Predicting dementia development in Parkinson's disease using Bayesian network classifiers

Parkinson's disease (PD) has broadly been associated with mild cognitive impairment (PDMCI) and dementia (PDD). Researchers have studied surrogate, neuroanatomic biomarkers provided by magnetic resonance imaging (MRI) that may help in the early diagnosis of this condition. In this article, four...

Full description

Saved in:
Bibliographic Details
Published inPsychiatry research. Neuroimaging Vol. 213; no. 2; pp. 92 - 98
Main Authors Morales, Dinora A., Vives-Gilabert, Yolanda, Gómez-Ansón, Beatriz, Bengoetxea, Endika, Larrañaga, Pedro, Bielza, Concha, Pagonabarraga, Javier, Kulisevsky, Jaime, Corcuera-Solano, Idoia, Delfino, Manuel
Format Journal Article
LanguageEnglish
Published Shannon Elsevier Ireland Ltd 30.08.2013
Elsevier
Subjects
Online AccessGet full text
ISSN0925-4927
1872-7506
DOI10.1016/j.pscychresns.2012.06.001

Cover

More Information
Summary:Parkinson's disease (PD) has broadly been associated with mild cognitive impairment (PDMCI) and dementia (PDD). Researchers have studied surrogate, neuroanatomic biomarkers provided by magnetic resonance imaging (MRI) that may help in the early diagnosis of this condition. In this article, four classification models (naïve Bayes, multivariate filter-based naïve Bayes, filter selective naïve Bayes and support vector machines, SVM) have been applied to evaluate their capacity to discriminate between cognitively intact patients with Parkinson's disease (PDCI), PDMCI and PDD. For this purpose, the MRI studies of 45 subjects (16 PDCI, 15 PDMCI and 14 PDD) were acquired and post-processed with Freesurfer, obtaining 112 variables (volumes of subcortical structures and thickness of cortical parcels) per subject. A multivariate filter-based naïve Bayes model was found to be the best classifier, having the highest cross-validated sensitivity, specificity and accuracy. Additionally, the most relevant variables related to dementia in PD, as predicted by our classifiers, were cerebral white matter, and volumes of the lateral ventricles and hippocampi.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0925-4927
1872-7506
DOI:10.1016/j.pscychresns.2012.06.001