PARP1 Represses PAP and Inhibits Polyadenylation during Heat Shock
The 3′ ends of most eukaryotic mRNAs are produced by an endonucleolytic cleavage followed by synthesis of a poly(A) tail. Poly(A) polymerase (PAP), the enzyme that catalyzes the formation of the tail, is subject to tight regulation involving several posttranslational modifications. Here we show that...
Saved in:
| Published in | Molecular cell Vol. 49; no. 1; pp. 7 - 17 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
10.01.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1097-2765 1097-4164 1097-4164 |
| DOI | 10.1016/j.molcel.2012.11.005 |
Cover
| Abstract | The 3′ ends of most eukaryotic mRNAs are produced by an endonucleolytic cleavage followed by synthesis of a poly(A) tail. Poly(A) polymerase (PAP), the enzyme that catalyzes the formation of the tail, is subject to tight regulation involving several posttranslational modifications. Here we show that the enzyme poly(ADP-ribose) polymerase 1 (PARP1) modifies PAP and regulates its activity both in vitro and in vivo. PARP1 binds to and modifies PAP by poly(ADP-ribosyl)ation (PARylation) in vitro, which inhibits PAP activity. In vivo we show that PAP is PARylated during heat shock, leading to inhibition of polyadenylation in a PARP1-dependent manner. The observed inhibition reflects reduced RNA binding affinity of PARylated PAP in vitro and decreased PAP association with non-heat shock protein-encoding genes in vivo. Our results provide direct evidence that PARylation can control processing of mRNA precursors, and also identify PARP1 as a regulator of polyadenylation during thermal stress.
[Display omitted]
► PARP1 binds and PARylates PAP in vitro, which inhibits its polyadenylation activity ► Polyadenylation is inhibited during heat shock in a PARP1-dependent manner ► PAP is PARylated in vivo during heat shock ► Inhibition of polyadenylation reflects decreased RNA binding by PARylated PAP |
|---|---|
| AbstractList | The 3′ ends of most eukaryotic mRNAs are produced by an endonucleolytic cleavage followed by synthesis of a poly(A) tail. Poly(A) polymerase (PAP), the enzyme that catalyzes the formation of the tail, is subject to tight regulation involving several post-translational modifications. Here we show that the enzyme poly(ADP-ribose) polymerase1 (PARP1) modifies PAP, and regulates its activity both in vitro and in vivo. PARP1 binds to and modifies PAP by poly(ADP-ribosyl)ation (PARylation) in vitro, which inhibits PAP activity. In vivo we show that PAP is PARylated during heat shock, leading to inhibition of polyadenylation in a PARP1-dependent manner. The observed inhibition reflects reduced RNA binding affinity of PARylated PAP in vitro, and decreased PAP association with non-heat shock protein-encoding genes in vivo. Our results both provide direct evidence that PARylation can control processing of mRNA precursors and also identify PARP1 as a regulator of polyadenylation during thermal stress. The 3′ ends of most eukaryotic mRNAs are produced by an endonucleolytic cleavage followed by synthesis of a poly(A) tail. Poly(A) polymerase (PAP), the enzyme that catalyzes the formation of the tail, is subject to tight regulation involving several posttranslational modifications. Here we show that the enzyme poly(ADP-ribose) polymerase 1 (PARP1) modifies PAP and regulates its activity both in vitro and in vivo. PARP1 binds to and modifies PAP by poly(ADP-ribosyl)ation (PARylation) in vitro, which inhibits PAP activity. In vivo we show that PAP is PARylated during heat shock, leading to inhibition of polyadenylation in a PARP1-dependent manner. The observed inhibition reflects reduced RNA binding affinity of PARylated PAP in vitro and decreased PAP association with non-heat shock protein-encoding genes in vivo. Our results provide direct evidence that PARylation can control processing of mRNA precursors, and also identify PARP1 as a regulator of polyadenylation during thermal stress. [Display omitted] ► PARP1 binds and PARylates PAP in vitro, which inhibits its polyadenylation activity ► Polyadenylation is inhibited during heat shock in a PARP1-dependent manner ► PAP is PARylated in vivo during heat shock ► Inhibition of polyadenylation reflects decreased RNA binding by PARylated PAP The 3' ends of most eukaryotic mRNAs are produced by an endonucleolytic cleavage followed by synthesis of a poly(A) tail. Poly(A) polymerase (PAP), the enzyme that catalyzes the formation of the tail, is subject to tight regulation involving several posttranslational modifications. Here we show that the enzyme poly(ADP-ribose) polymerase 1 (PARP1) modifies PAP and regulates its activity both in vitro and in vivo. PARP1 binds to and modifies PAP by poly(ADP-ribosyl)ation (PARylation) in vitro, which inhibits PAP activity. In vivo we show that PAP is PARylated during heat shock, leading to inhibition of polyadenylation in a PARP1-dependent manner. The observed inhibition reflects reduced RNA binding affinity of PARylated PAP in vitro and decreased PAP association with non-heat shock protein-encoding genes in vivo. Our results provide direct evidence that PARylation can control processing of mRNA precursors, and also identify PARP1 as a regulator of polyadenylation during thermal stress. The 3′ ends of most eukaryotic mRNAs are produced by an endonucleolytic cleavage followed by synthesis of a poly(A) tail. Poly(A) polymerase (PAP), the enzyme that catalyzes the formation of the tail, is subject to tight regulation involving several posttranslational modifications. Here we show that the enzyme poly(ADP-ribose) polymerase 1 (PARP1) modifies PAP and regulates its activity both in vitro and in vivo. PARP1 binds to and modifies PAP by poly(ADP-ribosyl)ation (PARylation) in vitro, which inhibits PAP activity. In vivo we show that PAP is PARylated during heat shock, leading to inhibition of polyadenylation in a PARP1-dependent manner. The observed inhibition reflects reduced RNA binding affinity of PARylated PAP in vitro and decreased PAP association with non-heat shock protein-encoding genes in vivo. Our results provide direct evidence that PARylation can control processing of mRNA precursors, and also identify PARP1 as a regulator of polyadenylation during thermal stress. The 3' ends of most eukaryotic mRNAs are produced by an endonucleolytic cleavage followed by synthesis of a poly(A) tail. Poly(A) polymerase (PAP), the enzyme that catalyzes the formation of the tail, is subject to tight regulation involving several posttranslational modifications. Here we show that the enzyme poly(ADP-ribose) polymerase 1 (PARP1) modifies PAP and regulates its activity both in vitro and in vivo. PARP1 binds to and modifies PAP by poly(ADP-ribosyl)ation (PARylation) in vitro, which inhibits PAP activity. In vivo we show that PAP is PARylated during heat shock, leading to inhibition of polyadenylation in a PARP1-dependent manner. The observed inhibition reflects reduced RNA binding affinity of PARylated PAP in vitro and decreased PAP association with non-heat shock protein-encoding genes in vivo. Our results provide direct evidence that PARylation can control processing of mRNA precursors, and also identify PARP1 as a regulator of polyadenylation during thermal stress.The 3' ends of most eukaryotic mRNAs are produced by an endonucleolytic cleavage followed by synthesis of a poly(A) tail. Poly(A) polymerase (PAP), the enzyme that catalyzes the formation of the tail, is subject to tight regulation involving several posttranslational modifications. Here we show that the enzyme poly(ADP-ribose) polymerase 1 (PARP1) modifies PAP and regulates its activity both in vitro and in vivo. PARP1 binds to and modifies PAP by poly(ADP-ribosyl)ation (PARylation) in vitro, which inhibits PAP activity. In vivo we show that PAP is PARylated during heat shock, leading to inhibition of polyadenylation in a PARP1-dependent manner. The observed inhibition reflects reduced RNA binding affinity of PARylated PAP in vitro and decreased PAP association with non-heat shock protein-encoding genes in vivo. Our results provide direct evidence that PARylation can control processing of mRNA precursors, and also identify PARP1 as a regulator of polyadenylation during thermal stress. The 3a2 ends of most eukaryotic mRNAs are produced by an endonucleolytic cleavage followed by synthesis of a poly(A) tail. Poly(A) polymerase (PAP), the enzyme that catalyzes the formation of the tail, is subject to tight regulation involving several posttranslational modifications. Here we show that the enzyme poly(ADP-ribose) polymerase 1 (PARP1) modifies PAP and regulates its activity both in vitro and in vivo. PARP1 binds to and modifies PAP by poly(ADP-ribosyl)ation (PARylation) in vitro, which inhibits PAP activity. In vivo we show that PAP is PARylated during heat shock, leading to inhibition of polyadenylation in a PARP1-dependent manner. The observed inhibition reflects reduced RNA binding affinity of PARylated PAP in vitro and decreased PAP association with non-heat shock protein-encoding genes in vivo. Our results provide direct evidence that PARylation can control processing of mRNA precursors, and also identify PARP1 as a regulator of polyadenylation during thermal stress. |
| Author | Manley, James L. Di Giammartino, Dafne Campigli Shi, Yongsheng |
| AuthorAffiliation | 1 Department of Biological Sciences, Columbia University, New York, NY, USA |
| AuthorAffiliation_xml | – name: 1 Department of Biological Sciences, Columbia University, New York, NY, USA |
| Author_xml | – sequence: 1 givenname: Dafne Campigli surname: Di Giammartino fullname: Di Giammartino, Dafne Campigli organization: Department of Biological Sciences, Columbia University, New York, NY 10027, USA – sequence: 2 givenname: Yongsheng surname: Shi fullname: Shi, Yongsheng organization: Department of Biological Sciences, Columbia University, New York, NY 10027, USA – sequence: 3 givenname: James L. surname: Manley fullname: Manley, James L. email: jlm2@columba.edu organization: Department of Biological Sciences, Columbia University, New York, NY 10027, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23219533$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl-PEyEUxYlZ4_7Rb2B0Hn3pyIUBZnwwqRt1N9nEZtd9JpS501KnUGFmTb-9rK2u-mDlBQLnnMv9wSk58sEjIc-BlkBBvl6V69Bb7EtGgZUAJaXiETkB2qhJBbI62q-ZkuKYnKa0ohQqUTdPyDHjDBrB-Ql5N5tez6C4xk3ElDAVs-msML4tLv3Szd2QN0K_NS36bW8GF3zRjtH5RXGBZihulsF-eUoed6ZP-Gw_n5HbD-8_n19Mrj59vDyfXk2sEHyYVBUwU9tOUYmS804apgzvEBmomsKc8pbWAExIxTkqJZuGmYZVua1KcVrzMyJ2uaPfmO030_d6E93axK0Gqu-Z6JXeMdH3TDSAzubse7vzbcb5GluLfojmwRuM03-eeLfUi3CnuagE5SwHvNoHxPB1xDTotUu5Sm88hjHlYnnUtVD1QSlwEJJKJg-nAlNcUNE0Mktf_N7Br6v_fMYsqHYCG0NKEbv_JfPmL5t1w49Xzhxcf8j8cmfuTNBmEV3StzdZIDMM4A2rH8Bj_hV3DqNO1qG32LqIdtBtcP8u8R31B-Gr |
| CitedBy_id | crossref_primary_10_3390_biom10060915 crossref_primary_10_1186_s12864_017_4030_x crossref_primary_10_1007_s00424_016_1828_3 crossref_primary_10_1111_tpj_13804 crossref_primary_10_1016_j_freeradbiomed_2019_10_010 crossref_primary_10_1128_MMBR_00038_18 crossref_primary_10_18632_oncotarget_27581 crossref_primary_10_3390_ijms140816168 crossref_primary_10_1002_2211_5463_13528 crossref_primary_10_1093_nar_gkz693 crossref_primary_10_1016_j_semcdb_2016_07_027 crossref_primary_10_1111_febs_13737 crossref_primary_10_1002_wrna_1617 crossref_primary_10_1002_wrna_1571 crossref_primary_10_1038_ncomms5426 crossref_primary_10_1080_02656736_2021_1883127 crossref_primary_10_14348_molcells_2014_0177 crossref_primary_10_4049_jimmunol_1700968 crossref_primary_10_1016_j_isci_2022_105543 crossref_primary_10_1021_cr5004248 crossref_primary_10_1002_emmm_201303300 crossref_primary_10_3389_fimmu_2025_1537615 crossref_primary_10_1016_j_molmed_2015_03_002 crossref_primary_10_1038_s41576_018_0001_6 crossref_primary_10_1128_MCB_00123_15 crossref_primary_10_1186_s40246_017_0131_5 crossref_primary_10_1002_wrna_1503 crossref_primary_10_1016_j_molcel_2012_12_017 crossref_primary_10_1002_wrna_1823 crossref_primary_10_1371_journal_pgen_1006292 crossref_primary_10_1073_pnas_1711120114 crossref_primary_10_1128_MCB_00084_14 crossref_primary_10_1038_onc_2016_82 crossref_primary_10_1007_s00018_020_03618_4 crossref_primary_10_1101_gad_334433_119 crossref_primary_10_15252_embj_2021110372 crossref_primary_10_1002_jmv_25619 crossref_primary_10_1038_s41598_019_39969_7 crossref_primary_10_1038_s41467_019_14109_x crossref_primary_10_1038_celldisc_2017_43 crossref_primary_10_1016_j_molcel_2022_02_021 crossref_primary_10_3389_fcell_2021_621134 crossref_primary_10_1261_rna_055657_115 crossref_primary_10_1101_gad_245787_114 crossref_primary_10_3390_biom12030443 crossref_primary_10_1016_j_molcel_2015_01_037 crossref_primary_10_1002_wrna_1353 crossref_primary_10_1007_s00018_019_03120_6 crossref_primary_10_1128_MCB_00207_16 crossref_primary_10_1186_s13072_022_00445_8 crossref_primary_10_1038_s41467_018_04730_7 crossref_primary_10_1091_mbc_E15_10_0697 crossref_primary_10_1016_j_jbc_2024_107838 crossref_primary_10_3390_cancers12010183 crossref_primary_10_1016_j_molcel_2023_11_024 crossref_primary_10_1261_rna_079783_123 crossref_primary_10_1038_ncomms14632 |
| Cites_doi | 10.1016/j.gde.2010.06.001 10.1016/S0092-8674(01)00270-7 10.1074/jbc.M807198200 10.1101/gad.1792809 10.1016/j.molcel.2010.06.017 10.1038/nature02288 10.1038/nrc2812 10.1016/0092-8674(88)90411-4 10.1126/science.1078764 10.1016/j.molcel.2010.10.029 10.1126/science.1149250 10.1038/384282a0 10.1101/gad.14.12.1415 10.1074/jbc.M609745200 10.1038/nsmb1352 10.1016/j.ceb.2008.03.006 10.1016/j.cell.2004.11.002 10.1101/gad.200303.112 10.1073/pnas.0812023106 10.1101/gad.1298605 10.1101/gad.1628208 10.1093/nar/gkp1176 10.1126/science.1216338 10.1111/j.1432-1033.1969.tb00699.x 10.1139/o06-083 10.1101/gad.14.12.1460 10.1023/A:1011910329010 10.1016/j.molcel.2008.12.028 10.1038/sj.emboj.7601932 10.1016/S0021-9258(19)69404-4 10.1101/gad.396106 10.1093/nar/gkl241 10.1074/jbc.M110.193870 10.1101/gad.183509.111 10.1016/j.molcel.2011.08.017 10.1016/j.cell.2009.02.001 10.1074/jbc.M311719200 10.1002/j.1460-2075.1983.tb01460.x 10.1002/jcp.1041350304 10.1093/nar/gkp218 10.1016/j.biocel.2008.03.016 10.1093/nar/gkq703 10.1074/mcp.M200029-MCP200 10.1007/s00018-008-7458-y |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier Inc. Copyright © 2013 Elsevier Inc. All rights reserved. 2012 Elsevier Inc. All rights reserved. 2012 |
| Copyright_xml | – notice: 2013 Elsevier Inc. – notice: Copyright © 2013 Elsevier Inc. All rights reserved. – notice: 2012 Elsevier Inc. All rights reserved. 2012 |
| DBID | 6I. AAFTH FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM 7S9 L.6 5PM ADTOC UNPAY |
| DOI | 10.1016/j.molcel.2012.11.005 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Nucleic Acids Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic Nucleic Acids Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1097-4164 |
| EndPage | 17 |
| ExternalDocumentID | 10.1016/j.molcel.2012.11.005 PMC3545032 23219533 10_1016_j_molcel_2012_11_005 US201600013928 S1097276512009367 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM28983 – fundername: NIGMS NIH HHS grantid: R01 GM028983 – fundername: National Institute of General Medical Sciences : NIGMS grantid: R01 GM028983 || GM |
| GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 5VS 62- 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AAKUH AALRI AAQFI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGHFR AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 .55 .GJ 29M 3O- 53G AAHBH AAMRU AAQXK ABWVN ACRPL ADMUD ADNMO ADVLN AKAPO AKRWK FBQ FGOYB HZ~ OZT R2- UHS X7M ZGI ZXP AAYWO AAYXX ABDGV ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AKBMS AKYEP APXCP CITATION EFKBS AGCQF CGR CUY CVF ECM EIF NPM 7X8 7TM 7S9 L.6 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c553t-4412a8cf706e633f6a27a3fee217801b03d0811256733e776992a924005473083 |
| IEDL.DBID | IXB |
| ISSN | 1097-2765 1097-4164 |
| IngestDate | Sun Oct 26 04:13:21 EDT 2025 Tue Sep 30 17:00:10 EDT 2025 Sun Sep 28 06:28:29 EDT 2025 Thu Oct 02 14:14:36 EDT 2025 Sun Sep 28 01:09:53 EDT 2025 Mon Jul 21 05:56:36 EDT 2025 Wed Oct 29 21:17:42 EDT 2025 Thu Apr 24 23:05:15 EDT 2025 Thu Apr 03 09:44:18 EDT 2025 Fri Feb 23 02:27:02 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2013 Elsevier Inc. All rights reserved. publisher-specific-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c553t-4412a8cf706e633f6a27a3fee217801b03d0811256733e776992a924005473083 |
| Notes | http://dx.doi.org/10.1016/j.molcel.2012.11.005 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 Current address: Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA. |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1097276512009367 |
| PMID | 23219533 |
| PQID | 1273505996 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1016_j_molcel_2012_11_005 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3545032 proquest_miscellaneous_2000088578 proquest_miscellaneous_1315606262 proquest_miscellaneous_1273505996 pubmed_primary_23219533 crossref_primary_10_1016_j_molcel_2012_11_005 crossref_citationtrail_10_1016_j_molcel_2012_11_005 fao_agris_US201600013928 elsevier_sciencedirect_doi_10_1016_j_molcel_2012_11_005 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-01-10 |
| PublicationDateYYYYMMDD | 2013-01-10 |
| PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-10 day: 10 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Molecular cell |
| PublicationTitleAlternate | Mol Cell |
| PublicationYear | 2013 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Kleiman, Manley (bib19) 2001; 104 Medler, Al Husini, Raghunayakula, Mukundan, Aldea, Ansari (bib26) 2011; 286 Ji, Tulin (bib17) 2010; 20 Luo, Kraus (bib25) 2012; 26 de Almeida, García-Sacristán, Custódio, Carmo-Fonseca (bib6) 2010; 38 Carty, Greenleaf (bib2) 2002; 1 Di Giammartino, Nishida, Manley (bib8) 2011; 43 Fossati, Formentini, Wang, Moroni, Chiarugi (bib9) 2006; 84 Ouararhni, Hadj-Slimane, Ait-Si-Ali, Robin, Mietton, Harel-Bellan, Dimitrov, Hamiche (bib30) 2006; 20 Shi, Di Giammartino, Taylor, Sarkeshik, Rice, Yates, Frank, Manley (bib38) 2009; 33 Gagné, Shah, Poirier (bib10) 2001; 224 Krishnakumar, Gamble, Frizzell, Berrocal, Kininis, Kraus (bib22) 2008; 319 Ogata, Ueda, Kawaichi, Hayaishi (bib29) 1981; 256 Moore, Proudfoot (bib28) 2009; 136 Lönn, van der Heide, Dahl, Hellman, Heldin, Moustakas (bib24) 2010; 40 Ryan, Bauer (bib34) 2008; 40 Colgan, Murthy, Prives, Manley (bib3) 1996; 384 Venkataraman, Brown, Gilmartin (bib43) 2005; 19 Krishnakumar, Kraus (bib21) 2010; 39 Rozenblatt-Rosen, Nagaike, Francis, Kaneko, Glatt, Hughes, LaFramboise, Manley, Meyerson (bib33) 2009; 106 Tulin, Spradling (bib42) 2003; 299 Ryner, Takagaki, Manley (bib35) 1989; 9 Langelier, Planck, Roy, Pascal (bib23) 2012; 336 Vethantham, Rao, Manley (bib44) 2008; 22 Shamovsky, Nudler (bib37) 2008; 65 Hirose, Manley (bib12) 2000; 14 Ji, Tulin (bib16) 2009; 37 Rouleau, Patel, Hendzel, Kaufmann, Poirier (bib32) 2010; 10 Hsin, Manley (bib14) 2012; 26 Sadis, Hickey, Weber (bib36) 1988; 135 Warocquier, Scherrer (bib45) 1969; 10 Andrews, Harding, Calvet, Adamson (bib1) 1987; 7 Shin, Feng, Manley (bib40) 2004; 427 Shimazu, Horinouchi, Yoshida (bib39) 2007; 282 Glover-Cutter, Kim, Espinosa, Bentley (bib11) 2008; 15 Cuesta, Laroia, Schneider (bib4) 2000; 14 Richard, Manley (bib31) 2009; 23 Takagaki, Ryner, Manley (bib41) 1988; 52 Xing, Mayhew, Cullen, Park-Sarge, Sarge (bib46) 2004; 279 Danckwardt, Hentze, Kulozik (bib5) 2008; 27 de Murcia, Jongstra-Bilen, Ittel, Mandel, Delain (bib7) 1983; 2 Kraus (bib20) 2008; 20 Millevoi, Vagner (bib27) 2010; 38 Huang, Chen, Chang, Wang, Chuang, Lee (bib15) 2006; 34 Hossain, Ji, Anish, Jacobson, Takada (bib13) 2009; 284 Kim, Mauro, Gévry, Lis, Kraus (bib18) 2004; 119 Andrews (10.1016/j.molcel.2012.11.005_bib1) 1987; 7 Medler (10.1016/j.molcel.2012.11.005_bib26) 2011; 286 Sadis (10.1016/j.molcel.2012.11.005_bib36) 1988; 135 Xing (10.1016/j.molcel.2012.11.005_bib46) 2004; 279 Fossati (10.1016/j.molcel.2012.11.005_bib9) 2006; 84 Hossain (10.1016/j.molcel.2012.11.005_bib13) 2009; 284 Cuesta (10.1016/j.molcel.2012.11.005_bib4) 2000; 14 Vethantham (10.1016/j.molcel.2012.11.005_bib44) 2008; 22 Kim (10.1016/j.molcel.2012.11.005_bib18) 2004; 119 Huang (10.1016/j.molcel.2012.11.005_bib15) 2006; 34 Ji (10.1016/j.molcel.2012.11.005_bib17) 2010; 20 Hirose (10.1016/j.molcel.2012.11.005_bib12) 2000; 14 Krishnakumar (10.1016/j.molcel.2012.11.005_bib22) 2008; 319 Kleiman (10.1016/j.molcel.2012.11.005_bib19) 2001; 104 Gagné (10.1016/j.molcel.2012.11.005_bib10) 2001; 224 Shin (10.1016/j.molcel.2012.11.005_bib40) 2004; 427 Hsin (10.1016/j.molcel.2012.11.005_bib14) 2012; 26 Takagaki (10.1016/j.molcel.2012.11.005_bib41) 1988; 52 Shamovsky (10.1016/j.molcel.2012.11.005_bib37) 2008; 65 Langelier (10.1016/j.molcel.2012.11.005_bib23) 2012; 336 de Murcia (10.1016/j.molcel.2012.11.005_bib7) 1983; 2 Ogata (10.1016/j.molcel.2012.11.005_bib29) 1981; 256 Rozenblatt-Rosen (10.1016/j.molcel.2012.11.005_bib33) 2009; 106 Colgan (10.1016/j.molcel.2012.11.005_bib3) 1996; 384 Venkataraman (10.1016/j.molcel.2012.11.005_bib43) 2005; 19 Glover-Cutter (10.1016/j.molcel.2012.11.005_bib11) 2008; 15 Lönn (10.1016/j.molcel.2012.11.005_bib24) 2010; 40 Moore (10.1016/j.molcel.2012.11.005_bib28) 2009; 136 Danckwardt (10.1016/j.molcel.2012.11.005_bib5) 2008; 27 de Almeida (10.1016/j.molcel.2012.11.005_bib6) 2010; 38 Rouleau (10.1016/j.molcel.2012.11.005_bib32) 2010; 10 Ryan (10.1016/j.molcel.2012.11.005_bib34) 2008; 40 Kraus (10.1016/j.molcel.2012.11.005_bib20) 2008; 20 Millevoi (10.1016/j.molcel.2012.11.005_bib27) 2010; 38 Warocquier (10.1016/j.molcel.2012.11.005_bib45) 1969; 10 Carty (10.1016/j.molcel.2012.11.005_bib2) 2002; 1 Di Giammartino (10.1016/j.molcel.2012.11.005_bib8) 2011; 43 Krishnakumar (10.1016/j.molcel.2012.11.005_bib21) 2010; 39 Tulin (10.1016/j.molcel.2012.11.005_bib42) 2003; 299 Richard (10.1016/j.molcel.2012.11.005_bib31) 2009; 23 Ouararhni (10.1016/j.molcel.2012.11.005_bib30) 2006; 20 Ryner (10.1016/j.molcel.2012.11.005_bib35) 1989; 9 Shi (10.1016/j.molcel.2012.11.005_bib38) 2009; 33 Shimazu (10.1016/j.molcel.2012.11.005_bib39) 2007; 282 Ji (10.1016/j.molcel.2012.11.005_bib16) 2009; 37 Luo (10.1016/j.molcel.2012.11.005_bib25) 2012; 26 21835917 - J Biol Chem. 2011 Sep 30;286(39):33709-18 23028141 - Genes Dev. 2012 Oct 1;26(19):2119-37 18239856 - Cell Mol Life Sci. 2008 Mar;65(6):855-61 2555686 - Mol Cell Biol. 1989 Oct;9(10):4229-38 18468939 - Int J Biochem Cell Biol. 2008;40(11):2384-96 18450439 - Curr Opin Cell Biol. 2008 Jun;20(3):294-302 21925375 - Mol Cell. 2011 Sep 16;43(6):853-66 16682447 - Nucleic Acids Res. 2006;34(8):2398-407 4186272 - Eur J Biochem. 1969 Sep;10(2):362-70 19346337 - Nucleic Acids Res. 2009 Jun;37(11):3501-13 8918882 - Nature. 1996 Nov 21;384(6606):282-5 14707147 - J Biol Chem. 2004 Mar 12;279(11):10551-5 18258916 - Science. 2008 Feb 8;319(5864):819-21 17167533 - Biochem Cell Biol. 2006 Oct;84(5):703-12 6260786 - J Biol Chem. 1981 May 10;256(9):4135-7 18157150 - Nat Struct Mol Biol. 2008 Jan;15(1):71-8 11693195 - Mol Cell Biochem. 2001 Aug;224(1-2):183-5 15937220 - Genes Dev. 2005 Jun 1;19(11):1315-27 12376575 - Mol Cell Proteomics. 2002 Aug;1(8):598-610 19217410 - Mol Cell. 2009 Feb 13;33(3):365-76 19136632 - Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):755-60 20699273 - Nucleic Acids Res. 2010 Dec;38(22):8015-26 19181665 - J Biol Chem. 2009 Mar 27;284(13):8621-32 3316977 - Mol Cell Biol. 1987 Oct;7(10):3452-8 12543974 - Science. 2003 Jan 24;299(5606):560-2 20591646 - Curr Opin Genet Dev. 2010 Oct;20(5):512-8 21095583 - Mol Cell. 2010 Nov 24;40(4):521-32 19487567 - Genes Dev. 2009 Jun 1;23(11):1247-69 19239889 - Cell. 2009 Feb 20;136(4):688-700 14765198 - Nature. 2004 Feb 5;427(6974):553-8 15607977 - Cell. 2004 Dec 17;119(6):803-14 17158748 - Genes Dev. 2006 Dec 1;20(23):3324-36 18256699 - EMBO J. 2008 Feb 6;27(3):482-98 2456286 - J Cell Physiol. 1988 Jun;135(3):377-86 17172643 - J Biol Chem. 2007 Feb 16;282(7):4470-8 2830992 - Cell. 1988 Mar 11;52(5):731-42 11257228 - Cell. 2001 Mar 9;104(5):743-53 6313345 - EMBO J. 1983;2(4):543-8 10859165 - Genes Dev. 2000 Jun 15;14(12):1460-70 20603072 - Mol Cell. 2010 Jul 9;39(1):8-24 18281463 - Genes Dev. 2008 Feb 15;22(4):499-511 20044349 - Nucleic Acids Res. 2010 May;38(9):2757-74 10859161 - Genes Dev. 2000 Jun 15;14(12):1415-29 20200537 - Nat Rev Cancer. 2010 Apr;10(4):293-301 22391446 - Genes Dev. 2012 Mar 1;26(5):417-32 23312545 - Mol Cell. 2013 Jan 10;49(1):1-3 22582261 - Science. 2012 May 11;336(6082):728-32 |
| References_xml | – volume: 106 start-page: 755 year: 2009 end-page: 760 ident: bib33 article-title: The tumor suppressor Cdc73 functionally associates with CPSF and CstF 3′ mRNA processing factors publication-title: Proc. Natl. Acad. Sci. USA – volume: 282 start-page: 4470 year: 2007 end-page: 4478 ident: bib39 article-title: Multiple histone deacetylases and the CREB-binding protein regulate pre-mRNA 3′-end processing publication-title: J. Biol. Chem. – volume: 256 start-page: 4135 year: 1981 end-page: 4137 ident: bib29 article-title: Poly(ADP-ribose) synthetase, a main acceptor of poly(ADP-ribose) in isolated nuclei publication-title: J. Biol. Chem. – volume: 10 start-page: 362 year: 1969 end-page: 370 ident: bib45 article-title: RNA metabolism in mammalian cells at elevated temperature publication-title: Eur. J. Biochem. – volume: 34 start-page: 2398 year: 2006 end-page: 2407 ident: bib15 article-title: Modulation of nucleosome-binding activity of FACT by poly(ADP-ribosyl)ation publication-title: Nucleic Acids Res. – volume: 336 start-page: 728 year: 2012 end-page: 732 ident: bib23 article-title: Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1 publication-title: Science – volume: 136 start-page: 688 year: 2009 end-page: 700 ident: bib28 article-title: Pre-mRNA processing reaches back to transcription and ahead to translation publication-title: Cell – volume: 20 start-page: 3324 year: 2006 end-page: 3336 ident: bib30 article-title: The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity publication-title: Genes Dev. – volume: 284 start-page: 8621 year: 2009 end-page: 8632 ident: bib13 article-title: Poly(ADP-ribose) polymerase 1 interacts with nuclear respiratory factor 1 (NRF-1) and plays a role in NRF-1 transcriptional regulation publication-title: J. Biol. Chem. – volume: 40 start-page: 2384 year: 2008 end-page: 2396 ident: bib34 article-title: Finishing touches: post-translational modification of protein factors involved in mammalian pre-mRNA 3′ end formation publication-title: Int. J. Biochem. Cell Biol. – volume: 299 start-page: 560 year: 2003 end-page: 562 ident: bib42 article-title: Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff loci publication-title: Science – volume: 279 start-page: 10551 year: 2004 end-page: 10555 ident: bib46 article-title: HSF1 modulation of Hsp70 mRNA polyadenylation via interaction with symplekin publication-title: J. Biol. Chem. – volume: 384 start-page: 282 year: 1996 end-page: 285 ident: bib3 article-title: Cell-cycle related regulation of poly(A) polymerase by phosphorylation publication-title: Nature – volume: 27 start-page: 482 year: 2008 end-page: 498 ident: bib5 article-title: 3′ end mRNA processing: molecular mechanisms and implications for health and disease publication-title: EMBO J. – volume: 319 start-page: 819 year: 2008 end-page: 821 ident: bib22 article-title: Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes publication-title: Science – volume: 26 start-page: 417 year: 2012 end-page: 432 ident: bib25 article-title: On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1 publication-title: Genes Dev. – volume: 37 start-page: 3501 year: 2009 end-page: 3513 ident: bib16 article-title: Poly(ADP-ribosyl)ation of heterogeneous nuclear ribonucleoproteins modulates splicing publication-title: Nucleic Acids Res. – volume: 22 start-page: 499 year: 2008 end-page: 511 ident: bib44 article-title: Sumoylation regulates multiple aspects of mammalian poly(A) polymerase function publication-title: Genes Dev. – volume: 2 start-page: 543 year: 1983 end-page: 548 ident: bib7 article-title: Poly(ADP-ribose) polymerase auto-modification and interaction with DNA: electron microscopic visualization publication-title: EMBO J. – volume: 43 start-page: 853 year: 2011 end-page: 866 ident: bib8 article-title: Mechanisms and consequences of alternative polyadenylation publication-title: Mol. Cell – volume: 135 start-page: 377 year: 1988 end-page: 386 ident: bib36 article-title: Effect of heat shock on RNA metabolism in HeLa cells publication-title: J. Cell. Physiol. – volume: 33 start-page: 365 year: 2009 end-page: 376 ident: bib38 article-title: Molecular architecture of the human pre-mRNA 3′ processing complex publication-title: Mol. Cell – volume: 38 start-page: 2757 year: 2010 end-page: 2774 ident: bib27 article-title: Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation publication-title: Nucleic Acids Res. – volume: 7 start-page: 3452 year: 1987 end-page: 3458 ident: bib1 article-title: The heat shock response in HeLa cells is accompanied by elevated expression of the c-fos proto-oncogene publication-title: Mol. Cell. Biol. – volume: 84 start-page: 703 year: 2006 end-page: 712 ident: bib9 article-title: Poly(ADP-ribosyl)ation regulates heat shock factor-1 activity and the heat shock response in murine fibroblasts publication-title: Biochem. Cell Biol. – volume: 15 start-page: 71 year: 2008 end-page: 78 ident: bib11 article-title: RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes publication-title: Nat. Struct. Mol. Biol. – volume: 427 start-page: 553 year: 2004 end-page: 558 ident: bib40 article-title: Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock publication-title: Nature – volume: 14 start-page: 1415 year: 2000 end-page: 1429 ident: bib12 article-title: RNA polymerase II and the integration of nuclear events publication-title: Genes Dev. – volume: 26 start-page: 2119 year: 2012 end-page: 2137 ident: bib14 article-title: The RNA polymerase II CTD coordinates transcription and RNA processing publication-title: Genes Dev. – volume: 39 start-page: 8 year: 2010 end-page: 24 ident: bib21 article-title: The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets publication-title: Mol. Cell – volume: 23 start-page: 1247 year: 2009 end-page: 1269 ident: bib31 article-title: Transcription termination by nuclear RNA polymerases publication-title: Genes Dev. – volume: 104 start-page: 743 year: 2001 end-page: 753 ident: bib19 article-title: The BARD1-CstF-50 interaction links mRNA 3′ end formation to DNA damage and tumor suppression publication-title: Cell – volume: 9 start-page: 4229 year: 1989 end-page: 4238 ident: bib35 article-title: Multiple forms of poly(A) polymerases purified from HeLa cells function in specific mRNA 3′-end formation publication-title: Mol. Cell. Biol. – volume: 65 start-page: 855 year: 2008 end-page: 861 ident: bib37 article-title: New insights into the mechanism of heat shock response activation publication-title: Cell. Mol. Life Sci. – volume: 40 start-page: 521 year: 2010 end-page: 532 ident: bib24 article-title: PARP-1 attenuates Smad-mediated transcription publication-title: Mol. Cell – volume: 286 start-page: 33709 year: 2011 end-page: 33718 ident: bib26 article-title: Evidence for a complex of transcription factor IIB with poly(A) polymerase and cleavage factor 1 subunits required for gene looping publication-title: J. Biol. Chem. – volume: 1 start-page: 598 year: 2002 end-page: 610 ident: bib2 article-title: Hyperphosphorylated C-terminal repeat domain-associating proteins in the nuclear proteome link transcription to DNA/chromatin modification and RNA processing publication-title: Mol. Cell. Proteomics – volume: 20 start-page: 294 year: 2008 end-page: 302 ident: bib20 article-title: Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation publication-title: Curr. Opin. Cell Biol. – volume: 10 start-page: 293 year: 2010 end-page: 301 ident: bib32 article-title: PARP inhibition: PARP1 and beyond publication-title: Nat. Rev. Cancer – volume: 20 start-page: 512 year: 2010 end-page: 518 ident: bib17 article-title: The roles of PARP1 in gene control and cell differentiation publication-title: Curr. Opin. Genet. Dev. – volume: 19 start-page: 1315 year: 2005 end-page: 1327 ident: bib43 article-title: Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition publication-title: Genes Dev. – volume: 14 start-page: 1460 year: 2000 end-page: 1470 ident: bib4 article-title: Chaperone hsp27 inhibits translation during heat shock by binding eIF4G and facilitating dissociation of cap-initiation complexes publication-title: Genes Dev. – volume: 224 start-page: 183 year: 2001 end-page: 185 ident: bib10 article-title: Analysis of ADP-ribose polymer sizes in intact cells publication-title: Mol. Cell. Biochem. – volume: 38 start-page: 8015 year: 2010 end-page: 8026 ident: bib6 article-title: A link between nuclear RNA surveillance, the human exosome and RNA polymerase II transcriptional termination publication-title: Nucleic Acids Res. – volume: 52 start-page: 731 year: 1988 end-page: 742 ident: bib41 article-title: Separation and characterization of a poly(A) polymerase and a cleavage/specificity factor required for pre-mRNA polyadenylation publication-title: Cell – volume: 119 start-page: 803 year: 2004 end-page: 814 ident: bib18 article-title: NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1 publication-title: Cell – volume: 20 start-page: 512 year: 2010 ident: 10.1016/j.molcel.2012.11.005_bib17 article-title: The roles of PARP1 in gene control and cell differentiation publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2010.06.001 – volume: 104 start-page: 743 year: 2001 ident: 10.1016/j.molcel.2012.11.005_bib19 article-title: The BARD1-CstF-50 interaction links mRNA 3′ end formation to DNA damage and tumor suppression publication-title: Cell doi: 10.1016/S0092-8674(01)00270-7 – volume: 284 start-page: 8621 year: 2009 ident: 10.1016/j.molcel.2012.11.005_bib13 article-title: Poly(ADP-ribose) polymerase 1 interacts with nuclear respiratory factor 1 (NRF-1) and plays a role in NRF-1 transcriptional regulation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M807198200 – volume: 23 start-page: 1247 year: 2009 ident: 10.1016/j.molcel.2012.11.005_bib31 article-title: Transcription termination by nuclear RNA polymerases publication-title: Genes Dev. doi: 10.1101/gad.1792809 – volume: 39 start-page: 8 year: 2010 ident: 10.1016/j.molcel.2012.11.005_bib21 article-title: The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.06.017 – volume: 427 start-page: 553 year: 2004 ident: 10.1016/j.molcel.2012.11.005_bib40 article-title: Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock publication-title: Nature doi: 10.1038/nature02288 – volume: 10 start-page: 293 year: 2010 ident: 10.1016/j.molcel.2012.11.005_bib32 article-title: PARP inhibition: PARP1 and beyond publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2812 – volume: 52 start-page: 731 year: 1988 ident: 10.1016/j.molcel.2012.11.005_bib41 article-title: Separation and characterization of a poly(A) polymerase and a cleavage/specificity factor required for pre-mRNA polyadenylation publication-title: Cell doi: 10.1016/0092-8674(88)90411-4 – volume: 299 start-page: 560 year: 2003 ident: 10.1016/j.molcel.2012.11.005_bib42 article-title: Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff loci publication-title: Science doi: 10.1126/science.1078764 – volume: 40 start-page: 521 year: 2010 ident: 10.1016/j.molcel.2012.11.005_bib24 article-title: PARP-1 attenuates Smad-mediated transcription publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.10.029 – volume: 9 start-page: 4229 year: 1989 ident: 10.1016/j.molcel.2012.11.005_bib35 article-title: Multiple forms of poly(A) polymerases purified from HeLa cells function in specific mRNA 3′-end formation publication-title: Mol. Cell. Biol. – volume: 319 start-page: 819 year: 2008 ident: 10.1016/j.molcel.2012.11.005_bib22 article-title: Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes publication-title: Science doi: 10.1126/science.1149250 – volume: 384 start-page: 282 year: 1996 ident: 10.1016/j.molcel.2012.11.005_bib3 article-title: Cell-cycle related regulation of poly(A) polymerase by phosphorylation publication-title: Nature doi: 10.1038/384282a0 – volume: 14 start-page: 1415 year: 2000 ident: 10.1016/j.molcel.2012.11.005_bib12 article-title: RNA polymerase II and the integration of nuclear events publication-title: Genes Dev. doi: 10.1101/gad.14.12.1415 – volume: 282 start-page: 4470 year: 2007 ident: 10.1016/j.molcel.2012.11.005_bib39 article-title: Multiple histone deacetylases and the CREB-binding protein regulate pre-mRNA 3′-end processing publication-title: J. Biol. Chem. doi: 10.1074/jbc.M609745200 – volume: 15 start-page: 71 year: 2008 ident: 10.1016/j.molcel.2012.11.005_bib11 article-title: RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1352 – volume: 20 start-page: 294 year: 2008 ident: 10.1016/j.molcel.2012.11.005_bib20 article-title: Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2008.03.006 – volume: 119 start-page: 803 year: 2004 ident: 10.1016/j.molcel.2012.11.005_bib18 article-title: NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1 publication-title: Cell doi: 10.1016/j.cell.2004.11.002 – volume: 26 start-page: 2119 year: 2012 ident: 10.1016/j.molcel.2012.11.005_bib14 article-title: The RNA polymerase II CTD coordinates transcription and RNA processing publication-title: Genes Dev. doi: 10.1101/gad.200303.112 – volume: 106 start-page: 755 year: 2009 ident: 10.1016/j.molcel.2012.11.005_bib33 article-title: The tumor suppressor Cdc73 functionally associates with CPSF and CstF 3′ mRNA processing factors publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0812023106 – volume: 19 start-page: 1315 year: 2005 ident: 10.1016/j.molcel.2012.11.005_bib43 article-title: Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition publication-title: Genes Dev. doi: 10.1101/gad.1298605 – volume: 22 start-page: 499 year: 2008 ident: 10.1016/j.molcel.2012.11.005_bib44 article-title: Sumoylation regulates multiple aspects of mammalian poly(A) polymerase function publication-title: Genes Dev. doi: 10.1101/gad.1628208 – volume: 38 start-page: 2757 year: 2010 ident: 10.1016/j.molcel.2012.11.005_bib27 article-title: Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp1176 – volume: 336 start-page: 728 year: 2012 ident: 10.1016/j.molcel.2012.11.005_bib23 article-title: Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1 publication-title: Science doi: 10.1126/science.1216338 – volume: 10 start-page: 362 year: 1969 ident: 10.1016/j.molcel.2012.11.005_bib45 article-title: RNA metabolism in mammalian cells at elevated temperature publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1969.tb00699.x – volume: 84 start-page: 703 year: 2006 ident: 10.1016/j.molcel.2012.11.005_bib9 article-title: Poly(ADP-ribosyl)ation regulates heat shock factor-1 activity and the heat shock response in murine fibroblasts publication-title: Biochem. Cell Biol. doi: 10.1139/o06-083 – volume: 14 start-page: 1460 year: 2000 ident: 10.1016/j.molcel.2012.11.005_bib4 article-title: Chaperone hsp27 inhibits translation during heat shock by binding eIF4G and facilitating dissociation of cap-initiation complexes publication-title: Genes Dev. doi: 10.1101/gad.14.12.1460 – volume: 224 start-page: 183 year: 2001 ident: 10.1016/j.molcel.2012.11.005_bib10 article-title: Analysis of ADP-ribose polymer sizes in intact cells publication-title: Mol. Cell. Biochem. doi: 10.1023/A:1011910329010 – volume: 33 start-page: 365 year: 2009 ident: 10.1016/j.molcel.2012.11.005_bib38 article-title: Molecular architecture of the human pre-mRNA 3′ processing complex publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.12.028 – volume: 27 start-page: 482 year: 2008 ident: 10.1016/j.molcel.2012.11.005_bib5 article-title: 3′ end mRNA processing: molecular mechanisms and implications for health and disease publication-title: EMBO J. doi: 10.1038/sj.emboj.7601932 – volume: 256 start-page: 4135 year: 1981 ident: 10.1016/j.molcel.2012.11.005_bib29 article-title: Poly(ADP-ribose) synthetase, a main acceptor of poly(ADP-ribose) in isolated nuclei publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)69404-4 – volume: 20 start-page: 3324 year: 2006 ident: 10.1016/j.molcel.2012.11.005_bib30 article-title: The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity publication-title: Genes Dev. doi: 10.1101/gad.396106 – volume: 34 start-page: 2398 year: 2006 ident: 10.1016/j.molcel.2012.11.005_bib15 article-title: Modulation of nucleosome-binding activity of FACT by poly(ADP-ribosyl)ation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl241 – volume: 7 start-page: 3452 year: 1987 ident: 10.1016/j.molcel.2012.11.005_bib1 article-title: The heat shock response in HeLa cells is accompanied by elevated expression of the c-fos proto-oncogene publication-title: Mol. Cell. Biol. – volume: 286 start-page: 33709 year: 2011 ident: 10.1016/j.molcel.2012.11.005_bib26 article-title: Evidence for a complex of transcription factor IIB with poly(A) polymerase and cleavage factor 1 subunits required for gene looping publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.193870 – volume: 26 start-page: 417 year: 2012 ident: 10.1016/j.molcel.2012.11.005_bib25 article-title: On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1 publication-title: Genes Dev. doi: 10.1101/gad.183509.111 – volume: 43 start-page: 853 year: 2011 ident: 10.1016/j.molcel.2012.11.005_bib8 article-title: Mechanisms and consequences of alternative polyadenylation publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.08.017 – volume: 136 start-page: 688 year: 2009 ident: 10.1016/j.molcel.2012.11.005_bib28 article-title: Pre-mRNA processing reaches back to transcription and ahead to translation publication-title: Cell doi: 10.1016/j.cell.2009.02.001 – volume: 279 start-page: 10551 year: 2004 ident: 10.1016/j.molcel.2012.11.005_bib46 article-title: HSF1 modulation of Hsp70 mRNA polyadenylation via interaction with symplekin publication-title: J. Biol. Chem. doi: 10.1074/jbc.M311719200 – volume: 2 start-page: 543 year: 1983 ident: 10.1016/j.molcel.2012.11.005_bib7 article-title: Poly(ADP-ribose) polymerase auto-modification and interaction with DNA: electron microscopic visualization publication-title: EMBO J. doi: 10.1002/j.1460-2075.1983.tb01460.x – volume: 135 start-page: 377 year: 1988 ident: 10.1016/j.molcel.2012.11.005_bib36 article-title: Effect of heat shock on RNA metabolism in HeLa cells publication-title: J. Cell. Physiol. doi: 10.1002/jcp.1041350304 – volume: 37 start-page: 3501 year: 2009 ident: 10.1016/j.molcel.2012.11.005_bib16 article-title: Poly(ADP-ribosyl)ation of heterogeneous nuclear ribonucleoproteins modulates splicing publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp218 – volume: 40 start-page: 2384 year: 2008 ident: 10.1016/j.molcel.2012.11.005_bib34 article-title: Finishing touches: post-translational modification of protein factors involved in mammalian pre-mRNA 3′ end formation publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2008.03.016 – volume: 38 start-page: 8015 year: 2010 ident: 10.1016/j.molcel.2012.11.005_bib6 article-title: A link between nuclear RNA surveillance, the human exosome and RNA polymerase II transcriptional termination publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq703 – volume: 1 start-page: 598 year: 2002 ident: 10.1016/j.molcel.2012.11.005_bib2 article-title: Hyperphosphorylated C-terminal repeat domain-associating proteins in the nuclear proteome link transcription to DNA/chromatin modification and RNA processing publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M200029-MCP200 – volume: 65 start-page: 855 year: 2008 ident: 10.1016/j.molcel.2012.11.005_bib37 article-title: New insights into the mechanism of heat shock response activation publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-008-7458-y – reference: 19181665 - J Biol Chem. 2009 Mar 27;284(13):8621-32 – reference: 19136632 - Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):755-60 – reference: 14765198 - Nature. 2004 Feb 5;427(6974):553-8 – reference: 18239856 - Cell Mol Life Sci. 2008 Mar;65(6):855-61 – reference: 2830992 - Cell. 1988 Mar 11;52(5):731-42 – reference: 15607977 - Cell. 2004 Dec 17;119(6):803-14 – reference: 20699273 - Nucleic Acids Res. 2010 Dec;38(22):8015-26 – reference: 6260786 - J Biol Chem. 1981 May 10;256(9):4135-7 – reference: 18281463 - Genes Dev. 2008 Feb 15;22(4):499-511 – reference: 23028141 - Genes Dev. 2012 Oct 1;26(19):2119-37 – reference: 2456286 - J Cell Physiol. 1988 Jun;135(3):377-86 – reference: 22582261 - Science. 2012 May 11;336(6082):728-32 – reference: 19487567 - Genes Dev. 2009 Jun 1;23(11):1247-69 – reference: 18450439 - Curr Opin Cell Biol. 2008 Jun;20(3):294-302 – reference: 18157150 - Nat Struct Mol Biol. 2008 Jan;15(1):71-8 – reference: 12376575 - Mol Cell Proteomics. 2002 Aug;1(8):598-610 – reference: 17158748 - Genes Dev. 2006 Dec 1;20(23):3324-36 – reference: 11693195 - Mol Cell Biochem. 2001 Aug;224(1-2):183-5 – reference: 19217410 - Mol Cell. 2009 Feb 13;33(3):365-76 – reference: 22391446 - Genes Dev. 2012 Mar 1;26(5):417-32 – reference: 10859161 - Genes Dev. 2000 Jun 15;14(12):1415-29 – reference: 21925375 - Mol Cell. 2011 Sep 16;43(6):853-66 – reference: 18258916 - Science. 2008 Feb 8;319(5864):819-21 – reference: 16682447 - Nucleic Acids Res. 2006;34(8):2398-407 – reference: 21835917 - J Biol Chem. 2011 Sep 30;286(39):33709-18 – reference: 20200537 - Nat Rev Cancer. 2010 Apr;10(4):293-301 – reference: 11257228 - Cell. 2001 Mar 9;104(5):743-53 – reference: 12543974 - Science. 2003 Jan 24;299(5606):560-2 – reference: 8918882 - Nature. 1996 Nov 21;384(6606):282-5 – reference: 17167533 - Biochem Cell Biol. 2006 Oct;84(5):703-12 – reference: 2555686 - Mol Cell Biol. 1989 Oct;9(10):4229-38 – reference: 3316977 - Mol Cell Biol. 1987 Oct;7(10):3452-8 – reference: 4186272 - Eur J Biochem. 1969 Sep;10(2):362-70 – reference: 20603072 - Mol Cell. 2010 Jul 9;39(1):8-24 – reference: 21095583 - Mol Cell. 2010 Nov 24;40(4):521-32 – reference: 19239889 - Cell. 2009 Feb 20;136(4):688-700 – reference: 15937220 - Genes Dev. 2005 Jun 1;19(11):1315-27 – reference: 14707147 - J Biol Chem. 2004 Mar 12;279(11):10551-5 – reference: 20591646 - Curr Opin Genet Dev. 2010 Oct;20(5):512-8 – reference: 18256699 - EMBO J. 2008 Feb 6;27(3):482-98 – reference: 6313345 - EMBO J. 1983;2(4):543-8 – reference: 20044349 - Nucleic Acids Res. 2010 May;38(9):2757-74 – reference: 17172643 - J Biol Chem. 2007 Feb 16;282(7):4470-8 – reference: 19346337 - Nucleic Acids Res. 2009 Jun;37(11):3501-13 – reference: 23312545 - Mol Cell. 2013 Jan 10;49(1):1-3 – reference: 18468939 - Int J Biochem Cell Biol. 2008;40(11):2384-96 – reference: 10859165 - Genes Dev. 2000 Jun 15;14(12):1460-70 |
| SSID | ssj0014589 |
| Score | 2.2793672 |
| Snippet | The 3′ ends of most eukaryotic mRNAs are produced by an endonucleolytic cleavage followed by synthesis of a poly(A) tail. Poly(A) polymerase (PAP), the enzyme... The 3' ends of most eukaryotic mRNAs are produced by an endonucleolytic cleavage followed by synthesis of a poly(A) tail. Poly(A) polymerase (PAP), the enzyme... The 3a2 ends of most eukaryotic mRNAs are produced by an endonucleolytic cleavage followed by synthesis of a poly(A) tail. Poly(A) polymerase (PAP), the enzyme... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref fao elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 7 |
| SubjectTerms | ADP-ribosylation beta-Globins - genetics beta-Globins - metabolism binding capacity Cell Line Enzyme Activation Gene Knockdown Techniques genes heat heat shock proteins Heat-Shock Response Humans inhibition messenger RNA NAD ADP-ribosyltransferase Poly (ADP-Ribose) Polymerase-1 Poly(ADP-ribose) Polymerases - chemistry Poly(ADP-ribose) Polymerases - genetics Poly(ADP-ribose) Polymerases - metabolism Poly(ADP-ribose) Polymerases - physiology Polyadenylation Polynucleotide Adenylyltransferase - chemistry Polynucleotide Adenylyltransferase - metabolism post-translational modification Protein Binding Protein Processing, Post-Translational RNA Interference RNA, Messenger - genetics RNA, Messenger - metabolism thermal stress |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db5swED-1qab1Zd9rsy8xaa-k1DY2PGbTqmzSKpQsUvdkGTBNNgbRSjRlf_3uMESr2q3dG4IzyNxx9zP-3R3AG14wkxuZ-7FV0hcpt36KwNzPpCxMkOWIKSg5-dOpnMzFx7PwbAf6xoXEqqQ_1q2P7t7d0Yx2SZmSGJtoAS7V0SovdmFPhgi_B7A3P03GX9pdzVj5JNcfI9gQfbpcy-n6Xpd4dyJ0sRHV7qSmddeHo93C1NeBzqvcybvramU2P01Z_hGYTu7DtE_vcXyUb6N1k46yX1erPd5-zg_gXgdTvbGTewg7tnoEd1zjys1jeJuMp8mxN3U0WnvhJePEM1XufagWy3TZ4Im63Bj0aRvHtfNcOqQ3QdfvzRbohJ_A_OT953cTv-vG4GdhyBsfcRMzUVaoQFrJeSENU4YX1uKiBsNcGvAc4QXiJak4t0rJOGYmJooqtTdGpPcUBlVd2UPwRKGkiISwPLcC8UQqTBAaLlMRR5GN5BB4rxSddaXKqWNGqXtO2lftVKlJlbiK0fiUIfjbUStXquMGedXrW3dww8EIjdHkhpGHaB7anKMf1vMZoyp9LZZm0RBe9zaj8UMlvZrK1usLfYxAMWyr4fxDhlNiO64x2d9lWAvzI_S0QzhwtridLsJj2hblOLVLVroVoGLil69Uy0VbVJwjlA44Pne0tedbvcVn_zvgOeyztqUIUSlfwKD5sbYvEdg16avuU_4NXwREQg priority: 102 providerName: Unpaywall |
| Title | PARP1 Represses PAP and Inhibits Polyadenylation during Heat Shock |
| URI | https://dx.doi.org/10.1016/j.molcel.2012.11.005 https://www.ncbi.nlm.nih.gov/pubmed/23219533 https://www.proquest.com/docview/1273505996 https://www.proquest.com/docview/1315606262 https://www.proquest.com/docview/2000088578 https://pubmed.ncbi.nlm.nih.gov/PMC3545032 http://www.cell.com/article/S1097276512009367/pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 49 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1097-4164 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0014589 issn: 1097-4164 databaseCode: HH5 dateStart: 19970101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1097-4164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014589 issn: 1097-4164 databaseCode: KQ8 dateStart: 19971201 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVESC databaseName: Elsevier ScienceDirect Open Access Journals customDbUrl: eissn: 1097-4164 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0014589 issn: 1097-4164 databaseCode: IXB dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1097-4164 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0014589 issn: 1097-4164 databaseCode: DIK dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1097-4164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014589 issn: 1097-4164 databaseCode: AKRWK dateStart: 19971201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGEIIXND5XBlOQeM2a2o6dPGYTU8fEFLVUlCfLSZw1KCTV1mrqf78750OrGAzxGOcsy-fz3c-6L0I-sZzqTIvMDY0ULk-YcRMA5m4qRK69NANMgcnJXy_EeMa_zP35DjnpcmEwrLLV_Y1Ot9q6HRm23Bwui2I4Rd8plQIsFj7LBWaUMx5g-4az-XHvSeC-bYOHxC5Sd-lzNsbrV12mBh0QI3qEtTyxid395ulRruv7QOjvsZRP19VSb250Wd4xVKd75HmLMJ2o2cQLsmOql-RJ03Ny84ocx9EkHjmTJgLWXDtxFDu6ypyzalEkxQoG6nKjQR1tmjA5p8lkdMagtZ3pAvTnazI7_fztZOy2jRTc1PfZygXIQ3WQ5tITRjCWC02lZrkx8B4BC5V4LANkAFBHSMaMlCIMqQ4xuhQ7EwNIe0N2q7oy-8ThuRQ84NywzHCAAgnXnq-ZSHgYBCYQA8I6_qm0rTKOzS5K1YWT_VQN1xVyHR4gClYZELeftWyqbDxAL7ujUVvSosAQPDBzH05S6UtQoWo2pVhgz8JgGgzIx-54FdwxdJzoytTrazUCjOfbQjZ_oWGYkw7PQ_pnGmoRegBKckDeNmLTbxeQLXo0GWxtS6B6AqwDvv2nKha2HjgDFOwxWPeoF71_4uK7_-biAXlGbVsQDId8T3ZXV2vzAcDZKjkkj6PzyffzQ3sL4Wt2EUc_bgGIhTXX |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELeAaYKXad90sM2T9mqa2o6dPBY0VDZAFaVS3ywncdagkFTQaup_v7t8adXYmPaanGX5fL77ne6LkM8i5TaxKmGh04rJSDgWATBnsVKp9eIEMAUWJ19cqtFUfp35sy1y0tbCYFplo_trnV5p6-ZLv-Fmf5Fl_QnGTrlWYLHQLVd6mzyRPqATrOKbHXehBOlXc_CQmiF5Wz9XJXndlnnsMAIx4EfYzBOn2D1sn7ZTWz6EQn9PptxdFQu7_mHz_BdLdfqcPGsgJh3Wp3hBtlzxkjyth06uX5Hj8fBqPKBXdQqsu6fj4ZjaIqFnxTyLsiV8KPO1BX20rvPkaF3KSEegtulkDgr0NZmefrk-GbFmkgKLfV8sGWAeboM41Z5ySohUWa6tSJ0DhwRMVOSJBKABYB2lhXBaqzDkNsT0UhxNDCjtDdkpysLtEypTrWQgpROJk4AFImk93woVyTAIXKB6RLT8M3HTZhynXeSmzSe7MTXXDXIdPBADu_QI61Yt6jYbj9Dr9mrMhrgYsASPrNyHmzT2O-hQM51w7LBX4WAe9Min9noNPDKMnNjClat7MwCQ51edbP5CI7AoHfxD_mcaXkH0ALRkj7ytxaY7LkBbDGkKONqGQHUE2Ah880-RzauG4AJgsCdg36NO9P6Ji-_-m4sfye7o-uLcnJ9dfjsge7yaEYK5kYdkZ3m3cu8BqS2jD9VL_Am__jWq |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db5swED-1qab1Zd9rsy8xaa-k1DY2PGbTqmzSKpQsUvdkGTBNNgbRSjRlf_3uMESr2q3dG4IzyNxx9zP-3R3AG14wkxuZ-7FV0hcpt36KwNzPpCxMkOWIKSg5-dOpnMzFx7PwbAf6xoXEqqQ_1q2P7t7d0Yx2SZmSGJtoAS7V0SovdmFPhgi_B7A3P03GX9pdzVj5JNcfI9gQfbpcy-n6Xpd4dyJ0sRHV7qSmddeHo93C1NeBzqvcybvramU2P01Z_hGYTu7DtE_vcXyUb6N1k46yX1erPd5-zg_gXgdTvbGTewg7tnoEd1zjys1jeJuMp8mxN3U0WnvhJePEM1XufagWy3TZ4Im63Bj0aRvHtfNcOqQ3QdfvzRbohJ_A_OT953cTv-vG4GdhyBsfcRMzUVaoQFrJeSENU4YX1uKiBsNcGvAc4QXiJak4t0rJOGYmJooqtTdGpPcUBlVd2UPwRKGkiISwPLcC8UQqTBAaLlMRR5GN5BB4rxSddaXKqWNGqXtO2lftVKlJlbiK0fiUIfjbUStXquMGedXrW3dww8EIjdHkhpGHaB7anKMf1vMZoyp9LZZm0RBe9zaj8UMlvZrK1usLfYxAMWyr4fxDhlNiO64x2d9lWAvzI_S0QzhwtridLsJj2hblOLVLVroVoGLil69Uy0VbVJwjlA44Pne0tedbvcVn_zvgOeyztqUIUSlfwKD5sbYvEdg16avuU_4NXwREQg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PARP1+Represses+PAP+and+Inhibits+Polyadenylation+during+Heat+Shock&rft.jtitle=Molecular+cell&rft.au=Di%C2%A0Giammartino%2C+Dafne%C2%A0Campigli&rft.au=Shi%2C+Yongsheng&rft.au=Manley%2C+James%C2%A0L.&rft.date=2013-01-10&rft.issn=1097-2765&rft.volume=49&rft.issue=1&rft.spage=7&rft.epage=17&rft_id=info:doi/10.1016%2Fj.molcel.2012.11.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_molcel_2012_11_005 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |