Joint solution for PET image segmentation, denoising, and partial volume correction

•Interactions among segmentation, denoising, and partial volume corrections have been utilized to improve solution of each of these problems for PET images.•Noise in PET imaging is modeled as mixed Poisson–Gaussian, as it is more realistic than the current standards.•Partial volume correction is sho...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 46; pp. 229 - 243
Main Authors Xu, Ziyue, Gao, Mingchen, Papadakis, Georgios Z., Luna, Brian, Jain, Sanjay, Mollura, Daniel J., Bagci, Ulas
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.05.2018
Elsevier BV
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8431
1361-8423
DOI10.1016/j.media.2018.03.007

Cover

Abstract •Interactions among segmentation, denoising, and partial volume corrections have been utilized to improve solution of each of these problems for PET images.•Noise in PET imaging is modeled as mixed Poisson–Gaussian, as it is more realistic than the current standards.•Partial volume correction is shown to improve when segmentation and noise information are incorporated into the proposed joint solution model.•Segmentation process gets benefit from denoising and partial volume correction step, leading to improved boundary definitions of lesions in PET images.•Extensive set of experiments (phantom, pre-clinical, and clinical) with PET, PET/CT, and PET/MRI validate the proposed algorithm’s performance. [Display omitted] Segmentation, denoising, and partial volume correction (PVC) are three major processes in the quantification of uptake regions in post-reconstruction PET images. These problems are conventionally addressed by independent steps. In this study, we hypothesize that these three processes are dependent; therefore, jointly solving them can provide optimal support for quantification of the PET images. To achieve this, we utilize interactions among these processes when designing solutions for each challenge. We also demonstrate that segmentation can help in denoising and PVC by locally constraining the smoothness and correction criteria. For denoising, we adapt generalized Anscombe transformation to Gaussianize the multiplicative noise followed by a new adaptive smoothing algorithm called regional mean denoising. For PVC, we propose a volume consistency-based iterative voxel-based correction algorithm in which denoised and delineated PET images guide the correction process during each iteration precisely. For PET image segmentation, we use affinity propagation (AP)-based iterative clustering method that helps the integration of PVC and denoising algorithms into the delineation process. Qualitative and quantitative results, obtained from phantoms, clinical, and pre-clinical data, show that the proposed framework provides an improved and joint solution for segmentation, denoising, and partial volume correction.
AbstractList Segmentation, denoising, and partial volume correction (PVC) are three major processes in the quantification of uptake regions in post-reconstruction PET images. These problems are conventionally addressed by independent steps. In this study, we hypothesize that these three processes are dependent; therefore, jointly solving them can provide optimal support for quantification of the PET images. To achieve this, we utilize interactions among these processes when designing solutions for each challenge. We also demonstrate that segmentation can help in denoising and PVC by locally constraining the smoothness and correction criteria. For denoising, we adapt generalized Anscombe transformation to Gaussianize the multiplicative noise followed by a new adaptive smoothing algorithm called regional mean denoising. For PVC, we propose a volume consistency-based iterative voxel-based correction algorithm in which denoised and delineated PET images guide the correction process during each iteration precisely. For PET image segmentation, we use affinity propagation (AP)-based iterative clustering method that helps the integration of PVC and denoising algorithms into the delineation process. Qualitative and quantitative results, obtained from phantoms, clinical, and pre-clinical data, show that the proposed framework provides an improved and joint solution for segmentation, denoising, and partial volume correction.
•Interactions among segmentation, denoising, and partial volume corrections have been utilized to improve solution of each of these problems for PET images.•Noise in PET imaging is modeled as mixed Poisson–Gaussian, as it is more realistic than the current standards.•Partial volume correction is shown to improve when segmentation and noise information are incorporated into the proposed joint solution model.•Segmentation process gets benefit from denoising and partial volume correction step, leading to improved boundary definitions of lesions in PET images.•Extensive set of experiments (phantom, pre-clinical, and clinical) with PET, PET/CT, and PET/MRI validate the proposed algorithm’s performance. [Display omitted] Segmentation, denoising, and partial volume correction (PVC) are three major processes in the quantification of uptake regions in post-reconstruction PET images. These problems are conventionally addressed by independent steps. In this study, we hypothesize that these three processes are dependent; therefore, jointly solving them can provide optimal support for quantification of the PET images. To achieve this, we utilize interactions among these processes when designing solutions for each challenge. We also demonstrate that segmentation can help in denoising and PVC by locally constraining the smoothness and correction criteria. For denoising, we adapt generalized Anscombe transformation to Gaussianize the multiplicative noise followed by a new adaptive smoothing algorithm called regional mean denoising. For PVC, we propose a volume consistency-based iterative voxel-based correction algorithm in which denoised and delineated PET images guide the correction process during each iteration precisely. For PET image segmentation, we use affinity propagation (AP)-based iterative clustering method that helps the integration of PVC and denoising algorithms into the delineation process. Qualitative and quantitative results, obtained from phantoms, clinical, and pre-clinical data, show that the proposed framework provides an improved and joint solution for segmentation, denoising, and partial volume correction.
Segmentation, denoising, and partial volume correction (PVC) are three major processes in the quantification of uptake regions in post-reconstruction PET images. These problems are conventionally addressed by independent steps. In this study, we hypothesize that these three processes are dependent; therefore, jointly solving them can provide optimal support for quantification of the PET images. To achieve this, we utilize interactions among these processes when designing solutions for each challenge. We also demonstrate that segmentation can help in denoising and PVC by locally constraining the smoothness and correction criteria. For denoising, we adapt generalized Anscombe transformation to Gaussianize the multiplicative noise followed by a new adaptive smoothing algorithm called regional mean denoising. For PVC, we propose a volume consistency-based iterative voxel-based correction algorithm in which denoised and delineated PET images guide the correction process during each iteration precisely. For PET image segmentation, we use affinity propagation (AP)-based iterative clustering method that helps the integration of PVC and denoising algorithms into the delineation process. Qualitative and quantitative results, obtained from phantoms, clinical, and pre-clinical data, show that the proposed framework provides an improved and joint solution for segmentation, denoising, and partial volume correction.Segmentation, denoising, and partial volume correction (PVC) are three major processes in the quantification of uptake regions in post-reconstruction PET images. These problems are conventionally addressed by independent steps. In this study, we hypothesize that these three processes are dependent; therefore, jointly solving them can provide optimal support for quantification of the PET images. To achieve this, we utilize interactions among these processes when designing solutions for each challenge. We also demonstrate that segmentation can help in denoising and PVC by locally constraining the smoothness and correction criteria. For denoising, we adapt generalized Anscombe transformation to Gaussianize the multiplicative noise followed by a new adaptive smoothing algorithm called regional mean denoising. For PVC, we propose a volume consistency-based iterative voxel-based correction algorithm in which denoised and delineated PET images guide the correction process during each iteration precisely. For PET image segmentation, we use affinity propagation (AP)-based iterative clustering method that helps the integration of PVC and denoising algorithms into the delineation process. Qualitative and quantitative results, obtained from phantoms, clinical, and pre-clinical data, show that the proposed framework provides an improved and joint solution for segmentation, denoising, and partial volume correction.
Author Mollura, Daniel J.
Luna, Brian
Jain, Sanjay
Papadakis, Georgios Z.
Gao, Mingchen
Xu, Ziyue
Bagci, Ulas
AuthorAffiliation a Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Science Department, National Institutes of Health (NIH), Bethesda, MD 20892
b University of California at Irvine, Irvine, CA
c Johns Hopkins University School of Medicine, Baltimore, MD
d University of Central Florida, Orlando, FL
AuthorAffiliation_xml – name: d University of Central Florida, Orlando, FL
– name: b University of California at Irvine, Irvine, CA
– name: a Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Science Department, National Institutes of Health (NIH), Bethesda, MD 20892
– name: c Johns Hopkins University School of Medicine, Baltimore, MD
Author_xml – sequence: 1
  givenname: Ziyue
  orcidid: 0000-0002-5728-6869
  surname: Xu
  fullname: Xu, Ziyue
  organization: Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Science Department, National Institutes of Health (NIH), Bethesda, MD 20892, USA
– sequence: 2
  givenname: Mingchen
  surname: Gao
  fullname: Gao, Mingchen
  organization: Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Science Department, National Institutes of Health (NIH), Bethesda, MD 20892, USA
– sequence: 3
  givenname: Georgios Z.
  orcidid: 0000-0003-4975-9942
  surname: Papadakis
  fullname: Papadakis, Georgios Z.
  organization: Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Science Department, National Institutes of Health (NIH), Bethesda, MD 20892, USA
– sequence: 4
  givenname: Brian
  orcidid: 0000-0001-6718-4551
  surname: Luna
  fullname: Luna, Brian
  organization: University of California at Irvine, Irvine, CA, USA
– sequence: 5
  givenname: Sanjay
  surname: Jain
  fullname: Jain, Sanjay
  organization: Johns Hopkins University School of Medicine, Baltimore, MD, USA
– sequence: 6
  givenname: Daniel J.
  surname: Mollura
  fullname: Mollura, Daniel J.
  organization: Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Science Department, National Institutes of Health (NIH), Bethesda, MD 20892, USA
– sequence: 7
  givenname: Ulas
  orcidid: 0000-0001-7379-6829
  surname: Bagci
  fullname: Bagci, Ulas
  email: bagci@ucf.edu, bagci@crcv.ucf.edu
  organization: University of Central Florida, Orlando, FL, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29627687$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URNuBX4CELLHpohP8ihMvQEJVoaBKIFHWluPH4FFiD3YyVf89DiktdAGsbOme795zzz0GByEGC8BzjCqMMH-1rQZrvKoIwm2FaIVQ8wgcYcrxumWEHtz9cX0IjnPeoqJgDD0Bh0Rw0vC2OQJfPkYfRphjP40-Buhigp_Pr6Af1MbCbDeDDaOaS6fQ2BB99mFzClUwcKfS6FUP94UdLNQxJatn5VPw2Kk-22e37wp8fXd-dXaxvvz0_sPZ28u1rms6rgVzAmnhhOk6gVgtjEGCG6o7onFtGqIbIRw1vOWtZbp2jWsd77RqGLFdp-kKsKXvFHbq5lr1vdylYjzdSIzknJHcyp8ZyTkjiagsCRTszYLtpq5UdVkwqXs0Ki__rAT_TW7iXnLUIlKsr8DJbYMUv082j3LwWdu-V8HGKZdhhDLERTPPevlAuo1TCiUVSTBGqBZYzA1f_O7ozsqvMxUBXQQ6xZyTdf-5qHhAab_csqzl-3-wrxfWlgPuvU0ya2-DLsL5ytJE_1f-B57l0Ow
CitedBy_id crossref_primary_10_1016_j_ejmp_2024_103303
crossref_primary_10_1109_ACCESS_2020_3040155
crossref_primary_10_1109_ACCESS_2021_3064926
crossref_primary_10_1097_RLU_0000000000003789
crossref_primary_10_48175_IJARSCT_17543
crossref_primary_10_1109_ACCESS_2022_3151361
crossref_primary_10_1109_TCBB_2023_3281638
crossref_primary_10_1016_j_compbiomed_2020_103669
crossref_primary_10_1109_TBME_2023_3297249
crossref_primary_10_1007_s11517_019_02094_8
crossref_primary_10_3390_photonics9010007
crossref_primary_10_1109_TRPMS_2021_3123537
crossref_primary_10_1109_JBHI_2020_3024563
crossref_primary_10_1016_j_media_2021_102226
crossref_primary_10_1016_j_yacr_2022_04_010
crossref_primary_10_1109_TRPMS_2019_2911597
crossref_primary_10_1002_mp_14024
crossref_primary_10_1055_s_0044_1795105
crossref_primary_10_1145_3548459
crossref_primary_10_1007_s12149_020_01550_y
crossref_primary_10_1002_acm2_13451
crossref_primary_10_1007_s00259_020_05167_1
crossref_primary_10_3390_app10041223
crossref_primary_10_1016_j_ejmp_2021_07_028
crossref_primary_10_1155_2023_3819587
Cites_doi 10.1088/0031-9155/61/22/7975
10.1088/0031-9155/57/21/R119
10.1126/science.1136800
10.1109/TMI.2004.825623
10.1109/TMI.2011.2180920
10.1109/TIP.2007.901238
10.1109/TMI.2016.2546227
10.1007/s10278-017-9983-4
10.1109/23.552745
10.1097/MNM.0b013e328155d154
10.1109/TMI.2013.2263388
10.1109/TAP.2009.2015832
10.1109/TIP.2008.924386
10.1109/TIP.2008.2001399
10.1109/TBME.2013.2288258
10.1007/s10278-013-9622-7
10.1088/0031-9155/60/15/6013
10.1118/1.4958186
10.1007/s00259-009-1065-5
10.1088/0031-9155/39/5/004
10.1016/j.neuroimage.2006.05.031
10.2140/pjm.1967.20.69
10.1109/TNS.2011.2108316
10.1109/TMI.2013.2292881
10.1016/j.neuroimage.2007.10.038
10.1016/j.compbiomed.2014.04.014
10.1088/0031-9155/53/10/009
10.1002/path.4432
10.2307/2332343
10.1016/j.compmedimag.2008.07.001
10.1118/1.2956713
10.1088/0031-9155/47/1/301
10.1088/0031-9155/54/24/009
10.1148/radiographics.19.3.g99ma33765
10.1007/s10851-013-0435-6
10.1118/1.2336500
10.1371/journal.pone.0081390
10.2967/jnumed.111.100354
10.2967/jnumed.106.035774
10.1109/TIP.2012.2202675
10.1016/j.neuroimage.2004.04.041
10.1097/00004728-197906000-00001
10.1109/TMI.2010.2076827
10.1016/j.media.2013.05.004
10.1007/s10278-012-9511-5
10.1007/s00259-011-1745-9
10.1016/j.patrec.2009.09.010
10.1088/0031-9155/56/21/009
10.2967/jnumed.107.041871
10.1109/TMI.2012.2211378
10.1088/0031-9155/56/20/004
10.1080/01621459.1985.10477119
10.1109/TMI.2009.2033991
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright Elsevier BV May 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier BV May 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.media.2018.03.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 243
ExternalDocumentID oai:pubmedcentral.nih.gov:6080255
PMC6080255
29627687
10_1016_j_media_2018_03_007
S1361841518300987
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL131829
– fundername: NIBIB NIH HHS
  grantid: R01 EB020539
– fundername: Intramural NIH HHS
  grantid: Z99 CL999999
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c553t-94f90c9f9dbb90459dd096d3cb2c15d72c799f3d6868e4c5f7f8f6bca742ebbc3
IEDL.DBID .~1
ISSN 1361-8415
1361-8423
1361-8431
IngestDate Sun Oct 26 04:10:48 EDT 2025
Tue Sep 30 16:55:42 EDT 2025
Mon Sep 29 05:37:35 EDT 2025
Tue Oct 07 06:55:21 EDT 2025
Mon Jul 21 06:03:07 EDT 2025
Thu Apr 24 22:58:26 EDT 2025
Wed Oct 29 21:21:58 EDT 2025
Fri Feb 23 02:28:19 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Regional means denoising
Partial volume correction
Segmentation
Affinity propagation
Denoising
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c553t-94f90c9f9dbb90459dd096d3cb2c15d72c799f3d6868e4c5f7f8f6bca742ebbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This research is partly supported by Center for Research in Computer Vision (CRCV); and the intramural research program of the National Institute of Allergy and Infectious Diseases (NIAID), NIH.
ORCID 0000-0001-7379-6829
0000-0001-6718-4551
0000-0002-5728-6869
0000-0003-4975-9942
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6080255
PMID 29627687
PQID 2110059195
PQPubID 2045428
PageCount 15
ParticipantIDs unpaywall_primary_10_1016_j_media_2018_03_007
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6080255
proquest_miscellaneous_2023406977
proquest_journals_2110059195
pubmed_primary_29627687
crossref_primary_10_1016_j_media_2018_03_007
crossref_citationtrail_10_1016_j_media_2018_03_007
elsevier_sciencedirect_doi_10_1016_j_media_2018_03_007
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2018
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Naqa, Low, Bradley, Vicic, Deasy (bib0050) 2006; 33
Bagci, Yao, Caban, Turkbey, Aras, Mollura (bib0011) 2011
Kerhet, Small, Quon, Riauka, Greiner, McEwan, Roa (bib0039) 2009; 5651
Zoran, Weiss (bib0072) 2009
Xu, Tsui (bib0066) 2009; 18
Harrison, Xu, George, Lu, Summers, Mollura (bib0034) 2017
Chatziioannou, Dahlbom (bib0019) 1994; 4
Salmon, Harmany, Deledalle, Willett (bib0053) 2014; 48
Boulanger, Kervrann, Bouthemy, Elbau, Sibarita, Salamero (bib0013) 2010; 29
Foster, Bagci, Xu, Dey, Luna, Bishai, Jain, Mollura (bib0031) 2014; 61
Kramer-Marek, Bernardo, Kiesewetter, Bagci, Kuban, Omer, Zielinski, Seidel, Choyke, Capala (bib0042) 2012; 53
Song, Bai, Han, Bhatia, Sun, Rockey, Bayouth, Buatti, Wu (bib0055) 2013; 32
Hsu, Liu, Chen (bib0036) 2008; 32
Akkus, Galimzianova, Hoogi, Rubin, Erickson (bib0001) 2017; 30
Erlandsson, Buvat, Pretorius, Thomas, Hutton (bib0028) 2012; 57
Hoffman, Huang, Phelps (bib0035) 1979; 3
Rousset, Ma, Evans (bib0051) 1998; 39
Baete, Nuyts, Laere, Paesschen, Ceyssens, Ceuninck, Gheysens, Kelles, den Eynden, Suetens, Dupont (bib0003) 2004; 23
Zhang, Fadili, Starck (bib0071) 2008; 17
Mansoor, Bagci, Mollura (bib0047) 2014
Gallivanone, Stefano, Grosso, Canevari, Gianolli, Messa, Gilardi, Castiglioni (bib0033) 2011; 58
Clark, Vendt, Smith, Freymann, Kirby, Koppel, Moore, Phillips, Maffitt, Pringle, Tarbox, Prior (bib0021) 2013; 26
Xu, Bagci, Udupa, Mollura (bib0068) 2015; 22
Rzeszotarski (bib0052) 1999; 19
Bagci, Udupa, Bai (bib0009) 2010; 31
Bagci, Bai (bib0005) 2007
Bagci, Udupa, Mendhiratta, Foster, Xu, Yao, Chen, Mollura (bib0010) 2013; 17
Somayajula, Panagiotou, Rangarajan, Li, Arridge, Leahy (bib0054) 2011; 30
Frey, Dueck (bib0032) 2007; 315
Barrett, Wilson, Tsui (bib0012) 1994; 39
Ding, Long, Zhang, Fessler (bib0026) 2016; 1001
Foster, Bagci, Mansoor, Xu, Mollura (bib0030) 2014; 50
Zaidi, Ruest, Schoenahl, Montandon (bib0070) 2006; 32
Kazantsev, Bousse, Pedemonte, Arridge, Hutton, Ourselin (bib0038) 2011
Liskowski, Krawiec (bib0045) 2016; 35
Bagci, Kramer-Marek, Mollura (bib0007) 2013; 3
Buades, Coll, Morel (bib0015) 2005; 2
Xia, Qi, Niu, Asma, Winkler, Wang (bib0065) 2015; 56 supplement
Tauber, Stute, Chau, Spiteri, Chalon, Guilloteau, Buvat (bib0057) 2011; 56
Tohka, Reilhac (bib0061) 2008; 39
Kotlarski (bib0041) 1967; 20
van Dalen, Hoffmann, Dicken, Vogel, Wiering, Ruers, Karssemeijer, Oyen (bib0024) 2007; 28
Makitalo, Foi (bib0046) 2013; 22
Wang, Qi (bib0064) 2012; 31
Li, Thorstad, Biehl, Laforest, Su, Shoghi, Donnelly, Low, Lu (bib0044) 2008; 35
Cheng-Liao, Qi (bib0020) 2011; 56
Dabov, Foi, Katkovnik, Egiazarian (bib0023) 2007; 16
Foi, Trimeche, Katkovnik, Egiazarian (bib0029) 2008; 17
Kirov, Piao, Schmidtlein (bib0040) 2008; 53
Thomas, Erlandsson, Modat, Thurfjell, Vandenberghe, Ourselin, Hutton (bib0059) 2011; 38
Baete, Nuyts, Paesschen, Suetens, Dupont (bib0004) 2004; 23
Chan, Fulton, Feng, Meikle (bib0017) 2009; 54
Anscombe (bib0002) 1948; 35
Bagci, Mollura (bib0008) 2013; 8151
Comtat, Kinahan, Fessler, Beyer, Townsend, Defrise, Michel (bib0022) 2002; 47
Mohy-ud Din, Karakatsanis, Lodge, Tang, Rahmim (bib0025) 2014
Chan, Liu, Grobshtein, Stacy, Sinusas, Liu (bib0018) 2013
Mohy ud Din, Karakatsanis, Willis, Tahari, F-Wong, Rahmim (bib0048) 2015; 2
Chan, Fulton, Barnett, Feng, Meikle (bib0016) 2014; 33
Soret, Bacharach, Buvat (bib0056) 2007; 48
Yang, Huang, Mega, Lin, Toga, Small, Phelps (bib0069) 1996; 43
Mohy ud Din, Lodge, Rahmim (bib0049) 2015; 60
Boussion, Cheze Le Rest, Hatt, Visvikis (bib0014) 2009; 36
Dutta, Leahy, Li (bib0027) 2013; 8
Turkheimer, Boussion, Anderson, Pavese, Piccini, Visvikis (bib0062) 2008; 49
Thomas, Cuplov, Bousse, Mendes, Thielemans, Hutton, Erlandsson (bib0060) 2016; 61
Ibragimov, Pernus, Strojan, Xing (bib0037) 2016; 43
Vardi, Shepp, Kaufman (bib0063) 1985; 80
Bagci, Chen, Udupa (bib0006) 2012; 31
Kbler, Luna, Larsson, Ammerman, Andrade, Orandle, Bock, Xu, Bagci, Mollura, Marshall, Burns, Winglee, Ahidjo, Cheung, Klunk, Jain, Kumar, Babu, Sher, Friedland, Elkington, Bishai (bib0043) 2015; 235
Teymurazyan, Riauka, Jans, Robinson (bib0058) 2013; 26
Xu, Bagci, Seidel, Thomasson, Solomon, Mollura (bib0067) 2014; 8673
Makitalo (10.1016/j.media.2018.03.007_bib0046) 2013; 22
Baete (10.1016/j.media.2018.03.007_bib0004) 2004; 23
Erlandsson (10.1016/j.media.2018.03.007_bib0028) 2012; 57
Chatziioannou (10.1016/j.media.2018.03.007_bib0019) 1994; 4
Wang (10.1016/j.media.2018.03.007_bib0064) 2012; 31
Chan (10.1016/j.media.2018.03.007_bib0018) 2013
Barrett (10.1016/j.media.2018.03.007_bib0012) 1994; 39
Xu (10.1016/j.media.2018.03.007_bib0067) 2014; 8673
Bagci (10.1016/j.media.2018.03.007_bib0011) 2011
Li (10.1016/j.media.2018.03.007_bib0044) 2008; 35
Kazantsev (10.1016/j.media.2018.03.007_bib0038) 2011
Boussion (10.1016/j.media.2018.03.007_bib0014) 2009; 36
Xia (10.1016/j.media.2018.03.007_sbref0065) 2015; 56 supplement
Dutta (10.1016/j.media.2018.03.007_bib0027) 2013; 8
Hsu (10.1016/j.media.2018.03.007_bib0036) 2008; 32
Zaidi (10.1016/j.media.2018.03.007_bib0070) 2006; 32
Chan (10.1016/j.media.2018.03.007_bib0017) 2009; 54
Teymurazyan (10.1016/j.media.2018.03.007_bib0058) 2013; 26
Bagci (10.1016/j.media.2018.03.007_bib0009) 2010; 31
Cheng-Liao (10.1016/j.media.2018.03.007_bib0020) 2011; 56
Kirov (10.1016/j.media.2018.03.007_bib0040) 2008; 53
Baete (10.1016/j.media.2018.03.007_bib0003) 2004; 23
Foster (10.1016/j.media.2018.03.007_bib0030) 2014; 50
Liskowski (10.1016/j.media.2018.03.007_bib0045) 2016; 35
Foi (10.1016/j.media.2018.03.007_bib0029) 2008; 17
Zhang (10.1016/j.media.2018.03.007_bib0071) 2008; 17
Akkus (10.1016/j.media.2018.03.007_bib0001) 2017; 30
Anscombe (10.1016/j.media.2018.03.007_sbref0002) 1948; 35
Hoffman (10.1016/j.media.2018.03.007_bib0035) 1979; 3
Ibragimov (10.1016/j.media.2018.03.007_sbref0037) 2016; 43
Ding (10.1016/j.media.2018.03.007_bib0026) 2016; 1001
Soret (10.1016/j.media.2018.03.007_bib0056) 2007; 48
Naqa (10.1016/j.media.2018.03.007_bib0050) 2006; 33
Xu (10.1016/j.media.2018.03.007_bib0068) 2015; 22
Comtat (10.1016/j.media.2018.03.007_bib0022) 2002; 47
Thomas (10.1016/j.media.2018.03.007_bib0059) 2011; 38
Thomas (10.1016/j.media.2018.03.007_bib0060) 2016; 61
Boulanger (10.1016/j.media.2018.03.007_bib0013) 2010; 29
Buades (10.1016/j.media.2018.03.007_bib0015) 2005; 2
Xu (10.1016/j.media.2018.03.007_bib0066) 2009; 18
Song (10.1016/j.media.2018.03.007_bib0055) 2013; 32
Bagci (10.1016/j.media.2018.03.007_bib0007) 2013; 3
Chan (10.1016/j.media.2018.03.007_bib0016) 2014; 33
Somayajula (10.1016/j.media.2018.03.007_bib0054) 2011; 30
Yang (10.1016/j.media.2018.03.007_bib0069) 1996; 43
Kotlarski (10.1016/j.media.2018.03.007_bib0041) 1967; 20
Vardi (10.1016/j.media.2018.03.007_bib0063) 1985; 80
Bagci (10.1016/j.media.2018.03.007_bib0005) 2007
Zoran (10.1016/j.media.2018.03.007_bib0072) 2009
Tauber (10.1016/j.media.2018.03.007_bib0057) 2011; 56
Gallivanone (10.1016/j.media.2018.03.007_bib0033) 2011; 58
Foster (10.1016/j.media.2018.03.007_bib0031) 2014; 61
Mansoor (10.1016/j.media.2018.03.007_bib0047) 2014
van Dalen (10.1016/j.media.2018.03.007_bib0024) 2007; 28
Kbler (10.1016/j.media.2018.03.007_bib0043) 2015; 235
Tohka (10.1016/j.media.2018.03.007_bib0061) 2008; 39
Turkheimer (10.1016/j.media.2018.03.007_bib0062) 2008; 49
Dabov (10.1016/j.media.2018.03.007_bib0023) 2007; 16
Rzeszotarski (10.1016/j.media.2018.03.007_bib0052) 1999; 19
Kerhet (10.1016/j.media.2018.03.007_bib0039) 2009; 5651
Clark (10.1016/j.media.2018.03.007_bib0021) 2013; 26
Harrison (10.1016/j.media.2018.03.007_bib0034) 2017
Mohy ud Din (10.1016/j.media.2018.03.007_bib0049) 2015; 60
Bagci (10.1016/j.media.2018.03.007_bib0008) 2013; 8151
Bagci (10.1016/j.media.2018.03.007_bib0006) 2012; 31
Rousset (10.1016/j.media.2018.03.007_bib0051) 1998; 39
Salmon (10.1016/j.media.2018.03.007_bib0053) 2014; 48
Bagci (10.1016/j.media.2018.03.007_bib0010) 2013; 17
Mohy ud Din (10.1016/j.media.2018.03.007_bib0048) 2015; 2
Frey (10.1016/j.media.2018.03.007_bib0032) 2007; 315
Mohy-ud Din (10.1016/j.media.2018.03.007_sbref0025) 2014
Kramer-Marek (10.1016/j.media.2018.03.007_bib0042) 2012; 53
References_xml – volume: 2
  start-page: 60
  year: 2005
  end-page: 65
  ident: bib0015
  article-title: A non-local algorithm for image denoising
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– start-page: 130
  year: 2014
  end-page: 137
  ident: bib0047
  article-title: Optimally Stabilized Pet Image Denoising Using Trilateral Filtering
  publication-title: Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014
– volume: 48
  start-page: 932
  year: 2007
  end-page: 945
  ident: bib0056
  article-title: Partial-volume effect in pet tumor imaging
  publication-title: J. Nucl. Med.
– start-page: 305
  year: 2007
  end-page: 312
  ident: bib0005
  article-title: Multiresolution elastic medical image registration in standard intensity scale
  publication-title: Proceedings of the XX Brazilian Symposium on Computer Graphics and Image Processing, 2007. SIBGRAPI 2007
– volume: 48
  start-page: 279
  year: 2014
  end-page: 294
  ident: bib0053
  article-title: Poisson noise reduction with non-local PCA
  publication-title: J. Math. Imaging Vis
– volume: 8
  start-page: 1
  year: 2013
  end-page: 15
  ident: bib0027
  article-title: Non-local means denoising of dynamic pet images
  publication-title: PLoS ONE
– volume: 315
  start-page: 972
  year: 2007
  end-page: 976
  ident: bib0032
  article-title: Clustering by passing messages between data points
  publication-title: Science
– volume: 60
  start-page: 6013
  year: 2015
  ident: bib0049
  article-title: Quantitative myocardial perfusion pet parametric imaging at the voxel-level
  publication-title: Phys Med Biol
– volume: 28
  start-page: 485
  year: 2007
  end-page: 493
  ident: bib0024
  article-title: A novel iterative method for lesion delineation and volumetric quantification with FDG PET
  publication-title: Nucl. Med. Commun.
– volume: 20
  start-page: 69
  year: 1967
  end-page: 76
  ident: bib0041
  article-title: On characterizing the gamma and the normal distribution
  publication-title: Pacific J. Math.
– volume: 43
  start-page: 3322
  year: 1996
  end-page: 3327
  ident: bib0069
  article-title: Investigation of partial volume correction methods for brain fdg pet studies
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 61
  start-page: 7975
  year: 2016
  ident: bib0060
  article-title: Petpvc: a toolbox for performing partial volume correction techniques in positron emission tomography
  publication-title: Phys. Med. Biol.
– volume: 35
  start-page: 2369
  year: 2016
  end-page: 2380
  ident: bib0045
  article-title: Segmenting retinal blood vessels with deep neural networks
  publication-title: IEEE Trans Med Imaging
– volume: 19
  start-page: 765
  year: 1999
  end-page: 782
  ident: bib0052
  article-title: The AAPM/RSNA physics tutorial for residents
  publication-title: Radiographics
– volume: 235
  start-page: 431
  year: 2015
  end-page: 444
  ident: bib0043
  article-title: Mycobacterium tuberculosis dysregulates MMP/TIMP balance to drive rapid cavitation and unrestrained bacterial proliferation
  publication-title: J. Pathol.
– volume: 23
  start-page: 305
  year: 2004
  end-page: 317
  ident: bib0003
  article-title: Evaluation of anatomy based reconstruction for partial volume correction in brain FDG-pet
  publication-title: Neuroimage
– volume: 36
  start-page: 1064
  year: 2009
  end-page: 1075
  ident: bib0014
  article-title: Incorporation of wavelet-based denoising in iterative deconvolution for partial volume correction in whole-body pet imaging
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 1001
  start-page: 48109
  year: 2016
  ident: bib0026
  article-title: Modeling mixed poisson-gaussian noise in statistical image reconstruction for x-ray ct
  publication-title: Arbor
– volume: 35
  start-page: 3711
  year: 2008
  end-page: 3721
  ident: bib0044
  article-title: A novel PET tumor delineation method based on adaptive region-growing and dual-front active contours
  publication-title: Med. Phys.
– volume: 17
  start-page: 1093
  year: 2008
  end-page: 1108
  ident: bib0071
  article-title: Wavelets, ridgelets, and curvelets for poisson noise removal
  publication-title: IEEE Trans. Image Process.
– volume: 18
  start-page: 1228
  year: 2009
  end-page: 1238
  ident: bib0066
  article-title: Electronic noise modeling in statistical iterative reconstruction
  publication-title: IEEE Trans. Image Process.
– volume: 22
  start-page: 15
  year: 2015
  end-page: 24
  ident: bib0068
  article-title: Fuzzy Connectedness Image Co-segmentation for Hybrid PET/MRI and PET/CT Scans
  publication-title: Computational Methods for Molecular Imaging
– volume: 56 supplement
  year: 2015
  ident: bib0065
  article-title: Quantitative comparison of anisotropic diffusion, non-local means and gaussian post-filtering effects on FDG-pet lesions
  publication-title: J. Nucl. Med.
– volume: 43
  year: 2016
  ident: bib0037
  article-title: Machine-learning based segmentation of organs at risks for head and neck radiotherapy planning
  publication-title: Med Phys
– volume: 58
  start-page: 736
  year: 2011
  end-page: 747
  ident: bib0033
  article-title: PVE Correction in PET-CT whole-body oncological studies from PVE-affected images
  publication-title: IEEE Trans. Nuclear Sci.
– volume: 38
  start-page: 1104
  year: 2011
  end-page: 1119
  ident: bib0059
  article-title: The importance of appropriate partial volume correction for PET quantification in alzheimerâs disease
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 8151
  start-page: 115
  year: 2013
  end-page: 122
  ident: bib0008
  article-title: Denoising PET Images Using Singular Value Thresholding and Stein’s Unbiased Risk Estimate
  publication-title: Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI
– volume: 47
  start-page: 1
  year: 2002
  ident: bib0022
  article-title: Clinically feasible reconstruction of 3d whole-body pet/ct data using blurred anatomical labels
  publication-title: Phys. Med. Biol.
– start-page: 2209
  year: 2009
  end-page: 2216
  ident: bib0072
  article-title: Scale invariance and noise in natural images
  publication-title: Proceedings of the IEEE International Conference Computer Vision
– volume: 50
  start-page: 76
  year: 2014
  end-page: 96
  ident: bib0030
  article-title: A review on segmentation of positron emission tomography images
  publication-title: Comput. Biol. Med.
– volume: 26
  start-page: 447
  year: 2013
  end-page: 456
  ident: bib0058
  article-title: Properties of noise in positron emission tomography images reconstructed with filtered-backprojection and row-action maximum likelihood algorithm
  publication-title: J. Digit Imaging
– volume: 22
  start-page: 91
  year: 2013
  end-page: 103
  ident: bib0046
  article-title: Optimal inversion of the generalized anscombe transformation for poisson-gaussian noise
  publication-title: IEEE Trans. Image Process.
– start-page: 621
  year: 2017
  end-page: 629
  ident: bib0034
  article-title: Progressive and multi-path holistically nested neural networks for pathological lung segmentation from ct images
  publication-title: Proceedings of the 20th International Conference on Medical Image Computing and Computer-Assisted Intervention âMICCAI 2017: Quebec City, QC, Canada, September 11–13, 2017
– volume: 17
  start-page: 929
  year: 2013
  end-page: 945
  ident: bib0010
  article-title: Joint segmentation of anatomical and functional images: applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images
  publication-title: Med. Image Anal.
– start-page: 8479
  year: 2011
  end-page: 8482
  ident: bib0011
  article-title: A graph-theoretic approach for segmentation of PET images
  publication-title: Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC
– start-page: 1158
  year: 2011
  end-page: 1161
  ident: bib0038
  article-title: Edge preserving bowsher prior with nonlocal weighting for 3d spect reconstruction
  publication-title: Proceedings of the 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro
– volume: 32
  start-page: 1591
  year: 2006
  end-page: 1607
  ident: bib0070
  article-title: Comparative assessment of statistical brain {MR} image segmentation algorithms and their impact on partial volume correction in PET
  publication-title: Neuroimage
– volume: 16
  start-page: 2080
  year: 2007
  end-page: 2095
  ident: bib0023
  article-title: Image denoising by sparse 3-d transform-domain collaborative filtering
  publication-title: IEEE Trans. Image Process.
– volume: 53
  start-page: 2577
  year: 2008
  ident: bib0040
  article-title: Partial volume effect correction in pet using regularized iterative deconvolution with variance control based on local topology
  publication-title: Phys. Med. Biol.
– volume: 31
  start-page: 315
  year: 2010
  end-page: 323
  ident: bib0009
  article-title: The role of intensity standardization in medical image registration
  publication-title: Pattern Recognit. Lett.
– volume: 31
  start-page: 2194
  year: 2012
  end-page: 2204
  ident: bib0064
  article-title: Penalized likelihood pet image reconstruction using patch-based edge-preserving regularization
  publication-title: IEEE Trans. Med. Imaging
– volume: 32
  start-page: 601
  year: 2008
  end-page: 610
  ident: bib0036
  article-title: Automatic segmentation of liver PET images
  publication-title: Comput. Med. Imaging and Graph.
– volume: 8673
  start-page: 698
  year: 2014
  end-page: 705
  ident: bib0067
  article-title: Segmentation based denoising of PET images: an iterative approach via regional means and affinity propagation
  publication-title: Proceedings of the MICCAI 2014
– volume: 35
  start-page: 246
  year: 1948
  end-page: 254
  ident: bib0002
  article-title: The transformation of poisson, binomial and negative-binomial data
  publication-title: Biometrika
– volume: 26
  start-page: 1045
  year: 2013
  end-page: 1057
  ident: bib0021
  article-title: The cancer imaging archive (tcia): maintaining and operating a public information repository
  publication-title: J. Digit Imaging
– volume: 2
  start-page: 60
  year: 2015
  end-page: 72
  ident: bib0048
  article-title: Intra-frame motion compensation in multi-frame brain pet imaging
  publication-title: Frontiers Biomed. Technol.
– volume: 3
  year: 1979
  ident: bib0035
  article-title: Quantitation in positron emission computed tomography: 1. Effect of object size.
  publication-title: J. Comput. Assist. Tomogr.
– year: 2014
  ident: bib0025
  article-title: Parametric myocardial perfusion pet imaging using physiological clustering
  publication-title: SPIE Medical Imaging
– volume: 5651
  start-page: 146
  year: 2009
  end-page: 155
  ident: bib0039
  article-title: Segmentation of Lung Tumours in Positron Emission Tomography Scans: A Machine Learning Approach
  publication-title: Proceedings of the Artificial Intelligence in Medicine
– start-page: 1
  year: 2013
  end-page: 6
  ident: bib0018
  article-title: Simultaneous partial volume correction and noise regularization for cardiac spect/ct
  publication-title: Proceedings of the Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)
– volume: 39
  start-page: 904
  year: 1998
  end-page: 911
  ident: bib0051
  article-title: Correction for partial volume effects in PET: principle and validation
  publication-title: J. Nucl. Med.
– volume: 30
  start-page: 449
  year: 2017
  end-page: 459
  ident: bib0001
  article-title: Deep learning for brain MRI segmentation: state of the art and future directions
  publication-title: J. Digit Imaging
– volume: 30
  start-page: 537
  year: 2011
  end-page: 549
  ident: bib0054
  article-title: Pet image reconstruction using information theoretic anatomical priors
  publication-title: IEEE Trans. Med Imaging
– volume: 31
  start-page: 777
  year: 2012
  end-page: 789
  ident: bib0006
  article-title: Hierarchical scale-based multiobject recognition of 3-d anatomical structures
  publication-title: IEEE Trans. Medical Imaging
– volume: 4
  start-page: 1568
  year: 1994
  end-page: 1572
  ident: bib0019
  article-title: Detailed investigation of transmission and emission data smoothing protocols and their effects on emission images
  publication-title: Proceedings of the 1994 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference, 1994
– volume: 80
  start-page: 8
  year: 1985
  end-page: 20
  ident: bib0063
  article-title: A statistical model for positron emission tomography
  publication-title: J. Am. Stat. Assoc.
– volume: 54
  start-page: 7379
  year: 2009
  ident: bib0017
  article-title: Regularized image reconstruction with an anatomically adaptive prior for positron emission tomography
  publication-title: Phys. Med. Biol.
– volume: 39
  start-page: 833
  year: 1994
  ident: bib0012
  article-title: Noise properties of the em algorithm. I. Theory
  publication-title: Phys. Med. Biol.
– volume: 33
  start-page: 3587
  year: 2006
  end-page: 3600
  ident: bib0050
  article-title: Deblurring of breathing motion artifacts in thoracic pet images by deconvolution methods
  publication-title: Med. Phys.
– volume: 3
  start-page: 1
  year: 2013
  end-page: 13
  ident: bib0007
  article-title: Automated computer quantification of breast cancer in small-animal models using pet-guided mr image co-segmentation
  publication-title: EJNMMI Res.
– volume: 32
  start-page: 1685
  year: 2013
  end-page: 1697
  ident: bib0055
  article-title: Optimal co-segmentation of tumor in PET-CT images with context information
  publication-title: IEEE Trans. Medical Imag.
– volume: 56
  start-page: 65
  year: 2011
  end-page: 83
  ident: bib0057
  article-title: Spatio-temporal diffusion of dynamic PET images
  publication-title: Phys. Med. Biol.
– volume: 29
  start-page: 442
  year: 2010
  end-page: 454
  ident: bib0013
  article-title: Patch-based nonlocal functional for denoising fluorescence microscopy image sequences
  publication-title: IEEE Trans. Med. Imaging
– volume: 56
  start-page: 6899
  year: 2011
  ident: bib0020
  article-title: Pet image reconstruction with anatomical edge guided level set prior
  publication-title: Phys. Med. Biol.
– volume: 49
  start-page: 657
  year: 2008
  end-page: 666
  ident: bib0062
  article-title: PET Image denoising using a synergistic multiresolution analysis of structural (MRI/CT) and functional datasets
  publication-title: J. Nucl. Med.
– volume: 61
  start-page: 711
  year: 2014
  end-page: 724
  ident: bib0031
  article-title: Segmentation of PET images for computer-aided functional quantification of tuberculosis in small animal models
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 23
  start-page: 510
  year: 2004
  end-page: 519
  ident: bib0004
  article-title: Anatomical-based FDG-pet reconstruction for the detection of hypo-metabolic regions in epilepsy
  publication-title: IEEE Trans. Med. Imaging
– volume: 39
  start-page: 1570
  year: 2008
  end-page: 1584
  ident: bib0061
  article-title: Deconvolution-based partial volume correction in raclopride-pet and monte carlo comparison to mr-based method
  publication-title: Neuroimage
– volume: 57
  start-page: R119
  year: 2012
  ident: bib0028
  article-title: A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology
  publication-title: Phys. Med. Biol.
– volume: 33
  start-page: 636
  year: 2014
  end-page: 650
  ident: bib0016
  article-title: Post-reconstruction nonlocal means filtering of whole-body pet with an anatomical prior
  publication-title: IEEE Trans. Med. Imaging
– volume: 17
  start-page: 1737
  year: 2008
  end-page: 1754
  ident: bib0029
  article-title: Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data
  publication-title: IEEE Trans. Image Process.
– volume: 53
  start-page: 939
  year: 2012
  end-page: 946
  ident: bib0042
  article-title: Pet of her2-positive pulmonary metastases with 18f-zher2: 342 affibody in a murine model of breast cancer: comparison with 18f-FDG
  publication-title: J. Nucl. Med.
– start-page: 8479
  year: 2011
  ident: 10.1016/j.media.2018.03.007_bib0011
  article-title: A graph-theoretic approach for segmentation of PET images
– volume: 61
  start-page: 7975
  issue: 22
  year: 2016
  ident: 10.1016/j.media.2018.03.007_bib0060
  article-title: Petpvc: a toolbox for performing partial volume correction techniques in positron emission tomography
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/61/22/7975
– volume: 57
  start-page: R119
  issue: 21
  year: 2012
  ident: 10.1016/j.media.2018.03.007_bib0028
  article-title: A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/57/21/R119
– volume: 315
  start-page: 972
  year: 2007
  ident: 10.1016/j.media.2018.03.007_bib0032
  article-title: Clustering by passing messages between data points
  publication-title: Science
  doi: 10.1126/science.1136800
– volume: 23
  start-page: 510
  issue: 4
  year: 2004
  ident: 10.1016/j.media.2018.03.007_bib0004
  article-title: Anatomical-based FDG-pet reconstruction for the detection of hypo-metabolic regions in epilepsy
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.825623
– volume: 31
  start-page: 777
  issue: 3
  year: 2012
  ident: 10.1016/j.media.2018.03.007_bib0006
  article-title: Hierarchical scale-based multiobject recognition of 3-d anatomical structures
  publication-title: IEEE Trans. Medical Imaging
  doi: 10.1109/TMI.2011.2180920
– volume: 16
  start-page: 2080
  issue: 8
  year: 2007
  ident: 10.1016/j.media.2018.03.007_bib0023
  article-title: Image denoising by sparse 3-d transform-domain collaborative filtering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.901238
– volume: 35
  start-page: 2369
  issue: 11
  year: 2016
  ident: 10.1016/j.media.2018.03.007_bib0045
  article-title: Segmenting retinal blood vessels with deep neural networks
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2546227
– volume: 30
  start-page: 449
  issue: 4
  year: 2017
  ident: 10.1016/j.media.2018.03.007_bib0001
  article-title: Deep learning for brain MRI segmentation: state of the art and future directions
  publication-title: J. Digit Imaging
  doi: 10.1007/s10278-017-9983-4
– volume: 43
  start-page: 3322
  issue: 6
  year: 1996
  ident: 10.1016/j.media.2018.03.007_bib0069
  article-title: Investigation of partial volume correction methods for brain fdg pet studies
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/23.552745
– volume: 28
  start-page: 485
  issue: 6
  year: 2007
  ident: 10.1016/j.media.2018.03.007_bib0024
  article-title: A novel iterative method for lesion delineation and volumetric quantification with FDG PET
  publication-title: Nucl. Med. Commun.
  doi: 10.1097/MNM.0b013e328155d154
– volume: 32
  start-page: 1685
  issue: 9
  year: 2013
  ident: 10.1016/j.media.2018.03.007_bib0055
  article-title: Optimal co-segmentation of tumor in PET-CT images with context information
  publication-title: IEEE Trans. Medical Imag.
  doi: 10.1109/TMI.2013.2263388
– volume: 18
  start-page: 1228
  issue: 6
  year: 2009
  ident: 10.1016/j.media.2018.03.007_bib0066
  article-title: Electronic noise modeling in statistical iterative reconstruction
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TAP.2009.2015832
– start-page: 1
  year: 2013
  ident: 10.1016/j.media.2018.03.007_bib0018
  article-title: Simultaneous partial volume correction and noise regularization for cardiac spect/ct
– volume: 17
  start-page: 1093
  issue: 7
  year: 2008
  ident: 10.1016/j.media.2018.03.007_bib0071
  article-title: Wavelets, ridgelets, and curvelets for poisson noise removal
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2008.924386
– volume: 17
  start-page: 1737
  issue: 10
  year: 2008
  ident: 10.1016/j.media.2018.03.007_bib0029
  article-title: Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2008.2001399
– volume: 61
  start-page: 711
  issue: 3
  year: 2014
  ident: 10.1016/j.media.2018.03.007_bib0031
  article-title: Segmentation of PET images for computer-aided functional quantification of tuberculosis in small animal models
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2288258
– start-page: 130
  year: 2014
  ident: 10.1016/j.media.2018.03.007_bib0047
  article-title: Optimally Stabilized Pet Image Denoising Using Trilateral Filtering
– volume: 5651
  start-page: 146
  year: 2009
  ident: 10.1016/j.media.2018.03.007_bib0039
  article-title: Segmentation of Lung Tumours in Positron Emission Tomography Scans: A Machine Learning Approach
– volume: 1001
  start-page: 48109
  year: 2016
  ident: 10.1016/j.media.2018.03.007_bib0026
  article-title: Modeling mixed poisson-gaussian noise in statistical image reconstruction for x-ray ct
  publication-title: Arbor
– volume: 26
  start-page: 1045
  issue: 6
  year: 2013
  ident: 10.1016/j.media.2018.03.007_bib0021
  article-title: The cancer imaging archive (tcia): maintaining and operating a public information repository
  publication-title: J. Digit Imaging
  doi: 10.1007/s10278-013-9622-7
– volume: 60
  start-page: 6013
  issue: 15
  year: 2015
  ident: 10.1016/j.media.2018.03.007_bib0049
  article-title: Quantitative myocardial perfusion pet parametric imaging at the voxel-level
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/60/15/6013
– volume: 43
  issue: 6Part46
  year: 2016
  ident: 10.1016/j.media.2018.03.007_sbref0037
  article-title: Machine-learning based segmentation of organs at risks for head and neck radiotherapy planning
  publication-title: Med Phys
  doi: 10.1118/1.4958186
– volume: 36
  start-page: 1064
  issue: 7
  year: 2009
  ident: 10.1016/j.media.2018.03.007_bib0014
  article-title: Incorporation of wavelet-based denoising in iterative deconvolution for partial volume correction in whole-body pet imaging
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-009-1065-5
– volume: 39
  start-page: 833
  issue: 5
  year: 1994
  ident: 10.1016/j.media.2018.03.007_bib0012
  article-title: Noise properties of the em algorithm. I. Theory
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/39/5/004
– volume: 8673
  start-page: 698
  year: 2014
  ident: 10.1016/j.media.2018.03.007_bib0067
  article-title: Segmentation based denoising of PET images: an iterative approach via regional means and affinity propagation
– volume: 32
  start-page: 1591
  issue: 4
  year: 2006
  ident: 10.1016/j.media.2018.03.007_bib0070
  article-title: Comparative assessment of statistical brain {MR} image segmentation algorithms and their impact on partial volume correction in PET
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.05.031
– volume: 20
  start-page: 69
  issue: 1
  year: 1967
  ident: 10.1016/j.media.2018.03.007_bib0041
  article-title: On characterizing the gamma and the normal distribution
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.1967.20.69
– volume: 58
  start-page: 736
  issue: 3
  year: 2011
  ident: 10.1016/j.media.2018.03.007_bib0033
  article-title: PVE Correction in PET-CT whole-body oncological studies from PVE-affected images
  publication-title: IEEE Trans. Nuclear Sci.
  doi: 10.1109/TNS.2011.2108316
– volume: 22
  start-page: 15
  year: 2015
  ident: 10.1016/j.media.2018.03.007_bib0068
  article-title: Fuzzy Connectedness Image Co-segmentation for Hybrid PET/MRI and PET/CT Scans
– volume: 33
  start-page: 636
  issue: 3
  year: 2014
  ident: 10.1016/j.media.2018.03.007_bib0016
  article-title: Post-reconstruction nonlocal means filtering of whole-body pet with an anatomical prior
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2292881
– year: 2014
  ident: 10.1016/j.media.2018.03.007_sbref0025
  article-title: Parametric myocardial perfusion pet imaging using physiological clustering
– start-page: 305
  year: 2007
  ident: 10.1016/j.media.2018.03.007_bib0005
  article-title: Multiresolution elastic medical image registration in standard intensity scale
– start-page: 1158
  year: 2011
  ident: 10.1016/j.media.2018.03.007_bib0038
  article-title: Edge preserving bowsher prior with nonlocal weighting for 3d spect reconstruction
– volume: 39
  start-page: 1570
  issue: 4
  year: 2008
  ident: 10.1016/j.media.2018.03.007_bib0061
  article-title: Deconvolution-based partial volume correction in raclopride-pet and monte carlo comparison to mr-based method
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.10.038
– volume: 50
  start-page: 76
  year: 2014
  ident: 10.1016/j.media.2018.03.007_bib0030
  article-title: A review on segmentation of positron emission tomography images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2014.04.014
– volume: 53
  start-page: 2577
  issue: 10
  year: 2008
  ident: 10.1016/j.media.2018.03.007_bib0040
  article-title: Partial volume effect correction in pet using regularized iterative deconvolution with variance control based on local topology
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/53/10/009
– volume: 235
  start-page: 431
  issue: 3
  year: 2015
  ident: 10.1016/j.media.2018.03.007_bib0043
  article-title: Mycobacterium tuberculosis dysregulates MMP/TIMP balance to drive rapid cavitation and unrestrained bacterial proliferation
  publication-title: J. Pathol.
  doi: 10.1002/path.4432
– volume: 35
  start-page: 246
  issue: 3/4
  year: 1948
  ident: 10.1016/j.media.2018.03.007_sbref0002
  article-title: The transformation of poisson, binomial and negative-binomial data
  publication-title: Biometrika
  doi: 10.2307/2332343
– volume: 32
  start-page: 601
  issue: 7
  year: 2008
  ident: 10.1016/j.media.2018.03.007_bib0036
  article-title: Automatic segmentation of liver PET images
  publication-title: Comput. Med. Imaging and Graph.
  doi: 10.1016/j.compmedimag.2008.07.001
– volume: 35
  start-page: 3711
  issue: 8
  year: 2008
  ident: 10.1016/j.media.2018.03.007_bib0044
  article-title: A novel PET tumor delineation method based on adaptive region-growing and dual-front active contours
  publication-title: Med. Phys.
  doi: 10.1118/1.2956713
– volume: 2
  start-page: 60
  year: 2005
  ident: 10.1016/j.media.2018.03.007_bib0015
  article-title: A non-local algorithm for image denoising
– volume: 47
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.media.2018.03.007_bib0022
  article-title: Clinically feasible reconstruction of 3d whole-body pet/ct data using blurred anatomical labels
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/47/1/301
– volume: 54
  start-page: 7379
  issue: 24
  year: 2009
  ident: 10.1016/j.media.2018.03.007_bib0017
  article-title: Regularized image reconstruction with an anatomically adaptive prior for positron emission tomography
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/54/24/009
– volume: 19
  start-page: 765
  issue: 3
  year: 1999
  ident: 10.1016/j.media.2018.03.007_bib0052
  article-title: The AAPM/RSNA physics tutorial for residents
  publication-title: Radiographics
  doi: 10.1148/radiographics.19.3.g99ma33765
– volume: 48
  start-page: 279
  issue: 2
  year: 2014
  ident: 10.1016/j.media.2018.03.007_bib0053
  article-title: Poisson noise reduction with non-local PCA
  publication-title: J. Math. Imaging Vis
  doi: 10.1007/s10851-013-0435-6
– start-page: 621
  year: 2017
  ident: 10.1016/j.media.2018.03.007_bib0034
  article-title: Progressive and multi-path holistically nested neural networks for pathological lung segmentation from ct images
– start-page: 2209
  year: 2009
  ident: 10.1016/j.media.2018.03.007_bib0072
  article-title: Scale invariance and noise in natural images
– volume: 2
  start-page: 60
  issue: 2
  year: 2015
  ident: 10.1016/j.media.2018.03.007_bib0048
  article-title: Intra-frame motion compensation in multi-frame brain pet imaging
  publication-title: Frontiers Biomed. Technol.
– volume: 8151
  start-page: 115
  year: 2013
  ident: 10.1016/j.media.2018.03.007_bib0008
  article-title: Denoising PET Images Using Singular Value Thresholding and Stein’s Unbiased Risk Estimate
– volume: 33
  start-page: 3587
  issue: 10
  year: 2006
  ident: 10.1016/j.media.2018.03.007_bib0050
  article-title: Deblurring of breathing motion artifacts in thoracic pet images by deconvolution methods
  publication-title: Med. Phys.
  doi: 10.1118/1.2336500
– volume: 8
  start-page: 1
  issue: 12
  year: 2013
  ident: 10.1016/j.media.2018.03.007_bib0027
  article-title: Non-local means denoising of dynamic pet images
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0081390
– volume: 53
  start-page: 939
  issue: 6
  year: 2012
  ident: 10.1016/j.media.2018.03.007_bib0042
  article-title: Pet of her2-positive pulmonary metastases with 18f-zher2: 342 affibody in a murine model of breast cancer: comparison with 18f-FDG
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.111.100354
– volume: 48
  start-page: 932
  issue: 6
  year: 2007
  ident: 10.1016/j.media.2018.03.007_bib0056
  article-title: Partial-volume effect in pet tumor imaging
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.106.035774
– volume: 4
  start-page: 1568
  year: 1994
  ident: 10.1016/j.media.2018.03.007_bib0019
  article-title: Detailed investigation of transmission and emission data smoothing protocols and their effects on emission images
– volume: 22
  start-page: 91
  issue: 1
  year: 2013
  ident: 10.1016/j.media.2018.03.007_bib0046
  article-title: Optimal inversion of the generalized anscombe transformation for poisson-gaussian noise
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2202675
– volume: 23
  start-page: 305
  issue: 1
  year: 2004
  ident: 10.1016/j.media.2018.03.007_bib0003
  article-title: Evaluation of anatomy based reconstruction for partial volume correction in brain FDG-pet
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.04.041
– volume: 3
  issue: 3
  year: 1979
  ident: 10.1016/j.media.2018.03.007_bib0035
  article-title: Quantitation in positron emission computed tomography: 1. Effect of object size.
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-197906000-00001
– volume: 30
  start-page: 537
  issue: 3
  year: 2011
  ident: 10.1016/j.media.2018.03.007_bib0054
  article-title: Pet image reconstruction using information theoretic anatomical priors
  publication-title: IEEE Trans. Med Imaging
  doi: 10.1109/TMI.2010.2076827
– volume: 39
  start-page: 904
  issue: 5
  year: 1998
  ident: 10.1016/j.media.2018.03.007_bib0051
  article-title: Correction for partial volume effects in PET: principle and validation
  publication-title: J. Nucl. Med.
– volume: 17
  start-page: 929
  issue: 8
  year: 2013
  ident: 10.1016/j.media.2018.03.007_bib0010
  article-title: Joint segmentation of anatomical and functional images: applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2013.05.004
– volume: 26
  start-page: 447
  issue: 3
  year: 2013
  ident: 10.1016/j.media.2018.03.007_bib0058
  article-title: Properties of noise in positron emission tomography images reconstructed with filtered-backprojection and row-action maximum likelihood algorithm
  publication-title: J. Digit Imaging
  doi: 10.1007/s10278-012-9511-5
– volume: 38
  start-page: 1104
  issue: 6
  year: 2011
  ident: 10.1016/j.media.2018.03.007_bib0059
  article-title: The importance of appropriate partial volume correction for PET quantification in alzheimerâs disease
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-011-1745-9
– volume: 31
  start-page: 315
  issue: 4
  year: 2010
  ident: 10.1016/j.media.2018.03.007_bib0009
  article-title: The role of intensity standardization in medical image registration
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.09.010
– volume: 56
  start-page: 6899
  issue: 21
  year: 2011
  ident: 10.1016/j.media.2018.03.007_bib0020
  article-title: Pet image reconstruction with anatomical edge guided level set prior
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/56/21/009
– volume: 49
  start-page: 657
  issue: 4
  year: 2008
  ident: 10.1016/j.media.2018.03.007_bib0062
  article-title: PET Image denoising using a synergistic multiresolution analysis of structural (MRI/CT) and functional datasets
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.107.041871
– volume: 31
  start-page: 2194
  issue: 12
  year: 2012
  ident: 10.1016/j.media.2018.03.007_bib0064
  article-title: Penalized likelihood pet image reconstruction using patch-based edge-preserving regularization
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2211378
– volume: 56
  start-page: 65
  issue: 20
  year: 2011
  ident: 10.1016/j.media.2018.03.007_bib0057
  article-title: Spatio-temporal diffusion of dynamic PET images
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/56/20/004
– volume: 80
  start-page: 8
  issue: 389
  year: 1985
  ident: 10.1016/j.media.2018.03.007_bib0063
  article-title: A statistical model for positron emission tomography
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1985.10477119
– volume: 3
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.media.2018.03.007_bib0007
  article-title: Automated computer quantification of breast cancer in small-animal models using pet-guided mr image co-segmentation
  publication-title: EJNMMI Res.
– volume: 29
  start-page: 442
  issue: 2
  year: 2010
  ident: 10.1016/j.media.2018.03.007_bib0013
  article-title: Patch-based nonlocal functional for denoising fluorescence microscopy image sequences
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2033991
– volume: 56 supplement
  issue: 3
  year: 2015
  ident: 10.1016/j.media.2018.03.007_sbref0065
  article-title: Quantitative comparison of anisotropic diffusion, non-local means and gaussian post-filtering effects on FDG-pet lesions
  publication-title: J. Nucl. Med.
SSID ssj0007440
Score 2.4053504
Snippet •Interactions among segmentation, denoising, and partial volume corrections have been utilized to improve solution of each of these problems for PET...
Segmentation, denoising, and partial volume correction (PVC) are three major processes in the quantification of uptake regions in post-reconstruction PET...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 229
SubjectTerms Adaptive algorithms
Affinity propagation
Algorithms
Animals
Clustering
Denoising
Humans
Image Enhancement - methods
Image processing
Image reconstruction
Image segmentation
Magnetic Resonance Imaging
Medical imaging
Neoplasms - diagnostic imaging
Noise reduction
Normal distribution
Partial volume correction
Phantoms, Imaging
Polyvinyl chloride
Positron emission
Positron Emission Tomography Computed Tomography - methods
Positron-Emission Tomography - methods
Qualitative analysis
Qualitative research
Quantitative analysis
Rabbits
Radiographic Image Interpretation, Computer-Assisted - methods
Radiopharmaceuticals
Regional means denoising
Reproducibility of Results
Segmentation
Sensitivity and Specificity
Signal-To-Noise Ratio
Smoothness
Tomography
Tuberculosis, Pulmonary - diagnostic imaging
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9swFL10KezjYR9du2XthgZ7jNPYlmXrsYyWUmgpWwPdk5Bka3ObKGF1GNuv35Usm36wsr45SIojdC2dG59zLsAnJ9uiTBcRozyPqFE8kogqIqOccgYzion3KTg-YYdTenSena9B3GlhPGlfq3psZ_OxrX94buVyrnc7ntguc-rQLHsE6yxD-D2A9enJ6d63Vl8VRwX1VQvCtS_vFq7TuHMd8vwur8xw3K6idTnN_3Uy3UWedwmUT1Z2KX__krPZtdPp4AV86ebVklIux6tGjfWfW5aPD5r4S3gesCrZa5tewVplN-DZNQfDDXh8HN7Nv4avR4vaNqSLZYJomJzun5F6jlsWuaq-z4PMyY4IbnaL2v1LMSLSlmTp7o53ardKol3FEK-32ITpwf7Z58MolGyIdJalTcSp4RPNDS-V4ogWeVlijlSmWiU6zso80TnnJi1ZwYqK6szkpjBMaYkZeqWUTrdgYBe2egtEFjmVHLMzmXDqhpVmwlOjK8aoVqUcQtItl9DBz9yV1ZiJjrh2IfwaC7fGYpIKXOMhjPpBy9bO4_7urIsDERBJizQEHjj3D9zpokaETeFKuFwb0WzMsyF87JvxcXbvaKStFivsgxjKiZFz_Io3bZD1PzRxhZJYgS35jfDrOzir8JstGEjeMjzEzhCiPlD_Z_7vHth_G566Ty0hdAcGzc9V9R5BW6M-hMf0L6KYPow
  priority: 102
  providerName: Unpaywall
Title Joint solution for PET image segmentation, denoising, and partial volume correction
URI https://dx.doi.org/10.1016/j.media.2018.03.007
https://www.ncbi.nlm.nih.gov/pubmed/29627687
https://www.proquest.com/docview/2110059195
https://www.proquest.com/docview/2023406977
https://pubmed.ncbi.nlm.nih.gov/PMC6080255
https://www.ncbi.nlm.nih.gov/pmc/articles/6080255
UnpaywallVersion submittedVersion
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: ACRLP
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIKHN
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: .~1
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AKRWK
  dateStart: 19960301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaqIvE4ICivQKmMxDEmya7XXh9D1RIKjSq1QeVk-bGGRakT0USIC7-dmX3RqKJCnFZZ2_vwjMcz2fm-IeQ1wra4cDkTXEnGg1XMgFfBgkXkDEQUw4qn4HgqJjN-dJ6db5H9FguDaZWN7a9temWtmzODZjYHy7IcnI5SLFYCO1aeIismIso5l1jF4M2vP2keSIBXY69GDHu3zENVjleFzsD8rrxmOpV_252ue5_XkyjvrOPS_Pxh5vMrO9ThA3K_cS3puH76h2SriDvk3hXCwR1y-7j5lP6InB4tyriirepRcF7pycEZLS_AwtDL4stFg0qKfQq2aVHinwp9aqKnS5wguFNt2ajDAh8VPOIxmR0enO1PWFNhgbksS1dM8aCGTgXlrVXg3CnvIaTxqbOJG2VeJk4qFVIvcpEX3GVBhjwI6wwE1IW1Ln1CtuMiFs8INbnkRkEwZRLFcZgPQ5UGVwjBnfWmR5J2ZrVr6MexCsZct3lm33QlDo3i0MNUgzh6pN8NWtbsGzd3F63I9IYSadgfbh642wpYN2v4UmNoDM7nSGU98qprhtWHn1RMLBZr6AMuD2KHJVziaa0P3YMmWNdI5NAiNzSl64DM3pstsfxaMXwLREBncF_W6dS_vP_z_33_F-Qu_qoTOXfJ9ur7ungJztbK7lWraY_cGr__MJnC8d3bj5_GcJxNT8affwP26CxY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbGkBh7mGD8KhtgJB5r2iaOHT-iaVMZ64S0TtqbZTvxCOrcirVCe-Fv5y5xwqqJCfEa20nsO5_vkvu-I-QDwra4cDkTXEnGvVXMgFfBvEXkDEQUw5qnYHIqxuf8-CK72CAHLRYG0yqj7W9sem2t45VBXM3BoqoGZ6MUi5XAiZWnyIopH5CHPEskRmAff_3J80AGvAZ8NWLYvaUeqpO8angGJnjlDdWp_NvxdNf9vJtFubUKC3Pz08xmt46ooydkJ_qW9FPz-k_JRhl2yfYtxsFd8mgS_6U_I2fH8yosaat7FLxX-vVwSqsrMDH0ury8irCk0KdgnOYVflXoUxMKusAVgic1po06rPBR4yOek_Ojw-nBmMUSC8xlWbpkins1dMqrwloF3p0qCohpitTZxI2yQiZOKuXTQuQiL7nLvPS5F9YZiKhLa136gmyGeShfEWpyyY2CaMokiuOwwg9V6l0pBHe2MD2StCurXeQfxzIYM90mmn3XtTg0ikMPUw3i6JF-N2jR0G_c3120ItNrWqThgLh_4H4rYB038bXG2Bi8z5HKeuR91wzbD_-pmFDOV9AHfB4ED0u4xctGH7oXTbCwkcihRa5pStcBqb3XW0L1rab4FgiBzuC5rNOpf5n_6_-d_zuyNZ5OTvTJ59Mve-QxtjRZnftkc_ljVb4Bz2tp39Y76zfrHyqu
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9swFL10KezjYR9du2XthgZ7jNPYlmXrsYyWUmgpWwPdk5Bka3ObKGF1GNuv35Usm36wsr45SIojdC2dG59zLsAnJ9uiTBcRozyPqFE8kogqIqOccgYzion3KTg-YYdTenSena9B3GlhPGlfq3psZ_OxrX94buVyrnc7ntguc-rQLHsE6yxD-D2A9enJ6d63Vl8VRwX1VQvCtS_vFq7TuHMd8vwur8xw3K6idTnN_3Uy3UWedwmUT1Z2KX__krPZtdPp4AV86ebVklIux6tGjfWfW5aPD5r4S3gesCrZa5tewVplN-DZNQfDDXh8HN7Nv4avR4vaNqSLZYJomJzun5F6jlsWuaq-z4PMyY4IbnaL2v1LMSLSlmTp7o53ardKol3FEK-32ITpwf7Z58MolGyIdJalTcSp4RPNDS-V4ogWeVlijlSmWiU6zso80TnnJi1ZwYqK6szkpjBMaYkZeqWUTrdgYBe2egtEFjmVHLMzmXDqhpVmwlOjK8aoVqUcQtItl9DBz9yV1ZiJjrh2IfwaC7fGYpIKXOMhjPpBy9bO4_7urIsDERBJizQEHjj3D9zpokaETeFKuFwb0WzMsyF87JvxcXbvaKStFivsgxjKiZFz_Io3bZD1PzRxhZJYgS35jfDrOzir8JstGEjeMjzEzhCiPlD_Z_7vHth_G566Ty0hdAcGzc9V9R5BW6M-hMf0L6KYPow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+solution+for+PET+image+segmentation%2C+denoising%2C+and+partial+volume+correction&rft.jtitle=Medical+image+analysis&rft.au=Xu%2C+Ziyue&rft.au=Gao%2C+Mingchen&rft.au=Papadakis%2C+Georgios+Z.&rft.au=Luna%2C+Brian&rft.date=2018-05-01&rft.pub=Elsevier+B.V&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=46&rft.spage=229&rft.epage=243&rft_id=info:doi/10.1016%2Fj.media.2018.03.007&rft.externalDocID=S1361841518300987
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon