Cardiac sarcoidosis classification with deep convolutional neural network-based features using polar maps

The aim of this study was to determine whether deep convolutional neural network (DCNN)-based features can represent the difference between cardiac sarcoidosis (CS) and non-CS using polar maps. A total of 85 patients (33 CS patients and 52 non-CS patients) were analyzed as our study subjects. One ra...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 104; pp. 81 - 86
Main Authors Togo, Ren, Hirata, Kenji, Manabe, Osamu, Ohira, Hiroshi, Tsujino, Ichizo, Magota, Keiichi, Ogawa, Takahiro, Haseyama, Miki, Shiga, Tohru
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.01.2019
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2018.11.008

Cover

Abstract The aim of this study was to determine whether deep convolutional neural network (DCNN)-based features can represent the difference between cardiac sarcoidosis (CS) and non-CS using polar maps. A total of 85 patients (33 CS patients and 52 non-CS patients) were analyzed as our study subjects. One radiologist reviewed PET/CT images and defined the left ventricle region for the construction of polar maps. We extracted high-level features from the polar maps through the Inception-v3 network and evaluated their effectiveness by applying them to a CS classification task. Then we introduced the ReliefF algorithm in our method. The standardized uptake value (SUV)-based classification method and the coefficient of variance (CoV)-based classification method were used as comparative methods. Sensitivity, specificity and the harmonic mean of sensitivity and specificity of our method with the ReliefF algorithm were 0.839, 0.870 and 0.854, respectively. Those of the SUVmax-based classification method were 0.468, 0.710 and 0.564, respectively, and those of the CoV-based classification method were 0.655, 0.750 and 0.699, respectively. The DCNN-based high-level features may be more effective than low-level features used in conventional quantitative analysis methods for CS classification. •A method for detection of cardiac sarcoidosis was proposed.•The DCNN-based features were effective for the cardiac sarcoidosis classification.•Feature selection algorithm was effective for improving the performance.
AbstractList The aim of this study was to determine whether deep convolutional neural network (DCNN)-based features can represent the difference between cardiac sarcoidosis (CS) and non-CS using polar maps. A total of 85 patients (33 CS patients and 52 non-CS patients) were analyzed as our study subjects. One radiologist reviewed PET/CT images and defined the left ventricle region for the construction of polar maps. We extracted high-level features from the polar maps through the Inception-v3 network and evaluated their effectiveness by applying them to a CS classification task. Then we introduced the ReliefF algorithm in our method. The standardized uptake value (SUV)-based classification method and the coefficient of variance (CoV)-based classification method were used as comparative methods. Sensitivity, specificity and the harmonic mean of sensitivity and specificity of our method with the ReliefF algorithm were 0.839, 0.870 and 0.854, respectively. Those of the SUVmax-based classification method were 0.468, 0.710 and 0.564, respectively, and those of the CoV-based classification method were 0.655, 0.750 and 0.699, respectively. The DCNN-based high-level features may be more effective than low-level features used in conventional quantitative analysis methods for CS classification. •A method for detection of cardiac sarcoidosis was proposed.•The DCNN-based features were effective for the cardiac sarcoidosis classification.•Feature selection algorithm was effective for improving the performance.
The aim of this study was to determine whether deep convolutional neural network (DCNN)-based features can represent the difference between cardiac sarcoidosis (CS) and non-CS using polar maps.AIMSThe aim of this study was to determine whether deep convolutional neural network (DCNN)-based features can represent the difference between cardiac sarcoidosis (CS) and non-CS using polar maps.A total of 85 patients (33 CS patients and 52 non-CS patients) were analyzed as our study subjects. One radiologist reviewed PET/CT images and defined the left ventricle region for the construction of polar maps. We extracted high-level features from the polar maps through the Inception-v3 network and evaluated their effectiveness by applying them to a CS classification task. Then we introduced the ReliefF algorithm in our method. The standardized uptake value (SUV)-based classification method and the coefficient of variance (CoV)-based classification method were used as comparative methods.METHODSA total of 85 patients (33 CS patients and 52 non-CS patients) were analyzed as our study subjects. One radiologist reviewed PET/CT images and defined the left ventricle region for the construction of polar maps. We extracted high-level features from the polar maps through the Inception-v3 network and evaluated their effectiveness by applying them to a CS classification task. Then we introduced the ReliefF algorithm in our method. The standardized uptake value (SUV)-based classification method and the coefficient of variance (CoV)-based classification method were used as comparative methods.Sensitivity, specificity and the harmonic mean of sensitivity and specificity of our method with the ReliefF algorithm were 0.839, 0.870 and 0.854, respectively. Those of the SUVmax-based classification method were 0.468, 0.710 and 0.564, respectively, and those of the CoV-based classification method were 0.655, 0.750 and 0.699, respectively.RESULTSSensitivity, specificity and the harmonic mean of sensitivity and specificity of our method with the ReliefF algorithm were 0.839, 0.870 and 0.854, respectively. Those of the SUVmax-based classification method were 0.468, 0.710 and 0.564, respectively, and those of the CoV-based classification method were 0.655, 0.750 and 0.699, respectively.The DCNN-based high-level features may be more effective than low-level features used in conventional quantitative analysis methods for CS classification.CONCLUSIONThe DCNN-based high-level features may be more effective than low-level features used in conventional quantitative analysis methods for CS classification.
The aim of this study was to determine whether deep convolutional neural network (DCNN)-based features can represent the difference between cardiac sarcoidosis (CS) and non-CS using polar maps. A total of 85 patients (33 CS patients and 52 non-CS patients) were analyzed as our study subjects. One radiologist reviewed PET/CT images and defined the left ventricle region for the construction of polar maps. We extracted high-level features from the polar maps through the Inception-v3 network and evaluated their effectiveness by applying them to a CS classification task. Then we introduced the ReliefF algorithm in our method. The standardized uptake value (SUV)-based classification method and the coefficient of variance (CoV)-based classification method were used as comparative methods. Sensitivity, specificity and the harmonic mean of sensitivity and specificity of our method with the ReliefF algorithm were 0.839, 0.870 and 0.854, respectively. Those of the SUVmax-based classification method were 0.468, 0.710 and 0.564, respectively, and those of the CoV-based classification method were 0.655, 0.750 and 0.699, respectively. The DCNN-based high-level features may be more effective than low-level features used in conventional quantitative analysis methods for CS classification.
AimsThe aim of this study was to determine whether deep convolutional neural network (DCNN)-based features can represent the difference between cardiac sarcoidosis (CS) and non-CS using polar maps.MethodsA total of 85 patients (33 CS patients and 52 non-CS patients) were analyzed as our study subjects. One radiologist reviewed PET/CT images and defined the left ventricle region for the construction of polar maps. We extracted high-level features from the polar maps through the Inception-v3 network and evaluated their effectiveness by applying them to a CS classification task. Then we introduced the ReliefF algorithm in our method. The standardized uptake value (SUV)-based classification method and the coefficient of variance (CoV)-based classification method were used as comparative methods.ResultsSensitivity, specificity and the harmonic mean of sensitivity and specificity of our method with the ReliefF algorithm were 0.839, 0.870 and 0.854, respectively. Those of the SUVmax-based classification method were 0.468, 0.710 and 0.564, respectively, and those of the CoV-based classification method were 0.655, 0.750 and 0.699, respectively.ConclusionThe DCNN-based high-level features may be more effective than low-level features used in conventional quantitative analysis methods for CS classification.
Author Manabe, Osamu
Shiga, Tohru
Tsujino, Ichizo
Magota, Keiichi
Ogawa, Takahiro
Hirata, Kenji
Ohira, Hiroshi
Togo, Ren
Haseyama, Miki
Author_xml – sequence: 1
  givenname: Ren
  surname: Togo
  fullname: Togo, Ren
  email: togo@lmd.ist.hokudai.ac.jp
  organization: Graduate School of Information Science and Technology, Hokkaido University, Hokkaido, 060-0814, Japan
– sequence: 2
  givenname: Kenji
  surname: Hirata
  fullname: Hirata, Kenji
  organization: Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Hokkaido, 060-8638, Japan
– sequence: 3
  givenname: Osamu
  surname: Manabe
  fullname: Manabe, Osamu
  email: osamumanabe817@med.hokudai.ac.jp
  organization: Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Hokkaido, 060-8638, Japan
– sequence: 4
  givenname: Hiroshi
  surname: Ohira
  fullname: Ohira, Hiroshi
  organization: First Department of Medicine, Hokkaido University Hospital, Hokkaido, 060-8638, Japan
– sequence: 5
  givenname: Ichizo
  surname: Tsujino
  fullname: Tsujino, Ichizo
  organization: First Department of Medicine, Hokkaido University Hospital, Hokkaido, 060-8638, Japan
– sequence: 6
  givenname: Keiichi
  surname: Magota
  fullname: Magota, Keiichi
  organization: Division of Medical Imaging and Technology, Hokkaido University Hospital, Hokkaido, 060-8638, Japan
– sequence: 7
  givenname: Takahiro
  surname: Ogawa
  fullname: Ogawa, Takahiro
  organization: Graduate School of Information Science and Technology, Hokkaido University, Hokkaido, 060-0814, Japan
– sequence: 8
  givenname: Miki
  surname: Haseyama
  fullname: Haseyama, Miki
  organization: Graduate School of Information Science and Technology, Hokkaido University, Hokkaido, 060-0814, Japan
– sequence: 9
  givenname: Tohru
  surname: Shiga
  fullname: Shiga, Tohru
  organization: Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Hokkaido, 060-8638, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30447397$$D View this record in MEDLINE/PubMed
BookMark eNqVkk1v1DAQhi1URLeFv4AsceGSYMfO1wVBV3xJlbjA2ZrYE_DWsYOddLX_nqTbCmlPy2kk65nX42d8RS588EgI5SznjFfvdrkOw9jZMKDJC8abnPOcseYZ2fCmbjNWCnlBNoxxlsmmKC_JVUo7xphkgr0gl4JJWYu23hC7hWgsaJog6mBNSDZR7SAl21sNkw2e7u30mxrEkerg74Ob11Nw1OMcH8q0D_Eu6yChoT3CNEdMdE7W_6JjcBDpAGN6SZ734BK-eqzX5OfnTz-2X7Pb71--bT_eZrosxZRJzQQ0vAcpTd3XCJwZ0ere9F1XcC27VhuGounKtu-wZlVbgK6FlkVVQIsgrkl7zJ39CIc9OKfGaAeIB8WZWvWpnfqnT636FOdq0bf0vj32jjH8mTFNarBJo3PgMcxJFVyUnDcVrxb0zQm6C3NctKxU2bZVI8t6oV4_UnO3XvY0ydMCFuD9EdAxpBSxV9pOD9qnCNadM3JzEvAfr705tuKyjnuLUSVt0Ws0NqKelAn2nJAPJyHaWb98HXeHh_Mi_gJS-uPy
CitedBy_id crossref_primary_10_1053_j_semnuclmed_2020_10_001
crossref_primary_10_1007_s40336_023_00595_z
crossref_primary_10_3390_diagnostics11091554
crossref_primary_10_1007_s12350_022_02977_8
crossref_primary_10_1016_j_ejmp_2021_03_008
crossref_primary_10_1109_TRPMS_2020_3030611
crossref_primary_10_1007_s12170_020_00649_1
crossref_primary_10_1053_j_semnuclmed_2022_08_004
crossref_primary_10_1016_j_ijmedinf_2019_06_017
crossref_primary_10_2967_jnumed_118_220590
crossref_primary_10_1053_j_semnuclmed_2025_02_012
crossref_primary_10_3390_diagnostics13142426
crossref_primary_10_1016_j_ccl_2023_01_004
crossref_primary_10_1038_s41598_022_06604_x
crossref_primary_10_1007_s42452_025_06504_5
crossref_primary_10_1016_j_cpet_2021_06_011
crossref_primary_10_1080_14779072_2024_2380764
crossref_primary_10_3390_jcm10091941
crossref_primary_10_3390_s22062330
crossref_primary_10_4070_kcj_2021_0104
crossref_primary_10_35377_saucis___1516717
crossref_primary_10_3389_fcvm_2021_741667
crossref_primary_10_1097_MNM_0000000000001786
crossref_primary_10_1007_s00408_023_00641_7
crossref_primary_10_1053_j_semnuclmed_2020_03_004
crossref_primary_10_1007_s40336_021_00411_6
crossref_primary_10_1016_j_cjca_2021_09_030
crossref_primary_10_1016_j_phrs_2023_106984
crossref_primary_10_1186_s42444_022_00062_2
crossref_primary_10_2478_raon_2022_0037
crossref_primary_10_1049_iet_ipr_2019_1690
Cites_doi 10.1016/j.media.2017.07.005
10.1016/j.cardfail.2014.12.004
10.1016/j.jcmg.2010.09.015
10.1016/j.ijcard.2015.05.075
10.1186/2191-219X-4-1
10.1038/ajg.2015.116
10.2967/jnumed.107.042333
10.2967/jnumed.116.187203
10.1007/s00259-007-0650-8
10.1007/s12350-009-9110-0
10.1007/s12350-014-9901-9
10.1038/nature14539
10.1148/radiol.2017162326
10.1023/A:1022627411411
10.2967/jnumed.111.090662
10.1109/72.977291
10.1016/j.ebiom.2017.10.014
10.1016/j.patcog.2016.03.028
10.1093/ehjci/jev297
10.17996/anc.17-00014
10.1023/A:1025667309714
10.1161/CIRCEP.110.959254
10.17996/anc.17-00037
10.1016/j.hrthm.2014.03.043
10.1007/s11604-018-0726-3
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited Jan 2019
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited Jan 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
ADTOC
UNPAY
DOI 10.1016/j.compbiomed.2018.11.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
Proquest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological science database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 86
ExternalDocumentID 10.1016/j.compbiomed.2018.11.008
30447397
10_1016_j_compbiomed_2018_11_008
S0010482518303640
Genre Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AAIAV
ABLVK
ABYKQ
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
LCYCR
M0N
RIG
AAYXX
CITATION
PUEGO
AFCTW
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c553t-4c03a81fa44d7f7ea10d39cfdfbb21c4b9cd0e38b59fbe70692ac73c4262a9ea3
IEDL.DBID UNPAY
ISSN 0010-4825
1879-0534
IngestDate Sun Oct 26 03:20:57 EDT 2025
Thu Oct 02 07:09:28 EDT 2025
Tue Oct 07 06:19:31 EDT 2025
Wed Feb 19 02:31:32 EST 2025
Thu Apr 24 23:11:32 EDT 2025
Wed Oct 01 05:32:19 EDT 2025
Fri Feb 23 02:24:54 EST 2024
Tue Oct 14 19:33:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
18F-FDG PET
Feature selection
Cardiac sarcoidosis (CS)
Machine learning
Radiology
Feature extraction
Convolutional neural network (CNN)
Computer-aided diagnosis
F-FDG PET
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c553t-4c03a81fa44d7f7ea10d39cfdfbb21c4b9cd0e38b59fbe70692ac73c4262a9ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/am/pii/S0010482518303640?via%3Dihub
PMID 30447397
PQID 2159968457
PQPubID 1226355
PageCount 6
ParticipantIDs unpaywall_primary_10_1016_j_compbiomed_2018_11_008
proquest_miscellaneous_2135118616
proquest_journals_2159968457
pubmed_primary_30447397
crossref_citationtrail_10_1016_j_compbiomed_2018_11_008
crossref_primary_10_1016_j_compbiomed_2018_11_008
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2018_11_008
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2018_11_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Tahara, Tahara, Nitta, Kodama, Mizoguchi, Kaida, Baba, Ishibashi, Hayabuchi, Narula, Imaizumi (bib26) 2010; 3
Youssef, Leung, Mylonas, Nery, Williams, Wisenberg, Gulenchyn, deKemp, DaSilva, Birnie, Wells, Beanlands (bib5) 2012; 53
Lakhani, Sundaram (bib32) 2017; 284
Kandolin, Lehtonen, Kupari (bib1) 2011; 4
Birnie, Sauer, Bogun, Cooper, Culver, Duvernoy, Judson, Kron, Mehta, Cosedis Nielsen, Patel, Ohe, Raatikainen, Soejima (bib3) 2014; 11
Cheng, Liu (bib20) 2017
Robnik-Šikonja, Kononenko (bib25) 2003; 53
Langah, Spicer, Gebregziabher, Gordon (bib6) 2009; 16
Erfani, Rajasegarar, Karunasekera, Leckie (bib19) 2016; 58
Vennalaganti, Naag Kanakadandi, Gross, Parasa, Wang, Gupta, Sharma (bib31) 2015; 110
Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, van der Laak, van Ginneken, Sánchez (bib18) 2017; 42
M. Miyagawa, R. Tashiro, E. Watanabe, N. Kawaguchi, H. Ishimura, T. Kido, T. Kido, A. Kurata, T. Mochizuki, Optimal Patient Preparation for Detection and Assessment of Cardiac Sarcoidosis by FDG-PET, (n.d.). doi:10.17996/anc.17-00037.
M. Morooka, M. Moroi, K. Uno, K. Ito, J. Wu, T. Nakagawa, K. Kubota, R. Minamimoto, Y. Miyata, M. Okasaki, O. Okazaki, Y. Yamada, T. Yamaguchi, M. Hiroe, Long fasting is effective in inhibiting physiological myocardial 18 F-FDG uptake and for evaluating active lesions of cardiac sarcoidosis, (n.d.).
(accessed June 4, 2018).
Shichijo, Nomura, Aoyama, Nishikawa, Miura, Shinagawa, Takiyama, Tanimoto, Ishihara, Matsuo, Tada (bib33) 2017; 25
Manabe, Naya, Yoshinaga, Oyama-Manabe, Ohira, Aikawa, Tamaki (bib4) 2017; 3
Gontier, Fourme, Wartski, Blondet, Bonardel, Le Stanc, Mantzarides, Foehrenbach, Ohira, Ardle, Robert, Nery, Juneau, Renaud, Klein, Clarkin, Macdonald, Leung, Nair, Beanlands, Birnie, Yokoyama, Miyagawa, Okayama, Inoue, Miki, Ogimoto, Higaki, Mochizuki (bib10) 2015; 195
Tezuka, Terashima, Kato, Toriihara, Hirasawa, Sasaoka, Yoshikawa, Maejima, Ashikaga, Suzuki, Hirao, Isobe (bib15) 2015; 21
Kwak (bib28) 2002; 13
Manabe, Ohira, Yoshinaga, Naya, Oyama-Manabe, Tamaki (bib22) 2017
Krizhevsky, Sutskever, Hinton (bib27) 2012
Yoshinaga, Manabe, Ohira, Tamaki (bib8) 2015
Francis, Byrne, a van der Schaaf, a Boucek, Nowak, Phillips, Price, Patrikeos, Musk, Millward (bib11) 2007; 48
Ohira, Tsujino, Ishimaru, Oyama, Takei, Tsukamoto, Miura, Sakaue, Tamaki, Nishimura (bib29) 2008; 35
Ahmadian, Brogan, Berman, Sverdlov, Mercier, Mazzini, Govender, Ruberg, Miller (bib12) 2014; 21
Calvert, Obaid, Sullivan, Shapiro, Mcnab, Densem, Schofield, Braganza, Clarke, Ray, West, Bennett (bib13) 2011; 4
Wang, Li, Yang, Wu, Cai, Ma, Xiong, He, Fang (bib14) 2016; 17
Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib24) 2016
Lecun, Bengio, Hinton (bib17) 2015; 521
Cortes, Vapnik (bib21) 1995; 20
Yasaka, Akai, Kunimatsu, Kiryu, Abe (bib16) 2018; 36
Journal, Medicine (bib23) 1999; 40
Aggarwal, Snipelisky, Young, Gersh, Cooper, Chareonthaitawee (bib2) 2015; 16
Ohira, Ardle, deKemp, Nery, Juneau, Renaud, Klein, Clarkin, MacDonald, Leung, Nair, Beanlands, Birnie (bib9) 2017; 58
Yoshinaga (10.1016/j.compbiomed.2018.11.008_bib8) 2015
Birnie (10.1016/j.compbiomed.2018.11.008_bib3) 2014; 11
Manabe (10.1016/j.compbiomed.2018.11.008_bib22) 2017
Youssef (10.1016/j.compbiomed.2018.11.008_bib5) 2012; 53
Aggarwal (10.1016/j.compbiomed.2018.11.008_bib2) 2015; 16
Tahara (10.1016/j.compbiomed.2018.11.008_bib26) 2010; 3
Kwak (10.1016/j.compbiomed.2018.11.008_bib28) 2002; 13
10.1016/j.compbiomed.2018.11.008_bib7
Tezuka (10.1016/j.compbiomed.2018.11.008_bib15) 2015; 21
Wang (10.1016/j.compbiomed.2018.11.008_bib14) 2016; 17
10.1016/j.compbiomed.2018.11.008_bib30
Ohira (10.1016/j.compbiomed.2018.11.008_bib29) 2008; 35
Kandolin (10.1016/j.compbiomed.2018.11.008_bib1) 2011; 4
Krizhevsky (10.1016/j.compbiomed.2018.11.008_bib27) 2012
Lakhani (10.1016/j.compbiomed.2018.11.008_bib32) 2017; 284
Litjens (10.1016/j.compbiomed.2018.11.008_bib18) 2017; 42
Manabe (10.1016/j.compbiomed.2018.11.008_bib4) 2017; 3
Erfani (10.1016/j.compbiomed.2018.11.008_bib19) 2016; 58
Langah (10.1016/j.compbiomed.2018.11.008_bib6) 2009; 16
Ahmadian (10.1016/j.compbiomed.2018.11.008_bib12) 2014; 21
Cortes (10.1016/j.compbiomed.2018.11.008_bib21) 1995; 20
Vennalaganti (10.1016/j.compbiomed.2018.11.008_bib31) 2015; 110
Lecun (10.1016/j.compbiomed.2018.11.008_bib17) 2015; 521
Cheng (10.1016/j.compbiomed.2018.11.008_bib20) 2017
Ohira (10.1016/j.compbiomed.2018.11.008_bib9) 2017; 58
Francis (10.1016/j.compbiomed.2018.11.008_bib11) 2007; 48
Szegedy (10.1016/j.compbiomed.2018.11.008_bib24) 2016
Robnik-Šikonja (10.1016/j.compbiomed.2018.11.008_bib25) 2003; 53
Calvert (10.1016/j.compbiomed.2018.11.008_bib13) 2011; 4
Yasaka (10.1016/j.compbiomed.2018.11.008_bib16) 2018; 36
Gontier (10.1016/j.compbiomed.2018.11.008_bib10) 2015; 195
Journal (10.1016/j.compbiomed.2018.11.008_bib23) 1999; 40
Shichijo (10.1016/j.compbiomed.2018.11.008_bib33) 2017; 25
References_xml – volume: 284
  start-page: 574
  year: 2017
  end-page: 582
  ident: bib32
  article-title: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks
  publication-title: Radiology
– volume: 20
  start-page: 273∼
  year: 1995
  end-page: ∼297
  ident: bib21
  article-title: Support vector networks
  publication-title: Mach. Learn.
– reference: M. Miyagawa, R. Tashiro, E. Watanabe, N. Kawaguchi, H. Ishimura, T. Kido, T. Kido, A. Kurata, T. Mochizuki, Optimal Patient Preparation for Detection and Assessment of Cardiac Sarcoidosis by FDG-PET, (n.d.). doi:10.17996/anc.17-00037.
– start-page: 117
  year: 2017
  end-page: 120
  ident: bib22
  article-title: Qualitative and quantitative assessments of cardiac sarcoidosis using
  publication-title: Ann. Nucl. Cardiol., Japanese Society of Nuclear Cardiology
– volume: 110
  start-page: 1257
  year: 2015
  end-page: 1260
  ident: bib31
  article-title: Inter-observer agreement among pathologists using wide-area transepithelial sampling with computer-assisted analysis in patients with barrett's esophagus
  publication-title: Am. J. Gastroenterol.
– start-page: 2818
  year: 2016
  end-page: 2826
  ident: bib24
  article-title: Rethinking the inception architecture for computer vision
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit
– volume: 4
  start-page: 894
  year: 2011
  end-page: 901
  ident: bib13
  article-title: Association between IVUS findings and adverse outcomes in patients with coronary artery disease the VIVA (VH-IVUS in vulnerable atherosclerosis) study
  publication-title: JCMG
– volume: 53
  start-page: 23
  year: 2003
  end-page: 69
  ident: bib25
  article-title: Theoretical and empirical analysis of ReliefF and RReliefF
  publication-title: Mach. Learn.
– volume: 195
  start-page: 180
  year: 2015
  end-page: 187
  ident: bib10
  article-title: Quantitative analysis of myocardial
  publication-title: Int. J. Cardiol.
– volume: 3
  start-page: 205
  year: 2017
  end-page: 209
  ident: bib4
  article-title: Assessment of myocardial blood flow and cardiac FDG uptake using positron emission tomography
  publication-title: Ann. Nucl. Cardiol.
– volume: 11
  start-page: 1305
  year: 2014
  end-page: 1323
  ident: bib3
  article-title: HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis
  publication-title: Heart Rhythm
– volume: 21
  start-page: 925
  year: 2014
  end-page: 939
  ident: bib12
  article-title: Quantitative interpretation of FDG PET/CT with myocardial perfusion imaging increases diagnostic information in the evaluation of cardiac sarcoidosis
  publication-title: J. Nucl. Cardiol.
– volume: 40
  start-page: 1492
  year: 1999
  ident: bib23
  article-title: A reverse flow-metabolism mismatch pattern on PET is related to ...
  publication-title: J. Nucl. Med.
– start-page: 87
  year: 2015
  end-page: 94
  ident: bib8
  article-title: Focus issue on cardiac sarcoidosis from international congress of nuclear cardiology and cardiac CT (ICNC 12) symposium
  publication-title: Ann. Nucl. Cardiol
– start-page: 1
  year: 2012
  end-page: 9
  ident: bib27
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst
– start-page: 106
  year: 2017
  end-page: 113
  ident: bib20
  article-title: Classification of alzheimer's disease by cascaded convolutional neural networks using PET images
  publication-title: Springer, Cham
– volume: 25
  start-page: 106
  year: 2017
  end-page: 111
  ident: bib33
  article-title: Application of convolutional neural networks in the diagnosis of Helicobacter pylori infection based on endoscopic images
  publication-title: EBioMedicine
– volume: 58
  start-page: 121
  year: 2016
  end-page: 134
  ident: bib19
  article-title: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning
  publication-title: Pattern Recogn.
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: bib18
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib17
  article-title: Deep learning
  publication-title: Nature
– volume: 53
  start-page: 241
  year: 2012
  end-page: 248
  ident: bib5
  article-title: The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience
  publication-title: J. Nucl. Med.
– volume: 48
  start-page: 1449
  year: 2007
  end-page: 1458
  ident: bib11
  article-title: Early prediction of response to chemotherapy and survival in malignant pleural mesothelioma using a novel semiautomated 3-dimensional volume-based analysis of serial 18F-FDG PET scans
  publication-title: J. Nucl. Med.
– volume: 16
  start-page: 949
  year: 2015
  end-page: 958
  ident: bib2
  article-title: Advances in imaging for diagnosis and management of cardiac sarcoidosis
  publication-title: Eur. Hear. J. - Cardiovasc. Imaging.
– volume: 21
  start-page: 313
  year: 2015
  end-page: 322
  ident: bib15
  article-title: Clinical characteristics of definite or suspected isolated cardiac sarcoidosis: application of cardiac magnetic resonance imaging and 18F-Fluoro-2-deoxyglucose positron-emission tomography/computerized tomography
  publication-title: J. Card. Fail.
– volume: 4
  start-page: 303
  year: 2011
  end-page: 309
  ident: bib1
  article-title: Cardiac sarcoidosis and giant cell myocarditis as causes of atrioventricular block in young and middle-aged adults
  publication-title: Circ. Arrhythmia Electrophysiol.
– volume: 17
  start-page: 1161
  year: 2016
  end-page: 1168
  ident: bib14
  article-title: Quantitative assessment of right ventricular glucose metabolism in idiopathic pulmonary arterial hypertension patients: a longitudinal study
  publication-title: Eur. Hear. J. – Cardiovasc. Imaging.
– volume: 13
  start-page: 143
  year: 2002
  end-page: 159
  ident: bib28
  article-title: Chong-Ho Choi, Input feature selection for classification problems
  publication-title: IEEE Trans. Neural Network.
– reference: (accessed June 4, 2018).
– volume: 3
  start-page: 1219
  year: 2010
  end-page: 1228
  ident: bib26
  article-title: Heterogeneous myocardial FDG uptake and the disease activity in cardiac sarcoidosis
  publication-title: JACC Cardiovasc. Imaging
– volume: 36
  start-page: 257
  year: 2018
  end-page: 272
  ident: bib16
  article-title: Deep learning with convolutional neural network in radiology
  publication-title: Jpn. J. Radiol.
– volume: 58
  start-page: 1324
  year: 2017
  end-page: 1329
  ident: bib9
  article-title: Inter- and intraobserver agreement of 18F-FDG PET/CT image interpretation in patients referred for assessment of cardiac sarcoidosis
  publication-title: J. Nucl. Med.
– volume: 16
  start-page: 801
  year: 2009
  end-page: 810
  ident: bib6
  article-title: Effectiveness of prolonged fasting 18f-FDG PET-CT in the detection of cardiac sarcoidosis
  publication-title: J. Nucl. Cardiol.
– volume: 35
  start-page: 933
  year: 2008
  end-page: 941
  ident: bib29
  article-title: Myocardial imaging with 18F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
– reference: M. Morooka, M. Moroi, K. Uno, K. Ito, J. Wu, T. Nakagawa, K. Kubota, R. Minamimoto, Y. Miyata, M. Okasaki, O. Okazaki, Y. Yamada, T. Yamaguchi, M. Hiroe, Long fasting is effective in inhibiting physiological myocardial 18 F-FDG uptake and for evaluating active lesions of cardiac sarcoidosis, (n.d.).
– volume: 42
  start-page: 60
  year: 2017
  ident: 10.1016/j.compbiomed.2018.11.008_bib18
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– volume: 16
  start-page: 949
  year: 2015
  ident: 10.1016/j.compbiomed.2018.11.008_bib2
  article-title: Advances in imaging for diagnosis and management of cardiac sarcoidosis
  publication-title: Eur. Hear. J. - Cardiovasc. Imaging.
– volume: 21
  start-page: 313
  year: 2015
  ident: 10.1016/j.compbiomed.2018.11.008_bib15
  article-title: Clinical characteristics of definite or suspected isolated cardiac sarcoidosis: application of cardiac magnetic resonance imaging and 18F-Fluoro-2-deoxyglucose positron-emission tomography/computerized tomography
  publication-title: J. Card. Fail.
  doi: 10.1016/j.cardfail.2014.12.004
– volume: 4
  start-page: 894
  year: 2011
  ident: 10.1016/j.compbiomed.2018.11.008_bib13
  article-title: Association between IVUS findings and adverse outcomes in patients with coronary artery disease the VIVA (VH-IVUS in vulnerable atherosclerosis) study
  publication-title: JCMG
– volume: 3
  start-page: 1219
  year: 2010
  ident: 10.1016/j.compbiomed.2018.11.008_bib26
  article-title: Heterogeneous myocardial FDG uptake and the disease activity in cardiac sarcoidosis
  publication-title: JACC Cardiovasc. Imaging
  doi: 10.1016/j.jcmg.2010.09.015
– volume: 195
  start-page: 180
  year: 2015
  ident: 10.1016/j.compbiomed.2018.11.008_bib10
  article-title: Quantitative analysis of myocardial 18F-fluorodeoxyglucose uptake by PET/CT for detection of cardiac sarcoidosis
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2015.05.075
– ident: 10.1016/j.compbiomed.2018.11.008_bib30
  doi: 10.1186/2191-219X-4-1
– volume: 110
  start-page: 1257
  year: 2015
  ident: 10.1016/j.compbiomed.2018.11.008_bib31
  article-title: Inter-observer agreement among pathologists using wide-area transepithelial sampling with computer-assisted analysis in patients with barrett's esophagus
  publication-title: Am. J. Gastroenterol.
  doi: 10.1038/ajg.2015.116
– volume: 48
  start-page: 1449
  year: 2007
  ident: 10.1016/j.compbiomed.2018.11.008_bib11
  article-title: Early prediction of response to chemotherapy and survival in malignant pleural mesothelioma using a novel semiautomated 3-dimensional volume-based analysis of serial 18F-FDG PET scans
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.107.042333
– volume: 58
  start-page: 1324
  year: 2017
  ident: 10.1016/j.compbiomed.2018.11.008_bib9
  article-title: Inter- and intraobserver agreement of 18F-FDG PET/CT image interpretation in patients referred for assessment of cardiac sarcoidosis
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.116.187203
– start-page: 1
  year: 2012
  ident: 10.1016/j.compbiomed.2018.11.008_bib27
  article-title: ImageNet classification with deep convolutional neural networks
– volume: 35
  start-page: 933
  year: 2008
  ident: 10.1016/j.compbiomed.2018.11.008_bib29
  article-title: Myocardial imaging with 18F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
  doi: 10.1007/s00259-007-0650-8
– volume: 16
  start-page: 801
  year: 2009
  ident: 10.1016/j.compbiomed.2018.11.008_bib6
  article-title: Effectiveness of prolonged fasting 18f-FDG PET-CT in the detection of cardiac sarcoidosis
  publication-title: J. Nucl. Cardiol.
  doi: 10.1007/s12350-009-9110-0
– volume: 21
  start-page: 925
  year: 2014
  ident: 10.1016/j.compbiomed.2018.11.008_bib12
  article-title: Quantitative interpretation of FDG PET/CT with myocardial perfusion imaging increases diagnostic information in the evaluation of cardiac sarcoidosis
  publication-title: J. Nucl. Cardiol.
  doi: 10.1007/s12350-014-9901-9
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.compbiomed.2018.11.008_bib17
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 2818
  year: 2016
  ident: 10.1016/j.compbiomed.2018.11.008_bib24
  article-title: Rethinking the inception architecture for computer vision
– volume: 284
  start-page: 574
  year: 2017
  ident: 10.1016/j.compbiomed.2018.11.008_bib32
  article-title: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks
  publication-title: Radiology
  doi: 10.1148/radiol.2017162326
– start-page: 87
  year: 2015
  ident: 10.1016/j.compbiomed.2018.11.008_bib8
  article-title: Focus issue on cardiac sarcoidosis from international congress of nuclear cardiology and cardiac CT (ICNC 12) symposium
– volume: 20
  start-page: 273∼
  year: 1995
  ident: 10.1016/j.compbiomed.2018.11.008_bib21
  article-title: Support vector networks
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022627411411
– volume: 53
  start-page: 241
  year: 2012
  ident: 10.1016/j.compbiomed.2018.11.008_bib5
  article-title: The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.111.090662
– volume: 13
  start-page: 143
  year: 2002
  ident: 10.1016/j.compbiomed.2018.11.008_bib28
  article-title: Chong-Ho Choi, Input feature selection for classification problems
  publication-title: IEEE Trans. Neural Network.
  doi: 10.1109/72.977291
– volume: 25
  start-page: 106
  year: 2017
  ident: 10.1016/j.compbiomed.2018.11.008_bib33
  article-title: Application of convolutional neural networks in the diagnosis of Helicobacter pylori infection based on endoscopic images
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2017.10.014
– volume: 58
  start-page: 121
  year: 2016
  ident: 10.1016/j.compbiomed.2018.11.008_bib19
  article-title: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2016.03.028
– volume: 17
  start-page: 1161
  year: 2016
  ident: 10.1016/j.compbiomed.2018.11.008_bib14
  article-title: Quantitative assessment of right ventricular glucose metabolism in idiopathic pulmonary arterial hypertension patients: a longitudinal study
  publication-title: Eur. Hear. J. – Cardiovasc. Imaging.
  doi: 10.1093/ehjci/jev297
– volume: 3
  start-page: 205
  year: 2017
  ident: 10.1016/j.compbiomed.2018.11.008_bib4
  article-title: Assessment of myocardial blood flow and cardiac FDG uptake using positron emission tomography
  publication-title: Ann. Nucl. Cardiol.
  doi: 10.17996/anc.17-00014
– volume: 53
  start-page: 23
  year: 2003
  ident: 10.1016/j.compbiomed.2018.11.008_bib25
  article-title: Theoretical and empirical analysis of ReliefF and RReliefF
  publication-title: Mach. Learn.
  doi: 10.1023/A:1025667309714
– start-page: 106
  year: 2017
  ident: 10.1016/j.compbiomed.2018.11.008_bib20
  article-title: Classification of alzheimer's disease by cascaded convolutional neural networks using PET images
– start-page: 117
  year: 2017
  ident: 10.1016/j.compbiomed.2018.11.008_bib22
  article-title: Qualitative and quantitative assessments of cardiac sarcoidosis using 18F-FDG PET
– volume: 40
  start-page: 1492
  year: 1999
  ident: 10.1016/j.compbiomed.2018.11.008_bib23
  article-title: A reverse flow-metabolism mismatch pattern on PET is related to ...
  publication-title: J. Nucl. Med.
– volume: 4
  start-page: 303
  year: 2011
  ident: 10.1016/j.compbiomed.2018.11.008_bib1
  article-title: Cardiac sarcoidosis and giant cell myocarditis as causes of atrioventricular block in young and middle-aged adults
  publication-title: Circ. Arrhythmia Electrophysiol.
  doi: 10.1161/CIRCEP.110.959254
– ident: 10.1016/j.compbiomed.2018.11.008_bib7
  doi: 10.17996/anc.17-00037
– volume: 11
  start-page: 1305
  year: 2014
  ident: 10.1016/j.compbiomed.2018.11.008_bib3
  article-title: HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2014.03.043
– volume: 36
  start-page: 257
  year: 2018
  ident: 10.1016/j.compbiomed.2018.11.008_bib16
  article-title: Deep learning with convolutional neural network in radiology
  publication-title: Jpn. J. Radiol.
  doi: 10.1007/s11604-018-0726-3
SSID ssj0004030
Score 2.4135096
Snippet The aim of this study was to determine whether deep convolutional neural network (DCNN)-based features can represent the difference between cardiac sarcoidosis...
AimsThe aim of this study was to determine whether deep convolutional neural network (DCNN)-based features can represent the difference between cardiac...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 81
SubjectTerms 18F-FDG PET
Aged
Algorithms
Artificial neural networks
Automation
Carbohydrates
Cardiac sarcoidosis (CS)
Cardiomyopathies - classification
Cardiomyopathies - diagnostic imaging
Classification
Computed tomography
Computer-aided diagnosis
Convolutional neural network (CNN)
Deep learning
Fasting
Feature extraction
Feature selection
Female
Heart
Humans
Machine learning
Male
Medical diagnosis
Medical imaging
Metabolism
Methods
Middle Aged
Neural networks
Neural Networks, Computer
Patients
Physiology
Positron emission
Positron Emission Tomography Computed Tomography
Quantitative analysis
Radiology
Retrospective Studies
Sarcoidosis
Sarcoidosis - classification
Sarcoidosis - diagnostic imaging
Semantics
Sensitivity
Tomography
Ventricle
SummonAdditionalLinks – databaseName: Science Direct
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Ni9UwEB-WPfhxEL-trhLBa3fbl6RJ8SQPl0VYTy7sLaTJVCrPvmLfQ7z4t5tJ066ihwee-pUpTWY6H8lvJgBvSm-tlh5zjtrmQjsMepCr3MdidU6ijPOQlx-riyvx4VpeH8F6zoUhWGXS_ZNOj9o63TlLo3k2dB3l-IZQgjIvNalhQXG7EIp2MTj9eQPzEAWf0lCCvqHWCc0zYbwItj2luRPIS59SPU_aaPLfJupvF_Qu3N73g_3x3W42v5ml8_twL_mT7N30yQ_gCPuHcOsyrZg_gm4dRcCxMUj0tvPbsRuZI5eZMEKRLYzmYplHHBhh0JMshpdSrct4iEjxnAyeZy3GUqAjI8T8ZzZQaMy-2mF8DFfn7z-tL_K0vULupOS7XLiCW122VgivWoW2LDyvXevbplmVTjS18wVy3ci6bVAVVb2yTnFHNextjZY_geN-2-MzYE3p0OGqUR6FoJBTVnU49xRdofciAzWPqHGp9jhtgbExM8jsi7nhhSFehNDEBF5kUC6Uw1R_4wCaemaamfNLg0Y0wUgcQPt2of1DDg-kPpllxCRdMJrgVIWgUgupMni9PA5_MS3N2B63e2pDC7q6KqsMnk6ytXSXF0Gsg9uYwWoRtoPH4vl_9ecF3AlX9TTldALHu297fBmcsF3zKv5lvwAeFDO_
  priority: 102
  providerName: Elsevier
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9QwEB_OPfDxQXxbPSWCX6ttk_SBiOhxxyHcIuLBfQtpMj1W1rbaXcT_3kyadgVF9lMX2indznQeyW9-A_AytVqX0mLMsdSxKA06P8iL2HqyOiNR-nXI82V-diE-XsrLA1hOvTAEq5x8onfUtjO0Rv7ahSaXmpdCFu_67zFNjaLd1WmEhg6jFexbTzF2DQ4zYsZawOGHk-Wnz7tOyYSPTSnO-whXHAVsz4j4IhD32PROkK_yFbF70tjJfwesvxPSW3Bj2_b610-9Xv8RpE7vwO2QXbL3oznchQNs78H187B_fh9Wx94gDBucfXcr2w2rgRlKoAkx5JXEaGWWWcSeESI9WKa7KTFf-oPHjccU_ixr0BODDozw81esp0KZfdP98AAuTk--HJ_FYdhCbKTkm1iYhOsybbQQtmgK1GlieWUa29R1lhpRV8YmyMtaVk2NRZJXmTYFN8RoryvU_CEs2q7Fx8Dq1KDBrC4sCkEFqMwr99tSrYXWigiK6Y0qE5jIaSDGWk2Qs69qpwtFunCFinK6iCCdJfuRjWMPmWpSmpq6TZ1_VC5k7CH7ZpYNGcmYaewpfTTZiAqeYVA7O47gxXzafdO0UaNb7LZ0DW3vlnmaR_BotK357_JEiMIlkRFks7Ht_S6e_P-JnsJNd3E1rjAdwWLzY4vPXM61qZ-HD-k3mkovGw
  priority: 102
  providerName: ProQuest
Title Cardiac sarcoidosis classification with deep convolutional neural network-based features using polar maps
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482518303640
https://dx.doi.org/10.1016/j.compbiomed.2018.11.008
https://www.ncbi.nlm.nih.gov/pubmed/30447397
https://www.proquest.com/docview/2159968457
https://www.proquest.com/docview/2135118616
https://www.sciencedirect.com/science/article/am/pii/S0010482518303640?via%3Dihub
UnpaywallVersion publishedVersion
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7tthJoD7wfQUtlJDimTRondsQBlWVLAW21ICqVU-TYDmTpttGmAcGB344nccLzUCEuSZRkIsX5_Hkm_mYM8NBXQvBQaTfQXLiUS214MGCuqovVyVCH9X_Ik3k0W9CXy3C5B6_bXBiUVVrubzi9Zmt7ZmRbcyTOR0WeY5qviSYw-ZIjE1PvyadcPAqe5R-qdB_6UWjc8x70F_PTybuGkT0Xb8cgjLPYNQCkVt3TaL5Qxt2kvaPoiw-xvicuPPn3IetPl_QALlfrQnz5LFarn4ap6VW4aF-wUad8HFbbdCi__lb78b-2wDW4Yp1aMmmsrsOeXt-ASyd22v4m5Ec1DiUpTbfa5GpT5iWR6LejUKnGBsEfwkRpXRAUwtsOYR6KBTfrXS1Xd3HUVSTTdT3SkqBs_z0pMD4n56Iob8Fievz2aObaNR5cGYbB1qXSCwT3M0GpYhnTwvdUEMtMZWk69iVNY6k8HfA0jLNUMy-Kx0KyQGIhfRFrEdyG3nqz1neBpL7UUo9TpjSlGPeGUWyOFYZ4WinqAGs_YyJtAXRch2OVtEq3s-QHABIEgImPEgMAB_zOsmiKgOxgE7dISdokV0PLiRmpdrB93Nn-AoUdrQ9bYCaWkMrEeHYmsuU0ZA486C4bKsH5IbHWmwrvwVllHvmRA3caQHevG3iUMuO7OjDuEL5zW9z7F6ND6G0vKn3f-HzbdAD7w2--2bIlM1s-fT6A_uTFq9nc7J8ez0_fDGw__w4roGGk
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qC1YfxG-jVVfQx2iS3XwhRbS2XG3vEGmhb9vN7kROzks0d5T-c_5t7iSbnKDIvfQpgWSWZGd2PnZ_MwPwMjRKZbFBn2OmfJFptHqQp75pi9XpGON2H3I8SUan4tNZfLYBv_pcGIJV9jqxVdSm0rRH_saaJuuaZyJO39U_fOoaRaerfQsN5VormN22xJhL7DjCywsbwjW7hx8tv19F0cH-yd7Id10GfB3HfOELHXCVhaUSwqRliioMDM91acqiiEItilybAHlWxHlZYBokeaR0yjWVclc5Km7HvQZbgovcBn9bH_Ynn7-sMjMD3iXBWG0nbDDmsEQdwoxA412SPUHMstdUTZTaXP7bQP7tAN-E7eW8VpcXajb7wyge3IZbzptl7zvxuwMbOL8L18fuvP4eTPdaAdSssRNVTU3VTBumyWEnhFIrFIx2gplBrBkh4N1KsINSpc320uLUfTK3hpXYFiJtGOH1v7KaAnP2XdXNfTi9kml_AJvzao6PgBWhRo1RkRoUggLeOMntvaHYDo0RHqT9jErtKp9TA46Z7CFu3-SKF5J4YQMjaXnhQThQ1l31jzVo8p5pss9utfpYWhO1Bu3bgdZ5QJ1nsyb1Ti8j0mmiRq7WjQcvhsdWh9DBkJpjtaR36Dg5S8LEg4edbA2_ywMhUuu0ehANwrb2XDz-_xc9h-3RyfhYHh9Ojp7ADUuYd7tbO7C5-LnEp9bfWxTP3KJicH7V6_g39qJuAw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qhaoP4rfRqivoY2yS3WQTRERaj9ba4oOFe4ub3YmcnEk0d5T-a_51zuTjTlDkXvqUQG5Cbud79zczAC9CZ0waO_QlpsZXqUWyg1L7rmtWZ2OMu33Ik9Pk8Ex9mMbTLfg11sIwrHK0iZ2hdrXlPfI9ck0UmqeKEvhygEV8Opi8bX74PEGKT1rHcRq9iBzjxTmlb-2bowPi9csomrz_vH_oDxMGfBvHcuErG0iThqVRyulSowkDJzNburIootCqIrMuQJkWcVYWqIMki4zV0nIbd5OhkfTeK3BVS5kxnFBP9bomM5B9-QvZOUVp2IAi6rFlDBfvy-sZXJa-4j6iPODy367x79D3BlxbVo25ODfz-R_ucHILbg5xrHjXC95t2MLqDuycDCf1d2G234meFS0tUz1zdTtrheVQnbFJnTgI3gMWDrERjH0fdIBeyj02u0uHUPfZ0TpRYteCtBWM1P8qGk7JxXfTtPfg7FIW_T5sV3WFD0EUoUWLUaEdKsWpbpxkdO84q0PnlAd6XNHcDj3PefTGPB_Bbd_yNS9y5gWlRDnxwoNwRdn0fT82oMlGpuVjXStZ4pyc0wa0r1e0Q-zTxzQbUu-OMpIPNqjN1xrjwfPVY7IefCRkKqyX_Bs-SE6TMPHgQS9bq78rA6U0haseRCth23gtHv3_i57BDmlv_vHo9PgxXCe6rN_W2oXtxc8lPqFAb1E87TRKwJfLVuHfCdBrnQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFD6ss6Dsg3fdyioR9LEz7SRpUnyQZXVZhF0UHFifSm7V6mynbKeK_npz2nS8PgziU0vbU2j65cs5yXdOAJ6kVinJrYupkypm0jjPg1TEti9WZ7jj_Tzk6Vl2smCvzvn5DrwZc2FQVhm4f-D0nq3DlVlozZm6mDVVhWm-PprA5EuJTMyS558r9ZS-qD50-grsZty75xPYXZy9Pnw3MHIS4-MYhEmRxx6ALKh7Bs0XyriHtHcUfckp1vfEjSf_PmT96ZLuwbWubtTXL2q5_GmYOr4Bl-MHDuqUT9Nurafm22-1H_9rC9yE68GpJYeD1S3YcfVtuHoalu3vQHXU49CQ1nerVWVXbdUSg347CpV6bBCcECbWuYagED50CP9SLLjZH3q5eoyjriWl6-uRtgRl--9Jg_E5uVBNexcWxy_fHp3EYY-H2HBO1zEzCVUyLRVjVpTCqTSxNDelLbWep4bp3NjEUal5XmonkiyfKyOowUL6KneK3oNJvardPhCdGmfcXAvrGMO4l2e5P7cY4jlrWQRi_I2FCQXQcR-OZTEq3T4WPwBQIAB8fFR4AESQbiyboQjIFjb5iJRiTHL1tFz4kWoL22cb21-gsKX1wQjMIhBSW3jPzke2knERwePNbU8luD6karfq8BlcVZZZmkVwfwD05nNpwpjwvmsE8w3Ct26LB_9idACT9WXnHnqfb60fhV78Has1W7E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cardiac+sarcoidosis+classification+with+deep+convolutional+neural+network-based+features+using+polar+maps&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Togo%2C+Ren&rft.au=Hirata%2C+Kenji&rft.au=Manabe%2C+Osamu&rft.au=Ohira%2C+Hiroshi&rft.date=2019-01-01&rft.eissn=1879-0534&rft.volume=104&rft.spage=81&rft_id=info:doi/10.1016%2Fj.compbiomed.2018.11.008&rft_id=info%3Apmid%2F30447397&rft.externalDocID=30447397
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon