Evaluate effect of 126 pre-processing methods on various artificial intelligence models accuracy versus normal mode to predict groundwater level (case study: Hamedan-Bahar Plain, Iran)

The estimation of groundwater levels is crucial and an important step in ensuring sustainable management of water resources. In this paper, selected piezometers of the Hamedan-Bahar plain located in west of Iran. The main objective of this study is to compare effect of various pre-processing methods...

Full description

Saved in:
Bibliographic Details
Published inHeliyon Vol. 10; no. 7; p. e29006
Main Authors Saroughi, Mohsen, Mirzania, Ehsan, Achite, Mohammed, Katipoğlu, Okan Mert, Al-Ansari, Nadhir, Vishwakarma, Dinesh Kumar, Chung, Il-Moon, Alreshidi, Maha Awjan, Yadav, Krishna Kumar
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.04.2024
Elsevier
Subjects
Online AccessGet full text
ISSN2405-8440
2405-8440
DOI10.1016/j.heliyon.2024.e29006

Cover

Abstract The estimation of groundwater levels is crucial and an important step in ensuring sustainable management of water resources. In this paper, selected piezometers of the Hamedan-Bahar plain located in west of Iran. The main objective of this study is to compare effect of various pre-processing methods on input data for different artificial intelligence (AI) models to predict groundwater levels (GWLs). The observed GWL, evaporation, precipitation, and temperature were used as input variables in the AI algorithms. Firstly, 126 method of data pre-processing was done by python programming which are classified into three classes: 1- statistical methods, 2- wavelet transform methods and 3- decomposition methods; later, various pre-processed data used by four types of widely used AI models with different kernels, which includes: Support Vector Machine (SVR), Artificial Neural Network (ANN), Long-Short Term memory (LSTM), and Pelican Optimization Algorithm (POA) - Artificial Neural Network (POA-ANN) are classified into three classes: 1- machine learning (SVR and ANN), 2- deep learning (LSTM) and 3- hybrid-ML (POA-ANN) models, to predict groundwater levels (GWLs). Akaike Information Criterion (AIC) were used to evaluate and validate the predictive accuracy of algorithms. According to the results, based on summation (train and test phases) of AIC value of 1778 models, average of AIC values for ML, DL, hybrid-ML classes, was decreased to −25.3%, −29.6% and −57.8%, respectively. Therefore, the results showed that all data pre-processing methods do not lead to improvement of prediction accuracy, and they should be selected very carefully by trial and error. In conclusion, wavelet-ANN model with daubechies 13 and 25 neurons (db13_ANN_25) is the best model to predict GWL that has −204.9 value for AIC which has grown by 5.23% (−194.7) compared to the state without any pre-processing method (ANN_Relu_25).
AbstractList The estimation of groundwater levels is crucial and an important step in ensuring sustainable management of water resources. In this paper, selected piezometers of the Hamedan-Bahar plain located in west of Iran. The main objective of this study is to compare effect of various pre-processing methods on input data for different artificial intelligence (AI) models to predict groundwater levels (GWLs). The observed GWL, evaporation, precipitation, and temperature were used as input variables in the AI algorithms. Firstly, 126 method of data pre-processing was done by python programming which are classified into three classes: 1- statistical methods, 2- wavelet transform methods and 3- decomposition methods; later, various pre-processed data used by four types of widely used AI models with different kernels, which includes: Support Vector Machine (SVR), Artificial Neural Network (ANN), Long-Short Term memory (LSTM), and Pelican Optimization Algorithm (POA) - Artificial Neural Network (POA-ANN) are classified into three classes: 1- machine learning (SVR and ANN), 2- deep learning (LSTM) and 3- hybrid-ML (POA-ANN) models, to predict groundwater levels (GWLs). Akaike Information Criterion (AIC) were used to evaluate and validate the predictive accuracy of algorithms. According to the results, based on summation (train and test phases) of AIC value of 1778 models, average of AIC values for ML, DL, hybrid-ML classes, was decreased to -25.3%, -29.6% and -57.8%, respectively. Therefore, the results showed that all data pre-processing methods do not lead to improvement of prediction accuracy, and they should be selected very carefully by trial and error. In conclusion, wavelet-ANN model with daubechies 13 and 25 neurons (db13_ANN_25) is the best model to predict GWL that has -204.9 value for AIC which has grown by 5.23% (-194.7) compared to the state without any pre-processing method (ANN_Relu_25).
The estimation of groundwater levels is crucial and an important step in ensuring sustainable management of water resources. In this paper, selected piezometers of the Hamedan-Bahar plain located in west of Iran. The main objective of this study is to compare effect of various pre-processing methods on input data for different artificial intelligence (AI) models to predict groundwater levels (GWLs). The observed GWL, evaporation, precipitation, and temperature were used as input variables in the AI algorithms. Firstly, 126 method of data pre-processing was done by python programming which are classified into three classes: 1- statistical methods, 2- wavelet transform methods and 3- decomposition methods; later, various pre-processed data used by four types of widely used AI models with different kernels, which includes: Support Vector Machine (SVR), Artificial Neural Network (ANN), Long-Short Term memory (LSTM), and Pelican Optimization Algorithm (POA) - Artificial Neural Network (POA-ANN) are classified into three classes: 1- machine learning (SVR and ANN), 2- deep learning (LSTM) and 3- hybrid-ML (POA-ANN) models, to predict groundwater levels (GWLs). Akaike Information Criterion (AIC) were used to evaluate and validate the predictive accuracy of algorithms. According to the results, based on summation (train and test phases) of AIC value of 1778 models, average of AIC values for ML, DL, hybrid-ML classes, was decreased to −25.3%, −29.6% and −57.8%, respectively. Therefore, the results showed that all data pre-processing methods do not lead to improvement of prediction accuracy, and they should be selected very carefully by trial and error. In conclusion, wavelet-ANN model with daubechies 13 and 25 neurons (db13_ANN_25) is the best model to predict GWL that has −204.9 value for AIC which has grown by 5.23% (−194.7) compared to the state without any pre-processing method (ANN_Relu_25).
The estimation of groundwater levels is crucial and an important step in ensuring sustainable management of water resources. In this paper, selected piezometers of the Hamedan-Bahar plain located in west of Iran. The main objective of this study is to compare effect of various pre-processing methods on input data for different artificial intelligence (AI) models to predict groundwater levels (GWLs). The observed GWL, evaporation, precipitation, and temperature were used as input variables in the AI algorithms. Firstly, 126 method of data pre-processing was done by python programming which are classified into three classes: 1- statistical methods, 2- wavelet transform methods and 3- decomposition methods; later, various pre-processed data used by four types of widely used AI models with different kernels, which includes: Support Vector Machine (SVR), Artificial Neural Network (ANN), Long-Short Term memory (LSTM), and Pelican Optimization Algorithm (POA) - Artificial Neural Network (POA-ANN) are classified into three classes: 1- machine learning (SVR and ANN), 2- deep learning (LSTM) and 3- hybrid-ML (POA-ANN) models, to predict groundwater levels (GWLs). Akaike Information Criterion (AIC) were used to evaluate and validate the predictive accuracy of algorithms. According to the results, based on summation (train and test phases) of AIC value of 1778 models, average of AIC values for ML, DL, hybrid-ML classes, was decreased to -25.3%, -29.6% and -57.8%, respectively. Therefore, the results showed that all data pre-processing methods do not lead to improvement of prediction accuracy, and they should be selected very carefully by trial and error. In conclusion, wavelet-ANN model with daubechies 13 and 25 neurons (db13_ANN_25) is the best model to predict GWL that has -204.9 value for AIC which has grown by 5.23% (-194.7) compared to the state without any pre-processing method (ANN_Relu_25).The estimation of groundwater levels is crucial and an important step in ensuring sustainable management of water resources. In this paper, selected piezometers of the Hamedan-Bahar plain located in west of Iran. The main objective of this study is to compare effect of various pre-processing methods on input data for different artificial intelligence (AI) models to predict groundwater levels (GWLs). The observed GWL, evaporation, precipitation, and temperature were used as input variables in the AI algorithms. Firstly, 126 method of data pre-processing was done by python programming which are classified into three classes: 1- statistical methods, 2- wavelet transform methods and 3- decomposition methods; later, various pre-processed data used by four types of widely used AI models with different kernels, which includes: Support Vector Machine (SVR), Artificial Neural Network (ANN), Long-Short Term memory (LSTM), and Pelican Optimization Algorithm (POA) - Artificial Neural Network (POA-ANN) are classified into three classes: 1- machine learning (SVR and ANN), 2- deep learning (LSTM) and 3- hybrid-ML (POA-ANN) models, to predict groundwater levels (GWLs). Akaike Information Criterion (AIC) were used to evaluate and validate the predictive accuracy of algorithms. According to the results, based on summation (train and test phases) of AIC value of 1778 models, average of AIC values for ML, DL, hybrid-ML classes, was decreased to -25.3%, -29.6% and -57.8%, respectively. Therefore, the results showed that all data pre-processing methods do not lead to improvement of prediction accuracy, and they should be selected very carefully by trial and error. In conclusion, wavelet-ANN model with daubechies 13 and 25 neurons (db13_ANN_25) is the best model to predict GWL that has -204.9 value for AIC which has grown by 5.23% (-194.7) compared to the state without any pre-processing method (ANN_Relu_25).
ArticleNumber e29006
Author Achite, Mohammed
Saroughi, Mohsen
Vishwakarma, Dinesh Kumar
Alreshidi, Maha Awjan
Yadav, Krishna Kumar
Al-Ansari, Nadhir
Mirzania, Ehsan
Chung, Il-Moon
Katipoğlu, Okan Mert
Author_xml – sequence: 1
  givenname: Mohsen
  orcidid: 0000-0002-9811-5230
  surname: Saroughi
  fullname: Saroughi, Mohsen
  email: mohsensaroughi@ut.ac.ir
  organization: Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
– sequence: 2
  givenname: Ehsan
  orcidid: 0000-0001-9252-2241
  surname: Mirzania
  fullname: Mirzania, Ehsan
  email: e.mirzania99@ms.tabrizu.ac.ir
  organization: Department of Water Engineering, University of Tabriz, Tabriz, Iran
– sequence: 3
  givenname: Mohammed
  orcidid: 0000-0001-6084-5759
  surname: Achite
  fullname: Achite, Mohammed
  email: m.achite@univ-chlef.dz
  organization: Faculty of Nature and Life Sciences, Laboratory of Water and Environment, Hassiba Benbouali University of Chlef, Chlef, 02180, Algeria
– sequence: 4
  givenname: Okan Mert
  orcidid: 0000-0001-6421-6087
  surname: Katipoğlu
  fullname: Katipoğlu, Okan Mert
  email: okatipoglu@erzincan.edu.tr
  organization: Department of Civil Engineering, Erzincan Binali Yıldırım University, Erzincan, Turkey
– sequence: 5
  givenname: Nadhir
  orcidid: 0000-0002-6790-2653
  surname: Al-Ansari
  fullname: Al-Ansari, Nadhir
  email: nadhir.alansari@ltu.se
  organization: Department of Civil, Environmental, and Natural Resources Engineering, Lulea University of Technology, 97187, Lulea, Sweden
– sequence: 6
  givenname: Dinesh Kumar
  orcidid: 0000-0002-2421-6995
  surname: Vishwakarma
  fullname: Vishwakarma, Dinesh Kumar
  email: dinesh.vishwakarma4820@gmail.com
  organization: Department of Irrigation and Drainage Engineering, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Udham Singh Nagar, Uttarakhand, 263145, India
– sequence: 7
  givenname: Il-Moon
  orcidid: 0000-0003-0163-7305
  surname: Chung
  fullname: Chung, Il-Moon
  email: imchung@kict.re.kr
  organization: Department of Water Resources and River Research, Korea Institute of Civil Engineering and Building Technology, Goyang-si, 10223, Republic of Korea
– sequence: 8
  givenname: Maha Awjan
  orcidid: 0009-0003-9232-1839
  surname: Alreshidi
  fullname: Alreshidi, Maha Awjan
  email: m.alrashedi@uoh.edu.sa
  organization: Department of Chemistry, University of Ha'il, Ha'il, 81441, Saudi Arabia
– sequence: 9
  givenname: Krishna Kumar
  orcidid: 0000-0002-4228-2726
  surname: Yadav
  fullname: Yadav, Krishna Kumar
  email: envirokrishna@gmail.com
  organization: Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38601575$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-105116$$DView record from Swedish Publication Index
BookMark eNqNks1u1DAUhSNUREvpI4C8LBIZ7MTODxtUSqGVKsEC2FqOfTPjkWMPdpLRvBmPhzMZqs6qrPJzv3t8fM99mZxYZyFJXhO8IJgU79eLFRi9c3aR4YwuIKsxLp4lZxnFLK0oxSeP3k-TixDWGGPCqqIu8xfJaV4V8atkZ8mfm1GYQfSAoG1B9si1iGQF2nhIN95JCEHbJeqgXzkVkLNoFF67ISDhe91qqYVB2vZgjF6ClYA6p8DEspSDF3KHRvAh4tb5LqJTFfVu0lc6Hrf0brBqGw14ZGAEgy6lCIBCP6jdB3QrOlDCpp_ESnj03Qht36E7L-zbV8nzVpgAF4fnefLzy82P69v0_tvXu-ur-1QylvdpVUIpWZllVd0SJRVkRVNUooqXrxtaZyWrWEOZonlZ5C0jCoqW7tFCVjmp8vPkbtZVTqz5xutO-B13QvP9D-eXfJqENMBbLEtSEiJZgamSrFGUQs3qum3qVqk8ahWz1mA3YrcVxjwIEsynZPmaH5LlU7J8TjY2pnNj2MJmaI5sfNa_rvY2TD9EDUbIxH-c-QjHAUqwvRfmqO24YvWKL93ICcGYshJHhcuDgne_Bwg973SQMWVhIabPc8LyClNcsadRnJd5XVNSRvTNY18Phv7tYwTYDEjvQvDQ_veADheOqwejBs-D1NM6Ku3jVses9BMKfwEHkxFS
Cites_doi 10.1098/rspa.1998.0193
10.1007/s00500-021-06009-4
10.1016/j.jhydrol.2011.06.013
10.3390/s22030855
10.1016/j.jhydrol.2004.04.019
10.1016/j.jhydrol.2021.126369
10.1007/s13280-020-01318-8
10.1016/j.jhydrol.2021.126929
10.2166/nh.2016.396
10.1007/s40808-021-01235-z
10.1016/j.jhydrol.2018.05.019
10.1016/j.jhydrol.2010.02.001
10.5194/hess-25-1671-2021
10.1007/s12665-019-8474-y
10.1007/s00521-013-1341-y
10.1016/j.compag.2018.04.019
10.1016/j.tree.2019.03.006
10.3390/su141811598
10.1007/s00477-022-02181-7
10.3390/su12104023
10.1016/j.scitotenv.2022.159701
10.1016/j.cageo.2013.01.007
10.1016/j.jhydrol.2021.126800
10.1007/s40996-022-00928-4
10.1007/s12594-019-1308-4
10.1007/s12145-022-00853-0
10.1007/s00024-022-03189-4
10.3390/w14050751
10.1007/s11269-021-02874-8
10.1007/s12517-022-09900-y
10.1162/neco.1997.9.8.1735
10.1007/s11356-022-23022-8
10.1007/978-3-662-57277-1_14
10.3390/w9060406
10.1623/hysj.54.4.727
10.3390/w10060730
10.1007/s00024-023-03426-4
10.1515/jwld-2017-0012
10.1093/biomet/87.4.954
10.1007/s11053-018-9403-6
10.3390/w15040765
10.1016/j.jhydrol.2019.124476
10.1016/j.gloplacha.2016.11.014
10.1016/j.measurement.2020.108163
10.1016/j.agwat.2020.106625
10.1007/978-3-540-78938-3_4
10.1007/s40996-023-01068-z
10.1016/j.jhydrol.2018.11.069
10.5194/hess-21-2421-2017
10.1016/j.jhydrol.2010.11.002
10.1007/s12665-018-7892-6
10.1007/s13201-024-02103-8
10.2307/1521506
10.1007/s10661-013-3477-8
10.1016/j.gsd.2019.100237
10.1080/02626667.2022.2046755
10.1007/s42979-021-00582-z
10.1038/s41598-020-60698-9
10.1007/s12517-023-11387-0
10.1016/j.gsd.2020.100361
10.1016/j.scitotenv.2021.146948
10.5772/intechopen.106014
10.1007/s11600-022-00826-3
10.3390/w13020139
10.1016/j.jhydrol.2019.123948
10.2166/hydro.2013.134
10.1142/S0129065794000372
10.1016/j.envres.2020.110062
10.13189/cea.2022.100304
10.1109/TSP.2013.2288675
10.3390/ijerph20010345
10.1016/j.cageo.2016.03.002
10.3390/w9100781
10.1007/s00704-024-04862-5
10.1016/j.biosystemseng.2009.04.017
10.1007/s00521-010-0360-1
ContentType Journal Article
Copyright 2024 The Authors
2024 The Authors.
2024 The Authors 2024
Copyright_xml – notice: 2024 The Authors
– notice: 2024 The Authors.
– notice: 2024 The Authors 2024
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
ADTPV
AOWAS
D8T
ZZAVC
ADTOC
UNPAY
DOA
DOI 10.1016/j.heliyon.2024.e29006
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

AGRICOLA

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2405-8440
ExternalDocumentID oai_doaj_org_article_f0c71711c5604dc5bd44e9599fb9fdd3
10.1016/j.heliyon.2024.e29006
oai_DiVA_org_ltu_105116
PMC11004570
38601575
10_1016_j_heliyon_2024_e29006
S2405844024050370
Genre Journal Article
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID 0R~
457
53G
5VS
6I.
AAEDW
AAFTH
AAFWJ
AALRI
AAYWO
ABMAC
ACGFS
ACLIJ
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPKN
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
FDB
GROUPED_DOAJ
HYE
KQ8
M~E
O9-
OK1
ROL
RPM
SSZ
AAYXX
CITATION
EJD
IPNFZ
RIG
NPM
7X8
7S9
L.6
5PM
ADTPV
AOWAS
D8T
ZZAVC
ADTOC
UNPAY
ID FETCH-LOGICAL-c553t-87e7c572289f1dcde26b68a85759b4927585b45d43763f51de6f49f1dc6c83183
IEDL.DBID DOA
ISSN 2405-8440
IngestDate Fri Oct 03 12:53:38 EDT 2025
Sun Oct 26 04:06:58 EDT 2025
Sat Oct 25 02:23:28 EDT 2025
Thu Aug 21 18:34:27 EDT 2025
Fri Aug 22 20:25:05 EDT 2025
Thu Oct 02 11:57:43 EDT 2025
Mon Jul 21 05:55:32 EDT 2025
Wed Oct 01 05:37:27 EDT 2025
Sat Sep 13 17:01:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Deep learning
Artificial intelligence
Groundwater level
Hybrid algorithm
Machine learning
Language English
License This is an open access article under the CC BY license.
2024 The Authors.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c553t-87e7c572289f1dcde26b68a85759b4927585b45d43763f51de6f49f1dc6c83183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4228-2726
0000-0001-6421-6087
0000-0003-0163-7305
0009-0003-9232-1839
0000-0002-2421-6995
0000-0002-9811-5230
0000-0001-6084-5759
0000-0001-9252-2241
0000-0002-6790-2653
OpenAccessLink https://doaj.org/article/f0c71711c5604dc5bd44e9599fb9fdd3
PMID 38601575
PQID 3037399417
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_f0c71711c5604dc5bd44e9599fb9fdd3
unpaywall_primary_10_1016_j_heliyon_2024_e29006
swepub_primary_oai_DiVA_org_ltu_105116
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11004570
proquest_miscellaneous_3153804085
proquest_miscellaneous_3037399417
pubmed_primary_38601575
crossref_primary_10_1016_j_heliyon_2024_e29006
elsevier_sciencedirect_doi_10_1016_j_heliyon_2024_e29006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-15
PublicationDateYYYYMMDD 2024-04-15
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Heliyon
PublicationTitleAlternate Heliyon
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Yadav, Ch, Mathur, Adamowski (bib5) 2017; 32
Percival, Walden (bib57) 2000
Lin, Gharehbaghi, Zhang, Band, Pai, Chau, Mosavi (bib76) 2022; 16
Seifi, Ehteram, Singh, Mosavi (bib85) 2020; 12
Kochhar, Singh, Sahoo, Litoria, Pateriya (bib74) 2022; 8
Samantaray, Sahoo, Satapathy (bib20) 2022; 15
Triki, Trabelsi, Hentati, Zairi (bib92) 2014; 186
Yoon, Hyun, Ha, Lee, Kim (bib39) 2016; 90
Dash, Panda, Remesan, Sahoo (bib86) 2010; 19
Gribovszki, Szilágyi, Kalicz (bib90) 2010; 385
Yu, Wen, Feng, Deo, Si, Wu (bib12) 2018; 32
Ghose, Samantaray (bib64) 2019
Afan, Ibrahem Ahmed Osman, Essam, Ahmed, Huang, Kisi, Sherif, Sefelnasr, Chau, El-Shafie (bib42) 2021; 15
Panahi, Mastouri, Shabanlou (bib77) 2023; 47
Wu, Zhang, Wang, Lu, Zhang, Qin, Tick, Liu, Shu (bib75) 2021; 783
Yan, Shi, Wang, Zhang, Bi (bib15) 2021; 599
Yeo, Johnson (bib53) 2000; 87
Dragomiretskiy, Zosso (bib59) 2014; 62
Vishwakarma, Kumar, Yadav, Ali, Markuna, Chauhan, Heddam, Kuriqi, Srivastava, Alam, Vinayak (bib16) 2024
Haas, Birk (bib10) 2017; 21
Kumar (bib89) 2013; 3
Moghaddam, Moghaddam, Kivi, Bahreinimotlagh, Alizadeh (bib25) 2019; 9
Singh, Singh, Kisi, Kushwaha (bib63) 2018; 150
Yoon, Jun, Hyun, Bae, Lee (bib35) 2011; 396
Zeiler, Faltermeier, Keck, Tome, Puntonet, Lang (bib54) 2010
Sudheer, Maheswaran, Panigrahi, Mathur (bib38) 2014; 24
Mirarabi, Nassery, Nakhaei, Adamowski, Akbarzadeh, Alijani (bib40) 2019; 78
Wei, Chen, Li, Zhang, Wu, Li (bib52) 2022; 15
Tao, Wang, Rhoads, Wang, Ni, Wu (bib6) 2020; 582
Nourani, Khodkar, Paknezhad, Laux (bib44) 2022; 36
Markuna, Kumar, Ali, Vishwkarma, Kushwaha, Kumar, Singh, Chaudhary, Kuriqi (bib14) 2023; 180
Band, Heggy, Bateni, Karami, Rabiee, Samadianfard, Chau, Mosavi (bib51) 2021; 15
Dudley, Hodgkins, Nielsen, Qi (bib93) 2018; 562
Hikouei, Eshleman, Saharjo, Graham, Applegate, Cochrane (bib22) 2023; 857
Shiri, Kisi, Yoon, Lee, Hossein Nazemi (bib36) 2013; 56
Zhang, Zhang, Niu, Hu, Soltanian, Qiu, Yang (bib50) 2019; 577
Mirzania, Vishwakarma, Bui, Band, Dehghani (bib60) 2023; 16
Wen, Feng, Deo, Wu, Si (bib49) 2017; 48
Hasda, Rahaman, Jahan, Molla, Mazumder (bib26) 2020; 10
Devika, Gowda Karegowda (bib83) 2023
Amarasinghe, Smakhtin (bib2) 2014
Cai, Shi, Liu, Babovic (bib4) 2021; 37
Zhou, Wang, Yang (bib33) 2017; 9
Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (bib80) 1998; 454
Kayhomayoon, Babaeian, Ghordoyee Milan, Arya Azar, Berndtsson (bib87) 2022; 14
Zhou, Wang, Band, Mirzania, Roshni (bib31) 2023; 17
Daubechies (bib79) 1992
Tulla, Kumar, Vishwakarma, Kumar, Kuriqi, Kushwaha, Rajput, Srivastava, Pham, Panda, Kisi (bib13) 2024
Wu, Feng, Wen, Yin, Yang, Sheng (bib78) 2021; 13
Trojovský, Dehghani (bib68) 2022; 22
Nourani, Khodkar, Gebremichael (bib43) 2022; 67
Hochreiter, Schmidhuber (bib67) 1997; 9
Devika, Ramesh, Karegowda (bib84) 2021; 2
Albert, Destouni, Duke-Sylvester, Magurran, Oberdorff, Reis, Winemiller, Ripple (bib3) 2021; 50
Mileham, Taylor, Todd, Tindimugaya, Thompson (bib91) 2009; 54
Simon (bib61) 1999
Dadhich, Goyal, Dadhich (bib73) 2021; 35
Chen, He, Zhou, Xue, Zhu (bib8) 2020; 10
Liu, Mishra, Yu, Lü, Li (bib41) 2021; 603
Misra, Oommen, Agarwal, Mishra, Thompson (bib34) 2009; 103
Lemaoui, Darwish, Almustafa, Boublia, Sarika, Jabbar, Ibrahim, Nancarrow, Yadav, Fallatah, Abbas, Algethami, Benguerba, Jeon, Banat, AlNashef (bib24) 2023; 59
Haykin, Lippmann (bib65) 1994; 5
Percival (bib56) 2008
Aderemi, Olwal, Ndambuki, Rwanga (bib19) 2023; 5
Iqbal, Ali Naeem, Ahmad, Rehman, Ghani, Farid (bib27) 2020; 166
Ebrahimi, Rajaee (bib82) 2017; 148
Ardana, Redana, Yekti, Simpen (bib30) 2022; 10
Chen, Hu (bib88) 2004; 297
Brodrick, Davies, Asner (bib11) 2019; 34
Seifi, Ehteram, Nayebloei, Soroush, Gharabaghi, Torabi Haghighi (bib17) 2021; 25
Achite, Elshaboury, Jehanzaib, Vishwakarma, Pham, Anh, Abdelkader, Elbeltagi (bib18) 2023; 15
Singh, Kumar, Kashyap, Kisi (bib62) 2018; 77
Peng, Zhou, Zhang, Fu (bib29) 2017; 9
Gong, Wang, Xu, Zhang (bib70) 2018; 10
Takafuji, da Rocha, Manzione (bib72) 2019; 28
Zhang, Zheng (bib48) 2022; 20
Yaseen, Sulaiman, Deo, Chau (bib7) 2019; 569
Wunsch, Liesch, Broda (bib47) 2021; 25
Di Nunno, Granata (bib1) 2020; 190
Pinthong, Ditthakit, Salaeh, Hasan, Son, Linh, Islam, Yadav (bib23) 2022
Haykin (bib66) 1999; vol. 2010
Solgi, Loáiciga, Kram (bib46) 2021; 601
Walden (bib55) 2001
Chu, Bian, Lang, Sun, Wang (bib45) 2022; 14
Debnath, Shah (bib58) 2015
Satish Kumar, Venkata Rathnam (bib71) 2019; 94
Saroughi, Mirzania, Vishwakarma, Nivesh, Panda, Daneshvar (bib21) 2023
Anderson (bib69) 1991; 14
Roshni, Mirzania, Hasanpour Kashani, Bui, Shamshirband (bib9) 2022; 70
El Bilali, Taleb, Brouziyne (bib28) 2021; 245
Wang, Xu, Chau, Chen (bib37) 2013; 15
Heddam, Vishwakarma, Abed, Sharma, Al-Ansari, Alataway, Dewidar, Mattar (bib32) 2024; 14
Adamowski, Chan (bib81) 2011; 407
Zeiler (10.1016/j.heliyon.2024.e29006_bib54) 2010
Nourani (10.1016/j.heliyon.2024.e29006_bib44) 2022; 36
Achite (10.1016/j.heliyon.2024.e29006_bib18) 2023; 15
Iqbal (10.1016/j.heliyon.2024.e29006_bib27) 2020; 166
Lin (10.1016/j.heliyon.2024.e29006_bib76) 2022; 16
Dash (10.1016/j.heliyon.2024.e29006_bib86) 2010; 19
Takafuji (10.1016/j.heliyon.2024.e29006_bib72) 2019; 28
Panahi (10.1016/j.heliyon.2024.e29006_bib77) 2023; 47
Yoon (10.1016/j.heliyon.2024.e29006_bib35) 2011; 396
Percival (10.1016/j.heliyon.2024.e29006_bib57) 2000
Tao (10.1016/j.heliyon.2024.e29006_bib6) 2020; 582
Nourani (10.1016/j.heliyon.2024.e29006_bib43) 2022; 67
Lemaoui (10.1016/j.heliyon.2024.e29006_bib24) 2023; 59
Kayhomayoon (10.1016/j.heliyon.2024.e29006_bib87) 2022; 14
Yaseen (10.1016/j.heliyon.2024.e29006_bib7) 2019; 569
Mirzania (10.1016/j.heliyon.2024.e29006_bib60) 2023; 16
Kumar (10.1016/j.heliyon.2024.e29006_bib89) 2013; 3
Vishwakarma (10.1016/j.heliyon.2024.e29006_bib16) 2024
Devika (10.1016/j.heliyon.2024.e29006_bib84) 2021; 2
Afan (10.1016/j.heliyon.2024.e29006_bib42) 2021; 15
Band (10.1016/j.heliyon.2024.e29006_bib51) 2021; 15
Wu (10.1016/j.heliyon.2024.e29006_bib78) 2021; 13
Mirarabi (10.1016/j.heliyon.2024.e29006_bib40) 2019; 78
Amarasinghe (10.1016/j.heliyon.2024.e29006_bib2) 2014
Chen (10.1016/j.heliyon.2024.e29006_bib8) 2020; 10
Wunsch (10.1016/j.heliyon.2024.e29006_bib47) 2021; 25
Hasda (10.1016/j.heliyon.2024.e29006_bib26) 2020; 10
Ebrahimi (10.1016/j.heliyon.2024.e29006_bib82) 2017; 148
Dudley (10.1016/j.heliyon.2024.e29006_bib93) 2018; 562
Peng (10.1016/j.heliyon.2024.e29006_bib29) 2017; 9
Wen (10.1016/j.heliyon.2024.e29006_bib49) 2017; 48
Hochreiter (10.1016/j.heliyon.2024.e29006_bib67) 1997; 9
Di Nunno (10.1016/j.heliyon.2024.e29006_bib1) 2020; 190
Haas (10.1016/j.heliyon.2024.e29006_bib10) 2017; 21
Debnath (10.1016/j.heliyon.2024.e29006_bib58) 2015
Shiri (10.1016/j.heliyon.2024.e29006_bib36) 2013; 56
Yeo (10.1016/j.heliyon.2024.e29006_bib53) 2000; 87
Misra (10.1016/j.heliyon.2024.e29006_bib34) 2009; 103
Gong (10.1016/j.heliyon.2024.e29006_bib70) 2018; 10
Wu (10.1016/j.heliyon.2024.e29006_bib75) 2021; 783
Markuna (10.1016/j.heliyon.2024.e29006_bib14) 2023; 180
Brodrick (10.1016/j.heliyon.2024.e29006_bib11) 2019; 34
Zhang (10.1016/j.heliyon.2024.e29006_bib50) 2019; 577
Dragomiretskiy (10.1016/j.heliyon.2024.e29006_bib59) 2014; 62
Pinthong (10.1016/j.heliyon.2024.e29006_bib23) 2022
Zhou (10.1016/j.heliyon.2024.e29006_bib31) 2023; 17
Zhang (10.1016/j.heliyon.2024.e29006_bib48) 2022; 20
Chen (10.1016/j.heliyon.2024.e29006_bib88) 2004; 297
Mileham (10.1016/j.heliyon.2024.e29006_bib91) 2009; 54
Walden (10.1016/j.heliyon.2024.e29006_bib55) 2001
Solgi (10.1016/j.heliyon.2024.e29006_bib46) 2021; 601
Singh (10.1016/j.heliyon.2024.e29006_bib63) 2018; 150
Chu (10.1016/j.heliyon.2024.e29006_bib45) 2022; 14
Triki (10.1016/j.heliyon.2024.e29006_bib92) 2014; 186
Seifi (10.1016/j.heliyon.2024.e29006_bib17) 2021; 25
Huang (10.1016/j.heliyon.2024.e29006_bib80) 1998; 454
Seifi (10.1016/j.heliyon.2024.e29006_bib85) 2020; 12
Daubechies (10.1016/j.heliyon.2024.e29006_bib79) 1992
Cai (10.1016/j.heliyon.2024.e29006_bib4) 2021; 37
Yadav (10.1016/j.heliyon.2024.e29006_bib5) 2017; 32
Liu (10.1016/j.heliyon.2024.e29006_bib41) 2021; 603
Kochhar (10.1016/j.heliyon.2024.e29006_bib74) 2022; 8
Yu (10.1016/j.heliyon.2024.e29006_bib12) 2018; 32
Hikouei (10.1016/j.heliyon.2024.e29006_bib22) 2023; 857
Yoon (10.1016/j.heliyon.2024.e29006_bib39) 2016; 90
El Bilali (10.1016/j.heliyon.2024.e29006_bib28) 2021; 245
Singh (10.1016/j.heliyon.2024.e29006_bib62) 2018; 77
Haykin (10.1016/j.heliyon.2024.e29006_bib65) 1994; 5
Tulla (10.1016/j.heliyon.2024.e29006_bib13) 2024
Anderson (10.1016/j.heliyon.2024.e29006_bib69) 1991; 14
Trojovský (10.1016/j.heliyon.2024.e29006_bib68) 2022; 22
Satish Kumar (10.1016/j.heliyon.2024.e29006_bib71) 2019; 94
Aderemi (10.1016/j.heliyon.2024.e29006_bib19) 2023; 5
Ghose (10.1016/j.heliyon.2024.e29006_bib64) 2019
Dadhich (10.1016/j.heliyon.2024.e29006_bib73) 2021; 35
Moghaddam (10.1016/j.heliyon.2024.e29006_bib25) 2019; 9
Yan (10.1016/j.heliyon.2024.e29006_bib15) 2021; 599
Ardana (10.1016/j.heliyon.2024.e29006_bib30) 2022; 10
Heddam (10.1016/j.heliyon.2024.e29006_bib32) 2024; 14
Percival (10.1016/j.heliyon.2024.e29006_bib56) 2008
Roshni (10.1016/j.heliyon.2024.e29006_bib9) 2022; 70
Wang (10.1016/j.heliyon.2024.e29006_bib37) 2013; 15
Albert (10.1016/j.heliyon.2024.e29006_bib3) 2021; 50
Samantaray (10.1016/j.heliyon.2024.e29006_bib20) 2022; 15
Simon (10.1016/j.heliyon.2024.e29006_bib61) 1999
Zhou (10.1016/j.heliyon.2024.e29006_bib33) 2017; 9
Gribovszki (10.1016/j.heliyon.2024.e29006_bib90) 2010; 385
Haykin (10.1016/j.heliyon.2024.e29006_bib66) 1999; vol. 2010
Adamowski (10.1016/j.heliyon.2024.e29006_bib81) 2011; 407
Wei (10.1016/j.heliyon.2024.e29006_bib52) 2022; 15
Saroughi (10.1016/j.heliyon.2024.e29006_bib21) 2023
Sudheer (10.1016/j.heliyon.2024.e29006_bib38) 2014; 24
Devika (10.1016/j.heliyon.2024.e29006_bib83) 2023
References_xml – volume: 5
  year: 2023
  ident: bib19
  article-title: Groundwater levels forecasting using machine learning models: a case study of the groundwater region 10 at Karst Belt, South Africa, Syst
  publication-title: Soft Comput.
– volume: 245
  year: 2021
  ident: bib28
  article-title: Groundwater quality forecasting using machine learning algorithms for irrigation purposes
  publication-title: Agric. Water Manag.
– volume: 180
  start-page: 335
  year: 2023
  end-page: 363
  ident: bib14
  article-title: Application of innovative machine learning techniques for long-term rainfall prediction
  publication-title: Pure Appl. Geophys.
– volume: 59
  year: 2023
  ident: bib24
  article-title: Machine learning approach to map the thermal conductivity of over 2,000 neoteric solvents for green energy storage applications
  publication-title: Energy Storage Mater.
– year: 2014
  ident: bib2
  article-title: Global Water Demand Projections: Past, Present and Future
– volume: 48
  start-page: 1710
  year: 2017
  end-page: 1729
  ident: bib49
  article-title: Wavelet analysis–artificial neural network conjunction models for multi-scale monthly groundwater level predicting in an arid inland river basin, northwestern China
  publication-title: Nord. Hydrol
– volume: 16
  start-page: 1655
  year: 2022
  end-page: 1672
  ident: bib76
  article-title: Time series-based groundwater level forecasting using gated recurrent unit deep neural networks
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 166
  year: 2020
  ident: bib27
  article-title: Relating groundwater levels with meteorological parameters using ANN technique
  publication-title: Measurement
– volume: vol. 2010
  start-page: 1
  year: 1999
  end-page: 24
  ident: bib66
  article-title: Neural Networks: a Comprehensive Foundation
– volume: 15
  start-page: 1147
  year: 2021
  end-page: 1158
  ident: bib51
  article-title: Groundwater level prediction in arid areas using wavelet analysis and Gaussian process regression
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 22
  start-page: 855
  year: 2022
  ident: bib68
  article-title: Pelican optimization algorithm: a novel nature-inspired algorithm for engineering applications
  publication-title: Sensors
– volume: 21
  start-page: 2421
  year: 2017
  end-page: 2448
  ident: bib10
  article-title: Characterizing the spatiotemporal variability of groundwater levels of alluvial aquifers in different settings using drought indices
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 603
  year: 2021
  ident: bib41
  article-title: Support vector machine and data assimilation framework for Groundwater Level Forecasting using GRACE satellite data
  publication-title: J. Hydrol.
– volume: 15
  start-page: 765
  year: 2023
  ident: bib18
  article-title: Performance of machine learning techniques for meteorological drought forecasting in the wadi mina basin, Algeria
  publication-title: Water
– volume: 37
  year: 2021
  ident: bib4
  article-title: Impacts of regional characteristics on improving the accuracy of groundwater level prediction using machine learning: the case of central eastern continental United States
  publication-title: J. Hydrol. Reg. Stud.
– volume: 24
  start-page: 1381
  year: 2014
  end-page: 1389
  ident: bib38
  article-title: A hybrid SVM-PSO model for forecasting monthly streamflow
  publication-title: Neural Comput. Appl.
– volume: 15
  start-page: 1951
  year: 2022
  end-page: 1962
  ident: bib52
  article-title: Prediction of groundwater level using the hybrid model combining wavelet transform and machine learning algorithms
  publication-title: Earth Sci. Informatics
– volume: 34
  start-page: 734
  year: 2019
  end-page: 745
  ident: bib11
  article-title: Uncovering ecological patterns with convolutional neural networks
  publication-title: Trends Ecol. Evol.
– start-page: 627
  year: 2001
  end-page: 641
  ident: bib55
  article-title: Wavelet analysis of discrete time series
  publication-title: Eur. Congr. Math.
– year: 2024
  ident: bib16
  article-title: Evaluation of CatBoost method for predicting weekly Pan evaporation in subtropical and sub-humid regions
  publication-title: Pure Appl. Geophys.
– volume: 78
  start-page: 489
  year: 2019
  ident: bib40
  article-title: Evaluation of data-driven models (SVR and ANN) for groundwater-level prediction in confined and unconfined systems
  publication-title: Environ. Earth Sci.
– volume: 14
  start-page: 46
  year: 2024
  ident: bib32
  article-title: Hybrid river stage forecasting based on machine learning with empirical mode decomposition
  publication-title: Appl. Water Sci.
– volume: 10
  start-page: 730
  year: 2018
  ident: bib70
  article-title: A comparative study of groundwater level forecasting using data-driven models based on ensemble empirical mode decomposition
  publication-title: Water
– volume: 35
  start-page: 2879
  year: 2021
  end-page: 2893
  ident: bib73
  article-title: Assessment and prediction of groundwater using geospatial and ANN modeling
  publication-title: Water Resour. Manag.
– year: 2015
  ident: bib58
  article-title: Wavelet Transforms and Their Applications
– year: 2023
  ident: bib83
  article-title: Bio-inspired optimization: algorithm, analysis and scope of application
  publication-title: IntechOpen, Rijeka
– volume: 25
  start-page: 10723
  year: 2021
  end-page: 10748
  ident: bib17
  article-title: GLUE uncertainty analysis of hybrid models for predicting hourly soil temperature and application wavelet coherence analysis for correlation with meteorological variables
  publication-title: Soft Comput.
– volume: 54
  start-page: 727
  year: 2009
  end-page: 738
  ident: bib91
  article-title: The impact of climate change on groundwater recharge and runoff in a humid, equatorial catchment: sensitivity of projections to rainfall intensity
  publication-title: Hydrol. Sci. J.
– volume: 14
  start-page: 166
  year: 1991
  ident: bib69
  article-title: Foraging behavior of the American white pelican (Pelecanus erythrorhyncos) in western Nevada, colon
  publication-title: Waterbirds
– volume: 10
  start-page: 3904
  year: 2020
  ident: bib8
  article-title: A comparative study among machine learning and numerical models for simulating groundwater dynamics in the Heihe River Basin, northwestern China
  publication-title: Sci. Rep.
– volume: 10
  start-page: 784
  year: 2022
  end-page: 799
  ident: bib30
  article-title: Groundwater level forecasting using multiple linear regression and artificial neural network approaches
  publication-title: Civ. Eng. Archit.
– volume: 103
  start-page: 527
  year: 2009
  end-page: 535
  ident: bib34
  article-title: Application and analysis of support vector machine based simulation for runoff and sediment yield
  publication-title: Biosyst. Eng.
– volume: 87
  start-page: 954
  year: 2000
  end-page: 959
  ident: bib53
  article-title: A new family of power transformations to improve normality or symmetry
  publication-title: Biometrika
– volume: 15
  start-page: 723
  year: 2022
  ident: bib20
  article-title: Prediction of groundwater-level using novel SVM-ALO, SVM-FOA, and SVM-FFA algorithms at Purba-Medinipur, India
  publication-title: Arabian J. Geosci.
– volume: 601
  year: 2021
  ident: bib46
  article-title: Long short-term memory neural network (LSTM-NN) for aquifer level time series forecasting using in-situ piezometric observations
  publication-title: J. Hydrol.
– volume: 77
  start-page: 708
  year: 2018
  ident: bib62
  article-title: Simulation of suspended sediment based on gamma test, heuristic, and regression-based techniques
  publication-title: Environ. Earth Sci.
– volume: 569
  start-page: 387
  year: 2019
  end-page: 408
  ident: bib7
  article-title: An enhanced extreme learning machine model for river flow forecasting: state-of-the-art, practical applications in water resource engineering area and future research direction
  publication-title: J. Hydrol.
– volume: 3
  start-page: 189
  year: 2013
  end-page: 221
  ident: bib89
  article-title: Recent studies on impact of climate change on groundwater resources
  publication-title: Int. J. Phys. Soc. Sci.
– volume: 62
  start-page: 531
  year: 2014
  end-page: 544
  ident: bib59
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
– volume: 12
  start-page: 4023
  year: 2020
  ident: bib85
  article-title: Modeling and uncertainty analysis of groundwater level using six evolutionary optimization algorithms hybridized with ANFIS, SVM, and ANN
  publication-title: Sustainability
– volume: 599
  year: 2021
  ident: bib15
  article-title: Detection of possible hydrological precursor anomalies using long short-term memory: a case study of the 1996 Lijiang earthquake
  publication-title: J. Hydrol.
– volume: 148
  start-page: 181
  year: 2017
  end-page: 191
  ident: bib82
  article-title: Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine
  publication-title: Global Planet. Change
– volume: 15
  start-page: 1420
  year: 2021
  end-page: 1439
  ident: bib42
  article-title: Modeling the fluctuations of groundwater level by employing ensemble deep learning techniques
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 36
  start-page: 3081
  year: 2022
  end-page: 3107
  ident: bib44
  article-title: Deep learning-based uncertainty quantification of groundwater level predictions
  publication-title: Stoch. Environ. Res. Risk Assess.
– year: 1992
  ident: bib79
  article-title: Ten Lectures on Wavelets
– volume: 19
  start-page: 1251
  year: 2010
  end-page: 1263
  ident: bib86
  article-title: Hybrid neural modeling for groundwater level prediction
  publication-title: Neural Comput. Appl.
– volume: 90
  start-page: 144
  year: 2016
  end-page: 155
  ident: bib39
  article-title: A method to improve the stability and accuracy of ANN- and SVM-based time series models for long-term groundwater level predictions
  publication-title: Comput. Geosci.
– volume: 582
  year: 2020
  ident: bib6
  article-title: Quantifying the impacts of the three gorges reservoir on water temperature in the middle reach of the yangtze river
  publication-title: J. Hydrol.
– volume: 32
  start-page: 103
  year: 2017
  end-page: 112
  ident: bib5
  article-title: Assessing the suitability of extreme learning machines (ELM) for groundwater level prediction
  publication-title: J. Water Land Dev.
– volume: 9
  start-page: 781
  year: 2017
  ident: bib33
  article-title: Comparative analysis of ANN and SVM models combined with wavelet preprocess for groundwater depth prediction
  publication-title: Water
– year: 2022
  ident: bib23
  article-title: Imputation of missing monthly rainfall data using machine learning and spatial interpolation approaches in Thale Sap Songkhla River Basin, Thailand
  publication-title: Environ. Sci. Pollut. Res.
– volume: 28
  start-page: 487
  year: 2019
  end-page: 503
  ident: bib72
  article-title: Groundwater level prediction/forecasting and assessment of uncertainty using SGS and ARIMA models: a case study in the bauru aquifer system (Brazil)
  publication-title: Nat. Resour. Res.
– volume: 297
  start-page: 285
  year: 2004
  end-page: 300
  ident: bib88
  article-title: Groundwater influences on soil moisture and surface evaporation
  publication-title: J. Hydrol.
– volume: 396
  start-page: 128
  year: 2011
  end-page: 138
  ident: bib35
  article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
  publication-title: J. Hydrol.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib67
  article-title: Long short-term memory
  publication-title: Neural Comput.
– year: 2024
  ident: bib13
  article-title: Daily suspended sediment yield estimation using soft-computing algorithms for hilly watersheds in a data-scarce situation: a case study of Bino watershed, Uttarakhand
  publication-title: Theor. Appl. Climatol.
– volume: 577
  year: 2019
  ident: bib50
  article-title: Prediction of groundwater level in seashore reclaimed land using wavelet and artificial neural network-based hybrid model
  publication-title: J. Hydrol.
– volume: 2
  start-page: 225
  year: 2021
  ident: bib84
  article-title: Mushroom edibility identification applying CBR and ant lion techniques in multi-sensor environment
  publication-title: SN Comput. Sci.
– year: 2000
  ident: bib57
  article-title: Wavelet Methods for Time Series Analysis
– volume: 5
  start-page: 363
  year: 1994
  end-page: 364
  ident: bib65
  article-title: Neural networks, a comprehensive foundation
  publication-title: Int. J. Neural Syst.
– volume: 50
  start-page: 85
  year: 2021
  end-page: 94
  ident: bib3
  article-title: Scientists' warning to humanity on the freshwater biodiversity crisis
  publication-title: Ambio
– year: 2023
  ident: bib21
  article-title: A novel hybrid algorithms for groundwater level prediction
  publication-title: Iran. J. Sci. Technol. Trans. Civ. Eng.
– volume: 70
  start-page: 1885
  year: 2022
  end-page: 1898
  ident: bib9
  article-title: Hybrid support vector regression models with algorithm of innovative gunner for the simulation of groundwater level
  publication-title: Acta Geophys.
– volume: 783
  year: 2021
  ident: bib75
  article-title: Groundwater level modeling framework by combining the wavelet transform with a long short-term memory data-driven model
  publication-title: Sci. Total Environ.
– volume: 186
  start-page: 1593
  year: 2014
  end-page: 1608
  ident: bib92
  article-title: Groundwater levels time series sensitivity to pluviometry and air temperature: a geostatistical approach to Sfax region, Tunisia
  publication-title: Environ. Monit. Assess.
– volume: 25
  start-page: 1671
  year: 2021
  end-page: 1687
  ident: bib47
  article-title: Groundwater level forecasting with artificial neural networks: a comparison of long short-term memory (LSTM), convolutional neural networks (CNNs), and non-linear autoregressive networks with exogenous input (NARX)
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 14
  start-page: 751
  year: 2022
  ident: bib87
  article-title: A combination of metaheuristic optimization algorithms and machine learning methods improves the prediction of groundwater level
  publication-title: Water
– volume: 385
  start-page: 371
  year: 2010
  end-page: 383
  ident: bib90
  article-title: Diurnal fluctuations in shallow groundwater levels and streamflow rates and their interpretation – a review
  publication-title: J. Hydrol.
– volume: 17
  year: 2023
  ident: bib31
  article-title: Atmosphere air temperature forecasting using the honey badger optimization algorithm: on the warmest and coldest areas of the world
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 15
  start-page: 1377
  year: 2013
  end-page: 1390
  ident: bib37
  article-title: Improved annual rainfall-runoff forecasting using PSO–SVM model based on EEMD
  publication-title: J. Hydroinf.
– volume: 16
  start-page: 301
  year: 2023
  ident: bib60
  article-title: A novel hybrid AIG-SVR model for estimating daily reference evapotranspiration
  publication-title: Arabian J. Geosci.
– volume: 13
  start-page: 139
  year: 2021
  ident: bib78
  article-title: Deterministic analysis and uncertainty analysis of ensemble forecasting model based on variational mode decomposition for estimation of monthly groundwater level
  publication-title: Water
– volume: 407
  start-page: 28
  year: 2011
  end-page: 40
  ident: bib81
  article-title: A wavelet neural network conjunction model for groundwater level forecasting
  publication-title: J. Hydrol.
– volume: 9
  start-page: 406
  year: 2017
  ident: bib29
  article-title: Streamflow forecasting using empirical wavelet transform and artificial neural networks
  publication-title: Water
– volume: 32
  start-page: 301
  year: 2018
  end-page: 323
  ident: bib12
  article-title: Comparative study of hybrid-wavelet artificial intelligence models for monthly groundwater depth forecasting in extreme arid regions, northwest China, water resour
  publication-title: Manag.
– volume: 56
  start-page: 32
  year: 2013
  end-page: 44
  ident: bib36
  article-title: Predicting groundwater level fluctuations with meteorological effect implications—a comparative study among soft computing techniques
  publication-title: Comput. Geosci.
– year: 2008
  ident: bib56
  article-title: Analysis of geophysical time series using discrete wavelet transforms: an overview
  publication-title: Nonlinear Time Ser. Anal. Geosci. Lect. Notes Earth Sci.
– volume: 190
  year: 2020
  ident: bib1
  article-title: Groundwater level prediction in Apulia region (Southern Italy) using NARX neural network
  publication-title: Environ. Res.
– volume: 14
  year: 2022
  ident: bib45
  article-title: Daily groundwater level prediction and uncertainty using LSTM coupled with PMI and bootstrap incorporating teleconnection patterns information
  publication-title: Sustainability
– volume: 150
  start-page: 205
  year: 2018
  end-page: 219
  ident: bib63
  article-title: Spatial and multi-depth temporal soil temperature assessment by assimilating satellite imagery, artificial intelligence and regression based models in arid area
  publication-title: Comput. Electron. Agric.
– start-page: 1
  year: 2010
  end-page: 8
  ident: bib54
  article-title: Empirical mode decomposition - an introduction
  publication-title: 2010 Int. Jt. Conf. Neural Networks
– year: 2019
  ident: bib64
  article-title: Integrated sensor networking for estimating ground water potential in scanty rainfall region: challenges and evaluation
  publication-title: Comput. Intell. Sens. Networks. Stud. Comput. Intell.
– volume: 10
  year: 2020
  ident: bib26
  article-title: Climatic data analysis for groundwater level simulation in drought prone Barind Tract, Bangladesh: modelling approach using artificial neural network
  publication-title: Groundw. Sustain. Dev.
– volume: 562
  start-page: 530
  year: 2018
  end-page: 543
  ident: bib93
  article-title: Estimating historical groundwater levels based on relations with hydrologic and meteorological variables in the U.S. glacial aquifer system
  publication-title: J. Hydrol.
– volume: 20
  start-page: 345
  year: 2022
  ident: bib48
  article-title: A novel groundwater burial depth prediction model based on two-stage modal decomposition and deep learning
  publication-title: Int. J. Environ. Res. Publ. Health
– volume: 94
  start-page: 281
  year: 2019
  end-page: 289
  ident: bib71
  article-title: Analysis and prediction of groundwater level trends using four variations of mann kendall tests and ARIMA modelling
  publication-title: J. Geol. Soc. India
– volume: 857
  year: 2023
  ident: bib22
  article-title: Using machine learning algorithms to predict groundwater levels in Indonesian tropical peatlands
  publication-title: Sci. Total Environ.
– volume: 47
  start-page: 585
  year: 2023
  end-page: 598
  ident: bib77
  article-title: Influence of pre-processing algorithms on surface water TDS estimation using artificial intelligence models: a case study of the Karoon river
  publication-title: Iran. J. Sci. Technol. Trans. Civ. Eng.
– volume: 67
  start-page: 773
  year: 2022
  end-page: 790
  ident: bib43
  article-title: Uncertainty assessment of LSTM based groundwater level predictions
  publication-title: Hydrol. Sci. J.
– year: 1999
  ident: bib61
  article-title: Neural Networks: a Comprehensive Foundation
– volume: 8
  start-page: 2317
  year: 2022
  end-page: 2329
  ident: bib74
  article-title: Prediction and forecast of pre-monsoon and post-monsoon groundwater level: using deep learning and statistical modelling
  publication-title: Model. Earth Syst. Environ.
– volume: 9
  year: 2019
  ident: bib25
  article-title: Developing comparative mathematic models, BN and ANN for forecasting of groundwater levels
  publication-title: Groundw. Sustain. Dev.
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: bib80
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci.
– start-page: 1
  year: 2010
  ident: 10.1016/j.heliyon.2024.e29006_bib54
  article-title: Empirical mode decomposition - an introduction
– volume: 59
  year: 2023
  ident: 10.1016/j.heliyon.2024.e29006_bib24
  article-title: Machine learning approach to map the thermal conductivity of over 2,000 neoteric solvents for green energy storage applications
  publication-title: Energy Storage Mater.
– volume: 454
  start-page: 903
  year: 1998
  ident: 10.1016/j.heliyon.2024.e29006_bib80
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 25
  start-page: 10723
  year: 2021
  ident: 10.1016/j.heliyon.2024.e29006_bib17
  article-title: GLUE uncertainty analysis of hybrid models for predicting hourly soil temperature and application wavelet coherence analysis for correlation with meteorological variables
  publication-title: Soft Comput.
  doi: 10.1007/s00500-021-06009-4
– volume: 407
  start-page: 28
  year: 2011
  ident: 10.1016/j.heliyon.2024.e29006_bib81
  article-title: A wavelet neural network conjunction model for groundwater level forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.06.013
– volume: 15
  start-page: 1147
  year: 2021
  ident: 10.1016/j.heliyon.2024.e29006_bib51
  article-title: Groundwater level prediction in arid areas using wavelet analysis and Gaussian process regression
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 22
  start-page: 855
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29006_bib68
  article-title: Pelican optimization algorithm: a novel nature-inspired algorithm for engineering applications
  publication-title: Sensors
  doi: 10.3390/s22030855
– volume: 17
  year: 2023
  ident: 10.1016/j.heliyon.2024.e29006_bib31
  article-title: Atmosphere air temperature forecasting using the honey badger optimization algorithm: on the warmest and coldest areas of the world
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 297
  start-page: 285
  year: 2004
  ident: 10.1016/j.heliyon.2024.e29006_bib88
  article-title: Groundwater influences on soil moisture and surface evaporation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2004.04.019
– volume: 599
  year: 2021
  ident: 10.1016/j.heliyon.2024.e29006_bib15
  article-title: Detection of possible hydrological precursor anomalies using long short-term memory: a case study of the 1996 Lijiang earthquake
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126369
– volume: 50
  start-page: 85
  year: 2021
  ident: 10.1016/j.heliyon.2024.e29006_bib3
  article-title: Scientists' warning to humanity on the freshwater biodiversity crisis
  publication-title: Ambio
  doi: 10.1007/s13280-020-01318-8
– volume: 603
  year: 2021
  ident: 10.1016/j.heliyon.2024.e29006_bib41
  article-title: Support vector machine and data assimilation framework for Groundwater Level Forecasting using GRACE satellite data
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126929
– volume: 48
  start-page: 1710
  year: 2017
  ident: 10.1016/j.heliyon.2024.e29006_bib49
  article-title: Wavelet analysis–artificial neural network conjunction models for multi-scale monthly groundwater level predicting in an arid inland river basin, northwestern China
  publication-title: Nord. Hydrol
  doi: 10.2166/nh.2016.396
– volume: 8
  start-page: 2317
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29006_bib74
  article-title: Prediction and forecast of pre-monsoon and post-monsoon groundwater level: using deep learning and statistical modelling
  publication-title: Model. Earth Syst. Environ.
  doi: 10.1007/s40808-021-01235-z
– volume: 562
  start-page: 530
  year: 2018
  ident: 10.1016/j.heliyon.2024.e29006_bib93
  article-title: Estimating historical groundwater levels based on relations with hydrologic and meteorological variables in the U.S. glacial aquifer system
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.05.019
– volume: 385
  start-page: 371
  year: 2010
  ident: 10.1016/j.heliyon.2024.e29006_bib90
  article-title: Diurnal fluctuations in shallow groundwater levels and streamflow rates and their interpretation – a review
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.02.001
– volume: 25
  start-page: 1671
  year: 2021
  ident: 10.1016/j.heliyon.2024.e29006_bib47
  article-title: Groundwater level forecasting with artificial neural networks: a comparison of long short-term memory (LSTM), convolutional neural networks (CNNs), and non-linear autoregressive networks with exogenous input (NARX)
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-25-1671-2021
– volume: 78
  start-page: 489
  year: 2019
  ident: 10.1016/j.heliyon.2024.e29006_bib40
  article-title: Evaluation of data-driven models (SVR and ANN) for groundwater-level prediction in confined and unconfined systems
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-019-8474-y
– volume: 24
  start-page: 1381
  year: 2014
  ident: 10.1016/j.heliyon.2024.e29006_bib38
  article-title: A hybrid SVM-PSO model for forecasting monthly streamflow
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1341-y
– volume: 150
  start-page: 205
  year: 2018
  ident: 10.1016/j.heliyon.2024.e29006_bib63
  article-title: Spatial and multi-depth temporal soil temperature assessment by assimilating satellite imagery, artificial intelligence and regression based models in arid area
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.04.019
– volume: 34
  start-page: 734
  year: 2019
  ident: 10.1016/j.heliyon.2024.e29006_bib11
  article-title: Uncovering ecological patterns with convolutional neural networks
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2019.03.006
– volume: 14
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29006_bib45
  article-title: Daily groundwater level prediction and uncertainty using LSTM coupled with PMI and bootstrap incorporating teleconnection patterns information
  publication-title: Sustainability
  doi: 10.3390/su141811598
– volume: 36
  start-page: 3081
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29006_bib44
  article-title: Deep learning-based uncertainty quantification of groundwater level predictions
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-022-02181-7
– volume: 12
  start-page: 4023
  year: 2020
  ident: 10.1016/j.heliyon.2024.e29006_bib85
  article-title: Modeling and uncertainty analysis of groundwater level using six evolutionary optimization algorithms hybridized with ANFIS, SVM, and ANN
  publication-title: Sustainability
  doi: 10.3390/su12104023
– volume: 857
  year: 2023
  ident: 10.1016/j.heliyon.2024.e29006_bib22
  article-title: Using machine learning algorithms to predict groundwater levels in Indonesian tropical peatlands
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.159701
– volume: 56
  start-page: 32
  year: 2013
  ident: 10.1016/j.heliyon.2024.e29006_bib36
  article-title: Predicting groundwater level fluctuations with meteorological effect implications—a comparative study among soft computing techniques
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2013.01.007
– volume: 5
  year: 2023
  ident: 10.1016/j.heliyon.2024.e29006_bib19
  article-title: Groundwater levels forecasting using machine learning models: a case study of the groundwater region 10 at Karst Belt, South Africa, Syst
  publication-title: Soft Comput.
– volume: 601
  year: 2021
  ident: 10.1016/j.heliyon.2024.e29006_bib46
  article-title: Long short-term memory neural network (LSTM-NN) for aquifer level time series forecasting using in-situ piezometric observations
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126800
– volume: 47
  start-page: 585
  year: 2023
  ident: 10.1016/j.heliyon.2024.e29006_bib77
  article-title: Influence of pre-processing algorithms on surface water TDS estimation using artificial intelligence models: a case study of the Karoon river
  publication-title: Iran. J. Sci. Technol. Trans. Civ. Eng.
  doi: 10.1007/s40996-022-00928-4
– volume: 94
  start-page: 281
  year: 2019
  ident: 10.1016/j.heliyon.2024.e29006_bib71
  article-title: Analysis and prediction of groundwater level trends using four variations of mann kendall tests and ARIMA modelling
  publication-title: J. Geol. Soc. India
  doi: 10.1007/s12594-019-1308-4
– volume: 15
  start-page: 1951
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29006_bib52
  article-title: Prediction of groundwater level using the hybrid model combining wavelet transform and machine learning algorithms
  publication-title: Earth Sci. Informatics
  doi: 10.1007/s12145-022-00853-0
– volume: 180
  start-page: 335
  year: 2023
  ident: 10.1016/j.heliyon.2024.e29006_bib14
  article-title: Application of innovative machine learning techniques for long-term rainfall prediction
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s00024-022-03189-4
– volume: 14
  start-page: 751
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29006_bib87
  article-title: A combination of metaheuristic optimization algorithms and machine learning methods improves the prediction of groundwater level
  publication-title: Water
  doi: 10.3390/w14050751
– volume: 35
  start-page: 2879
  year: 2021
  ident: 10.1016/j.heliyon.2024.e29006_bib73
  article-title: Assessment and prediction of groundwater using geospatial and ANN modeling
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-021-02874-8
– volume: 15
  start-page: 723
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29006_bib20
  article-title: Prediction of groundwater-level using novel SVM-ALO, SVM-FOA, and SVM-FFA algorithms at Purba-Medinipur, India
  publication-title: Arabian J. Geosci.
  doi: 10.1007/s12517-022-09900-y
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.heliyon.2024.e29006_bib67
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– year: 2022
  ident: 10.1016/j.heliyon.2024.e29006_bib23
  article-title: Imputation of missing monthly rainfall data using machine learning and spatial interpolation approaches in Thale Sap Songkhla River Basin, Thailand
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-022-23022-8
– year: 2019
  ident: 10.1016/j.heliyon.2024.e29006_bib64
  article-title: Integrated sensor networking for estimating ground water potential in scanty rainfall region: challenges and evaluation
  doi: 10.1007/978-3-662-57277-1_14
– volume: 9
  start-page: 406
  year: 2017
  ident: 10.1016/j.heliyon.2024.e29006_bib29
  article-title: Streamflow forecasting using empirical wavelet transform and artificial neural networks
  publication-title: Water
  doi: 10.3390/w9060406
– volume: 54
  start-page: 727
  year: 2009
  ident: 10.1016/j.heliyon.2024.e29006_bib91
  article-title: The impact of climate change on groundwater recharge and runoff in a humid, equatorial catchment: sensitivity of projections to rainfall intensity
  publication-title: Hydrol. Sci. J.
  doi: 10.1623/hysj.54.4.727
– volume: 10
  start-page: 730
  year: 2018
  ident: 10.1016/j.heliyon.2024.e29006_bib70
  article-title: A comparative study of groundwater level forecasting using data-driven models based on ensemble empirical mode decomposition
  publication-title: Water
  doi: 10.3390/w10060730
– year: 2024
  ident: 10.1016/j.heliyon.2024.e29006_bib16
  article-title: Evaluation of CatBoost method for predicting weekly Pan evaporation in subtropical and sub-humid regions
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s00024-023-03426-4
– year: 2000
  ident: 10.1016/j.heliyon.2024.e29006_bib57
– volume: 32
  start-page: 103
  year: 2017
  ident: 10.1016/j.heliyon.2024.e29006_bib5
  article-title: Assessing the suitability of extreme learning machines (ELM) for groundwater level prediction
  publication-title: J. Water Land Dev.
  doi: 10.1515/jwld-2017-0012
– volume: 87
  start-page: 954
  year: 2000
  ident: 10.1016/j.heliyon.2024.e29006_bib53
  article-title: A new family of power transformations to improve normality or symmetry
  publication-title: Biometrika
  doi: 10.1093/biomet/87.4.954
– start-page: 627
  year: 2001
  ident: 10.1016/j.heliyon.2024.e29006_bib55
  article-title: Wavelet analysis of discrete time series
– volume: 28
  start-page: 487
  year: 2019
  ident: 10.1016/j.heliyon.2024.e29006_bib72
  article-title: Groundwater level prediction/forecasting and assessment of uncertainty using SGS and ARIMA models: a case study in the bauru aquifer system (Brazil)
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-018-9403-6
– volume: 15
  start-page: 765
  year: 2023
  ident: 10.1016/j.heliyon.2024.e29006_bib18
  article-title: Performance of machine learning techniques for meteorological drought forecasting in the wadi mina basin, Algeria
  publication-title: Water
  doi: 10.3390/w15040765
– volume: 582
  year: 2020
  ident: 10.1016/j.heliyon.2024.e29006_bib6
  article-title: Quantifying the impacts of the three gorges reservoir on water temperature in the middle reach of the yangtze river
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124476
– volume: 148
  start-page: 181
  year: 2017
  ident: 10.1016/j.heliyon.2024.e29006_bib82
  article-title: Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine
  publication-title: Global Planet. Change
  doi: 10.1016/j.gloplacha.2016.11.014
– year: 2014
  ident: 10.1016/j.heliyon.2024.e29006_bib2
– volume: 3
  start-page: 189
  year: 2013
  ident: 10.1016/j.heliyon.2024.e29006_bib89
  article-title: Recent studies on impact of climate change on groundwater resources
  publication-title: Int. J. Phys. Soc. Sci.
– volume: 166
  year: 2020
  ident: 10.1016/j.heliyon.2024.e29006_bib27
  article-title: Relating groundwater levels with meteorological parameters using ANN technique
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108163
– volume: 245
  year: 2021
  ident: 10.1016/j.heliyon.2024.e29006_bib28
  article-title: Groundwater quality forecasting using machine learning algorithms for irrigation purposes
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2020.106625
– year: 2008
  ident: 10.1016/j.heliyon.2024.e29006_bib56
  article-title: Analysis of geophysical time series using discrete wavelet transforms: an overview
  doi: 10.1007/978-3-540-78938-3_4
– year: 2015
  ident: 10.1016/j.heliyon.2024.e29006_bib58
– year: 2023
  ident: 10.1016/j.heliyon.2024.e29006_bib21
  article-title: A novel hybrid algorithms for groundwater level prediction
  publication-title: Iran. J. Sci. Technol. Trans. Civ. Eng.
  doi: 10.1007/s40996-023-01068-z
– volume: 569
  start-page: 387
  year: 2019
  ident: 10.1016/j.heliyon.2024.e29006_bib7
  article-title: An enhanced extreme learning machine model for river flow forecasting: state-of-the-art, practical applications in water resource engineering area and future research direction
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.11.069
– volume: 21
  start-page: 2421
  year: 2017
  ident: 10.1016/j.heliyon.2024.e29006_bib10
  article-title: Characterizing the spatiotemporal variability of groundwater levels of alluvial aquifers in different settings using drought indices
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-21-2421-2017
– volume: 396
  start-page: 128
  year: 2011
  ident: 10.1016/j.heliyon.2024.e29006_bib35
  article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.11.002
– year: 1999
  ident: 10.1016/j.heliyon.2024.e29006_bib61
– volume: 77
  start-page: 708
  year: 2018
  ident: 10.1016/j.heliyon.2024.e29006_bib62
  article-title: Simulation of suspended sediment based on gamma test, heuristic, and regression-based techniques
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-018-7892-6
– volume: 14
  start-page: 46
  year: 2024
  ident: 10.1016/j.heliyon.2024.e29006_bib32
  article-title: Hybrid river stage forecasting based on machine learning with empirical mode decomposition
  publication-title: Appl. Water Sci.
  doi: 10.1007/s13201-024-02103-8
– volume: 14
  start-page: 166
  year: 1991
  ident: 10.1016/j.heliyon.2024.e29006_bib69
  article-title: Foraging behavior of the American white pelican (Pelecanus erythrorhyncos) in western Nevada, colon
  publication-title: Waterbirds
  doi: 10.2307/1521506
– volume: 186
  start-page: 1593
  year: 2014
  ident: 10.1016/j.heliyon.2024.e29006_bib92
  article-title: Groundwater levels time series sensitivity to pluviometry and air temperature: a geostatistical approach to Sfax region, Tunisia
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-013-3477-8
– volume: 9
  year: 2019
  ident: 10.1016/j.heliyon.2024.e29006_bib25
  article-title: Developing comparative mathematic models, BN and ANN for forecasting of groundwater levels
  publication-title: Groundw. Sustain. Dev.
  doi: 10.1016/j.gsd.2019.100237
– volume: 67
  start-page: 773
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29006_bib43
  article-title: Uncertainty assessment of LSTM based groundwater level predictions
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2022.2046755
– volume: 16
  start-page: 1655
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29006_bib76
  article-title: Time series-based groundwater level forecasting using gated recurrent unit deep neural networks
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 2
  start-page: 225
  year: 2021
  ident: 10.1016/j.heliyon.2024.e29006_bib84
  article-title: Mushroom edibility identification applying CBR and ant lion techniques in multi-sensor environment
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-021-00582-z
– volume: 10
  start-page: 3904
  year: 2020
  ident: 10.1016/j.heliyon.2024.e29006_bib8
  article-title: A comparative study among machine learning and numerical models for simulating groundwater dynamics in the Heihe River Basin, northwestern China
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-60698-9
– volume: 16
  start-page: 301
  year: 2023
  ident: 10.1016/j.heliyon.2024.e29006_bib60
  article-title: A novel hybrid AIG-SVR model for estimating daily reference evapotranspiration
  publication-title: Arabian J. Geosci.
  doi: 10.1007/s12517-023-11387-0
– volume: 10
  year: 2020
  ident: 10.1016/j.heliyon.2024.e29006_bib26
  article-title: Climatic data analysis for groundwater level simulation in drought prone Barind Tract, Bangladesh: modelling approach using artificial neural network
  publication-title: Groundw. Sustain. Dev.
  doi: 10.1016/j.gsd.2020.100361
– year: 1992
  ident: 10.1016/j.heliyon.2024.e29006_bib79
– volume: 32
  start-page: 301
  year: 2018
  ident: 10.1016/j.heliyon.2024.e29006_bib12
  article-title: Comparative study of hybrid-wavelet artificial intelligence models for monthly groundwater depth forecasting in extreme arid regions, northwest China, water resour
  publication-title: Manag.
– volume: 783
  year: 2021
  ident: 10.1016/j.heliyon.2024.e29006_bib75
  article-title: Groundwater level modeling framework by combining the wavelet transform with a long short-term memory data-driven model
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.146948
– year: 2023
  ident: 10.1016/j.heliyon.2024.e29006_bib83
  article-title: Bio-inspired optimization: algorithm, analysis and scope of application
  doi: 10.5772/intechopen.106014
– volume: 70
  start-page: 1885
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29006_bib9
  article-title: Hybrid support vector regression models with algorithm of innovative gunner for the simulation of groundwater level
  publication-title: Acta Geophys.
  doi: 10.1007/s11600-022-00826-3
– volume: 13
  start-page: 139
  year: 2021
  ident: 10.1016/j.heliyon.2024.e29006_bib78
  article-title: Deterministic analysis and uncertainty analysis of ensemble forecasting model based on variational mode decomposition for estimation of monthly groundwater level
  publication-title: Water
  doi: 10.3390/w13020139
– volume: 577
  year: 2019
  ident: 10.1016/j.heliyon.2024.e29006_bib50
  article-title: Prediction of groundwater level in seashore reclaimed land using wavelet and artificial neural network-based hybrid model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.123948
– volume: vol. 2010
  start-page: 1
  year: 1999
  ident: 10.1016/j.heliyon.2024.e29006_bib66
– volume: 15
  start-page: 1377
  year: 2013
  ident: 10.1016/j.heliyon.2024.e29006_bib37
  article-title: Improved annual rainfall-runoff forecasting using PSO–SVM model based on EEMD
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2013.134
– volume: 5
  start-page: 363
  year: 1994
  ident: 10.1016/j.heliyon.2024.e29006_bib65
  article-title: Neural networks, a comprehensive foundation
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065794000372
– volume: 15
  start-page: 1420
  year: 2021
  ident: 10.1016/j.heliyon.2024.e29006_bib42
  article-title: Modeling the fluctuations of groundwater level by employing ensemble deep learning techniques
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 190
  year: 2020
  ident: 10.1016/j.heliyon.2024.e29006_bib1
  article-title: Groundwater level prediction in Apulia region (Southern Italy) using NARX neural network
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2020.110062
– volume: 10
  start-page: 784
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29006_bib30
  article-title: Groundwater level forecasting using multiple linear regression and artificial neural network approaches
  publication-title: Civ. Eng. Archit.
  doi: 10.13189/cea.2022.100304
– volume: 62
  start-page: 531
  year: 2014
  ident: 10.1016/j.heliyon.2024.e29006_bib59
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– volume: 37
  year: 2021
  ident: 10.1016/j.heliyon.2024.e29006_bib4
  article-title: Impacts of regional characteristics on improving the accuracy of groundwater level prediction using machine learning: the case of central eastern continental United States
  publication-title: J. Hydrol. Reg. Stud.
– volume: 20
  start-page: 345
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29006_bib48
  article-title: A novel groundwater burial depth prediction model based on two-stage modal decomposition and deep learning
  publication-title: Int. J. Environ. Res. Publ. Health
  doi: 10.3390/ijerph20010345
– volume: 90
  start-page: 144
  year: 2016
  ident: 10.1016/j.heliyon.2024.e29006_bib39
  article-title: A method to improve the stability and accuracy of ANN- and SVM-based time series models for long-term groundwater level predictions
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2016.03.002
– volume: 9
  start-page: 781
  year: 2017
  ident: 10.1016/j.heliyon.2024.e29006_bib33
  article-title: Comparative analysis of ANN and SVM models combined with wavelet preprocess for groundwater depth prediction
  publication-title: Water
  doi: 10.3390/w9100781
– year: 2024
  ident: 10.1016/j.heliyon.2024.e29006_bib13
  article-title: Daily suspended sediment yield estimation using soft-computing algorithms for hilly watersheds in a data-scarce situation: a case study of Bino watershed, Uttarakhand
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-024-04862-5
– volume: 103
  start-page: 527
  year: 2009
  ident: 10.1016/j.heliyon.2024.e29006_bib34
  article-title: Application and analysis of support vector machine based simulation for runoff and sediment yield
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2009.04.017
– volume: 19
  start-page: 1251
  year: 2010
  ident: 10.1016/j.heliyon.2024.e29006_bib86
  article-title: Hybrid neural modeling for groundwater level prediction
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-010-0360-1
SSID ssj0001586973
Score 2.2767699
Snippet The estimation of groundwater levels is crucial and an important step in ensuring sustainable management of water resources. In this paper, selected...
SourceID doaj
unpaywall
swepub
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e29006
SubjectTerms Artificial intelligence
case studies
Deep learning
evaporation
Geoteknik
groundwater
Groundwater level
Hybrid algorithm
Iran
Machine learning
neural networks
piezometers
prediction
Soil Mechanics
support vector machines
temperature
water table
wavelet
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwELZQV-J44F4ol4yEEEikJKmdg7cu7KogbbUPFC1PkeNDDURJ1U1YlV_Gz2PGTsuGRbA8JrYTjz2e-SzPfCbkWeTHQgJQ93JwLx5ToMYp4GIwhuAPuQhjPcbk5MNZNJ2zD8f8uEtWx1yY3vm9jcNa6LJY10hVGrKRDlNLsL0TcYDeA7Iznx1NPuMFcgA8vIQx_1eWzp_b9vyPpenvuaHzMPN8tGTHKXqNXGmrpVifirI845MObpDZRhoXivJ11Db5SH7_jejxwuLeJNc7dEonTp1ukUu6uk0uH3bn73fIj31HDq6piwOhtaFBGFGMJVm6lANwhdRdS31C64p-g7143Z5Q1FBHVkGLMyyg1N7EA8VStish1xSjRKB6hVC6tKW0qfH70IWGYg5KpU6hAytaYrgTfSHBDVNLkvuGTgUMoKi8PbEQK3pUiqJ6Rd-DN355l8wP9j--nXrd3Q-e5HzcgJHWseRxCPtBEyipdBjlUSLsfaI5S0Pc5uSMK4YG0vBA6cgwWzWSCdqpXTKo6krfJzSOuRrrNBWGSZaIVEhfSANIxYSSCWGGZLTRiGzpKD6yTezbl6ybjwznI3PzMSR7qDfbysjQbV_ATGbdgs-ML2GnHAQSICVTkueKMZ3yNDV5apQaD0my0bqsAzsOxMCnin_9_-lGSzMwBnjCIyoNc5kBHokBcbIg_ksd9HE-EtsNyT2n2VtJxgnsz2GIoXM9ne-J2i-pioUlJbfUgzz2h-S5Wx69Nu-KTxM7PGXTgmSA8kGK19vlc7Fxf_DfLR6Sq_iEp38Bf0QGzarVjwFENvmTznT8BIcqcvk
  priority: 102
  providerName: Unpaywall
Title Evaluate effect of 126 pre-processing methods on various artificial intelligence models accuracy versus normal mode to predict groundwater level (case study: Hamedan-Bahar Plain, Iran)
URI https://dx.doi.org/10.1016/j.heliyon.2024.e29006
https://www.ncbi.nlm.nih.gov/pubmed/38601575
https://www.proquest.com/docview/3037399417
https://www.proquest.com/docview/3153804085
https://pubmed.ncbi.nlm.nih.gov/PMC11004570
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-105116
https://doi.org/10.1016/j.heliyon.2024.e29006
https://doaj.org/article/f0c71711c5604dc5bd44e9599fb9fdd3
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: KQ8
  dateStart: 20150901
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: DIK
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: AKRWK
  dateStart: 20150901
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: RPM
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQkLg8IO6Uy2QkhECibZLaScxbB5sK0qY9UDSeIscXNVPkVF3K1H_Gz-McOy2tJjEeeK0dN-cSn-_Ix98h5E0aZVIBUO-XEF76TIMbC8DFsBlCPOQyycwILycfn6STKft6xs-2Wn1hTVigBw6KG9pIQcYRxwpCM9OKl5oxI7gQthRWa8_zGeViK5kK94PzVGSjP1d2hueDmamrVYOcpwkbmERE2OVoKxh5zv6dmHQVc14tnewIRu-S20s3l6tLWddbAeroPrnXIUs6DhI9IDeMe0huHXdn54_Ir8NA7G1oqOGgjaVxklKsA5mH6wIQxmhoKX1BG0d_Qh7dLC8oKikQTdBqi8GT-i46MKzUciHVimKFB0x3CINrP0rbBteHV2gp3h9x-hJeYEFrLFWi7xSEUOoJbj_SiQR5pesfyJlc0NNaVu4D_QKR9P1jMj06_PZp0u_6NvQV56MWNliTKZ4lkMvZWCttkrRMc-l7gZZMJJiilIxrhpub5bE2qWV-aqpy3GOekD3XOPOM0CzjemSEkJYplkshVSSVBZRhE8WktD0yWBuwmAd6jmJdt3ZedBYv0OJFsHiPHKCZN5ORXdv_AD5XdD5XXOdzPZKvnaTogEoAILBUdd3_v147VQEfMp7OSGfAlgVgiQzQIouzv8zB-BQhKV2PPA2OuJFklENuDSqGl9tx0R1Rd0dcNfOE4p42kGdRj7wN3rzzzOfq-9irp26XIBkgdJBiuPH2f9P78_-h9xfkDi6Jh3kxf0n22sXSvAJM2Jb7_vPfJzenJ6fjH78BBQtmPA
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwELZQV-J44F4ol4yEEEikJKmdg7cu7KogbbUPFC1PkeNDDURJ1U1YlV_Gz2PGTsuGRbA8JrYTjz2e-SzPfCbkWeTHQgJQ93JwLx5ToMYp4GIwhuAPuQhjPcbk5MNZNJ2zD8f8uEtWx1yY3vm9jcNa6LJY10hVGrKRDlNLsL0TcYDeA7Iznx1NPuMFcgA8vIQx_1eWzp_b9vyPpenvuaHzMPN8tGTHKXqNXGmrpVifirI845MObpDZRhoXivJ11Db5SH7_jejxwuLeJNc7dEonTp1ukUu6uk0uH3bn73fIj31HDq6piwOhtaFBGFGMJVm6lANwhdRdS31C64p-g7143Z5Q1FBHVkGLMyyg1N7EA8VStish1xSjRKB6hVC6tKW0qfH70IWGYg5KpU6hAytaYrgTfSHBDVNLkvuGTgUMoKi8PbEQK3pUiqJ6Rd-DN355l8wP9j--nXrd3Q-e5HzcgJHWseRxCPtBEyipdBjlUSLsfaI5S0Pc5uSMK4YG0vBA6cgwWzWSCdqpXTKo6krfJzSOuRrrNBWGSZaIVEhfSANIxYSSCWGGZLTRiGzpKD6yTezbl6ybjwznI3PzMSR7qDfbysjQbV_ATGbdgs-ML2GnHAQSICVTkueKMZ3yNDV5apQaD0my0bqsAzsOxMCnin_9_-lGSzMwBnjCIyoNc5kBHokBcbIg_ksd9HE-EtsNyT2n2VtJxgnsz2GIoXM9ne-J2i-pioUlJbfUgzz2h-S5Wx69Nu-KTxM7PGXTgmSA8kGK19vlc7Fxf_DfLR6Sq_iEp38Bf0QGzarVjwFENvmTznT8BIcqcvk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluate+effect+of+126+pre-processing+methods+on+various+artificial+intelligence+models+accuracy+versus+normal+mode+to+predict+groundwater+level+%28case+study%3A+Hamedan-Bahar+Plain%2C+Iran%29&rft.jtitle=Heliyon&rft.au=Saroughi%2C+Mohsen&rft.au=Mirzania%2C+Ehsan&rft.au=Achite%2C+Mohammed&rft.au=Katipo%C4%9Flu%2C+Okan+Mert&rft.date=2024-04-15&rft.pub=Elsevier+Ltd&rft.issn=2405-8440&rft.eissn=2405-8440&rft.volume=10&rft.issue=7&rft_id=info:doi/10.1016%2Fj.heliyon.2024.e29006&rft.externalDocID=S2405844024050370
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon