Correcting streamflow bias considering its spatial structure for impact assessment of climate change on floods using d4PDF in the Chao Phraya River Basin, Thailand
Chao Phraya River Basin (CPRB), the predominant basin located in Thailand. This study aims to ascertain the difference between spatial bias heterogeneity of streamflow in large river basins such as CPRB for a robust analysis. The upstream major dams and the outlet of the basin were examined with two...
Saved in:
Published in | Journal of hydrology. Regional studies Vol. 42; p. 101150 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2022
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2214-5818 2214-5818 |
DOI | 10.1016/j.ejrh.2022.101150 |
Cover
Abstract | Chao Phraya River Basin (CPRB), the predominant basin located in Thailand.
This study aims to ascertain the difference between spatial bias heterogeneity of streamflow in large river basins such as CPRB for a robust analysis. The upstream major dams and the outlet of the basin were examined with two-step bias correction and compared with a more practical bias correction only at the outlet of the basin. The former clarified that, due to the large effect of downstream bias, the upstream bias effect was considered negligible thus the two approaches resulted in similar future projections in the CPRB. Through this comparison, streamflow bias in the past and future climate experiments was corrected considering its spatial characteristics for robust assessments of quantitative impacts of climate change.
A + 4 K warmer climate will increase the frequency of the 2011 flood in CPRB and enhance 100-year flood peak discharge by 1.1–1.6 times than the past climate (1961–2010). The future flood in the basin, which starts predominantly in September in the present climate, is likely to begin in September and August equally with a prolonged duration of floods around 10–50 days. The study region is likely expected to experience elevated flood volume, earlier flood occurrence, and longer flood duration which indicates that forthcoming floods will be more rigorous.
[Display omitted]
•Climate change impact assessment on floods in Chao Phraya River Basin.•Spatial streamflow bias correction of d4PDF datasets for + 4 K warming condition.•100-year flood to magnify by 1.1–1.6 times than the past climate.•Adaptation measures required with shift in start of flooding month. |
---|---|
AbstractList | Chao Phraya River Basin (CPRB), the predominant basin located in Thailand. This study aims to ascertain the difference between spatial bias heterogeneity of streamflow in large river basins such as CPRB for a robust analysis. The upstream major dams and the outlet of the basin were examined with two-step bias correction and compared with a more practical bias correction only at the outlet of the basin. The former clarified that, due to the large effect of downstream bias, the upstream bias effect was considered negligible thus the two approaches resulted in similar future projections in the CPRB. Through this comparison, streamflow bias in the past and future climate experiments was corrected considering its spatial characteristics for robust assessments of quantitative impacts of climate change. A + 4 K warmer climate will increase the frequency of the 2011 flood in CPRB and enhance 100-year flood peak discharge by 1.1–1.6 times than the past climate (1961–2010). The future flood in the basin, which starts predominantly in September in the present climate, is likely to begin in September and August equally with a prolonged duration of floods around 10–50 days. The study region is likely expected to experience elevated flood volume, earlier flood occurrence, and longer flood duration which indicates that forthcoming floods will be more rigorous. Study region: Chao Phraya River Basin (CPRB), the predominant basin located in Thailand. Study focus: This study aims to ascertain the difference between spatial bias heterogeneity of streamflow in large river basins such as CPRB for a robust analysis. The upstream major dams and the outlet of the basin were examined with two-step bias correction and compared with a more practical bias correction only at the outlet of the basin. The former clarified that, due to the large effect of downstream bias, the upstream bias effect was considered negligible thus the two approaches resulted in similar future projections in the CPRB. Through this comparison, streamflow bias in the past and future climate experiments was corrected considering its spatial characteristics for robust assessments of quantitative impacts of climate change. New hydrological insights for the region: A + 4 K warmer climate will increase the frequency of the 2011 flood in CPRB and enhance 100-year flood peak discharge by 1.1–1.6 times than the past climate (1961–2010). The future flood in the basin, which starts predominantly in September in the present climate, is likely to begin in September and August equally with a prolonged duration of floods around 10–50 days. The study region is likely expected to experience elevated flood volume, earlier flood occurrence, and longer flood duration which indicates that forthcoming floods will be more rigorous. Chao Phraya River Basin (CPRB), the predominant basin located in Thailand. This study aims to ascertain the difference between spatial bias heterogeneity of streamflow in large river basins such as CPRB for a robust analysis. The upstream major dams and the outlet of the basin were examined with two-step bias correction and compared with a more practical bias correction only at the outlet of the basin. The former clarified that, due to the large effect of downstream bias, the upstream bias effect was considered negligible thus the two approaches resulted in similar future projections in the CPRB. Through this comparison, streamflow bias in the past and future climate experiments was corrected considering its spatial characteristics for robust assessments of quantitative impacts of climate change. A + 4 K warmer climate will increase the frequency of the 2011 flood in CPRB and enhance 100-year flood peak discharge by 1.1–1.6 times than the past climate (1961–2010). The future flood in the basin, which starts predominantly in September in the present climate, is likely to begin in September and August equally with a prolonged duration of floods around 10–50 days. The study region is likely expected to experience elevated flood volume, earlier flood occurrence, and longer flood duration which indicates that forthcoming floods will be more rigorous. [Display omitted] •Climate change impact assessment on floods in Chao Phraya River Basin.•Spatial streamflow bias correction of d4PDF datasets for + 4 K warming condition.•100-year flood to magnify by 1.1–1.6 times than the past climate.•Adaptation measures required with shift in start of flooding month. |
ArticleNumber | 101150 |
Author | Tachikawa, Yasuto Budhathoki, Aakanchya Tanaka, Tomohiro |
Author_xml | – sequence: 1 givenname: Aakanchya surname: Budhathoki fullname: Budhathoki, Aakanchya email: budhathoki.aakanchya.38c@st.kyoto-u.ac.jp – sequence: 2 givenname: Tomohiro surname: Tanaka fullname: Tanaka, Tomohiro – sequence: 3 givenname: Yasuto surname: Tachikawa fullname: Tachikawa, Yasuto |
BookMark | eNqNksFu1DAQhiNUJErpC3DykQO72E68cSQusFCoVIkKlbM1sccbr7L2Yjut9nl4URyCEOJQcbI1_r_f4_n9vDrzwWNVvWR0zSjbvNmvcR-HNaeczwUm6JPqnHPWrIRk8uyv_bPqMqU9pZTJVnYbel792IYYUWfndyTliHCwY3ggvYNEdPDJGYzzmcuJpCNkB-Osm3SeIhIbInGHI-hMICVM6YA-k2CJHt0BMhI9gN8hCZ4U22ASmdLsZprbD1fEeZIHJNsBArkdIpyAfHX3GMl7KKrX5G4AN4I3L6qnFsaEl7_Xi-rb1ce77efVzZdP19t3NystRJ1XXV1vwDZWGs4NMqvRaloLznpTM96j1LwVfSe4EIIZAKslYkOblrcMC1BfVNeLrwmwV8dYnhBPKoBTvwoh7hTE7PSIytBOthbrtqGiEX0tQTPGuw23bdc2oItXvXhN_ginBxjHP4aMqjk2tVdzbGqOTS2xFerVQh1j-D5hyurgksaxTAHDlFTpVPKma1hbpHKR6hhSimiVdrnkE3yOZWyP38L_Qf-rtbcLhCWBe4dRJe3QazRu_j9lRO4x_CcoqtWJ |
CitedBy_id | crossref_primary_10_5194_os_20_1457_2024 crossref_primary_10_1111_jfr3_13031 crossref_primary_10_1088_1748_9326_acf9b9 crossref_primary_10_1007_s11356_023_29572_9 crossref_primary_10_3178_hrl_18_95 crossref_primary_10_3390_atmos13122089 |
Cites_doi | 10.5194/nhess-15-1617-2015 10.2151/jmsj.2012-A07 10.1016/j.scitotenv.2016.01.002 10.1016/j.jhydrol.2020.125368 10.5194/hess-19-1615-2015 10.1002/2013WR014845 10.1080/21664250.2019.1586290 10.1007/s10584-019-02393-x 10.1016/j.ijdrr.2021.102351 10.1175/BAMS-D-16-0099.1 10.3390/w10121777 10.3178/hrl.7.36 10.1016/j.jhydrol.2010.10.024 10.1016/j.jhydrol.2020.124706 10.1088/1748-9326/abfb2b 10.1016/j.jhydrol.2021.126868 10.3178/hrl.14.117 10.1016/j.scitotenv.2021.146223 10.2208/jscejhe.76.2_I_91 10.1126/sciadv.aat6509 10.3390/w7126665 10.3178/hrl.9.84 10.1016/j.ecohyd.2020.07.001 10.1002/joc.3830 10.3178/hrl.8.27 10.1016/j.jhydrol.2020.125643 10.1186/s40645-020-00367-7 10.1007/s40641-016-0050-x 10.1016/j.jhydrol.2021.127066 10.1016/j.jenvman.2020.111524 10.1002/hyp.13859 10.1016/j.jhydrol.2022.127432 10.3178/hrl.6.41 10.2208/jscejhe.69.I_37 10.1016/j.envsci.2018.09.001 10.5194/hess-25-2805-2021 10.1016/j.oceaneng.2021.109634 10.1016/j.coastaleng.2018.09.008 10.1002/hyp.9345 10.1016/j.agrformet.2006.03.009 10.2208/jscejer.72.I_7 10.5194/hess-22-5741-2018 10.2208/jscejhe.69.I_43 10.3178/hrl.6.53 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 ADTOC UNPAY DOA |
DOI | 10.1016/j.ejrh.2022.101150 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2214-5818 |
ExternalDocumentID | oai_doaj_org_article_d0987fe3740545b38ac112962f7974ac 10.1016/j.ejrh.2022.101150 10_1016_j_ejrh_2022_101150 S221458182200163X |
GeographicLocations | Thailand |
GeographicLocations_xml | – name: Thailand |
GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ IPNFZ KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL SSZ AAHBH AAYWO AAYXX ADVLN AFJKZ APXCP CITATION 7S9 L.6 ADTOC UNPAY |
ID | FETCH-LOGICAL-c553t-9336af4f8d22de1fcefc03521bd312be8c275b9525551daafc8ee4047271ede13 |
IEDL.DBID | DOA |
ISSN | 2214-5818 |
IngestDate | Wed Aug 27 01:29:30 EDT 2025 Tue Aug 19 08:55:43 EDT 2025 Thu Jul 10 19:19:16 EDT 2025 Tue Jul 01 01:22:52 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 Tue Jul 25 20:56:42 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | d4PDF Bias correction Climate change Floods 1K-FRM Chao Phraya River Basin |
Language | English |
License | This is an open access article under the CC BY license. cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c553t-9336af4f8d22de1fcefc03521bd312be8c275b9525551daafc8ee4047271ede13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/d0987fe3740545b38ac112962f7974ac |
PQID | 2718249417 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d0987fe3740545b38ac112962f7974ac unpaywall_primary_10_1016_j_ejrh_2022_101150 proquest_miscellaneous_2718249417 crossref_citationtrail_10_1016_j_ejrh_2022_101150 crossref_primary_10_1016_j_ejrh_2022_101150 elsevier_sciencedirect_doi_10_1016_j_ejrh_2022_101150 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2022 2022-08-00 20220801 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hydrology. Regional studies |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Champathong, Komori, Kiguchi, Sukhapunnaphan, Oki, Nakaegawa (bib6) 2013; 7 Mizushima, Y., Yorozu, K., Ichikawa, Y., Tachikawa, Y., 2019. A study on bias correction method for runoff generation data based on reference data created by land surface model. In: Proceedings of the THA 2019 International Conference on Water Management and Climate Change towards Asia’s Water-Energy-Food Nexus and SDGs, Bangkok, Thailand. Wannasin, Brauer, Uijlenhoet, van Verseveld, Weerts (bib58) 2021; 34 Ibarra, David, Tolentino (bib18) 2021; 25 Mori, Shimura, Yoshida, Mizuta, Okada, Fujita, Khujanazarov, Nakakita (bib42) 2019; 61 Bond, Katharine, Raul, Richaud (bib3) 2018 Ligaray, Kim, Sthiannopkao, Lee, Cho, Kim (bib31) 2015; 7 Wichakul, Tachikawa, Shiiba, Yorozu (bib62) 2015; 9 Hunukumbura, Tachikawa (bib17) 2012; 90A Mateo, Hanasaki, Komori, Tanaka, Kiguchi, Champathong, Sukhapunnaphan, Yamazaki, Oki (bib36) 2014; 50 Tebakari, Yoshitani, Suvanpimol (bib55) 2012; 26 Tachikawa, Takino, Fujioka, Yorozu, Kim, Shiiba (bib51) 2011; 1 Loc, Park, Chitwatkulsiri, Lim, Yun, Maneechot, Minh Phuong (bib33) 2020; 589 Komori, Nakamura, Kiguchi, Nishijima, Yamazaki, Suzuki, Kawasaki, Oki, Oki (bib24) 2012; 6 Tanaka, Yuki, Tachikawa (bib52) 2019 Farmer, Over, Kiang (bib13) 2018; 22 Ishii, Mori (bib20) 2020; 7 Mizuta, Murata, Ishii, Shiogama, Hibino, Mori, Arakawa, Imada, Yoshida, Aoyagi, Kawase, Mori, Okada, Shimura, Nagatomo, Ikeda, Endo, Nosaka, Arai, Takahashi, Tanaka, Takemi, Tachikawa, Temur, Kamae, Watanabe, Sasaki, Kitoh, Takayabu, Nakakita, Kimoto (bib41) 2017; 98 Hughes, Farinosi (bib16) 2020; 32 . Didovets, Krysanova, Hattermann, del Rocío Rivas López, Snizhko, Müller Schmied (bib10) 2020; 32 Jular, P., 2011. The 2011 Thailand Floods in The Lower Chao Phraya River Basin in Bangkok Metropolis. Wichakul, Tachikawa, Shiiba, Yorozu (bib61) 2014; 363 Manee, Tachikawa, Ichikawa, Yorozu (bib34) 2016; 72 Maraun (bib35) 2016; 2 Duong, Tachikawa, Shiiba, Yorozu (bib11) 2013; 69 Jahandideh Tehrani, Helfer, Jenkins (bib21) 2021; 777 Abhishek, Kinouchi, Sayama (bib1) 2021; 603 Lehner, B., 2005. Hydrological data and maps based on SRTM elevation derivatives at multiple scales. In: AGU Spring Meeting Abstracts, p. H33A-03. Chen, Hsu, Liang, Chiu, Tu (bib8) 2022; 35 Elshamy, Seierstad, Sorteberg (bib12) 2009 Leitold, Garschagen, Tran, Revilla Diez (bib29) 2021; 61 Park, Lim, Ho, Herrin, Chitwatkulsiri (bib44) 2021; 594 Mishra, Herath (bib38) 2015; 20 Wichakul, Tachikawa, Shiiba, Yorozu (bib60) 2013; 69 Peel, Srikanthan, McMahon, Karoly (bib45) 2015; 19 Yang, Kim, Mori, Mase (bib63) 2018; 142 Tong, Zhao, Wei, Hu, Lu (bib56) 2018; 10 Budhathoki, Babel, Shrestha, Meon, Kamalamma (bib4) 2021; 21 Casale, Fuso, Giuliani, Castelletti, Bocchiola (bib5) 2021; 38 Ines, Hansen (bib19) 2006; 138 Mishra, B., Herath, S., 2011. Climate projections downscaling and impact assessment on precipitation over upper Bagmati River Basin, Nepal. In: Proceedings of the Third International Conference on Addressing Climate Change for Sustainable Development through Up-Scaling Renewable Energy Technologies, RETRUD Kathmandu, pp. 275–281. Tanaka, Kobayashi, Tachikawa (bib54) 2021; 16 Try, Tanaka, Tanaka, Sayama, Hu, Sok, Oeurng (bib57) 2020; 34 Ram-Indra, Tachikawa, Yorozu, Ichikawa (bib49) 2020; 76 Meema, Tachikawa, Ichikawa, Yorozu (bib37) 2021; 36 Tanaka, Kiyohara, Tachikawa (bib53) 2020; 584 Watanabe, Yamada, Abe, Hatono (bib59) 2020; 14 Lavender, Walsh, Caron, King, Monkiewicz, Guishard, Zhang, Hunt (bib27) 2018; 4 Piani, Weedon, Best, Gomes, Viterbo, Hagemann, Haerter (bib46) 2010; 395 Hogendoorn, Zegwaard, Petersen (bib15) 2018; 89 Ninomiya, Taka, Mori (bib43) 2021; 237 Kotsuki, Tanaka, Watanabe (bib25) 2014; 8 Bennett, Grose, Corney, White, Holz, Katzfey, Post, Bindoff (bib2) 2014; 34 Kure, Tebakari (bib26) 2012; 6 Zhao, Lei, Yang, Yang, Santisirisomboon (bib64) 2022; 606 Sayama, Tatebe, Iwami, Tanaka (bib50) 2015; 15 Li, Huang, Wang, Han, Fan (bib30) 2016; 548–549 Ponpang-Nga, Techamahasaranont (bib47) 2016; 50 Liu, Yao, Kuang, Zheng (bib32) 2021; 603 Chaowiwat, W., Sarinnapakorn, K., Weesakul, S., 2019. Prediction of Future Agriculture Water Demand in Thailand Using Multi Bias Corrected Climate Models, p. 13. Chen, Brissette, Zhang, Chen, Guo, Zhao (bib9) 2019; 153 Kitpaisalsakul, T., Koontanakulvong, S., Chaowiwat, W., 2016. Impact of Climate Change on Reservoir Operation in Central Plain Basin of Thailand, 11, p. 7. Gunawardana, Shrestha, Mohanasundaram, Salin, Piman (bib14) 2021; 278 Ram-Indra, Tachikawa, Yorozu, Ichikawa (bib48) 2020; 76 Didovets (10.1016/j.ejrh.2022.101150_bib10) 2020; 32 Champathong (10.1016/j.ejrh.2022.101150_bib6) 2013; 7 Ines (10.1016/j.ejrh.2022.101150_bib19) 2006; 138 10.1016/j.ejrh.2022.101150_bib40 Chen (10.1016/j.ejrh.2022.101150_bib8) 2022; 35 Sayama (10.1016/j.ejrh.2022.101150_bib50) 2015; 15 Gunawardana (10.1016/j.ejrh.2022.101150_bib14) 2021; 278 Abhishek (10.1016/j.ejrh.2022.101150_bib1) 2021; 603 Peel (10.1016/j.ejrh.2022.101150_bib45) 2015; 19 10.1016/j.ejrh.2022.101150_bib7 Ram-Indra (10.1016/j.ejrh.2022.101150_bib48) 2020; 76 Hunukumbura (10.1016/j.ejrh.2022.101150_bib17) 2012; 90A Tanaka (10.1016/j.ejrh.2022.101150_bib53) 2020; 584 Hogendoorn (10.1016/j.ejrh.2022.101150_bib15) 2018; 89 Park (10.1016/j.ejrh.2022.101150_bib44) 2021; 594 Piani (10.1016/j.ejrh.2022.101150_bib46) 2010; 395 Wannasin (10.1016/j.ejrh.2022.101150_bib58) 2021; 34 Tong (10.1016/j.ejrh.2022.101150_bib56) 2018; 10 Wichakul (10.1016/j.ejrh.2022.101150_bib60) 2013; 69 Elshamy (10.1016/j.ejrh.2022.101150_bib12) 2009 Chen (10.1016/j.ejrh.2022.101150_bib9) 2019; 153 Budhathoki (10.1016/j.ejrh.2022.101150_bib4) 2021; 21 Liu (10.1016/j.ejrh.2022.101150_bib32) 2021; 603 Meema (10.1016/j.ejrh.2022.101150_bib37) 2021; 36 Wichakul (10.1016/j.ejrh.2022.101150_bib62) 2015; 9 Tanaka (10.1016/j.ejrh.2022.101150_bib54) 2021; 16 Mateo (10.1016/j.ejrh.2022.101150_bib36) 2014; 50 Tebakari (10.1016/j.ejrh.2022.101150_bib55) 2012; 26 Ponpang-Nga (10.1016/j.ejrh.2022.101150_bib47) 2016; 50 Farmer (10.1016/j.ejrh.2022.101150_bib13) 2018; 22 Hughes (10.1016/j.ejrh.2022.101150_bib16) 2020; 32 Kure (10.1016/j.ejrh.2022.101150_bib26) 2012; 6 Li (10.1016/j.ejrh.2022.101150_bib30) 2016; 548–549 Ishii (10.1016/j.ejrh.2022.101150_bib20) 2020; 7 Kotsuki (10.1016/j.ejrh.2022.101150_bib25) 2014; 8 Mori (10.1016/j.ejrh.2022.101150_bib42) 2019; 61 Duong (10.1016/j.ejrh.2022.101150_bib11) 2013; 69 Maraun (10.1016/j.ejrh.2022.101150_bib35) 2016; 2 Bennett (10.1016/j.ejrh.2022.101150_bib2) 2014; 34 Wichakul (10.1016/j.ejrh.2022.101150_bib61) 2014; 363 Yang (10.1016/j.ejrh.2022.101150_bib63) 2018; 142 Jahandideh Tehrani (10.1016/j.ejrh.2022.101150_bib21) 2021; 777 10.1016/j.ejrh.2022.101150_bib28 Mishra (10.1016/j.ejrh.2022.101150_bib38) 2015; 20 Manee (10.1016/j.ejrh.2022.101150_bib34) 2016; 72 Casale (10.1016/j.ejrh.2022.101150_bib5) 2021; 38 Ibarra (10.1016/j.ejrh.2022.101150_bib18) 2021; 25 Komori (10.1016/j.ejrh.2022.101150_bib24) 2012; 6 10.1016/j.ejrh.2022.101150_bib22 10.1016/j.ejrh.2022.101150_bib23 Ligaray (10.1016/j.ejrh.2022.101150_bib31) 2015; 7 Leitold (10.1016/j.ejrh.2022.101150_bib29) 2021; 61 Zhao (10.1016/j.ejrh.2022.101150_bib64) 2022; 606 Tachikawa (10.1016/j.ejrh.2022.101150_bib51) 2011; 1 10.1016/j.ejrh.2022.101150_bib39 Ram-Indra (10.1016/j.ejrh.2022.101150_bib49) 2020; 76 Try (10.1016/j.ejrh.2022.101150_bib57) 2020; 34 Loc (10.1016/j.ejrh.2022.101150_bib33) 2020; 589 Lavender (10.1016/j.ejrh.2022.101150_bib27) 2018; 4 Tanaka (10.1016/j.ejrh.2022.101150_bib52) 2019 Bond (10.1016/j.ejrh.2022.101150_bib3) 2018 Watanabe (10.1016/j.ejrh.2022.101150_bib59) 2020; 14 Ninomiya (10.1016/j.ejrh.2022.101150_bib43) 2021; 237 Mizuta (10.1016/j.ejrh.2022.101150_bib41) 2017; 98 |
References_xml | – volume: 61 year: 2021 ident: bib29 article-title: Flood risk reduction and climate change adaptation of manufacturing firms: global knowledge gaps and lessons from Ho Chi Minh City publication-title: Int. J. Disaster Risk Reduct. – volume: 21 start-page: 79 year: 2021 end-page: 95 ident: bib4 article-title: Climate change impact on water balance and hydrological extremes in different physiographic regions of the West Seti River Basin, Nepal publication-title: Ecohydrol. Hydrobiol. – volume: 34 start-page: 2189 year: 2014 end-page: 2204 ident: bib2 article-title: Performance of an empirical bias-correction of a high-resolution climate dataset: empirical bias-correction of a high-resolution climate dataset publication-title: Int. J. Climatol. – volume: 98 start-page: 1383 year: 2017 end-page: 1398 ident: bib41 article-title: Over 5,000 years of ensemble future climate simulations by 60-km global and 20-km regional atmospheric models publication-title: Bull. Am. Meteorol. Soc. – volume: 777 year: 2021 ident: bib21 article-title: Impacts of climate change and sea level rise on catchment management: a multi-model ensemble analysis of the Nerang River catchment, Australia publication-title: Sci. Total Environ. – volume: 7 start-page: 58 year: 2020 ident: bib20 article-title: d4PDF: large-ensemble and high-resolution climate simulations for global warming risk assessment publication-title: Prog. Earth Planet Sci. – volume: 34 start-page: 4350 year: 2020 end-page: 4364 ident: bib57 article-title: Projection of extreme flood inundation in the Mekong River basin under 4K increasing scenario using large ensemble climate data publication-title: Hydrol. Process. – volume: 278 year: 2021 ident: bib14 article-title: Multiple drivers of hydrological alteration in the transboundary Srepok River Basin of the Lower Mekong Region publication-title: J. Environ. Manag. – volume: 153 start-page: 361 year: 2019 end-page: 377 ident: bib9 article-title: Bias correcting climate model multi-member ensembles to assess climate change impacts on hydrology publication-title: Clim. Chang. – volume: 603 year: 2021 ident: bib32 article-title: A preliminary investigation on the climate-discharge relationship in the upper region of the Yarlung Zangbo River basin publication-title: J. Hydrol. – volume: 15 start-page: 1617 year: 2015 end-page: 1630 ident: bib50 article-title: Hydrologic sensitivity of flood runoff and inundation: 2011 Thailand floods in the Chao Phraya River basin publication-title: Nat. Hazards Earth Syst. Sci. – volume: 363 start-page: 151 year: 2014 end-page: 157 ident: bib61 article-title: Prediction of water resources in the Chao Phraya River Basin, Thailand. Hydrology in a changing world: environmental and human dimensions publication-title: IAHS Publ. – volume: 4 start-page: eaat6509 year: 2018 ident: bib27 article-title: Estimation of the maximum annual number of North Atlantic tropical cyclones using climate models publication-title: Sci. Adv. – reference: 〉. – volume: 50 start-page: 7245 year: 2014 end-page: 7266 ident: bib36 article-title: Assessing the impacts of reservoir operation to floodplain inundation by combining hydrological, reservoir management, and hydrodynamic models publication-title: Water Resour. Res. – volume: 69 start-page: I_43 year: 2013 end-page: I_48 ident: bib60 article-title: Developing a regional distributed hydrological model for water resources assessment and its application to the Chao Phraya River Basin publication-title: J. JSCE – volume: 6 start-page: 53 year: 2012 end-page: 58 ident: bib26 article-title: Hydrological impact of regional climate change in the Chao Phraya River Basin, Thailand publication-title: Hydrol. Res. Lett. – volume: 76 start-page: I_91 year: 2020 end-page: I_96 ident: bib49 article-title: AGCM3.2S runoff data bias correction over upper Chao Phraya River Basin based on land cover grouping publication-title: J. JSCE Ser. B1 – volume: 10 start-page: 1777 year: 2018 ident: bib56 article-title: Evaluation and hydrological validation of GPM precipitation products over the Nanliu River Basin, Beibu Gulf publication-title: Water – volume: 14 start-page: 117 year: 2020 end-page: 122 ident: bib59 article-title: Bias correction of d4PDF using a moving window method and their uncertainty analysis in estimation and projection of design rainfall depth publication-title: Hydrol. Res. Lett. – volume: 606 year: 2022 ident: bib64 article-title: Runoff and sediment response to deforestation in a large Southeast Asian monsoon watershed publication-title: J. Hydrol. – start-page: 15 year: 2009 ident: bib12 article-title: Impacts of climate change on Blue Nile flows using bias-corrected GCM scenarios publication-title: Hydrol. Earth Syst. Sci. – volume: 34 year: 2021 ident: bib58 article-title: Daily flow simulation in Thailand Part II: Unraveling effects of reservoir operation publication-title: J. Hydrol. Reg. Stud. – volume: 589 year: 2020 ident: bib33 article-title: Local rainfall or river overflow? Re-evaluating the cause of the Great 2011 Thailand flood publication-title: J. Hydrol. – volume: 9 start-page: 84 year: 2015 end-page: 89 ident: bib62 article-title: River discharge assessment under a changing climate in the Chao Phraya River, Thailand by using MRI-AGCM3.2S publication-title: Hydrol. Res. Lett. – volume: 594 year: 2021 ident: bib44 article-title: Source-to-sink sediment fluxes and budget in the Chao Phraya River, Thailand: a multi-scale analysis based on the national dataset publication-title: J. Hydrol. – reference: Mishra, B., Herath, S., 2011. Climate projections downscaling and impact assessment on precipitation over upper Bagmati River Basin, Nepal. In: Proceedings of the Third International Conference on Addressing Climate Change for Sustainable Development through Up-Scaling Renewable Energy Technologies, RETRUD Kathmandu, pp. 275–281. – volume: 8 start-page: 27 year: 2014 end-page: 32 ident: bib25 article-title: Projected hydrological changes and their consistency under future climate in the Chao Phraya River Basin using multi-model and multi-scenario of CMIP5 dataset publication-title: Hydrol. Res. Lett. – volume: 36 year: 2021 ident: bib37 article-title: Uncertainty assessment of water resources and long-term hydropower generation using a large ensemble of future climate projections for the Nam Ngum River in the Mekong Basin publication-title: J. Hydrol. Reg. Stud. – volume: 20 year: 2015 ident: bib38 article-title: Assessment of future floods in the Bagmati River Basin of Nepal using bias-corrected daily GCM precipitation data publication-title: J. Hydrol. Eng. – start-page: 75 year: 2019 ident: bib52 article-title: Reproducibility evaluation of annual maximum basin average rainfall in national first-class river basins using d4PDF publication-title: JSCE Proc. B1 Hydraul. Eng. – volume: 32 year: 2020 ident: bib10 article-title: Climate change impact on water availability of main river basins in Ukraine publication-title: J. Hydrol. Reg. Stud. – volume: 25 start-page: 2805 year: 2021 end-page: 2820 ident: bib18 article-title: Evaluation and bias correction of an observation-based global runoff dataset using streamflow observations from small tropical catchments in the Philippines publication-title: Hydrol. Earth Syst. Sci. – volume: 6 start-page: 41 year: 2012 end-page: 46 ident: bib24 article-title: Characteristics of the 2011 Chao Phraya River flood in Central Thailand publication-title: Hydrol. Res. Lett. – volume: 548–549 start-page: 198 year: 2016 end-page: 210 ident: bib30 article-title: Impacts of future climate change on river discharge based on hydrological inference: a case study of the Grand River Watershed in Ontario, Canada publication-title: Sci. Total Environ. – volume: 19 start-page: 1615 year: 2015 end-page: 1639 ident: bib45 article-title: Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates of global climate model data publication-title: Hydrol. Earth Syst. Sci. – volume: 142 start-page: 1 year: 2018 end-page: 8 ident: bib63 article-title: Assessment of long-term impact of storm surges around the Korean Peninsula based on a large ensemble of climate projections publication-title: Coast. Eng. – volume: 22 start-page: 5741 year: 2018 end-page: 5758 ident: bib13 article-title: Bias correction of simulated historical daily streamflow at ungauged locations by using independently estimated flow duration curves publication-title: Hydrol. Earth Syst. Sci. – volume: 26 start-page: 2411 year: 2012 end-page: 2420 ident: bib55 article-title: Impact of large-scale reservoir operation on flow regime in the Chao Phraya River basin, Thailand: Impact of large-scale reservoir operation on flow regime publication-title: Hydrol. Process. – volume: 7 start-page: 6892 year: 2015 end-page: 6909 ident: bib31 article-title: Assessment on hydrologic response by climate change in the Chao Phraya River Basin, Thailand publication-title: Water – volume: 584 year: 2020 ident: bib53 article-title: Comparison of fluvial and pluvial flood risk curves in urban cities derived from a large ensemble climate simulation dataset: a case study in Nagoya, Japan publication-title: J. Hydrol. – reference: Mizushima, Y., Yorozu, K., Ichikawa, Y., Tachikawa, Y., 2019. A study on bias correction method for runoff generation data based on reference data created by land surface model. In: Proceedings of the THA 2019 International Conference on Water Management and Climate Change towards Asia’s Water-Energy-Food Nexus and SDGs, Bangkok, Thailand. – volume: 72 start-page: I_7 year: 2016 end-page: I_12 ident: bib34 article-title: Evaluation of bias correction methods for future river discharge projection publication-title: J. JSCE Ser. G – reference: Kitpaisalsakul, T., Koontanakulvong, S., Chaowiwat, W., 2016. Impact of Climate Change on Reservoir Operation in Central Plain Basin of Thailand, 11, p. 7. – volume: 2 start-page: 211 year: 2016 end-page: 220 ident: bib35 article-title: Bias correcting climate change simulations-a critical review publication-title: Curr. Clim. Chang. Rep. – volume: 35 year: 2022 ident: bib8 article-title: Future change in extreme precipitation in East Asian spring and Mei-yu seasons in two high-resolution AGCMs publication-title: Weather Clim. Extrem. – volume: 1 start-page: 1 year: 2011 end-page: 15 ident: bib51 article-title: Projection of river discharge of Japanese river basins under a climate change scenario publication-title: J. Jpn. Soc. Civ. Eng. B – year: 2018 ident: bib3 article-title: Flood and drought management tools case study publication-title: Smart Water – volume: 76 start-page: I_55 year: 2020 end-page: I_63 ident: bib48 article-title: Bias correction of runoff data in agcm3.2s for upper Chao Phraya River Basin, Thailand publication-title: J. Jpn. Soc. Civ. Eng. Ser. G Environ. Res. – volume: 38 year: 2021 ident: bib5 article-title: Exploring future vulnerabilities of subalpine Italian regulated lakes under different climate scenarios: bottom‐up vs top-down and CMIP5 vs CMIP6 publication-title: J. Hydrol. Reg. Stud. – volume: 50 start-page: 310 year: 2016 end-page: 320 ident: bib47 article-title: Effects of climate and land use changes on water balance in upstream in the Chao Phraya River basin, Thailand publication-title: Agric. Nat. Resour. – volume: 61 start-page: 295 year: 2019 end-page: 307 ident: bib42 article-title: Future changes in extreme storm surges based on mega-ensemble projection using 60-km resolution atmospheric global circulation model publication-title: Coast. Eng. J. – volume: 89 start-page: 378 year: 2018 end-page: 384 ident: bib15 article-title: Difficult travels: delta plans don’t land in the Chao Phraya delta publication-title: Environ. Sci. Policy – volume: 138 start-page: 44 year: 2006 end-page: 53 ident: bib19 article-title: Bias correction of daily GCM rainfall for crop simulation studies publication-title: Agric. For. Meteorol. – volume: 603 year: 2021 ident: bib1 article-title: A comprehensive assessment of water storage dynamics and hydroclimatic extremes in the Chao Phraya River Basin during 2002–2020 publication-title: J. Hydrol. – volume: 32 year: 2020 ident: bib16 article-title: Assessing development and climate variability impacts on water resources in the Zambezi River basin. Simulating future scenarios of climate and development publication-title: J. Hydrol. Reg. Stud. – volume: 7 start-page: 36 year: 2013 end-page: 41 ident: bib6 article-title: Future projection of mean river discharge climatology for the Chao Phraya River basin publication-title: Hydrol. Res. Lett. – reference: Chaowiwat, W., Sarinnapakorn, K., Weesakul, S., 2019. Prediction of Future Agriculture Water Demand in Thailand Using Multi Bias Corrected Climate Models, p. 13. 〈 – volume: 69 start-page: I_37 year: 2013 end-page: I_42 ident: bib11 article-title: River discharge projection in Indochina Peninsula under a changing climate using the MRI-AGCM3.2S dataset publication-title: J. JSCE – volume: 90A start-page: 137 year: 2012 end-page: 150 ident: bib17 article-title: River discharge projection under climate change in the Chao Phraya River Basin, Thailand, using the MRI-GCM3.1S dataset publication-title: J. Meteorol. Soc. Jpn. – volume: 237 year: 2021 ident: bib43 article-title: Projecting changes in explosive cyclones and high waves around Japan using a mega-ensemble projection publication-title: Ocean Eng. – volume: 16 year: 2021 ident: bib54 article-title: Simultaneous flood risk analysis and its future change among all the 109 class-A river basins in Japan using a large ensemble climate simulation database d4PDF publication-title: Environ. Res. Lett. – reference: Jular, P., 2011. The 2011 Thailand Floods in The Lower Chao Phraya River Basin in Bangkok Metropolis. – reference: Lehner, B., 2005. Hydrological data and maps based on SRTM elevation derivatives at multiple scales. In: AGU Spring Meeting Abstracts, p. H33A-03. – volume: 395 start-page: 199 year: 2010 end-page: 215 ident: bib46 article-title: Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models publication-title: J. Hydrol. – volume: 35 year: 2022 ident: 10.1016/j.ejrh.2022.101150_bib8 article-title: Future change in extreme precipitation in East Asian spring and Mei-yu seasons in two high-resolution AGCMs publication-title: Weather Clim. Extrem. – volume: 76 start-page: I_55 year: 2020 ident: 10.1016/j.ejrh.2022.101150_bib48 article-title: Bias correction of runoff data in agcm3.2s for upper Chao Phraya River Basin, Thailand publication-title: J. Jpn. Soc. Civ. Eng. Ser. G Environ. Res. – volume: 15 start-page: 1617 year: 2015 ident: 10.1016/j.ejrh.2022.101150_bib50 article-title: Hydrologic sensitivity of flood runoff and inundation: 2011 Thailand floods in the Chao Phraya River basin publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-15-1617-2015 – volume: 90A start-page: 137 year: 2012 ident: 10.1016/j.ejrh.2022.101150_bib17 article-title: River discharge projection under climate change in the Chao Phraya River Basin, Thailand, using the MRI-GCM3.1S dataset publication-title: J. Meteorol. Soc. Jpn. doi: 10.2151/jmsj.2012-A07 – volume: 548–549 start-page: 198 year: 2016 ident: 10.1016/j.ejrh.2022.101150_bib30 article-title: Impacts of future climate change on river discharge based on hydrological inference: a case study of the Grand River Watershed in Ontario, Canada publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.01.002 – volume: 589 year: 2020 ident: 10.1016/j.ejrh.2022.101150_bib33 article-title: Local rainfall or river overflow? Re-evaluating the cause of the Great 2011 Thailand flood publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125368 – volume: 19 start-page: 1615 year: 2015 ident: 10.1016/j.ejrh.2022.101150_bib45 article-title: Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates of global climate model data publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-19-1615-2015 – start-page: 15 year: 2009 ident: 10.1016/j.ejrh.2022.101150_bib12 article-title: Impacts of climate change on Blue Nile flows using bias-corrected GCM scenarios publication-title: Hydrol. Earth Syst. Sci. – ident: 10.1016/j.ejrh.2022.101150_bib22 – volume: 50 start-page: 7245 year: 2014 ident: 10.1016/j.ejrh.2022.101150_bib36 article-title: Assessing the impacts of reservoir operation to floodplain inundation by combining hydrological, reservoir management, and hydrodynamic models publication-title: Water Resour. Res. doi: 10.1002/2013WR014845 – volume: 61 start-page: 295 year: 2019 ident: 10.1016/j.ejrh.2022.101150_bib42 article-title: Future changes in extreme storm surges based on mega-ensemble projection using 60-km resolution atmospheric global circulation model publication-title: Coast. Eng. J. doi: 10.1080/21664250.2019.1586290 – volume: 153 start-page: 361 year: 2019 ident: 10.1016/j.ejrh.2022.101150_bib9 article-title: Bias correcting climate model multi-member ensembles to assess climate change impacts on hydrology publication-title: Clim. Chang. doi: 10.1007/s10584-019-02393-x – start-page: 75 year: 2019 ident: 10.1016/j.ejrh.2022.101150_bib52 article-title: Reproducibility evaluation of annual maximum basin average rainfall in national first-class river basins using d4PDF publication-title: JSCE Proc. B1 Hydraul. Eng. – volume: 61 year: 2021 ident: 10.1016/j.ejrh.2022.101150_bib29 article-title: Flood risk reduction and climate change adaptation of manufacturing firms: global knowledge gaps and lessons from Ho Chi Minh City publication-title: Int. J. Disaster Risk Reduct. doi: 10.1016/j.ijdrr.2021.102351 – volume: 98 start-page: 1383 year: 2017 ident: 10.1016/j.ejrh.2022.101150_bib41 article-title: Over 5,000 years of ensemble future climate simulations by 60-km global and 20-km regional atmospheric models publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-16-0099.1 – volume: 50 start-page: 310 year: 2016 ident: 10.1016/j.ejrh.2022.101150_bib47 article-title: Effects of climate and land use changes on water balance in upstream in the Chao Phraya River basin, Thailand publication-title: Agric. Nat. Resour. – volume: 10 start-page: 1777 year: 2018 ident: 10.1016/j.ejrh.2022.101150_bib56 article-title: Evaluation and hydrological validation of GPM precipitation products over the Nanliu River Basin, Beibu Gulf publication-title: Water doi: 10.3390/w10121777 – volume: 7 start-page: 36 year: 2013 ident: 10.1016/j.ejrh.2022.101150_bib6 article-title: Future projection of mean river discharge climatology for the Chao Phraya River basin publication-title: Hydrol. Res. Lett. doi: 10.3178/hrl.7.36 – volume: 395 start-page: 199 year: 2010 ident: 10.1016/j.ejrh.2022.101150_bib46 article-title: Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.10.024 – volume: 584 year: 2020 ident: 10.1016/j.ejrh.2022.101150_bib53 article-title: Comparison of fluvial and pluvial flood risk curves in urban cities derived from a large ensemble climate simulation dataset: a case study in Nagoya, Japan publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124706 – volume: 16 year: 2021 ident: 10.1016/j.ejrh.2022.101150_bib54 article-title: Simultaneous flood risk analysis and its future change among all the 109 class-A river basins in Japan using a large ensemble climate simulation database d4PDF publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/abfb2b – volume: 32 year: 2020 ident: 10.1016/j.ejrh.2022.101150_bib16 article-title: Assessing development and climate variability impacts on water resources in the Zambezi River basin. Simulating future scenarios of climate and development publication-title: J. Hydrol. Reg. Stud. – volume: 34 year: 2021 ident: 10.1016/j.ejrh.2022.101150_bib58 article-title: Daily flow simulation in Thailand Part II: Unraveling effects of reservoir operation publication-title: J. Hydrol. Reg. Stud. – volume: 603 year: 2021 ident: 10.1016/j.ejrh.2022.101150_bib1 article-title: A comprehensive assessment of water storage dynamics and hydroclimatic extremes in the Chao Phraya River Basin during 2002–2020 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126868 – ident: 10.1016/j.ejrh.2022.101150_bib7 – ident: 10.1016/j.ejrh.2022.101150_bib23 – volume: 14 start-page: 117 year: 2020 ident: 10.1016/j.ejrh.2022.101150_bib59 article-title: Bias correction of d4PDF using a moving window method and their uncertainty analysis in estimation and projection of design rainfall depth publication-title: Hydrol. Res. Lett. doi: 10.3178/hrl.14.117 – volume: 777 year: 2021 ident: 10.1016/j.ejrh.2022.101150_bib21 article-title: Impacts of climate change and sea level rise on catchment management: a multi-model ensemble analysis of the Nerang River catchment, Australia publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.146223 – volume: 76 start-page: I_91 year: 2020 ident: 10.1016/j.ejrh.2022.101150_bib49 article-title: AGCM3.2S runoff data bias correction over upper Chao Phraya River Basin based on land cover grouping publication-title: J. JSCE Ser. B1 doi: 10.2208/jscejhe.76.2_I_91 – ident: 10.1016/j.ejrh.2022.101150_bib40 – volume: 4 start-page: eaat6509 year: 2018 ident: 10.1016/j.ejrh.2022.101150_bib27 article-title: Estimation of the maximum annual number of North Atlantic tropical cyclones using climate models publication-title: Sci. Adv. doi: 10.1126/sciadv.aat6509 – volume: 20 year: 2015 ident: 10.1016/j.ejrh.2022.101150_bib38 article-title: Assessment of future floods in the Bagmati River Basin of Nepal using bias-corrected daily GCM precipitation data publication-title: J. Hydrol. Eng. – volume: 7 start-page: 6892 year: 2015 ident: 10.1016/j.ejrh.2022.101150_bib31 article-title: Assessment on hydrologic response by climate change in the Chao Phraya River Basin, Thailand publication-title: Water doi: 10.3390/w7126665 – volume: 9 start-page: 84 year: 2015 ident: 10.1016/j.ejrh.2022.101150_bib62 article-title: River discharge assessment under a changing climate in the Chao Phraya River, Thailand by using MRI-AGCM3.2S publication-title: Hydrol. Res. Lett. doi: 10.3178/hrl.9.84 – volume: 21 start-page: 79 year: 2021 ident: 10.1016/j.ejrh.2022.101150_bib4 article-title: Climate change impact on water balance and hydrological extremes in different physiographic regions of the West Seti River Basin, Nepal publication-title: Ecohydrol. Hydrobiol. doi: 10.1016/j.ecohyd.2020.07.001 – volume: 34 start-page: 2189 year: 2014 ident: 10.1016/j.ejrh.2022.101150_bib2 article-title: Performance of an empirical bias-correction of a high-resolution climate dataset: empirical bias-correction of a high-resolution climate dataset publication-title: Int. J. Climatol. doi: 10.1002/joc.3830 – volume: 8 start-page: 27 year: 2014 ident: 10.1016/j.ejrh.2022.101150_bib25 article-title: Projected hydrological changes and their consistency under future climate in the Chao Phraya River Basin using multi-model and multi-scenario of CMIP5 dataset publication-title: Hydrol. Res. Lett. doi: 10.3178/hrl.8.27 – volume: 594 year: 2021 ident: 10.1016/j.ejrh.2022.101150_bib44 article-title: Source-to-sink sediment fluxes and budget in the Chao Phraya River, Thailand: a multi-scale analysis based on the national dataset publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125643 – volume: 7 start-page: 58 year: 2020 ident: 10.1016/j.ejrh.2022.101150_bib20 article-title: d4PDF: large-ensemble and high-resolution climate simulations for global warming risk assessment publication-title: Prog. Earth Planet Sci. doi: 10.1186/s40645-020-00367-7 – volume: 2 start-page: 211 year: 2016 ident: 10.1016/j.ejrh.2022.101150_bib35 article-title: Bias correcting climate change simulations-a critical review publication-title: Curr. Clim. Chang. Rep. doi: 10.1007/s40641-016-0050-x – volume: 603 year: 2021 ident: 10.1016/j.ejrh.2022.101150_bib32 article-title: A preliminary investigation on the climate-discharge relationship in the upper region of the Yarlung Zangbo River basin publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.127066 – volume: 36 year: 2021 ident: 10.1016/j.ejrh.2022.101150_bib37 article-title: Uncertainty assessment of water resources and long-term hydropower generation using a large ensemble of future climate projections for the Nam Ngum River in the Mekong Basin publication-title: J. Hydrol. Reg. Stud. – volume: 278 year: 2021 ident: 10.1016/j.ejrh.2022.101150_bib14 article-title: Multiple drivers of hydrological alteration in the transboundary Srepok River Basin of the Lower Mekong Region publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.111524 – volume: 363 start-page: 151 year: 2014 ident: 10.1016/j.ejrh.2022.101150_bib61 article-title: Prediction of water resources in the Chao Phraya River Basin, Thailand. Hydrology in a changing world: environmental and human dimensions publication-title: IAHS Publ. – volume: 34 start-page: 4350 year: 2020 ident: 10.1016/j.ejrh.2022.101150_bib57 article-title: Projection of extreme flood inundation in the Mekong River basin under 4K increasing scenario using large ensemble climate data publication-title: Hydrol. Process. doi: 10.1002/hyp.13859 – volume: 606 year: 2022 ident: 10.1016/j.ejrh.2022.101150_bib64 article-title: Runoff and sediment response to deforestation in a large Southeast Asian monsoon watershed publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.127432 – ident: 10.1016/j.ejrh.2022.101150_bib28 – volume: 6 start-page: 41 year: 2012 ident: 10.1016/j.ejrh.2022.101150_bib24 article-title: Characteristics of the 2011 Chao Phraya River flood in Central Thailand publication-title: Hydrol. Res. Lett. doi: 10.3178/hrl.6.41 – volume: 69 start-page: I_37 year: 2013 ident: 10.1016/j.ejrh.2022.101150_bib11 article-title: River discharge projection in Indochina Peninsula under a changing climate using the MRI-AGCM3.2S dataset publication-title: J. JSCE doi: 10.2208/jscejhe.69.I_37 – volume: 89 start-page: 378 year: 2018 ident: 10.1016/j.ejrh.2022.101150_bib15 article-title: Difficult travels: delta plans don’t land in the Chao Phraya delta publication-title: Environ. Sci. Policy doi: 10.1016/j.envsci.2018.09.001 – volume: 25 start-page: 2805 year: 2021 ident: 10.1016/j.ejrh.2022.101150_bib18 article-title: Evaluation and bias correction of an observation-based global runoff dataset using streamflow observations from small tropical catchments in the Philippines publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-25-2805-2021 – year: 2018 ident: 10.1016/j.ejrh.2022.101150_bib3 article-title: Flood and drought management tools case study publication-title: Smart Water – volume: 237 year: 2021 ident: 10.1016/j.ejrh.2022.101150_bib43 article-title: Projecting changes in explosive cyclones and high waves around Japan using a mega-ensemble projection publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109634 – volume: 142 start-page: 1 year: 2018 ident: 10.1016/j.ejrh.2022.101150_bib63 article-title: Assessment of long-term impact of storm surges around the Korean Peninsula based on a large ensemble of climate projections publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2018.09.008 – volume: 38 year: 2021 ident: 10.1016/j.ejrh.2022.101150_bib5 article-title: Exploring future vulnerabilities of subalpine Italian regulated lakes under different climate scenarios: bottom‐up vs top-down and CMIP5 vs CMIP6 publication-title: J. Hydrol. Reg. Stud. – volume: 26 start-page: 2411 year: 2012 ident: 10.1016/j.ejrh.2022.101150_bib55 article-title: Impact of large-scale reservoir operation on flow regime in the Chao Phraya River basin, Thailand: Impact of large-scale reservoir operation on flow regime publication-title: Hydrol. Process. doi: 10.1002/hyp.9345 – volume: 138 start-page: 44 year: 2006 ident: 10.1016/j.ejrh.2022.101150_bib19 article-title: Bias correction of daily GCM rainfall for crop simulation studies publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2006.03.009 – ident: 10.1016/j.ejrh.2022.101150_bib39 – volume: 1 start-page: 1 year: 2011 ident: 10.1016/j.ejrh.2022.101150_bib51 article-title: Projection of river discharge of Japanese river basins under a climate change scenario publication-title: J. Jpn. Soc. Civ. Eng. B – volume: 32 year: 2020 ident: 10.1016/j.ejrh.2022.101150_bib10 article-title: Climate change impact on water availability of main river basins in Ukraine publication-title: J. Hydrol. Reg. Stud. – volume: 72 start-page: I_7 year: 2016 ident: 10.1016/j.ejrh.2022.101150_bib34 article-title: Evaluation of bias correction methods for future river discharge projection publication-title: J. JSCE Ser. G doi: 10.2208/jscejer.72.I_7 – volume: 22 start-page: 5741 year: 2018 ident: 10.1016/j.ejrh.2022.101150_bib13 article-title: Bias correction of simulated historical daily streamflow at ungauged locations by using independently estimated flow duration curves publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-5741-2018 – volume: 69 start-page: I_43 year: 2013 ident: 10.1016/j.ejrh.2022.101150_bib60 article-title: Developing a regional distributed hydrological model for water resources assessment and its application to the Chao Phraya River Basin publication-title: J. JSCE doi: 10.2208/jscejhe.69.I_43 – volume: 6 start-page: 53 year: 2012 ident: 10.1016/j.ejrh.2022.101150_bib26 article-title: Hydrological impact of regional climate change in the Chao Phraya River Basin, Thailand publication-title: Hydrol. Res. Lett. doi: 10.3178/hrl.6.53 |
SSID | ssj0001878960 |
Score | 2.272254 |
Snippet | Chao Phraya River Basin (CPRB), the predominant basin located in Thailand.
This study aims to ascertain the difference between spatial bias heterogeneity of... Chao Phraya River Basin (CPRB), the predominant basin located in Thailand. This study aims to ascertain the difference between spatial bias heterogeneity of... Study region: Chao Phraya River Basin (CPRB), the predominant basin located in Thailand. Study focus: This study aims to ascertain the difference between... |
SourceID | doaj unpaywall proquest crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 101150 |
SubjectTerms | 1K-FRM basins Bias correction Chao Phraya River Basin climate Climate change d4PDF Floods rivers stream flow Thailand watersheds |
Title | Correcting streamflow bias considering its spatial structure for impact assessment of climate change on floods using d4PDF in the Chao Phraya River Basin, Thailand |
URI | https://dx.doi.org/10.1016/j.ejrh.2022.101150 https://www.proquest.com/docview/2718249417 https://doi.org/10.1016/j.ejrh.2022.101150 https://doaj.org/article/d0987fe3740545b38ac112962f7974ac |
UnpaywallVersion | publishedVersion |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2214-5818 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001878960 issn: 2214-5818 databaseCode: KQ8 dateStart: 20140701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2214-5818 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001878960 issn: 2214-5818 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2214-5818 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001878960 issn: 2214-5818 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL-WCeIrlpUHiRiPWTpzHkS6sKiRQhVqpN2vi2GyqkFSbXVX7e_ijzMTZVbgUDlwTx3nMOPNN8s03QrwrqnieF9JHeaUxSlSJEZZpSQuPwpmzhPE9J4pfv6Vnl8mXK301afXFnLAgDxwe3IdqTlmxd3FGyCLRZZyjZYiQKp8RFEbLb18KY5Nkavi6kmd5MZQIKyWTSFNYGitmArnLXa_5T4RSvEFy0f0kKg3i_X8Epwn4PN62N7i7xaaZxKHlQ_FgBJDwMVz4I3HPtY_F8djLfLV7In4tuOGGZTozcCUI_vRNdwtljT3YsT0n76s3PfTMp6bZgorsdu2AMCyEyknAg2gndB5sUxO4dRAqhaFrwTPnvQdmzv-AKjn_tIS6BQKUsFhhB-erNe4QvjPxA06RRp3AxQprplI-FZfLzxeLs2hsxRBZreNNVMRxij7xeaVU5aS3zltWUpVlFUtVutyqTJeFpgRFywrR29y5hJUoM-nogPiZOGq71j0XIFlxUEk391Ym6CgFd0XJTSz9PCWb2pmQe1MYO-qUc7uMxuwJadeGzWfYfCaYbybeH465CSodd44-ZQsfRrLC9rCB_M6Mfmf-5nczoff-YUawEkAITVXfefK3e2cytJL59wy2rtv2hh5VTslwIrOZODl42T_cz4v_cT8vxX2eMnAbX4kj8jv3mvDWpnwzLK3fc-cl2w |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correcting+streamflow+bias+considering+its+spatial+structure+for+impact+assessment+of+climate+change+on+floods+using+d4PDF+in+the+Chao+Phraya+River+Basin%2C+Thailand&rft.jtitle=Journal+of+hydrology.+Regional+studies&rft.au=Budhathoki%2C+Aakanchya&rft.au=Tanaka%2C+Tomohiro&rft.au=Tachikawa%2C+Yasuto&rft.date=2022-08-01&rft.issn=2214-5818&rft.eissn=2214-5818&rft.volume=42+p.101150-&rft_id=info:doi/10.1016%2Fj.ejrh.2022.101150&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-5818&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-5818&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-5818&client=summon |