感应电动机模型参数在线辨识的UKF算法

针对高阶非线性动态系统参数估计的非线性特征,介绍了无味卡尔曼滤波(UKF)算法。在给出了UKF的算法描述的基础上,从一般意义上讨论了无味变换(UF)仅用有限的参数来近似随机变量的概率统计特征,避免了传统的通过线性化来估计非线性系统而带来的误差,进而将该算法用于电力系统感应电动机动态负荷模型的参数估计。算例利用某电网同步相量测量(PMU)采集数据,利用所提算法实时跟踪模型参数,结果表明该算法能够实时有效地辨识出感应电动机负荷模型的参数,有望在实际工程中得到应用。...

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 40; no. 24; pp. 84 - 88
Main Author 杨自群 丁涛
Format Journal Article
LanguageChinese
Published 西藏职业技术学院,西藏拉萨850000 2012
东南大学电气工程学院,江苏南京210096%东南大学电气工程学院,江苏南京,210096
Subjects
Online AccessGet full text
ISSN1674-3415

Cover

Abstract 针对高阶非线性动态系统参数估计的非线性特征,介绍了无味卡尔曼滤波(UKF)算法。在给出了UKF的算法描述的基础上,从一般意义上讨论了无味变换(UF)仅用有限的参数来近似随机变量的概率统计特征,避免了传统的通过线性化来估计非线性系统而带来的误差,进而将该算法用于电力系统感应电动机动态负荷模型的参数估计。算例利用某电网同步相量测量(PMU)采集数据,利用所提算法实时跟踪模型参数,结果表明该算法能够实时有效地辨识出感应电动机负荷模型的参数,有望在实际工程中得到应用。
AbstractList TM71; 针对高阶非线性动态系统参数估计的非线性特征,介绍了无味卡尔曼滤波(UKF)算法.在给出了UKF的算法描述的基础上,从一般意义上讨论了无味变换(UF)仅用有限的参数来近似随机变量的概率统计特征,避免了传统的通过线性化来估计非线性系统而带来的误差,进而将该算法用于电力系统感应电动机动态负荷模型的参数估计.算例利用某电网同步相量测量(PMU)采集数据,利用所提算法实时跟踪模型参数,结果表明该算法能够实时有效地辨识出感应电动机负荷模型的参数,有望在实际工程中得到应用.
针对高阶非线性动态系统参数估计的非线性特征,介绍了无味卡尔曼滤波(UKF)算法。在给出了UKF的算法描述的基础上,从一般意义上讨论了无味变换(UF)仅用有限的参数来近似随机变量的概率统计特征,避免了传统的通过线性化来估计非线性系统而带来的误差,进而将该算法用于电力系统感应电动机动态负荷模型的参数估计。算例利用某电网同步相量测量(PMU)采集数据,利用所提算法实时跟踪模型参数,结果表明该算法能够实时有效地辨识出感应电动机负荷模型的参数,有望在实际工程中得到应用。
Author 杨自群 丁涛
AuthorAffiliation 西藏职业技术学院,西藏拉萨850000 东南大学电气工程学院,江苏南京210096
AuthorAffiliation_xml – name: 西藏职业技术学院,西藏拉萨850000;东南大学电气工程学院,江苏南京210096%东南大学电气工程学院,江苏南京,210096
Author_FL YANG Zi-qun
DING Tao
Author_FL_xml – sequence: 1
  fullname: YANG Zi-qun
– sequence: 2
  fullname: DING Tao
Author_xml – sequence: 1
  fullname: 杨自群 丁涛
BookMark eNotzT9Lw0AcxvEbKlhrX4TgGrh_vyQ3SrEqFlzaOVxydzVFLzZBxFWKgw4uLYIUi1smFcQlg76aJH0ZBur0LB-e7w5q2cTqFmoT1-MO4wS2UTfL4hBjRgBcX7QRq2arspjX8-_yIa-WRZW_la-P5dNdtfgsl3ld_K5_8vXHff0yG5326_fn6muxi7aMvMh09387aNg_HPaOncHZ0UnvYOBEANzxwWCNTeiBVpQJ4hnGPBAgDPeJoq42YaiYkr4rICIY-1JEzFAiFGCjsGYdtL-5vZHWSDsOJsl1aptgMFFTigmlHBPesL0Ni84TO57GDbxK40uZ3gacE1dQ7rE_TitdNA
ClassificationCodes TM71
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Unscented Kalman Filter algorithm for on-line identification of parameters of induction motor model
DocumentTitle_FL Unscented Kalman Filter algorithm for on-line identification of parameters of induction motor model
EndPage 88
ExternalDocumentID jdq201224014
44169247
GroupedDBID -03
2RA
5XA
5XD
92L
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CQIGP
GROUPED_DOAJ
U1G
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c554-85f0e0fb75ed23917f3375959f481d26efbbd3da8695c1008a9c3f219d50fd0e3
ISSN 1674-3415
IngestDate Thu May 29 03:55:48 EDT 2025
Wed Feb 14 10:44:27 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords 在线辨识
无味卡尔曼滤波
无味变换
非线性估计
感应电动机
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c554-85f0e0fb75ed23917f3375959f481d26efbbd3da8695c1008a9c3f219d50fd0e3
Notes YANG Zi-qun, DING Tao (1. Xizang Vocational and Technical College, Lasa 850000, China; 2. School of Electrical Engineering, Southeast University, Nanjing 210096, China)
Unscented Kalman Filter; unscented transformation; induction motor; on-line identification; nonlinear estimation
For the nonlinear characteristics of parameter estimation for high-order nonlinear dynamic systems, the Unscented Kalman Filter (UKF) algorithm is introduced. The UKF algorithm description is provided and the probability and statistics features of Unscented Transformation (UT) which uses limited parameters to approximate the random variables are discussed. Also, the error in the traditional estimation by linearization of nonlinear system is avoided. The algorithm is applied to the parameter estimation of induction motor dynamic load model in power systems. Results of case study clearly indicate that the algorithm can quickly and efficiently identify the parameters of this induction motor dynamic load model, and is expected to be imple
PageCount 5
ParticipantIDs wanfang_journals_jdq201224014
chongqing_primary_44169247
PublicationCentury 2000
PublicationDate 2012
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012
PublicationDecade 2010
PublicationTitle 电力系统保护与控制
PublicationTitleAlternate Relay
PublicationTitle_FL Power System Protection and Control
PublicationYear 2012
Publisher 西藏职业技术学院,西藏拉萨850000
东南大学电气工程学院,江苏南京210096%东南大学电气工程学院,江苏南京,210096
Publisher_xml – name: 西藏职业技术学院,西藏拉萨850000
– name: 东南大学电气工程学院,江苏南京210096%东南大学电气工程学院,江苏南京,210096
SSID ssib003155689
ssib017479473
ssib023166999
ssj0002912115
ssib051374514
ssib002424069
ssib036435463
Score 1.9662557
Snippet 针对高阶非线性动态系统参数估计的非线性特征,介绍了无味卡尔曼滤波(UKF)算法。在给出了UKF的算法描述的基础上,从一般意义上讨论了无味变换(UF)仅用有限的参数来近似...
TM71; 针对高阶非线性动态系统参数估计的非线性特征,介绍了无味卡尔曼滤波(UKF)算法.在给出了UKF的算法描述的基础上,从一般意义上讨论了无味变换(UF)仅用有限的参数来近似...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 84
SubjectTerms 在线辨识
感应电动机
无味卡尔曼滤波
无味变换
非线性估计
Title 感应电动机模型参数在线辨识的UKF算法
URI http://lib.cqvip.com/qk/90494A/201224/44169247.html
https://d.wanfangdata.com.cn/periodical/jdq201224014
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  issn: 1674-3415
  databaseCode: DOA
  dateStart: 20080101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0002912115
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27bhQx0DqlokEgQCQQlAKXi3bX79J72VMEguoipTvtMxHFhcClSRlFFKRIkwgJRSC6qwAJ0VwBX3N36fgFZrybvRWKxKOxvOPxeOzxemb8JOShULlMQyk8UB7C4yzDiSahPPDDtCpVotIUzzs_fSY3NvnjLbHV6fxs7VraH6WPsoMrz5X8j1QBBnLFU7L_INmGKAAgDvKFECQM4V_JmMaSak5Nj8aCRpYaTmOFYSQQoi21GnFMF1MhAp82wCQTUx05nB7VocMBCr5L6rpcCrNEQFnTKHYQyAvI0hVhodzNJz2M25gahRQiRquXLC-N3d-ZMZEjy2hURSLHOcdSzLqrCzDMHURTHTsIFK1cdmCjmUR0_K7XTGlgwTp6gMsXKBWVwHEG6FF7fiNY-MGuXqKuKVREuwjk092ahrE1b9qvG9O6BrfAAbSGocZQG0JfvYqUxHbWxkF84Fjj0xB-SxVIxT3Q8aKtK7jf-idC3hr5q4fuLm0IvVCvzabH5_le6BYyfffwOliGqjUFUJtLeBC5Nd7i_XDNN5jiUpqF-8jAmmy_ZiACprioV8XREgkNXuCHu3ibyuAVIju7w-09MIzcObVhmQy3WyZV_wa5XvtCa7bq2DdJ52DnFmGzow_Tyen89Nv0zXh2PpmNP07fH09PDmdnX6bn4_nkx8X38cXn1_N3R9AB55_ezr6e3Sb9Xtzvbnj1yx5eBuarp0XpF36ZKlHkITOBKhlTwghTcnCfQlmUMEKwPNHSiAxvn0pMxkrQrbnwy9wv2B2yNNwdFnfJWsa4SXOdJhmuV6sgyaENC8PTxC-SQGTLZKWp7-BFdYHLAFwAaUKulslq3QCD-q9-NWhLaeUP6ffINYxXM3L3ydLo5X6xCjbqKH3gBPsLLo1p0w
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%84%9F%E5%BA%94%E7%94%B5%E5%8A%A8%E6%9C%BA%E6%A8%A1%E5%9E%8B%E5%8F%82%E6%95%B0%E5%9C%A8%E7%BA%BF%E8%BE%A8%E8%AF%86%E7%9A%84UKF%E7%AE%97%E6%B3%95&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E6%9D%A8%E8%87%AA%E7%BE%A4&rft.au=%E4%B8%81%E6%B6%9B&rft.date=2012&rft.pub=%E8%A5%BF%E8%97%8F%E8%81%8C%E4%B8%9A%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E8%A5%BF%E8%97%8F%E6%8B%89%E8%90%A8850000&rft.issn=1674-3415&rft.volume=40&rft.issue=24&rft.spage=84&rft.epage=88&rft.externalDocID=jdq201224014
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90494A%2F90494A.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg