Evaluate effect of 126 pre-processing methods on various artificial intelligence models accuracy versus normal mode to predict groundwater level (case study: Hamedan-Bahar Plain, Iran)
The estimation of groundwater levels is crucial and an important step in ensuring sustainable management of water resources. In this paper, selected piezometers of the Hamedan-Bahar plain located in west of Iran. The main objective of this study is to compare effect of various pre-processing methods...
        Saved in:
      
    
          | Published in | Heliyon Vol. 10; no. 7; p. e29006 | 
|---|---|
| Main Authors | , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          Elsevier Ltd
    
        15.04.2024
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2405-8440 2405-8440  | 
| DOI | 10.1016/j.heliyon.2024.e29006 | 
Cover
| Abstract | The estimation of groundwater levels is crucial and an important step in ensuring sustainable management of water resources. In this paper, selected piezometers of the Hamedan-Bahar plain located in west of Iran. The main objective of this study is to compare effect of various pre-processing methods on input data for different artificial intelligence (AI) models to predict groundwater levels (GWLs). The observed GWL, evaporation, precipitation, and temperature were used as input variables in the AI algorithms. Firstly, 126 method of data pre-processing was done by python programming which are classified into three classes: 1- statistical methods, 2- wavelet transform methods and 3- decomposition methods; later, various pre-processed data used by four types of widely used AI models with different kernels, which includes: Support Vector Machine (SVR), Artificial Neural Network (ANN), Long-Short Term memory (LSTM), and Pelican Optimization Algorithm (POA) - Artificial Neural Network (POA-ANN) are classified into three classes: 1- machine learning (SVR and ANN), 2- deep learning (LSTM) and 3- hybrid-ML (POA-ANN) models, to predict groundwater levels (GWLs). Akaike Information Criterion (AIC) were used to evaluate and validate the predictive accuracy of algorithms. According to the results, based on summation (train and test phases) of AIC value of 1778 models, average of AIC values for ML, DL, hybrid-ML classes, was decreased to −25.3%, −29.6% and −57.8%, respectively. Therefore, the results showed that all data pre-processing methods do not lead to improvement of prediction accuracy, and they should be selected very carefully by trial and error. In conclusion, wavelet-ANN model with daubechies 13 and 25 neurons (db13_ANN_25) is the best model to predict GWL that has −204.9 value for AIC which has grown by 5.23% (−194.7) compared to the state without any pre-processing method (ANN_Relu_25). | 
    
|---|---|
| AbstractList | The estimation of groundwater levels is crucial and an important step in ensuring sustainable management of water resources. In this paper, selected piezometers of the Hamedan-Bahar plain located in west of Iran. The main objective of this study is to compare effect of various pre-processing methods on input data for different artificial intelligence (AI) models to predict groundwater levels (GWLs). The observed GWL, evaporation, precipitation, and temperature were used as input variables in the AI algorithms. Firstly, 126 method of data pre-processing was done by python programming which are classified into three classes: 1- statistical methods, 2- wavelet transform methods and 3- decomposition methods; later, various pre-processed data used by four types of widely used AI models with different kernels, which includes: Support Vector Machine (SVR), Artificial Neural Network (ANN), Long-Short Term memory (LSTM), and Pelican Optimization Algorithm (POA) - Artificial Neural Network (POA-ANN) are classified into three classes: 1- machine learning (SVR and ANN), 2- deep learning (LSTM) and 3- hybrid-ML (POA-ANN) models, to predict groundwater levels (GWLs). Akaike Information Criterion (AIC) were used to evaluate and validate the predictive accuracy of algorithms. According to the results, based on summation (train and test phases) of AIC value of 1778 models, average of AIC values for ML, DL, hybrid-ML classes, was decreased to -25.3%, -29.6% and -57.8%, respectively. Therefore, the results showed that all data pre-processing methods do not lead to improvement of prediction accuracy, and they should be selected very carefully by trial and error. In conclusion, wavelet-ANN model with daubechies 13 and 25 neurons (db13_ANN_25) is the best model to predict GWL that has -204.9 value for AIC which has grown by 5.23% (-194.7) compared to the state without any pre-processing method (ANN_Relu_25). The estimation of groundwater levels is crucial and an important step in ensuring sustainable management of water resources. In this paper, selected piezometers of the Hamedan-Bahar plain located in west of Iran. The main objective of this study is to compare effect of various pre-processing methods on input data for different artificial intelligence (AI) models to predict groundwater levels (GWLs). The observed GWL, evaporation, precipitation, and temperature were used as input variables in the AI algorithms. Firstly, 126 method of data pre-processing was done by python programming which are classified into three classes: 1- statistical methods, 2- wavelet transform methods and 3- decomposition methods; later, various pre-processed data used by four types of widely used AI models with different kernels, which includes: Support Vector Machine (SVR), Artificial Neural Network (ANN), Long-Short Term memory (LSTM), and Pelican Optimization Algorithm (POA) - Artificial Neural Network (POA-ANN) are classified into three classes: 1- machine learning (SVR and ANN), 2- deep learning (LSTM) and 3- hybrid-ML (POA-ANN) models, to predict groundwater levels (GWLs). Akaike Information Criterion (AIC) were used to evaluate and validate the predictive accuracy of algorithms. According to the results, based on summation (train and test phases) of AIC value of 1778 models, average of AIC values for ML, DL, hybrid-ML classes, was decreased to −25.3%, −29.6% and −57.8%, respectively. Therefore, the results showed that all data pre-processing methods do not lead to improvement of prediction accuracy, and they should be selected very carefully by trial and error. In conclusion, wavelet-ANN model with daubechies 13 and 25 neurons (db13_ANN_25) is the best model to predict GWL that has −204.9 value for AIC which has grown by 5.23% (−194.7) compared to the state without any pre-processing method (ANN_Relu_25). The estimation of groundwater levels is crucial and an important step in ensuring sustainable management of water resources. In this paper, selected piezometers of the Hamedan-Bahar plain located in west of Iran. The main objective of this study is to compare effect of various pre-processing methods on input data for different artificial intelligence (AI) models to predict groundwater levels (GWLs). The observed GWL, evaporation, precipitation, and temperature were used as input variables in the AI algorithms. Firstly, 126 method of data pre-processing was done by python programming which are classified into three classes: 1- statistical methods, 2- wavelet transform methods and 3- decomposition methods; later, various pre-processed data used by four types of widely used AI models with different kernels, which includes: Support Vector Machine (SVR), Artificial Neural Network (ANN), Long-Short Term memory (LSTM), and Pelican Optimization Algorithm (POA) - Artificial Neural Network (POA-ANN) are classified into three classes: 1- machine learning (SVR and ANN), 2- deep learning (LSTM) and 3- hybrid-ML (POA-ANN) models, to predict groundwater levels (GWLs). Akaike Information Criterion (AIC) were used to evaluate and validate the predictive accuracy of algorithms. According to the results, based on summation (train and test phases) of AIC value of 1778 models, average of AIC values for ML, DL, hybrid-ML classes, was decreased to -25.3%, -29.6% and -57.8%, respectively. Therefore, the results showed that all data pre-processing methods do not lead to improvement of prediction accuracy, and they should be selected very carefully by trial and error. In conclusion, wavelet-ANN model with daubechies 13 and 25 neurons (db13_ANN_25) is the best model to predict GWL that has -204.9 value for AIC which has grown by 5.23% (-194.7) compared to the state without any pre-processing method (ANN_Relu_25).The estimation of groundwater levels is crucial and an important step in ensuring sustainable management of water resources. In this paper, selected piezometers of the Hamedan-Bahar plain located in west of Iran. The main objective of this study is to compare effect of various pre-processing methods on input data for different artificial intelligence (AI) models to predict groundwater levels (GWLs). The observed GWL, evaporation, precipitation, and temperature were used as input variables in the AI algorithms. Firstly, 126 method of data pre-processing was done by python programming which are classified into three classes: 1- statistical methods, 2- wavelet transform methods and 3- decomposition methods; later, various pre-processed data used by four types of widely used AI models with different kernels, which includes: Support Vector Machine (SVR), Artificial Neural Network (ANN), Long-Short Term memory (LSTM), and Pelican Optimization Algorithm (POA) - Artificial Neural Network (POA-ANN) are classified into three classes: 1- machine learning (SVR and ANN), 2- deep learning (LSTM) and 3- hybrid-ML (POA-ANN) models, to predict groundwater levels (GWLs). Akaike Information Criterion (AIC) were used to evaluate and validate the predictive accuracy of algorithms. According to the results, based on summation (train and test phases) of AIC value of 1778 models, average of AIC values for ML, DL, hybrid-ML classes, was decreased to -25.3%, -29.6% and -57.8%, respectively. Therefore, the results showed that all data pre-processing methods do not lead to improvement of prediction accuracy, and they should be selected very carefully by trial and error. In conclusion, wavelet-ANN model with daubechies 13 and 25 neurons (db13_ANN_25) is the best model to predict GWL that has -204.9 value for AIC which has grown by 5.23% (-194.7) compared to the state without any pre-processing method (ANN_Relu_25).  | 
    
| ArticleNumber | e29006 | 
    
| Author | Achite, Mohammed Saroughi, Mohsen Vishwakarma, Dinesh Kumar Alreshidi, Maha Awjan Yadav, Krishna Kumar Al-Ansari, Nadhir Mirzania, Ehsan Chung, Il-Moon Katipoğlu, Okan Mert  | 
    
| Author_xml | – sequence: 1 givenname: Mohsen orcidid: 0000-0002-9811-5230 surname: Saroughi fullname: Saroughi, Mohsen email: mohsensaroughi@ut.ac.ir organization: Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran – sequence: 2 givenname: Ehsan orcidid: 0000-0001-9252-2241 surname: Mirzania fullname: Mirzania, Ehsan email: e.mirzania99@ms.tabrizu.ac.ir organization: Department of Water Engineering, University of Tabriz, Tabriz, Iran – sequence: 3 givenname: Mohammed orcidid: 0000-0001-6084-5759 surname: Achite fullname: Achite, Mohammed email: m.achite@univ-chlef.dz organization: Faculty of Nature and Life Sciences, Laboratory of Water and Environment, Hassiba Benbouali University of Chlef, Chlef, 02180, Algeria – sequence: 4 givenname: Okan Mert orcidid: 0000-0001-6421-6087 surname: Katipoğlu fullname: Katipoğlu, Okan Mert email: okatipoglu@erzincan.edu.tr organization: Department of Civil Engineering, Erzincan Binali Yıldırım University, Erzincan, Turkey – sequence: 5 givenname: Nadhir orcidid: 0000-0002-6790-2653 surname: Al-Ansari fullname: Al-Ansari, Nadhir email: nadhir.alansari@ltu.se organization: Department of Civil, Environmental, and Natural Resources Engineering, Lulea University of Technology, 97187, Lulea, Sweden – sequence: 6 givenname: Dinesh Kumar orcidid: 0000-0002-2421-6995 surname: Vishwakarma fullname: Vishwakarma, Dinesh Kumar email: dinesh.vishwakarma4820@gmail.com organization: Department of Irrigation and Drainage Engineering, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Udham Singh Nagar, Uttarakhand, 263145, India – sequence: 7 givenname: Il-Moon orcidid: 0000-0003-0163-7305 surname: Chung fullname: Chung, Il-Moon email: imchung@kict.re.kr organization: Department of Water Resources and River Research, Korea Institute of Civil Engineering and Building Technology, Goyang-si, 10223, Republic of Korea – sequence: 8 givenname: Maha Awjan orcidid: 0009-0003-9232-1839 surname: Alreshidi fullname: Alreshidi, Maha Awjan email: m.alrashedi@uoh.edu.sa organization: Department of Chemistry, University of Ha'il, Ha'il, 81441, Saudi Arabia – sequence: 9 givenname: Krishna Kumar orcidid: 0000-0002-4228-2726 surname: Yadav fullname: Yadav, Krishna Kumar email: envirokrishna@gmail.com organization: Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38601575$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-105116$$DView record from Swedish Publication Index  | 
    
| BookMark | eNqNks1u1DAUhSNUREvpI4C8LBIZ7MTODxtUSqGVKsEC2FqOfTPjkWMPdpLRvBmPhzMZqs6qrPJzv3t8fM99mZxYZyFJXhO8IJgU79eLFRi9c3aR4YwuIKsxLp4lZxnFLK0oxSeP3k-TixDWGGPCqqIu8xfJaV4V8atkZ8mfm1GYQfSAoG1B9si1iGQF2nhIN95JCEHbJeqgXzkVkLNoFF67ISDhe91qqYVB2vZgjF6ClYA6p8DEspSDF3KHRvAh4tb5LqJTFfVu0lc6Hrf0brBqGw14ZGAEgy6lCIBCP6jdB3QrOlDCpp_ESnj03Qht36E7L-zbV8nzVpgAF4fnefLzy82P69v0_tvXu-ur-1QylvdpVUIpWZllVd0SJRVkRVNUooqXrxtaZyWrWEOZonlZ5C0jCoqW7tFCVjmp8vPkbtZVTqz5xutO-B13QvP9D-eXfJqENMBbLEtSEiJZgamSrFGUQs3qum3qVqk8ahWz1mA3YrcVxjwIEsynZPmaH5LlU7J8TjY2pnNj2MJmaI5sfNa_rvY2TD9EDUbIxH-c-QjHAUqwvRfmqO24YvWKL93ICcGYshJHhcuDgne_Bwg973SQMWVhIabPc8LyClNcsadRnJd5XVNSRvTNY18Phv7tYwTYDEjvQvDQ_veADheOqwejBs-D1NM6Ku3jVses9BMKfwEHkxFS | 
    
| Cites_doi | 10.1098/rspa.1998.0193 10.1007/s00500-021-06009-4 10.1016/j.jhydrol.2011.06.013 10.3390/s22030855 10.1016/j.jhydrol.2004.04.019 10.1016/j.jhydrol.2021.126369 10.1007/s13280-020-01318-8 10.1016/j.jhydrol.2021.126929 10.2166/nh.2016.396 10.1007/s40808-021-01235-z 10.1016/j.jhydrol.2018.05.019 10.1016/j.jhydrol.2010.02.001 10.5194/hess-25-1671-2021 10.1007/s12665-019-8474-y 10.1007/s00521-013-1341-y 10.1016/j.compag.2018.04.019 10.1016/j.tree.2019.03.006 10.3390/su141811598 10.1007/s00477-022-02181-7 10.3390/su12104023 10.1016/j.scitotenv.2022.159701 10.1016/j.cageo.2013.01.007 10.1016/j.jhydrol.2021.126800 10.1007/s40996-022-00928-4 10.1007/s12594-019-1308-4 10.1007/s12145-022-00853-0 10.1007/s00024-022-03189-4 10.3390/w14050751 10.1007/s11269-021-02874-8 10.1007/s12517-022-09900-y 10.1162/neco.1997.9.8.1735 10.1007/s11356-022-23022-8 10.1007/978-3-662-57277-1_14 10.3390/w9060406 10.1623/hysj.54.4.727 10.3390/w10060730 10.1007/s00024-023-03426-4 10.1515/jwld-2017-0012 10.1093/biomet/87.4.954 10.1007/s11053-018-9403-6 10.3390/w15040765 10.1016/j.jhydrol.2019.124476 10.1016/j.gloplacha.2016.11.014 10.1016/j.measurement.2020.108163 10.1016/j.agwat.2020.106625 10.1007/978-3-540-78938-3_4 10.1007/s40996-023-01068-z 10.1016/j.jhydrol.2018.11.069 10.5194/hess-21-2421-2017 10.1016/j.jhydrol.2010.11.002 10.1007/s12665-018-7892-6 10.1007/s13201-024-02103-8 10.2307/1521506 10.1007/s10661-013-3477-8 10.1016/j.gsd.2019.100237 10.1080/02626667.2022.2046755 10.1007/s42979-021-00582-z 10.1038/s41598-020-60698-9 10.1007/s12517-023-11387-0 10.1016/j.gsd.2020.100361 10.1016/j.scitotenv.2021.146948 10.5772/intechopen.106014 10.1007/s11600-022-00826-3 10.3390/w13020139 10.1016/j.jhydrol.2019.123948 10.2166/hydro.2013.134 10.1142/S0129065794000372 10.1016/j.envres.2020.110062 10.13189/cea.2022.100304 10.1109/TSP.2013.2288675 10.3390/ijerph20010345 10.1016/j.cageo.2016.03.002 10.3390/w9100781 10.1007/s00704-024-04862-5 10.1016/j.biosystemseng.2009.04.017 10.1007/s00521-010-0360-1  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 The Authors 2024 The Authors. 2024 The Authors 2024  | 
    
| Copyright_xml | – notice: 2024 The Authors – notice: 2024 The Authors. – notice: 2024 The Authors 2024  | 
    
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 5PM ADTPV AOWAS D8T ZZAVC ADTOC UNPAY DOA  | 
    
| DOI | 10.1016/j.heliyon.2024.e29006 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 2405-8440 | 
    
| ExternalDocumentID | oai_doaj_org_article_f0c71711c5604dc5bd44e9599fb9fdd3 10.1016/j.heliyon.2024.e29006 oai_DiVA_org_ltu_105116 PMC11004570 38601575 10_1016_j_heliyon_2024_e29006 S2405844024050370  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | Iran | 
    
| GeographicLocations_xml | – name: Iran | 
    
| GroupedDBID | 0R~ 457 53G 5VS 6I. AAEDW AAFTH AAFWJ AALRI AAYWO ABMAC ACGFS ACLIJ ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPKN AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK EBS FDB GROUPED_DOAJ HYE KQ8 M~E O9- OK1 ROL RPM SSZ AAYXX CITATION EJD IPNFZ RIG NPM 7X8 7S9 L.6 5PM ADTPV AOWAS D8T ZZAVC ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c553t-87e7c572289f1dcde26b68a85759b4927585b45d43763f51de6f49f1dc6c83183 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2405-8440 | 
    
| IngestDate | Fri Oct 03 12:53:38 EDT 2025 Sun Oct 26 04:06:58 EDT 2025 Sat Oct 25 02:23:28 EDT 2025 Thu Aug 21 18:34:27 EDT 2025 Fri Aug 22 20:25:05 EDT 2025 Thu Oct 02 11:57:43 EDT 2025 Mon Jul 21 05:55:32 EDT 2025 Wed Oct 01 05:37:27 EDT 2025 Sat Sep 13 17:01:04 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 7 | 
    
| Keywords | Deep learning Artificial intelligence Groundwater level Hybrid algorithm Machine learning  | 
    
| Language | English | 
    
| License | This is an open access article under the CC BY license. 2024 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c553t-87e7c572289f1dcde26b68a85759b4927585b45d43763f51de6f49f1dc6c83183 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0002-4228-2726 0000-0001-6421-6087 0000-0003-0163-7305 0009-0003-9232-1839 0000-0002-2421-6995 0000-0002-9811-5230 0000-0001-6084-5759 0000-0001-9252-2241 0000-0002-6790-2653  | 
    
| OpenAccessLink | https://doaj.org/article/f0c71711c5604dc5bd44e9599fb9fdd3 | 
    
| PMID | 38601575 | 
    
| PQID | 3037399417 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f0c71711c5604dc5bd44e9599fb9fdd3 unpaywall_primary_10_1016_j_heliyon_2024_e29006 swepub_primary_oai_DiVA_org_ltu_105116 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11004570 proquest_miscellaneous_3153804085 proquest_miscellaneous_3037399417 pubmed_primary_38601575 crossref_primary_10_1016_j_heliyon_2024_e29006 elsevier_sciencedirect_doi_10_1016_j_heliyon_2024_e29006  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-04-15 | 
    
| PublicationDateYYYYMMDD | 2024-04-15 | 
    
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-15 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England | 
    
| PublicationTitle | Heliyon | 
    
| PublicationTitleAlternate | Heliyon | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier Ltd Elsevier  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier  | 
    
| References | Yadav, Ch, Mathur, Adamowski (bib5) 2017; 32 Percival, Walden (bib57) 2000 Lin, Gharehbaghi, Zhang, Band, Pai, Chau, Mosavi (bib76) 2022; 16 Seifi, Ehteram, Singh, Mosavi (bib85) 2020; 12 Kochhar, Singh, Sahoo, Litoria, Pateriya (bib74) 2022; 8 Samantaray, Sahoo, Satapathy (bib20) 2022; 15 Triki, Trabelsi, Hentati, Zairi (bib92) 2014; 186 Yoon, Hyun, Ha, Lee, Kim (bib39) 2016; 90 Dash, Panda, Remesan, Sahoo (bib86) 2010; 19 Gribovszki, Szilágyi, Kalicz (bib90) 2010; 385 Yu, Wen, Feng, Deo, Si, Wu (bib12) 2018; 32 Ghose, Samantaray (bib64) 2019 Afan, Ibrahem Ahmed Osman, Essam, Ahmed, Huang, Kisi, Sherif, Sefelnasr, Chau, El-Shafie (bib42) 2021; 15 Panahi, Mastouri, Shabanlou (bib77) 2023; 47 Wu, Zhang, Wang, Lu, Zhang, Qin, Tick, Liu, Shu (bib75) 2021; 783 Yan, Shi, Wang, Zhang, Bi (bib15) 2021; 599 Yeo, Johnson (bib53) 2000; 87 Dragomiretskiy, Zosso (bib59) 2014; 62 Vishwakarma, Kumar, Yadav, Ali, Markuna, Chauhan, Heddam, Kuriqi, Srivastava, Alam, Vinayak (bib16) 2024 Haas, Birk (bib10) 2017; 21 Kumar (bib89) 2013; 3 Moghaddam, Moghaddam, Kivi, Bahreinimotlagh, Alizadeh (bib25) 2019; 9 Singh, Singh, Kisi, Kushwaha (bib63) 2018; 150 Yoon, Jun, Hyun, Bae, Lee (bib35) 2011; 396 Zeiler, Faltermeier, Keck, Tome, Puntonet, Lang (bib54) 2010 Sudheer, Maheswaran, Panigrahi, Mathur (bib38) 2014; 24 Mirarabi, Nassery, Nakhaei, Adamowski, Akbarzadeh, Alijani (bib40) 2019; 78 Wei, Chen, Li, Zhang, Wu, Li (bib52) 2022; 15 Tao, Wang, Rhoads, Wang, Ni, Wu (bib6) 2020; 582 Nourani, Khodkar, Paknezhad, Laux (bib44) 2022; 36 Markuna, Kumar, Ali, Vishwkarma, Kushwaha, Kumar, Singh, Chaudhary, Kuriqi (bib14) 2023; 180 Band, Heggy, Bateni, Karami, Rabiee, Samadianfard, Chau, Mosavi (bib51) 2021; 15 Dudley, Hodgkins, Nielsen, Qi (bib93) 2018; 562 Hikouei, Eshleman, Saharjo, Graham, Applegate, Cochrane (bib22) 2023; 857 Shiri, Kisi, Yoon, Lee, Hossein Nazemi (bib36) 2013; 56 Zhang, Zhang, Niu, Hu, Soltanian, Qiu, Yang (bib50) 2019; 577 Mirzania, Vishwakarma, Bui, Band, Dehghani (bib60) 2023; 16 Wen, Feng, Deo, Wu, Si (bib49) 2017; 48 Hasda, Rahaman, Jahan, Molla, Mazumder (bib26) 2020; 10 Devika, Gowda Karegowda (bib83) 2023 Amarasinghe, Smakhtin (bib2) 2014 Cai, Shi, Liu, Babovic (bib4) 2021; 37 Zhou, Wang, Yang (bib33) 2017; 9 Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (bib80) 1998; 454 Kayhomayoon, Babaeian, Ghordoyee Milan, Arya Azar, Berndtsson (bib87) 2022; 14 Zhou, Wang, Band, Mirzania, Roshni (bib31) 2023; 17 Daubechies (bib79) 1992 Tulla, Kumar, Vishwakarma, Kumar, Kuriqi, Kushwaha, Rajput, Srivastava, Pham, Panda, Kisi (bib13) 2024 Wu, Feng, Wen, Yin, Yang, Sheng (bib78) 2021; 13 Trojovský, Dehghani (bib68) 2022; 22 Nourani, Khodkar, Gebremichael (bib43) 2022; 67 Hochreiter, Schmidhuber (bib67) 1997; 9 Devika, Ramesh, Karegowda (bib84) 2021; 2 Albert, Destouni, Duke-Sylvester, Magurran, Oberdorff, Reis, Winemiller, Ripple (bib3) 2021; 50 Mileham, Taylor, Todd, Tindimugaya, Thompson (bib91) 2009; 54 Simon (bib61) 1999 Dadhich, Goyal, Dadhich (bib73) 2021; 35 Chen, He, Zhou, Xue, Zhu (bib8) 2020; 10 Liu, Mishra, Yu, Lü, Li (bib41) 2021; 603 Misra, Oommen, Agarwal, Mishra, Thompson (bib34) 2009; 103 Lemaoui, Darwish, Almustafa, Boublia, Sarika, Jabbar, Ibrahim, Nancarrow, Yadav, Fallatah, Abbas, Algethami, Benguerba, Jeon, Banat, AlNashef (bib24) 2023; 59 Haykin, Lippmann (bib65) 1994; 5 Percival (bib56) 2008 Aderemi, Olwal, Ndambuki, Rwanga (bib19) 2023; 5 Iqbal, Ali Naeem, Ahmad, Rehman, Ghani, Farid (bib27) 2020; 166 Ebrahimi, Rajaee (bib82) 2017; 148 Ardana, Redana, Yekti, Simpen (bib30) 2022; 10 Chen, Hu (bib88) 2004; 297 Brodrick, Davies, Asner (bib11) 2019; 34 Seifi, Ehteram, Nayebloei, Soroush, Gharabaghi, Torabi Haghighi (bib17) 2021; 25 Achite, Elshaboury, Jehanzaib, Vishwakarma, Pham, Anh, Abdelkader, Elbeltagi (bib18) 2023; 15 Singh, Kumar, Kashyap, Kisi (bib62) 2018; 77 Peng, Zhou, Zhang, Fu (bib29) 2017; 9 Gong, Wang, Xu, Zhang (bib70) 2018; 10 Takafuji, da Rocha, Manzione (bib72) 2019; 28 Zhang, Zheng (bib48) 2022; 20 Yaseen, Sulaiman, Deo, Chau (bib7) 2019; 569 Wunsch, Liesch, Broda (bib47) 2021; 25 Di Nunno, Granata (bib1) 2020; 190 Pinthong, Ditthakit, Salaeh, Hasan, Son, Linh, Islam, Yadav (bib23) 2022 Haykin (bib66) 1999; vol. 2010 Solgi, Loáiciga, Kram (bib46) 2021; 601 Walden (bib55) 2001 Chu, Bian, Lang, Sun, Wang (bib45) 2022; 14 Debnath, Shah (bib58) 2015 Satish Kumar, Venkata Rathnam (bib71) 2019; 94 Saroughi, Mirzania, Vishwakarma, Nivesh, Panda, Daneshvar (bib21) 2023 Anderson (bib69) 1991; 14 Roshni, Mirzania, Hasanpour Kashani, Bui, Shamshirband (bib9) 2022; 70 El Bilali, Taleb, Brouziyne (bib28) 2021; 245 Wang, Xu, Chau, Chen (bib37) 2013; 15 Heddam, Vishwakarma, Abed, Sharma, Al-Ansari, Alataway, Dewidar, Mattar (bib32) 2024; 14 Adamowski, Chan (bib81) 2011; 407 Zeiler (10.1016/j.heliyon.2024.e29006_bib54) 2010 Nourani (10.1016/j.heliyon.2024.e29006_bib44) 2022; 36 Achite (10.1016/j.heliyon.2024.e29006_bib18) 2023; 15 Iqbal (10.1016/j.heliyon.2024.e29006_bib27) 2020; 166 Lin (10.1016/j.heliyon.2024.e29006_bib76) 2022; 16 Dash (10.1016/j.heliyon.2024.e29006_bib86) 2010; 19 Takafuji (10.1016/j.heliyon.2024.e29006_bib72) 2019; 28 Panahi (10.1016/j.heliyon.2024.e29006_bib77) 2023; 47 Yoon (10.1016/j.heliyon.2024.e29006_bib35) 2011; 396 Percival (10.1016/j.heliyon.2024.e29006_bib57) 2000 Tao (10.1016/j.heliyon.2024.e29006_bib6) 2020; 582 Nourani (10.1016/j.heliyon.2024.e29006_bib43) 2022; 67 Lemaoui (10.1016/j.heliyon.2024.e29006_bib24) 2023; 59 Kayhomayoon (10.1016/j.heliyon.2024.e29006_bib87) 2022; 14 Yaseen (10.1016/j.heliyon.2024.e29006_bib7) 2019; 569 Mirzania (10.1016/j.heliyon.2024.e29006_bib60) 2023; 16 Kumar (10.1016/j.heliyon.2024.e29006_bib89) 2013; 3 Vishwakarma (10.1016/j.heliyon.2024.e29006_bib16) 2024 Devika (10.1016/j.heliyon.2024.e29006_bib84) 2021; 2 Afan (10.1016/j.heliyon.2024.e29006_bib42) 2021; 15 Band (10.1016/j.heliyon.2024.e29006_bib51) 2021; 15 Wu (10.1016/j.heliyon.2024.e29006_bib78) 2021; 13 Mirarabi (10.1016/j.heliyon.2024.e29006_bib40) 2019; 78 Amarasinghe (10.1016/j.heliyon.2024.e29006_bib2) 2014 Chen (10.1016/j.heliyon.2024.e29006_bib8) 2020; 10 Wunsch (10.1016/j.heliyon.2024.e29006_bib47) 2021; 25 Hasda (10.1016/j.heliyon.2024.e29006_bib26) 2020; 10 Ebrahimi (10.1016/j.heliyon.2024.e29006_bib82) 2017; 148 Dudley (10.1016/j.heliyon.2024.e29006_bib93) 2018; 562 Peng (10.1016/j.heliyon.2024.e29006_bib29) 2017; 9 Wen (10.1016/j.heliyon.2024.e29006_bib49) 2017; 48 Hochreiter (10.1016/j.heliyon.2024.e29006_bib67) 1997; 9 Di Nunno (10.1016/j.heliyon.2024.e29006_bib1) 2020; 190 Haas (10.1016/j.heliyon.2024.e29006_bib10) 2017; 21 Debnath (10.1016/j.heliyon.2024.e29006_bib58) 2015 Shiri (10.1016/j.heliyon.2024.e29006_bib36) 2013; 56 Yeo (10.1016/j.heliyon.2024.e29006_bib53) 2000; 87 Misra (10.1016/j.heliyon.2024.e29006_bib34) 2009; 103 Gong (10.1016/j.heliyon.2024.e29006_bib70) 2018; 10 Wu (10.1016/j.heliyon.2024.e29006_bib75) 2021; 783 Markuna (10.1016/j.heliyon.2024.e29006_bib14) 2023; 180 Brodrick (10.1016/j.heliyon.2024.e29006_bib11) 2019; 34 Zhang (10.1016/j.heliyon.2024.e29006_bib50) 2019; 577 Dragomiretskiy (10.1016/j.heliyon.2024.e29006_bib59) 2014; 62 Pinthong (10.1016/j.heliyon.2024.e29006_bib23) 2022 Zhou (10.1016/j.heliyon.2024.e29006_bib31) 2023; 17 Zhang (10.1016/j.heliyon.2024.e29006_bib48) 2022; 20 Chen (10.1016/j.heliyon.2024.e29006_bib88) 2004; 297 Mileham (10.1016/j.heliyon.2024.e29006_bib91) 2009; 54 Walden (10.1016/j.heliyon.2024.e29006_bib55) 2001 Solgi (10.1016/j.heliyon.2024.e29006_bib46) 2021; 601 Singh (10.1016/j.heliyon.2024.e29006_bib63) 2018; 150 Chu (10.1016/j.heliyon.2024.e29006_bib45) 2022; 14 Triki (10.1016/j.heliyon.2024.e29006_bib92) 2014; 186 Seifi (10.1016/j.heliyon.2024.e29006_bib17) 2021; 25 Huang (10.1016/j.heliyon.2024.e29006_bib80) 1998; 454 Seifi (10.1016/j.heliyon.2024.e29006_bib85) 2020; 12 Daubechies (10.1016/j.heliyon.2024.e29006_bib79) 1992 Cai (10.1016/j.heliyon.2024.e29006_bib4) 2021; 37 Yadav (10.1016/j.heliyon.2024.e29006_bib5) 2017; 32 Liu (10.1016/j.heliyon.2024.e29006_bib41) 2021; 603 Kochhar (10.1016/j.heliyon.2024.e29006_bib74) 2022; 8 Yu (10.1016/j.heliyon.2024.e29006_bib12) 2018; 32 Hikouei (10.1016/j.heliyon.2024.e29006_bib22) 2023; 857 Yoon (10.1016/j.heliyon.2024.e29006_bib39) 2016; 90 El Bilali (10.1016/j.heliyon.2024.e29006_bib28) 2021; 245 Singh (10.1016/j.heliyon.2024.e29006_bib62) 2018; 77 Haykin (10.1016/j.heliyon.2024.e29006_bib65) 1994; 5 Tulla (10.1016/j.heliyon.2024.e29006_bib13) 2024 Anderson (10.1016/j.heliyon.2024.e29006_bib69) 1991; 14 Trojovský (10.1016/j.heliyon.2024.e29006_bib68) 2022; 22 Satish Kumar (10.1016/j.heliyon.2024.e29006_bib71) 2019; 94 Aderemi (10.1016/j.heliyon.2024.e29006_bib19) 2023; 5 Ghose (10.1016/j.heliyon.2024.e29006_bib64) 2019 Dadhich (10.1016/j.heliyon.2024.e29006_bib73) 2021; 35 Moghaddam (10.1016/j.heliyon.2024.e29006_bib25) 2019; 9 Yan (10.1016/j.heliyon.2024.e29006_bib15) 2021; 599 Ardana (10.1016/j.heliyon.2024.e29006_bib30) 2022; 10 Heddam (10.1016/j.heliyon.2024.e29006_bib32) 2024; 14 Percival (10.1016/j.heliyon.2024.e29006_bib56) 2008 Roshni (10.1016/j.heliyon.2024.e29006_bib9) 2022; 70 Wang (10.1016/j.heliyon.2024.e29006_bib37) 2013; 15 Albert (10.1016/j.heliyon.2024.e29006_bib3) 2021; 50 Samantaray (10.1016/j.heliyon.2024.e29006_bib20) 2022; 15 Simon (10.1016/j.heliyon.2024.e29006_bib61) 1999 Zhou (10.1016/j.heliyon.2024.e29006_bib33) 2017; 9 Gribovszki (10.1016/j.heliyon.2024.e29006_bib90) 2010; 385 Haykin (10.1016/j.heliyon.2024.e29006_bib66) 1999; vol. 2010 Adamowski (10.1016/j.heliyon.2024.e29006_bib81) 2011; 407 Wei (10.1016/j.heliyon.2024.e29006_bib52) 2022; 15 Saroughi (10.1016/j.heliyon.2024.e29006_bib21) 2023 Sudheer (10.1016/j.heliyon.2024.e29006_bib38) 2014; 24 Devika (10.1016/j.heliyon.2024.e29006_bib83) 2023  | 
    
| References_xml | – volume: 5 year: 2023 ident: bib19 article-title: Groundwater levels forecasting using machine learning models: a case study of the groundwater region 10 at Karst Belt, South Africa, Syst publication-title: Soft Comput. – volume: 245 year: 2021 ident: bib28 article-title: Groundwater quality forecasting using machine learning algorithms for irrigation purposes publication-title: Agric. Water Manag. – volume: 180 start-page: 335 year: 2023 end-page: 363 ident: bib14 article-title: Application of innovative machine learning techniques for long-term rainfall prediction publication-title: Pure Appl. Geophys. – volume: 59 year: 2023 ident: bib24 article-title: Machine learning approach to map the thermal conductivity of over 2,000 neoteric solvents for green energy storage applications publication-title: Energy Storage Mater. – year: 2014 ident: bib2 article-title: Global Water Demand Projections: Past, Present and Future – volume: 48 start-page: 1710 year: 2017 end-page: 1729 ident: bib49 article-title: Wavelet analysis–artificial neural network conjunction models for multi-scale monthly groundwater level predicting in an arid inland river basin, northwestern China publication-title: Nord. Hydrol – volume: 16 start-page: 1655 year: 2022 end-page: 1672 ident: bib76 article-title: Time series-based groundwater level forecasting using gated recurrent unit deep neural networks publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 166 year: 2020 ident: bib27 article-title: Relating groundwater levels with meteorological parameters using ANN technique publication-title: Measurement – volume: vol. 2010 start-page: 1 year: 1999 end-page: 24 ident: bib66 article-title: Neural Networks: a Comprehensive Foundation – volume: 15 start-page: 1147 year: 2021 end-page: 1158 ident: bib51 article-title: Groundwater level prediction in arid areas using wavelet analysis and Gaussian process regression publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 22 start-page: 855 year: 2022 ident: bib68 article-title: Pelican optimization algorithm: a novel nature-inspired algorithm for engineering applications publication-title: Sensors – volume: 21 start-page: 2421 year: 2017 end-page: 2448 ident: bib10 article-title: Characterizing the spatiotemporal variability of groundwater levels of alluvial aquifers in different settings using drought indices publication-title: Hydrol. Earth Syst. Sci. – volume: 603 year: 2021 ident: bib41 article-title: Support vector machine and data assimilation framework for Groundwater Level Forecasting using GRACE satellite data publication-title: J. Hydrol. – volume: 15 start-page: 765 year: 2023 ident: bib18 article-title: Performance of machine learning techniques for meteorological drought forecasting in the wadi mina basin, Algeria publication-title: Water – volume: 37 year: 2021 ident: bib4 article-title: Impacts of regional characteristics on improving the accuracy of groundwater level prediction using machine learning: the case of central eastern continental United States publication-title: J. Hydrol. Reg. Stud. – volume: 24 start-page: 1381 year: 2014 end-page: 1389 ident: bib38 article-title: A hybrid SVM-PSO model for forecasting monthly streamflow publication-title: Neural Comput. Appl. – volume: 15 start-page: 1951 year: 2022 end-page: 1962 ident: bib52 article-title: Prediction of groundwater level using the hybrid model combining wavelet transform and machine learning algorithms publication-title: Earth Sci. Informatics – volume: 34 start-page: 734 year: 2019 end-page: 745 ident: bib11 article-title: Uncovering ecological patterns with convolutional neural networks publication-title: Trends Ecol. Evol. – start-page: 627 year: 2001 end-page: 641 ident: bib55 article-title: Wavelet analysis of discrete time series publication-title: Eur. Congr. Math. – year: 2024 ident: bib16 article-title: Evaluation of CatBoost method for predicting weekly Pan evaporation in subtropical and sub-humid regions publication-title: Pure Appl. Geophys. – volume: 78 start-page: 489 year: 2019 ident: bib40 article-title: Evaluation of data-driven models (SVR and ANN) for groundwater-level prediction in confined and unconfined systems publication-title: Environ. Earth Sci. – volume: 14 start-page: 46 year: 2024 ident: bib32 article-title: Hybrid river stage forecasting based on machine learning with empirical mode decomposition publication-title: Appl. Water Sci. – volume: 10 start-page: 730 year: 2018 ident: bib70 article-title: A comparative study of groundwater level forecasting using data-driven models based on ensemble empirical mode decomposition publication-title: Water – volume: 35 start-page: 2879 year: 2021 end-page: 2893 ident: bib73 article-title: Assessment and prediction of groundwater using geospatial and ANN modeling publication-title: Water Resour. Manag. – year: 2015 ident: bib58 article-title: Wavelet Transforms and Their Applications – year: 2023 ident: bib83 article-title: Bio-inspired optimization: algorithm, analysis and scope of application publication-title: IntechOpen, Rijeka – volume: 25 start-page: 10723 year: 2021 end-page: 10748 ident: bib17 article-title: GLUE uncertainty analysis of hybrid models for predicting hourly soil temperature and application wavelet coherence analysis for correlation with meteorological variables publication-title: Soft Comput. – volume: 54 start-page: 727 year: 2009 end-page: 738 ident: bib91 article-title: The impact of climate change on groundwater recharge and runoff in a humid, equatorial catchment: sensitivity of projections to rainfall intensity publication-title: Hydrol. Sci. J. – volume: 14 start-page: 166 year: 1991 ident: bib69 article-title: Foraging behavior of the American white pelican (Pelecanus erythrorhyncos) in western Nevada, colon publication-title: Waterbirds – volume: 10 start-page: 3904 year: 2020 ident: bib8 article-title: A comparative study among machine learning and numerical models for simulating groundwater dynamics in the Heihe River Basin, northwestern China publication-title: Sci. Rep. – volume: 10 start-page: 784 year: 2022 end-page: 799 ident: bib30 article-title: Groundwater level forecasting using multiple linear regression and artificial neural network approaches publication-title: Civ. Eng. Archit. – volume: 103 start-page: 527 year: 2009 end-page: 535 ident: bib34 article-title: Application and analysis of support vector machine based simulation for runoff and sediment yield publication-title: Biosyst. Eng. – volume: 87 start-page: 954 year: 2000 end-page: 959 ident: bib53 article-title: A new family of power transformations to improve normality or symmetry publication-title: Biometrika – volume: 15 start-page: 723 year: 2022 ident: bib20 article-title: Prediction of groundwater-level using novel SVM-ALO, SVM-FOA, and SVM-FFA algorithms at Purba-Medinipur, India publication-title: Arabian J. Geosci. – volume: 601 year: 2021 ident: bib46 article-title: Long short-term memory neural network (LSTM-NN) for aquifer level time series forecasting using in-situ piezometric observations publication-title: J. Hydrol. – volume: 77 start-page: 708 year: 2018 ident: bib62 article-title: Simulation of suspended sediment based on gamma test, heuristic, and regression-based techniques publication-title: Environ. Earth Sci. – volume: 569 start-page: 387 year: 2019 end-page: 408 ident: bib7 article-title: An enhanced extreme learning machine model for river flow forecasting: state-of-the-art, practical applications in water resource engineering area and future research direction publication-title: J. Hydrol. – volume: 3 start-page: 189 year: 2013 end-page: 221 ident: bib89 article-title: Recent studies on impact of climate change on groundwater resources publication-title: Int. J. Phys. Soc. Sci. – volume: 62 start-page: 531 year: 2014 end-page: 544 ident: bib59 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. – volume: 12 start-page: 4023 year: 2020 ident: bib85 article-title: Modeling and uncertainty analysis of groundwater level using six evolutionary optimization algorithms hybridized with ANFIS, SVM, and ANN publication-title: Sustainability – volume: 599 year: 2021 ident: bib15 article-title: Detection of possible hydrological precursor anomalies using long short-term memory: a case study of the 1996 Lijiang earthquake publication-title: J. Hydrol. – volume: 148 start-page: 181 year: 2017 end-page: 191 ident: bib82 article-title: Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine publication-title: Global Planet. Change – volume: 15 start-page: 1420 year: 2021 end-page: 1439 ident: bib42 article-title: Modeling the fluctuations of groundwater level by employing ensemble deep learning techniques publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 36 start-page: 3081 year: 2022 end-page: 3107 ident: bib44 article-title: Deep learning-based uncertainty quantification of groundwater level predictions publication-title: Stoch. Environ. Res. Risk Assess. – year: 1992 ident: bib79 article-title: Ten Lectures on Wavelets – volume: 19 start-page: 1251 year: 2010 end-page: 1263 ident: bib86 article-title: Hybrid neural modeling for groundwater level prediction publication-title: Neural Comput. Appl. – volume: 90 start-page: 144 year: 2016 end-page: 155 ident: bib39 article-title: A method to improve the stability and accuracy of ANN- and SVM-based time series models for long-term groundwater level predictions publication-title: Comput. Geosci. – volume: 582 year: 2020 ident: bib6 article-title: Quantifying the impacts of the three gorges reservoir on water temperature in the middle reach of the yangtze river publication-title: J. Hydrol. – volume: 32 start-page: 103 year: 2017 end-page: 112 ident: bib5 article-title: Assessing the suitability of extreme learning machines (ELM) for groundwater level prediction publication-title: J. Water Land Dev. – volume: 9 start-page: 781 year: 2017 ident: bib33 article-title: Comparative analysis of ANN and SVM models combined with wavelet preprocess for groundwater depth prediction publication-title: Water – year: 2022 ident: bib23 article-title: Imputation of missing monthly rainfall data using machine learning and spatial interpolation approaches in Thale Sap Songkhla River Basin, Thailand publication-title: Environ. Sci. Pollut. Res. – volume: 28 start-page: 487 year: 2019 end-page: 503 ident: bib72 article-title: Groundwater level prediction/forecasting and assessment of uncertainty using SGS and ARIMA models: a case study in the bauru aquifer system (Brazil) publication-title: Nat. Resour. Res. – volume: 297 start-page: 285 year: 2004 end-page: 300 ident: bib88 article-title: Groundwater influences on soil moisture and surface evaporation publication-title: J. Hydrol. – volume: 396 start-page: 128 year: 2011 end-page: 138 ident: bib35 article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer publication-title: J. Hydrol. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bib67 article-title: Long short-term memory publication-title: Neural Comput. – year: 2024 ident: bib13 article-title: Daily suspended sediment yield estimation using soft-computing algorithms for hilly watersheds in a data-scarce situation: a case study of Bino watershed, Uttarakhand publication-title: Theor. Appl. Climatol. – volume: 577 year: 2019 ident: bib50 article-title: Prediction of groundwater level in seashore reclaimed land using wavelet and artificial neural network-based hybrid model publication-title: J. Hydrol. – volume: 2 start-page: 225 year: 2021 ident: bib84 article-title: Mushroom edibility identification applying CBR and ant lion techniques in multi-sensor environment publication-title: SN Comput. Sci. – year: 2000 ident: bib57 article-title: Wavelet Methods for Time Series Analysis – volume: 5 start-page: 363 year: 1994 end-page: 364 ident: bib65 article-title: Neural networks, a comprehensive foundation publication-title: Int. J. Neural Syst. – volume: 50 start-page: 85 year: 2021 end-page: 94 ident: bib3 article-title: Scientists' warning to humanity on the freshwater biodiversity crisis publication-title: Ambio – year: 2023 ident: bib21 article-title: A novel hybrid algorithms for groundwater level prediction publication-title: Iran. J. Sci. Technol. Trans. Civ. Eng. – volume: 70 start-page: 1885 year: 2022 end-page: 1898 ident: bib9 article-title: Hybrid support vector regression models with algorithm of innovative gunner for the simulation of groundwater level publication-title: Acta Geophys. – volume: 783 year: 2021 ident: bib75 article-title: Groundwater level modeling framework by combining the wavelet transform with a long short-term memory data-driven model publication-title: Sci. Total Environ. – volume: 186 start-page: 1593 year: 2014 end-page: 1608 ident: bib92 article-title: Groundwater levels time series sensitivity to pluviometry and air temperature: a geostatistical approach to Sfax region, Tunisia publication-title: Environ. Monit. Assess. – volume: 25 start-page: 1671 year: 2021 end-page: 1687 ident: bib47 article-title: Groundwater level forecasting with artificial neural networks: a comparison of long short-term memory (LSTM), convolutional neural networks (CNNs), and non-linear autoregressive networks with exogenous input (NARX) publication-title: Hydrol. Earth Syst. Sci. – volume: 14 start-page: 751 year: 2022 ident: bib87 article-title: A combination of metaheuristic optimization algorithms and machine learning methods improves the prediction of groundwater level publication-title: Water – volume: 385 start-page: 371 year: 2010 end-page: 383 ident: bib90 article-title: Diurnal fluctuations in shallow groundwater levels and streamflow rates and their interpretation – a review publication-title: J. Hydrol. – volume: 17 year: 2023 ident: bib31 article-title: Atmosphere air temperature forecasting using the honey badger optimization algorithm: on the warmest and coldest areas of the world publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 15 start-page: 1377 year: 2013 end-page: 1390 ident: bib37 article-title: Improved annual rainfall-runoff forecasting using PSO–SVM model based on EEMD publication-title: J. Hydroinf. – volume: 16 start-page: 301 year: 2023 ident: bib60 article-title: A novel hybrid AIG-SVR model for estimating daily reference evapotranspiration publication-title: Arabian J. Geosci. – volume: 13 start-page: 139 year: 2021 ident: bib78 article-title: Deterministic analysis and uncertainty analysis of ensemble forecasting model based on variational mode decomposition for estimation of monthly groundwater level publication-title: Water – volume: 407 start-page: 28 year: 2011 end-page: 40 ident: bib81 article-title: A wavelet neural network conjunction model for groundwater level forecasting publication-title: J. Hydrol. – volume: 9 start-page: 406 year: 2017 ident: bib29 article-title: Streamflow forecasting using empirical wavelet transform and artificial neural networks publication-title: Water – volume: 32 start-page: 301 year: 2018 end-page: 323 ident: bib12 article-title: Comparative study of hybrid-wavelet artificial intelligence models for monthly groundwater depth forecasting in extreme arid regions, northwest China, water resour publication-title: Manag. – volume: 56 start-page: 32 year: 2013 end-page: 44 ident: bib36 article-title: Predicting groundwater level fluctuations with meteorological effect implications—a comparative study among soft computing techniques publication-title: Comput. Geosci. – year: 2008 ident: bib56 article-title: Analysis of geophysical time series using discrete wavelet transforms: an overview publication-title: Nonlinear Time Ser. Anal. Geosci. Lect. Notes Earth Sci. – volume: 190 year: 2020 ident: bib1 article-title: Groundwater level prediction in Apulia region (Southern Italy) using NARX neural network publication-title: Environ. Res. – volume: 14 year: 2022 ident: bib45 article-title: Daily groundwater level prediction and uncertainty using LSTM coupled with PMI and bootstrap incorporating teleconnection patterns information publication-title: Sustainability – volume: 150 start-page: 205 year: 2018 end-page: 219 ident: bib63 article-title: Spatial and multi-depth temporal soil temperature assessment by assimilating satellite imagery, artificial intelligence and regression based models in arid area publication-title: Comput. Electron. Agric. – start-page: 1 year: 2010 end-page: 8 ident: bib54 article-title: Empirical mode decomposition - an introduction publication-title: 2010 Int. Jt. Conf. Neural Networks – year: 2019 ident: bib64 article-title: Integrated sensor networking for estimating ground water potential in scanty rainfall region: challenges and evaluation publication-title: Comput. Intell. Sens. Networks. Stud. Comput. Intell. – volume: 10 year: 2020 ident: bib26 article-title: Climatic data analysis for groundwater level simulation in drought prone Barind Tract, Bangladesh: modelling approach using artificial neural network publication-title: Groundw. Sustain. Dev. – volume: 562 start-page: 530 year: 2018 end-page: 543 ident: bib93 article-title: Estimating historical groundwater levels based on relations with hydrologic and meteorological variables in the U.S. glacial aquifer system publication-title: J. Hydrol. – volume: 20 start-page: 345 year: 2022 ident: bib48 article-title: A novel groundwater burial depth prediction model based on two-stage modal decomposition and deep learning publication-title: Int. J. Environ. Res. Publ. Health – volume: 94 start-page: 281 year: 2019 end-page: 289 ident: bib71 article-title: Analysis and prediction of groundwater level trends using four variations of mann kendall tests and ARIMA modelling publication-title: J. Geol. Soc. India – volume: 857 year: 2023 ident: bib22 article-title: Using machine learning algorithms to predict groundwater levels in Indonesian tropical peatlands publication-title: Sci. Total Environ. – volume: 47 start-page: 585 year: 2023 end-page: 598 ident: bib77 article-title: Influence of pre-processing algorithms on surface water TDS estimation using artificial intelligence models: a case study of the Karoon river publication-title: Iran. J. Sci. Technol. Trans. Civ. Eng. – volume: 67 start-page: 773 year: 2022 end-page: 790 ident: bib43 article-title: Uncertainty assessment of LSTM based groundwater level predictions publication-title: Hydrol. Sci. J. – year: 1999 ident: bib61 article-title: Neural Networks: a Comprehensive Foundation – volume: 8 start-page: 2317 year: 2022 end-page: 2329 ident: bib74 article-title: Prediction and forecast of pre-monsoon and post-monsoon groundwater level: using deep learning and statistical modelling publication-title: Model. Earth Syst. Environ. – volume: 9 year: 2019 ident: bib25 article-title: Developing comparative mathematic models, BN and ANN for forecasting of groundwater levels publication-title: Groundw. Sustain. Dev. – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: bib80 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci. – start-page: 1 year: 2010 ident: 10.1016/j.heliyon.2024.e29006_bib54 article-title: Empirical mode decomposition - an introduction – volume: 59 year: 2023 ident: 10.1016/j.heliyon.2024.e29006_bib24 article-title: Machine learning approach to map the thermal conductivity of over 2,000 neoteric solvents for green energy storage applications publication-title: Energy Storage Mater. – volume: 454 start-page: 903 year: 1998 ident: 10.1016/j.heliyon.2024.e29006_bib80 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – volume: 25 start-page: 10723 year: 2021 ident: 10.1016/j.heliyon.2024.e29006_bib17 article-title: GLUE uncertainty analysis of hybrid models for predicting hourly soil temperature and application wavelet coherence analysis for correlation with meteorological variables publication-title: Soft Comput. doi: 10.1007/s00500-021-06009-4 – volume: 407 start-page: 28 year: 2011 ident: 10.1016/j.heliyon.2024.e29006_bib81 article-title: A wavelet neural network conjunction model for groundwater level forecasting publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.06.013 – volume: 15 start-page: 1147 year: 2021 ident: 10.1016/j.heliyon.2024.e29006_bib51 article-title: Groundwater level prediction in arid areas using wavelet analysis and Gaussian process regression publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 22 start-page: 855 year: 2022 ident: 10.1016/j.heliyon.2024.e29006_bib68 article-title: Pelican optimization algorithm: a novel nature-inspired algorithm for engineering applications publication-title: Sensors doi: 10.3390/s22030855 – volume: 17 year: 2023 ident: 10.1016/j.heliyon.2024.e29006_bib31 article-title: Atmosphere air temperature forecasting using the honey badger optimization algorithm: on the warmest and coldest areas of the world publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 297 start-page: 285 year: 2004 ident: 10.1016/j.heliyon.2024.e29006_bib88 article-title: Groundwater influences on soil moisture and surface evaporation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2004.04.019 – volume: 599 year: 2021 ident: 10.1016/j.heliyon.2024.e29006_bib15 article-title: Detection of possible hydrological precursor anomalies using long short-term memory: a case study of the 1996 Lijiang earthquake publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126369 – volume: 50 start-page: 85 year: 2021 ident: 10.1016/j.heliyon.2024.e29006_bib3 article-title: Scientists' warning to humanity on the freshwater biodiversity crisis publication-title: Ambio doi: 10.1007/s13280-020-01318-8 – volume: 603 year: 2021 ident: 10.1016/j.heliyon.2024.e29006_bib41 article-title: Support vector machine and data assimilation framework for Groundwater Level Forecasting using GRACE satellite data publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126929 – volume: 48 start-page: 1710 year: 2017 ident: 10.1016/j.heliyon.2024.e29006_bib49 article-title: Wavelet analysis–artificial neural network conjunction models for multi-scale monthly groundwater level predicting in an arid inland river basin, northwestern China publication-title: Nord. Hydrol doi: 10.2166/nh.2016.396 – volume: 8 start-page: 2317 year: 2022 ident: 10.1016/j.heliyon.2024.e29006_bib74 article-title: Prediction and forecast of pre-monsoon and post-monsoon groundwater level: using deep learning and statistical modelling publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-021-01235-z – volume: 562 start-page: 530 year: 2018 ident: 10.1016/j.heliyon.2024.e29006_bib93 article-title: Estimating historical groundwater levels based on relations with hydrologic and meteorological variables in the U.S. glacial aquifer system publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.05.019 – volume: 385 start-page: 371 year: 2010 ident: 10.1016/j.heliyon.2024.e29006_bib90 article-title: Diurnal fluctuations in shallow groundwater levels and streamflow rates and their interpretation – a review publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.02.001 – volume: 25 start-page: 1671 year: 2021 ident: 10.1016/j.heliyon.2024.e29006_bib47 article-title: Groundwater level forecasting with artificial neural networks: a comparison of long short-term memory (LSTM), convolutional neural networks (CNNs), and non-linear autoregressive networks with exogenous input (NARX) publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-25-1671-2021 – volume: 78 start-page: 489 year: 2019 ident: 10.1016/j.heliyon.2024.e29006_bib40 article-title: Evaluation of data-driven models (SVR and ANN) for groundwater-level prediction in confined and unconfined systems publication-title: Environ. Earth Sci. doi: 10.1007/s12665-019-8474-y – volume: 24 start-page: 1381 year: 2014 ident: 10.1016/j.heliyon.2024.e29006_bib38 article-title: A hybrid SVM-PSO model for forecasting monthly streamflow publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1341-y – volume: 150 start-page: 205 year: 2018 ident: 10.1016/j.heliyon.2024.e29006_bib63 article-title: Spatial and multi-depth temporal soil temperature assessment by assimilating satellite imagery, artificial intelligence and regression based models in arid area publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.04.019 – volume: 34 start-page: 734 year: 2019 ident: 10.1016/j.heliyon.2024.e29006_bib11 article-title: Uncovering ecological patterns with convolutional neural networks publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2019.03.006 – volume: 14 year: 2022 ident: 10.1016/j.heliyon.2024.e29006_bib45 article-title: Daily groundwater level prediction and uncertainty using LSTM coupled with PMI and bootstrap incorporating teleconnection patterns information publication-title: Sustainability doi: 10.3390/su141811598 – volume: 36 start-page: 3081 year: 2022 ident: 10.1016/j.heliyon.2024.e29006_bib44 article-title: Deep learning-based uncertainty quantification of groundwater level predictions publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-022-02181-7 – volume: 12 start-page: 4023 year: 2020 ident: 10.1016/j.heliyon.2024.e29006_bib85 article-title: Modeling and uncertainty analysis of groundwater level using six evolutionary optimization algorithms hybridized with ANFIS, SVM, and ANN publication-title: Sustainability doi: 10.3390/su12104023 – volume: 857 year: 2023 ident: 10.1016/j.heliyon.2024.e29006_bib22 article-title: Using machine learning algorithms to predict groundwater levels in Indonesian tropical peatlands publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.159701 – volume: 56 start-page: 32 year: 2013 ident: 10.1016/j.heliyon.2024.e29006_bib36 article-title: Predicting groundwater level fluctuations with meteorological effect implications—a comparative study among soft computing techniques publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2013.01.007 – volume: 5 year: 2023 ident: 10.1016/j.heliyon.2024.e29006_bib19 article-title: Groundwater levels forecasting using machine learning models: a case study of the groundwater region 10 at Karst Belt, South Africa, Syst publication-title: Soft Comput. – volume: 601 year: 2021 ident: 10.1016/j.heliyon.2024.e29006_bib46 article-title: Long short-term memory neural network (LSTM-NN) for aquifer level time series forecasting using in-situ piezometric observations publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126800 – volume: 47 start-page: 585 year: 2023 ident: 10.1016/j.heliyon.2024.e29006_bib77 article-title: Influence of pre-processing algorithms on surface water TDS estimation using artificial intelligence models: a case study of the Karoon river publication-title: Iran. J. Sci. Technol. Trans. Civ. Eng. doi: 10.1007/s40996-022-00928-4 – volume: 94 start-page: 281 year: 2019 ident: 10.1016/j.heliyon.2024.e29006_bib71 article-title: Analysis and prediction of groundwater level trends using four variations of mann kendall tests and ARIMA modelling publication-title: J. Geol. Soc. India doi: 10.1007/s12594-019-1308-4 – volume: 15 start-page: 1951 year: 2022 ident: 10.1016/j.heliyon.2024.e29006_bib52 article-title: Prediction of groundwater level using the hybrid model combining wavelet transform and machine learning algorithms publication-title: Earth Sci. Informatics doi: 10.1007/s12145-022-00853-0 – volume: 180 start-page: 335 year: 2023 ident: 10.1016/j.heliyon.2024.e29006_bib14 article-title: Application of innovative machine learning techniques for long-term rainfall prediction publication-title: Pure Appl. Geophys. doi: 10.1007/s00024-022-03189-4 – volume: 14 start-page: 751 year: 2022 ident: 10.1016/j.heliyon.2024.e29006_bib87 article-title: A combination of metaheuristic optimization algorithms and machine learning methods improves the prediction of groundwater level publication-title: Water doi: 10.3390/w14050751 – volume: 35 start-page: 2879 year: 2021 ident: 10.1016/j.heliyon.2024.e29006_bib73 article-title: Assessment and prediction of groundwater using geospatial and ANN modeling publication-title: Water Resour. Manag. doi: 10.1007/s11269-021-02874-8 – volume: 15 start-page: 723 year: 2022 ident: 10.1016/j.heliyon.2024.e29006_bib20 article-title: Prediction of groundwater-level using novel SVM-ALO, SVM-FOA, and SVM-FFA algorithms at Purba-Medinipur, India publication-title: Arabian J. Geosci. doi: 10.1007/s12517-022-09900-y – volume: 9 start-page: 1735 year: 1997 ident: 10.1016/j.heliyon.2024.e29006_bib67 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – year: 2022 ident: 10.1016/j.heliyon.2024.e29006_bib23 article-title: Imputation of missing monthly rainfall data using machine learning and spatial interpolation approaches in Thale Sap Songkhla River Basin, Thailand publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-022-23022-8 – year: 2019 ident: 10.1016/j.heliyon.2024.e29006_bib64 article-title: Integrated sensor networking for estimating ground water potential in scanty rainfall region: challenges and evaluation doi: 10.1007/978-3-662-57277-1_14 – volume: 9 start-page: 406 year: 2017 ident: 10.1016/j.heliyon.2024.e29006_bib29 article-title: Streamflow forecasting using empirical wavelet transform and artificial neural networks publication-title: Water doi: 10.3390/w9060406 – volume: 54 start-page: 727 year: 2009 ident: 10.1016/j.heliyon.2024.e29006_bib91 article-title: The impact of climate change on groundwater recharge and runoff in a humid, equatorial catchment: sensitivity of projections to rainfall intensity publication-title: Hydrol. Sci. J. doi: 10.1623/hysj.54.4.727 – volume: 10 start-page: 730 year: 2018 ident: 10.1016/j.heliyon.2024.e29006_bib70 article-title: A comparative study of groundwater level forecasting using data-driven models based on ensemble empirical mode decomposition publication-title: Water doi: 10.3390/w10060730 – year: 2024 ident: 10.1016/j.heliyon.2024.e29006_bib16 article-title: Evaluation of CatBoost method for predicting weekly Pan evaporation in subtropical and sub-humid regions publication-title: Pure Appl. Geophys. doi: 10.1007/s00024-023-03426-4 – year: 2000 ident: 10.1016/j.heliyon.2024.e29006_bib57 – volume: 32 start-page: 103 year: 2017 ident: 10.1016/j.heliyon.2024.e29006_bib5 article-title: Assessing the suitability of extreme learning machines (ELM) for groundwater level prediction publication-title: J. Water Land Dev. doi: 10.1515/jwld-2017-0012 – volume: 87 start-page: 954 year: 2000 ident: 10.1016/j.heliyon.2024.e29006_bib53 article-title: A new family of power transformations to improve normality or symmetry publication-title: Biometrika doi: 10.1093/biomet/87.4.954 – start-page: 627 year: 2001 ident: 10.1016/j.heliyon.2024.e29006_bib55 article-title: Wavelet analysis of discrete time series – volume: 28 start-page: 487 year: 2019 ident: 10.1016/j.heliyon.2024.e29006_bib72 article-title: Groundwater level prediction/forecasting and assessment of uncertainty using SGS and ARIMA models: a case study in the bauru aquifer system (Brazil) publication-title: Nat. Resour. Res. doi: 10.1007/s11053-018-9403-6 – volume: 15 start-page: 765 year: 2023 ident: 10.1016/j.heliyon.2024.e29006_bib18 article-title: Performance of machine learning techniques for meteorological drought forecasting in the wadi mina basin, Algeria publication-title: Water doi: 10.3390/w15040765 – volume: 582 year: 2020 ident: 10.1016/j.heliyon.2024.e29006_bib6 article-title: Quantifying the impacts of the three gorges reservoir on water temperature in the middle reach of the yangtze river publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124476 – volume: 148 start-page: 181 year: 2017 ident: 10.1016/j.heliyon.2024.e29006_bib82 article-title: Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine publication-title: Global Planet. Change doi: 10.1016/j.gloplacha.2016.11.014 – year: 2014 ident: 10.1016/j.heliyon.2024.e29006_bib2 – volume: 3 start-page: 189 year: 2013 ident: 10.1016/j.heliyon.2024.e29006_bib89 article-title: Recent studies on impact of climate change on groundwater resources publication-title: Int. J. Phys. Soc. Sci. – volume: 166 year: 2020 ident: 10.1016/j.heliyon.2024.e29006_bib27 article-title: Relating groundwater levels with meteorological parameters using ANN technique publication-title: Measurement doi: 10.1016/j.measurement.2020.108163 – volume: 245 year: 2021 ident: 10.1016/j.heliyon.2024.e29006_bib28 article-title: Groundwater quality forecasting using machine learning algorithms for irrigation purposes publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2020.106625 – year: 2008 ident: 10.1016/j.heliyon.2024.e29006_bib56 article-title: Analysis of geophysical time series using discrete wavelet transforms: an overview doi: 10.1007/978-3-540-78938-3_4 – year: 2015 ident: 10.1016/j.heliyon.2024.e29006_bib58 – year: 2023 ident: 10.1016/j.heliyon.2024.e29006_bib21 article-title: A novel hybrid algorithms for groundwater level prediction publication-title: Iran. J. Sci. Technol. Trans. Civ. Eng. doi: 10.1007/s40996-023-01068-z – volume: 569 start-page: 387 year: 2019 ident: 10.1016/j.heliyon.2024.e29006_bib7 article-title: An enhanced extreme learning machine model for river flow forecasting: state-of-the-art, practical applications in water resource engineering area and future research direction publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.11.069 – volume: 21 start-page: 2421 year: 2017 ident: 10.1016/j.heliyon.2024.e29006_bib10 article-title: Characterizing the spatiotemporal variability of groundwater levels of alluvial aquifers in different settings using drought indices publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-21-2421-2017 – volume: 396 start-page: 128 year: 2011 ident: 10.1016/j.heliyon.2024.e29006_bib35 article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.11.002 – year: 1999 ident: 10.1016/j.heliyon.2024.e29006_bib61 – volume: 77 start-page: 708 year: 2018 ident: 10.1016/j.heliyon.2024.e29006_bib62 article-title: Simulation of suspended sediment based on gamma test, heuristic, and regression-based techniques publication-title: Environ. Earth Sci. doi: 10.1007/s12665-018-7892-6 – volume: 14 start-page: 46 year: 2024 ident: 10.1016/j.heliyon.2024.e29006_bib32 article-title: Hybrid river stage forecasting based on machine learning with empirical mode decomposition publication-title: Appl. Water Sci. doi: 10.1007/s13201-024-02103-8 – volume: 14 start-page: 166 year: 1991 ident: 10.1016/j.heliyon.2024.e29006_bib69 article-title: Foraging behavior of the American white pelican (Pelecanus erythrorhyncos) in western Nevada, colon publication-title: Waterbirds doi: 10.2307/1521506 – volume: 186 start-page: 1593 year: 2014 ident: 10.1016/j.heliyon.2024.e29006_bib92 article-title: Groundwater levels time series sensitivity to pluviometry and air temperature: a geostatistical approach to Sfax region, Tunisia publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-013-3477-8 – volume: 9 year: 2019 ident: 10.1016/j.heliyon.2024.e29006_bib25 article-title: Developing comparative mathematic models, BN and ANN for forecasting of groundwater levels publication-title: Groundw. Sustain. Dev. doi: 10.1016/j.gsd.2019.100237 – volume: 67 start-page: 773 year: 2022 ident: 10.1016/j.heliyon.2024.e29006_bib43 article-title: Uncertainty assessment of LSTM based groundwater level predictions publication-title: Hydrol. Sci. J. doi: 10.1080/02626667.2022.2046755 – volume: 16 start-page: 1655 year: 2022 ident: 10.1016/j.heliyon.2024.e29006_bib76 article-title: Time series-based groundwater level forecasting using gated recurrent unit deep neural networks publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 2 start-page: 225 year: 2021 ident: 10.1016/j.heliyon.2024.e29006_bib84 article-title: Mushroom edibility identification applying CBR and ant lion techniques in multi-sensor environment publication-title: SN Comput. Sci. doi: 10.1007/s42979-021-00582-z – volume: 10 start-page: 3904 year: 2020 ident: 10.1016/j.heliyon.2024.e29006_bib8 article-title: A comparative study among machine learning and numerical models for simulating groundwater dynamics in the Heihe River Basin, northwestern China publication-title: Sci. Rep. doi: 10.1038/s41598-020-60698-9 – volume: 16 start-page: 301 year: 2023 ident: 10.1016/j.heliyon.2024.e29006_bib60 article-title: A novel hybrid AIG-SVR model for estimating daily reference evapotranspiration publication-title: Arabian J. Geosci. doi: 10.1007/s12517-023-11387-0 – volume: 10 year: 2020 ident: 10.1016/j.heliyon.2024.e29006_bib26 article-title: Climatic data analysis for groundwater level simulation in drought prone Barind Tract, Bangladesh: modelling approach using artificial neural network publication-title: Groundw. Sustain. Dev. doi: 10.1016/j.gsd.2020.100361 – year: 1992 ident: 10.1016/j.heliyon.2024.e29006_bib79 – volume: 32 start-page: 301 year: 2018 ident: 10.1016/j.heliyon.2024.e29006_bib12 article-title: Comparative study of hybrid-wavelet artificial intelligence models for monthly groundwater depth forecasting in extreme arid regions, northwest China, water resour publication-title: Manag. – volume: 783 year: 2021 ident: 10.1016/j.heliyon.2024.e29006_bib75 article-title: Groundwater level modeling framework by combining the wavelet transform with a long short-term memory data-driven model publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.146948 – year: 2023 ident: 10.1016/j.heliyon.2024.e29006_bib83 article-title: Bio-inspired optimization: algorithm, analysis and scope of application doi: 10.5772/intechopen.106014 – volume: 70 start-page: 1885 year: 2022 ident: 10.1016/j.heliyon.2024.e29006_bib9 article-title: Hybrid support vector regression models with algorithm of innovative gunner for the simulation of groundwater level publication-title: Acta Geophys. doi: 10.1007/s11600-022-00826-3 – volume: 13 start-page: 139 year: 2021 ident: 10.1016/j.heliyon.2024.e29006_bib78 article-title: Deterministic analysis and uncertainty analysis of ensemble forecasting model based on variational mode decomposition for estimation of monthly groundwater level publication-title: Water doi: 10.3390/w13020139 – volume: 577 year: 2019 ident: 10.1016/j.heliyon.2024.e29006_bib50 article-title: Prediction of groundwater level in seashore reclaimed land using wavelet and artificial neural network-based hybrid model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.123948 – volume: vol. 2010 start-page: 1 year: 1999 ident: 10.1016/j.heliyon.2024.e29006_bib66 – volume: 15 start-page: 1377 year: 2013 ident: 10.1016/j.heliyon.2024.e29006_bib37 article-title: Improved annual rainfall-runoff forecasting using PSO–SVM model based on EEMD publication-title: J. Hydroinf. doi: 10.2166/hydro.2013.134 – volume: 5 start-page: 363 year: 1994 ident: 10.1016/j.heliyon.2024.e29006_bib65 article-title: Neural networks, a comprehensive foundation publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065794000372 – volume: 15 start-page: 1420 year: 2021 ident: 10.1016/j.heliyon.2024.e29006_bib42 article-title: Modeling the fluctuations of groundwater level by employing ensemble deep learning techniques publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 190 year: 2020 ident: 10.1016/j.heliyon.2024.e29006_bib1 article-title: Groundwater level prediction in Apulia region (Southern Italy) using NARX neural network publication-title: Environ. Res. doi: 10.1016/j.envres.2020.110062 – volume: 10 start-page: 784 year: 2022 ident: 10.1016/j.heliyon.2024.e29006_bib30 article-title: Groundwater level forecasting using multiple linear regression and artificial neural network approaches publication-title: Civ. Eng. Archit. doi: 10.13189/cea.2022.100304 – volume: 62 start-page: 531 year: 2014 ident: 10.1016/j.heliyon.2024.e29006_bib59 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2288675 – volume: 37 year: 2021 ident: 10.1016/j.heliyon.2024.e29006_bib4 article-title: Impacts of regional characteristics on improving the accuracy of groundwater level prediction using machine learning: the case of central eastern continental United States publication-title: J. Hydrol. Reg. Stud. – volume: 20 start-page: 345 year: 2022 ident: 10.1016/j.heliyon.2024.e29006_bib48 article-title: A novel groundwater burial depth prediction model based on two-stage modal decomposition and deep learning publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph20010345 – volume: 90 start-page: 144 year: 2016 ident: 10.1016/j.heliyon.2024.e29006_bib39 article-title: A method to improve the stability and accuracy of ANN- and SVM-based time series models for long-term groundwater level predictions publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2016.03.002 – volume: 9 start-page: 781 year: 2017 ident: 10.1016/j.heliyon.2024.e29006_bib33 article-title: Comparative analysis of ANN and SVM models combined with wavelet preprocess for groundwater depth prediction publication-title: Water doi: 10.3390/w9100781 – year: 2024 ident: 10.1016/j.heliyon.2024.e29006_bib13 article-title: Daily suspended sediment yield estimation using soft-computing algorithms for hilly watersheds in a data-scarce situation: a case study of Bino watershed, Uttarakhand publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-024-04862-5 – volume: 103 start-page: 527 year: 2009 ident: 10.1016/j.heliyon.2024.e29006_bib34 article-title: Application and analysis of support vector machine based simulation for runoff and sediment yield publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2009.04.017 – volume: 19 start-page: 1251 year: 2010 ident: 10.1016/j.heliyon.2024.e29006_bib86 article-title: Hybrid neural modeling for groundwater level prediction publication-title: Neural Comput. Appl. doi: 10.1007/s00521-010-0360-1  | 
    
| SSID | ssj0001586973 | 
    
| Score | 2.2767699 | 
    
| Snippet | The estimation of groundwater levels is crucial and an important step in ensuring sustainable management of water resources. In this paper, selected... | 
    
| SourceID | doaj unpaywall swepub pubmedcentral proquest pubmed crossref elsevier  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | e29006 | 
    
| SubjectTerms | Artificial intelligence case studies Deep learning evaporation Geoteknik groundwater Groundwater level Hybrid algorithm Iran Machine learning neural networks piezometers prediction Soil Mechanics support vector machines temperature water table wavelet  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwELZQV-J44F4ol4yEEEikJKmdg7cu7KogbbUPFC1PkeNDDURJ1U1YlV_Gz2PGTsuGRbA8JrYTjz2e-SzPfCbkWeTHQgJQ93JwLx5ToMYp4GIwhuAPuQhjPcbk5MNZNJ2zD8f8uEtWx1yY3vm9jcNa6LJY10hVGrKRDlNLsL0TcYDeA7Iznx1NPuMFcgA8vIQx_1eWzp_b9vyPpenvuaHzMPN8tGTHKXqNXGmrpVifirI845MObpDZRhoXivJ11Db5SH7_jejxwuLeJNc7dEonTp1ukUu6uk0uH3bn73fIj31HDq6piwOhtaFBGFGMJVm6lANwhdRdS31C64p-g7143Z5Q1FBHVkGLMyyg1N7EA8VStish1xSjRKB6hVC6tKW0qfH70IWGYg5KpU6hAytaYrgTfSHBDVNLkvuGTgUMoKi8PbEQK3pUiqJ6Rd-DN355l8wP9j--nXrd3Q-e5HzcgJHWseRxCPtBEyipdBjlUSLsfaI5S0Pc5uSMK4YG0vBA6cgwWzWSCdqpXTKo6krfJzSOuRrrNBWGSZaIVEhfSANIxYSSCWGGZLTRiGzpKD6yTezbl6ybjwznI3PzMSR7qDfbysjQbV_ATGbdgs-ML2GnHAQSICVTkueKMZ3yNDV5apQaD0my0bqsAzsOxMCnin_9_-lGSzMwBnjCIyoNc5kBHokBcbIg_ksd9HE-EtsNyT2n2VtJxgnsz2GIoXM9ne-J2i-pioUlJbfUgzz2h-S5Wx69Nu-KTxM7PGXTgmSA8kGK19vlc7Fxf_DfLR6Sq_iEp38Bf0QGzarVjwFENvmTznT8BIcqcvk priority: 102 providerName: Unpaywall  | 
    
| Title | Evaluate effect of 126 pre-processing methods on various artificial intelligence models accuracy versus normal mode to predict groundwater level (case study: Hamedan-Bahar Plain, Iran) | 
    
| URI | https://dx.doi.org/10.1016/j.heliyon.2024.e29006 https://www.ncbi.nlm.nih.gov/pubmed/38601575 https://www.proquest.com/docview/3037399417 https://www.proquest.com/docview/3153804085 https://pubmed.ncbi.nlm.nih.gov/PMC11004570 https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-105116 https://doi.org/10.1016/j.heliyon.2024.e29006 https://doaj.org/article/f0c71711c5604dc5bd44e9599fb9fdd3  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 10 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2405-8440 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001586973 issn: 2405-8440 databaseCode: KQ8 dateStart: 20150901 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2405-8440 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001586973 issn: 2405-8440 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2405-8440 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001586973 issn: 2405-8440 databaseCode: DIK dateStart: 20150101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2405-8440 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001586973 issn: 2405-8440 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2405-8440 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001586973 issn: 2405-8440 databaseCode: AKRWK dateStart: 20150901 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2405-8440 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001586973 issn: 2405-8440 databaseCode: RPM dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQkLg8IO6Uy2QkhECibZLaScxbB5sK0qY9UDSeIscXNVPkVF3K1H_Gz-McOy2tJjEeeK0dN-cSn-_Ix98h5E0aZVIBUO-XEF76TIMbC8DFsBlCPOQyycwILycfn6STKft6xs-2Wn1hTVigBw6KG9pIQcYRxwpCM9OKl5oxI7gQthRWa8_zGeViK5kK94PzVGSjP1d2hueDmamrVYOcpwkbmERE2OVoKxh5zv6dmHQVc14tnewIRu-S20s3l6tLWddbAeroPrnXIUs6DhI9IDeMe0huHXdn54_Ir8NA7G1oqOGgjaVxklKsA5mH6wIQxmhoKX1BG0d_Qh7dLC8oKikQTdBqi8GT-i46MKzUciHVimKFB0x3CINrP0rbBteHV2gp3h9x-hJeYEFrLFWi7xSEUOoJbj_SiQR5pesfyJlc0NNaVu4D_QKR9P1jMj06_PZp0u_6NvQV56MWNliTKZ4lkMvZWCttkrRMc-l7gZZMJJiilIxrhpub5bE2qWV-aqpy3GOekD3XOPOM0CzjemSEkJYplkshVSSVBZRhE8WktD0yWBuwmAd6jmJdt3ZedBYv0OJFsHiPHKCZN5ORXdv_AD5XdD5XXOdzPZKvnaTogEoAILBUdd3_v147VQEfMp7OSGfAlgVgiQzQIouzv8zB-BQhKV2PPA2OuJFklENuDSqGl9tx0R1Rd0dcNfOE4p42kGdRj7wN3rzzzOfq-9irp26XIBkgdJBiuPH2f9P78_-h9xfkDi6Jh3kxf0n22sXSvAJM2Jb7_vPfJzenJ6fjH78BBQtmPA | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwELZQV-J44F4ol4yEEEikJKmdg7cu7KogbbUPFC1PkeNDDURJ1U1YlV_Gz2PGTsuGRbA8JrYTjz2e-SzPfCbkWeTHQgJQ93JwLx5ToMYp4GIwhuAPuQhjPcbk5MNZNJ2zD8f8uEtWx1yY3vm9jcNa6LJY10hVGrKRDlNLsL0TcYDeA7Iznx1NPuMFcgA8vIQx_1eWzp_b9vyPpenvuaHzMPN8tGTHKXqNXGmrpVifirI845MObpDZRhoXivJ11Db5SH7_jejxwuLeJNc7dEonTp1ukUu6uk0uH3bn73fIj31HDq6piwOhtaFBGFGMJVm6lANwhdRdS31C64p-g7143Z5Q1FBHVkGLMyyg1N7EA8VStish1xSjRKB6hVC6tKW0qfH70IWGYg5KpU6hAytaYrgTfSHBDVNLkvuGTgUMoKi8PbEQK3pUiqJ6Rd-DN355l8wP9j--nXrd3Q-e5HzcgJHWseRxCPtBEyipdBjlUSLsfaI5S0Pc5uSMK4YG0vBA6cgwWzWSCdqpXTKo6krfJzSOuRrrNBWGSZaIVEhfSANIxYSSCWGGZLTRiGzpKD6yTezbl6ybjwznI3PzMSR7qDfbysjQbV_ATGbdgs-ML2GnHAQSICVTkueKMZ3yNDV5apQaD0my0bqsAzsOxMCnin_9_-lGSzMwBnjCIyoNc5kBHokBcbIg_ksd9HE-EtsNyT2n2VtJxgnsz2GIoXM9ne-J2i-pioUlJbfUgzz2h-S5Wx69Nu-KTxM7PGXTgmSA8kGK19vlc7Fxf_DfLR6Sq_iEp38Bf0QGzarVjwFENvmTznT8BIcqcvk | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluate+effect+of+126+pre-processing+methods+on+various+artificial+intelligence+models+accuracy+versus+normal+mode+to+predict+groundwater+level+%28case+study%3A+Hamedan-Bahar+Plain%2C+Iran%29&rft.jtitle=Heliyon&rft.au=Saroughi%2C+Mohsen&rft.au=Mirzania%2C+Ehsan&rft.au=Achite%2C+Mohammed&rft.au=Katipo%C4%9Flu%2C+Okan+Mert&rft.date=2024-04-15&rft.pub=Elsevier+Ltd&rft.issn=2405-8440&rft.eissn=2405-8440&rft.volume=10&rft.issue=7&rft_id=info:doi/10.1016%2Fj.heliyon.2024.e29006&rft.externalDocID=S2405844024050370 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon |