929 ident: b0110 article-title: Decolorization of dye wastewaters by biosorbents: a review publication-title: J. Environ. Manage. – volume: 38 start-page: 173 year: 2010 end-page: 180 ident: b0020 article-title: Modelling for removing of reactive red 120 on pistachio husk publication-title: Clean – volume: 148 start-page: 20 year: 2009 end-page: 25 ident: b0095 article-title: Modelling the solid–liquid adsorption processes using artificial neural networks rained by pseudo second order kinetics publication-title: Chem. Eng. J. – volume: 102 start-page: 5634 year: 2011 end-page: 5638 ident: b0025 article-title: Artificial neural networks (ANN) approach for modeling of removal of Lanaset Red G on publication-title: Bioresour. Technol. – volume: 153 start-page: 1288 year: 2008 end-page: 1300 ident: b0125 article-title: Artificial neural network (ANN) approach for modeling of Pb(II) adsorption from aqueous solution by Antep pistachio ( publication-title: J. Hazard. Mater. – volume: 103 start-page: 64 year: 2012 end-page: 70 ident: b0040 article-title: Prediction of removal efficiency of Lanaset Red G on walnut husk using artificial neural network model publication-title: Bioresour. Technol. – volume: 5 start-page: 389 year: 2002 end-page: 408 ident: b0055 article-title: Genetic representation and genetic neutrality in gene expression programming publication-title: Adv. Complex Syst. – volume: 89 start-page: 172 year: 2011 end-page: 178 ident: b0085 article-title: Neural network modeling of biotreatment of triphenylmethane dye solution by a green macroalgae publication-title: Chem. Eng. Res. Des. – volume: 171 start-page: 557 year: 2011 end-page: 562 ident: b0010 article-title: Thomas and artificial neural network models for the fixed-bed adsorption of methylene blue by a beach waste publication-title: Chem. Eng. J. – volume: 191 start-page: 228 year: 2012 end-page: 235 ident: b0035 article-title: Sorption equilibrium, kinetic, thermodynamic, and desorption studies of reactive red 120 on publication-title: Chem. Eng. J. – volume: 42 start-page: 380 year: 2011 end-page: 386 ident: b0090 article-title: Biotreatment of a triphenylmethane dye solution using a publication-title: J. Taiwan Inst. Chem. E. – volume: 102 start-page: 828 year: 2011 end-page: 834 ident: b0120 article-title: Biosorption of Acid Black 172 and Congo Red from aqueous solution by nonviable publication-title: Bioresour. Technol. – volume: 169 start-page: 166 year: 2011 end-page: 172 ident: b0030 article-title: Predictive modeling of removal of Lanaset Red G on publication-title: Chem. Eng. J. – volume: 13 start-page: 87 year: 2001 end-page: 129 ident: b0050 article-title: Gene expression programming: a new adaptive algorithm for solving problems publication-title: Complex Syst. – volume: 101 start-page: 2252 year: 2010 end-page: 2258 ident: b0075 article-title: Biological treatment of a dye solution by macroalgae publication-title: Bioresour. Technol. – volume: 34 start-page: 451 year: 1999 end-page: 465 ident: b0065 article-title: Pseudo second-order model for sorption processes publication-title: Process Biochem. – volume: 153 start-page: 1288 year: 2008 ident: 10.1016/j.biortech.2012.11.085_b0125 article-title: Artificial neural network (ANN) approach for modeling of Pb(II) adsorption from aqueous solution by Antep pistachio (Pistacia vera L.) shells publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.09.092 – volume: 101 start-page: 2252 year: 2010 ident: 10.1016/j.biortech.2012.11.085_b0075 article-title: Biological treatment of a dye solution by macroalgae Chara sp.: effect of operational parameters, intermediates identification and artificial neural network modeling publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.11.079 – volume: 152 start-page: 2 year: 2009 ident: 10.1016/j.biortech.2012.11.085_b0100 article-title: Theoretical models of sorption kinetics including a surface reaction mechanism: a review publication-title: Adv. Colloid. Interface Sci. doi: 10.1016/j.cis.2009.07.009 – volume: 331 start-page: 86 year: 2010 ident: 10.1016/j.biortech.2012.11.085_b0080 article-title: Artificial neural networks modeling of contaminated water treatment processes by homogeneous and heterogeneous nanocatalysis publication-title: J. Mol. Catal. A Chem. doi: 10.1016/j.molcata.2010.07.016 – volume: 148 start-page: 20 year: 2009 ident: 10.1016/j.biortech.2012.11.085_b0095 article-title: Modelling the solid–liquid adsorption processes using artificial neural networks rained by pseudo second order kinetics publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2008.07.026 – volume: 102 start-page: 5634 year: 2011 ident: 10.1016/j.biortech.2012.11.085_b0025 article-title: Artificial neural networks (ANN) approach for modeling of removal of Lanaset Red G on Chara contraria publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.02.052 – volume: 5 start-page: 389 issue: 4 year: 2002 ident: 10.1016/j.biortech.2012.11.085_b0055 article-title: Genetic representation and genetic neutrality in gene expression programming publication-title: Adv. Complex Syst. doi: 10.1142/S0219525902000626 – volume: 171 start-page: 557 year: 2011 ident: 10.1016/j.biortech.2012.11.085_b0010 article-title: Thomas and artificial neural network models for the fixed-bed adsorption of methylene blue by a beach waste Posidonia oceanica (L.) dead leaves publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.04.030 – volume: 42 start-page: 380 year: 2011 ident: 10.1016/j.biortech.2012.11.085_b0090 article-title: Biotreatment of a triphenylmethane dye solution using a Xanthophyta alga: modeling of key factors by neural network publication-title: J. Taiwan Inst. Chem. E. doi: 10.1016/j.jtice.2010.08.006 – volume: 38 start-page: 949 year: 2011 ident: 10.1016/j.biortech.2012.11.085_b0005 article-title: Use of BDST and an ANN model for prediction of dye adsorption efficiency of Eucalyptus camaldulensis barks in fixed-bed system publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.07.084 – volume: 152 start-page: 139 year: 2009 ident: 10.1016/j.biortech.2012.11.085_b0015 article-title: Kinetic and equilibrium studies on biosorption of reactive red 120 from aqueous solution on Spirogyra majuscule publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.04.016 – year: 1989 ident: 10.1016/j.biortech.2012.11.085_b0130 – volume: 91 start-page: 1915 year: 2010 ident: 10.1016/j.biortech.2012.11.085_b0110 article-title: Decolorization of dye wastewaters by biosorbents: a review publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2010.05.003 – volume: 191 start-page: 228 year: 2012 ident: 10.1016/j.biortech.2012.11.085_b0035 article-title: Sorption equilibrium, kinetic, thermodynamic, and desorption studies of reactive red 120 on Chara contraria publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.03.007 – volume: 89 start-page: 172 year: 2011 ident: 10.1016/j.biortech.2012.11.085_b0085 article-title: Neural network modeling of biotreatment of triphenylmethane dye solution by a green macroalgae publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2010.05.009 – volume: 37 start-page: 8634 year: 2010 ident: 10.1016/j.biortech.2012.11.085_b0045 article-title: Development of an artificial neural network model for adsorption and photocatalysis of reactive dye on TiO2 surface publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.06.090 – year: 1992 ident: 10.1016/j.biortech.2012.11.085_b0070 – volume: 102 start-page: 828 year: 2011 ident: 10.1016/j.biortech.2012.11.085_b0120 article-title: Biosorption of Acid Black 172 and Congo Red from aqueous solution by nonviable Penicillium YW 01: kinetic study, equilibrium isotherm and artificial neural network modeling publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.08.125 – volume: 103 start-page: 64 year: 2012 ident: 10.1016/j.biortech.2012.11.085_b0040 article-title: Prediction of removal efficiency of Lanaset Red G on walnut husk using artificial neural network model publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.09.106 – volume: 13 start-page: 87 issue: 2 year: 2001 ident: 10.1016/j.biortech.2012.11.085_b0050 article-title: Gene expression programming: a new adaptive algorithm for solving problems publication-title: Complex Syst. – volume: 169 start-page: 166 year: 2011 ident: 10.1016/j.biortech.2012.11.085_b0030 article-title: Predictive modeling of removal of Lanaset Red G on Chara contraria; kinetic, equilibrium, and thermodynamic studies publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.02.077 – volume: 38 start-page: 173 year: 2010 ident: 10.1016/j.biortech.2012.11.085_b0020 article-title: Modelling for removing of reactive red 120 on pistachio husk publication-title: Clean – volume: 34 start-page: 451 year: 1999 ident: 10.1016/j.biortech.2012.11.085_b0065 article-title: Pseudo second-order model for sorption processes publication-title: Process Biochem. doi: 10.1016/S0032-9592(98)00112-5 |
| SSID | ssj0003172 |
| Score | 2.309033 |
| Snippet | [Display omitted]
► Predictive modeling of sorption of Lanaset Red (LR)G on lentil straw was studied. ► Artificial neural network (ANN) was found to be... Artificial neural network (ANN), pseudo second-order kinetic, and gene expression programming (GEP) models were constructed to predict removal efficiency of... |
| SourceID | proquest pubmed pascalfrancis crossref fao elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 396 |
| SubjectTerms | Absorption Agronomy. Soil science and plant productions Algorithms Artificial neural network (ANN) Azo Compounds Azo Compounds - chemistry Azo Compounds - isolation & purification Biodegradation, Environmental Biological and medical sciences chemistry Coloring Agents Coloring Agents - chemistry Coloring Agents - isolation & purification Computer Simulation dyes equations Fundamental and applied biological sciences. Psychology gene expression Gene expression programming (GEP) General agronomy. Plant production isolation & purification Lanaset Red G Lens Plant Lens Plant - chemistry Lentil straw lentils Metals Metals - chemistry Metals - isolation & purification Models, Chemical Nerve Net neural networks particle size Plant Components, Aerial Plant Components, Aerial - chemistry prediction Sorption straw Use of agricultural and forest wastes. Biomass use, bioconversion Water Water - chemistry Water Pollutants, Chemical Water Pollutants, Chemical - chemistry Water Pollutants, Chemical - isolation & purification |
| Title | Use of artificial neural networks and genetic algorithms for prediction of sorption of an azo-metal complex dye onto lentil straw |
| URI | https://dx.doi.org/10.1016/j.biortech.2012.11.085 https://www.ncbi.nlm.nih.gov/pubmed/23262017 https://www.proquest.com/docview/1288308758 https://www.proquest.com/docview/1365048350 https://www.proquest.com/docview/1520381643 |
| Volume | 129 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2976 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003172 issn: 0960-8524 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-2976 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003172 issn: 0960-8524 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1873-2976 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003172 issn: 0960-8524 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-2976 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003172 issn: 0960-8524 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2976 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003172 issn: 0960-8524 databaseCode: AKRWK dateStart: 19910101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKOQAHBAXapbAyEtfsNn7kcVytWi0geikr9WbZiV1SbZNVkoq2h0r8c2acpI9D2wOnjTZ21s588XzZGc9HyFcmHfBkYG5J4tJAaHjStUlZAM7BxTJzQvpA-8_DaLEU34_l8QaZD3thMK2yX_u7Nd2v1v030_5uTtdFMT1C8p1I8EAMJeZ9TVAhYlQxmFzfpnmAf_SRBGgcYOs7u4RPJ6bAjFYflAjZxFfzlA85qGdOV5g5qRu4ea5TvXiYlnr3dPCGvO55JZ11Q39LNmy5RV7NTuq-tobdIi_mg7gbnLlTh_Ad-btsLK0cxYl3FSUo1rn0Hz5LvKG6zClgDbc8Ur06qeqi_X3WUKC8dF1jsAcNjNdoqno9HOuS6qsqOLPA8KlPXrcXNL-E3yrbiqK_K1YU_2v5854sD_Z_zRdBr80QZEBA2iAyuYxNbrgNmTZAM8NU52APx0Pr9pyWiQmzUDAHp4BRxIlNNM-YZqFNIm44_0A2y6q0O4TmmY2stUDzrRQuSo2IY24EB3AJIW00InIwiMr6wuWon7FSQ4baqRoMqdCQ8FajwJAjMr3pt-5KdzzZIx3sre6BUIF_ebLvDgBEabBro5ZHDN9cgT4DW4QJjO-h5mY0LAZYRiIZkS8DjBTgAEM2urTVeaNCFING0YHH2nBg2QKY9N4jbSTzIWLBR2S7w-ntKDiKEoTxx_-Y_S55ybxOCOb5fCKbbX1uPwNba83YP45j8nz27cfi8B9nPT6M |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoPdAeKkofbAvUlXrNLvEjjyNagbYtcIGVuFl2YkPQkqySoD4OlfrPO-MkPA7AoaddbexdO_PF83lnPB8hX5h0wJOBuSWJSwOh4UnXJmUBOAcXy8wJ6QPtR8fRbC6-ncmzFTIdzsJgWmW_9ndrul-t-08m_d2cLIticoLkO5HggRhKzGNN0OdCshh3YOM_t3ke4CB9KAFaB9j8zjHhy7EpMKXVRyVCNvblPOVDHuqZ0xWmTuoG7p7rZC8e5qXePx2sk1c9saR73dhfkxVbbpCXe-d1X1zDbpC16aDuBlfuFCJ8Q_7OG0srR3HmXUkJioUu_YtPE2-oLnMKYMMzj1Qvzqu6aC-uGgqcly5rjPaghfE7mqpeDu91SfXvKriyQPGpz163P2n-C36rbCuKDq9YUPyz5cdbMj_YP53Ogl6cIciAgbRBZHIZm9xwGzJtgGeGqc7BII6H1u06LRMTZqFgDi4BpYgTm2ieMc1Cm0TccP6OrJZVaTcJzTMbWWuB51spXJQaEcfcCA7oEkLaaETkYBCV9ZXLUUBjoYYUtUs1GFKhIWFbo8CQIzK56bfsanc82SMd7K3uoVCBg3my7yYARGmwa6PmJwy3rsCfgS7CBHbuoeZmNCwGWEYiGZHPA4wU4ABjNrq01XWjQlSDRtWBx9pwoNkCqPTuI20k8zFiwUfkfYfT21FwVCUI4w__MftPZG12enSoDr8ef_9IXjAvGoJJP1tkta2v7TZQt9bs-EfzH2mdQCE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+artificial+neural+networks+and+genetic+algorithms+for+prediction+of+sorption+of+an+azo-metal+complex+dye+onto+lentil+straw&rft.jtitle=Bioresource+technology&rft.au=%C3%87elekli%2C+Abuzer&rft.au=Bozkurt%2C+H%C3%BCseyin&rft.au=Geyik%2C+Faruk&rft.date=2013-02-01&rft.issn=0960-8524&rft.volume=129&rft.spage=396&rft.epage=401&rft_id=info:doi/10.1016%2Fj.biortech.2012.11.085&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biortech_2012_11_085 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |