PARP1 Represses PAP and Inhibits Polyadenylation during Heat Shock

The 3′ ends of most eukaryotic mRNAs are produced by an endonucleolytic cleavage followed by synthesis of a poly(A) tail. Poly(A) polymerase (PAP), the enzyme that catalyzes the formation of the tail, is subject to tight regulation involving several posttranslational modifications. Here we show that...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 49; no. 1; pp. 7 - 17
Main Authors Di Giammartino, Dafne Campigli, Shi, Yongsheng, Manley, James L.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 10.01.2013
Subjects
Online AccessGet full text
ISSN1097-2765
1097-4164
1097-4164
DOI10.1016/j.molcel.2012.11.005

Cover

Abstract The 3′ ends of most eukaryotic mRNAs are produced by an endonucleolytic cleavage followed by synthesis of a poly(A) tail. Poly(A) polymerase (PAP), the enzyme that catalyzes the formation of the tail, is subject to tight regulation involving several posttranslational modifications. Here we show that the enzyme poly(ADP-ribose) polymerase 1 (PARP1) modifies PAP and regulates its activity both in vitro and in vivo. PARP1 binds to and modifies PAP by poly(ADP-ribosyl)ation (PARylation) in vitro, which inhibits PAP activity. In vivo we show that PAP is PARylated during heat shock, leading to inhibition of polyadenylation in a PARP1-dependent manner. The observed inhibition reflects reduced RNA binding affinity of PARylated PAP in vitro and decreased PAP association with non-heat shock protein-encoding genes in vivo. Our results provide direct evidence that PARylation can control processing of mRNA precursors, and also identify PARP1 as a regulator of polyadenylation during thermal stress. [Display omitted] ► PARP1 binds and PARylates PAP in vitro, which inhibits its polyadenylation activity ► Polyadenylation is inhibited during heat shock in a PARP1-dependent manner ► PAP is PARylated in vivo during heat shock ► Inhibition of polyadenylation reflects decreased RNA binding by PARylated PAP
AbstractList The 3′ ends of most eukaryotic mRNAs are produced by an endonucleolytic cleavage followed by synthesis of a poly(A) tail. Poly(A) polymerase (PAP), the enzyme that catalyzes the formation of the tail, is subject to tight regulation involving several post-translational modifications. Here we show that the enzyme poly(ADP-ribose) polymerase1 (PARP1) modifies PAP, and regulates its activity both in vitro and in vivo. PARP1 binds to and modifies PAP by poly(ADP-ribosyl)ation (PARylation) in vitro, which inhibits PAP activity. In vivo we show that PAP is PARylated during heat shock, leading to inhibition of polyadenylation in a PARP1-dependent manner. The observed inhibition reflects reduced RNA binding affinity of PARylated PAP in vitro, and decreased PAP association with non-heat shock protein-encoding genes in vivo. Our results both provide direct evidence that PARylation can control processing of mRNA precursors and also identify PARP1 as a regulator of polyadenylation during thermal stress.
The 3′ ends of most eukaryotic mRNAs are produced by an endonucleolytic cleavage followed by synthesis of a poly(A) tail. Poly(A) polymerase (PAP), the enzyme that catalyzes the formation of the tail, is subject to tight regulation involving several posttranslational modifications. Here we show that the enzyme poly(ADP-ribose) polymerase 1 (PARP1) modifies PAP and regulates its activity both in vitro and in vivo. PARP1 binds to and modifies PAP by poly(ADP-ribosyl)ation (PARylation) in vitro, which inhibits PAP activity. In vivo we show that PAP is PARylated during heat shock, leading to inhibition of polyadenylation in a PARP1-dependent manner. The observed inhibition reflects reduced RNA binding affinity of PARylated PAP in vitro and decreased PAP association with non-heat shock protein-encoding genes in vivo. Our results provide direct evidence that PARylation can control processing of mRNA precursors, and also identify PARP1 as a regulator of polyadenylation during thermal stress. [Display omitted] ► PARP1 binds and PARylates PAP in vitro, which inhibits its polyadenylation activity ► Polyadenylation is inhibited during heat shock in a PARP1-dependent manner ► PAP is PARylated in vivo during heat shock ► Inhibition of polyadenylation reflects decreased RNA binding by PARylated PAP
The 3' ends of most eukaryotic mRNAs are produced by an endonucleolytic cleavage followed by synthesis of a poly(A) tail. Poly(A) polymerase (PAP), the enzyme that catalyzes the formation of the tail, is subject to tight regulation involving several posttranslational modifications. Here we show that the enzyme poly(ADP-ribose) polymerase 1 (PARP1) modifies PAP and regulates its activity both in vitro and in vivo. PARP1 binds to and modifies PAP by poly(ADP-ribosyl)ation (PARylation) in vitro, which inhibits PAP activity. In vivo we show that PAP is PARylated during heat shock, leading to inhibition of polyadenylation in a PARP1-dependent manner. The observed inhibition reflects reduced RNA binding affinity of PARylated PAP in vitro and decreased PAP association with non-heat shock protein-encoding genes in vivo. Our results provide direct evidence that PARylation can control processing of mRNA precursors, and also identify PARP1 as a regulator of polyadenylation during thermal stress.
The 3′ ends of most eukaryotic mRNAs are produced by an endonucleolytic cleavage followed by synthesis of a poly(A) tail. Poly(A) polymerase (PAP), the enzyme that catalyzes the formation of the tail, is subject to tight regulation involving several posttranslational modifications. Here we show that the enzyme poly(ADP-ribose) polymerase 1 (PARP1) modifies PAP and regulates its activity both in vitro and in vivo. PARP1 binds to and modifies PAP by poly(ADP-ribosyl)ation (PARylation) in vitro, which inhibits PAP activity. In vivo we show that PAP is PARylated during heat shock, leading to inhibition of polyadenylation in a PARP1-dependent manner. The observed inhibition reflects reduced RNA binding affinity of PARylated PAP in vitro and decreased PAP association with non-heat shock protein-encoding genes in vivo. Our results provide direct evidence that PARylation can control processing of mRNA precursors, and also identify PARP1 as a regulator of polyadenylation during thermal stress.
The 3' ends of most eukaryotic mRNAs are produced by an endonucleolytic cleavage followed by synthesis of a poly(A) tail. Poly(A) polymerase (PAP), the enzyme that catalyzes the formation of the tail, is subject to tight regulation involving several posttranslational modifications. Here we show that the enzyme poly(ADP-ribose) polymerase 1 (PARP1) modifies PAP and regulates its activity both in vitro and in vivo. PARP1 binds to and modifies PAP by poly(ADP-ribosyl)ation (PARylation) in vitro, which inhibits PAP activity. In vivo we show that PAP is PARylated during heat shock, leading to inhibition of polyadenylation in a PARP1-dependent manner. The observed inhibition reflects reduced RNA binding affinity of PARylated PAP in vitro and decreased PAP association with non-heat shock protein-encoding genes in vivo. Our results provide direct evidence that PARylation can control processing of mRNA precursors, and also identify PARP1 as a regulator of polyadenylation during thermal stress.The 3' ends of most eukaryotic mRNAs are produced by an endonucleolytic cleavage followed by synthesis of a poly(A) tail. Poly(A) polymerase (PAP), the enzyme that catalyzes the formation of the tail, is subject to tight regulation involving several posttranslational modifications. Here we show that the enzyme poly(ADP-ribose) polymerase 1 (PARP1) modifies PAP and regulates its activity both in vitro and in vivo. PARP1 binds to and modifies PAP by poly(ADP-ribosyl)ation (PARylation) in vitro, which inhibits PAP activity. In vivo we show that PAP is PARylated during heat shock, leading to inhibition of polyadenylation in a PARP1-dependent manner. The observed inhibition reflects reduced RNA binding affinity of PARylated PAP in vitro and decreased PAP association with non-heat shock protein-encoding genes in vivo. Our results provide direct evidence that PARylation can control processing of mRNA precursors, and also identify PARP1 as a regulator of polyadenylation during thermal stress.
The 3a2 ends of most eukaryotic mRNAs are produced by an endonucleolytic cleavage followed by synthesis of a poly(A) tail. Poly(A) polymerase (PAP), the enzyme that catalyzes the formation of the tail, is subject to tight regulation involving several posttranslational modifications. Here we show that the enzyme poly(ADP-ribose) polymerase 1 (PARP1) modifies PAP and regulates its activity both in vitro and in vivo. PARP1 binds to and modifies PAP by poly(ADP-ribosyl)ation (PARylation) in vitro, which inhibits PAP activity. In vivo we show that PAP is PARylated during heat shock, leading to inhibition of polyadenylation in a PARP1-dependent manner. The observed inhibition reflects reduced RNA binding affinity of PARylated PAP in vitro and decreased PAP association with non-heat shock protein-encoding genes in vivo. Our results provide direct evidence that PARylation can control processing of mRNA precursors, and also identify PARP1 as a regulator of polyadenylation during thermal stress.
Author Manley, James L.
Di Giammartino, Dafne Campigli
Shi, Yongsheng
AuthorAffiliation 1 Department of Biological Sciences, Columbia University, New York, NY, USA
AuthorAffiliation_xml – name: 1 Department of Biological Sciences, Columbia University, New York, NY, USA
Author_xml – sequence: 1
  givenname: Dafne Campigli
  surname: Di Giammartino
  fullname: Di Giammartino, Dafne Campigli
  organization: Department of Biological Sciences, Columbia University, New York, NY 10027, USA
– sequence: 2
  givenname: Yongsheng
  surname: Shi
  fullname: Shi, Yongsheng
  organization: Department of Biological Sciences, Columbia University, New York, NY 10027, USA
– sequence: 3
  givenname: James L.
  surname: Manley
  fullname: Manley, James L.
  email: jlm2@columba.edu
  organization: Department of Biological Sciences, Columbia University, New York, NY 10027, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23219533$$D View this record in MEDLINE/PubMed
BookMark eNqNkl-PEyEUxYlZ4_7Rb2B0Hn3pyIUBZnwwqRt1N9nEZtd9JpS501KnUGFmTb-9rK2u-mDlBQLnnMv9wSk58sEjIc-BlkBBvl6V69Bb7EtGgZUAJaXiETkB2qhJBbI62q-ZkuKYnKa0ohQqUTdPyDHjDBrB-Ql5N5tez6C4xk3ElDAVs-msML4tLv3Szd2QN0K_NS36bW8GF3zRjtH5RXGBZihulsF-eUoed6ZP-Gw_n5HbD-8_n19Mrj59vDyfXk2sEHyYVBUwU9tOUYmS804apgzvEBmomsKc8pbWAExIxTkqJZuGmYZVua1KcVrzMyJ2uaPfmO030_d6E93axK0Gqu-Z6JXeMdH3TDSAzubse7vzbcb5GluLfojmwRuM03-eeLfUi3CnuagE5SwHvNoHxPB1xDTotUu5Sm88hjHlYnnUtVD1QSlwEJJKJg-nAlNcUNE0Mktf_N7Br6v_fMYsqHYCG0NKEbv_JfPmL5t1w49Xzhxcf8j8cmfuTNBmEV3StzdZIDMM4A2rH8Bj_hV3DqNO1qG32LqIdtBtcP8u8R31B-Gr
CitedBy_id crossref_primary_10_3390_biom10060915
crossref_primary_10_1186_s12864_017_4030_x
crossref_primary_10_1007_s00424_016_1828_3
crossref_primary_10_1111_tpj_13804
crossref_primary_10_1016_j_freeradbiomed_2019_10_010
crossref_primary_10_1128_MMBR_00038_18
crossref_primary_10_18632_oncotarget_27581
crossref_primary_10_3390_ijms140816168
crossref_primary_10_1002_2211_5463_13528
crossref_primary_10_1093_nar_gkz693
crossref_primary_10_1016_j_semcdb_2016_07_027
crossref_primary_10_1111_febs_13737
crossref_primary_10_1002_wrna_1617
crossref_primary_10_1002_wrna_1571
crossref_primary_10_1038_ncomms5426
crossref_primary_10_1080_02656736_2021_1883127
crossref_primary_10_14348_molcells_2014_0177
crossref_primary_10_4049_jimmunol_1700968
crossref_primary_10_1016_j_isci_2022_105543
crossref_primary_10_1021_cr5004248
crossref_primary_10_1002_emmm_201303300
crossref_primary_10_3389_fimmu_2025_1537615
crossref_primary_10_1016_j_molmed_2015_03_002
crossref_primary_10_1038_s41576_018_0001_6
crossref_primary_10_1128_MCB_00123_15
crossref_primary_10_1186_s40246_017_0131_5
crossref_primary_10_1002_wrna_1503
crossref_primary_10_1016_j_molcel_2012_12_017
crossref_primary_10_1002_wrna_1823
crossref_primary_10_1371_journal_pgen_1006292
crossref_primary_10_1073_pnas_1711120114
crossref_primary_10_1128_MCB_00084_14
crossref_primary_10_1038_onc_2016_82
crossref_primary_10_1007_s00018_020_03618_4
crossref_primary_10_1101_gad_334433_119
crossref_primary_10_15252_embj_2021110372
crossref_primary_10_1002_jmv_25619
crossref_primary_10_1038_s41598_019_39969_7
crossref_primary_10_1038_s41467_019_14109_x
crossref_primary_10_1038_celldisc_2017_43
crossref_primary_10_1016_j_molcel_2022_02_021
crossref_primary_10_3389_fcell_2021_621134
crossref_primary_10_1261_rna_055657_115
crossref_primary_10_1101_gad_245787_114
crossref_primary_10_3390_biom12030443
crossref_primary_10_1016_j_molcel_2015_01_037
crossref_primary_10_1002_wrna_1353
crossref_primary_10_1007_s00018_019_03120_6
crossref_primary_10_1128_MCB_00207_16
crossref_primary_10_1186_s13072_022_00445_8
crossref_primary_10_1038_s41467_018_04730_7
crossref_primary_10_1091_mbc_E15_10_0697
crossref_primary_10_1016_j_jbc_2024_107838
crossref_primary_10_3390_cancers12010183
crossref_primary_10_1016_j_molcel_2023_11_024
crossref_primary_10_1261_rna_079783_123
crossref_primary_10_1038_ncomms14632
Cites_doi 10.1016/j.gde.2010.06.001
10.1016/S0092-8674(01)00270-7
10.1074/jbc.M807198200
10.1101/gad.1792809
10.1016/j.molcel.2010.06.017
10.1038/nature02288
10.1038/nrc2812
10.1016/0092-8674(88)90411-4
10.1126/science.1078764
10.1016/j.molcel.2010.10.029
10.1126/science.1149250
10.1038/384282a0
10.1101/gad.14.12.1415
10.1074/jbc.M609745200
10.1038/nsmb1352
10.1016/j.ceb.2008.03.006
10.1016/j.cell.2004.11.002
10.1101/gad.200303.112
10.1073/pnas.0812023106
10.1101/gad.1298605
10.1101/gad.1628208
10.1093/nar/gkp1176
10.1126/science.1216338
10.1111/j.1432-1033.1969.tb00699.x
10.1139/o06-083
10.1101/gad.14.12.1460
10.1023/A:1011910329010
10.1016/j.molcel.2008.12.028
10.1038/sj.emboj.7601932
10.1016/S0021-9258(19)69404-4
10.1101/gad.396106
10.1093/nar/gkl241
10.1074/jbc.M110.193870
10.1101/gad.183509.111
10.1016/j.molcel.2011.08.017
10.1016/j.cell.2009.02.001
10.1074/jbc.M311719200
10.1002/j.1460-2075.1983.tb01460.x
10.1002/jcp.1041350304
10.1093/nar/gkp218
10.1016/j.biocel.2008.03.016
10.1093/nar/gkq703
10.1074/mcp.M200029-MCP200
10.1007/s00018-008-7458-y
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Copyright © 2013 Elsevier Inc. All rights reserved.
2012 Elsevier Inc. All rights reserved. 2012
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: Copyright © 2013 Elsevier Inc. All rights reserved.
– notice: 2012 Elsevier Inc. All rights reserved. 2012
DBID 6I.
AAFTH
FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
7S9
L.6
5PM
ADTOC
UNPAY
DOI 10.1016/j.molcel.2012.11.005
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Nucleic Acids Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE

AGRICOLA
MEDLINE - Academic
Nucleic Acids Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 17
ExternalDocumentID 10.1016/j.molcel.2012.11.005
PMC3545032
23219533
10_1016_j_molcel_2012_11_005
US201600013928
S1097276512009367
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM28983
– fundername: NIGMS NIH HHS
  grantid: R01 GM028983
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: R01 GM028983 || GM
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
5VS
62-
6I.
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AAKUH
AALRI
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGHFR
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
WQ6
ZA5
.55
.GJ
29M
3O-
53G
AAHBH
AAMRU
AAQXK
ABWVN
ACRPL
ADMUD
ADNMO
ADVLN
AKAPO
AKRWK
FBQ
FGOYB
HZ~
OZT
R2-
UHS
X7M
ZGI
ZXP
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AKBMS
AKYEP
APXCP
CITATION
EFKBS
AGCQF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
7S9
L.6
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c553t-4412a8cf706e633f6a27a3fee217801b03d0811256733e776992a924005473083
IEDL.DBID IXB
ISSN 1097-2765
1097-4164
IngestDate Sun Oct 26 04:13:21 EDT 2025
Tue Sep 30 17:00:10 EDT 2025
Sun Sep 28 06:28:29 EDT 2025
Thu Oct 02 14:14:36 EDT 2025
Sun Sep 28 01:09:53 EDT 2025
Mon Jul 21 05:56:36 EDT 2025
Wed Oct 29 21:17:42 EDT 2025
Thu Apr 24 23:05:15 EDT 2025
Thu Apr 03 09:44:18 EDT 2025
Fri Feb 23 02:27:02 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2013 Elsevier Inc. All rights reserved.
publisher-specific-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c553t-4412a8cf706e633f6a27a3fee217801b03d0811256733e776992a924005473083
Notes http://dx.doi.org/10.1016/j.molcel.2012.11.005
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Current address: Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA.
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1097276512009367
PMID 23219533
PQID 1273505996
PQPubID 23479
PageCount 11
ParticipantIDs unpaywall_primary_10_1016_j_molcel_2012_11_005
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3545032
proquest_miscellaneous_2000088578
proquest_miscellaneous_1315606262
proquest_miscellaneous_1273505996
pubmed_primary_23219533
crossref_primary_10_1016_j_molcel_2012_11_005
crossref_citationtrail_10_1016_j_molcel_2012_11_005
fao_agris_US201600013928
elsevier_sciencedirect_doi_10_1016_j_molcel_2012_11_005
PublicationCentury 2000
PublicationDate 2013-01-10
PublicationDateYYYYMMDD 2013-01-10
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2013
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kleiman, Manley (bib19) 2001; 104
Medler, Al Husini, Raghunayakula, Mukundan, Aldea, Ansari (bib26) 2011; 286
Ji, Tulin (bib17) 2010; 20
Luo, Kraus (bib25) 2012; 26
de Almeida, García-Sacristán, Custódio, Carmo-Fonseca (bib6) 2010; 38
Carty, Greenleaf (bib2) 2002; 1
Di Giammartino, Nishida, Manley (bib8) 2011; 43
Fossati, Formentini, Wang, Moroni, Chiarugi (bib9) 2006; 84
Ouararhni, Hadj-Slimane, Ait-Si-Ali, Robin, Mietton, Harel-Bellan, Dimitrov, Hamiche (bib30) 2006; 20
Shi, Di Giammartino, Taylor, Sarkeshik, Rice, Yates, Frank, Manley (bib38) 2009; 33
Gagné, Shah, Poirier (bib10) 2001; 224
Krishnakumar, Gamble, Frizzell, Berrocal, Kininis, Kraus (bib22) 2008; 319
Ogata, Ueda, Kawaichi, Hayaishi (bib29) 1981; 256
Moore, Proudfoot (bib28) 2009; 136
Lönn, van der Heide, Dahl, Hellman, Heldin, Moustakas (bib24) 2010; 40
Ryan, Bauer (bib34) 2008; 40
Colgan, Murthy, Prives, Manley (bib3) 1996; 384
Venkataraman, Brown, Gilmartin (bib43) 2005; 19
Krishnakumar, Kraus (bib21) 2010; 39
Rozenblatt-Rosen, Nagaike, Francis, Kaneko, Glatt, Hughes, LaFramboise, Manley, Meyerson (bib33) 2009; 106
Tulin, Spradling (bib42) 2003; 299
Ryner, Takagaki, Manley (bib35) 1989; 9
Langelier, Planck, Roy, Pascal (bib23) 2012; 336
Vethantham, Rao, Manley (bib44) 2008; 22
Shamovsky, Nudler (bib37) 2008; 65
Hirose, Manley (bib12) 2000; 14
Ji, Tulin (bib16) 2009; 37
Rouleau, Patel, Hendzel, Kaufmann, Poirier (bib32) 2010; 10
Hsin, Manley (bib14) 2012; 26
Sadis, Hickey, Weber (bib36) 1988; 135
Warocquier, Scherrer (bib45) 1969; 10
Andrews, Harding, Calvet, Adamson (bib1) 1987; 7
Shin, Feng, Manley (bib40) 2004; 427
Shimazu, Horinouchi, Yoshida (bib39) 2007; 282
Glover-Cutter, Kim, Espinosa, Bentley (bib11) 2008; 15
Cuesta, Laroia, Schneider (bib4) 2000; 14
Richard, Manley (bib31) 2009; 23
Takagaki, Ryner, Manley (bib41) 1988; 52
Xing, Mayhew, Cullen, Park-Sarge, Sarge (bib46) 2004; 279
Danckwardt, Hentze, Kulozik (bib5) 2008; 27
de Murcia, Jongstra-Bilen, Ittel, Mandel, Delain (bib7) 1983; 2
Kraus (bib20) 2008; 20
Millevoi, Vagner (bib27) 2010; 38
Huang, Chen, Chang, Wang, Chuang, Lee (bib15) 2006; 34
Hossain, Ji, Anish, Jacobson, Takada (bib13) 2009; 284
Kim, Mauro, Gévry, Lis, Kraus (bib18) 2004; 119
Andrews (10.1016/j.molcel.2012.11.005_bib1) 1987; 7
Medler (10.1016/j.molcel.2012.11.005_bib26) 2011; 286
Sadis (10.1016/j.molcel.2012.11.005_bib36) 1988; 135
Xing (10.1016/j.molcel.2012.11.005_bib46) 2004; 279
Fossati (10.1016/j.molcel.2012.11.005_bib9) 2006; 84
Hossain (10.1016/j.molcel.2012.11.005_bib13) 2009; 284
Cuesta (10.1016/j.molcel.2012.11.005_bib4) 2000; 14
Vethantham (10.1016/j.molcel.2012.11.005_bib44) 2008; 22
Kim (10.1016/j.molcel.2012.11.005_bib18) 2004; 119
Huang (10.1016/j.molcel.2012.11.005_bib15) 2006; 34
Ji (10.1016/j.molcel.2012.11.005_bib17) 2010; 20
Hirose (10.1016/j.molcel.2012.11.005_bib12) 2000; 14
Krishnakumar (10.1016/j.molcel.2012.11.005_bib22) 2008; 319
Kleiman (10.1016/j.molcel.2012.11.005_bib19) 2001; 104
Gagné (10.1016/j.molcel.2012.11.005_bib10) 2001; 224
Shin (10.1016/j.molcel.2012.11.005_bib40) 2004; 427
Hsin (10.1016/j.molcel.2012.11.005_bib14) 2012; 26
Takagaki (10.1016/j.molcel.2012.11.005_bib41) 1988; 52
Shamovsky (10.1016/j.molcel.2012.11.005_bib37) 2008; 65
Langelier (10.1016/j.molcel.2012.11.005_bib23) 2012; 336
de Murcia (10.1016/j.molcel.2012.11.005_bib7) 1983; 2
Ogata (10.1016/j.molcel.2012.11.005_bib29) 1981; 256
Rozenblatt-Rosen (10.1016/j.molcel.2012.11.005_bib33) 2009; 106
Colgan (10.1016/j.molcel.2012.11.005_bib3) 1996; 384
Venkataraman (10.1016/j.molcel.2012.11.005_bib43) 2005; 19
Glover-Cutter (10.1016/j.molcel.2012.11.005_bib11) 2008; 15
Lönn (10.1016/j.molcel.2012.11.005_bib24) 2010; 40
Moore (10.1016/j.molcel.2012.11.005_bib28) 2009; 136
Danckwardt (10.1016/j.molcel.2012.11.005_bib5) 2008; 27
de Almeida (10.1016/j.molcel.2012.11.005_bib6) 2010; 38
Rouleau (10.1016/j.molcel.2012.11.005_bib32) 2010; 10
Ryan (10.1016/j.molcel.2012.11.005_bib34) 2008; 40
Kraus (10.1016/j.molcel.2012.11.005_bib20) 2008; 20
Millevoi (10.1016/j.molcel.2012.11.005_bib27) 2010; 38
Warocquier (10.1016/j.molcel.2012.11.005_bib45) 1969; 10
Carty (10.1016/j.molcel.2012.11.005_bib2) 2002; 1
Di Giammartino (10.1016/j.molcel.2012.11.005_bib8) 2011; 43
Krishnakumar (10.1016/j.molcel.2012.11.005_bib21) 2010; 39
Tulin (10.1016/j.molcel.2012.11.005_bib42) 2003; 299
Richard (10.1016/j.molcel.2012.11.005_bib31) 2009; 23
Ouararhni (10.1016/j.molcel.2012.11.005_bib30) 2006; 20
Ryner (10.1016/j.molcel.2012.11.005_bib35) 1989; 9
Shi (10.1016/j.molcel.2012.11.005_bib38) 2009; 33
Shimazu (10.1016/j.molcel.2012.11.005_bib39) 2007; 282
Ji (10.1016/j.molcel.2012.11.005_bib16) 2009; 37
Luo (10.1016/j.molcel.2012.11.005_bib25) 2012; 26
21835917 - J Biol Chem. 2011 Sep 30;286(39):33709-18
23028141 - Genes Dev. 2012 Oct 1;26(19):2119-37
18239856 - Cell Mol Life Sci. 2008 Mar;65(6):855-61
2555686 - Mol Cell Biol. 1989 Oct;9(10):4229-38
18468939 - Int J Biochem Cell Biol. 2008;40(11):2384-96
18450439 - Curr Opin Cell Biol. 2008 Jun;20(3):294-302
21925375 - Mol Cell. 2011 Sep 16;43(6):853-66
16682447 - Nucleic Acids Res. 2006;34(8):2398-407
4186272 - Eur J Biochem. 1969 Sep;10(2):362-70
19346337 - Nucleic Acids Res. 2009 Jun;37(11):3501-13
8918882 - Nature. 1996 Nov 21;384(6606):282-5
14707147 - J Biol Chem. 2004 Mar 12;279(11):10551-5
18258916 - Science. 2008 Feb 8;319(5864):819-21
17167533 - Biochem Cell Biol. 2006 Oct;84(5):703-12
6260786 - J Biol Chem. 1981 May 10;256(9):4135-7
18157150 - Nat Struct Mol Biol. 2008 Jan;15(1):71-8
11693195 - Mol Cell Biochem. 2001 Aug;224(1-2):183-5
15937220 - Genes Dev. 2005 Jun 1;19(11):1315-27
12376575 - Mol Cell Proteomics. 2002 Aug;1(8):598-610
19217410 - Mol Cell. 2009 Feb 13;33(3):365-76
19136632 - Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):755-60
20699273 - Nucleic Acids Res. 2010 Dec;38(22):8015-26
19181665 - J Biol Chem. 2009 Mar 27;284(13):8621-32
3316977 - Mol Cell Biol. 1987 Oct;7(10):3452-8
12543974 - Science. 2003 Jan 24;299(5606):560-2
20591646 - Curr Opin Genet Dev. 2010 Oct;20(5):512-8
21095583 - Mol Cell. 2010 Nov 24;40(4):521-32
19487567 - Genes Dev. 2009 Jun 1;23(11):1247-69
19239889 - Cell. 2009 Feb 20;136(4):688-700
14765198 - Nature. 2004 Feb 5;427(6974):553-8
15607977 - Cell. 2004 Dec 17;119(6):803-14
17158748 - Genes Dev. 2006 Dec 1;20(23):3324-36
18256699 - EMBO J. 2008 Feb 6;27(3):482-98
2456286 - J Cell Physiol. 1988 Jun;135(3):377-86
17172643 - J Biol Chem. 2007 Feb 16;282(7):4470-8
2830992 - Cell. 1988 Mar 11;52(5):731-42
11257228 - Cell. 2001 Mar 9;104(5):743-53
6313345 - EMBO J. 1983;2(4):543-8
10859165 - Genes Dev. 2000 Jun 15;14(12):1460-70
20603072 - Mol Cell. 2010 Jul 9;39(1):8-24
18281463 - Genes Dev. 2008 Feb 15;22(4):499-511
20044349 - Nucleic Acids Res. 2010 May;38(9):2757-74
10859161 - Genes Dev. 2000 Jun 15;14(12):1415-29
20200537 - Nat Rev Cancer. 2010 Apr;10(4):293-301
22391446 - Genes Dev. 2012 Mar 1;26(5):417-32
23312545 - Mol Cell. 2013 Jan 10;49(1):1-3
22582261 - Science. 2012 May 11;336(6082):728-32
References_xml – volume: 106
  start-page: 755
  year: 2009
  end-page: 760
  ident: bib33
  article-title: The tumor suppressor Cdc73 functionally associates with CPSF and CstF 3′ mRNA processing factors
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 282
  start-page: 4470
  year: 2007
  end-page: 4478
  ident: bib39
  article-title: Multiple histone deacetylases and the CREB-binding protein regulate pre-mRNA 3′-end processing
  publication-title: J. Biol. Chem.
– volume: 256
  start-page: 4135
  year: 1981
  end-page: 4137
  ident: bib29
  article-title: Poly(ADP-ribose) synthetase, a main acceptor of poly(ADP-ribose) in isolated nuclei
  publication-title: J. Biol. Chem.
– volume: 10
  start-page: 362
  year: 1969
  end-page: 370
  ident: bib45
  article-title: RNA metabolism in mammalian cells at elevated temperature
  publication-title: Eur. J. Biochem.
– volume: 34
  start-page: 2398
  year: 2006
  end-page: 2407
  ident: bib15
  article-title: Modulation of nucleosome-binding activity of FACT by poly(ADP-ribosyl)ation
  publication-title: Nucleic Acids Res.
– volume: 336
  start-page: 728
  year: 2012
  end-page: 732
  ident: bib23
  article-title: Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1
  publication-title: Science
– volume: 136
  start-page: 688
  year: 2009
  end-page: 700
  ident: bib28
  article-title: Pre-mRNA processing reaches back to transcription and ahead to translation
  publication-title: Cell
– volume: 20
  start-page: 3324
  year: 2006
  end-page: 3336
  ident: bib30
  article-title: The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity
  publication-title: Genes Dev.
– volume: 284
  start-page: 8621
  year: 2009
  end-page: 8632
  ident: bib13
  article-title: Poly(ADP-ribose) polymerase 1 interacts with nuclear respiratory factor 1 (NRF-1) and plays a role in NRF-1 transcriptional regulation
  publication-title: J. Biol. Chem.
– volume: 40
  start-page: 2384
  year: 2008
  end-page: 2396
  ident: bib34
  article-title: Finishing touches: post-translational modification of protein factors involved in mammalian pre-mRNA 3′ end formation
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 299
  start-page: 560
  year: 2003
  end-page: 562
  ident: bib42
  article-title: Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff loci
  publication-title: Science
– volume: 279
  start-page: 10551
  year: 2004
  end-page: 10555
  ident: bib46
  article-title: HSF1 modulation of Hsp70 mRNA polyadenylation via interaction with symplekin
  publication-title: J. Biol. Chem.
– volume: 384
  start-page: 282
  year: 1996
  end-page: 285
  ident: bib3
  article-title: Cell-cycle related regulation of poly(A) polymerase by phosphorylation
  publication-title: Nature
– volume: 27
  start-page: 482
  year: 2008
  end-page: 498
  ident: bib5
  article-title: 3′ end mRNA processing: molecular mechanisms and implications for health and disease
  publication-title: EMBO J.
– volume: 319
  start-page: 819
  year: 2008
  end-page: 821
  ident: bib22
  article-title: Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes
  publication-title: Science
– volume: 26
  start-page: 417
  year: 2012
  end-page: 432
  ident: bib25
  article-title: On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1
  publication-title: Genes Dev.
– volume: 37
  start-page: 3501
  year: 2009
  end-page: 3513
  ident: bib16
  article-title: Poly(ADP-ribosyl)ation of heterogeneous nuclear ribonucleoproteins modulates splicing
  publication-title: Nucleic Acids Res.
– volume: 22
  start-page: 499
  year: 2008
  end-page: 511
  ident: bib44
  article-title: Sumoylation regulates multiple aspects of mammalian poly(A) polymerase function
  publication-title: Genes Dev.
– volume: 2
  start-page: 543
  year: 1983
  end-page: 548
  ident: bib7
  article-title: Poly(ADP-ribose) polymerase auto-modification and interaction with DNA: electron microscopic visualization
  publication-title: EMBO J.
– volume: 43
  start-page: 853
  year: 2011
  end-page: 866
  ident: bib8
  article-title: Mechanisms and consequences of alternative polyadenylation
  publication-title: Mol. Cell
– volume: 135
  start-page: 377
  year: 1988
  end-page: 386
  ident: bib36
  article-title: Effect of heat shock on RNA metabolism in HeLa cells
  publication-title: J. Cell. Physiol.
– volume: 33
  start-page: 365
  year: 2009
  end-page: 376
  ident: bib38
  article-title: Molecular architecture of the human pre-mRNA 3′ processing complex
  publication-title: Mol. Cell
– volume: 38
  start-page: 2757
  year: 2010
  end-page: 2774
  ident: bib27
  article-title: Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation
  publication-title: Nucleic Acids Res.
– volume: 7
  start-page: 3452
  year: 1987
  end-page: 3458
  ident: bib1
  article-title: The heat shock response in HeLa cells is accompanied by elevated expression of the c-fos proto-oncogene
  publication-title: Mol. Cell. Biol.
– volume: 84
  start-page: 703
  year: 2006
  end-page: 712
  ident: bib9
  article-title: Poly(ADP-ribosyl)ation regulates heat shock factor-1 activity and the heat shock response in murine fibroblasts
  publication-title: Biochem. Cell Biol.
– volume: 15
  start-page: 71
  year: 2008
  end-page: 78
  ident: bib11
  article-title: RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes
  publication-title: Nat. Struct. Mol. Biol.
– volume: 427
  start-page: 553
  year: 2004
  end-page: 558
  ident: bib40
  article-title: Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock
  publication-title: Nature
– volume: 14
  start-page: 1415
  year: 2000
  end-page: 1429
  ident: bib12
  article-title: RNA polymerase II and the integration of nuclear events
  publication-title: Genes Dev.
– volume: 26
  start-page: 2119
  year: 2012
  end-page: 2137
  ident: bib14
  article-title: The RNA polymerase II CTD coordinates transcription and RNA processing
  publication-title: Genes Dev.
– volume: 39
  start-page: 8
  year: 2010
  end-page: 24
  ident: bib21
  article-title: The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets
  publication-title: Mol. Cell
– volume: 23
  start-page: 1247
  year: 2009
  end-page: 1269
  ident: bib31
  article-title: Transcription termination by nuclear RNA polymerases
  publication-title: Genes Dev.
– volume: 104
  start-page: 743
  year: 2001
  end-page: 753
  ident: bib19
  article-title: The BARD1-CstF-50 interaction links mRNA 3′ end formation to DNA damage and tumor suppression
  publication-title: Cell
– volume: 9
  start-page: 4229
  year: 1989
  end-page: 4238
  ident: bib35
  article-title: Multiple forms of poly(A) polymerases purified from HeLa cells function in specific mRNA 3′-end formation
  publication-title: Mol. Cell. Biol.
– volume: 65
  start-page: 855
  year: 2008
  end-page: 861
  ident: bib37
  article-title: New insights into the mechanism of heat shock response activation
  publication-title: Cell. Mol. Life Sci.
– volume: 40
  start-page: 521
  year: 2010
  end-page: 532
  ident: bib24
  article-title: PARP-1 attenuates Smad-mediated transcription
  publication-title: Mol. Cell
– volume: 286
  start-page: 33709
  year: 2011
  end-page: 33718
  ident: bib26
  article-title: Evidence for a complex of transcription factor IIB with poly(A) polymerase and cleavage factor 1 subunits required for gene looping
  publication-title: J. Biol. Chem.
– volume: 1
  start-page: 598
  year: 2002
  end-page: 610
  ident: bib2
  article-title: Hyperphosphorylated C-terminal repeat domain-associating proteins in the nuclear proteome link transcription to DNA/chromatin modification and RNA processing
  publication-title: Mol. Cell. Proteomics
– volume: 20
  start-page: 294
  year: 2008
  end-page: 302
  ident: bib20
  article-title: Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation
  publication-title: Curr. Opin. Cell Biol.
– volume: 10
  start-page: 293
  year: 2010
  end-page: 301
  ident: bib32
  article-title: PARP inhibition: PARP1 and beyond
  publication-title: Nat. Rev. Cancer
– volume: 20
  start-page: 512
  year: 2010
  end-page: 518
  ident: bib17
  article-title: The roles of PARP1 in gene control and cell differentiation
  publication-title: Curr. Opin. Genet. Dev.
– volume: 19
  start-page: 1315
  year: 2005
  end-page: 1327
  ident: bib43
  article-title: Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition
  publication-title: Genes Dev.
– volume: 14
  start-page: 1460
  year: 2000
  end-page: 1470
  ident: bib4
  article-title: Chaperone hsp27 inhibits translation during heat shock by binding eIF4G and facilitating dissociation of cap-initiation complexes
  publication-title: Genes Dev.
– volume: 224
  start-page: 183
  year: 2001
  end-page: 185
  ident: bib10
  article-title: Analysis of ADP-ribose polymer sizes in intact cells
  publication-title: Mol. Cell. Biochem.
– volume: 38
  start-page: 8015
  year: 2010
  end-page: 8026
  ident: bib6
  article-title: A link between nuclear RNA surveillance, the human exosome and RNA polymerase II transcriptional termination
  publication-title: Nucleic Acids Res.
– volume: 52
  start-page: 731
  year: 1988
  end-page: 742
  ident: bib41
  article-title: Separation and characterization of a poly(A) polymerase and a cleavage/specificity factor required for pre-mRNA polyadenylation
  publication-title: Cell
– volume: 119
  start-page: 803
  year: 2004
  end-page: 814
  ident: bib18
  article-title: NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1
  publication-title: Cell
– volume: 20
  start-page: 512
  year: 2010
  ident: 10.1016/j.molcel.2012.11.005_bib17
  article-title: The roles of PARP1 in gene control and cell differentiation
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2010.06.001
– volume: 104
  start-page: 743
  year: 2001
  ident: 10.1016/j.molcel.2012.11.005_bib19
  article-title: The BARD1-CstF-50 interaction links mRNA 3′ end formation to DNA damage and tumor suppression
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00270-7
– volume: 284
  start-page: 8621
  year: 2009
  ident: 10.1016/j.molcel.2012.11.005_bib13
  article-title: Poly(ADP-ribose) polymerase 1 interacts with nuclear respiratory factor 1 (NRF-1) and plays a role in NRF-1 transcriptional regulation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M807198200
– volume: 23
  start-page: 1247
  year: 2009
  ident: 10.1016/j.molcel.2012.11.005_bib31
  article-title: Transcription termination by nuclear RNA polymerases
  publication-title: Genes Dev.
  doi: 10.1101/gad.1792809
– volume: 39
  start-page: 8
  year: 2010
  ident: 10.1016/j.molcel.2012.11.005_bib21
  article-title: The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.06.017
– volume: 427
  start-page: 553
  year: 2004
  ident: 10.1016/j.molcel.2012.11.005_bib40
  article-title: Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock
  publication-title: Nature
  doi: 10.1038/nature02288
– volume: 10
  start-page: 293
  year: 2010
  ident: 10.1016/j.molcel.2012.11.005_bib32
  article-title: PARP inhibition: PARP1 and beyond
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2812
– volume: 52
  start-page: 731
  year: 1988
  ident: 10.1016/j.molcel.2012.11.005_bib41
  article-title: Separation and characterization of a poly(A) polymerase and a cleavage/specificity factor required for pre-mRNA polyadenylation
  publication-title: Cell
  doi: 10.1016/0092-8674(88)90411-4
– volume: 299
  start-page: 560
  year: 2003
  ident: 10.1016/j.molcel.2012.11.005_bib42
  article-title: Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff loci
  publication-title: Science
  doi: 10.1126/science.1078764
– volume: 40
  start-page: 521
  year: 2010
  ident: 10.1016/j.molcel.2012.11.005_bib24
  article-title: PARP-1 attenuates Smad-mediated transcription
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.10.029
– volume: 9
  start-page: 4229
  year: 1989
  ident: 10.1016/j.molcel.2012.11.005_bib35
  article-title: Multiple forms of poly(A) polymerases purified from HeLa cells function in specific mRNA 3′-end formation
  publication-title: Mol. Cell. Biol.
– volume: 319
  start-page: 819
  year: 2008
  ident: 10.1016/j.molcel.2012.11.005_bib22
  article-title: Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes
  publication-title: Science
  doi: 10.1126/science.1149250
– volume: 384
  start-page: 282
  year: 1996
  ident: 10.1016/j.molcel.2012.11.005_bib3
  article-title: Cell-cycle related regulation of poly(A) polymerase by phosphorylation
  publication-title: Nature
  doi: 10.1038/384282a0
– volume: 14
  start-page: 1415
  year: 2000
  ident: 10.1016/j.molcel.2012.11.005_bib12
  article-title: RNA polymerase II and the integration of nuclear events
  publication-title: Genes Dev.
  doi: 10.1101/gad.14.12.1415
– volume: 282
  start-page: 4470
  year: 2007
  ident: 10.1016/j.molcel.2012.11.005_bib39
  article-title: Multiple histone deacetylases and the CREB-binding protein regulate pre-mRNA 3′-end processing
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M609745200
– volume: 15
  start-page: 71
  year: 2008
  ident: 10.1016/j.molcel.2012.11.005_bib11
  article-title: RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1352
– volume: 20
  start-page: 294
  year: 2008
  ident: 10.1016/j.molcel.2012.11.005_bib20
  article-title: Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2008.03.006
– volume: 119
  start-page: 803
  year: 2004
  ident: 10.1016/j.molcel.2012.11.005_bib18
  article-title: NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1
  publication-title: Cell
  doi: 10.1016/j.cell.2004.11.002
– volume: 26
  start-page: 2119
  year: 2012
  ident: 10.1016/j.molcel.2012.11.005_bib14
  article-title: The RNA polymerase II CTD coordinates transcription and RNA processing
  publication-title: Genes Dev.
  doi: 10.1101/gad.200303.112
– volume: 106
  start-page: 755
  year: 2009
  ident: 10.1016/j.molcel.2012.11.005_bib33
  article-title: The tumor suppressor Cdc73 functionally associates with CPSF and CstF 3′ mRNA processing factors
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0812023106
– volume: 19
  start-page: 1315
  year: 2005
  ident: 10.1016/j.molcel.2012.11.005_bib43
  article-title: Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition
  publication-title: Genes Dev.
  doi: 10.1101/gad.1298605
– volume: 22
  start-page: 499
  year: 2008
  ident: 10.1016/j.molcel.2012.11.005_bib44
  article-title: Sumoylation regulates multiple aspects of mammalian poly(A) polymerase function
  publication-title: Genes Dev.
  doi: 10.1101/gad.1628208
– volume: 38
  start-page: 2757
  year: 2010
  ident: 10.1016/j.molcel.2012.11.005_bib27
  article-title: Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp1176
– volume: 336
  start-page: 728
  year: 2012
  ident: 10.1016/j.molcel.2012.11.005_bib23
  article-title: Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1
  publication-title: Science
  doi: 10.1126/science.1216338
– volume: 10
  start-page: 362
  year: 1969
  ident: 10.1016/j.molcel.2012.11.005_bib45
  article-title: RNA metabolism in mammalian cells at elevated temperature
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1969.tb00699.x
– volume: 84
  start-page: 703
  year: 2006
  ident: 10.1016/j.molcel.2012.11.005_bib9
  article-title: Poly(ADP-ribosyl)ation regulates heat shock factor-1 activity and the heat shock response in murine fibroblasts
  publication-title: Biochem. Cell Biol.
  doi: 10.1139/o06-083
– volume: 14
  start-page: 1460
  year: 2000
  ident: 10.1016/j.molcel.2012.11.005_bib4
  article-title: Chaperone hsp27 inhibits translation during heat shock by binding eIF4G and facilitating dissociation of cap-initiation complexes
  publication-title: Genes Dev.
  doi: 10.1101/gad.14.12.1460
– volume: 224
  start-page: 183
  year: 2001
  ident: 10.1016/j.molcel.2012.11.005_bib10
  article-title: Analysis of ADP-ribose polymer sizes in intact cells
  publication-title: Mol. Cell. Biochem.
  doi: 10.1023/A:1011910329010
– volume: 33
  start-page: 365
  year: 2009
  ident: 10.1016/j.molcel.2012.11.005_bib38
  article-title: Molecular architecture of the human pre-mRNA 3′ processing complex
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.12.028
– volume: 27
  start-page: 482
  year: 2008
  ident: 10.1016/j.molcel.2012.11.005_bib5
  article-title: 3′ end mRNA processing: molecular mechanisms and implications for health and disease
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601932
– volume: 256
  start-page: 4135
  year: 1981
  ident: 10.1016/j.molcel.2012.11.005_bib29
  article-title: Poly(ADP-ribose) synthetase, a main acceptor of poly(ADP-ribose) in isolated nuclei
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)69404-4
– volume: 20
  start-page: 3324
  year: 2006
  ident: 10.1016/j.molcel.2012.11.005_bib30
  article-title: The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity
  publication-title: Genes Dev.
  doi: 10.1101/gad.396106
– volume: 34
  start-page: 2398
  year: 2006
  ident: 10.1016/j.molcel.2012.11.005_bib15
  article-title: Modulation of nucleosome-binding activity of FACT by poly(ADP-ribosyl)ation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl241
– volume: 7
  start-page: 3452
  year: 1987
  ident: 10.1016/j.molcel.2012.11.005_bib1
  article-title: The heat shock response in HeLa cells is accompanied by elevated expression of the c-fos proto-oncogene
  publication-title: Mol. Cell. Biol.
– volume: 286
  start-page: 33709
  year: 2011
  ident: 10.1016/j.molcel.2012.11.005_bib26
  article-title: Evidence for a complex of transcription factor IIB with poly(A) polymerase and cleavage factor 1 subunits required for gene looping
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.193870
– volume: 26
  start-page: 417
  year: 2012
  ident: 10.1016/j.molcel.2012.11.005_bib25
  article-title: On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1
  publication-title: Genes Dev.
  doi: 10.1101/gad.183509.111
– volume: 43
  start-page: 853
  year: 2011
  ident: 10.1016/j.molcel.2012.11.005_bib8
  article-title: Mechanisms and consequences of alternative polyadenylation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.08.017
– volume: 136
  start-page: 688
  year: 2009
  ident: 10.1016/j.molcel.2012.11.005_bib28
  article-title: Pre-mRNA processing reaches back to transcription and ahead to translation
  publication-title: Cell
  doi: 10.1016/j.cell.2009.02.001
– volume: 279
  start-page: 10551
  year: 2004
  ident: 10.1016/j.molcel.2012.11.005_bib46
  article-title: HSF1 modulation of Hsp70 mRNA polyadenylation via interaction with symplekin
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M311719200
– volume: 2
  start-page: 543
  year: 1983
  ident: 10.1016/j.molcel.2012.11.005_bib7
  article-title: Poly(ADP-ribose) polymerase auto-modification and interaction with DNA: electron microscopic visualization
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1983.tb01460.x
– volume: 135
  start-page: 377
  year: 1988
  ident: 10.1016/j.molcel.2012.11.005_bib36
  article-title: Effect of heat shock on RNA metabolism in HeLa cells
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.1041350304
– volume: 37
  start-page: 3501
  year: 2009
  ident: 10.1016/j.molcel.2012.11.005_bib16
  article-title: Poly(ADP-ribosyl)ation of heterogeneous nuclear ribonucleoproteins modulates splicing
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp218
– volume: 40
  start-page: 2384
  year: 2008
  ident: 10.1016/j.molcel.2012.11.005_bib34
  article-title: Finishing touches: post-translational modification of protein factors involved in mammalian pre-mRNA 3′ end formation
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2008.03.016
– volume: 38
  start-page: 8015
  year: 2010
  ident: 10.1016/j.molcel.2012.11.005_bib6
  article-title: A link between nuclear RNA surveillance, the human exosome and RNA polymerase II transcriptional termination
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq703
– volume: 1
  start-page: 598
  year: 2002
  ident: 10.1016/j.molcel.2012.11.005_bib2
  article-title: Hyperphosphorylated C-terminal repeat domain-associating proteins in the nuclear proteome link transcription to DNA/chromatin modification and RNA processing
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M200029-MCP200
– volume: 65
  start-page: 855
  year: 2008
  ident: 10.1016/j.molcel.2012.11.005_bib37
  article-title: New insights into the mechanism of heat shock response activation
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-008-7458-y
– reference: 19181665 - J Biol Chem. 2009 Mar 27;284(13):8621-32
– reference: 19136632 - Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):755-60
– reference: 14765198 - Nature. 2004 Feb 5;427(6974):553-8
– reference: 18239856 - Cell Mol Life Sci. 2008 Mar;65(6):855-61
– reference: 2830992 - Cell. 1988 Mar 11;52(5):731-42
– reference: 15607977 - Cell. 2004 Dec 17;119(6):803-14
– reference: 20699273 - Nucleic Acids Res. 2010 Dec;38(22):8015-26
– reference: 6260786 - J Biol Chem. 1981 May 10;256(9):4135-7
– reference: 18281463 - Genes Dev. 2008 Feb 15;22(4):499-511
– reference: 23028141 - Genes Dev. 2012 Oct 1;26(19):2119-37
– reference: 2456286 - J Cell Physiol. 1988 Jun;135(3):377-86
– reference: 22582261 - Science. 2012 May 11;336(6082):728-32
– reference: 19487567 - Genes Dev. 2009 Jun 1;23(11):1247-69
– reference: 18450439 - Curr Opin Cell Biol. 2008 Jun;20(3):294-302
– reference: 18157150 - Nat Struct Mol Biol. 2008 Jan;15(1):71-8
– reference: 12376575 - Mol Cell Proteomics. 2002 Aug;1(8):598-610
– reference: 17158748 - Genes Dev. 2006 Dec 1;20(23):3324-36
– reference: 11693195 - Mol Cell Biochem. 2001 Aug;224(1-2):183-5
– reference: 19217410 - Mol Cell. 2009 Feb 13;33(3):365-76
– reference: 22391446 - Genes Dev. 2012 Mar 1;26(5):417-32
– reference: 10859161 - Genes Dev. 2000 Jun 15;14(12):1415-29
– reference: 21925375 - Mol Cell. 2011 Sep 16;43(6):853-66
– reference: 18258916 - Science. 2008 Feb 8;319(5864):819-21
– reference: 16682447 - Nucleic Acids Res. 2006;34(8):2398-407
– reference: 21835917 - J Biol Chem. 2011 Sep 30;286(39):33709-18
– reference: 20200537 - Nat Rev Cancer. 2010 Apr;10(4):293-301
– reference: 11257228 - Cell. 2001 Mar 9;104(5):743-53
– reference: 12543974 - Science. 2003 Jan 24;299(5606):560-2
– reference: 8918882 - Nature. 1996 Nov 21;384(6606):282-5
– reference: 17167533 - Biochem Cell Biol. 2006 Oct;84(5):703-12
– reference: 2555686 - Mol Cell Biol. 1989 Oct;9(10):4229-38
– reference: 3316977 - Mol Cell Biol. 1987 Oct;7(10):3452-8
– reference: 4186272 - Eur J Biochem. 1969 Sep;10(2):362-70
– reference: 20603072 - Mol Cell. 2010 Jul 9;39(1):8-24
– reference: 21095583 - Mol Cell. 2010 Nov 24;40(4):521-32
– reference: 19239889 - Cell. 2009 Feb 20;136(4):688-700
– reference: 15937220 - Genes Dev. 2005 Jun 1;19(11):1315-27
– reference: 14707147 - J Biol Chem. 2004 Mar 12;279(11):10551-5
– reference: 20591646 - Curr Opin Genet Dev. 2010 Oct;20(5):512-8
– reference: 18256699 - EMBO J. 2008 Feb 6;27(3):482-98
– reference: 6313345 - EMBO J. 1983;2(4):543-8
– reference: 20044349 - Nucleic Acids Res. 2010 May;38(9):2757-74
– reference: 17172643 - J Biol Chem. 2007 Feb 16;282(7):4470-8
– reference: 19346337 - Nucleic Acids Res. 2009 Jun;37(11):3501-13
– reference: 23312545 - Mol Cell. 2013 Jan 10;49(1):1-3
– reference: 18468939 - Int J Biochem Cell Biol. 2008;40(11):2384-96
– reference: 10859165 - Genes Dev. 2000 Jun 15;14(12):1460-70
SSID ssj0014589
Score 2.2793672
Snippet The 3′ ends of most eukaryotic mRNAs are produced by an endonucleolytic cleavage followed by synthesis of a poly(A) tail. Poly(A) polymerase (PAP), the enzyme...
The 3' ends of most eukaryotic mRNAs are produced by an endonucleolytic cleavage followed by synthesis of a poly(A) tail. Poly(A) polymerase (PAP), the enzyme...
The 3a2 ends of most eukaryotic mRNAs are produced by an endonucleolytic cleavage followed by synthesis of a poly(A) tail. Poly(A) polymerase (PAP), the enzyme...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
fao
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7
SubjectTerms ADP-ribosylation
beta-Globins - genetics
beta-Globins - metabolism
binding capacity
Cell Line
Enzyme Activation
Gene Knockdown Techniques
genes
heat
heat shock proteins
Heat-Shock Response
Humans
inhibition
messenger RNA
NAD ADP-ribosyltransferase
Poly (ADP-Ribose) Polymerase-1
Poly(ADP-ribose) Polymerases - chemistry
Poly(ADP-ribose) Polymerases - genetics
Poly(ADP-ribose) Polymerases - metabolism
Poly(ADP-ribose) Polymerases - physiology
Polyadenylation
Polynucleotide Adenylyltransferase - chemistry
Polynucleotide Adenylyltransferase - metabolism
post-translational modification
Protein Binding
Protein Processing, Post-Translational
RNA Interference
RNA, Messenger - genetics
RNA, Messenger - metabolism
thermal stress
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db5swED-1qab1Zd9rsy8xaa-k1DY2PGbTqmzSKpQsUvdkGTBNNgbRSjRlf_3uMESr2q3dG4IzyNxx9zP-3R3AG14wkxuZ-7FV0hcpt36KwNzPpCxMkOWIKSg5-dOpnMzFx7PwbAf6xoXEqqQ_1q2P7t7d0Yx2SZmSGJtoAS7V0SovdmFPhgi_B7A3P03GX9pdzVj5JNcfI9gQfbpcy-n6Xpd4dyJ0sRHV7qSmddeHo93C1NeBzqvcybvramU2P01Z_hGYTu7DtE_vcXyUb6N1k46yX1erPd5-zg_gXgdTvbGTewg7tnoEd1zjys1jeJuMp8mxN3U0WnvhJePEM1XufagWy3TZ4Im63Bj0aRvHtfNcOqQ3QdfvzRbohJ_A_OT953cTv-vG4GdhyBsfcRMzUVaoQFrJeSENU4YX1uKiBsNcGvAc4QXiJak4t0rJOGYmJooqtTdGpPcUBlVd2UPwRKGkiISwPLcC8UQqTBAaLlMRR5GN5BB4rxSddaXKqWNGqXtO2lftVKlJlbiK0fiUIfjbUStXquMGedXrW3dww8EIjdHkhpGHaB7anKMf1vMZoyp9LZZm0RBe9zaj8UMlvZrK1usLfYxAMWyr4fxDhlNiO64x2d9lWAvzI_S0QzhwtridLsJj2hblOLVLVroVoGLil69Uy0VbVJwjlA44Pne0tedbvcVn_zvgOeyztqUIUSlfwKD5sbYvEdg16avuU_4NXwREQg
  priority: 102
  providerName: Unpaywall
Title PARP1 Represses PAP and Inhibits Polyadenylation during Heat Shock
URI https://dx.doi.org/10.1016/j.molcel.2012.11.005
https://www.ncbi.nlm.nih.gov/pubmed/23219533
https://www.proquest.com/docview/1273505996
https://www.proquest.com/docview/1315606262
https://www.proquest.com/docview/2000088578
https://pubmed.ncbi.nlm.nih.gov/PMC3545032
http://www.cell.com/article/S1097276512009367/pdf
UnpaywallVersion publishedVersion
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1097-4164
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0014589
  issn: 1097-4164
  databaseCode: HH5
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1097-4164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014589
  issn: 1097-4164
  databaseCode: KQ8
  dateStart: 19971201
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Open Access Journals
  customDbUrl:
  eissn: 1097-4164
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0014589
  issn: 1097-4164
  databaseCode: IXB
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1097-4164
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0014589
  issn: 1097-4164
  databaseCode: DIK
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1097-4164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014589
  issn: 1097-4164
  databaseCode: AKRWK
  dateStart: 19971201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGEIIXND5XBlOQeM2a2o6dPGYTU8fEFLVUlCfLSZw1KCTV1mrqf78750OrGAzxGOcsy-fz3c-6L0I-sZzqTIvMDY0ULk-YcRMA5m4qRK69NANMgcnJXy_EeMa_zP35DjnpcmEwrLLV_Y1Ot9q6HRm23Bwui2I4Rd8plQIsFj7LBWaUMx5g-4az-XHvSeC-bYOHxC5Sd-lzNsbrV12mBh0QI3qEtTyxid395ulRruv7QOjvsZRP19VSb250Wd4xVKd75HmLMJ2o2cQLsmOql-RJ03Ny84ocx9EkHjmTJgLWXDtxFDu6ypyzalEkxQoG6nKjQR1tmjA5p8lkdMagtZ3pAvTnazI7_fztZOy2jRTc1PfZygXIQ3WQ5tITRjCWC02lZrkx8B4BC5V4LANkAFBHSMaMlCIMqQ4xuhQ7EwNIe0N2q7oy-8ThuRQ84NywzHCAAgnXnq-ZSHgYBCYQA8I6_qm0rTKOzS5K1YWT_VQN1xVyHR4gClYZELeftWyqbDxAL7ujUVvSosAQPDBzH05S6UtQoWo2pVhgz8JgGgzIx-54FdwxdJzoytTrazUCjOfbQjZ_oWGYkw7PQ_pnGmoRegBKckDeNmLTbxeQLXo0GWxtS6B6AqwDvv2nKha2HjgDFOwxWPeoF71_4uK7_-biAXlGbVsQDId8T3ZXV2vzAcDZKjkkj6PzyffzQ3sL4Wt2EUc_bgGIhTXX
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELeAaYKXad90sM2T9mqa2o6dPBY0VDZAFaVS3ywncdagkFTQaup_v7t8adXYmPaanGX5fL77ne6LkM8i5TaxKmGh04rJSDgWATBnsVKp9eIEMAUWJ19cqtFUfp35sy1y0tbCYFplo_trnV5p6-ZLv-Fmf5Fl_QnGTrlWYLHQLVd6mzyRPqATrOKbHXehBOlXc_CQmiF5Wz9XJXndlnnsMAIx4EfYzBOn2D1sn7ZTWz6EQn9PptxdFQu7_mHz_BdLdfqcPGsgJh3Wp3hBtlzxkjyth06uX5Hj8fBqPKBXdQqsu6fj4ZjaIqFnxTyLsiV8KPO1BX20rvPkaF3KSEegtulkDgr0NZmefrk-GbFmkgKLfV8sGWAeboM41Z5ySohUWa6tSJ0DhwRMVOSJBKABYB2lhXBaqzDkNsT0UhxNDCjtDdkpysLtEypTrWQgpROJk4AFImk93woVyTAIXKB6RLT8M3HTZhynXeSmzSe7MTXXDXIdPBADu_QI61Yt6jYbj9Dr9mrMhrgYsASPrNyHmzT2O-hQM51w7LBX4WAe9Min9noNPDKMnNjClat7MwCQ51edbP5CI7AoHfxD_mcaXkH0ALRkj7ytxaY7LkBbDGkKONqGQHUE2Ah880-RzauG4AJgsCdg36NO9P6Ji-_-m4sfye7o-uLcnJ9dfjsge7yaEYK5kYdkZ3m3cu8BqS2jD9VL_Am__jWq
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db5swED-1qab1Zd9rsy8xaa-k1DY2PGbTqmzSKpQsUvdkGTBNNgbRSjRlf_3uMESr2q3dG4IzyNxx9zP-3R3AG14wkxuZ-7FV0hcpt36KwNzPpCxMkOWIKSg5-dOpnMzFx7PwbAf6xoXEqqQ_1q2P7t7d0Yx2SZmSGJtoAS7V0SovdmFPhgi_B7A3P03GX9pdzVj5JNcfI9gQfbpcy-n6Xpd4dyJ0sRHV7qSmddeHo93C1NeBzqvcybvramU2P01Z_hGYTu7DtE_vcXyUb6N1k46yX1erPd5-zg_gXgdTvbGTewg7tnoEd1zjys1jeJuMp8mxN3U0WnvhJePEM1XufagWy3TZ4Im63Bj0aRvHtfNcOqQ3QdfvzRbohJ_A_OT953cTv-vG4GdhyBsfcRMzUVaoQFrJeSENU4YX1uKiBsNcGvAc4QXiJak4t0rJOGYmJooqtTdGpPcUBlVd2UPwRKGkiISwPLcC8UQqTBAaLlMRR5GN5BB4rxSddaXKqWNGqXtO2lftVKlJlbiK0fiUIfjbUStXquMGedXrW3dww8EIjdHkhpGHaB7anKMf1vMZoyp9LZZm0RBe9zaj8UMlvZrK1usLfYxAMWyr4fxDhlNiO64x2d9lWAvzI_S0QzhwtridLsJj2hblOLVLVroVoGLil69Uy0VbVJwjlA44Pne0tedbvcVn_zvgOeyztqUIUSlfwKD5sbYvEdg16avuU_4NXwREQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PARP1+Represses+PAP+and+Inhibits+Polyadenylation+during+Heat+Shock&rft.jtitle=Molecular+cell&rft.au=Di%C2%A0Giammartino%2C+Dafne%C2%A0Campigli&rft.au=Shi%2C+Yongsheng&rft.au=Manley%2C+James%C2%A0L.&rft.date=2013-01-10&rft.issn=1097-2765&rft.volume=49&rft.issue=1&rft.spage=7&rft.epage=17&rft_id=info:doi/10.1016%2Fj.molcel.2012.11.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_molcel_2012_11_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon