Cardiac sarcoidosis classification with deep convolutional neural network-based features using polar maps
The aim of this study was to determine whether deep convolutional neural network (DCNN)-based features can represent the difference between cardiac sarcoidosis (CS) and non-CS using polar maps. A total of 85 patients (33 CS patients and 52 non-CS patients) were analyzed as our study subjects. One ra...
Saved in:
| Published in | Computers in biology and medicine Vol. 104; pp. 81 - 86 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.01.2019
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2018.11.008 |
Cover
| Abstract | The aim of this study was to determine whether deep convolutional neural network (DCNN)-based features can represent the difference between cardiac sarcoidosis (CS) and non-CS using polar maps.
A total of 85 patients (33 CS patients and 52 non-CS patients) were analyzed as our study subjects. One radiologist reviewed PET/CT images and defined the left ventricle region for the construction of polar maps. We extracted high-level features from the polar maps through the Inception-v3 network and evaluated their effectiveness by applying them to a CS classification task. Then we introduced the ReliefF algorithm in our method. The standardized uptake value (SUV)-based classification method and the coefficient of variance (CoV)-based classification method were used as comparative methods.
Sensitivity, specificity and the harmonic mean of sensitivity and specificity of our method with the ReliefF algorithm were 0.839, 0.870 and 0.854, respectively. Those of the SUVmax-based classification method were 0.468, 0.710 and 0.564, respectively, and those of the CoV-based classification method were 0.655, 0.750 and 0.699, respectively.
The DCNN-based high-level features may be more effective than low-level features used in conventional quantitative analysis methods for CS classification.
•A method for detection of cardiac sarcoidosis was proposed.•The DCNN-based features were effective for the cardiac sarcoidosis classification.•Feature selection algorithm was effective for improving the performance. |
|---|---|
| AbstractList | The aim of this study was to determine whether deep convolutional neural network (DCNN)-based features can represent the difference between cardiac sarcoidosis (CS) and non-CS using polar maps.
A total of 85 patients (33 CS patients and 52 non-CS patients) were analyzed as our study subjects. One radiologist reviewed PET/CT images and defined the left ventricle region for the construction of polar maps. We extracted high-level features from the polar maps through the Inception-v3 network and evaluated their effectiveness by applying them to a CS classification task. Then we introduced the ReliefF algorithm in our method. The standardized uptake value (SUV)-based classification method and the coefficient of variance (CoV)-based classification method were used as comparative methods.
Sensitivity, specificity and the harmonic mean of sensitivity and specificity of our method with the ReliefF algorithm were 0.839, 0.870 and 0.854, respectively. Those of the SUVmax-based classification method were 0.468, 0.710 and 0.564, respectively, and those of the CoV-based classification method were 0.655, 0.750 and 0.699, respectively.
The DCNN-based high-level features may be more effective than low-level features used in conventional quantitative analysis methods for CS classification.
•A method for detection of cardiac sarcoidosis was proposed.•The DCNN-based features were effective for the cardiac sarcoidosis classification.•Feature selection algorithm was effective for improving the performance. The aim of this study was to determine whether deep convolutional neural network (DCNN)-based features can represent the difference between cardiac sarcoidosis (CS) and non-CS using polar maps.AIMSThe aim of this study was to determine whether deep convolutional neural network (DCNN)-based features can represent the difference between cardiac sarcoidosis (CS) and non-CS using polar maps.A total of 85 patients (33 CS patients and 52 non-CS patients) were analyzed as our study subjects. One radiologist reviewed PET/CT images and defined the left ventricle region for the construction of polar maps. We extracted high-level features from the polar maps through the Inception-v3 network and evaluated their effectiveness by applying them to a CS classification task. Then we introduced the ReliefF algorithm in our method. The standardized uptake value (SUV)-based classification method and the coefficient of variance (CoV)-based classification method were used as comparative methods.METHODSA total of 85 patients (33 CS patients and 52 non-CS patients) were analyzed as our study subjects. One radiologist reviewed PET/CT images and defined the left ventricle region for the construction of polar maps. We extracted high-level features from the polar maps through the Inception-v3 network and evaluated their effectiveness by applying them to a CS classification task. Then we introduced the ReliefF algorithm in our method. The standardized uptake value (SUV)-based classification method and the coefficient of variance (CoV)-based classification method were used as comparative methods.Sensitivity, specificity and the harmonic mean of sensitivity and specificity of our method with the ReliefF algorithm were 0.839, 0.870 and 0.854, respectively. Those of the SUVmax-based classification method were 0.468, 0.710 and 0.564, respectively, and those of the CoV-based classification method were 0.655, 0.750 and 0.699, respectively.RESULTSSensitivity, specificity and the harmonic mean of sensitivity and specificity of our method with the ReliefF algorithm were 0.839, 0.870 and 0.854, respectively. Those of the SUVmax-based classification method were 0.468, 0.710 and 0.564, respectively, and those of the CoV-based classification method were 0.655, 0.750 and 0.699, respectively.The DCNN-based high-level features may be more effective than low-level features used in conventional quantitative analysis methods for CS classification.CONCLUSIONThe DCNN-based high-level features may be more effective than low-level features used in conventional quantitative analysis methods for CS classification. The aim of this study was to determine whether deep convolutional neural network (DCNN)-based features can represent the difference between cardiac sarcoidosis (CS) and non-CS using polar maps. A total of 85 patients (33 CS patients and 52 non-CS patients) were analyzed as our study subjects. One radiologist reviewed PET/CT images and defined the left ventricle region for the construction of polar maps. We extracted high-level features from the polar maps through the Inception-v3 network and evaluated their effectiveness by applying them to a CS classification task. Then we introduced the ReliefF algorithm in our method. The standardized uptake value (SUV)-based classification method and the coefficient of variance (CoV)-based classification method were used as comparative methods. Sensitivity, specificity and the harmonic mean of sensitivity and specificity of our method with the ReliefF algorithm were 0.839, 0.870 and 0.854, respectively. Those of the SUVmax-based classification method were 0.468, 0.710 and 0.564, respectively, and those of the CoV-based classification method were 0.655, 0.750 and 0.699, respectively. The DCNN-based high-level features may be more effective than low-level features used in conventional quantitative analysis methods for CS classification. AimsThe aim of this study was to determine whether deep convolutional neural network (DCNN)-based features can represent the difference between cardiac sarcoidosis (CS) and non-CS using polar maps.MethodsA total of 85 patients (33 CS patients and 52 non-CS patients) were analyzed as our study subjects. One radiologist reviewed PET/CT images and defined the left ventricle region for the construction of polar maps. We extracted high-level features from the polar maps through the Inception-v3 network and evaluated their effectiveness by applying them to a CS classification task. Then we introduced the ReliefF algorithm in our method. The standardized uptake value (SUV)-based classification method and the coefficient of variance (CoV)-based classification method were used as comparative methods.ResultsSensitivity, specificity and the harmonic mean of sensitivity and specificity of our method with the ReliefF algorithm were 0.839, 0.870 and 0.854, respectively. Those of the SUVmax-based classification method were 0.468, 0.710 and 0.564, respectively, and those of the CoV-based classification method were 0.655, 0.750 and 0.699, respectively.ConclusionThe DCNN-based high-level features may be more effective than low-level features used in conventional quantitative analysis methods for CS classification. |
| Author | Manabe, Osamu Shiga, Tohru Tsujino, Ichizo Magota, Keiichi Ogawa, Takahiro Hirata, Kenji Ohira, Hiroshi Togo, Ren Haseyama, Miki |
| Author_xml | – sequence: 1 givenname: Ren surname: Togo fullname: Togo, Ren email: togo@lmd.ist.hokudai.ac.jp organization: Graduate School of Information Science and Technology, Hokkaido University, Hokkaido, 060-0814, Japan – sequence: 2 givenname: Kenji surname: Hirata fullname: Hirata, Kenji organization: Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Hokkaido, 060-8638, Japan – sequence: 3 givenname: Osamu surname: Manabe fullname: Manabe, Osamu email: osamumanabe817@med.hokudai.ac.jp organization: Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Hokkaido, 060-8638, Japan – sequence: 4 givenname: Hiroshi surname: Ohira fullname: Ohira, Hiroshi organization: First Department of Medicine, Hokkaido University Hospital, Hokkaido, 060-8638, Japan – sequence: 5 givenname: Ichizo surname: Tsujino fullname: Tsujino, Ichizo organization: First Department of Medicine, Hokkaido University Hospital, Hokkaido, 060-8638, Japan – sequence: 6 givenname: Keiichi surname: Magota fullname: Magota, Keiichi organization: Division of Medical Imaging and Technology, Hokkaido University Hospital, Hokkaido, 060-8638, Japan – sequence: 7 givenname: Takahiro surname: Ogawa fullname: Ogawa, Takahiro organization: Graduate School of Information Science and Technology, Hokkaido University, Hokkaido, 060-0814, Japan – sequence: 8 givenname: Miki surname: Haseyama fullname: Haseyama, Miki organization: Graduate School of Information Science and Technology, Hokkaido University, Hokkaido, 060-0814, Japan – sequence: 9 givenname: Tohru surname: Shiga fullname: Shiga, Tohru organization: Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Hokkaido, 060-8638, Japan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30447397$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkk1v1DAQhi1URLeFv4AsceGSYMfO1wVBV3xJlbjA2ZrYE_DWsYOddLX_nqTbCmlPy2kk65nX42d8RS588EgI5SznjFfvdrkOw9jZMKDJC8abnPOcseYZ2fCmbjNWCnlBNoxxlsmmKC_JVUo7xphkgr0gl4JJWYu23hC7hWgsaJog6mBNSDZR7SAl21sNkw2e7u30mxrEkerg74Ob11Nw1OMcH8q0D_Eu6yChoT3CNEdMdE7W_6JjcBDpAGN6SZ734BK-eqzX5OfnTz-2X7Pb71--bT_eZrosxZRJzQQ0vAcpTd3XCJwZ0ere9F1XcC27VhuGounKtu-wZlVbgK6FlkVVQIsgrkl7zJ39CIc9OKfGaAeIB8WZWvWpnfqnT636FOdq0bf0vj32jjH8mTFNarBJo3PgMcxJFVyUnDcVrxb0zQm6C3NctKxU2bZVI8t6oV4_UnO3XvY0ydMCFuD9EdAxpBSxV9pOD9qnCNadM3JzEvAfr705tuKyjnuLUSVt0Ws0NqKelAn2nJAPJyHaWb98HXeHh_Mi_gJS-uPy |
| CitedBy_id | crossref_primary_10_1053_j_semnuclmed_2020_10_001 crossref_primary_10_1007_s40336_023_00595_z crossref_primary_10_3390_diagnostics11091554 crossref_primary_10_1007_s12350_022_02977_8 crossref_primary_10_1016_j_ejmp_2021_03_008 crossref_primary_10_1109_TRPMS_2020_3030611 crossref_primary_10_1007_s12170_020_00649_1 crossref_primary_10_1053_j_semnuclmed_2022_08_004 crossref_primary_10_1016_j_ijmedinf_2019_06_017 crossref_primary_10_2967_jnumed_118_220590 crossref_primary_10_1053_j_semnuclmed_2025_02_012 crossref_primary_10_3390_diagnostics13142426 crossref_primary_10_1016_j_ccl_2023_01_004 crossref_primary_10_1038_s41598_022_06604_x crossref_primary_10_1007_s42452_025_06504_5 crossref_primary_10_1016_j_cpet_2021_06_011 crossref_primary_10_1080_14779072_2024_2380764 crossref_primary_10_3390_jcm10091941 crossref_primary_10_3390_s22062330 crossref_primary_10_4070_kcj_2021_0104 crossref_primary_10_35377_saucis___1516717 crossref_primary_10_3389_fcvm_2021_741667 crossref_primary_10_1097_MNM_0000000000001786 crossref_primary_10_1007_s00408_023_00641_7 crossref_primary_10_1053_j_semnuclmed_2020_03_004 crossref_primary_10_1007_s40336_021_00411_6 crossref_primary_10_1016_j_cjca_2021_09_030 crossref_primary_10_1016_j_phrs_2023_106984 crossref_primary_10_1186_s42444_022_00062_2 crossref_primary_10_2478_raon_2022_0037 crossref_primary_10_1049_iet_ipr_2019_1690 |
| Cites_doi | 10.1016/j.media.2017.07.005 10.1016/j.cardfail.2014.12.004 10.1016/j.jcmg.2010.09.015 10.1016/j.ijcard.2015.05.075 10.1186/2191-219X-4-1 10.1038/ajg.2015.116 10.2967/jnumed.107.042333 10.2967/jnumed.116.187203 10.1007/s00259-007-0650-8 10.1007/s12350-009-9110-0 10.1007/s12350-014-9901-9 10.1038/nature14539 10.1148/radiol.2017162326 10.1023/A:1022627411411 10.2967/jnumed.111.090662 10.1109/72.977291 10.1016/j.ebiom.2017.10.014 10.1016/j.patcog.2016.03.028 10.1093/ehjci/jev297 10.17996/anc.17-00014 10.1023/A:1025667309714 10.1161/CIRCEP.110.959254 10.17996/anc.17-00037 10.1016/j.hrthm.2014.03.043 10.1007/s11604-018-0726-3 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited Jan 2019 |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited Jan 2019 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.compbiomed.2018.11.008 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library Proquest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database ProQuest Health & Medical Collection Medical Database Research Library Biological science database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Research Library Prep |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 86 |
| ExternalDocumentID | 10.1016/j.compbiomed.2018.11.008 30447397 10_1016_j_compbiomed_2018_11_008 S0010482518303640 |
| Genre | Clinical Trial Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Japan |
| GeographicLocations_xml | – name: Japan |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AAIAV ABLVK ABYKQ AFKWA AHPSJ AJBFU AJOXV AMFUW LCYCR M0N RIG AAYXX CITATION PUEGO AFCTW ALIPV CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c553t-4c03a81fa44d7f7ea10d39cfdfbb21c4b9cd0e38b59fbe70692ac73c4262a9ea3 |
| IEDL.DBID | UNPAY |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Sun Oct 26 03:20:57 EDT 2025 Thu Oct 02 07:09:28 EDT 2025 Tue Oct 07 06:19:31 EDT 2025 Wed Feb 19 02:31:32 EST 2025 Thu Apr 24 23:11:32 EDT 2025 Wed Oct 01 05:32:19 EDT 2025 Fri Feb 23 02:24:54 EST 2024 Tue Oct 14 19:33:04 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning 18F-FDG PET Feature selection Cardiac sarcoidosis (CS) Machine learning Radiology Feature extraction Convolutional neural network (CNN) Computer-aided diagnosis F-FDG PET |
| Language | English |
| License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c553t-4c03a81fa44d7f7ea10d39cfdfbb21c4b9cd0e38b59fbe70692ac73c4262a9ea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/am/pii/S0010482518303640?via%3Dihub |
| PMID | 30447397 |
| PQID | 2159968457 |
| PQPubID | 1226355 |
| PageCount | 6 |
| ParticipantIDs | unpaywall_primary_10_1016_j_compbiomed_2018_11_008 proquest_miscellaneous_2135118616 proquest_journals_2159968457 pubmed_primary_30447397 crossref_citationtrail_10_1016_j_compbiomed_2018_11_008 crossref_primary_10_1016_j_compbiomed_2018_11_008 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2018_11_008 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2018_11_008 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | January 2019 2019-01-00 20190101 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Tahara, Tahara, Nitta, Kodama, Mizoguchi, Kaida, Baba, Ishibashi, Hayabuchi, Narula, Imaizumi (bib26) 2010; 3 Youssef, Leung, Mylonas, Nery, Williams, Wisenberg, Gulenchyn, deKemp, DaSilva, Birnie, Wells, Beanlands (bib5) 2012; 53 Lakhani, Sundaram (bib32) 2017; 284 Kandolin, Lehtonen, Kupari (bib1) 2011; 4 Birnie, Sauer, Bogun, Cooper, Culver, Duvernoy, Judson, Kron, Mehta, Cosedis Nielsen, Patel, Ohe, Raatikainen, Soejima (bib3) 2014; 11 Cheng, Liu (bib20) 2017 Robnik-Šikonja, Kononenko (bib25) 2003; 53 Langah, Spicer, Gebregziabher, Gordon (bib6) 2009; 16 Erfani, Rajasegarar, Karunasekera, Leckie (bib19) 2016; 58 Vennalaganti, Naag Kanakadandi, Gross, Parasa, Wang, Gupta, Sharma (bib31) 2015; 110 Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, van der Laak, van Ginneken, Sánchez (bib18) 2017; 42 M. Miyagawa, R. Tashiro, E. Watanabe, N. Kawaguchi, H. Ishimura, T. Kido, T. Kido, A. Kurata, T. Mochizuki, Optimal Patient Preparation for Detection and Assessment of Cardiac Sarcoidosis by FDG-PET, (n.d.). doi:10.17996/anc.17-00037. M. Morooka, M. Moroi, K. Uno, K. Ito, J. Wu, T. Nakagawa, K. Kubota, R. Minamimoto, Y. Miyata, M. Okasaki, O. Okazaki, Y. Yamada, T. Yamaguchi, M. Hiroe, Long fasting is effective in inhibiting physiological myocardial 18 F-FDG uptake and for evaluating active lesions of cardiac sarcoidosis, (n.d.). (accessed June 4, 2018). Shichijo, Nomura, Aoyama, Nishikawa, Miura, Shinagawa, Takiyama, Tanimoto, Ishihara, Matsuo, Tada (bib33) 2017; 25 Manabe, Naya, Yoshinaga, Oyama-Manabe, Ohira, Aikawa, Tamaki (bib4) 2017; 3 Gontier, Fourme, Wartski, Blondet, Bonardel, Le Stanc, Mantzarides, Foehrenbach, Ohira, Ardle, Robert, Nery, Juneau, Renaud, Klein, Clarkin, Macdonald, Leung, Nair, Beanlands, Birnie, Yokoyama, Miyagawa, Okayama, Inoue, Miki, Ogimoto, Higaki, Mochizuki (bib10) 2015; 195 Tezuka, Terashima, Kato, Toriihara, Hirasawa, Sasaoka, Yoshikawa, Maejima, Ashikaga, Suzuki, Hirao, Isobe (bib15) 2015; 21 Kwak (bib28) 2002; 13 Manabe, Ohira, Yoshinaga, Naya, Oyama-Manabe, Tamaki (bib22) 2017 Krizhevsky, Sutskever, Hinton (bib27) 2012 Yoshinaga, Manabe, Ohira, Tamaki (bib8) 2015 Francis, Byrne, a van der Schaaf, a Boucek, Nowak, Phillips, Price, Patrikeos, Musk, Millward (bib11) 2007; 48 Ohira, Tsujino, Ishimaru, Oyama, Takei, Tsukamoto, Miura, Sakaue, Tamaki, Nishimura (bib29) 2008; 35 Ahmadian, Brogan, Berman, Sverdlov, Mercier, Mazzini, Govender, Ruberg, Miller (bib12) 2014; 21 Calvert, Obaid, Sullivan, Shapiro, Mcnab, Densem, Schofield, Braganza, Clarke, Ray, West, Bennett (bib13) 2011; 4 Wang, Li, Yang, Wu, Cai, Ma, Xiong, He, Fang (bib14) 2016; 17 Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib24) 2016 Lecun, Bengio, Hinton (bib17) 2015; 521 Cortes, Vapnik (bib21) 1995; 20 Yasaka, Akai, Kunimatsu, Kiryu, Abe (bib16) 2018; 36 Journal, Medicine (bib23) 1999; 40 Aggarwal, Snipelisky, Young, Gersh, Cooper, Chareonthaitawee (bib2) 2015; 16 Ohira, Ardle, deKemp, Nery, Juneau, Renaud, Klein, Clarkin, MacDonald, Leung, Nair, Beanlands, Birnie (bib9) 2017; 58 Yoshinaga (10.1016/j.compbiomed.2018.11.008_bib8) 2015 Birnie (10.1016/j.compbiomed.2018.11.008_bib3) 2014; 11 Manabe (10.1016/j.compbiomed.2018.11.008_bib22) 2017 Youssef (10.1016/j.compbiomed.2018.11.008_bib5) 2012; 53 Aggarwal (10.1016/j.compbiomed.2018.11.008_bib2) 2015; 16 Tahara (10.1016/j.compbiomed.2018.11.008_bib26) 2010; 3 Kwak (10.1016/j.compbiomed.2018.11.008_bib28) 2002; 13 10.1016/j.compbiomed.2018.11.008_bib7 Tezuka (10.1016/j.compbiomed.2018.11.008_bib15) 2015; 21 Wang (10.1016/j.compbiomed.2018.11.008_bib14) 2016; 17 10.1016/j.compbiomed.2018.11.008_bib30 Ohira (10.1016/j.compbiomed.2018.11.008_bib29) 2008; 35 Kandolin (10.1016/j.compbiomed.2018.11.008_bib1) 2011; 4 Krizhevsky (10.1016/j.compbiomed.2018.11.008_bib27) 2012 Lakhani (10.1016/j.compbiomed.2018.11.008_bib32) 2017; 284 Litjens (10.1016/j.compbiomed.2018.11.008_bib18) 2017; 42 Manabe (10.1016/j.compbiomed.2018.11.008_bib4) 2017; 3 Erfani (10.1016/j.compbiomed.2018.11.008_bib19) 2016; 58 Langah (10.1016/j.compbiomed.2018.11.008_bib6) 2009; 16 Ahmadian (10.1016/j.compbiomed.2018.11.008_bib12) 2014; 21 Cortes (10.1016/j.compbiomed.2018.11.008_bib21) 1995; 20 Vennalaganti (10.1016/j.compbiomed.2018.11.008_bib31) 2015; 110 Lecun (10.1016/j.compbiomed.2018.11.008_bib17) 2015; 521 Cheng (10.1016/j.compbiomed.2018.11.008_bib20) 2017 Ohira (10.1016/j.compbiomed.2018.11.008_bib9) 2017; 58 Francis (10.1016/j.compbiomed.2018.11.008_bib11) 2007; 48 Szegedy (10.1016/j.compbiomed.2018.11.008_bib24) 2016 Robnik-Šikonja (10.1016/j.compbiomed.2018.11.008_bib25) 2003; 53 Calvert (10.1016/j.compbiomed.2018.11.008_bib13) 2011; 4 Yasaka (10.1016/j.compbiomed.2018.11.008_bib16) 2018; 36 Gontier (10.1016/j.compbiomed.2018.11.008_bib10) 2015; 195 Journal (10.1016/j.compbiomed.2018.11.008_bib23) 1999; 40 Shichijo (10.1016/j.compbiomed.2018.11.008_bib33) 2017; 25 |
| References_xml | – volume: 284 start-page: 574 year: 2017 end-page: 582 ident: bib32 article-title: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks publication-title: Radiology – volume: 20 start-page: 273∼ year: 1995 end-page: ∼297 ident: bib21 article-title: Support vector networks publication-title: Mach. Learn. – reference: M. Miyagawa, R. Tashiro, E. Watanabe, N. Kawaguchi, H. Ishimura, T. Kido, T. Kido, A. Kurata, T. Mochizuki, Optimal Patient Preparation for Detection and Assessment of Cardiac Sarcoidosis by FDG-PET, (n.d.). doi:10.17996/anc.17-00037. – start-page: 117 year: 2017 end-page: 120 ident: bib22 article-title: Qualitative and quantitative assessments of cardiac sarcoidosis using publication-title: Ann. Nucl. Cardiol., Japanese Society of Nuclear Cardiology – volume: 110 start-page: 1257 year: 2015 end-page: 1260 ident: bib31 article-title: Inter-observer agreement among pathologists using wide-area transepithelial sampling with computer-assisted analysis in patients with barrett's esophagus publication-title: Am. J. Gastroenterol. – start-page: 2818 year: 2016 end-page: 2826 ident: bib24 article-title: Rethinking the inception architecture for computer vision publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit – volume: 4 start-page: 894 year: 2011 end-page: 901 ident: bib13 article-title: Association between IVUS findings and adverse outcomes in patients with coronary artery disease the VIVA (VH-IVUS in vulnerable atherosclerosis) study publication-title: JCMG – volume: 53 start-page: 23 year: 2003 end-page: 69 ident: bib25 article-title: Theoretical and empirical analysis of ReliefF and RReliefF publication-title: Mach. Learn. – volume: 195 start-page: 180 year: 2015 end-page: 187 ident: bib10 article-title: Quantitative analysis of myocardial publication-title: Int. J. Cardiol. – volume: 3 start-page: 205 year: 2017 end-page: 209 ident: bib4 article-title: Assessment of myocardial blood flow and cardiac FDG uptake using positron emission tomography publication-title: Ann. Nucl. Cardiol. – volume: 11 start-page: 1305 year: 2014 end-page: 1323 ident: bib3 article-title: HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis publication-title: Heart Rhythm – volume: 21 start-page: 925 year: 2014 end-page: 939 ident: bib12 article-title: Quantitative interpretation of FDG PET/CT with myocardial perfusion imaging increases diagnostic information in the evaluation of cardiac sarcoidosis publication-title: J. Nucl. Cardiol. – volume: 40 start-page: 1492 year: 1999 ident: bib23 article-title: A reverse flow-metabolism mismatch pattern on PET is related to ... publication-title: J. Nucl. Med. – start-page: 87 year: 2015 end-page: 94 ident: bib8 article-title: Focus issue on cardiac sarcoidosis from international congress of nuclear cardiology and cardiac CT (ICNC 12) symposium publication-title: Ann. Nucl. Cardiol – start-page: 1 year: 2012 end-page: 9 ident: bib27 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst – start-page: 106 year: 2017 end-page: 113 ident: bib20 article-title: Classification of alzheimer's disease by cascaded convolutional neural networks using PET images publication-title: Springer, Cham – volume: 25 start-page: 106 year: 2017 end-page: 111 ident: bib33 article-title: Application of convolutional neural networks in the diagnosis of Helicobacter pylori infection based on endoscopic images publication-title: EBioMedicine – volume: 58 start-page: 121 year: 2016 end-page: 134 ident: bib19 article-title: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning publication-title: Pattern Recogn. – volume: 42 start-page: 60 year: 2017 end-page: 88 ident: bib18 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib17 article-title: Deep learning publication-title: Nature – volume: 53 start-page: 241 year: 2012 end-page: 248 ident: bib5 article-title: The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience publication-title: J. Nucl. Med. – volume: 48 start-page: 1449 year: 2007 end-page: 1458 ident: bib11 article-title: Early prediction of response to chemotherapy and survival in malignant pleural mesothelioma using a novel semiautomated 3-dimensional volume-based analysis of serial 18F-FDG PET scans publication-title: J. Nucl. Med. – volume: 16 start-page: 949 year: 2015 end-page: 958 ident: bib2 article-title: Advances in imaging for diagnosis and management of cardiac sarcoidosis publication-title: Eur. Hear. J. - Cardiovasc. Imaging. – volume: 21 start-page: 313 year: 2015 end-page: 322 ident: bib15 article-title: Clinical characteristics of definite or suspected isolated cardiac sarcoidosis: application of cardiac magnetic resonance imaging and 18F-Fluoro-2-deoxyglucose positron-emission tomography/computerized tomography publication-title: J. Card. Fail. – volume: 4 start-page: 303 year: 2011 end-page: 309 ident: bib1 article-title: Cardiac sarcoidosis and giant cell myocarditis as causes of atrioventricular block in young and middle-aged adults publication-title: Circ. Arrhythmia Electrophysiol. – volume: 17 start-page: 1161 year: 2016 end-page: 1168 ident: bib14 article-title: Quantitative assessment of right ventricular glucose metabolism in idiopathic pulmonary arterial hypertension patients: a longitudinal study publication-title: Eur. Hear. J. – Cardiovasc. Imaging. – volume: 13 start-page: 143 year: 2002 end-page: 159 ident: bib28 article-title: Chong-Ho Choi, Input feature selection for classification problems publication-title: IEEE Trans. Neural Network. – reference: (accessed June 4, 2018). – volume: 3 start-page: 1219 year: 2010 end-page: 1228 ident: bib26 article-title: Heterogeneous myocardial FDG uptake and the disease activity in cardiac sarcoidosis publication-title: JACC Cardiovasc. Imaging – volume: 36 start-page: 257 year: 2018 end-page: 272 ident: bib16 article-title: Deep learning with convolutional neural network in radiology publication-title: Jpn. J. Radiol. – volume: 58 start-page: 1324 year: 2017 end-page: 1329 ident: bib9 article-title: Inter- and intraobserver agreement of 18F-FDG PET/CT image interpretation in patients referred for assessment of cardiac sarcoidosis publication-title: J. Nucl. Med. – volume: 16 start-page: 801 year: 2009 end-page: 810 ident: bib6 article-title: Effectiveness of prolonged fasting 18f-FDG PET-CT in the detection of cardiac sarcoidosis publication-title: J. Nucl. Cardiol. – volume: 35 start-page: 933 year: 2008 end-page: 941 ident: bib29 article-title: Myocardial imaging with 18F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis publication-title: Eur. J. Nucl. Med. Mol. Imag. – reference: M. Morooka, M. Moroi, K. Uno, K. Ito, J. Wu, T. Nakagawa, K. Kubota, R. Minamimoto, Y. Miyata, M. Okasaki, O. Okazaki, Y. Yamada, T. Yamaguchi, M. Hiroe, Long fasting is effective in inhibiting physiological myocardial 18 F-FDG uptake and for evaluating active lesions of cardiac sarcoidosis, (n.d.). – volume: 42 start-page: 60 year: 2017 ident: 10.1016/j.compbiomed.2018.11.008_bib18 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 – volume: 16 start-page: 949 year: 2015 ident: 10.1016/j.compbiomed.2018.11.008_bib2 article-title: Advances in imaging for diagnosis and management of cardiac sarcoidosis publication-title: Eur. Hear. J. - Cardiovasc. Imaging. – volume: 21 start-page: 313 year: 2015 ident: 10.1016/j.compbiomed.2018.11.008_bib15 article-title: Clinical characteristics of definite or suspected isolated cardiac sarcoidosis: application of cardiac magnetic resonance imaging and 18F-Fluoro-2-deoxyglucose positron-emission tomography/computerized tomography publication-title: J. Card. Fail. doi: 10.1016/j.cardfail.2014.12.004 – volume: 4 start-page: 894 year: 2011 ident: 10.1016/j.compbiomed.2018.11.008_bib13 article-title: Association between IVUS findings and adverse outcomes in patients with coronary artery disease the VIVA (VH-IVUS in vulnerable atherosclerosis) study publication-title: JCMG – volume: 3 start-page: 1219 year: 2010 ident: 10.1016/j.compbiomed.2018.11.008_bib26 article-title: Heterogeneous myocardial FDG uptake and the disease activity in cardiac sarcoidosis publication-title: JACC Cardiovasc. Imaging doi: 10.1016/j.jcmg.2010.09.015 – volume: 195 start-page: 180 year: 2015 ident: 10.1016/j.compbiomed.2018.11.008_bib10 article-title: Quantitative analysis of myocardial 18F-fluorodeoxyglucose uptake by PET/CT for detection of cardiac sarcoidosis publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2015.05.075 – ident: 10.1016/j.compbiomed.2018.11.008_bib30 doi: 10.1186/2191-219X-4-1 – volume: 110 start-page: 1257 year: 2015 ident: 10.1016/j.compbiomed.2018.11.008_bib31 article-title: Inter-observer agreement among pathologists using wide-area transepithelial sampling with computer-assisted analysis in patients with barrett's esophagus publication-title: Am. J. Gastroenterol. doi: 10.1038/ajg.2015.116 – volume: 48 start-page: 1449 year: 2007 ident: 10.1016/j.compbiomed.2018.11.008_bib11 article-title: Early prediction of response to chemotherapy and survival in malignant pleural mesothelioma using a novel semiautomated 3-dimensional volume-based analysis of serial 18F-FDG PET scans publication-title: J. Nucl. Med. doi: 10.2967/jnumed.107.042333 – volume: 58 start-page: 1324 year: 2017 ident: 10.1016/j.compbiomed.2018.11.008_bib9 article-title: Inter- and intraobserver agreement of 18F-FDG PET/CT image interpretation in patients referred for assessment of cardiac sarcoidosis publication-title: J. Nucl. Med. doi: 10.2967/jnumed.116.187203 – start-page: 1 year: 2012 ident: 10.1016/j.compbiomed.2018.11.008_bib27 article-title: ImageNet classification with deep convolutional neural networks – volume: 35 start-page: 933 year: 2008 ident: 10.1016/j.compbiomed.2018.11.008_bib29 article-title: Myocardial imaging with 18F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis publication-title: Eur. J. Nucl. Med. Mol. Imag. doi: 10.1007/s00259-007-0650-8 – volume: 16 start-page: 801 year: 2009 ident: 10.1016/j.compbiomed.2018.11.008_bib6 article-title: Effectiveness of prolonged fasting 18f-FDG PET-CT in the detection of cardiac sarcoidosis publication-title: J. Nucl. Cardiol. doi: 10.1007/s12350-009-9110-0 – volume: 21 start-page: 925 year: 2014 ident: 10.1016/j.compbiomed.2018.11.008_bib12 article-title: Quantitative interpretation of FDG PET/CT with myocardial perfusion imaging increases diagnostic information in the evaluation of cardiac sarcoidosis publication-title: J. Nucl. Cardiol. doi: 10.1007/s12350-014-9901-9 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.compbiomed.2018.11.008_bib17 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – start-page: 2818 year: 2016 ident: 10.1016/j.compbiomed.2018.11.008_bib24 article-title: Rethinking the inception architecture for computer vision – volume: 284 start-page: 574 year: 2017 ident: 10.1016/j.compbiomed.2018.11.008_bib32 article-title: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks publication-title: Radiology doi: 10.1148/radiol.2017162326 – start-page: 87 year: 2015 ident: 10.1016/j.compbiomed.2018.11.008_bib8 article-title: Focus issue on cardiac sarcoidosis from international congress of nuclear cardiology and cardiac CT (ICNC 12) symposium – volume: 20 start-page: 273∼ year: 1995 ident: 10.1016/j.compbiomed.2018.11.008_bib21 article-title: Support vector networks publication-title: Mach. Learn. doi: 10.1023/A:1022627411411 – volume: 53 start-page: 241 year: 2012 ident: 10.1016/j.compbiomed.2018.11.008_bib5 article-title: The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience publication-title: J. Nucl. Med. doi: 10.2967/jnumed.111.090662 – volume: 13 start-page: 143 year: 2002 ident: 10.1016/j.compbiomed.2018.11.008_bib28 article-title: Chong-Ho Choi, Input feature selection for classification problems publication-title: IEEE Trans. Neural Network. doi: 10.1109/72.977291 – volume: 25 start-page: 106 year: 2017 ident: 10.1016/j.compbiomed.2018.11.008_bib33 article-title: Application of convolutional neural networks in the diagnosis of Helicobacter pylori infection based on endoscopic images publication-title: EBioMedicine doi: 10.1016/j.ebiom.2017.10.014 – volume: 58 start-page: 121 year: 2016 ident: 10.1016/j.compbiomed.2018.11.008_bib19 article-title: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2016.03.028 – volume: 17 start-page: 1161 year: 2016 ident: 10.1016/j.compbiomed.2018.11.008_bib14 article-title: Quantitative assessment of right ventricular glucose metabolism in idiopathic pulmonary arterial hypertension patients: a longitudinal study publication-title: Eur. Hear. J. – Cardiovasc. Imaging. doi: 10.1093/ehjci/jev297 – volume: 3 start-page: 205 year: 2017 ident: 10.1016/j.compbiomed.2018.11.008_bib4 article-title: Assessment of myocardial blood flow and cardiac FDG uptake using positron emission tomography publication-title: Ann. Nucl. Cardiol. doi: 10.17996/anc.17-00014 – volume: 53 start-page: 23 year: 2003 ident: 10.1016/j.compbiomed.2018.11.008_bib25 article-title: Theoretical and empirical analysis of ReliefF and RReliefF publication-title: Mach. Learn. doi: 10.1023/A:1025667309714 – start-page: 106 year: 2017 ident: 10.1016/j.compbiomed.2018.11.008_bib20 article-title: Classification of alzheimer's disease by cascaded convolutional neural networks using PET images – start-page: 117 year: 2017 ident: 10.1016/j.compbiomed.2018.11.008_bib22 article-title: Qualitative and quantitative assessments of cardiac sarcoidosis using 18F-FDG PET – volume: 40 start-page: 1492 year: 1999 ident: 10.1016/j.compbiomed.2018.11.008_bib23 article-title: A reverse flow-metabolism mismatch pattern on PET is related to ... publication-title: J. Nucl. Med. – volume: 4 start-page: 303 year: 2011 ident: 10.1016/j.compbiomed.2018.11.008_bib1 article-title: Cardiac sarcoidosis and giant cell myocarditis as causes of atrioventricular block in young and middle-aged adults publication-title: Circ. Arrhythmia Electrophysiol. doi: 10.1161/CIRCEP.110.959254 – ident: 10.1016/j.compbiomed.2018.11.008_bib7 doi: 10.17996/anc.17-00037 – volume: 11 start-page: 1305 year: 2014 ident: 10.1016/j.compbiomed.2018.11.008_bib3 article-title: HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2014.03.043 – volume: 36 start-page: 257 year: 2018 ident: 10.1016/j.compbiomed.2018.11.008_bib16 article-title: Deep learning with convolutional neural network in radiology publication-title: Jpn. J. Radiol. doi: 10.1007/s11604-018-0726-3 |
| SSID | ssj0004030 |
| Score | 2.4135096 |
| Snippet | The aim of this study was to determine whether deep convolutional neural network (DCNN)-based features can represent the difference between cardiac sarcoidosis... AimsThe aim of this study was to determine whether deep convolutional neural network (DCNN)-based features can represent the difference between cardiac... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 81 |
| SubjectTerms | 18F-FDG PET Aged Algorithms Artificial neural networks Automation Carbohydrates Cardiac sarcoidosis (CS) Cardiomyopathies - classification Cardiomyopathies - diagnostic imaging Classification Computed tomography Computer-aided diagnosis Convolutional neural network (CNN) Deep learning Fasting Feature extraction Feature selection Female Heart Humans Machine learning Male Medical diagnosis Medical imaging Metabolism Methods Middle Aged Neural networks Neural Networks, Computer Patients Physiology Positron emission Positron Emission Tomography Computed Tomography Quantitative analysis Radiology Retrospective Studies Sarcoidosis Sarcoidosis - classification Sarcoidosis - diagnostic imaging Semantics Sensitivity Tomography Ventricle |
| SummonAdditionalLinks | – databaseName: Science Direct dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Ni9UwEB-WPfhxEL-trhLBa3fbl6RJ8SQPl0VYTy7sLaTJVCrPvmLfQ7z4t5tJ066ihwee-pUpTWY6H8lvJgBvSm-tlh5zjtrmQjsMepCr3MdidU6ijPOQlx-riyvx4VpeH8F6zoUhWGXS_ZNOj9o63TlLo3k2dB3l-IZQgjIvNalhQXG7EIp2MTj9eQPzEAWf0lCCvqHWCc0zYbwItj2luRPIS59SPU_aaPLfJupvF_Qu3N73g_3x3W42v5ml8_twL_mT7N30yQ_gCPuHcOsyrZg_gm4dRcCxMUj0tvPbsRuZI5eZMEKRLYzmYplHHBhh0JMshpdSrct4iEjxnAyeZy3GUqAjI8T8ZzZQaMy-2mF8DFfn7z-tL_K0vULupOS7XLiCW122VgivWoW2LDyvXevbplmVTjS18wVy3ci6bVAVVb2yTnFHNextjZY_geN-2-MzYE3p0OGqUR6FoJBTVnU49xRdofciAzWPqHGp9jhtgbExM8jsi7nhhSFehNDEBF5kUC6Uw1R_4wCaemaamfNLg0Y0wUgcQPt2of1DDg-kPpllxCRdMJrgVIWgUgupMni9PA5_MS3N2B63e2pDC7q6KqsMnk6ytXSXF0Gsg9uYwWoRtoPH4vl_9ecF3AlX9TTldALHu297fBmcsF3zKv5lvwAeFDO_ priority: 102 providerName: Elsevier – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9QwEB_OPfDxQXxbPSWCX6ttk_SBiOhxxyHcIuLBfQtpMj1W1rbaXcT_3kyadgVF9lMX2indznQeyW9-A_AytVqX0mLMsdSxKA06P8iL2HqyOiNR-nXI82V-diE-XsrLA1hOvTAEq5x8onfUtjO0Rv7ahSaXmpdCFu_67zFNjaLd1WmEhg6jFexbTzF2DQ4zYsZawOGHk-Wnz7tOyYSPTSnO-whXHAVsz4j4IhD32PROkK_yFbF70tjJfwesvxPSW3Bj2_b610-9Xv8RpE7vwO2QXbL3oznchQNs78H187B_fh9Wx94gDBucfXcr2w2rgRlKoAkx5JXEaGWWWcSeESI9WKa7KTFf-oPHjccU_ixr0BODDozw81esp0KZfdP98AAuTk--HJ_FYdhCbKTkm1iYhOsybbQQtmgK1GlieWUa29R1lhpRV8YmyMtaVk2NRZJXmTYFN8RoryvU_CEs2q7Fx8Dq1KDBrC4sCkEFqMwr99tSrYXWigiK6Y0qE5jIaSDGWk2Qs69qpwtFunCFinK6iCCdJfuRjWMPmWpSmpq6TZ1_VC5k7CH7ZpYNGcmYaewpfTTZiAqeYVA7O47gxXzafdO0UaNb7LZ0DW3vlnmaR_BotK357_JEiMIlkRFks7Ht_S6e_P-JnsJNd3E1rjAdwWLzY4vPXM61qZ-HD-k3mkovGw priority: 102 providerName: ProQuest |
| Title | Cardiac sarcoidosis classification with deep convolutional neural network-based features using polar maps |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482518303640 https://dx.doi.org/10.1016/j.compbiomed.2018.11.008 https://www.ncbi.nlm.nih.gov/pubmed/30447397 https://www.proquest.com/docview/2159968457 https://www.proquest.com/docview/2135118616 https://www.sciencedirect.com/science/article/am/pii/S0010482518303640?via%3Dihub |
| UnpaywallVersion | publishedVersion |
| Volume | 104 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7tthJoD7wfQUtlJDimTRondsQBlWVLAW21ICqVU-TYDmTpttGmAcGB344nccLzUCEuSZRkIsX5_Hkm_mYM8NBXQvBQaTfQXLiUS214MGCuqovVyVCH9X_Ik3k0W9CXy3C5B6_bXBiUVVrubzi9Zmt7ZmRbcyTOR0WeY5qviSYw-ZIjE1PvyadcPAqe5R-qdB_6UWjc8x70F_PTybuGkT0Xb8cgjLPYNQCkVt3TaL5Qxt2kvaPoiw-xvicuPPn3IetPl_QALlfrQnz5LFarn4ap6VW4aF-wUad8HFbbdCi__lb78b-2wDW4Yp1aMmmsrsOeXt-ASyd22v4m5Ec1DiUpTbfa5GpT5iWR6LejUKnGBsEfwkRpXRAUwtsOYR6KBTfrXS1Xd3HUVSTTdT3SkqBs_z0pMD4n56Iob8Fievz2aObaNR5cGYbB1qXSCwT3M0GpYhnTwvdUEMtMZWk69iVNY6k8HfA0jLNUMy-Kx0KyQGIhfRFrEdyG3nqz1neBpL7UUo9TpjSlGPeGUWyOFYZ4WinqAGs_YyJtAXRch2OVtEq3s-QHABIEgImPEgMAB_zOsmiKgOxgE7dISdokV0PLiRmpdrB93Nn-AoUdrQ9bYCaWkMrEeHYmsuU0ZA486C4bKsH5IbHWmwrvwVllHvmRA3caQHevG3iUMuO7OjDuEL5zW9z7F6ND6G0vKn3f-HzbdAD7w2--2bIlM1s-fT6A_uTFq9nc7J8ez0_fDGw__w4roGGk |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qC1YfxG-jVVfQx2iS3XwhRbS2XG3vEGmhb9vN7kROzks0d5T-c_5t7iSbnKDIvfQpgWSWZGd2PnZ_MwPwMjRKZbFBn2OmfJFptHqQp75pi9XpGON2H3I8SUan4tNZfLYBv_pcGIJV9jqxVdSm0rRH_saaJuuaZyJO39U_fOoaRaerfQsN5VormN22xJhL7DjCywsbwjW7hx8tv19F0cH-yd7Id10GfB3HfOELHXCVhaUSwqRliioMDM91acqiiEItilybAHlWxHlZYBokeaR0yjWVclc5Km7HvQZbgovcBn9bH_Ynn7-sMjMD3iXBWG0nbDDmsEQdwoxA412SPUHMstdUTZTaXP7bQP7tAN-E7eW8VpcXajb7wyge3IZbzptl7zvxuwMbOL8L18fuvP4eTPdaAdSssRNVTU3VTBumyWEnhFIrFIx2gplBrBkh4N1KsINSpc320uLUfTK3hpXYFiJtGOH1v7KaAnP2XdXNfTi9kml_AJvzao6PgBWhRo1RkRoUggLeOMntvaHYDo0RHqT9jErtKp9TA46Z7CFu3-SKF5J4YQMjaXnhQThQ1l31jzVo8p5pss9utfpYWhO1Bu3bgdZ5QJ1nsyb1Ti8j0mmiRq7WjQcvhsdWh9DBkJpjtaR36Dg5S8LEg4edbA2_ywMhUuu0ehANwrb2XDz-_xc9h-3RyfhYHh9Ojp7ADUuYd7tbO7C5-LnEp9bfWxTP3KJicH7V6_g39qJuAw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qhaoP4rfRqivoY2yS3WQTRERaj9ba4oOFe4ub3YmcnEk0d5T-a_51zuTjTlDkXvqUQG5Cbud79zczAC9CZ0waO_QlpsZXqUWyg1L7rmtWZ2OMu33Ik9Pk8Ex9mMbTLfg11sIwrHK0iZ2hdrXlPfI9ck0UmqeKEvhygEV8Opi8bX74PEGKT1rHcRq9iBzjxTmlb-2bowPi9csomrz_vH_oDxMGfBvHcuErG0iThqVRyulSowkDJzNburIootCqIrMuQJkWcVYWqIMki4zV0nIbd5OhkfTeK3BVS5kxnFBP9bomM5B9-QvZOUVp2IAi6rFlDBfvy-sZXJa-4j6iPODy367x79D3BlxbVo25ODfz-R_ucHILbg5xrHjXC95t2MLqDuycDCf1d2G234meFS0tUz1zdTtrheVQnbFJnTgI3gMWDrERjH0fdIBeyj02u0uHUPfZ0TpRYteCtBWM1P8qGk7JxXfTtPfg7FIW_T5sV3WFD0EUoUWLUaEdKsWpbpxkdO84q0PnlAd6XNHcDj3PefTGPB_Bbd_yNS9y5gWlRDnxwoNwRdn0fT82oMlGpuVjXStZ4pyc0wa0r1e0Q-zTxzQbUu-OMpIPNqjN1xrjwfPVY7IefCRkKqyX_Bs-SE6TMPHgQS9bq78rA6U0haseRCth23gtHv3_i57BDmlv_vHo9PgxXCe6rN_W2oXtxc8lPqFAb1E87TRKwJfLVuHfCdBrnQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFD6ss6Dsg3fdyioR9LEz7SRpUnyQZXVZhF0UHFifSm7V6mynbKeK_npz2nS8PgziU0vbU2j65cs5yXdOAJ6kVinJrYupkypm0jjPg1TEti9WZ7jj_Tzk6Vl2smCvzvn5DrwZc2FQVhm4f-D0nq3DlVlozZm6mDVVhWm-PprA5EuJTMyS558r9ZS-qD50-grsZty75xPYXZy9Pnw3MHIS4-MYhEmRxx6ALKh7Bs0XyriHtHcUfckp1vfEjSf_PmT96ZLuwbWubtTXL2q5_GmYOr4Bl-MHDuqUT9Nurafm22-1H_9rC9yE68GpJYeD1S3YcfVtuHoalu3vQHXU49CQ1nerVWVXbdUSg347CpV6bBCcECbWuYagED50CP9SLLjZH3q5eoyjriWl6-uRtgRl--9Jg_E5uVBNexcWxy_fHp3EYY-H2HBO1zEzCVUyLRVjVpTCqTSxNDelLbWep4bp3NjEUal5XmonkiyfKyOowUL6KneK3oNJvardPhCdGmfcXAvrGMO4l2e5P7cY4jlrWQRi_I2FCQXQcR-OZTEq3T4WPwBQIAB8fFR4AESQbiyboQjIFjb5iJRiTHL1tFz4kWoL22cb21-gsKX1wQjMIhBSW3jPzke2knERwePNbU8luD6karfq8BlcVZZZmkVwfwD05nNpwpjwvmsE8w3Ct26LB_9idACT9WXnHnqfb60fhV78Has1W7E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cardiac+sarcoidosis+classification+with+deep+convolutional+neural+network-based+features+using+polar+maps&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Togo%2C+Ren&rft.au=Hirata%2C+Kenji&rft.au=Manabe%2C+Osamu&rft.au=Ohira%2C+Hiroshi&rft.date=2019-01-01&rft.eissn=1879-0534&rft.volume=104&rft.spage=81&rft_id=info:doi/10.1016%2Fj.compbiomed.2018.11.008&rft_id=info%3Apmid%2F30447397&rft.externalDocID=30447397 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |