Correcting streamflow bias considering its spatial structure for impact assessment of climate change on floods using d4PDF in the Chao Phraya River Basin, Thailand

Chao Phraya River Basin (CPRB), the predominant basin located in Thailand. This study aims to ascertain the difference between spatial bias heterogeneity of streamflow in large river basins such as CPRB for a robust analysis. The upstream major dams and the outlet of the basin were examined with two...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology. Regional studies Vol. 42; p. 101150
Main Authors Budhathoki, Aakanchya, Tanaka, Tomohiro, Tachikawa, Yasuto
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2022
Elsevier
Subjects
Online AccessGet full text
ISSN2214-5818
2214-5818
DOI10.1016/j.ejrh.2022.101150

Cover

Abstract Chao Phraya River Basin (CPRB), the predominant basin located in Thailand. This study aims to ascertain the difference between spatial bias heterogeneity of streamflow in large river basins such as CPRB for a robust analysis. The upstream major dams and the outlet of the basin were examined with two-step bias correction and compared with a more practical bias correction only at the outlet of the basin. The former clarified that, due to the large effect of downstream bias, the upstream bias effect was considered negligible thus the two approaches resulted in similar future projections in the CPRB. Through this comparison, streamflow bias in the past and future climate experiments was corrected considering its spatial characteristics for robust assessments of quantitative impacts of climate change. A + 4 K warmer climate will increase the frequency of the 2011 flood in CPRB and enhance 100-year flood peak discharge by 1.1–1.6 times than the past climate (1961–2010). The future flood in the basin, which starts predominantly in September in the present climate, is likely to begin in September and August equally with a prolonged duration of floods around 10–50 days. The study region is likely expected to experience elevated flood volume, earlier flood occurrence, and longer flood duration which indicates that forthcoming floods will be more rigorous. [Display omitted] •Climate change impact assessment on floods in Chao Phraya River Basin.•Spatial streamflow bias correction of d4PDF datasets for + 4 K warming condition.•100-year flood to magnify by 1.1–1.6 times than the past climate.•Adaptation measures required with shift in start of flooding month.
AbstractList Chao Phraya River Basin (CPRB), the predominant basin located in Thailand. This study aims to ascertain the difference between spatial bias heterogeneity of streamflow in large river basins such as CPRB for a robust analysis. The upstream major dams and the outlet of the basin were examined with two-step bias correction and compared with a more practical bias correction only at the outlet of the basin. The former clarified that, due to the large effect of downstream bias, the upstream bias effect was considered negligible thus the two approaches resulted in similar future projections in the CPRB. Through this comparison, streamflow bias in the past and future climate experiments was corrected considering its spatial characteristics for robust assessments of quantitative impacts of climate change. A + 4 K warmer climate will increase the frequency of the 2011 flood in CPRB and enhance 100-year flood peak discharge by 1.1–1.6 times than the past climate (1961–2010). The future flood in the basin, which starts predominantly in September in the present climate, is likely to begin in September and August equally with a prolonged duration of floods around 10–50 days. The study region is likely expected to experience elevated flood volume, earlier flood occurrence, and longer flood duration which indicates that forthcoming floods will be more rigorous.
Study region: Chao Phraya River Basin (CPRB), the predominant basin located in Thailand. Study focus: This study aims to ascertain the difference between spatial bias heterogeneity of streamflow in large river basins such as CPRB for a robust analysis. The upstream major dams and the outlet of the basin were examined with two-step bias correction and compared with a more practical bias correction only at the outlet of the basin. The former clarified that, due to the large effect of downstream bias, the upstream bias effect was considered negligible thus the two approaches resulted in similar future projections in the CPRB. Through this comparison, streamflow bias in the past and future climate experiments was corrected considering its spatial characteristics for robust assessments of quantitative impacts of climate change. New hydrological insights for the region: A + 4 K warmer climate will increase the frequency of the 2011 flood in CPRB and enhance 100-year flood peak discharge by 1.1–1.6 times than the past climate (1961–2010). The future flood in the basin, which starts predominantly in September in the present climate, is likely to begin in September and August equally with a prolonged duration of floods around 10–50 days. The study region is likely expected to experience elevated flood volume, earlier flood occurrence, and longer flood duration which indicates that forthcoming floods will be more rigorous.
Chao Phraya River Basin (CPRB), the predominant basin located in Thailand. This study aims to ascertain the difference between spatial bias heterogeneity of streamflow in large river basins such as CPRB for a robust analysis. The upstream major dams and the outlet of the basin were examined with two-step bias correction and compared with a more practical bias correction only at the outlet of the basin. The former clarified that, due to the large effect of downstream bias, the upstream bias effect was considered negligible thus the two approaches resulted in similar future projections in the CPRB. Through this comparison, streamflow bias in the past and future climate experiments was corrected considering its spatial characteristics for robust assessments of quantitative impacts of climate change. A + 4 K warmer climate will increase the frequency of the 2011 flood in CPRB and enhance 100-year flood peak discharge by 1.1–1.6 times than the past climate (1961–2010). The future flood in the basin, which starts predominantly in September in the present climate, is likely to begin in September and August equally with a prolonged duration of floods around 10–50 days. The study region is likely expected to experience elevated flood volume, earlier flood occurrence, and longer flood duration which indicates that forthcoming floods will be more rigorous. [Display omitted] •Climate change impact assessment on floods in Chao Phraya River Basin.•Spatial streamflow bias correction of d4PDF datasets for + 4 K warming condition.•100-year flood to magnify by 1.1–1.6 times than the past climate.•Adaptation measures required with shift in start of flooding month.
ArticleNumber 101150
Author Tachikawa, Yasuto
Budhathoki, Aakanchya
Tanaka, Tomohiro
Author_xml – sequence: 1
  givenname: Aakanchya
  surname: Budhathoki
  fullname: Budhathoki, Aakanchya
  email: budhathoki.aakanchya.38c@st.kyoto-u.ac.jp
– sequence: 2
  givenname: Tomohiro
  surname: Tanaka
  fullname: Tanaka, Tomohiro
– sequence: 3
  givenname: Yasuto
  surname: Tachikawa
  fullname: Tachikawa, Yasuto
BookMark eNqNksFu1DAQhiNUJErpC3DykQO72E68cSQusFCoVIkKlbM1sccbr7L2Yjut9nl4URyCEOJQcbI1_r_f4_n9vDrzwWNVvWR0zSjbvNmvcR-HNaeczwUm6JPqnHPWrIRk8uyv_bPqMqU9pZTJVnYbel792IYYUWfndyTliHCwY3ggvYNEdPDJGYzzmcuJpCNkB-Osm3SeIhIbInGHI-hMICVM6YA-k2CJHt0BMhI9gN8hCZ4U22ASmdLsZprbD1fEeZIHJNsBArkdIpyAfHX3GMl7KKrX5G4AN4I3L6qnFsaEl7_Xi-rb1ce77efVzZdP19t3NystRJ1XXV1vwDZWGs4NMqvRaloLznpTM96j1LwVfSe4EIIZAKslYkOblrcMC1BfVNeLrwmwV8dYnhBPKoBTvwoh7hTE7PSIytBOthbrtqGiEX0tQTPGuw23bdc2oItXvXhN_ginBxjHP4aMqjk2tVdzbGqOTS2xFerVQh1j-D5hyurgksaxTAHDlFTpVPKma1hbpHKR6hhSimiVdrnkE3yOZWyP38L_Qf-rtbcLhCWBe4dRJe3QazRu_j9lRO4x_CcoqtWJ
CitedBy_id crossref_primary_10_5194_os_20_1457_2024
crossref_primary_10_1111_jfr3_13031
crossref_primary_10_1088_1748_9326_acf9b9
crossref_primary_10_1007_s11356_023_29572_9
crossref_primary_10_3178_hrl_18_95
crossref_primary_10_3390_atmos13122089
Cites_doi 10.5194/nhess-15-1617-2015
10.2151/jmsj.2012-A07
10.1016/j.scitotenv.2016.01.002
10.1016/j.jhydrol.2020.125368
10.5194/hess-19-1615-2015
10.1002/2013WR014845
10.1080/21664250.2019.1586290
10.1007/s10584-019-02393-x
10.1016/j.ijdrr.2021.102351
10.1175/BAMS-D-16-0099.1
10.3390/w10121777
10.3178/hrl.7.36
10.1016/j.jhydrol.2010.10.024
10.1016/j.jhydrol.2020.124706
10.1088/1748-9326/abfb2b
10.1016/j.jhydrol.2021.126868
10.3178/hrl.14.117
10.1016/j.scitotenv.2021.146223
10.2208/jscejhe.76.2_I_91
10.1126/sciadv.aat6509
10.3390/w7126665
10.3178/hrl.9.84
10.1016/j.ecohyd.2020.07.001
10.1002/joc.3830
10.3178/hrl.8.27
10.1016/j.jhydrol.2020.125643
10.1186/s40645-020-00367-7
10.1007/s40641-016-0050-x
10.1016/j.jhydrol.2021.127066
10.1016/j.jenvman.2020.111524
10.1002/hyp.13859
10.1016/j.jhydrol.2022.127432
10.3178/hrl.6.41
10.2208/jscejhe.69.I_37
10.1016/j.envsci.2018.09.001
10.5194/hess-25-2805-2021
10.1016/j.oceaneng.2021.109634
10.1016/j.coastaleng.2018.09.008
10.1002/hyp.9345
10.1016/j.agrformet.2006.03.009
10.2208/jscejer.72.I_7
10.5194/hess-22-5741-2018
10.2208/jscejhe.69.I_43
10.3178/hrl.6.53
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.1016/j.ejrh.2022.101150
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2214-5818
ExternalDocumentID oai_doaj_org_article_d0987fe3740545b38ac112962f7974ac
10.1016/j.ejrh.2022.101150
10_1016_j_ejrh_2022_101150
S221458182200163X
GeographicLocations Thailand
GeographicLocations_xml – name: Thailand
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAHBH
AAYWO
AAYXX
ADVLN
AFJKZ
APXCP
CITATION
7S9
L.6
ADTOC
UNPAY
ID FETCH-LOGICAL-c553t-9336af4f8d22de1fcefc03521bd312be8c275b9525551daafc8ee4047271ede13
IEDL.DBID DOA
ISSN 2214-5818
IngestDate Wed Aug 27 01:29:30 EDT 2025
Tue Aug 19 08:55:43 EDT 2025
Thu Jul 10 19:19:16 EDT 2025
Tue Jul 01 01:22:52 EDT 2025
Thu Apr 24 23:03:52 EDT 2025
Tue Jul 25 20:56:42 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords d4PDF
Bias correction
Climate change
Floods
1K-FRM
Chao Phraya River Basin
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c553t-9336af4f8d22de1fcefc03521bd312be8c275b9525551daafc8ee4047271ede13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/d0987fe3740545b38ac112962f7974ac
PQID 2718249417
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_d0987fe3740545b38ac112962f7974ac
unpaywall_primary_10_1016_j_ejrh_2022_101150
proquest_miscellaneous_2718249417
crossref_citationtrail_10_1016_j_ejrh_2022_101150
crossref_primary_10_1016_j_ejrh_2022_101150
elsevier_sciencedirect_doi_10_1016_j_ejrh_2022_101150
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
20220801
2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle Journal of hydrology. Regional studies
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Champathong, Komori, Kiguchi, Sukhapunnaphan, Oki, Nakaegawa (bib6) 2013; 7
Mizushima, Y., Yorozu, K., Ichikawa, Y., Tachikawa, Y., 2019. A study on bias correction method for runoff generation data based on reference data created by land surface model. In: Proceedings of the THA 2019 International Conference on Water Management and Climate Change towards Asia’s Water-Energy-Food Nexus and SDGs, Bangkok, Thailand.
Wannasin, Brauer, Uijlenhoet, van Verseveld, Weerts (bib58) 2021; 34
Ibarra, David, Tolentino (bib18) 2021; 25
Mori, Shimura, Yoshida, Mizuta, Okada, Fujita, Khujanazarov, Nakakita (bib42) 2019; 61
Bond, Katharine, Raul, Richaud (bib3) 2018
Ligaray, Kim, Sthiannopkao, Lee, Cho, Kim (bib31) 2015; 7
Wichakul, Tachikawa, Shiiba, Yorozu (bib62) 2015; 9
Hunukumbura, Tachikawa (bib17) 2012; 90A
Mateo, Hanasaki, Komori, Tanaka, Kiguchi, Champathong, Sukhapunnaphan, Yamazaki, Oki (bib36) 2014; 50
Tebakari, Yoshitani, Suvanpimol (bib55) 2012; 26
Tachikawa, Takino, Fujioka, Yorozu, Kim, Shiiba (bib51) 2011; 1
Loc, Park, Chitwatkulsiri, Lim, Yun, Maneechot, Minh Phuong (bib33) 2020; 589
Komori, Nakamura, Kiguchi, Nishijima, Yamazaki, Suzuki, Kawasaki, Oki, Oki (bib24) 2012; 6
Tanaka, Yuki, Tachikawa (bib52) 2019
Farmer, Over, Kiang (bib13) 2018; 22
Ishii, Mori (bib20) 2020; 7
Mizuta, Murata, Ishii, Shiogama, Hibino, Mori, Arakawa, Imada, Yoshida, Aoyagi, Kawase, Mori, Okada, Shimura, Nagatomo, Ikeda, Endo, Nosaka, Arai, Takahashi, Tanaka, Takemi, Tachikawa, Temur, Kamae, Watanabe, Sasaki, Kitoh, Takayabu, Nakakita, Kimoto (bib41) 2017; 98
Hughes, Farinosi (bib16) 2020; 32
.
Didovets, Krysanova, Hattermann, del Rocío Rivas López, Snizhko, Müller Schmied (bib10) 2020; 32
Jular, P., 2011. The 2011 Thailand Floods in The Lower Chao Phraya River Basin in Bangkok Metropolis.
Wichakul, Tachikawa, Shiiba, Yorozu (bib61) 2014; 363
Manee, Tachikawa, Ichikawa, Yorozu (bib34) 2016; 72
Maraun (bib35) 2016; 2
Duong, Tachikawa, Shiiba, Yorozu (bib11) 2013; 69
Jahandideh Tehrani, Helfer, Jenkins (bib21) 2021; 777
Abhishek, Kinouchi, Sayama (bib1) 2021; 603
Lehner, B., 2005. Hydrological data and maps based on SRTM elevation derivatives at multiple scales. In: AGU Spring Meeting Abstracts, p. H33A-03.
Chen, Hsu, Liang, Chiu, Tu (bib8) 2022; 35
Elshamy, Seierstad, Sorteberg (bib12) 2009
Leitold, Garschagen, Tran, Revilla Diez (bib29) 2021; 61
Park, Lim, Ho, Herrin, Chitwatkulsiri (bib44) 2021; 594
Mishra, Herath (bib38) 2015; 20
Wichakul, Tachikawa, Shiiba, Yorozu (bib60) 2013; 69
Peel, Srikanthan, McMahon, Karoly (bib45) 2015; 19
Yang, Kim, Mori, Mase (bib63) 2018; 142
Tong, Zhao, Wei, Hu, Lu (bib56) 2018; 10
Budhathoki, Babel, Shrestha, Meon, Kamalamma (bib4) 2021; 21
Casale, Fuso, Giuliani, Castelletti, Bocchiola (bib5) 2021; 38
Ines, Hansen (bib19) 2006; 138
Mishra, B., Herath, S., 2011. Climate projections downscaling and impact assessment on precipitation over upper Bagmati River Basin, Nepal. In: Proceedings of the Third International Conference on Addressing Climate Change for Sustainable Development through Up-Scaling Renewable Energy Technologies, RETRUD Kathmandu, pp. 275–281.
Tanaka, Kobayashi, Tachikawa (bib54) 2021; 16
Try, Tanaka, Tanaka, Sayama, Hu, Sok, Oeurng (bib57) 2020; 34
Ram-Indra, Tachikawa, Yorozu, Ichikawa (bib49) 2020; 76
Meema, Tachikawa, Ichikawa, Yorozu (bib37) 2021; 36
Tanaka, Kiyohara, Tachikawa (bib53) 2020; 584
Watanabe, Yamada, Abe, Hatono (bib59) 2020; 14
Lavender, Walsh, Caron, King, Monkiewicz, Guishard, Zhang, Hunt (bib27) 2018; 4
Piani, Weedon, Best, Gomes, Viterbo, Hagemann, Haerter (bib46) 2010; 395
Hogendoorn, Zegwaard, Petersen (bib15) 2018; 89
Ninomiya, Taka, Mori (bib43) 2021; 237
Kotsuki, Tanaka, Watanabe (bib25) 2014; 8
Bennett, Grose, Corney, White, Holz, Katzfey, Post, Bindoff (bib2) 2014; 34
Kure, Tebakari (bib26) 2012; 6
Zhao, Lei, Yang, Yang, Santisirisomboon (bib64) 2022; 606
Sayama, Tatebe, Iwami, Tanaka (bib50) 2015; 15
Li, Huang, Wang, Han, Fan (bib30) 2016; 548–549
Ponpang-Nga, Techamahasaranont (bib47) 2016; 50
Liu, Yao, Kuang, Zheng (bib32) 2021; 603
Chaowiwat, W., Sarinnapakorn, K., Weesakul, S., 2019. Prediction of Future Agriculture Water Demand in Thailand Using Multi Bias Corrected Climate Models, p. 13.
Chen, Brissette, Zhang, Chen, Guo, Zhao (bib9) 2019; 153
Kitpaisalsakul, T., Koontanakulvong, S., Chaowiwat, W., 2016. Impact of Climate Change on Reservoir Operation in Central Plain Basin of Thailand, 11, p. 7.
Gunawardana, Shrestha, Mohanasundaram, Salin, Piman (bib14) 2021; 278
Ram-Indra, Tachikawa, Yorozu, Ichikawa (bib48) 2020; 76
Didovets (10.1016/j.ejrh.2022.101150_bib10) 2020; 32
Champathong (10.1016/j.ejrh.2022.101150_bib6) 2013; 7
Ines (10.1016/j.ejrh.2022.101150_bib19) 2006; 138
10.1016/j.ejrh.2022.101150_bib40
Chen (10.1016/j.ejrh.2022.101150_bib8) 2022; 35
Sayama (10.1016/j.ejrh.2022.101150_bib50) 2015; 15
Gunawardana (10.1016/j.ejrh.2022.101150_bib14) 2021; 278
Abhishek (10.1016/j.ejrh.2022.101150_bib1) 2021; 603
Peel (10.1016/j.ejrh.2022.101150_bib45) 2015; 19
10.1016/j.ejrh.2022.101150_bib7
Ram-Indra (10.1016/j.ejrh.2022.101150_bib48) 2020; 76
Hunukumbura (10.1016/j.ejrh.2022.101150_bib17) 2012; 90A
Tanaka (10.1016/j.ejrh.2022.101150_bib53) 2020; 584
Hogendoorn (10.1016/j.ejrh.2022.101150_bib15) 2018; 89
Park (10.1016/j.ejrh.2022.101150_bib44) 2021; 594
Piani (10.1016/j.ejrh.2022.101150_bib46) 2010; 395
Wannasin (10.1016/j.ejrh.2022.101150_bib58) 2021; 34
Tong (10.1016/j.ejrh.2022.101150_bib56) 2018; 10
Wichakul (10.1016/j.ejrh.2022.101150_bib60) 2013; 69
Elshamy (10.1016/j.ejrh.2022.101150_bib12) 2009
Chen (10.1016/j.ejrh.2022.101150_bib9) 2019; 153
Budhathoki (10.1016/j.ejrh.2022.101150_bib4) 2021; 21
Liu (10.1016/j.ejrh.2022.101150_bib32) 2021; 603
Meema (10.1016/j.ejrh.2022.101150_bib37) 2021; 36
Wichakul (10.1016/j.ejrh.2022.101150_bib62) 2015; 9
Tanaka (10.1016/j.ejrh.2022.101150_bib54) 2021; 16
Mateo (10.1016/j.ejrh.2022.101150_bib36) 2014; 50
Tebakari (10.1016/j.ejrh.2022.101150_bib55) 2012; 26
Ponpang-Nga (10.1016/j.ejrh.2022.101150_bib47) 2016; 50
Farmer (10.1016/j.ejrh.2022.101150_bib13) 2018; 22
Hughes (10.1016/j.ejrh.2022.101150_bib16) 2020; 32
Kure (10.1016/j.ejrh.2022.101150_bib26) 2012; 6
Li (10.1016/j.ejrh.2022.101150_bib30) 2016; 548–549
Ishii (10.1016/j.ejrh.2022.101150_bib20) 2020; 7
Kotsuki (10.1016/j.ejrh.2022.101150_bib25) 2014; 8
Mori (10.1016/j.ejrh.2022.101150_bib42) 2019; 61
Duong (10.1016/j.ejrh.2022.101150_bib11) 2013; 69
Maraun (10.1016/j.ejrh.2022.101150_bib35) 2016; 2
Bennett (10.1016/j.ejrh.2022.101150_bib2) 2014; 34
Wichakul (10.1016/j.ejrh.2022.101150_bib61) 2014; 363
Yang (10.1016/j.ejrh.2022.101150_bib63) 2018; 142
Jahandideh Tehrani (10.1016/j.ejrh.2022.101150_bib21) 2021; 777
10.1016/j.ejrh.2022.101150_bib28
Mishra (10.1016/j.ejrh.2022.101150_bib38) 2015; 20
Manee (10.1016/j.ejrh.2022.101150_bib34) 2016; 72
Casale (10.1016/j.ejrh.2022.101150_bib5) 2021; 38
Ibarra (10.1016/j.ejrh.2022.101150_bib18) 2021; 25
Komori (10.1016/j.ejrh.2022.101150_bib24) 2012; 6
10.1016/j.ejrh.2022.101150_bib22
10.1016/j.ejrh.2022.101150_bib23
Ligaray (10.1016/j.ejrh.2022.101150_bib31) 2015; 7
Leitold (10.1016/j.ejrh.2022.101150_bib29) 2021; 61
Zhao (10.1016/j.ejrh.2022.101150_bib64) 2022; 606
Tachikawa (10.1016/j.ejrh.2022.101150_bib51) 2011; 1
10.1016/j.ejrh.2022.101150_bib39
Ram-Indra (10.1016/j.ejrh.2022.101150_bib49) 2020; 76
Try (10.1016/j.ejrh.2022.101150_bib57) 2020; 34
Loc (10.1016/j.ejrh.2022.101150_bib33) 2020; 589
Lavender (10.1016/j.ejrh.2022.101150_bib27) 2018; 4
Tanaka (10.1016/j.ejrh.2022.101150_bib52) 2019
Bond (10.1016/j.ejrh.2022.101150_bib3) 2018
Watanabe (10.1016/j.ejrh.2022.101150_bib59) 2020; 14
Ninomiya (10.1016/j.ejrh.2022.101150_bib43) 2021; 237
Mizuta (10.1016/j.ejrh.2022.101150_bib41) 2017; 98
References_xml – volume: 61
  year: 2021
  ident: bib29
  article-title: Flood risk reduction and climate change adaptation of manufacturing firms: global knowledge gaps and lessons from Ho Chi Minh City
  publication-title: Int. J. Disaster Risk Reduct.
– volume: 21
  start-page: 79
  year: 2021
  end-page: 95
  ident: bib4
  article-title: Climate change impact on water balance and hydrological extremes in different physiographic regions of the West Seti River Basin, Nepal
  publication-title: Ecohydrol. Hydrobiol.
– volume: 34
  start-page: 2189
  year: 2014
  end-page: 2204
  ident: bib2
  article-title: Performance of an empirical bias-correction of a high-resolution climate dataset: empirical bias-correction of a high-resolution climate dataset
  publication-title: Int. J. Climatol.
– volume: 98
  start-page: 1383
  year: 2017
  end-page: 1398
  ident: bib41
  article-title: Over 5,000 years of ensemble future climate simulations by 60-km global and 20-km regional atmospheric models
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 777
  year: 2021
  ident: bib21
  article-title: Impacts of climate change and sea level rise on catchment management: a multi-model ensemble analysis of the Nerang River catchment, Australia
  publication-title: Sci. Total Environ.
– volume: 7
  start-page: 58
  year: 2020
  ident: bib20
  article-title: d4PDF: large-ensemble and high-resolution climate simulations for global warming risk assessment
  publication-title: Prog. Earth Planet Sci.
– volume: 34
  start-page: 4350
  year: 2020
  end-page: 4364
  ident: bib57
  article-title: Projection of extreme flood inundation in the Mekong River basin under 4K increasing scenario using large ensemble climate data
  publication-title: Hydrol. Process.
– volume: 278
  year: 2021
  ident: bib14
  article-title: Multiple drivers of hydrological alteration in the transboundary Srepok River Basin of the Lower Mekong Region
  publication-title: J. Environ. Manag.
– volume: 153
  start-page: 361
  year: 2019
  end-page: 377
  ident: bib9
  article-title: Bias correcting climate model multi-member ensembles to assess climate change impacts on hydrology
  publication-title: Clim. Chang.
– volume: 603
  year: 2021
  ident: bib32
  article-title: A preliminary investigation on the climate-discharge relationship in the upper region of the Yarlung Zangbo River basin
  publication-title: J. Hydrol.
– volume: 15
  start-page: 1617
  year: 2015
  end-page: 1630
  ident: bib50
  article-title: Hydrologic sensitivity of flood runoff and inundation: 2011 Thailand floods in the Chao Phraya River basin
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 363
  start-page: 151
  year: 2014
  end-page: 157
  ident: bib61
  article-title: Prediction of water resources in the Chao Phraya River Basin, Thailand. Hydrology in a changing world: environmental and human dimensions
  publication-title: IAHS Publ.
– volume: 4
  start-page: eaat6509
  year: 2018
  ident: bib27
  article-title: Estimation of the maximum annual number of North Atlantic tropical cyclones using climate models
  publication-title: Sci. Adv.
– reference: 〉.
– volume: 50
  start-page: 7245
  year: 2014
  end-page: 7266
  ident: bib36
  article-title: Assessing the impacts of reservoir operation to floodplain inundation by combining hydrological, reservoir management, and hydrodynamic models
  publication-title: Water Resour. Res.
– volume: 69
  start-page: I_43
  year: 2013
  end-page: I_48
  ident: bib60
  article-title: Developing a regional distributed hydrological model for water resources assessment and its application to the Chao Phraya River Basin
  publication-title: J. JSCE
– volume: 6
  start-page: 53
  year: 2012
  end-page: 58
  ident: bib26
  article-title: Hydrological impact of regional climate change in the Chao Phraya River Basin, Thailand
  publication-title: Hydrol. Res. Lett.
– volume: 76
  start-page: I_91
  year: 2020
  end-page: I_96
  ident: bib49
  article-title: AGCM3.2S runoff data bias correction over upper Chao Phraya River Basin based on land cover grouping
  publication-title: J. JSCE Ser. B1
– volume: 10
  start-page: 1777
  year: 2018
  ident: bib56
  article-title: Evaluation and hydrological validation of GPM precipitation products over the Nanliu River Basin, Beibu Gulf
  publication-title: Water
– volume: 14
  start-page: 117
  year: 2020
  end-page: 122
  ident: bib59
  article-title: Bias correction of d4PDF using a moving window method and their uncertainty analysis in estimation and projection of design rainfall depth
  publication-title: Hydrol. Res. Lett.
– volume: 606
  year: 2022
  ident: bib64
  article-title: Runoff and sediment response to deforestation in a large Southeast Asian monsoon watershed
  publication-title: J. Hydrol.
– start-page: 15
  year: 2009
  ident: bib12
  article-title: Impacts of climate change on Blue Nile flows using bias-corrected GCM scenarios
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 34
  year: 2021
  ident: bib58
  article-title: Daily flow simulation in Thailand Part II: Unraveling effects of reservoir operation
  publication-title: J. Hydrol. Reg. Stud.
– volume: 589
  year: 2020
  ident: bib33
  article-title: Local rainfall or river overflow? Re-evaluating the cause of the Great 2011 Thailand flood
  publication-title: J. Hydrol.
– volume: 9
  start-page: 84
  year: 2015
  end-page: 89
  ident: bib62
  article-title: River discharge assessment under a changing climate in the Chao Phraya River, Thailand by using MRI-AGCM3.2S
  publication-title: Hydrol. Res. Lett.
– volume: 594
  year: 2021
  ident: bib44
  article-title: Source-to-sink sediment fluxes and budget in the Chao Phraya River, Thailand: a multi-scale analysis based on the national dataset
  publication-title: J. Hydrol.
– reference: Mishra, B., Herath, S., 2011. Climate projections downscaling and impact assessment on precipitation over upper Bagmati River Basin, Nepal. In: Proceedings of the Third International Conference on Addressing Climate Change for Sustainable Development through Up-Scaling Renewable Energy Technologies, RETRUD Kathmandu, pp. 275–281.
– volume: 8
  start-page: 27
  year: 2014
  end-page: 32
  ident: bib25
  article-title: Projected hydrological changes and their consistency under future climate in the Chao Phraya River Basin using multi-model and multi-scenario of CMIP5 dataset
  publication-title: Hydrol. Res. Lett.
– volume: 36
  year: 2021
  ident: bib37
  article-title: Uncertainty assessment of water resources and long-term hydropower generation using a large ensemble of future climate projections for the Nam Ngum River in the Mekong Basin
  publication-title: J. Hydrol. Reg. Stud.
– volume: 20
  year: 2015
  ident: bib38
  article-title: Assessment of future floods in the Bagmati River Basin of Nepal using bias-corrected daily GCM precipitation data
  publication-title: J. Hydrol. Eng.
– start-page: 75
  year: 2019
  ident: bib52
  article-title: Reproducibility evaluation of annual maximum basin average rainfall in national first-class river basins using d4PDF
  publication-title: JSCE Proc. B1 Hydraul. Eng.
– volume: 32
  year: 2020
  ident: bib10
  article-title: Climate change impact on water availability of main river basins in Ukraine
  publication-title: J. Hydrol. Reg. Stud.
– volume: 25
  start-page: 2805
  year: 2021
  end-page: 2820
  ident: bib18
  article-title: Evaluation and bias correction of an observation-based global runoff dataset using streamflow observations from small tropical catchments in the Philippines
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 6
  start-page: 41
  year: 2012
  end-page: 46
  ident: bib24
  article-title: Characteristics of the 2011 Chao Phraya River flood in Central Thailand
  publication-title: Hydrol. Res. Lett.
– volume: 548–549
  start-page: 198
  year: 2016
  end-page: 210
  ident: bib30
  article-title: Impacts of future climate change on river discharge based on hydrological inference: a case study of the Grand River Watershed in Ontario, Canada
  publication-title: Sci. Total Environ.
– volume: 19
  start-page: 1615
  year: 2015
  end-page: 1639
  ident: bib45
  article-title: Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates of global climate model data
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 142
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib63
  article-title: Assessment of long-term impact of storm surges around the Korean Peninsula based on a large ensemble of climate projections
  publication-title: Coast. Eng.
– volume: 22
  start-page: 5741
  year: 2018
  end-page: 5758
  ident: bib13
  article-title: Bias correction of simulated historical daily streamflow at ungauged locations by using independently estimated flow duration curves
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 26
  start-page: 2411
  year: 2012
  end-page: 2420
  ident: bib55
  article-title: Impact of large-scale reservoir operation on flow regime in the Chao Phraya River basin, Thailand: Impact of large-scale reservoir operation on flow regime
  publication-title: Hydrol. Process.
– volume: 7
  start-page: 6892
  year: 2015
  end-page: 6909
  ident: bib31
  article-title: Assessment on hydrologic response by climate change in the Chao Phraya River Basin, Thailand
  publication-title: Water
– volume: 584
  year: 2020
  ident: bib53
  article-title: Comparison of fluvial and pluvial flood risk curves in urban cities derived from a large ensemble climate simulation dataset: a case study in Nagoya, Japan
  publication-title: J. Hydrol.
– reference: Mizushima, Y., Yorozu, K., Ichikawa, Y., Tachikawa, Y., 2019. A study on bias correction method for runoff generation data based on reference data created by land surface model. In: Proceedings of the THA 2019 International Conference on Water Management and Climate Change towards Asia’s Water-Energy-Food Nexus and SDGs, Bangkok, Thailand.
– volume: 72
  start-page: I_7
  year: 2016
  end-page: I_12
  ident: bib34
  article-title: Evaluation of bias correction methods for future river discharge projection
  publication-title: J. JSCE Ser. G
– reference: Kitpaisalsakul, T., Koontanakulvong, S., Chaowiwat, W., 2016. Impact of Climate Change on Reservoir Operation in Central Plain Basin of Thailand, 11, p. 7.
– volume: 2
  start-page: 211
  year: 2016
  end-page: 220
  ident: bib35
  article-title: Bias correcting climate change simulations-a critical review
  publication-title: Curr. Clim. Chang. Rep.
– volume: 35
  year: 2022
  ident: bib8
  article-title: Future change in extreme precipitation in East Asian spring and Mei-yu seasons in two high-resolution AGCMs
  publication-title: Weather Clim. Extrem.
– volume: 1
  start-page: 1
  year: 2011
  end-page: 15
  ident: bib51
  article-title: Projection of river discharge of Japanese river basins under a climate change scenario
  publication-title: J. Jpn. Soc. Civ. Eng. B
– year: 2018
  ident: bib3
  article-title: Flood and drought management tools case study
  publication-title: Smart Water
– volume: 76
  start-page: I_55
  year: 2020
  end-page: I_63
  ident: bib48
  article-title: Bias correction of runoff data in agcm3.2s for upper Chao Phraya River Basin, Thailand
  publication-title: J. Jpn. Soc. Civ. Eng. Ser. G Environ. Res.
– volume: 38
  year: 2021
  ident: bib5
  article-title: Exploring future vulnerabilities of subalpine Italian regulated lakes under different climate scenarios: bottom‐up vs top-down and CMIP5 vs CMIP6
  publication-title: J. Hydrol. Reg. Stud.
– volume: 50
  start-page: 310
  year: 2016
  end-page: 320
  ident: bib47
  article-title: Effects of climate and land use changes on water balance in upstream in the Chao Phraya River basin, Thailand
  publication-title: Agric. Nat. Resour.
– volume: 61
  start-page: 295
  year: 2019
  end-page: 307
  ident: bib42
  article-title: Future changes in extreme storm surges based on mega-ensemble projection using 60-km resolution atmospheric global circulation model
  publication-title: Coast. Eng. J.
– volume: 89
  start-page: 378
  year: 2018
  end-page: 384
  ident: bib15
  article-title: Difficult travels: delta plans don’t land in the Chao Phraya delta
  publication-title: Environ. Sci. Policy
– volume: 138
  start-page: 44
  year: 2006
  end-page: 53
  ident: bib19
  article-title: Bias correction of daily GCM rainfall for crop simulation studies
  publication-title: Agric. For. Meteorol.
– volume: 603
  year: 2021
  ident: bib1
  article-title: A comprehensive assessment of water storage dynamics and hydroclimatic extremes in the Chao Phraya River Basin during 2002–2020
  publication-title: J. Hydrol.
– volume: 32
  year: 2020
  ident: bib16
  article-title: Assessing development and climate variability impacts on water resources in the Zambezi River basin. Simulating future scenarios of climate and development
  publication-title: J. Hydrol. Reg. Stud.
– volume: 7
  start-page: 36
  year: 2013
  end-page: 41
  ident: bib6
  article-title: Future projection of mean river discharge climatology for the Chao Phraya River basin
  publication-title: Hydrol. Res. Lett.
– reference: Chaowiwat, W., Sarinnapakorn, K., Weesakul, S., 2019. Prediction of Future Agriculture Water Demand in Thailand Using Multi Bias Corrected Climate Models, p. 13. 〈
– volume: 69
  start-page: I_37
  year: 2013
  end-page: I_42
  ident: bib11
  article-title: River discharge projection in Indochina Peninsula under a changing climate using the MRI-AGCM3.2S dataset
  publication-title: J. JSCE
– volume: 90A
  start-page: 137
  year: 2012
  end-page: 150
  ident: bib17
  article-title: River discharge projection under climate change in the Chao Phraya River Basin, Thailand, using the MRI-GCM3.1S dataset
  publication-title: J. Meteorol. Soc. Jpn.
– volume: 237
  year: 2021
  ident: bib43
  article-title: Projecting changes in explosive cyclones and high waves around Japan using a mega-ensemble projection
  publication-title: Ocean Eng.
– volume: 16
  year: 2021
  ident: bib54
  article-title: Simultaneous flood risk analysis and its future change among all the 109 class-A river basins in Japan using a large ensemble climate simulation database d4PDF
  publication-title: Environ. Res. Lett.
– reference: Jular, P., 2011. The 2011 Thailand Floods in The Lower Chao Phraya River Basin in Bangkok Metropolis.
– reference: Lehner, B., 2005. Hydrological data and maps based on SRTM elevation derivatives at multiple scales. In: AGU Spring Meeting Abstracts, p. H33A-03.
– volume: 395
  start-page: 199
  year: 2010
  end-page: 215
  ident: bib46
  article-title: Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models
  publication-title: J. Hydrol.
– volume: 35
  year: 2022
  ident: 10.1016/j.ejrh.2022.101150_bib8
  article-title: Future change in extreme precipitation in East Asian spring and Mei-yu seasons in two high-resolution AGCMs
  publication-title: Weather Clim. Extrem.
– volume: 76
  start-page: I_55
  year: 2020
  ident: 10.1016/j.ejrh.2022.101150_bib48
  article-title: Bias correction of runoff data in agcm3.2s for upper Chao Phraya River Basin, Thailand
  publication-title: J. Jpn. Soc. Civ. Eng. Ser. G Environ. Res.
– volume: 15
  start-page: 1617
  year: 2015
  ident: 10.1016/j.ejrh.2022.101150_bib50
  article-title: Hydrologic sensitivity of flood runoff and inundation: 2011 Thailand floods in the Chao Phraya River basin
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-15-1617-2015
– volume: 90A
  start-page: 137
  year: 2012
  ident: 10.1016/j.ejrh.2022.101150_bib17
  article-title: River discharge projection under climate change in the Chao Phraya River Basin, Thailand, using the MRI-GCM3.1S dataset
  publication-title: J. Meteorol. Soc. Jpn.
  doi: 10.2151/jmsj.2012-A07
– volume: 548–549
  start-page: 198
  year: 2016
  ident: 10.1016/j.ejrh.2022.101150_bib30
  article-title: Impacts of future climate change on river discharge based on hydrological inference: a case study of the Grand River Watershed in Ontario, Canada
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.01.002
– volume: 589
  year: 2020
  ident: 10.1016/j.ejrh.2022.101150_bib33
  article-title: Local rainfall or river overflow? Re-evaluating the cause of the Great 2011 Thailand flood
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125368
– volume: 19
  start-page: 1615
  year: 2015
  ident: 10.1016/j.ejrh.2022.101150_bib45
  article-title: Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates of global climate model data
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-19-1615-2015
– start-page: 15
  year: 2009
  ident: 10.1016/j.ejrh.2022.101150_bib12
  article-title: Impacts of climate change on Blue Nile flows using bias-corrected GCM scenarios
  publication-title: Hydrol. Earth Syst. Sci.
– ident: 10.1016/j.ejrh.2022.101150_bib22
– volume: 50
  start-page: 7245
  year: 2014
  ident: 10.1016/j.ejrh.2022.101150_bib36
  article-title: Assessing the impacts of reservoir operation to floodplain inundation by combining hydrological, reservoir management, and hydrodynamic models
  publication-title: Water Resour. Res.
  doi: 10.1002/2013WR014845
– volume: 61
  start-page: 295
  year: 2019
  ident: 10.1016/j.ejrh.2022.101150_bib42
  article-title: Future changes in extreme storm surges based on mega-ensemble projection using 60-km resolution atmospheric global circulation model
  publication-title: Coast. Eng. J.
  doi: 10.1080/21664250.2019.1586290
– volume: 153
  start-page: 361
  year: 2019
  ident: 10.1016/j.ejrh.2022.101150_bib9
  article-title: Bias correcting climate model multi-member ensembles to assess climate change impacts on hydrology
  publication-title: Clim. Chang.
  doi: 10.1007/s10584-019-02393-x
– start-page: 75
  year: 2019
  ident: 10.1016/j.ejrh.2022.101150_bib52
  article-title: Reproducibility evaluation of annual maximum basin average rainfall in national first-class river basins using d4PDF
  publication-title: JSCE Proc. B1 Hydraul. Eng.
– volume: 61
  year: 2021
  ident: 10.1016/j.ejrh.2022.101150_bib29
  article-title: Flood risk reduction and climate change adaptation of manufacturing firms: global knowledge gaps and lessons from Ho Chi Minh City
  publication-title: Int. J. Disaster Risk Reduct.
  doi: 10.1016/j.ijdrr.2021.102351
– volume: 98
  start-page: 1383
  year: 2017
  ident: 10.1016/j.ejrh.2022.101150_bib41
  article-title: Over 5,000 years of ensemble future climate simulations by 60-km global and 20-km regional atmospheric models
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-16-0099.1
– volume: 50
  start-page: 310
  year: 2016
  ident: 10.1016/j.ejrh.2022.101150_bib47
  article-title: Effects of climate and land use changes on water balance in upstream in the Chao Phraya River basin, Thailand
  publication-title: Agric. Nat. Resour.
– volume: 10
  start-page: 1777
  year: 2018
  ident: 10.1016/j.ejrh.2022.101150_bib56
  article-title: Evaluation and hydrological validation of GPM precipitation products over the Nanliu River Basin, Beibu Gulf
  publication-title: Water
  doi: 10.3390/w10121777
– volume: 7
  start-page: 36
  year: 2013
  ident: 10.1016/j.ejrh.2022.101150_bib6
  article-title: Future projection of mean river discharge climatology for the Chao Phraya River basin
  publication-title: Hydrol. Res. Lett.
  doi: 10.3178/hrl.7.36
– volume: 395
  start-page: 199
  year: 2010
  ident: 10.1016/j.ejrh.2022.101150_bib46
  article-title: Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.10.024
– volume: 584
  year: 2020
  ident: 10.1016/j.ejrh.2022.101150_bib53
  article-title: Comparison of fluvial and pluvial flood risk curves in urban cities derived from a large ensemble climate simulation dataset: a case study in Nagoya, Japan
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124706
– volume: 16
  year: 2021
  ident: 10.1016/j.ejrh.2022.101150_bib54
  article-title: Simultaneous flood risk analysis and its future change among all the 109 class-A river basins in Japan using a large ensemble climate simulation database d4PDF
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/abfb2b
– volume: 32
  year: 2020
  ident: 10.1016/j.ejrh.2022.101150_bib16
  article-title: Assessing development and climate variability impacts on water resources in the Zambezi River basin. Simulating future scenarios of climate and development
  publication-title: J. Hydrol. Reg. Stud.
– volume: 34
  year: 2021
  ident: 10.1016/j.ejrh.2022.101150_bib58
  article-title: Daily flow simulation in Thailand Part II: Unraveling effects of reservoir operation
  publication-title: J. Hydrol. Reg. Stud.
– volume: 603
  year: 2021
  ident: 10.1016/j.ejrh.2022.101150_bib1
  article-title: A comprehensive assessment of water storage dynamics and hydroclimatic extremes in the Chao Phraya River Basin during 2002–2020
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126868
– ident: 10.1016/j.ejrh.2022.101150_bib7
– ident: 10.1016/j.ejrh.2022.101150_bib23
– volume: 14
  start-page: 117
  year: 2020
  ident: 10.1016/j.ejrh.2022.101150_bib59
  article-title: Bias correction of d4PDF using a moving window method and their uncertainty analysis in estimation and projection of design rainfall depth
  publication-title: Hydrol. Res. Lett.
  doi: 10.3178/hrl.14.117
– volume: 777
  year: 2021
  ident: 10.1016/j.ejrh.2022.101150_bib21
  article-title: Impacts of climate change and sea level rise on catchment management: a multi-model ensemble analysis of the Nerang River catchment, Australia
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.146223
– volume: 76
  start-page: I_91
  year: 2020
  ident: 10.1016/j.ejrh.2022.101150_bib49
  article-title: AGCM3.2S runoff data bias correction over upper Chao Phraya River Basin based on land cover grouping
  publication-title: J. JSCE Ser. B1
  doi: 10.2208/jscejhe.76.2_I_91
– ident: 10.1016/j.ejrh.2022.101150_bib40
– volume: 4
  start-page: eaat6509
  year: 2018
  ident: 10.1016/j.ejrh.2022.101150_bib27
  article-title: Estimation of the maximum annual number of North Atlantic tropical cyclones using climate models
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat6509
– volume: 20
  year: 2015
  ident: 10.1016/j.ejrh.2022.101150_bib38
  article-title: Assessment of future floods in the Bagmati River Basin of Nepal using bias-corrected daily GCM precipitation data
  publication-title: J. Hydrol. Eng.
– volume: 7
  start-page: 6892
  year: 2015
  ident: 10.1016/j.ejrh.2022.101150_bib31
  article-title: Assessment on hydrologic response by climate change in the Chao Phraya River Basin, Thailand
  publication-title: Water
  doi: 10.3390/w7126665
– volume: 9
  start-page: 84
  year: 2015
  ident: 10.1016/j.ejrh.2022.101150_bib62
  article-title: River discharge assessment under a changing climate in the Chao Phraya River, Thailand by using MRI-AGCM3.2S
  publication-title: Hydrol. Res. Lett.
  doi: 10.3178/hrl.9.84
– volume: 21
  start-page: 79
  year: 2021
  ident: 10.1016/j.ejrh.2022.101150_bib4
  article-title: Climate change impact on water balance and hydrological extremes in different physiographic regions of the West Seti River Basin, Nepal
  publication-title: Ecohydrol. Hydrobiol.
  doi: 10.1016/j.ecohyd.2020.07.001
– volume: 34
  start-page: 2189
  year: 2014
  ident: 10.1016/j.ejrh.2022.101150_bib2
  article-title: Performance of an empirical bias-correction of a high-resolution climate dataset: empirical bias-correction of a high-resolution climate dataset
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.3830
– volume: 8
  start-page: 27
  year: 2014
  ident: 10.1016/j.ejrh.2022.101150_bib25
  article-title: Projected hydrological changes and their consistency under future climate in the Chao Phraya River Basin using multi-model and multi-scenario of CMIP5 dataset
  publication-title: Hydrol. Res. Lett.
  doi: 10.3178/hrl.8.27
– volume: 594
  year: 2021
  ident: 10.1016/j.ejrh.2022.101150_bib44
  article-title: Source-to-sink sediment fluxes and budget in the Chao Phraya River, Thailand: a multi-scale analysis based on the national dataset
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125643
– volume: 7
  start-page: 58
  year: 2020
  ident: 10.1016/j.ejrh.2022.101150_bib20
  article-title: d4PDF: large-ensemble and high-resolution climate simulations for global warming risk assessment
  publication-title: Prog. Earth Planet Sci.
  doi: 10.1186/s40645-020-00367-7
– volume: 2
  start-page: 211
  year: 2016
  ident: 10.1016/j.ejrh.2022.101150_bib35
  article-title: Bias correcting climate change simulations-a critical review
  publication-title: Curr. Clim. Chang. Rep.
  doi: 10.1007/s40641-016-0050-x
– volume: 603
  year: 2021
  ident: 10.1016/j.ejrh.2022.101150_bib32
  article-title: A preliminary investigation on the climate-discharge relationship in the upper region of the Yarlung Zangbo River basin
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.127066
– volume: 36
  year: 2021
  ident: 10.1016/j.ejrh.2022.101150_bib37
  article-title: Uncertainty assessment of water resources and long-term hydropower generation using a large ensemble of future climate projections for the Nam Ngum River in the Mekong Basin
  publication-title: J. Hydrol. Reg. Stud.
– volume: 278
  year: 2021
  ident: 10.1016/j.ejrh.2022.101150_bib14
  article-title: Multiple drivers of hydrological alteration in the transboundary Srepok River Basin of the Lower Mekong Region
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2020.111524
– volume: 363
  start-page: 151
  year: 2014
  ident: 10.1016/j.ejrh.2022.101150_bib61
  article-title: Prediction of water resources in the Chao Phraya River Basin, Thailand. Hydrology in a changing world: environmental and human dimensions
  publication-title: IAHS Publ.
– volume: 34
  start-page: 4350
  year: 2020
  ident: 10.1016/j.ejrh.2022.101150_bib57
  article-title: Projection of extreme flood inundation in the Mekong River basin under 4K increasing scenario using large ensemble climate data
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.13859
– volume: 606
  year: 2022
  ident: 10.1016/j.ejrh.2022.101150_bib64
  article-title: Runoff and sediment response to deforestation in a large Southeast Asian monsoon watershed
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.127432
– ident: 10.1016/j.ejrh.2022.101150_bib28
– volume: 6
  start-page: 41
  year: 2012
  ident: 10.1016/j.ejrh.2022.101150_bib24
  article-title: Characteristics of the 2011 Chao Phraya River flood in Central Thailand
  publication-title: Hydrol. Res. Lett.
  doi: 10.3178/hrl.6.41
– volume: 69
  start-page: I_37
  year: 2013
  ident: 10.1016/j.ejrh.2022.101150_bib11
  article-title: River discharge projection in Indochina Peninsula under a changing climate using the MRI-AGCM3.2S dataset
  publication-title: J. JSCE
  doi: 10.2208/jscejhe.69.I_37
– volume: 89
  start-page: 378
  year: 2018
  ident: 10.1016/j.ejrh.2022.101150_bib15
  article-title: Difficult travels: delta plans don’t land in the Chao Phraya delta
  publication-title: Environ. Sci. Policy
  doi: 10.1016/j.envsci.2018.09.001
– volume: 25
  start-page: 2805
  year: 2021
  ident: 10.1016/j.ejrh.2022.101150_bib18
  article-title: Evaluation and bias correction of an observation-based global runoff dataset using streamflow observations from small tropical catchments in the Philippines
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-25-2805-2021
– year: 2018
  ident: 10.1016/j.ejrh.2022.101150_bib3
  article-title: Flood and drought management tools case study
  publication-title: Smart Water
– volume: 237
  year: 2021
  ident: 10.1016/j.ejrh.2022.101150_bib43
  article-title: Projecting changes in explosive cyclones and high waves around Japan using a mega-ensemble projection
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.109634
– volume: 142
  start-page: 1
  year: 2018
  ident: 10.1016/j.ejrh.2022.101150_bib63
  article-title: Assessment of long-term impact of storm surges around the Korean Peninsula based on a large ensemble of climate projections
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2018.09.008
– volume: 38
  year: 2021
  ident: 10.1016/j.ejrh.2022.101150_bib5
  article-title: Exploring future vulnerabilities of subalpine Italian regulated lakes under different climate scenarios: bottom‐up vs top-down and CMIP5 vs CMIP6
  publication-title: J. Hydrol. Reg. Stud.
– volume: 26
  start-page: 2411
  year: 2012
  ident: 10.1016/j.ejrh.2022.101150_bib55
  article-title: Impact of large-scale reservoir operation on flow regime in the Chao Phraya River basin, Thailand: Impact of large-scale reservoir operation on flow regime
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.9345
– volume: 138
  start-page: 44
  year: 2006
  ident: 10.1016/j.ejrh.2022.101150_bib19
  article-title: Bias correction of daily GCM rainfall for crop simulation studies
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2006.03.009
– ident: 10.1016/j.ejrh.2022.101150_bib39
– volume: 1
  start-page: 1
  year: 2011
  ident: 10.1016/j.ejrh.2022.101150_bib51
  article-title: Projection of river discharge of Japanese river basins under a climate change scenario
  publication-title: J. Jpn. Soc. Civ. Eng. B
– volume: 32
  year: 2020
  ident: 10.1016/j.ejrh.2022.101150_bib10
  article-title: Climate change impact on water availability of main river basins in Ukraine
  publication-title: J. Hydrol. Reg. Stud.
– volume: 72
  start-page: I_7
  year: 2016
  ident: 10.1016/j.ejrh.2022.101150_bib34
  article-title: Evaluation of bias correction methods for future river discharge projection
  publication-title: J. JSCE Ser. G
  doi: 10.2208/jscejer.72.I_7
– volume: 22
  start-page: 5741
  year: 2018
  ident: 10.1016/j.ejrh.2022.101150_bib13
  article-title: Bias correction of simulated historical daily streamflow at ungauged locations by using independently estimated flow duration curves
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-5741-2018
– volume: 69
  start-page: I_43
  year: 2013
  ident: 10.1016/j.ejrh.2022.101150_bib60
  article-title: Developing a regional distributed hydrological model for water resources assessment and its application to the Chao Phraya River Basin
  publication-title: J. JSCE
  doi: 10.2208/jscejhe.69.I_43
– volume: 6
  start-page: 53
  year: 2012
  ident: 10.1016/j.ejrh.2022.101150_bib26
  article-title: Hydrological impact of regional climate change in the Chao Phraya River Basin, Thailand
  publication-title: Hydrol. Res. Lett.
  doi: 10.3178/hrl.6.53
SSID ssj0001878960
Score 2.272254
Snippet Chao Phraya River Basin (CPRB), the predominant basin located in Thailand. This study aims to ascertain the difference between spatial bias heterogeneity of...
Chao Phraya River Basin (CPRB), the predominant basin located in Thailand. This study aims to ascertain the difference between spatial bias heterogeneity of...
Study region: Chao Phraya River Basin (CPRB), the predominant basin located in Thailand. Study focus: This study aims to ascertain the difference between...
SourceID doaj
unpaywall
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101150
SubjectTerms 1K-FRM
basins
Bias correction
Chao Phraya River Basin
climate
Climate change
d4PDF
Floods
rivers
stream flow
Thailand
watersheds
Title Correcting streamflow bias considering its spatial structure for impact assessment of climate change on floods using d4PDF in the Chao Phraya River Basin, Thailand
URI https://dx.doi.org/10.1016/j.ejrh.2022.101150
https://www.proquest.com/docview/2718249417
https://doi.org/10.1016/j.ejrh.2022.101150
https://doaj.org/article/d0987fe3740545b38ac112962f7974ac
UnpaywallVersion publishedVersion
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2214-5818
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001878960
  issn: 2214-5818
  databaseCode: KQ8
  dateStart: 20140701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2214-5818
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001878960
  issn: 2214-5818
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2214-5818
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001878960
  issn: 2214-5818
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL-WCeIrlpUHiRiPWTpzHkS6sKiRQhVqpN2vi2GyqkFSbXVX7e_ijzMTZVbgUDlwTx3nMOPNN8s03QrwrqnieF9JHeaUxSlSJEZZpSQuPwpmzhPE9J4pfv6Vnl8mXK301afXFnLAgDxwe3IdqTlmxd3FGyCLRZZyjZYiQKp8RFEbLb18KY5Nkavi6kmd5MZQIKyWTSFNYGitmArnLXa_5T4RSvEFy0f0kKg3i_X8Epwn4PN62N7i7xaaZxKHlQ_FgBJDwMVz4I3HPtY_F8djLfLV7In4tuOGGZTozcCUI_vRNdwtljT3YsT0n76s3PfTMp6bZgorsdu2AMCyEyknAg2gndB5sUxO4dRAqhaFrwTPnvQdmzv-AKjn_tIS6BQKUsFhhB-erNe4QvjPxA06RRp3AxQprplI-FZfLzxeLs2hsxRBZreNNVMRxij7xeaVU5aS3zltWUpVlFUtVutyqTJeFpgRFywrR29y5hJUoM-nogPiZOGq71j0XIFlxUEk391Ym6CgFd0XJTSz9PCWb2pmQe1MYO-qUc7uMxuwJadeGzWfYfCaYbybeH465CSodd44-ZQsfRrLC9rCB_M6Mfmf-5nczoff-YUawEkAITVXfefK3e2cytJL59wy2rtv2hh5VTslwIrOZODl42T_cz4v_cT8vxX2eMnAbX4kj8jv3mvDWpnwzLK3fc-cl2w
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correcting+streamflow+bias+considering+its+spatial+structure+for+impact+assessment+of+climate+change+on+floods+using+d4PDF+in+the+Chao+Phraya+River+Basin%2C+Thailand&rft.jtitle=Journal+of+hydrology.+Regional+studies&rft.au=Budhathoki%2C+Aakanchya&rft.au=Tanaka%2C+Tomohiro&rft.au=Tachikawa%2C+Yasuto&rft.date=2022-08-01&rft.issn=2214-5818&rft.eissn=2214-5818&rft.volume=42+p.101150-&rft_id=info:doi/10.1016%2Fj.ejrh.2022.101150&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-5818&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-5818&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-5818&client=summon