Joint solution for PET image segmentation, denoising, and partial volume correction
•Interactions among segmentation, denoising, and partial volume corrections have been utilized to improve solution of each of these problems for PET images.•Noise in PET imaging is modeled as mixed Poisson–Gaussian, as it is more realistic than the current standards.•Partial volume correction is sho...
Saved in:
| Published in | Medical image analysis Vol. 46; pp. 229 - 243 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
01.05.2018
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1361-8415 1361-8423 1361-8431 1361-8423 |
| DOI | 10.1016/j.media.2018.03.007 |
Cover
| Abstract | •Interactions among segmentation, denoising, and partial volume corrections have been utilized to improve solution of each of these problems for PET images.•Noise in PET imaging is modeled as mixed Poisson–Gaussian, as it is more realistic than the current standards.•Partial volume correction is shown to improve when segmentation and noise information are incorporated into the proposed joint solution model.•Segmentation process gets benefit from denoising and partial volume correction step, leading to improved boundary definitions of lesions in PET images.•Extensive set of experiments (phantom, pre-clinical, and clinical) with PET, PET/CT, and PET/MRI validate the proposed algorithm’s performance.
[Display omitted]
Segmentation, denoising, and partial volume correction (PVC) are three major processes in the quantification of uptake regions in post-reconstruction PET images. These problems are conventionally addressed by independent steps. In this study, we hypothesize that these three processes are dependent; therefore, jointly solving them can provide optimal support for quantification of the PET images. To achieve this, we utilize interactions among these processes when designing solutions for each challenge. We also demonstrate that segmentation can help in denoising and PVC by locally constraining the smoothness and correction criteria. For denoising, we adapt generalized Anscombe transformation to Gaussianize the multiplicative noise followed by a new adaptive smoothing algorithm called regional mean denoising. For PVC, we propose a volume consistency-based iterative voxel-based correction algorithm in which denoised and delineated PET images guide the correction process during each iteration precisely. For PET image segmentation, we use affinity propagation (AP)-based iterative clustering method that helps the integration of PVC and denoising algorithms into the delineation process. Qualitative and quantitative results, obtained from phantoms, clinical, and pre-clinical data, show that the proposed framework provides an improved and joint solution for segmentation, denoising, and partial volume correction. |
|---|---|
| AbstractList | Segmentation, denoising, and partial volume correction (PVC) are three major processes in the quantification of uptake regions in post-reconstruction PET images. These problems are conventionally addressed by independent steps. In this study, we hypothesize that these three processes are dependent; therefore, jointly solving them can provide optimal support for quantification of the PET images. To achieve this, we utilize interactions among these processes when designing solutions for each challenge. We also demonstrate that segmentation can help in denoising and PVC by locally constraining the smoothness and correction criteria. For denoising, we adapt generalized Anscombe transformation to Gaussianize the multiplicative noise followed by a new adaptive smoothing algorithm called regional mean denoising. For PVC, we propose a volume consistency-based iterative voxel-based correction algorithm in which denoised and delineated PET images guide the correction process during each iteration precisely. For PET image segmentation, we use affinity propagation (AP)-based iterative clustering method that helps the integration of PVC and denoising algorithms into the delineation process. Qualitative and quantitative results, obtained from phantoms, clinical, and pre-clinical data, show that the proposed framework provides an improved and joint solution for segmentation, denoising, and partial volume correction. •Interactions among segmentation, denoising, and partial volume corrections have been utilized to improve solution of each of these problems for PET images.•Noise in PET imaging is modeled as mixed Poisson–Gaussian, as it is more realistic than the current standards.•Partial volume correction is shown to improve when segmentation and noise information are incorporated into the proposed joint solution model.•Segmentation process gets benefit from denoising and partial volume correction step, leading to improved boundary definitions of lesions in PET images.•Extensive set of experiments (phantom, pre-clinical, and clinical) with PET, PET/CT, and PET/MRI validate the proposed algorithm’s performance. [Display omitted] Segmentation, denoising, and partial volume correction (PVC) are three major processes in the quantification of uptake regions in post-reconstruction PET images. These problems are conventionally addressed by independent steps. In this study, we hypothesize that these three processes are dependent; therefore, jointly solving them can provide optimal support for quantification of the PET images. To achieve this, we utilize interactions among these processes when designing solutions for each challenge. We also demonstrate that segmentation can help in denoising and PVC by locally constraining the smoothness and correction criteria. For denoising, we adapt generalized Anscombe transformation to Gaussianize the multiplicative noise followed by a new adaptive smoothing algorithm called regional mean denoising. For PVC, we propose a volume consistency-based iterative voxel-based correction algorithm in which denoised and delineated PET images guide the correction process during each iteration precisely. For PET image segmentation, we use affinity propagation (AP)-based iterative clustering method that helps the integration of PVC and denoising algorithms into the delineation process. Qualitative and quantitative results, obtained from phantoms, clinical, and pre-clinical data, show that the proposed framework provides an improved and joint solution for segmentation, denoising, and partial volume correction. Segmentation, denoising, and partial volume correction (PVC) are three major processes in the quantification of uptake regions in post-reconstruction PET images. These problems are conventionally addressed by independent steps. In this study, we hypothesize that these three processes are dependent; therefore, jointly solving them can provide optimal support for quantification of the PET images. To achieve this, we utilize interactions among these processes when designing solutions for each challenge. We also demonstrate that segmentation can help in denoising and PVC by locally constraining the smoothness and correction criteria. For denoising, we adapt generalized Anscombe transformation to Gaussianize the multiplicative noise followed by a new adaptive smoothing algorithm called regional mean denoising. For PVC, we propose a volume consistency-based iterative voxel-based correction algorithm in which denoised and delineated PET images guide the correction process during each iteration precisely. For PET image segmentation, we use affinity propagation (AP)-based iterative clustering method that helps the integration of PVC and denoising algorithms into the delineation process. Qualitative and quantitative results, obtained from phantoms, clinical, and pre-clinical data, show that the proposed framework provides an improved and joint solution for segmentation, denoising, and partial volume correction.Segmentation, denoising, and partial volume correction (PVC) are three major processes in the quantification of uptake regions in post-reconstruction PET images. These problems are conventionally addressed by independent steps. In this study, we hypothesize that these three processes are dependent; therefore, jointly solving them can provide optimal support for quantification of the PET images. To achieve this, we utilize interactions among these processes when designing solutions for each challenge. We also demonstrate that segmentation can help in denoising and PVC by locally constraining the smoothness and correction criteria. For denoising, we adapt generalized Anscombe transformation to Gaussianize the multiplicative noise followed by a new adaptive smoothing algorithm called regional mean denoising. For PVC, we propose a volume consistency-based iterative voxel-based correction algorithm in which denoised and delineated PET images guide the correction process during each iteration precisely. For PET image segmentation, we use affinity propagation (AP)-based iterative clustering method that helps the integration of PVC and denoising algorithms into the delineation process. Qualitative and quantitative results, obtained from phantoms, clinical, and pre-clinical data, show that the proposed framework provides an improved and joint solution for segmentation, denoising, and partial volume correction. |
| Author | Mollura, Daniel J. Luna, Brian Jain, Sanjay Papadakis, Georgios Z. Gao, Mingchen Xu, Ziyue Bagci, Ulas |
| AuthorAffiliation | a Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Science Department, National Institutes of Health (NIH), Bethesda, MD 20892 b University of California at Irvine, Irvine, CA c Johns Hopkins University School of Medicine, Baltimore, MD d University of Central Florida, Orlando, FL |
| AuthorAffiliation_xml | – name: d University of Central Florida, Orlando, FL – name: b University of California at Irvine, Irvine, CA – name: a Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Science Department, National Institutes of Health (NIH), Bethesda, MD 20892 – name: c Johns Hopkins University School of Medicine, Baltimore, MD |
| Author_xml | – sequence: 1 givenname: Ziyue orcidid: 0000-0002-5728-6869 surname: Xu fullname: Xu, Ziyue organization: Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Science Department, National Institutes of Health (NIH), Bethesda, MD 20892, USA – sequence: 2 givenname: Mingchen surname: Gao fullname: Gao, Mingchen organization: Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Science Department, National Institutes of Health (NIH), Bethesda, MD 20892, USA – sequence: 3 givenname: Georgios Z. orcidid: 0000-0003-4975-9942 surname: Papadakis fullname: Papadakis, Georgios Z. organization: Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Science Department, National Institutes of Health (NIH), Bethesda, MD 20892, USA – sequence: 4 givenname: Brian orcidid: 0000-0001-6718-4551 surname: Luna fullname: Luna, Brian organization: University of California at Irvine, Irvine, CA, USA – sequence: 5 givenname: Sanjay surname: Jain fullname: Jain, Sanjay organization: Johns Hopkins University School of Medicine, Baltimore, MD, USA – sequence: 6 givenname: Daniel J. surname: Mollura fullname: Mollura, Daniel J. organization: Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Science Department, National Institutes of Health (NIH), Bethesda, MD 20892, USA – sequence: 7 givenname: Ulas orcidid: 0000-0001-7379-6829 surname: Bagci fullname: Bagci, Ulas email: bagci@ucf.edu, bagci@crcv.ucf.edu organization: University of Central Florida, Orlando, FL, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29627687$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtv1DAUhS1URNuBX4CELLHpohP8ihMvQEJVoaBKIFHWluPH4FFiD3YyVf89DiktdAGsbOme795zzz0GByEGC8BzjCqMMH-1rQZrvKoIwm2FaIVQ8wgcYcrxumWEHtz9cX0IjnPeoqJgDD0Bh0Rw0vC2OQJfPkYfRphjP40-Buhigp_Pr6Af1MbCbDeDDaOaS6fQ2BB99mFzClUwcKfS6FUP94UdLNQxJatn5VPw2Kk-22e37wp8fXd-dXaxvvz0_sPZ28u1rms6rgVzAmnhhOk6gVgtjEGCG6o7onFtGqIbIRw1vOWtZbp2jWsd77RqGLFdp-kKsKXvFHbq5lr1vdylYjzdSIzknJHcyp8ZyTkjiagsCRTszYLtpq5UdVkwqXs0Ki__rAT_TW7iXnLUIlKsr8DJbYMUv082j3LwWdu-V8HGKZdhhDLERTPPevlAuo1TCiUVSTBGqBZYzA1f_O7ozsqvMxUBXQQ6xZyTdf-5qHhAab_csqzl-3-wrxfWlgPuvU0ya2-DLsL5ytJE_1f-B57l0Ow |
| CitedBy_id | crossref_primary_10_1016_j_ejmp_2024_103303 crossref_primary_10_1109_ACCESS_2020_3040155 crossref_primary_10_1109_ACCESS_2021_3064926 crossref_primary_10_1097_RLU_0000000000003789 crossref_primary_10_48175_IJARSCT_17543 crossref_primary_10_1109_ACCESS_2022_3151361 crossref_primary_10_1109_TCBB_2023_3281638 crossref_primary_10_1016_j_compbiomed_2020_103669 crossref_primary_10_1109_TBME_2023_3297249 crossref_primary_10_1007_s11517_019_02094_8 crossref_primary_10_3390_photonics9010007 crossref_primary_10_1109_TRPMS_2021_3123537 crossref_primary_10_1109_JBHI_2020_3024563 crossref_primary_10_1016_j_media_2021_102226 crossref_primary_10_1016_j_yacr_2022_04_010 crossref_primary_10_1109_TRPMS_2019_2911597 crossref_primary_10_1002_mp_14024 crossref_primary_10_1055_s_0044_1795105 crossref_primary_10_1145_3548459 crossref_primary_10_1007_s12149_020_01550_y crossref_primary_10_1002_acm2_13451 crossref_primary_10_1007_s00259_020_05167_1 crossref_primary_10_3390_app10041223 crossref_primary_10_1016_j_ejmp_2021_07_028 crossref_primary_10_1155_2023_3819587 |
| Cites_doi | 10.1088/0031-9155/61/22/7975 10.1088/0031-9155/57/21/R119 10.1126/science.1136800 10.1109/TMI.2004.825623 10.1109/TMI.2011.2180920 10.1109/TIP.2007.901238 10.1109/TMI.2016.2546227 10.1007/s10278-017-9983-4 10.1109/23.552745 10.1097/MNM.0b013e328155d154 10.1109/TMI.2013.2263388 10.1109/TAP.2009.2015832 10.1109/TIP.2008.924386 10.1109/TIP.2008.2001399 10.1109/TBME.2013.2288258 10.1007/s10278-013-9622-7 10.1088/0031-9155/60/15/6013 10.1118/1.4958186 10.1007/s00259-009-1065-5 10.1088/0031-9155/39/5/004 10.1016/j.neuroimage.2006.05.031 10.2140/pjm.1967.20.69 10.1109/TNS.2011.2108316 10.1109/TMI.2013.2292881 10.1016/j.neuroimage.2007.10.038 10.1016/j.compbiomed.2014.04.014 10.1088/0031-9155/53/10/009 10.1002/path.4432 10.2307/2332343 10.1016/j.compmedimag.2008.07.001 10.1118/1.2956713 10.1088/0031-9155/47/1/301 10.1088/0031-9155/54/24/009 10.1148/radiographics.19.3.g99ma33765 10.1007/s10851-013-0435-6 10.1118/1.2336500 10.1371/journal.pone.0081390 10.2967/jnumed.111.100354 10.2967/jnumed.106.035774 10.1109/TIP.2012.2202675 10.1016/j.neuroimage.2004.04.041 10.1097/00004728-197906000-00001 10.1109/TMI.2010.2076827 10.1016/j.media.2013.05.004 10.1007/s10278-012-9511-5 10.1007/s00259-011-1745-9 10.1016/j.patrec.2009.09.010 10.1088/0031-9155/56/21/009 10.2967/jnumed.107.041871 10.1109/TMI.2012.2211378 10.1088/0031-9155/56/20/004 10.1080/01621459.1985.10477119 10.1109/TMI.2009.2033991 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. Copyright Elsevier BV May 2018 |
| Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. – notice: Copyright Elsevier BV May 2018 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 5PM ADTOC UNPAY |
| DOI | 10.1016/j.media.2018.03.007 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1361-8423 |
| EndPage | 243 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:6080255 PMC6080255 29627687 10_1016_j_media_2018_03_007 S1361841518300987 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Intramural |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL131829 – fundername: NIBIB NIH HHS grantid: R01 EB020539 – fundername: Intramural NIH HHS grantid: Z99 CL999999 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c553t-94f90c9f9dbb90459dd096d3cb2c15d72c799f3d6868e4c5f7f8f6bca742ebbc3 |
| IEDL.DBID | .~1 |
| ISSN | 1361-8415 1361-8423 1361-8431 |
| IngestDate | Sun Oct 26 04:10:48 EDT 2025 Tue Sep 30 16:55:42 EDT 2025 Mon Sep 29 05:37:35 EDT 2025 Tue Oct 07 06:55:21 EDT 2025 Mon Jul 21 06:03:07 EDT 2025 Thu Apr 24 22:58:26 EDT 2025 Wed Oct 29 21:21:58 EDT 2025 Fri Feb 23 02:28:19 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Regional means denoising Partial volume correction Segmentation Affinity propagation Denoising |
| Language | English |
| License | Copyright © 2018 Elsevier B.V. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c553t-94f90c9f9dbb90459dd096d3cb2c15d72c799f3d6868e4c5f7f8f6bca742ebbc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 This research is partly supported by Center for Research in Computer Vision (CRCV); and the intramural research program of the National Institute of Allergy and Infectious Diseases (NIAID), NIH. |
| ORCID | 0000-0001-7379-6829 0000-0001-6718-4551 0000-0002-5728-6869 0000-0003-4975-9942 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6080255 |
| PMID | 29627687 |
| PQID | 2110059195 |
| PQPubID | 2045428 |
| PageCount | 15 |
| ParticipantIDs | unpaywall_primary_10_1016_j_media_2018_03_007 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6080255 proquest_miscellaneous_2023406977 proquest_journals_2110059195 pubmed_primary_29627687 crossref_primary_10_1016_j_media_2018_03_007 crossref_citationtrail_10_1016_j_media_2018_03_007 elsevier_sciencedirect_doi_10_1016_j_media_2018_03_007 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-05-01 |
| PublicationDateYYYYMMDD | 2018-05-01 |
| PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
| PublicationTitle | Medical image analysis |
| PublicationTitleAlternate | Med Image Anal |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Naqa, Low, Bradley, Vicic, Deasy (bib0050) 2006; 33 Bagci, Yao, Caban, Turkbey, Aras, Mollura (bib0011) 2011 Kerhet, Small, Quon, Riauka, Greiner, McEwan, Roa (bib0039) 2009; 5651 Zoran, Weiss (bib0072) 2009 Xu, Tsui (bib0066) 2009; 18 Harrison, Xu, George, Lu, Summers, Mollura (bib0034) 2017 Chatziioannou, Dahlbom (bib0019) 1994; 4 Salmon, Harmany, Deledalle, Willett (bib0053) 2014; 48 Boulanger, Kervrann, Bouthemy, Elbau, Sibarita, Salamero (bib0013) 2010; 29 Foster, Bagci, Xu, Dey, Luna, Bishai, Jain, Mollura (bib0031) 2014; 61 Kramer-Marek, Bernardo, Kiesewetter, Bagci, Kuban, Omer, Zielinski, Seidel, Choyke, Capala (bib0042) 2012; 53 Song, Bai, Han, Bhatia, Sun, Rockey, Bayouth, Buatti, Wu (bib0055) 2013; 32 Hsu, Liu, Chen (bib0036) 2008; 32 Akkus, Galimzianova, Hoogi, Rubin, Erickson (bib0001) 2017; 30 Erlandsson, Buvat, Pretorius, Thomas, Hutton (bib0028) 2012; 57 Hoffman, Huang, Phelps (bib0035) 1979; 3 Rousset, Ma, Evans (bib0051) 1998; 39 Baete, Nuyts, Laere, Paesschen, Ceyssens, Ceuninck, Gheysens, Kelles, den Eynden, Suetens, Dupont (bib0003) 2004; 23 Zhang, Fadili, Starck (bib0071) 2008; 17 Mansoor, Bagci, Mollura (bib0047) 2014 Gallivanone, Stefano, Grosso, Canevari, Gianolli, Messa, Gilardi, Castiglioni (bib0033) 2011; 58 Clark, Vendt, Smith, Freymann, Kirby, Koppel, Moore, Phillips, Maffitt, Pringle, Tarbox, Prior (bib0021) 2013; 26 Xu, Bagci, Udupa, Mollura (bib0068) 2015; 22 Rzeszotarski (bib0052) 1999; 19 Bagci, Udupa, Bai (bib0009) 2010; 31 Bagci, Bai (bib0005) 2007 Bagci, Udupa, Mendhiratta, Foster, Xu, Yao, Chen, Mollura (bib0010) 2013; 17 Somayajula, Panagiotou, Rangarajan, Li, Arridge, Leahy (bib0054) 2011; 30 Frey, Dueck (bib0032) 2007; 315 Barrett, Wilson, Tsui (bib0012) 1994; 39 Ding, Long, Zhang, Fessler (bib0026) 2016; 1001 Foster, Bagci, Mansoor, Xu, Mollura (bib0030) 2014; 50 Zaidi, Ruest, Schoenahl, Montandon (bib0070) 2006; 32 Kazantsev, Bousse, Pedemonte, Arridge, Hutton, Ourselin (bib0038) 2011 Liskowski, Krawiec (bib0045) 2016; 35 Bagci, Kramer-Marek, Mollura (bib0007) 2013; 3 Buades, Coll, Morel (bib0015) 2005; 2 Xia, Qi, Niu, Asma, Winkler, Wang (bib0065) 2015; 56 supplement Tauber, Stute, Chau, Spiteri, Chalon, Guilloteau, Buvat (bib0057) 2011; 56 Tohka, Reilhac (bib0061) 2008; 39 Kotlarski (bib0041) 1967; 20 van Dalen, Hoffmann, Dicken, Vogel, Wiering, Ruers, Karssemeijer, Oyen (bib0024) 2007; 28 Makitalo, Foi (bib0046) 2013; 22 Wang, Qi (bib0064) 2012; 31 Li, Thorstad, Biehl, Laforest, Su, Shoghi, Donnelly, Low, Lu (bib0044) 2008; 35 Cheng-Liao, Qi (bib0020) 2011; 56 Dabov, Foi, Katkovnik, Egiazarian (bib0023) 2007; 16 Foi, Trimeche, Katkovnik, Egiazarian (bib0029) 2008; 17 Kirov, Piao, Schmidtlein (bib0040) 2008; 53 Thomas, Erlandsson, Modat, Thurfjell, Vandenberghe, Ourselin, Hutton (bib0059) 2011; 38 Baete, Nuyts, Paesschen, Suetens, Dupont (bib0004) 2004; 23 Chan, Fulton, Feng, Meikle (bib0017) 2009; 54 Anscombe (bib0002) 1948; 35 Bagci, Mollura (bib0008) 2013; 8151 Comtat, Kinahan, Fessler, Beyer, Townsend, Defrise, Michel (bib0022) 2002; 47 Mohy-ud Din, Karakatsanis, Lodge, Tang, Rahmim (bib0025) 2014 Chan, Liu, Grobshtein, Stacy, Sinusas, Liu (bib0018) 2013 Mohy ud Din, Karakatsanis, Willis, Tahari, F-Wong, Rahmim (bib0048) 2015; 2 Chan, Fulton, Barnett, Feng, Meikle (bib0016) 2014; 33 Soret, Bacharach, Buvat (bib0056) 2007; 48 Yang, Huang, Mega, Lin, Toga, Small, Phelps (bib0069) 1996; 43 Mohy ud Din, Lodge, Rahmim (bib0049) 2015; 60 Boussion, Cheze Le Rest, Hatt, Visvikis (bib0014) 2009; 36 Dutta, Leahy, Li (bib0027) 2013; 8 Turkheimer, Boussion, Anderson, Pavese, Piccini, Visvikis (bib0062) 2008; 49 Thomas, Cuplov, Bousse, Mendes, Thielemans, Hutton, Erlandsson (bib0060) 2016; 61 Ibragimov, Pernus, Strojan, Xing (bib0037) 2016; 43 Vardi, Shepp, Kaufman (bib0063) 1985; 80 Bagci, Chen, Udupa (bib0006) 2012; 31 Kbler, Luna, Larsson, Ammerman, Andrade, Orandle, Bock, Xu, Bagci, Mollura, Marshall, Burns, Winglee, Ahidjo, Cheung, Klunk, Jain, Kumar, Babu, Sher, Friedland, Elkington, Bishai (bib0043) 2015; 235 Teymurazyan, Riauka, Jans, Robinson (bib0058) 2013; 26 Xu, Bagci, Seidel, Thomasson, Solomon, Mollura (bib0067) 2014; 8673 Makitalo (10.1016/j.media.2018.03.007_bib0046) 2013; 22 Baete (10.1016/j.media.2018.03.007_bib0004) 2004; 23 Erlandsson (10.1016/j.media.2018.03.007_bib0028) 2012; 57 Chatziioannou (10.1016/j.media.2018.03.007_bib0019) 1994; 4 Wang (10.1016/j.media.2018.03.007_bib0064) 2012; 31 Chan (10.1016/j.media.2018.03.007_bib0018) 2013 Barrett (10.1016/j.media.2018.03.007_bib0012) 1994; 39 Xu (10.1016/j.media.2018.03.007_bib0067) 2014; 8673 Bagci (10.1016/j.media.2018.03.007_bib0011) 2011 Li (10.1016/j.media.2018.03.007_bib0044) 2008; 35 Kazantsev (10.1016/j.media.2018.03.007_bib0038) 2011 Boussion (10.1016/j.media.2018.03.007_bib0014) 2009; 36 Xia (10.1016/j.media.2018.03.007_sbref0065) 2015; 56 supplement Dutta (10.1016/j.media.2018.03.007_bib0027) 2013; 8 Hsu (10.1016/j.media.2018.03.007_bib0036) 2008; 32 Zaidi (10.1016/j.media.2018.03.007_bib0070) 2006; 32 Chan (10.1016/j.media.2018.03.007_bib0017) 2009; 54 Teymurazyan (10.1016/j.media.2018.03.007_bib0058) 2013; 26 Bagci (10.1016/j.media.2018.03.007_bib0009) 2010; 31 Cheng-Liao (10.1016/j.media.2018.03.007_bib0020) 2011; 56 Kirov (10.1016/j.media.2018.03.007_bib0040) 2008; 53 Baete (10.1016/j.media.2018.03.007_bib0003) 2004; 23 Foster (10.1016/j.media.2018.03.007_bib0030) 2014; 50 Liskowski (10.1016/j.media.2018.03.007_bib0045) 2016; 35 Foi (10.1016/j.media.2018.03.007_bib0029) 2008; 17 Zhang (10.1016/j.media.2018.03.007_bib0071) 2008; 17 Akkus (10.1016/j.media.2018.03.007_bib0001) 2017; 30 Anscombe (10.1016/j.media.2018.03.007_sbref0002) 1948; 35 Hoffman (10.1016/j.media.2018.03.007_bib0035) 1979; 3 Ibragimov (10.1016/j.media.2018.03.007_sbref0037) 2016; 43 Ding (10.1016/j.media.2018.03.007_bib0026) 2016; 1001 Soret (10.1016/j.media.2018.03.007_bib0056) 2007; 48 Naqa (10.1016/j.media.2018.03.007_bib0050) 2006; 33 Xu (10.1016/j.media.2018.03.007_bib0068) 2015; 22 Comtat (10.1016/j.media.2018.03.007_bib0022) 2002; 47 Thomas (10.1016/j.media.2018.03.007_bib0059) 2011; 38 Thomas (10.1016/j.media.2018.03.007_bib0060) 2016; 61 Boulanger (10.1016/j.media.2018.03.007_bib0013) 2010; 29 Buades (10.1016/j.media.2018.03.007_bib0015) 2005; 2 Xu (10.1016/j.media.2018.03.007_bib0066) 2009; 18 Song (10.1016/j.media.2018.03.007_bib0055) 2013; 32 Bagci (10.1016/j.media.2018.03.007_bib0007) 2013; 3 Chan (10.1016/j.media.2018.03.007_bib0016) 2014; 33 Somayajula (10.1016/j.media.2018.03.007_bib0054) 2011; 30 Yang (10.1016/j.media.2018.03.007_bib0069) 1996; 43 Kotlarski (10.1016/j.media.2018.03.007_bib0041) 1967; 20 Vardi (10.1016/j.media.2018.03.007_bib0063) 1985; 80 Bagci (10.1016/j.media.2018.03.007_bib0005) 2007 Zoran (10.1016/j.media.2018.03.007_bib0072) 2009 Tauber (10.1016/j.media.2018.03.007_bib0057) 2011; 56 Gallivanone (10.1016/j.media.2018.03.007_bib0033) 2011; 58 Foster (10.1016/j.media.2018.03.007_bib0031) 2014; 61 Mansoor (10.1016/j.media.2018.03.007_bib0047) 2014 van Dalen (10.1016/j.media.2018.03.007_bib0024) 2007; 28 Kbler (10.1016/j.media.2018.03.007_bib0043) 2015; 235 Tohka (10.1016/j.media.2018.03.007_bib0061) 2008; 39 Turkheimer (10.1016/j.media.2018.03.007_bib0062) 2008; 49 Dabov (10.1016/j.media.2018.03.007_bib0023) 2007; 16 Rzeszotarski (10.1016/j.media.2018.03.007_bib0052) 1999; 19 Kerhet (10.1016/j.media.2018.03.007_bib0039) 2009; 5651 Clark (10.1016/j.media.2018.03.007_bib0021) 2013; 26 Harrison (10.1016/j.media.2018.03.007_bib0034) 2017 Mohy ud Din (10.1016/j.media.2018.03.007_bib0049) 2015; 60 Bagci (10.1016/j.media.2018.03.007_bib0008) 2013; 8151 Bagci (10.1016/j.media.2018.03.007_bib0006) 2012; 31 Rousset (10.1016/j.media.2018.03.007_bib0051) 1998; 39 Salmon (10.1016/j.media.2018.03.007_bib0053) 2014; 48 Bagci (10.1016/j.media.2018.03.007_bib0010) 2013; 17 Mohy ud Din (10.1016/j.media.2018.03.007_bib0048) 2015; 2 Frey (10.1016/j.media.2018.03.007_bib0032) 2007; 315 Mohy-ud Din (10.1016/j.media.2018.03.007_sbref0025) 2014 Kramer-Marek (10.1016/j.media.2018.03.007_bib0042) 2012; 53 |
| References_xml | – volume: 2 start-page: 60 year: 2005 end-page: 65 ident: bib0015 article-title: A non-local algorithm for image denoising publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition – start-page: 130 year: 2014 end-page: 137 ident: bib0047 article-title: Optimally Stabilized Pet Image Denoising Using Trilateral Filtering publication-title: Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014 – volume: 48 start-page: 932 year: 2007 end-page: 945 ident: bib0056 article-title: Partial-volume effect in pet tumor imaging publication-title: J. Nucl. Med. – start-page: 305 year: 2007 end-page: 312 ident: bib0005 article-title: Multiresolution elastic medical image registration in standard intensity scale publication-title: Proceedings of the XX Brazilian Symposium on Computer Graphics and Image Processing, 2007. SIBGRAPI 2007 – volume: 48 start-page: 279 year: 2014 end-page: 294 ident: bib0053 article-title: Poisson noise reduction with non-local PCA publication-title: J. Math. Imaging Vis – volume: 8 start-page: 1 year: 2013 end-page: 15 ident: bib0027 article-title: Non-local means denoising of dynamic pet images publication-title: PLoS ONE – volume: 315 start-page: 972 year: 2007 end-page: 976 ident: bib0032 article-title: Clustering by passing messages between data points publication-title: Science – volume: 60 start-page: 6013 year: 2015 ident: bib0049 article-title: Quantitative myocardial perfusion pet parametric imaging at the voxel-level publication-title: Phys Med Biol – volume: 28 start-page: 485 year: 2007 end-page: 493 ident: bib0024 article-title: A novel iterative method for lesion delineation and volumetric quantification with FDG PET publication-title: Nucl. Med. Commun. – volume: 20 start-page: 69 year: 1967 end-page: 76 ident: bib0041 article-title: On characterizing the gamma and the normal distribution publication-title: Pacific J. Math. – volume: 43 start-page: 3322 year: 1996 end-page: 3327 ident: bib0069 article-title: Investigation of partial volume correction methods for brain fdg pet studies publication-title: IEEE Trans. Nucl. Sci. – volume: 61 start-page: 7975 year: 2016 ident: bib0060 article-title: Petpvc: a toolbox for performing partial volume correction techniques in positron emission tomography publication-title: Phys. Med. Biol. – volume: 35 start-page: 2369 year: 2016 end-page: 2380 ident: bib0045 article-title: Segmenting retinal blood vessels with deep neural networks publication-title: IEEE Trans Med Imaging – volume: 19 start-page: 765 year: 1999 end-page: 782 ident: bib0052 article-title: The AAPM/RSNA physics tutorial for residents publication-title: Radiographics – volume: 235 start-page: 431 year: 2015 end-page: 444 ident: bib0043 article-title: Mycobacterium tuberculosis dysregulates MMP/TIMP balance to drive rapid cavitation and unrestrained bacterial proliferation publication-title: J. Pathol. – volume: 23 start-page: 305 year: 2004 end-page: 317 ident: bib0003 article-title: Evaluation of anatomy based reconstruction for partial volume correction in brain FDG-pet publication-title: Neuroimage – volume: 36 start-page: 1064 year: 2009 end-page: 1075 ident: bib0014 article-title: Incorporation of wavelet-based denoising in iterative deconvolution for partial volume correction in whole-body pet imaging publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: 1001 start-page: 48109 year: 2016 ident: bib0026 article-title: Modeling mixed poisson-gaussian noise in statistical image reconstruction for x-ray ct publication-title: Arbor – volume: 35 start-page: 3711 year: 2008 end-page: 3721 ident: bib0044 article-title: A novel PET tumor delineation method based on adaptive region-growing and dual-front active contours publication-title: Med. Phys. – volume: 17 start-page: 1093 year: 2008 end-page: 1108 ident: bib0071 article-title: Wavelets, ridgelets, and curvelets for poisson noise removal publication-title: IEEE Trans. Image Process. – volume: 18 start-page: 1228 year: 2009 end-page: 1238 ident: bib0066 article-title: Electronic noise modeling in statistical iterative reconstruction publication-title: IEEE Trans. Image Process. – volume: 22 start-page: 15 year: 2015 end-page: 24 ident: bib0068 article-title: Fuzzy Connectedness Image Co-segmentation for Hybrid PET/MRI and PET/CT Scans publication-title: Computational Methods for Molecular Imaging – volume: 56 supplement year: 2015 ident: bib0065 article-title: Quantitative comparison of anisotropic diffusion, non-local means and gaussian post-filtering effects on FDG-pet lesions publication-title: J. Nucl. Med. – volume: 43 year: 2016 ident: bib0037 article-title: Machine-learning based segmentation of organs at risks for head and neck radiotherapy planning publication-title: Med Phys – volume: 58 start-page: 736 year: 2011 end-page: 747 ident: bib0033 article-title: PVE Correction in PET-CT whole-body oncological studies from PVE-affected images publication-title: IEEE Trans. Nuclear Sci. – volume: 38 start-page: 1104 year: 2011 end-page: 1119 ident: bib0059 article-title: The importance of appropriate partial volume correction for PET quantification in alzheimerâs disease publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: 8151 start-page: 115 year: 2013 end-page: 122 ident: bib0008 article-title: Denoising PET Images Using Singular Value Thresholding and Stein’s Unbiased Risk Estimate publication-title: Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI – volume: 47 start-page: 1 year: 2002 ident: bib0022 article-title: Clinically feasible reconstruction of 3d whole-body pet/ct data using blurred anatomical labels publication-title: Phys. Med. Biol. – start-page: 2209 year: 2009 end-page: 2216 ident: bib0072 article-title: Scale invariance and noise in natural images publication-title: Proceedings of the IEEE International Conference Computer Vision – volume: 50 start-page: 76 year: 2014 end-page: 96 ident: bib0030 article-title: A review on segmentation of positron emission tomography images publication-title: Comput. Biol. Med. – volume: 26 start-page: 447 year: 2013 end-page: 456 ident: bib0058 article-title: Properties of noise in positron emission tomography images reconstructed with filtered-backprojection and row-action maximum likelihood algorithm publication-title: J. Digit Imaging – volume: 22 start-page: 91 year: 2013 end-page: 103 ident: bib0046 article-title: Optimal inversion of the generalized anscombe transformation for poisson-gaussian noise publication-title: IEEE Trans. Image Process. – start-page: 621 year: 2017 end-page: 629 ident: bib0034 article-title: Progressive and multi-path holistically nested neural networks for pathological lung segmentation from ct images publication-title: Proceedings of the 20th International Conference on Medical Image Computing and Computer-Assisted Intervention âMICCAI 2017: Quebec City, QC, Canada, September 11–13, 2017 – volume: 17 start-page: 929 year: 2013 end-page: 945 ident: bib0010 article-title: Joint segmentation of anatomical and functional images: applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images publication-title: Med. Image Anal. – start-page: 8479 year: 2011 end-page: 8482 ident: bib0011 article-title: A graph-theoretic approach for segmentation of PET images publication-title: Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC – start-page: 1158 year: 2011 end-page: 1161 ident: bib0038 article-title: Edge preserving bowsher prior with nonlocal weighting for 3d spect reconstruction publication-title: Proceedings of the 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro – volume: 32 start-page: 1591 year: 2006 end-page: 1607 ident: bib0070 article-title: Comparative assessment of statistical brain {MR} image segmentation algorithms and their impact on partial volume correction in PET publication-title: Neuroimage – volume: 16 start-page: 2080 year: 2007 end-page: 2095 ident: bib0023 article-title: Image denoising by sparse 3-d transform-domain collaborative filtering publication-title: IEEE Trans. Image Process. – volume: 53 start-page: 2577 year: 2008 ident: bib0040 article-title: Partial volume effect correction in pet using regularized iterative deconvolution with variance control based on local topology publication-title: Phys. Med. Biol. – volume: 31 start-page: 315 year: 2010 end-page: 323 ident: bib0009 article-title: The role of intensity standardization in medical image registration publication-title: Pattern Recognit. Lett. – volume: 31 start-page: 2194 year: 2012 end-page: 2204 ident: bib0064 article-title: Penalized likelihood pet image reconstruction using patch-based edge-preserving regularization publication-title: IEEE Trans. Med. Imaging – volume: 32 start-page: 601 year: 2008 end-page: 610 ident: bib0036 article-title: Automatic segmentation of liver PET images publication-title: Comput. Med. Imaging and Graph. – volume: 8673 start-page: 698 year: 2014 end-page: 705 ident: bib0067 article-title: Segmentation based denoising of PET images: an iterative approach via regional means and affinity propagation publication-title: Proceedings of the MICCAI 2014 – volume: 35 start-page: 246 year: 1948 end-page: 254 ident: bib0002 article-title: The transformation of poisson, binomial and negative-binomial data publication-title: Biometrika – volume: 26 start-page: 1045 year: 2013 end-page: 1057 ident: bib0021 article-title: The cancer imaging archive (tcia): maintaining and operating a public information repository publication-title: J. Digit Imaging – volume: 2 start-page: 60 year: 2015 end-page: 72 ident: bib0048 article-title: Intra-frame motion compensation in multi-frame brain pet imaging publication-title: Frontiers Biomed. Technol. – volume: 3 year: 1979 ident: bib0035 article-title: Quantitation in positron emission computed tomography: 1. Effect of object size. publication-title: J. Comput. Assist. Tomogr. – year: 2014 ident: bib0025 article-title: Parametric myocardial perfusion pet imaging using physiological clustering publication-title: SPIE Medical Imaging – volume: 5651 start-page: 146 year: 2009 end-page: 155 ident: bib0039 article-title: Segmentation of Lung Tumours in Positron Emission Tomography Scans: A Machine Learning Approach publication-title: Proceedings of the Artificial Intelligence in Medicine – start-page: 1 year: 2013 end-page: 6 ident: bib0018 article-title: Simultaneous partial volume correction and noise regularization for cardiac spect/ct publication-title: Proceedings of the Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) – volume: 39 start-page: 904 year: 1998 end-page: 911 ident: bib0051 article-title: Correction for partial volume effects in PET: principle and validation publication-title: J. Nucl. Med. – volume: 30 start-page: 449 year: 2017 end-page: 459 ident: bib0001 article-title: Deep learning for brain MRI segmentation: state of the art and future directions publication-title: J. Digit Imaging – volume: 30 start-page: 537 year: 2011 end-page: 549 ident: bib0054 article-title: Pet image reconstruction using information theoretic anatomical priors publication-title: IEEE Trans. Med Imaging – volume: 31 start-page: 777 year: 2012 end-page: 789 ident: bib0006 article-title: Hierarchical scale-based multiobject recognition of 3-d anatomical structures publication-title: IEEE Trans. Medical Imaging – volume: 4 start-page: 1568 year: 1994 end-page: 1572 ident: bib0019 article-title: Detailed investigation of transmission and emission data smoothing protocols and their effects on emission images publication-title: Proceedings of the 1994 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference, 1994 – volume: 80 start-page: 8 year: 1985 end-page: 20 ident: bib0063 article-title: A statistical model for positron emission tomography publication-title: J. Am. Stat. Assoc. – volume: 54 start-page: 7379 year: 2009 ident: bib0017 article-title: Regularized image reconstruction with an anatomically adaptive prior for positron emission tomography publication-title: Phys. Med. Biol. – volume: 39 start-page: 833 year: 1994 ident: bib0012 article-title: Noise properties of the em algorithm. I. Theory publication-title: Phys. Med. Biol. – volume: 33 start-page: 3587 year: 2006 end-page: 3600 ident: bib0050 article-title: Deblurring of breathing motion artifacts in thoracic pet images by deconvolution methods publication-title: Med. Phys. – volume: 3 start-page: 1 year: 2013 end-page: 13 ident: bib0007 article-title: Automated computer quantification of breast cancer in small-animal models using pet-guided mr image co-segmentation publication-title: EJNMMI Res. – volume: 32 start-page: 1685 year: 2013 end-page: 1697 ident: bib0055 article-title: Optimal co-segmentation of tumor in PET-CT images with context information publication-title: IEEE Trans. Medical Imag. – volume: 56 start-page: 65 year: 2011 end-page: 83 ident: bib0057 article-title: Spatio-temporal diffusion of dynamic PET images publication-title: Phys. Med. Biol. – volume: 29 start-page: 442 year: 2010 end-page: 454 ident: bib0013 article-title: Patch-based nonlocal functional for denoising fluorescence microscopy image sequences publication-title: IEEE Trans. Med. Imaging – volume: 56 start-page: 6899 year: 2011 ident: bib0020 article-title: Pet image reconstruction with anatomical edge guided level set prior publication-title: Phys. Med. Biol. – volume: 49 start-page: 657 year: 2008 end-page: 666 ident: bib0062 article-title: PET Image denoising using a synergistic multiresolution analysis of structural (MRI/CT) and functional datasets publication-title: J. Nucl. Med. – volume: 61 start-page: 711 year: 2014 end-page: 724 ident: bib0031 article-title: Segmentation of PET images for computer-aided functional quantification of tuberculosis in small animal models publication-title: IEEE Trans. Biomed. Eng. – volume: 23 start-page: 510 year: 2004 end-page: 519 ident: bib0004 article-title: Anatomical-based FDG-pet reconstruction for the detection of hypo-metabolic regions in epilepsy publication-title: IEEE Trans. Med. Imaging – volume: 39 start-page: 1570 year: 2008 end-page: 1584 ident: bib0061 article-title: Deconvolution-based partial volume correction in raclopride-pet and monte carlo comparison to mr-based method publication-title: Neuroimage – volume: 57 start-page: R119 year: 2012 ident: bib0028 article-title: A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology publication-title: Phys. Med. Biol. – volume: 33 start-page: 636 year: 2014 end-page: 650 ident: bib0016 article-title: Post-reconstruction nonlocal means filtering of whole-body pet with an anatomical prior publication-title: IEEE Trans. Med. Imaging – volume: 17 start-page: 1737 year: 2008 end-page: 1754 ident: bib0029 article-title: Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data publication-title: IEEE Trans. Image Process. – volume: 53 start-page: 939 year: 2012 end-page: 946 ident: bib0042 article-title: Pet of her2-positive pulmonary metastases with 18f-zher2: 342 affibody in a murine model of breast cancer: comparison with 18f-FDG publication-title: J. Nucl. Med. – start-page: 8479 year: 2011 ident: 10.1016/j.media.2018.03.007_bib0011 article-title: A graph-theoretic approach for segmentation of PET images – volume: 61 start-page: 7975 issue: 22 year: 2016 ident: 10.1016/j.media.2018.03.007_bib0060 article-title: Petpvc: a toolbox for performing partial volume correction techniques in positron emission tomography publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/61/22/7975 – volume: 57 start-page: R119 issue: 21 year: 2012 ident: 10.1016/j.media.2018.03.007_bib0028 article-title: A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/57/21/R119 – volume: 315 start-page: 972 year: 2007 ident: 10.1016/j.media.2018.03.007_bib0032 article-title: Clustering by passing messages between data points publication-title: Science doi: 10.1126/science.1136800 – volume: 23 start-page: 510 issue: 4 year: 2004 ident: 10.1016/j.media.2018.03.007_bib0004 article-title: Anatomical-based FDG-pet reconstruction for the detection of hypo-metabolic regions in epilepsy publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2004.825623 – volume: 31 start-page: 777 issue: 3 year: 2012 ident: 10.1016/j.media.2018.03.007_bib0006 article-title: Hierarchical scale-based multiobject recognition of 3-d anatomical structures publication-title: IEEE Trans. Medical Imaging doi: 10.1109/TMI.2011.2180920 – volume: 16 start-page: 2080 issue: 8 year: 2007 ident: 10.1016/j.media.2018.03.007_bib0023 article-title: Image denoising by sparse 3-d transform-domain collaborative filtering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.901238 – volume: 35 start-page: 2369 issue: 11 year: 2016 ident: 10.1016/j.media.2018.03.007_bib0045 article-title: Segmenting retinal blood vessels with deep neural networks publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2546227 – volume: 30 start-page: 449 issue: 4 year: 2017 ident: 10.1016/j.media.2018.03.007_bib0001 article-title: Deep learning for brain MRI segmentation: state of the art and future directions publication-title: J. Digit Imaging doi: 10.1007/s10278-017-9983-4 – volume: 43 start-page: 3322 issue: 6 year: 1996 ident: 10.1016/j.media.2018.03.007_bib0069 article-title: Investigation of partial volume correction methods for brain fdg pet studies publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/23.552745 – volume: 28 start-page: 485 issue: 6 year: 2007 ident: 10.1016/j.media.2018.03.007_bib0024 article-title: A novel iterative method for lesion delineation and volumetric quantification with FDG PET publication-title: Nucl. Med. Commun. doi: 10.1097/MNM.0b013e328155d154 – volume: 32 start-page: 1685 issue: 9 year: 2013 ident: 10.1016/j.media.2018.03.007_bib0055 article-title: Optimal co-segmentation of tumor in PET-CT images with context information publication-title: IEEE Trans. Medical Imag. doi: 10.1109/TMI.2013.2263388 – volume: 18 start-page: 1228 issue: 6 year: 2009 ident: 10.1016/j.media.2018.03.007_bib0066 article-title: Electronic noise modeling in statistical iterative reconstruction publication-title: IEEE Trans. Image Process. doi: 10.1109/TAP.2009.2015832 – start-page: 1 year: 2013 ident: 10.1016/j.media.2018.03.007_bib0018 article-title: Simultaneous partial volume correction and noise regularization for cardiac spect/ct – volume: 17 start-page: 1093 issue: 7 year: 2008 ident: 10.1016/j.media.2018.03.007_bib0071 article-title: Wavelets, ridgelets, and curvelets for poisson noise removal publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2008.924386 – volume: 17 start-page: 1737 issue: 10 year: 2008 ident: 10.1016/j.media.2018.03.007_bib0029 article-title: Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2008.2001399 – volume: 61 start-page: 711 issue: 3 year: 2014 ident: 10.1016/j.media.2018.03.007_bib0031 article-title: Segmentation of PET images for computer-aided functional quantification of tuberculosis in small animal models publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2288258 – start-page: 130 year: 2014 ident: 10.1016/j.media.2018.03.007_bib0047 article-title: Optimally Stabilized Pet Image Denoising Using Trilateral Filtering – volume: 5651 start-page: 146 year: 2009 ident: 10.1016/j.media.2018.03.007_bib0039 article-title: Segmentation of Lung Tumours in Positron Emission Tomography Scans: A Machine Learning Approach – volume: 1001 start-page: 48109 year: 2016 ident: 10.1016/j.media.2018.03.007_bib0026 article-title: Modeling mixed poisson-gaussian noise in statistical image reconstruction for x-ray ct publication-title: Arbor – volume: 26 start-page: 1045 issue: 6 year: 2013 ident: 10.1016/j.media.2018.03.007_bib0021 article-title: The cancer imaging archive (tcia): maintaining and operating a public information repository publication-title: J. Digit Imaging doi: 10.1007/s10278-013-9622-7 – volume: 60 start-page: 6013 issue: 15 year: 2015 ident: 10.1016/j.media.2018.03.007_bib0049 article-title: Quantitative myocardial perfusion pet parametric imaging at the voxel-level publication-title: Phys Med Biol doi: 10.1088/0031-9155/60/15/6013 – volume: 43 issue: 6Part46 year: 2016 ident: 10.1016/j.media.2018.03.007_sbref0037 article-title: Machine-learning based segmentation of organs at risks for head and neck radiotherapy planning publication-title: Med Phys doi: 10.1118/1.4958186 – volume: 36 start-page: 1064 issue: 7 year: 2009 ident: 10.1016/j.media.2018.03.007_bib0014 article-title: Incorporation of wavelet-based denoising in iterative deconvolution for partial volume correction in whole-body pet imaging publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-009-1065-5 – volume: 39 start-page: 833 issue: 5 year: 1994 ident: 10.1016/j.media.2018.03.007_bib0012 article-title: Noise properties of the em algorithm. I. Theory publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/39/5/004 – volume: 8673 start-page: 698 year: 2014 ident: 10.1016/j.media.2018.03.007_bib0067 article-title: Segmentation based denoising of PET images: an iterative approach via regional means and affinity propagation – volume: 32 start-page: 1591 issue: 4 year: 2006 ident: 10.1016/j.media.2018.03.007_bib0070 article-title: Comparative assessment of statistical brain {MR} image segmentation algorithms and their impact on partial volume correction in PET publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.05.031 – volume: 20 start-page: 69 issue: 1 year: 1967 ident: 10.1016/j.media.2018.03.007_bib0041 article-title: On characterizing the gamma and the normal distribution publication-title: Pacific J. Math. doi: 10.2140/pjm.1967.20.69 – volume: 58 start-page: 736 issue: 3 year: 2011 ident: 10.1016/j.media.2018.03.007_bib0033 article-title: PVE Correction in PET-CT whole-body oncological studies from PVE-affected images publication-title: IEEE Trans. Nuclear Sci. doi: 10.1109/TNS.2011.2108316 – volume: 22 start-page: 15 year: 2015 ident: 10.1016/j.media.2018.03.007_bib0068 article-title: Fuzzy Connectedness Image Co-segmentation for Hybrid PET/MRI and PET/CT Scans – volume: 33 start-page: 636 issue: 3 year: 2014 ident: 10.1016/j.media.2018.03.007_bib0016 article-title: Post-reconstruction nonlocal means filtering of whole-body pet with an anatomical prior publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2292881 – year: 2014 ident: 10.1016/j.media.2018.03.007_sbref0025 article-title: Parametric myocardial perfusion pet imaging using physiological clustering – start-page: 305 year: 2007 ident: 10.1016/j.media.2018.03.007_bib0005 article-title: Multiresolution elastic medical image registration in standard intensity scale – start-page: 1158 year: 2011 ident: 10.1016/j.media.2018.03.007_bib0038 article-title: Edge preserving bowsher prior with nonlocal weighting for 3d spect reconstruction – volume: 39 start-page: 1570 issue: 4 year: 2008 ident: 10.1016/j.media.2018.03.007_bib0061 article-title: Deconvolution-based partial volume correction in raclopride-pet and monte carlo comparison to mr-based method publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.10.038 – volume: 50 start-page: 76 year: 2014 ident: 10.1016/j.media.2018.03.007_bib0030 article-title: A review on segmentation of positron emission tomography images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2014.04.014 – volume: 53 start-page: 2577 issue: 10 year: 2008 ident: 10.1016/j.media.2018.03.007_bib0040 article-title: Partial volume effect correction in pet using regularized iterative deconvolution with variance control based on local topology publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/53/10/009 – volume: 235 start-page: 431 issue: 3 year: 2015 ident: 10.1016/j.media.2018.03.007_bib0043 article-title: Mycobacterium tuberculosis dysregulates MMP/TIMP balance to drive rapid cavitation and unrestrained bacterial proliferation publication-title: J. Pathol. doi: 10.1002/path.4432 – volume: 35 start-page: 246 issue: 3/4 year: 1948 ident: 10.1016/j.media.2018.03.007_sbref0002 article-title: The transformation of poisson, binomial and negative-binomial data publication-title: Biometrika doi: 10.2307/2332343 – volume: 32 start-page: 601 issue: 7 year: 2008 ident: 10.1016/j.media.2018.03.007_bib0036 article-title: Automatic segmentation of liver PET images publication-title: Comput. Med. Imaging and Graph. doi: 10.1016/j.compmedimag.2008.07.001 – volume: 35 start-page: 3711 issue: 8 year: 2008 ident: 10.1016/j.media.2018.03.007_bib0044 article-title: A novel PET tumor delineation method based on adaptive region-growing and dual-front active contours publication-title: Med. Phys. doi: 10.1118/1.2956713 – volume: 2 start-page: 60 year: 2005 ident: 10.1016/j.media.2018.03.007_bib0015 article-title: A non-local algorithm for image denoising – volume: 47 start-page: 1 issue: 1 year: 2002 ident: 10.1016/j.media.2018.03.007_bib0022 article-title: Clinically feasible reconstruction of 3d whole-body pet/ct data using blurred anatomical labels publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/47/1/301 – volume: 54 start-page: 7379 issue: 24 year: 2009 ident: 10.1016/j.media.2018.03.007_bib0017 article-title: Regularized image reconstruction with an anatomically adaptive prior for positron emission tomography publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/54/24/009 – volume: 19 start-page: 765 issue: 3 year: 1999 ident: 10.1016/j.media.2018.03.007_bib0052 article-title: The AAPM/RSNA physics tutorial for residents publication-title: Radiographics doi: 10.1148/radiographics.19.3.g99ma33765 – volume: 48 start-page: 279 issue: 2 year: 2014 ident: 10.1016/j.media.2018.03.007_bib0053 article-title: Poisson noise reduction with non-local PCA publication-title: J. Math. Imaging Vis doi: 10.1007/s10851-013-0435-6 – start-page: 621 year: 2017 ident: 10.1016/j.media.2018.03.007_bib0034 article-title: Progressive and multi-path holistically nested neural networks for pathological lung segmentation from ct images – start-page: 2209 year: 2009 ident: 10.1016/j.media.2018.03.007_bib0072 article-title: Scale invariance and noise in natural images – volume: 2 start-page: 60 issue: 2 year: 2015 ident: 10.1016/j.media.2018.03.007_bib0048 article-title: Intra-frame motion compensation in multi-frame brain pet imaging publication-title: Frontiers Biomed. Technol. – volume: 8151 start-page: 115 year: 2013 ident: 10.1016/j.media.2018.03.007_bib0008 article-title: Denoising PET Images Using Singular Value Thresholding and Stein’s Unbiased Risk Estimate – volume: 33 start-page: 3587 issue: 10 year: 2006 ident: 10.1016/j.media.2018.03.007_bib0050 article-title: Deblurring of breathing motion artifacts in thoracic pet images by deconvolution methods publication-title: Med. Phys. doi: 10.1118/1.2336500 – volume: 8 start-page: 1 issue: 12 year: 2013 ident: 10.1016/j.media.2018.03.007_bib0027 article-title: Non-local means denoising of dynamic pet images publication-title: PLoS ONE doi: 10.1371/journal.pone.0081390 – volume: 53 start-page: 939 issue: 6 year: 2012 ident: 10.1016/j.media.2018.03.007_bib0042 article-title: Pet of her2-positive pulmonary metastases with 18f-zher2: 342 affibody in a murine model of breast cancer: comparison with 18f-FDG publication-title: J. Nucl. Med. doi: 10.2967/jnumed.111.100354 – volume: 48 start-page: 932 issue: 6 year: 2007 ident: 10.1016/j.media.2018.03.007_bib0056 article-title: Partial-volume effect in pet tumor imaging publication-title: J. Nucl. Med. doi: 10.2967/jnumed.106.035774 – volume: 4 start-page: 1568 year: 1994 ident: 10.1016/j.media.2018.03.007_bib0019 article-title: Detailed investigation of transmission and emission data smoothing protocols and their effects on emission images – volume: 22 start-page: 91 issue: 1 year: 2013 ident: 10.1016/j.media.2018.03.007_bib0046 article-title: Optimal inversion of the generalized anscombe transformation for poisson-gaussian noise publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2202675 – volume: 23 start-page: 305 issue: 1 year: 2004 ident: 10.1016/j.media.2018.03.007_bib0003 article-title: Evaluation of anatomy based reconstruction for partial volume correction in brain FDG-pet publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.04.041 – volume: 3 issue: 3 year: 1979 ident: 10.1016/j.media.2018.03.007_bib0035 article-title: Quantitation in positron emission computed tomography: 1. Effect of object size. publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/00004728-197906000-00001 – volume: 30 start-page: 537 issue: 3 year: 2011 ident: 10.1016/j.media.2018.03.007_bib0054 article-title: Pet image reconstruction using information theoretic anatomical priors publication-title: IEEE Trans. Med Imaging doi: 10.1109/TMI.2010.2076827 – volume: 39 start-page: 904 issue: 5 year: 1998 ident: 10.1016/j.media.2018.03.007_bib0051 article-title: Correction for partial volume effects in PET: principle and validation publication-title: J. Nucl. Med. – volume: 17 start-page: 929 issue: 8 year: 2013 ident: 10.1016/j.media.2018.03.007_bib0010 article-title: Joint segmentation of anatomical and functional images: applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images publication-title: Med. Image Anal. doi: 10.1016/j.media.2013.05.004 – volume: 26 start-page: 447 issue: 3 year: 2013 ident: 10.1016/j.media.2018.03.007_bib0058 article-title: Properties of noise in positron emission tomography images reconstructed with filtered-backprojection and row-action maximum likelihood algorithm publication-title: J. Digit Imaging doi: 10.1007/s10278-012-9511-5 – volume: 38 start-page: 1104 issue: 6 year: 2011 ident: 10.1016/j.media.2018.03.007_bib0059 article-title: The importance of appropriate partial volume correction for PET quantification in alzheimerâs disease publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-011-1745-9 – volume: 31 start-page: 315 issue: 4 year: 2010 ident: 10.1016/j.media.2018.03.007_bib0009 article-title: The role of intensity standardization in medical image registration publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2009.09.010 – volume: 56 start-page: 6899 issue: 21 year: 2011 ident: 10.1016/j.media.2018.03.007_bib0020 article-title: Pet image reconstruction with anatomical edge guided level set prior publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/56/21/009 – volume: 49 start-page: 657 issue: 4 year: 2008 ident: 10.1016/j.media.2018.03.007_bib0062 article-title: PET Image denoising using a synergistic multiresolution analysis of structural (MRI/CT) and functional datasets publication-title: J. Nucl. Med. doi: 10.2967/jnumed.107.041871 – volume: 31 start-page: 2194 issue: 12 year: 2012 ident: 10.1016/j.media.2018.03.007_bib0064 article-title: Penalized likelihood pet image reconstruction using patch-based edge-preserving regularization publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2012.2211378 – volume: 56 start-page: 65 issue: 20 year: 2011 ident: 10.1016/j.media.2018.03.007_bib0057 article-title: Spatio-temporal diffusion of dynamic PET images publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/56/20/004 – volume: 80 start-page: 8 issue: 389 year: 1985 ident: 10.1016/j.media.2018.03.007_bib0063 article-title: A statistical model for positron emission tomography publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1985.10477119 – volume: 3 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.media.2018.03.007_bib0007 article-title: Automated computer quantification of breast cancer in small-animal models using pet-guided mr image co-segmentation publication-title: EJNMMI Res. – volume: 29 start-page: 442 issue: 2 year: 2010 ident: 10.1016/j.media.2018.03.007_bib0013 article-title: Patch-based nonlocal functional for denoising fluorescence microscopy image sequences publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2033991 – volume: 56 supplement issue: 3 year: 2015 ident: 10.1016/j.media.2018.03.007_sbref0065 article-title: Quantitative comparison of anisotropic diffusion, non-local means and gaussian post-filtering effects on FDG-pet lesions publication-title: J. Nucl. Med. |
| SSID | ssj0007440 |
| Score | 2.4053504 |
| Snippet | •Interactions among segmentation, denoising, and partial volume corrections have been utilized to improve solution of each of these problems for PET... Segmentation, denoising, and partial volume correction (PVC) are three major processes in the quantification of uptake regions in post-reconstruction PET... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 229 |
| SubjectTerms | Adaptive algorithms Affinity propagation Algorithms Animals Clustering Denoising Humans Image Enhancement - methods Image processing Image reconstruction Image segmentation Magnetic Resonance Imaging Medical imaging Neoplasms - diagnostic imaging Noise reduction Normal distribution Partial volume correction Phantoms, Imaging Polyvinyl chloride Positron emission Positron Emission Tomography Computed Tomography - methods Positron-Emission Tomography - methods Qualitative analysis Qualitative research Quantitative analysis Rabbits Radiographic Image Interpretation, Computer-Assisted - methods Radiopharmaceuticals Regional means denoising Reproducibility of Results Segmentation Sensitivity and Specificity Signal-To-Noise Ratio Smoothness Tomography Tuberculosis, Pulmonary - diagnostic imaging |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9swFL10KezjYR9du2XthgZ7jNPYlmXrsYyWUmgpWwPdk5Bka3ObKGF1GNuv35Usm36wsr45SIojdC2dG59zLsAnJ9uiTBcRozyPqFE8kogqIqOccgYzion3KTg-YYdTenSena9B3GlhPGlfq3psZ_OxrX94buVyrnc7ntguc-rQLHsE6yxD-D2A9enJ6d63Vl8VRwX1VQvCtS_vFq7TuHMd8vwur8xw3K6idTnN_3Uy3UWedwmUT1Z2KX__krPZtdPp4AV86ebVklIux6tGjfWfW5aPD5r4S3gesCrZa5tewVplN-DZNQfDDXh8HN7Nv4avR4vaNqSLZYJomJzun5F6jlsWuaq-z4PMyY4IbnaL2v1LMSLSlmTp7o53ardKol3FEK-32ITpwf7Z58MolGyIdJalTcSp4RPNDS-V4ogWeVlijlSmWiU6zso80TnnJi1ZwYqK6szkpjBMaYkZeqWUTrdgYBe2egtEFjmVHLMzmXDqhpVmwlOjK8aoVqUcQtItl9DBz9yV1ZiJjrh2IfwaC7fGYpIKXOMhjPpBy9bO4_7urIsDERBJizQEHjj3D9zpokaETeFKuFwb0WzMsyF87JvxcXbvaKStFivsgxjKiZFz_Io3bZD1PzRxhZJYgS35jfDrOzir8JstGEjeMjzEzhCiPlD_Z_7vHth_G566Ty0hdAcGzc9V9R5BW6M-hMf0L6KYPow priority: 102 providerName: Unpaywall |
| Title | Joint solution for PET image segmentation, denoising, and partial volume correction |
| URI | https://dx.doi.org/10.1016/j.media.2018.03.007 https://www.ncbi.nlm.nih.gov/pubmed/29627687 https://www.proquest.com/docview/2110059195 https://www.proquest.com/docview/2023406977 https://pubmed.ncbi.nlm.nih.gov/PMC6080255 https://www.ncbi.nlm.nih.gov/pmc/articles/6080255 |
| UnpaywallVersion | submittedVersion |
| Volume | 46 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: ACRLP dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AIKHN dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: .~1 dateStart: 19960301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AKRWK dateStart: 19960301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaqIvE4ICivQKmMxDEmya7XXh9D1RIKjSq1QeVk-bGGRakT0USIC7-dmX3RqKJCnFZZ2_vwjMcz2fm-IeQ1wra4cDkTXEnGg1XMgFfBgkXkDEQUw4qn4HgqJjN-dJ6db5H9FguDaZWN7a9temWtmzODZjYHy7IcnI5SLFYCO1aeIismIso5l1jF4M2vP2keSIBXY69GDHu3zENVjleFzsD8rrxmOpV_252ue5_XkyjvrOPS_Pxh5vMrO9ThA3K_cS3puH76h2SriDvk3hXCwR1y-7j5lP6InB4tyriirepRcF7pycEZLS_AwtDL4stFg0qKfQq2aVHinwp9aqKnS5wguFNt2ajDAh8VPOIxmR0enO1PWFNhgbksS1dM8aCGTgXlrVXg3CnvIaTxqbOJG2VeJk4qFVIvcpEX3GVBhjwI6wwE1IW1Ln1CtuMiFs8INbnkRkEwZRLFcZgPQ5UGVwjBnfWmR5J2ZrVr6MexCsZct3lm33QlDo3i0MNUgzh6pN8NWtbsGzd3F63I9IYSadgfbh642wpYN2v4UmNoDM7nSGU98qprhtWHn1RMLBZr6AMuD2KHJVziaa0P3YMmWNdI5NAiNzSl64DM3pstsfxaMXwLREBncF_W6dS_vP_z_33_F-Qu_qoTOXfJ9ur7ungJztbK7lWraY_cGr__MJnC8d3bj5_GcJxNT8affwP26CxY |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbGkBh7mGD8KhtgJB5r2iaOHT-iaVMZ64S0TtqbZTvxCOrcirVCe-Fv5y5xwqqJCfEa20nsO5_vkvu-I-QDwra4cDkTXEnGvVXMgFfBvEXkDEQUw5qnYHIqxuf8-CK72CAHLRYG0yqj7W9sem2t45VBXM3BoqoGZ6MUi5XAiZWnyIopH5CHPEskRmAff_3J80AGvAZ8NWLYvaUeqpO8angGJnjlDdWp_NvxdNf9vJtFubUKC3Pz08xmt46ooydkJ_qW9FPz-k_JRhl2yfYtxsFd8mgS_6U_I2fH8yosaat7FLxX-vVwSqsrMDH0ury8irCk0KdgnOYVflXoUxMKusAVgic1po06rPBR4yOek_Ojw-nBmMUSC8xlWbpkins1dMqrwloF3p0qCohpitTZxI2yQiZOKuXTQuQiL7nLvPS5F9YZiKhLa136gmyGeShfEWpyyY2CaMokiuOwwg9V6l0pBHe2MD2StCurXeQfxzIYM90mmn3XtTg0ikMPUw3i6JF-N2jR0G_c3120ItNrWqThgLh_4H4rYB038bXG2Bi8z5HKeuR91wzbD_-pmFDOV9AHfB4ED0u4xctGH7oXTbCwkcihRa5pStcBqb3XW0L1rab4FgiBzuC5rNOpf5n_6_-d_zuyNZ5OTvTJ59Mve-QxtjRZnftkc_ljVb4Bz2tp39Y76zfrHyqu |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9swFL10KezjYR9du2XthgZ7jNPYlmXrsYyWUmgpWwPdk5Bka3ObKGF1GNuv35Usm36wsr45SIojdC2dG59zLsAnJ9uiTBcRozyPqFE8kogqIqOccgYzion3KTg-YYdTenSena9B3GlhPGlfq3psZ_OxrX94buVyrnc7ntguc-rQLHsE6yxD-D2A9enJ6d63Vl8VRwX1VQvCtS_vFq7TuHMd8vwur8xw3K6idTnN_3Uy3UWedwmUT1Z2KX__krPZtdPp4AV86ebVklIux6tGjfWfW5aPD5r4S3gesCrZa5tewVplN-DZNQfDDXh8HN7Nv4avR4vaNqSLZYJomJzun5F6jlsWuaq-z4PMyY4IbnaL2v1LMSLSlmTp7o53ardKol3FEK-32ITpwf7Z58MolGyIdJalTcSp4RPNDS-V4ogWeVlijlSmWiU6zso80TnnJi1ZwYqK6szkpjBMaYkZeqWUTrdgYBe2egtEFjmVHLMzmXDqhpVmwlOjK8aoVqUcQtItl9DBz9yV1ZiJjrh2IfwaC7fGYpIKXOMhjPpBy9bO4_7urIsDERBJizQEHjj3D9zpokaETeFKuFwb0WzMsyF87JvxcXbvaKStFivsgxjKiZFz_Io3bZD1PzRxhZJYgS35jfDrOzir8JstGEjeMjzEzhCiPlD_Z_7vHth_G566Ty0hdAcGzc9V9R5BW6M-hMf0L6KYPow |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+solution+for+PET+image+segmentation%2C+denoising%2C+and+partial+volume+correction&rft.jtitle=Medical+image+analysis&rft.au=Xu%2C+Ziyue&rft.au=Gao%2C+Mingchen&rft.au=Papadakis%2C+Georgios+Z.&rft.au=Luna%2C+Brian&rft.date=2018-05-01&rft.pub=Elsevier+B.V&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=46&rft.spage=229&rft.epage=243&rft_id=info:doi/10.1016%2Fj.media.2018.03.007&rft.externalDocID=S1361841518300987 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |