An efficient full space-time discretization method for subject-specific hemodynamic simulations of cerebral arterial blood flow with distensible wall mechanics
A computationally inexpensive mathematical solution approach using orthogonal collocations for space discretization with temporal Fourier series is proposed to compute subject-specific blood flow in distensible vessels of large cerebral arterial networks. Several models of wall biomechanics were con...
Saved in:
Published in | Journal of biomechanics Vol. 87; pp. 37 - 47 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
18.04.2019
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9290 1873-2380 1873-2380 |
DOI | 10.1016/j.jbiomech.2019.02.014 |
Cover
Abstract | A computationally inexpensive mathematical solution approach using orthogonal collocations for space discretization with temporal Fourier series is proposed to compute subject-specific blood flow in distensible vessels of large cerebral arterial networks. Several models of wall biomechanics were considered to assess their impact on hemodynamic predictions. Simulations were validated against in vivo blood flow measurements in six human subjects. The average root-mean-square relative differences were found to be less than 4.3% for all subjects with a linear elastic wall model. This discrepancy decreased further in a viscoelastic Kelvin-Voigt biomechanical wall. The results provide support for the use of collocation-Fourier series approach to predict clinically relevant blood flow distribution and collateral blood supply in large portions of the cerebral circulation at reasonable computational costs. It thus opens the possibility of performing computationally inexpensive subject-specific simulations that are robust and fast enough to predict clinical results in real time on the same day. |
---|---|
AbstractList | A computationally inexpensive mathematical solution approach using orthogonal collocations for space discretization with temporal Fourier series is proposed to compute subject-specific blood flow in distensible vessels of large cerebral arterial networks. Several models of wall biomechanics were considered to assess their impact on hemodynamic predictions. Simulations were validated against in vivo blood flow measurements in six human subjects. The average root-mean-square relative differences were found to be less than 4.3% for all subjects with a linear elastic wall model. This discrepancy decreased further in a viscoelastic Kelvin-Voigt biomechanical wall. The results provide support for the use of collocation-Fourier series approach to predict clinically relevant blood flow distribution and collateral blood supply in large portions of the cerebral circulation at reasonable computational costs. It thus opens the possibility of performing computationally inexpensive subject-specific simulations that are robust and fast enough to predict clinical results in real time on the same day. A computationally inexpensive mathematical solution approach using orthogonal collocations for space discretization with temporal Fourier series is proposed to compute subject-specific blood flow in distensible vessels of large cerebral arterial networks. Several models of wall biomechanics were considered to assess their impact on hemodynamic predictions. Simulations were validated against in vivo blood flow measurements in six human subjects. The average root-mean-square relative differences were found to be less than 4.3% for all subjects with a linear elastic wall model. This discrepancy decreased further in a viscoelastic Kelvin-Voigt biomechanical wall. The results provide support for the use of collocation-Fourier series approach to predict clinically relevant blood flow distribution and collateral blood supply in large portions of the cerebral circulation at reasonable computational costs. It thus opens the possibility of performing computationally inexpensive subject-specific simulations that are robust and fast enough to predict clinical results in real time on the same day.A computationally inexpensive mathematical solution approach using orthogonal collocations for space discretization with temporal Fourier series is proposed to compute subject-specific blood flow in distensible vessels of large cerebral arterial networks. Several models of wall biomechanics were considered to assess their impact on hemodynamic predictions. Simulations were validated against in vivo blood flow measurements in six human subjects. The average root-mean-square relative differences were found to be less than 4.3% for all subjects with a linear elastic wall model. This discrepancy decreased further in a viscoelastic Kelvin-Voigt biomechanical wall. The results provide support for the use of collocation-Fourier series approach to predict clinically relevant blood flow distribution and collateral blood supply in large portions of the cerebral circulation at reasonable computational costs. It thus opens the possibility of performing computationally inexpensive subject-specific simulations that are robust and fast enough to predict clinical results in real time on the same day. |
Author | Linninger, Andreas A. Du, Xinjian Charbel, Fady T. Park, Chang Sub Alaraj, Ali |
AuthorAffiliation | 2 Department of Neurosurgery, University of Illinois at Chicago 1 Department of Bioengineering, University of Illinois at Chicago |
AuthorAffiliation_xml | – name: 2 Department of Neurosurgery, University of Illinois at Chicago – name: 1 Department of Bioengineering, University of Illinois at Chicago |
Author_xml | – sequence: 1 givenname: Chang Sub surname: Park fullname: Park, Chang Sub organization: Department of Bioengineering, University of Illinois at Chicago, USA – sequence: 2 givenname: Ali surname: Alaraj fullname: Alaraj, Ali organization: Department of Neurosurgery, University of Illinois at Chicago, USA – sequence: 3 givenname: Xinjian surname: Du fullname: Du, Xinjian organization: Department of Neurosurgery, University of Illinois at Chicago, USA – sequence: 4 givenname: Fady T. surname: Charbel fullname: Charbel, Fady T. organization: Department of Neurosurgery, University of Illinois at Chicago, USA – sequence: 5 givenname: Andreas A. surname: Linninger fullname: Linninger, Andreas A. email: linninge@uic.edu organization: Department of Bioengineering, University of Illinois at Chicago, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30876734$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUs1u1DAYjFAR_YFXqCxx4ZLFduw4kRCiqviTKnGBs-U4X1gHx15sp6vlZXhVnG67gl7Yky15Zjwz33denDjvoCguCV4RTOrX42rsjJ9Ar1cUk3aF6QoT9qQ4I42oSlo1-KQ4w5iSsqUtPi3OYxwxxoKJ9llxWuFG1KJiZ8XvK4dgGIw24BIaZmtR3CgNZTIToN5EHSCZXyoZ79AEae17NPiA4tyNoFMZN6BNpqM1TL7fOTXlezTTbO8oEfkBaQjQBWWRCgmCyZfO-kXH-i3amrRe_kngouksoK3KHpZgyhkdnxdPB2UjvLg_L4pvH95_vf5U3nz5-Pn66qbUnLNUcsI4g7angHvRcegGMfSiZg1jnWBD07ZUM6IobTRXgg9CddBizSuqO1rjurooxF53dhu1WzzITTCTCjtJsFwql6N8qFwulUtMZa48M9_umZu5m6DXucec9cD2ysh_X5xZy-_-Vtaci6pZBF7dCwT_c4aY5JRrB2uVAz9HSUlbkboSosnQl4-go5-Dy8VISjEmDecUZ9Tl344OVh6mngH1HqCDjzHAcHzWN4-I2qS7Qedkxv6f_m5PhzzJWwNBxmXvNPQm5GWSvTdHt32Q0NbkRVH2B-yOEfgDQM4JFA |
CitedBy_id | crossref_primary_10_1109_ACCESS_2020_3007737 crossref_primary_10_3390_bioengineering11010072 crossref_primary_10_1111_micc_12687 crossref_primary_10_1177_0271678X231214840 crossref_primary_10_1002_cnm_70020 crossref_primary_10_1016_j_cjph_2023_03_012 crossref_primary_10_1109_TMI_2022_3161653 crossref_primary_10_1016_j_jmbbm_2023_106265 |
Cites_doi | 10.1002/cnm.2622 10.1016/0021-9290(92)90060-E 10.1007/BF02345213 10.1016/j.jfluidstructs.2010.10.003 10.1023/B:ENGI.0000007979.32871.e2 10.1016/j.jbiomech.2006.07.008 10.1098/rsfs.2012.0078 10.1002/mrm.1910330606 10.1016/j.compbiomed.2017.01.012 10.1137/S0036139999355199 10.1016/j.jbiomech.2015.02.018 10.1016/j.jbiomech.2011.05.041 10.1016/j.jbiomech.2016.03.037 10.1016/j.compbiomed.2017.10.028 10.1007/s10665-012-9555-z 10.1137/100810186 10.1016/S0730-725X(00)00157-0 10.3174/ajnr.A5484 10.1177/0271678X16671146 10.1002/cnm.2732 10.1016/j.compbiomed.2018.07.004 10.1016/j.jbiomech.2007.05.027 10.1016/0021-9290(86)90118-1 10.1002/cnm.2701 10.1213/ANE.0000000000002011 10.1002/fld.543 10.1002/cnm.2598 10.1113/jphysiol.1955.sp005276 10.1114/1.1326031 10.1088/0031-9155/8/3/308 10.1016/j.jbiomech.2013.09.004 10.1002/cnm.2987 10.1002/mrm.26087 10.1186/1475-925X-10-84 10.1016/j.jbiomech.2010.12.002 10.1371/journal.pcbi.1006549 10.1016/0025-5564(73)90027-8 10.1111/micc.12156 10.1016/j.jbiomech.2012.06.002 10.1023/B:ENGI.0000007980.01347.29 10.1007/s10439-010-0236-7 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. 2019. Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. – notice: 2019. Elsevier Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
DOI | 10.1016/j.jbiomech.2019.02.014 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection Proquest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
EndPage | 47 |
ExternalDocumentID | oai:pubmedcentral.nih.gov:6557384 PMC6557384 30876734 10_1016_j_jbiomech_2019_02_014 S0021929019301447 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R21 NS099896 |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJOXV AMFUW EFLBG LCYCR .GJ 29J 53G AAQQT AAQXK AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ADMUD ADNMO AFJKZ AGHFR AGQPQ AI. AIGII APXCP ASPBG AVWKF AZFZN CITATION EBD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT R2- RPZ SAE SEW VH1 WUQ XOL XPP ZGI ~HD ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c554t-51454e9d2e0d7b5ebf7fd764844b74f8992c41a228c5a75f7abe90c532cb26063 |
IEDL.DBID | 7X7 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Sun Aug 24 08:54:53 EDT 2025 Tue Sep 30 16:55:13 EDT 2025 Sun Sep 28 09:30:31 EDT 2025 Wed Aug 13 09:25:29 EDT 2025 Thu Apr 03 07:09:44 EDT 2025 Thu Apr 24 22:56:56 EDT 2025 Wed Oct 01 05:20:55 EDT 2025 Fri Feb 23 02:28:49 EST 2024 Tue Aug 26 17:09:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | One-dimensional blood flow Quantitative magnetic resonance angiography Cerebral arterial tree Pulsatile flow Fluid-structure interaction |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c554t-51454e9d2e0d7b5ebf7fd764844b74f8992c41a228c5a75f7abe90c532cb26063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6557384 |
PMID | 30876734 |
PQID | 2200185520 |
PQPubID | 1226346 |
PageCount | 11 |
ParticipantIDs | unpaywall_primary_10_1016_j_jbiomech_2019_02_014 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6557384 proquest_miscellaneous_2193163778 proquest_journals_2200185520 pubmed_primary_30876734 crossref_primary_10_1016_j_jbiomech_2019_02_014 crossref_citationtrail_10_1016_j_jbiomech_2019_02_014 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2019_02_014 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2019_02_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-18 |
PublicationDateYYYYMMDD | 2019-04-18 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Boileau (b0030) 2015; 31 Valdez-Jasso (b0210) 2011; 39 Ghaffari (b0060) 2018; 34 Alastruey (b0015) 2007; 40 Hughes, Lubliner (b0115) 1973; 18 Steele, Valdez-Jasso, Haider, Olufsen (b0190) 2011; 71 Cebral (b0035) 2005; 26 Olufsen (b0150) 1999; 276 Miekisz (b0135) 1963; 8 Payne (b0165) 2004; 42 Sherwin, Formaggia, Peiró, Franke (b0175) 2003; 43 Stergiopulos, Young, Rogge (b0195) 1992; 25 Alastruey, Passerini, Formaggia, Peiró (b0020) 2012; 77 Alastruey (b0010) 2011; 44 Blanco, Watanabe, Feijóo (b0025) 2012; 45 Zhao (b0230) 2000; 18 Hartung (b0090) 2018; 14 Guan, Liang, Gremaud (b0085) 2016; 49 Tangen, Hsu, Zhu, Linninger (b0200) 2015; 48 Xiao, Alastruey, Figueroa (b0220) 2014; 30 Hsu (b0105) 2017; 77 Huang, Muller (b0110) 2015; 31 Olufsen (b0145) 2000; 28 Gould, Linninger (b0080) 2015; 22 Evju, Valen-Sendstad, Mardal (b0050) 2013; 46 Ghaffari (b0065) 2018; 100 Hofman (b0095) 1995; 33 Sherwin, Franke, Peiró, Parker (b0180) 2003; 47 Smith, Pullan, Hunter (b0185) 2002; 62 Womersley (b0215) 1955; 127 Formaggia, Lamponi, Quarteroni (b0055) 2003; 47 Ghaffari (b0070) 2017; 91 Park, Payne (b0155) 2011; 27 Gould, Tsai, Kleinfeld, Linninger (b0075) 2017; 37 Müller, Toro (b0140) 2014; 30 Alastruey (b0005) 2011; 44 Matthys (b0130) 2007; 40 Park, Payne (b0160) 2013; 3 Lee, Kashyap, Chu (b0120) 1994; 56 Chnafa, Brina, Pereira, Steinman (b0040) 2018; 39 Pedley (b0170) 1980 Zagzoule, Marc-Vergnes (b0225) 1986; 19 Hsu (b0100) 2017; 82 Enzmann, Pelc (b0045) 1993; 14 Liang, Fukasaku, Liu, Takagi (b0125) 2011; 10 Tangen, Leval, Mehta, Linninger (b0205) 2017; 124 Ghaffari (10.1016/j.jbiomech.2019.02.014_b0060) 2018; 34 Smith (10.1016/j.jbiomech.2019.02.014_b0185) 2002; 62 Zagzoule (10.1016/j.jbiomech.2019.02.014_b0225) 1986; 19 Hsu (10.1016/j.jbiomech.2019.02.014_b0105) 2017; 77 Park (10.1016/j.jbiomech.2019.02.014_b0155) 2011; 27 Tangen (10.1016/j.jbiomech.2019.02.014_b0205) 2017; 124 Alastruey (10.1016/j.jbiomech.2019.02.014_b0010) 2011; 44 Alastruey (10.1016/j.jbiomech.2019.02.014_b0020) 2012; 77 Hofman (10.1016/j.jbiomech.2019.02.014_b0095) 1995; 33 Gould (10.1016/j.jbiomech.2019.02.014_b0080) 2015; 22 Müller (10.1016/j.jbiomech.2019.02.014_b0140) 2014; 30 Ghaffari (10.1016/j.jbiomech.2019.02.014_b0070) 2017; 91 Lee (10.1016/j.jbiomech.2019.02.014_b0120) 1994; 56 Boileau (10.1016/j.jbiomech.2019.02.014_b0030) 2015; 31 Park (10.1016/j.jbiomech.2019.02.014_b0160) 2013; 3 Steele (10.1016/j.jbiomech.2019.02.014_b0190) 2011; 71 Hughes (10.1016/j.jbiomech.2019.02.014_b0115) 1973; 18 Enzmann (10.1016/j.jbiomech.2019.02.014_b0045) 1993; 14 Womersley (10.1016/j.jbiomech.2019.02.014_b0215) 1955; 127 Pedley (10.1016/j.jbiomech.2019.02.014_b0170) 1980 Ghaffari (10.1016/j.jbiomech.2019.02.014_b0065) 2018; 100 Sherwin (10.1016/j.jbiomech.2019.02.014_b0180) 2003; 47 Hartung (10.1016/j.jbiomech.2019.02.014_b0090) 2018; 14 Tangen (10.1016/j.jbiomech.2019.02.014_b0200) 2015; 48 Zhao (10.1016/j.jbiomech.2019.02.014_b0230) 2000; 18 Matthys (10.1016/j.jbiomech.2019.02.014_b0130) 2007; 40 Payne (10.1016/j.jbiomech.2019.02.014_b0165) 2004; 42 Chnafa (10.1016/j.jbiomech.2019.02.014_b0040) 2018; 39 Olufsen (10.1016/j.jbiomech.2019.02.014_b0145) 2000; 28 Cebral (10.1016/j.jbiomech.2019.02.014_b0035) 2005; 26 Huang (10.1016/j.jbiomech.2019.02.014_b0110) 2015; 31 Liang (10.1016/j.jbiomech.2019.02.014_b0125) 2011; 10 Blanco (10.1016/j.jbiomech.2019.02.014_b0025) 2012; 45 Gould (10.1016/j.jbiomech.2019.02.014_b0075) 2017; 37 Guan (10.1016/j.jbiomech.2019.02.014_b0085) 2016; 49 Valdez-Jasso (10.1016/j.jbiomech.2019.02.014_b0210) 2011; 39 Alastruey (10.1016/j.jbiomech.2019.02.014_b0015) 2007; 40 Stergiopulos (10.1016/j.jbiomech.2019.02.014_b0195) 1992; 25 Miekisz (10.1016/j.jbiomech.2019.02.014_b0135) 1963; 8 Hsu (10.1016/j.jbiomech.2019.02.014_b0100) 2017; 82 Olufsen (10.1016/j.jbiomech.2019.02.014_b0150) 1999; 276 Sherwin (10.1016/j.jbiomech.2019.02.014_b0175) 2003; 43 Xiao (10.1016/j.jbiomech.2019.02.014_b0220) 2014; 30 Alastruey (10.1016/j.jbiomech.2019.02.014_b0005) 2011; 44 Formaggia (10.1016/j.jbiomech.2019.02.014_b0055) 2003; 47 Evju (10.1016/j.jbiomech.2019.02.014_b0050) 2013; 46 |
References_xml | – year: 1980 ident: b0170 article-title: The Fluid Mechanics of Large Blood Vessels – volume: 39 start-page: 1438 year: 2011 end-page: 1456 ident: b0210 article-title: Linear and nonlinear viscoelastic modeling of aorta and carotid pressure-area dynamics under in vivo and ex vivo conditions publication-title: Ann. Biomed. Eng. – volume: 37 start-page: 52 year: 2017 end-page: 68 ident: b0075 article-title: The capillary bed offers the largest hemodynamic resistance to the cortical blood supply publication-title: J. Cereb. Blood Flow Metab. – volume: 27 start-page: 134 year: 2011 end-page: 144 ident: b0155 article-title: Nonlinear and viscous effects on wave propagation in an elastic axisymmetric vessel publication-title: J. Fluids Struct. – volume: 124 start-page: 1686 year: 2017 end-page: 1696 ident: b0205 article-title: Computational and in-vitro experimental investigation of intrathecal drug distribution – parametric study of the effect of injection volume, cerebrospinal fluid pulsatility, and drug uptake publication-title: Anesth. Analg. – volume: 44 start-page: 885 year: 2011 end-page: 891 ident: b0005 article-title: Numerical assessment of time-domain methods for the estimation of local arterial pulse wave speed publication-title: J. Biomech. – volume: 91 start-page: 353 year: 2017 end-page: 365 ident: b0070 article-title: Large-scale subject-specific cerebral arterial tree modeling using automated parametric mesh generation for blood flow simulation publication-title: Comput. Biol. Med. – volume: 3 start-page: 20120078 year: 2013 ident: b0160 article-title: A generalized mathematical framework for estimating the residue function for arbitrary vascular networks publication-title: Interf. Focus – volume: 47 start-page: 251 year: 2003 end-page: 276 ident: b0055 article-title: One-dimensional models for blood flow in arteries publication-title: J. Eng. Math. – volume: 127 start-page: 553 year: 1955 end-page: 563 ident: b0215 article-title: Method for the calculation of velocity, rate of flow and viscous drag ini arteries when the pressure gradient is known publication-title: J. Physiol. – volume: 47 start-page: 217 year: 2003 end-page: 250 ident: b0180 article-title: One-dimensional modelling of a vascular network in space-time variables publication-title: J. Eng. Math. – volume: 48 start-page: 2144 year: 2015 end-page: 2154 ident: b0200 article-title: CNS wide simulation of flow resistance and drug transport due to spinal microanatomy publication-title: J. Biomech. – volume: 22 start-page: 1 year: 2015 end-page: 18 ident: b0080 article-title: Hematocrit distribution and tissue oxygenation in large microcirculatory networks publication-title: Microcirculation – volume: 14 start-page: 1301 year: 1993 end-page: 1307 ident: b0045 article-title: Cerebrospinal fluid flow measured by phase-contrast cine MR publication-title: Am. J. Neuroradiol. – volume: 49 start-page: 1583 year: 2016 end-page: 1592 ident: b0085 article-title: Comparison of the Windkessel model and structured-tree model applied to prescribe outflow boundary conditions for a one-dimensional arterial tree model publication-title: J. Biomech. – volume: 14 start-page: e1006549 year: 2018 ident: b0090 article-title: Simulations of blood as a suspension predicts a depth dependent hematocrit in the circulation throughout the cerebral cortex publication-title: PLoS Comput. Biol. – volume: 82 start-page: 29 year: 2017 end-page: 39 ident: b0100 article-title: Gap-free segmentation of vascular networks with automatic image processing pipeline publication-title: Comput. Biol. Med. – volume: 77 start-page: 398 year: 2017 end-page: 410 ident: b0105 article-title: Automatic recognition of subject-specific cerebrovascular trees publication-title: Magn. Reson. Med. – volume: 31 start-page: e02732 year: 2015 ident: b0030 article-title: A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling publication-title: Int. J. Numer. Methods Biomed. Eng. – volume: 39 start-page: 337 year: 2018 end-page: 343 ident: b0040 article-title: Better than nothing: a rational approach for minimizing the impact of outflow strategy on cerebrovascular simulations publication-title: Am. J. Neuroradiol. – volume: 42 start-page: 799 year: 2004 end-page: 806 ident: b0165 article-title: Analysis of the effects of gravity and wall thickness in a model of blood flow through axisymmetric vessels publication-title: Med. Biol. Eng. Compu. – volume: 18 start-page: 697 year: 2000 end-page: 706 ident: b0230 article-title: Improved phase-contrast flow quantification by three-dimensional vessel localization publication-title: Magn. Reson. Imaging – volume: 8 start-page: 319 year: 1963 end-page: 324 ident: b0135 article-title: The flow and pressure in elastic tube publication-title: Phys. Med. Biol. – volume: 30 start-page: 681 year: 2014 end-page: 725 ident: b0140 article-title: A global multiscale mathematical model for the human circulation with emphasis on the venous system publication-title: Int. J. Numer. Methods Biomed. Eng. – volume: 62 start-page: 990 year: 2002 end-page: 1018 ident: b0185 article-title: An anatomically based model of transient coronary blood flow in the heart publication-title: SIAM J. Appl. Math. – volume: 26 start-page: 2550 year: 2005 end-page: 2559 ident: b0035 article-title: Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models publication-title: Am. J. Neuroradiol. – volume: 19 start-page: 1015 year: 1986 end-page: 1022 ident: b0225 article-title: A global mathematical model of the cerebral circulation in man publication-title: J. Biomech. – volume: 25 start-page: 1477 year: 1992 end-page: 1488 ident: b0195 article-title: Computer simulation of arterial flow with applications to arterial and aortic stenoses publication-title: J. Biomech. – volume: 40 start-page: 3476 year: 2007 end-page: 3486 ident: b0130 article-title: Pulse wave propagation in a model human arterial network: assessment of 1-D numerical simulations against in vitro measurements publication-title: J. Biomech. – volume: 31 start-page: e02701 year: 2015 ident: b0110 article-title: Simulation of one-dimensional blood flow in networks of human vessels using a novel TVD scheme publication-title: Int. J. Numer. Methods Biomed. Eng. – volume: 18 start-page: 161 year: 1973 end-page: 170 ident: b0115 article-title: On the one-dimensional theory of blood flow in the larger vessels publication-title: Math. Biosci. – volume: 71 start-page: 1123 year: 2011 end-page: 1143 ident: b0190 article-title: Predicting arterial flow and pressure dynamics using a 1D fluid dynamics model with a viscoelastic wall publication-title: SIAM J. Appl. Math. – volume: 44 start-page: 2250 year: 2011 end-page: 2258 ident: b0010 article-title: Pulse wave propagation in a model human arterial network: assessment of 1-D visco-elastic simulations against in vitro measurements publication-title: J. Biomech. – volume: 100 start-page: 209 year: 2018 end-page: 220 ident: b0065 article-title: Validation of parametric mesh generation for subject-specific cerebroarterial trees using modified Hausdorff distance metrics publication-title: Comput. Biol. Med. – volume: 43 start-page: 673 year: 2003 end-page: 700 ident: b0175 article-title: Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system publication-title: Int. J. Numer. Meth. Fluids – volume: 46 start-page: 2802 year: 2013 end-page: 2808 ident: b0050 article-title: A study of wall shear stress in 12 aneurysms with respct to different viscosity models and flow condtiions publication-title: J. Biomech. – volume: 56 start-page: 462 year: 1994 end-page: 478 ident: b0120 article-title: Building skeleton models via 3-D medial surface/asxis thinning algorithms publication-title: CVGIP: Graph Models Image Process. – volume: 30 start-page: 204 year: 2014 end-page: 231 ident: b0220 article-title: A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models publication-title: Int. J. Numer. Methods Biomed. Eng. – volume: 45 start-page: 2066 year: 2012 end-page: 2073 ident: b0025 article-title: Identification of vascular territory resistances in one-dimensional hemodynamics simulations publication-title: J. Biomech. – volume: 34 start-page: e2987 year: 2018 ident: b0060 article-title: Quantification of near-wall hemodynamic risk factors in large-scale cerebral arterial tree publication-title: Int. J. Numer. Methods Biomed. Eng. – volume: 40 start-page: 1794 year: 2007 end-page: 1805 ident: b0015 article-title: Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows publication-title: J. Biomech. – volume: 28 start-page: 1281 year: 2000 end-page: 1299 ident: b0145 article-title: Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions publication-title: Ann. Biomed. Eng. – volume: 77 start-page: 19 year: 2012 end-page: 37 ident: b0020 article-title: Physical determining factors of the arterial pulse waveform: theoretical analysis and calculation using the 1-D formulation publication-title: J. Eng. Math. – volume: 33 start-page: 778 year: 1995 end-page: 784 ident: b0095 article-title: In vivo validation of magnetic resonance blood volume flow measurements with limited spatial resolution in small vessels publication-title: Magn. Reson. Med. – volume: 10 start-page: 84 year: 2011 ident: b0125 article-title: A computational model study of the influence of the anatomy of the circle of Willis on cerebral hyperperfusion following carotid artery surgery publication-title: Biomed. Eng. Online – volume: 276 start-page: H257 year: 1999 end-page: H268 ident: b0150 article-title: Structured tree outflow condition for blood flow in larger systemic arteries publication-title: Am. J. Physiol. – volume: 30 start-page: 681 year: 2014 ident: 10.1016/j.jbiomech.2019.02.014_b0140 article-title: A global multiscale mathematical model for the human circulation with emphasis on the venous system publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.2622 – volume: 25 start-page: 1477 year: 1992 ident: 10.1016/j.jbiomech.2019.02.014_b0195 article-title: Computer simulation of arterial flow with applications to arterial and aortic stenoses publication-title: J. Biomech. doi: 10.1016/0021-9290(92)90060-E – volume: 42 start-page: 799 year: 2004 ident: 10.1016/j.jbiomech.2019.02.014_b0165 article-title: Analysis of the effects of gravity and wall thickness in a model of blood flow through axisymmetric vessels publication-title: Med. Biol. Eng. Compu. doi: 10.1007/BF02345213 – volume: 27 start-page: 134 year: 2011 ident: 10.1016/j.jbiomech.2019.02.014_b0155 article-title: Nonlinear and viscous effects on wave propagation in an elastic axisymmetric vessel publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2010.10.003 – volume: 47 start-page: 217 year: 2003 ident: 10.1016/j.jbiomech.2019.02.014_b0180 article-title: One-dimensional modelling of a vascular network in space-time variables publication-title: J. Eng. Math. doi: 10.1023/B:ENGI.0000007979.32871.e2 – volume: 40 start-page: 1794 year: 2007 ident: 10.1016/j.jbiomech.2019.02.014_b0015 article-title: Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2006.07.008 – volume: 3 start-page: 20120078 year: 2013 ident: 10.1016/j.jbiomech.2019.02.014_b0160 article-title: A generalized mathematical framework for estimating the residue function for arbitrary vascular networks publication-title: Interf. Focus doi: 10.1098/rsfs.2012.0078 – volume: 33 start-page: 778 year: 1995 ident: 10.1016/j.jbiomech.2019.02.014_b0095 article-title: In vivo validation of magnetic resonance blood volume flow measurements with limited spatial resolution in small vessels publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910330606 – volume: 82 start-page: 29 year: 2017 ident: 10.1016/j.jbiomech.2019.02.014_b0100 article-title: Gap-free segmentation of vascular networks with automatic image processing pipeline publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.01.012 – volume: 62 start-page: 990 year: 2002 ident: 10.1016/j.jbiomech.2019.02.014_b0185 article-title: An anatomically based model of transient coronary blood flow in the heart publication-title: SIAM J. Appl. Math. doi: 10.1137/S0036139999355199 – volume: 48 start-page: 2144 year: 2015 ident: 10.1016/j.jbiomech.2019.02.014_b0200 article-title: CNS wide simulation of flow resistance and drug transport due to spinal microanatomy publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.02.018 – volume: 44 start-page: 2250 year: 2011 ident: 10.1016/j.jbiomech.2019.02.014_b0010 article-title: Pulse wave propagation in a model human arterial network: assessment of 1-D visco-elastic simulations against in vitro measurements publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.05.041 – volume: 49 start-page: 1583 year: 2016 ident: 10.1016/j.jbiomech.2019.02.014_b0085 article-title: Comparison of the Windkessel model and structured-tree model applied to prescribe outflow boundary conditions for a one-dimensional arterial tree model publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2016.03.037 – volume: 91 start-page: 353 year: 2017 ident: 10.1016/j.jbiomech.2019.02.014_b0070 article-title: Large-scale subject-specific cerebral arterial tree modeling using automated parametric mesh generation for blood flow simulation publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.10.028 – volume: 77 start-page: 19 year: 2012 ident: 10.1016/j.jbiomech.2019.02.014_b0020 article-title: Physical determining factors of the arterial pulse waveform: theoretical analysis and calculation using the 1-D formulation publication-title: J. Eng. Math. doi: 10.1007/s10665-012-9555-z – volume: 14 start-page: 1301 year: 1993 ident: 10.1016/j.jbiomech.2019.02.014_b0045 article-title: Cerebrospinal fluid flow measured by phase-contrast cine MR publication-title: Am. J. Neuroradiol. – volume: 71 start-page: 1123 year: 2011 ident: 10.1016/j.jbiomech.2019.02.014_b0190 article-title: Predicting arterial flow and pressure dynamics using a 1D fluid dynamics model with a viscoelastic wall publication-title: SIAM J. Appl. Math. doi: 10.1137/100810186 – volume: 18 start-page: 697 year: 2000 ident: 10.1016/j.jbiomech.2019.02.014_b0230 article-title: Improved phase-contrast flow quantification by three-dimensional vessel localization publication-title: Magn. Reson. Imaging doi: 10.1016/S0730-725X(00)00157-0 – volume: 39 start-page: 337 year: 2018 ident: 10.1016/j.jbiomech.2019.02.014_b0040 article-title: Better than nothing: a rational approach for minimizing the impact of outflow strategy on cerebrovascular simulations publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A5484 – volume: 37 start-page: 52 year: 2017 ident: 10.1016/j.jbiomech.2019.02.014_b0075 article-title: The capillary bed offers the largest hemodynamic resistance to the cortical blood supply publication-title: J. Cereb. Blood Flow Metab. doi: 10.1177/0271678X16671146 – volume: 31 start-page: e02732 year: 2015 ident: 10.1016/j.jbiomech.2019.02.014_b0030 article-title: A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.2732 – volume: 276 start-page: H257 year: 1999 ident: 10.1016/j.jbiomech.2019.02.014_b0150 article-title: Structured tree outflow condition for blood flow in larger systemic arteries publication-title: Am. J. Physiol. – volume: 100 start-page: 209 year: 2018 ident: 10.1016/j.jbiomech.2019.02.014_b0065 article-title: Validation of parametric mesh generation for subject-specific cerebroarterial trees using modified Hausdorff distance metrics publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.07.004 – volume: 40 start-page: 3476 year: 2007 ident: 10.1016/j.jbiomech.2019.02.014_b0130 article-title: Pulse wave propagation in a model human arterial network: assessment of 1-D numerical simulations against in vitro measurements publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2007.05.027 – volume: 19 start-page: 1015 year: 1986 ident: 10.1016/j.jbiomech.2019.02.014_b0225 article-title: A global mathematical model of the cerebral circulation in man publication-title: J. Biomech. doi: 10.1016/0021-9290(86)90118-1 – volume: 31 start-page: e02701 year: 2015 ident: 10.1016/j.jbiomech.2019.02.014_b0110 article-title: Simulation of one-dimensional blood flow in networks of human vessels using a novel TVD scheme publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.2701 – volume: 124 start-page: 1686 year: 2017 ident: 10.1016/j.jbiomech.2019.02.014_b0205 article-title: Computational and in-vitro experimental investigation of intrathecal drug distribution – parametric study of the effect of injection volume, cerebrospinal fluid pulsatility, and drug uptake publication-title: Anesth. Analg. doi: 10.1213/ANE.0000000000002011 – volume: 43 start-page: 673 year: 2003 ident: 10.1016/j.jbiomech.2019.02.014_b0175 article-title: Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system publication-title: Int. J. Numer. Meth. Fluids doi: 10.1002/fld.543 – volume: 30 start-page: 204 year: 2014 ident: 10.1016/j.jbiomech.2019.02.014_b0220 article-title: A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.2598 – volume: 127 start-page: 553 year: 1955 ident: 10.1016/j.jbiomech.2019.02.014_b0215 article-title: Method for the calculation of velocity, rate of flow and viscous drag ini arteries when the pressure gradient is known publication-title: J. Physiol. doi: 10.1113/jphysiol.1955.sp005276 – year: 1980 ident: 10.1016/j.jbiomech.2019.02.014_b0170 – volume: 26 start-page: 2550 year: 2005 ident: 10.1016/j.jbiomech.2019.02.014_b0035 article-title: Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models publication-title: Am. J. Neuroradiol. – volume: 28 start-page: 1281 year: 2000 ident: 10.1016/j.jbiomech.2019.02.014_b0145 article-title: Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1326031 – volume: 8 start-page: 319 year: 1963 ident: 10.1016/j.jbiomech.2019.02.014_b0135 article-title: The flow and pressure in elastic tube publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/8/3/308 – volume: 46 start-page: 2802 year: 2013 ident: 10.1016/j.jbiomech.2019.02.014_b0050 article-title: A study of wall shear stress in 12 aneurysms with respct to different viscosity models and flow condtiions publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.09.004 – volume: 34 start-page: e2987 year: 2018 ident: 10.1016/j.jbiomech.2019.02.014_b0060 article-title: Quantification of near-wall hemodynamic risk factors in large-scale cerebral arterial tree publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.2987 – volume: 77 start-page: 398 year: 2017 ident: 10.1016/j.jbiomech.2019.02.014_b0105 article-title: Automatic recognition of subject-specific cerebrovascular trees publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26087 – volume: 10 start-page: 84 year: 2011 ident: 10.1016/j.jbiomech.2019.02.014_b0125 article-title: A computational model study of the influence of the anatomy of the circle of Willis on cerebral hyperperfusion following carotid artery surgery publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-10-84 – volume: 44 start-page: 885 year: 2011 ident: 10.1016/j.jbiomech.2019.02.014_b0005 article-title: Numerical assessment of time-domain methods for the estimation of local arterial pulse wave speed publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.12.002 – volume: 14 start-page: e1006549 year: 2018 ident: 10.1016/j.jbiomech.2019.02.014_b0090 article-title: Simulations of blood as a suspension predicts a depth dependent hematocrit in the circulation throughout the cerebral cortex publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006549 – volume: 18 start-page: 161 year: 1973 ident: 10.1016/j.jbiomech.2019.02.014_b0115 article-title: On the one-dimensional theory of blood flow in the larger vessels publication-title: Math. Biosci. doi: 10.1016/0025-5564(73)90027-8 – volume: 22 start-page: 1 year: 2015 ident: 10.1016/j.jbiomech.2019.02.014_b0080 article-title: Hematocrit distribution and tissue oxygenation in large microcirculatory networks publication-title: Microcirculation doi: 10.1111/micc.12156 – volume: 45 start-page: 2066 year: 2012 ident: 10.1016/j.jbiomech.2019.02.014_b0025 article-title: Identification of vascular territory resistances in one-dimensional hemodynamics simulations publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.06.002 – volume: 56 start-page: 462 year: 1994 ident: 10.1016/j.jbiomech.2019.02.014_b0120 article-title: Building skeleton models via 3-D medial surface/asxis thinning algorithms publication-title: CVGIP: Graph Models Image Process. – volume: 47 start-page: 251 year: 2003 ident: 10.1016/j.jbiomech.2019.02.014_b0055 article-title: One-dimensional models for blood flow in arteries publication-title: J. Eng. Math. doi: 10.1023/B:ENGI.0000007980.01347.29 – volume: 39 start-page: 1438 year: 2011 ident: 10.1016/j.jbiomech.2019.02.014_b0210 article-title: Linear and nonlinear viscoelastic modeling of aorta and carotid pressure-area dynamics under in vivo and ex vivo conditions publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-010-0236-7 |
SSID | ssj0007479 |
Score | 2.3319669 |
Snippet | A computationally inexpensive mathematical solution approach using orthogonal collocations for space discretization with temporal Fourier series is proposed to... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 37 |
SubjectTerms | Arteries - physiology Biomechanics Blood circulation Blood flow Blood Flow Velocity Blood vessels Cerebral arterial tree Cerebral blood flow Cerebrovascular Circulation - physiology Computer applications Computer Simulation Conflicts of interest Discretization Flow distribution Fluid-structure interaction Fourier series Hemodynamics Hemodynamics - physiology Humans Mathematical models Models, Cardiovascular One-dimensional blood flow Pulsatile flow Quantitative magnetic resonance angiography Robustness (mathematics) Simulation Spacetime Veins & arteries Viscoelasticity |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhhz4Opd20zbZpmULpzVm_ZNnHJTSEQntqIDchyTLZxWsv8S4hl_6V_tXOyLK7SygJ9Ghbg5HmoZHmmxnGPmuNZtGGJjAmivGAkkeoc0YERvDK8tSGqXHVPn9kF5fptyt-dcDOhlwYglV629_bdGet_ZuZX83ZerGgHF_UNgoDFu5YQBnlVP0LZfr011-YB7rLHuYRBTR6J0t4ebp0Oe4uKBEVrnZnlP5rg7rvgN7HUT7dNmt1d6vqemeTOn_JXnjvEub9BF6xA9tM2NG8wZP16g6-gMN7uov0CXu-U4pwwp5890H2I_Z73oB1lSXwh0D384Bmx9iA-tADpfFS5mOfvgl9B2pA1xe6raZLnYCSNwmABNd21ZZ9x3voFivfKKyDtgJjbyhiXYODlKIOgEPQQ1W3t0B3w_QfB67XtQWaKtAKqmZhutfs8vzrz7OLwPdxCAw6K5sAfTLkelHGNiyF5lZXoipFluZpqkVa4YkvNmmk4jg3XKGMCKVtERqexEbjcStL3rDDpm3sMQOtizIPjUIzEqdlkSkbqsSirCGnta3slPGBedL4IufUa6OWA5ptKQemS2K6DGOJTJ-y2Ui37st8PEghBtmQQxIrml2JO9GDlMVIuSfqj6I9GcRQemPTyZhwcTnncThln8bPaCYo9qMa225xDGoJut5C5FP2tpfacaJUFDITCU1pT57HAVSCfP9Ls7h2pcgzzkWSI2U4Sv4j1-_df6zCe_aMniioF-Un7HBzs7Uf0Dfc6I9O-f8AKf1oHw priority: 102 providerName: Elsevier – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9tAEB5SB3o89HB6uE3LFkrfZOvY1UqPpjSEQkMpNaRPQrtaEbvS2sQ2wf0z_audWR0kDSXJm81qMCN_OzM7880swAel0CwaX3taByEeUJIA95yWnpaiNIIbn2s37fMkPp7xL6fidA-CrhfGkfa1mo9tVY_t_MxxK1e1nnQ8sUkshIwSfg_2Y6opDWB_dvJt-rOhcgRe2uRVgkRGHroj_1JX8GK8cD3trggRpG5WZ8D_55CuB5zXeZMPtnaV7y7yqrrklI6ewPdOnYaL8mu83aix_v3PpMc76fsUHrchKps2S89gz9ghHEwtHs_rHfvIHGnUZeOH8OjSPMMh3P_aVuoP4M_UMuPGU6AWjJL8DG2XNh5dZs-oF5jaJ5seUNZcY80wfmbrraLMkEcdoMRiYmemXhY7m9f4eT2v29vG1mxZMm3OqexdMcdLxY3EHA2fldXyglGCmX7HMfRVZRi9P0Z_S27nev0cZkeff3w69trLIDyNEc_Gw8AOoZMWofELqYRRpSwLGfOEcyV5icfGUPMgD8NEixyBJnNlUl-LKNQKz2xx9AIGdmnNK2BKpUXi6xxtUciLNM6Nn0cGAYvuQZnSjEB0iMh0OymdLuyoso4St8g6JGWEpMwPM0TSCCa93KqZFXKjhOwAl3WdsGi7M3RnN0qmvWQbKzUx0K1kDztsZ63FWmchkesSIUJ_BO_7ZbQ1VEDKrVlu8RmM9jF-lzIZwctmK_SK0mTJWEak0pVN0j9Ac8yvriDc3TzzFuEj8PvtdMv39_ruIm_gIX2jgmCQHMJgc741bzGu3Kh3rSX5C8IVfVg priority: 102 providerName: Unpaywall |
Title | An efficient full space-time discretization method for subject-specific hemodynamic simulations of cerebral arterial blood flow with distensible wall mechanics |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929019301447 https://dx.doi.org/10.1016/j.jbiomech.2019.02.014 https://www.ncbi.nlm.nih.gov/pubmed/30876734 https://www.proquest.com/docview/2200185520 https://www.proquest.com/docview/2193163778 https://pubmed.ncbi.nlm.nih.gov/PMC6557384 https://www.ncbi.nlm.nih.gov/pmc/articles/6557384 |
UnpaywallVersion | submittedVersion |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Journals customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: AKRWK dateStart: 19680101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1873-2380 dateEnd: 20250803 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1873-2380 dateEnd: 20250803 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJvHxgKBjUBjVISHesiVpHCdPqKBNBUQ1ISqVpyh2HK1VmpSl1bQX_hX-Ve4cJ3SaYHvKg32ynDuff75Pxt5KiWpRu8pRyvPxgRJ5eOaUcJTgueaBdgNlqn1OwvE0-DzjM2twq21YZasTjaLOKkU28mOfgn8izn33_eqnQ12jyLtqW2jssD0PoQpJtZh1Dy6qDW9DPDwHR92tDOHF0cLktxuHhBebup1e8K_L6Sb4vBlD-WBTrtKry7Qoti6o0yfssUWWMGpE4Sm7p8se2x-V-KpeXsE7MLGexojeY4-2yhD22P2v1sG-z36PStCmqgQuCGSbB1Q5SjvUgx4ohZeyHpvUTWi6TwPCXqg3kgw6DiVuUvARnOtllTXd7qGeL22TsBqqHJS-IG91ASacFOUfTPQ85EV1CWQXpnVMYL0sNNBWgf5gWs5V_YxNT0--fxw7toeDoxCorB3EY8jxOPO1mwnJtcxFnokwiIJAiiDH156vAi_1_UjxFOVDpFLHruJDX0l8aoXDA7ZbVqV-wUDKOItclaIK8YMsDlPtpkONcoacljrXfcZb5iXKFjinPhtF0kayLZKW6QkxPXH9BJneZ8cd3aop8XErhWhlI2kTWFHlJngL3UoZd5QW4jTQ5U60h60YJlbR1MnfY9Fnb7phVBHk90lLXW1wDoJ0hN1CRH32vJHabqNUEDIUQ9rSNXnuJlD58esj5fzclCEPORfDCCndTvLv-P9e_n8nr9hDmkw-Oy86ZLvri41-jdBvLQds5-iXNzCnfMD2Rp--jCf4_XAyOfuG3-nkbPTjD0StY2U |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGkBg8IOiAFQYYCXgLcxwnTh4QqoCpY3-eNqlvIXYcrVWadEurqp-Gb8Bn5M75Q6cJtpe9RUouiX3n853v7neEvFcK1KJh2tHa5eCghC6sOS0dLf3M-MIwoS3a50kwPBM_Rv5og_xua2EwrbLViVZRp6XGM_I9jsk_oe9z9mV24WDXKIyuti00arE4NKsluGzV54NvwN8PnO9_P_06dJquAo6GrXPugIUA_xCl3LBUKt-oTGapDEQohJIiA_-Da-EmnIfaT-CPZaJMxLTvca3A-A88eO89cl94TCBWvxx1Dh5i0TcpJa4DZgdbq0iefJrYenobAHEjixPqin9thteN3es5m1uLYpaslkmer22I-0_I48aSpYNa9J6SDVP0yPagAC9-uqIfqc0ttYf2PfJoDfawRx4cNwH9bfJrUFBjUSzggxRjARRUnDYO9rynWDKMVZZ1qSitu11TMLNptVB4gORgoSgmO9FzMy3TVZFM4boaT5umZBUtM6rNJUbHc2rTV2G9UZutT7O8XFI8h8bv2ER-lRuKQ6U4g0kx1tUzcnYn3H1ONouyMDuEKhWlIdMJqCwu0ihIDEs8A3INnFYmM33it8yLdQOojn098rjNnJvELdNjZHrMeAxM75O9jm5WQ4rcSCFb2YjbgllQ8THsejdSRh1lY1LVptKtaHdbMYwbxVbFf5dhn7zrboNKwjhTUphyAc-AUwBmvpRhn7yopbYbKAJQBtLDIV2R5-4BhDu_eqcYn1vY88D3pRcCJesk_5bz9_L_I3lLtoanx0fx0cHJ4SvyEAkxXuiGu2Rzfrkwr8HsnKs3dq1T8vOulcsfVU6Z8w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGkAY8IOj4UxhgJOAta-LEcfKAUMWoNgYTD0zqW7AdR2uVJmVpVfXT8D34dNw5f-g0wfayt0jJJbHvfL7z_e6OkDdKgVo0rna09hg4KJEHa04LRwueGR4YN9C22udJeHgafB7z8Rb53ebCIKyy1YlWUaelxjPyAUPwT8Q5cwdZA4v4djD6MP_pYAcpjLS27TRqETk26xW4b9X7owPg9VvGRp--fzx0mg4DjoZtdOGAtQD_E6fMuKlQ3KhMZKkIgygIlAgy8EWYDjzJWKS5hL8XUpnY1dxnWoEjEPrw3lvktvADH-FkYtw5e1iXvoGXeA6YIO5GdvJ0f2pz620wxIttzVAv-NfGeNnwvYzfvLMs5nK9knm-sTmOHpD7jVVLh7UYPiRbpuiR3WEBHv1sTd9RizO1B_g9cm-jBGKP7Hxtgvu75NewoMZWtIAPUpx-CupOG2cxmRmK6cOYcVmnjdK68zUFk5tWS4WHSQ4mjSLwiZ6ZWZmuCzmD62oyaxqUVbTMqDbnGCnPqYWywtqjFrlPs7xcUTyTxu9YUL_KDcWhUpxBWUx09Yic3gh3H5PtoizMU0KVitPI1RLUFwvSOJTGlb4BGQdOK5OZPuEt8xLdFFfHHh950qLopknL9ASZnrgsAab3yaCjm9flRa6kEK1sJG3yLKj7BHbAKynjjrIxr2qz6Vq0e60YJo2Sq5K_S7JPXne3QT1hzEkWplzCM-AggMkvRNQnT2qp7QaKxShDWDswpAvy3D2Apc8v3ikmZ7YEesi58COgdDvJv-b8Pfv_SF6RHVAryZejk-Pn5C7SYejQi_bI9uJ8aV6ABbpQL-1Sp-THTeuWP3BUni4 |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9tAEB5SB3o89HB6uE3LFkrfZOvY1UqPpjSEQkMpNaRPQrtaEbvS2sQ2wf0z_audWR0kDSXJm81qMCN_OzM7880swAel0CwaX3taByEeUJIA95yWnpaiNIIbn2s37fMkPp7xL6fidA-CrhfGkfa1mo9tVY_t_MxxK1e1nnQ8sUkshIwSfg_2Y6opDWB_dvJt-rOhcgRe2uRVgkRGHroj_1JX8GK8cD3trggRpG5WZ8D_55CuB5zXeZMPtnaV7y7yqrrklI6ewPdOnYaL8mu83aix_v3PpMc76fsUHrchKps2S89gz9ghHEwtHs_rHfvIHGnUZeOH8OjSPMMh3P_aVuoP4M_UMuPGU6AWjJL8DG2XNh5dZs-oF5jaJ5seUNZcY80wfmbrraLMkEcdoMRiYmemXhY7m9f4eT2v29vG1mxZMm3OqexdMcdLxY3EHA2fldXyglGCmX7HMfRVZRi9P0Z_S27nev0cZkeff3w69trLIDyNEc_Gw8AOoZMWofELqYRRpSwLGfOEcyV5icfGUPMgD8NEixyBJnNlUl-LKNQKz2xx9AIGdmnNK2BKpUXi6xxtUciLNM6Nn0cGAYvuQZnSjEB0iMh0OymdLuyoso4St8g6JGWEpMwPM0TSCCa93KqZFXKjhOwAl3WdsGi7M3RnN0qmvWQbKzUx0K1kDztsZ63FWmchkesSIUJ_BO_7ZbQ1VEDKrVlu8RmM9jF-lzIZwctmK_SK0mTJWEak0pVN0j9Ac8yvriDc3TzzFuEj8PvtdMv39_ruIm_gIX2jgmCQHMJgc741bzGu3Kh3rSX5C8IVfVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+full+space-time+discretization+method+for+subject-specific+hemodynamic+simulations+of+cerebral+arterial+blood+flow+with+distensible+wall+mechanics&rft.jtitle=Journal+of+biomechanics&rft.au=Park%2C+Chang+Sub&rft.au=Alaraj%2C+Ali&rft.au=Du%2C+Xinjian&rft.au=Charbel%2C+Fady+T&rft.date=2019-04-18&rft.pub=Elsevier+Limited&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=87&rft.spage=37&rft_id=info:doi/10.1016%2Fj.jbiomech.2019.02.014&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |