Estimating distribution and abundance of wide‐ranging species with integrated spatial models: Opportunities revealed by the first wolf assessment in south‐central Italy

Estimating demographic parameters for wide‐ranging and elusive species living at low density is challenging, especially at the scale of an entire country. To produce wolf distribution and abundance estimates for the whole south‐central portion of the Italian wolf population, we developed an integrat...

Full description

Saved in:
Bibliographic Details
Published inEcology and evolution Vol. 14; no. 5; pp. e11285 - n/a
Main Authors Gervasi, Vincenzo, Aragno, Paola, Salvatori, Valeria, Caniglia, Romolo, De Angelis, Daniele, Fabbri, Elena, La Morgia, Valentina, Marucco, Francesca, Velli, Edoardo, Genovesi, Piero
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.05.2024
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text
ISSN2045-7758
2045-7758
DOI10.1002/ece3.11285

Cover

More Information
Summary:Estimating demographic parameters for wide‐ranging and elusive species living at low density is challenging, especially at the scale of an entire country. To produce wolf distribution and abundance estimates for the whole south‐central portion of the Italian wolf population, we developed an integrated spatial model, based on the data collected during a 7‐month sampling campaign in 2020–2021. Data collection comprised an extensive survey of wolf presence signs, and an intensive survey in 13 sampling areas, aimed at collecting non‐invasive genetic samples (NGS). The model comprised (i) a single‐season, multiple data‐source, multi‐event occupancy model and (ii) a spatially explicit capture‐recapture model. The information about species' absence was used to inform local density estimates. We also performed a simulation‐based assessment, to estimate the best conditions for optimizing sub‐sampling and population modelling in the future. The integrated spatial model estimated that 74.2% of the study area in south‐central Italy (95% CIs = 70.5% to 77.9%) was occupied by wolves, for a total extent of the wolf distribution of 108,534 km2 (95% CIs = 103,200 to 114,000). The estimate of total population size for the Apennine wolf population was of 2557 individuals (SD = 171.5; 95% CIs = 2127 to 2844). Simulations suggested that the integrated spatial model was associated with an average tendency to slightly underestimate population size. Also, the main contribution of the integrated approach was to increase precision in the abundance estimates, whereas it did not affect accuracy significantly. In the future, the area subject to NGS should be increased to at least 30%, while at least a similar proportion should be sampled for presence‐absence data, to further improve the accuracy of population size estimates and avoid the risk of underestimation. This approach could be applied to other wide‐ranging species and in other geographical areas, but specific a priori evaluations of model requirements and expected performance should be made. To produce wolf distribution and abundance estimates for the whole south‐central portion of the Italian wolf population, we developed an integrated spatial model, based on an occupancy and a spatially explicit capture‐recapture model. The estimate of total population size for the Apennine wolf population was of 2557 individuals (SD = 171.5; 95% CIs = 2127 to 2844). This approach could be applied to other wide‐ranging species and in other geographical areas, but specific a priori evaluations of model requirements and expected performance should be made.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-7758
2045-7758
DOI:10.1002/ece3.11285