Reducing sensitivity losses due to respiration and motion in accelerated echo planar imaging by reordering the autocalibration data acquisition
Purpose To reduce the sensitivity of echo‐planar imaging (EPI) auto‐calibration signal (ACS) data to patient respiration and motion to improve the image quality and temporal signal‐to‐noise ratio (tSNR) of accelerated EPI time‐series data. Methods ACS data for accelerated EPI are generally acquired...
Saved in:
Published in | Magnetic resonance in medicine Vol. 75; no. 2; pp. 665 - 679 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.02.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 1522-2594 |
DOI | 10.1002/mrm.25628 |
Cover
Abstract | Purpose
To reduce the sensitivity of echo‐planar imaging (EPI) auto‐calibration signal (ACS) data to patient respiration and motion to improve the image quality and temporal signal‐to‐noise ratio (tSNR) of accelerated EPI time‐series data.
Methods
ACS data for accelerated EPI are generally acquired using segmented, multishot EPI to distortion‐match the ACS and time‐series data. The ACS data are, therefore, typically collected over multiple TR periods, leading to increased vulnerability to motion and dynamic B0 changes. The fast low‐angle excitation echo‐planar technique (FLEET) is adopted to reorder the ACS segments so that segments within any given slice are acquired consecutively in time, thereby acquiring ACS data for each slice as rapidly as possible.
Results
Subject breathhold and motion phantom experiments demonstrate that artifacts in the ACS data reduce tSNR and produce tSNR discontinuities across slices in the accelerated EPI time‐series data. Accelerated EPI data reconstructed using FLEET‐ACS exhibit improved tSNR and increased tSNR continuity across slices. Additionally, image quality is improved dramatically when bulk motion occurs during the ACS acquisition.
Conclusion
FLEET‐ACS provides reduced respiration and motion sensitivity in accelerated EPI, which yields higher tSNR and image quality. Benefits are demonstrated in both conventional‐resolution 3T and high‐resolution 7T EPI time‐series data. Magn Reson Med 75:665–679, 2016. © 2015 Wiley Periodicals, Inc. |
---|---|
AbstractList | To reduce the sensitivity of echo-planar imaging (EPI) auto-calibration signal (ACS) data to patient respiration and motion to improve the image quality and temporal signal-to-noise ratio (tSNR) of accelerated EPI time-series data.PURPOSETo reduce the sensitivity of echo-planar imaging (EPI) auto-calibration signal (ACS) data to patient respiration and motion to improve the image quality and temporal signal-to-noise ratio (tSNR) of accelerated EPI time-series data.ACS data for accelerated EPI are generally acquired using segmented, multishot EPI to distortion-match the ACS and time-series data. The ACS data are, therefore, typically collected over multiple TR periods, leading to increased vulnerability to motion and dynamic B0 changes. The fast low-angle excitation echo-planar technique (FLEET) is adopted to reorder the ACS segments so that segments within any given slice are acquired consecutively in time, thereby acquiring ACS data for each slice as rapidly as possible.METHODSACS data for accelerated EPI are generally acquired using segmented, multishot EPI to distortion-match the ACS and time-series data. The ACS data are, therefore, typically collected over multiple TR periods, leading to increased vulnerability to motion and dynamic B0 changes. The fast low-angle excitation echo-planar technique (FLEET) is adopted to reorder the ACS segments so that segments within any given slice are acquired consecutively in time, thereby acquiring ACS data for each slice as rapidly as possible.Subject breathhold and motion phantom experiments demonstrate that artifacts in the ACS data reduce tSNR and produce tSNR discontinuities across slices in the accelerated EPI time-series data. Accelerated EPI data reconstructed using FLEET-ACS exhibit improved tSNR and increased tSNR continuity across slices. Additionally, image quality is improved dramatically when bulk motion occurs during the ACS acquisition.RESULTSSubject breathhold and motion phantom experiments demonstrate that artifacts in the ACS data reduce tSNR and produce tSNR discontinuities across slices in the accelerated EPI time-series data. Accelerated EPI data reconstructed using FLEET-ACS exhibit improved tSNR and increased tSNR continuity across slices. Additionally, image quality is improved dramatically when bulk motion occurs during the ACS acquisition.FLEET-ACS provides reduced respiration and motion sensitivity in accelerated EPI, which yields higher tSNR and image quality. Benefits are demonstrated in both conventional-resolution 3T and high-resolution 7T EPI time-series data.CONCLUSIONFLEET-ACS provides reduced respiration and motion sensitivity in accelerated EPI, which yields higher tSNR and image quality. Benefits are demonstrated in both conventional-resolution 3T and high-resolution 7T EPI time-series data. Purpose To reduce the sensitivity of echo-planar imaging (EPI) auto-calibration signal (ACS) data to patient respiration and motion to improve the image quality and temporal signal-to-noise ratio (tSNR) of accelerated EPI time-series data. Methods ACS data for accelerated EPI are generally acquired using segmented, multishot EPI to distortion-match the ACS and time-series data. The ACS data are, therefore, typically collected over multiple TR periods, leading to increased vulnerability to motion and dynamic B0 changes. The fast low-angle excitation echo-planar technique (FLEET) is adopted to reorder the ACS segments so that segments within any given slice are acquired consecutively in time, thereby acquiring ACS data for each slice as rapidly as possible. Results Subject breathhold and motion phantom experiments demonstrate that artifacts in the ACS data reduce tSNR and produce tSNR discontinuities across slices in the accelerated EPI time-series data. Accelerated EPI data reconstructed using FLEET-ACS exhibit improved tSNR and increased tSNR continuity across slices. Additionally, image quality is improved dramatically when bulk motion occurs during the ACS acquisition. Conclusion FLEET-ACS provides reduced respiration and motion sensitivity in accelerated EPI, which yields higher tSNR and image quality. Benefits are demonstrated in both conventional-resolution 3T and high-resolution 7T EPI time-series data. Magn Reson Med 75:665-679, 2016. © 2015 Wiley Periodicals, Inc. Purpose To reduce the sensitivity of echo-planar imaging (EPI) auto-calibration signal (ACS) data to patient respiration and motion to improve the image quality and temporal signal-to-noise ratio (tSNR) of accelerated EPI time-series data. Methods ACS data for accelerated EPI are generally acquired using segmented, multishot EPI to distortion-match the ACS and time-series data. The ACS data are, therefore, typically collected over multiple TR periods, leading to increased vulnerability to motion and dynamic B sub(0) changes. The fast low-angle excitation echo-planar technique (FLEET) is adopted to reorder the ACS segments so that segments within any given slice are acquired consecutively in time, thereby acquiring ACS data for each slice as rapidly as possible. Results Subject breathhold and motion phantom experiments demonstrate that artifacts in the ACS data reduce tSNR and produce tSNR discontinuities across slices in the accelerated EPI time-series data. Accelerated EPI data reconstructed using FLEET-ACS exhibit improved tSNR and increased tSNR continuity across slices. Additionally, image quality is improved dramatically when bulk motion occurs during the ACS acquisition. Conclusion FLEET-ACS provides reduced respiration and motion sensitivity in accelerated EPI, which yields higher tSNR and image quality. Benefits are demonstrated in both conventional-resolution 3T and high-resolution 7T EPI time-series data. Magn Reson Med 75:665-679, 2016. To reduce the sensitivity of echo-planar imaging (EPI) auto-calibration signal (ACS) data to patient respiration and motion to improve the image quality and temporal signal-to-noise ratio (tSNR) of accelerated EPI time-series data. ACS data for accelerated EPI are generally acquired using segmented, multishot EPI to distortion-match the ACS and time-series data. The ACS data are, therefore, typically collected over multiple TR periods, leading to increased vulnerability to motion and dynamic B0 changes. The fast low-angle excitation echo-planar technique (FLEET) is adopted to reorder the ACS segments so that segments within any given slice are acquired consecutively in time, thereby acquiring ACS data for each slice as rapidly as possible. Subject breathhold and motion phantom experiments demonstrate that artifacts in the ACS data reduce tSNR and produce tSNR discontinuities across slices in the accelerated EPI time-series data. Accelerated EPI data reconstructed using FLEET-ACS exhibit improved tSNR and increased tSNR continuity across slices. Additionally, image quality is improved dramatically when bulk motion occurs during the ACS acquisition. FLEET-ACS provides reduced respiration and motion sensitivity in accelerated EPI, which yields higher tSNR and image quality. Benefits are demonstrated in both conventional-resolution 3T and high-resolution 7T EPI time-series data. PurposeTo reduce the sensitivity of echo‐planar imaging (EPI) auto‐calibration signal (ACS) data to patient respiration and motion to improve the image quality and temporal signal‐to‐noise ratio (tSNR) of accelerated EPI time‐series data.MethodsACS data for accelerated EPI are generally acquired using segmented, multishot EPI to distortion‐match the ACS and time‐series data. The ACS data are, therefore, typically collected over multiple TR periods, leading to increased vulnerability to motion and dynamic B0 changes. The fast low‐angle excitation echo‐planar technique (FLEET) is adopted to reorder the ACS segments so that segments within any given slice are acquired consecutively in time, thereby acquiring ACS data for each slice as rapidly as possible.ResultsSubject breathhold and motion phantom experiments demonstrate that artifacts in the ACS data reduce tSNR and produce tSNR discontinuities across slices in the accelerated EPI time‐series data. Accelerated EPI data reconstructed using FLEET‐ACS exhibit improved tSNR and increased tSNR continuity across slices. Additionally, image quality is improved dramatically when bulk motion occurs during the ACS acquisition.ConclusionFLEET‐ACS provides reduced respiration and motion sensitivity in accelerated EPI, which yields higher tSNR and image quality. Benefits are demonstrated in both conventional‐resolution 3T and high‐resolution 7T EPI time‐series data. Magn Reson Med 75:665–679, 2016. © 2015 Wiley Periodicals, Inc. Purpose To reduce the sensitivity of echo‐planar imaging (EPI) auto‐calibration signal (ACS) data to patient respiration and motion to improve the image quality and temporal signal‐to‐noise ratio (tSNR) of accelerated EPI time‐series data. Methods ACS data for accelerated EPI are generally acquired using segmented, multishot EPI to distortion‐match the ACS and time‐series data. The ACS data are, therefore, typically collected over multiple TR periods, leading to increased vulnerability to motion and dynamic B0 changes. The fast low‐angle excitation echo‐planar technique (FLEET) is adopted to reorder the ACS segments so that segments within any given slice are acquired consecutively in time, thereby acquiring ACS data for each slice as rapidly as possible. Results Subject breathhold and motion phantom experiments demonstrate that artifacts in the ACS data reduce tSNR and produce tSNR discontinuities across slices in the accelerated EPI time‐series data. Accelerated EPI data reconstructed using FLEET‐ACS exhibit improved tSNR and increased tSNR continuity across slices. Additionally, image quality is improved dramatically when bulk motion occurs during the ACS acquisition. Conclusion FLEET‐ACS provides reduced respiration and motion sensitivity in accelerated EPI, which yields higher tSNR and image quality. Benefits are demonstrated in both conventional‐resolution 3T and high‐resolution 7T EPI time‐series data. Magn Reson Med 75:665–679, 2016. © 2015 Wiley Periodicals, Inc. |
Author | Bhat, Himanshu Benner, Thomas Witzel, Thomas Feiweier, Thorsten Wald, Lawrence L. Polimeni, Jonathan R. Inati, Souheil J. Heberlein, Keith Renvall, Ville |
Author_xml | – sequence: 1 givenname: Jonathan R. surname: Polimeni fullname: Polimeni, Jonathan R. email: jonp@nmr.mgh.harvard.edu organization: Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, MA, Charlestown, USA – sequence: 2 givenname: Himanshu surname: Bhat fullname: Bhat, Himanshu organization: Siemens Medical Solutions USA Inc., MA, Charlestown, USA – sequence: 3 givenname: Thomas surname: Witzel fullname: Witzel, Thomas organization: Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, MA, Charlestown, USA – sequence: 4 givenname: Thomas surname: Benner fullname: Benner, Thomas organization: Siemens AG, Healthcare Sector, Bavaria, Erlangen, Germany – sequence: 5 givenname: Thorsten surname: Feiweier fullname: Feiweier, Thorsten organization: Siemens AG, Healthcare Sector, Bavaria, Erlangen, Germany – sequence: 6 givenname: Souheil J. surname: Inati fullname: Inati, Souheil J. organization: National Institute of Mental Health, MD, Bethesda, USA – sequence: 7 givenname: Ville surname: Renvall fullname: Renvall, Ville organization: Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, MA, Charlestown, USA – sequence: 8 givenname: Keith surname: Heberlein fullname: Heberlein, Keith organization: Siemens Medical Solutions USA Inc., MA, Charlestown, USA – sequence: 9 givenname: Lawrence L. surname: Wald fullname: Wald, Lawrence L. organization: Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25809559$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstu1DAUhiNURKeFBS-ALLGBRVrfHS9RVQakDkijIthZHttpXZJ4ajvAPAWvjDMXFhUgVseWv__3uZ1UR0MYXFU9R_AMQYjP-9ifYcZx86iaIYZxjZmkR9UMCgprgiQ9rk5SuoMQSinok-oYswZKxuSs-rl0djR-uAHJDcln_83nDehCSi4BOzqQA4gurX3U2YcB6MGCPmyPvtyMcZ0rT84CZ24DWHd60BH4Xt9MnqtNEYdoXZxu-dYBPeZgdOdXez-rsy4296OfPg_D0-pxq7vknu3jafXp7eX1xbv66uP8_cWbq9owRpoaWScsNpQRJLBGnFKKTWOsFERg3sKGN5ZD1-pV68Sqscwg2WJBSqRUc0JOq1c733UM96NLWfU-lWJK_i6MSSEhOGdNsf0PlMNGcMwn9OUD9C6McSiFKMygxEgi0vyLQoIJJjmBU4Yv9tS46p1V61i6GjfqMLsCnO8AE8u4omuV8Xnb1Ry17xSCatoOVbZDbbejKF4_UBxM_8Tu3b_7zm3-DqrFcnFQ1DuFT9n9-K3Q8aviZSxMff4wV4Jcz7_QpVAL8gvP69jM |
CODEN | MRMEEN |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2019_116434 crossref_primary_10_1093_cercor_bhad384 crossref_primary_10_1089_brain_2017_0499 crossref_primary_10_1016_j_brs_2019_02_003 crossref_primary_10_1002_hbm_26081 crossref_primary_10_1002_mrm_30301 crossref_primary_10_1038_s41597_021_01092_6 crossref_primary_10_1109_TMI_2021_3104291 crossref_primary_10_1523_JNEUROSCI_2124_19_2019 crossref_primary_10_1002_mrm_27813 crossref_primary_10_1007_s00259_024_06796_6 crossref_primary_10_1002_mrm_26889 crossref_primary_10_1002_mrm_28505 crossref_primary_10_1002_mrm_26289 crossref_primary_10_1016_j_mri_2017_11_011 crossref_primary_10_1002_mrm_27413 crossref_primary_10_1002_mrm_27699 crossref_primary_10_1016_j_neuroimage_2017_05_038 crossref_primary_10_1002_hbm_25867 crossref_primary_10_1002_mrm_25839 crossref_primary_10_1152_jn_00808_2018 crossref_primary_10_1002_mrm_25835 crossref_primary_10_1371_journal_pone_0280855 crossref_primary_10_1016_j_neuroimage_2021_118082 crossref_primary_10_1093_cercor_bhaa284 crossref_primary_10_1523_JNEUROSCI_0745_24_2024 crossref_primary_10_1002_hbm_24375 crossref_primary_10_1002_mrm_26032 crossref_primary_10_1002_mrm_26351 crossref_primary_10_1002_mrm_27120 crossref_primary_10_1002_nbm_3478 crossref_primary_10_1002_mrm_27123 crossref_primary_10_1002_mrm_28850 crossref_primary_10_1007_s10334_017_0641_0 crossref_primary_10_1098_rsta_2015_0189 crossref_primary_10_1002_mrm_26390 crossref_primary_10_1016_j_neuroimage_2017_05_022 crossref_primary_10_1016_j_neuroimage_2016_11_039 crossref_primary_10_1002_mrm_28415 crossref_primary_10_1016_j_neuroimage_2019_04_036 crossref_primary_10_1073_pnas_1608117113 crossref_primary_10_1523_JNEUROSCI_3518_15_2016 crossref_primary_10_7554_eLife_91601 crossref_primary_10_7554_eLife_91601_3 crossref_primary_10_1002_mrm_27801 crossref_primary_10_1016_j_cobeha_2021_01_011 crossref_primary_10_1016_j_neuroimage_2017_02_001 crossref_primary_10_1093_braincomms_fcae359 crossref_primary_10_1002_hbm_26143 crossref_primary_10_1002_mrm_29291 crossref_primary_10_1002_nbm_3620 crossref_primary_10_1016_j_neuroimage_2017_04_006 crossref_primary_10_1002_mrm_27076 crossref_primary_10_1002_mrm_28044 crossref_primary_10_1002_mrm_29573 crossref_primary_10_1002_mrm_28480 crossref_primary_10_1016_j_neuroimage_2020_116703 crossref_primary_10_1016_j_jmr_2018_01_022 crossref_primary_10_1016_j_neuroimage_2016_11_049 crossref_primary_10_1007_s00062_023_01338_3 crossref_primary_10_1016_j_media_2019_02_014 crossref_primary_10_1016_j_mri_2018_09_016 crossref_primary_10_1016_j_neuroimage_2019_03_040 crossref_primary_10_1016_j_neuroimage_2019_04_002 crossref_primary_10_1002_mrm_25897 crossref_primary_10_1016_j_pneurobio_2024_102584 crossref_primary_10_1016_j_neuroimage_2017_04_044 crossref_primary_10_1002_mrm_26823 crossref_primary_10_1002_mrm_27113 crossref_primary_10_1002_mrm_29415 crossref_primary_10_1002_mrm_28524 crossref_primary_10_1038_s41592_023_02068_7 crossref_primary_10_1016_j_neuroimage_2016_04_004 crossref_primary_10_1016_j_neuroimage_2018_06_056 crossref_primary_10_1016_j_neuroimage_2016_12_002 crossref_primary_10_1007_s00234_017_1962_4 crossref_primary_10_1016_j_neuroimage_2016_08_054 crossref_primary_10_1002_mrm_30038 crossref_primary_10_1002_mrm_29167 crossref_primary_10_1002_mrm_30436 crossref_primary_10_1016_j_brs_2023_10_007 crossref_primary_10_1002_mrm_26974 crossref_primary_10_1002_mrm_27822 crossref_primary_10_1002_mrm_28559 crossref_primary_10_1002_mrm_27546 crossref_primary_10_1002_mrm_28638 crossref_primary_10_1016_j_neuroimage_2017_02_029 crossref_primary_10_1371_journal_pone_0279722 crossref_primary_10_1002_mrm_26179 crossref_primary_10_1002_mrm_27784 crossref_primary_10_1016_j_neuroimage_2020_117078 crossref_primary_10_1162_imag_a_00399 crossref_primary_10_1002_mrm_25846 crossref_primary_10_1002_mrm_29608 crossref_primary_10_1016_j_neuroimage_2016_12_018 |
Cites_doi | 10.1006/jmre.2000.2105 10.1002/mrm.20708 10.1002/mrm.21187 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1088/0031-9155/46/12/318 10.1002/mrm.23097 10.1002/mrm.20261 10.1002/mrm.1910310111 10.1002/mrm.10171 10.1002/mrm.1910320418 10.1002/mrm.1910300512 10.1002/nbm.1009 10.1016/j.neuroimage.2013.07.055 10.1118/1.596452 10.1016/0022-2364(86)90433-6 10.1002/mrm.1910010308 10.1002/1522-2594(200008)44:2<243::AID-MRM11>3.0.CO;2-L 10.1016/j.neuroimage.2012.02.077 10.1002/mrm.1910340111 10.1002/mrm.25123 10.1016/j.neuroimage.2005.01.007 10.1002/mrm.1910330311 10.1002/mrm.1910050305 10.1002/nbm.1048 10.1016/j.neuroimage.2010.11.084 10.1002/jmri.20245 10.1002/nbm.1043 10.1002/mrm.21788 10.1016/0022-2364(89)90265-5 |
ContentType | Journal Article |
Copyright | 2015 Wiley Periodicals, Inc. 2016 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2015 Wiley Periodicals, Inc. – notice: 2016 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO |
DOI | 10.1002/mrm.25628 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE - Academic Biochemistry Abstracts 1 Engineering Research Database MEDLINE Biochemistry Abstracts 1 |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 679 |
ExternalDocumentID | 3923831881 25809559 10_1002_mrm_25628 MRM25628 ark_67375_WNG_73TGX4R7_M |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH National Center for Research Resources funderid: P41‐RR14075, S10‐RR023401, S10‐RR019307, S10‐RR023043, S10‐RR019371, S10‐RR020948 – fundername: the NIH Blueprint for Neuroscience Research funderid: U01‐MH093765 – fundername: NIH National Institute for Biomedical Imaging and Bioengineering funderid: P41‐EB015896, K01‐EB011498 – fundername: NIBIB NIH HHS grantid: P41 EB015896 – fundername: NCRR NIH HHS grantid: S10-RR023401 – fundername: NCRR NIH HHS grantid: P41 RR014075 – fundername: NCRR NIH HHS grantid: S10-RR023043 – fundername: NCRR NIH HHS grantid: S10-RR019307 – fundername: NCRR NIH HHS grantid: S10 RR019307 – fundername: NIMH NIH HHS grantid: U01 MH093765 – fundername: NIBIB NIH HHS grantid: P41-EB015896 – fundername: NIMH NIH HHS grantid: U01-MH093765 – fundername: NCRR NIH HHS grantid: S10 RR019371 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGB RWI WRC WUP AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO |
ID | FETCH-LOGICAL-c5538-1de7d2c453172a164442c8cd973726f0868d60efabfe7b8d5c19f2735c144a633 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Jul 11 05:30:43 EDT 2025 Fri Jul 11 14:43:42 EDT 2025 Fri Jul 25 12:19:17 EDT 2025 Fri Jul 25 12:13:26 EDT 2025 Mon Jul 21 05:49:18 EDT 2025 Tue Jul 01 01:20:58 EDT 2025 Thu Apr 24 23:03:25 EDT 2025 Wed Jan 22 17:05:47 EST 2025 Sun Sep 21 06:15:41 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | GRAPPA high-resolution fMRI parallel imaging high-field fMRI image reconstruction |
Language | English |
License | 2015 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5538-1de7d2c453172a164442c8cd973726f0868d60efabfe7b8d5c19f2735c144a633 |
Notes | ark:/67375/WNG-73TGX4R7-M ArticleID:MRM25628 the NIH Blueprint for Neuroscience Research - No. U01-MH093765 NIH National Center for Research Resources - No. P41-RR14075, S10-RR023401, S10-RR019307, S10-RR023043, S10-RR019371, S10-RR020948 istex:5ABF312F6DFE11D9BBA835B1AF258310151FA505 NIH National Institute for Biomedical Imaging and Bioengineering - No. P41-EB015896, K01-EB011498 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://doi.org/10.1002/mrm.25628 |
PMID | 25809559 |
PQID | 1757596303 |
PQPubID | 1016391 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1776658442 proquest_miscellaneous_1760876262 proquest_journals_2509219138 proquest_journals_1757596303 pubmed_primary_25809559 crossref_citationtrail_10_1002_mrm_25628 crossref_primary_10_1002_mrm_25628 wiley_primary_10_1002_mrm_25628_MRM25628 istex_primary_ark_67375_WNG_73TGX4R7_M |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2016 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: February 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Mansfield P. Spatial mapping of the chemical shift in NMR. Magn Reson Med 1984;1:370-386. Guilfoyle DN, Hrabe J. Interleaved snapshot echo planar imaging of mouse brain at 7.0 T. NMR Biomed 2006;19:108-115. De Zwart JA, van Gelderen P, Golay X, Ikonomidou VN, Duyn JH. Accelerated parallel imaging for functional imaging of the human brain. NMR Biomed 2006;19:342-351. Triantafyllou C, Hoge RD, Krueger G, Wiggins CJ, Potthast A, Wiggins GC, Wald LL. Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 2005;26:243-250. Butts K, Riederer SJ, Ehman RL, Thompson RM, Jack CR. Interleaved echo planar imaging on a standard MRI system. Magn Reson Med 1994;31:67-72. Sodickson DK. Tailored SMASH image reconstructions for robust in vivo parallel MR imaging. Magn Reson Med 2000;44:243-251. Hänicke W, Merboldt KD, Chien D, Gyngell ML, Bruhn H, Frahm J. Signal strength in subsecond FLASH magnetic resonance imaging: the dynamic approach to steady state. Med Phys 1990;17:1004-10. Triantafyllou C, Polimeni JR, Wald LL. Physiological noise and signal-to-noise ratio in fMRI with multi-channel array coils. Neuroimage 2011;55:597-606. Jezzard P, Balaban RS. Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med 1995;34:65-73. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002;47:1202-1210. Chapman B, Turner R, Ordidge RJ, Doyle M, Cawley M, Coxon R, Glover P, Mansfield P. Real-time movie imaging from a single cardiac cycle by NMR. Magn Reson Med 1987;5:246-54. Graedel NN, Polimeni JR, Guerin B, Gagoski B, Wald LL. An anatomically realistic temperature phantom for radiofrequency heating measurements. Magn Reson Med 2015;73:442-450. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962. Wang D, Zhao T, Zhou L, Hu X. Turbo Segmented Imaging (TSI). Proc Intl Soc Mag Reson Med 2005. Abstract 2409. Breuer F, Blaimer M, Mueller M, Heidemann R, Griswold M, Jakob P. Autocalibrated parallel imaging with GRAPPA using a single prescan as reference data. Proc Euro Soc Magn Reson Med B 2004;21:398. Xiang Q-S, Ye FQ. Correction for geometric distortion and N/2 ghosting in EPI by phase labeling for additional coordinate encoding (PLACE). Magn Reson Med 2007;57:731-741. Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 2012;67:1210-1224. Bernstein MA, King KF, Zhou XJ. Handbook of MRI pulse sequences. San Diego: Academic Press; 2004. Zha L, Lowe IJ. Optimized ultra-fast imaging sequence (OUFIS). Magn Reson Med 1995;33:377-395. Collins CM, Liu W, Schreiber W, Yang QX, Smith MB. Central brightening due to constructive interference with, without, and despite dielectric resonance. J. Magn Reson Imaging 2005;21:192-196. Van de Moortele P-F, Akgun C, Adriany G, Moeller S, Ritter J, Collins CM, Smith MB, Vaughan JT, Uğurbil K. B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 2005;54:1503-1518. Merboldt KD, Finsterbusch J, Frahm J. Reducing inhomogeneity artifacts in functional MRI of human brain activation-thin sections vs gradient compensation. J Magn Reson 2000;145:184-191. Zaitsev M, Hennig J, Speck O. Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo-planar imaging distortion correction. Magn Reson Med 2004;52:1156-1166. Feinberg DA, Oshio K. Phase errors in multi-shot echo planar imaging. Magn Reson Med 1994;32:535-539. Raj D, Anderson AW, Gore JC. Respiratory effects in human functional magnetic resonance imaging due to bulk susceptibility changes. Phys Med Biol 2001;46:3331-3340. McKinnon GC. Ultrafast interleaved gradient-echo-planar imaging on a standard scanner. Magn Reson Med 1993;30:609-616. Haase A, Frahm J, Matthaei D, Hanicke W, Merboldt K-D. FLASH imaging. Rapid NMR imaging using low flip-angle pulses. J Magn Reson 1986;67:258-266. Wald LL. The future of acquisition speed, coverage, sensitivity, and resolution. Neuroimage 2012;62:1221-1229. Pauly J, Nishimura D, Macovski A. A k-space analysis of small-tip-angle excitation. J Magn Reson 1989;81:43-56. Xu J, Moeller S, Auerbach EJ, Strupp J, Smith SM, Feinberg DA, Yacoub E, Uğurbil K. Evaluation of slice accelerations using multiband echo planar imaging at 3T. Neuroimage 2013;83:991-1001. Griswold MA, Breuer F, Blaimer M, Kannengiesser S, Heidemann RM, Mueller M, Nittka M, Jellus V, Kiefer B, Jakob PM. Autocalibrated coil sensitivity estimation for parallel imaging. NMR Biomed 2006;19:316-324. Skare S, Newbould RD, Nordell A, Holdsworth SJ, Bammer R. An auto-calibrated, angularly continuous, two-dimensional GRAPPA kernel for propeller trajectories. Magn Reson Med 2008;60:1457-1465. 2004; 21 2012 2011 2010 2015; 73 1990; 17 1995; 34 1987; 5 2000; 44 1989; 81 2013; 83 1995; 33 2008 2011; 55 2006; 19 2005; 21 2005 1999; 42 2004 2005; 26 2001; 46 2007; 57 2002; 47 2004; 52 1984; 1 1986; 67 1993; 30 1987 2005; 54 2014 2013 2000; 145 2012; 67 2008; 60 1994; 32 2012; 62 1994; 31 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 Polimeni JR (e_1_2_7_17_1) 2013 e_1_2_7_19_1 Breuer F (e_1_2_7_38_1) 2004; 21 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 Wang D (e_1_2_7_15_1) 2005 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_29_1 Bernstein MA (e_1_2_7_18_1) 2004 Cho ZH (e_1_2_7_20_1) 1987 Polimeni JR (e_1_2_7_27_1) 2008 Bhat H (e_1_2_7_41_1) 2014 Keil B (e_1_2_7_23_1) 2010 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 Kang D (e_1_2_7_34_1) 2011 Talagala SL (e_1_2_7_8_1) 2013 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_39_1 Kang D‐H (e_1_2_7_14_1) 2012 |
References_xml | – reference: Sodickson DK. Tailored SMASH image reconstructions for robust in vivo parallel MR imaging. Magn Reson Med 2000;44:243-251. – reference: McKinnon GC. Ultrafast interleaved gradient-echo-planar imaging on a standard scanner. Magn Reson Med 1993;30:609-616. – reference: Chapman B, Turner R, Ordidge RJ, Doyle M, Cawley M, Coxon R, Glover P, Mansfield P. Real-time movie imaging from a single cardiac cycle by NMR. Magn Reson Med 1987;5:246-54. – reference: Butts K, Riederer SJ, Ehman RL, Thompson RM, Jack CR. Interleaved echo planar imaging on a standard MRI system. Magn Reson Med 1994;31:67-72. – reference: Griswold MA, Breuer F, Blaimer M, Kannengiesser S, Heidemann RM, Mueller M, Nittka M, Jellus V, Kiefer B, Jakob PM. Autocalibrated coil sensitivity estimation for parallel imaging. NMR Biomed 2006;19:316-324. – reference: Graedel NN, Polimeni JR, Guerin B, Gagoski B, Wald LL. An anatomically realistic temperature phantom for radiofrequency heating measurements. Magn Reson Med 2015;73:442-450. – reference: Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002;47:1202-1210. – reference: Breuer F, Blaimer M, Mueller M, Heidemann R, Griswold M, Jakob P. Autocalibrated parallel imaging with GRAPPA using a single prescan as reference data. Proc Euro Soc Magn Reson Med B 2004;21:398. – reference: Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 2012;67:1210-1224. – reference: Skare S, Newbould RD, Nordell A, Holdsworth SJ, Bammer R. An auto-calibrated, angularly continuous, two-dimensional GRAPPA kernel for propeller trajectories. Magn Reson Med 2008;60:1457-1465. – reference: Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962. – reference: Triantafyllou C, Hoge RD, Krueger G, Wiggins CJ, Potthast A, Wiggins GC, Wald LL. Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 2005;26:243-250. – reference: Zha L, Lowe IJ. Optimized ultra-fast imaging sequence (OUFIS). Magn Reson Med 1995;33:377-395. – reference: Raj D, Anderson AW, Gore JC. Respiratory effects in human functional magnetic resonance imaging due to bulk susceptibility changes. Phys Med Biol 2001;46:3331-3340. – reference: Merboldt KD, Finsterbusch J, Frahm J. Reducing inhomogeneity artifacts in functional MRI of human brain activation-thin sections vs gradient compensation. J Magn Reson 2000;145:184-191. – reference: Xiang Q-S, Ye FQ. Correction for geometric distortion and N/2 ghosting in EPI by phase labeling for additional coordinate encoding (PLACE). Magn Reson Med 2007;57:731-741. – reference: Collins CM, Liu W, Schreiber W, Yang QX, Smith MB. Central brightening due to constructive interference with, without, and despite dielectric resonance. J. Magn Reson Imaging 2005;21:192-196. – reference: Haase A, Frahm J, Matthaei D, Hanicke W, Merboldt K-D. FLASH imaging. Rapid NMR imaging using low flip-angle pulses. J Magn Reson 1986;67:258-266. – reference: Zaitsev M, Hennig J, Speck O. Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo-planar imaging distortion correction. Magn Reson Med 2004;52:1156-1166. – reference: Feinberg DA, Oshio K. Phase errors in multi-shot echo planar imaging. Magn Reson Med 1994;32:535-539. – reference: Mansfield P. Spatial mapping of the chemical shift in NMR. Magn Reson Med 1984;1:370-386. – reference: Jezzard P, Balaban RS. Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med 1995;34:65-73. – reference: Van de Moortele P-F, Akgun C, Adriany G, Moeller S, Ritter J, Collins CM, Smith MB, Vaughan JT, Uğurbil K. B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 2005;54:1503-1518. – reference: Wang D, Zhao T, Zhou L, Hu X. Turbo Segmented Imaging (TSI). Proc Intl Soc Mag Reson Med 2005. Abstract 2409. – reference: Bernstein MA, King KF, Zhou XJ. Handbook of MRI pulse sequences. San Diego: Academic Press; 2004. – reference: Triantafyllou C, Polimeni JR, Wald LL. Physiological noise and signal-to-noise ratio in fMRI with multi-channel array coils. Neuroimage 2011;55:597-606. – reference: Guilfoyle DN, Hrabe J. Interleaved snapshot echo planar imaging of mouse brain at 7.0 T. NMR Biomed 2006;19:108-115. – reference: Pauly J, Nishimura D, Macovski A. A k-space analysis of small-tip-angle excitation. J Magn Reson 1989;81:43-56. – reference: De Zwart JA, van Gelderen P, Golay X, Ikonomidou VN, Duyn JH. Accelerated parallel imaging for functional imaging of the human brain. NMR Biomed 2006;19:342-351. – reference: Xu J, Moeller S, Auerbach EJ, Strupp J, Smith SM, Feinberg DA, Yacoub E, Uğurbil K. Evaluation of slice accelerations using multiband echo planar imaging at 3T. Neuroimage 2013;83:991-1001. – reference: Wald LL. The future of acquisition speed, coverage, sensitivity, and resolution. Neuroimage 2012;62:1221-1229. – reference: Hänicke W, Merboldt KD, Chien D, Gyngell ML, Bruhn H, Frahm J. Signal strength in subsecond FLASH magnetic resonance imaging: the dynamic approach to steady state. Med Phys 1990;17:1004-10. – year: 2011 – volume: 34 start-page: 65 year: 1995 end-page: 73 article-title: Correction for geometric distortion in echo planar images from B0 field variations publication-title: Magn Reson Med – volume: 32 start-page: 535 year: 1994 end-page: 539 article-title: Phase errors in multi‐shot echo planar imaging publication-title: Magn Reson Med – year: 1987 – volume: 67 start-page: 258 year: 1986 end-page: 266 article-title: FLASH imaging. Rapid NMR imaging using low flip‐angle pulses publication-title: J Magn Reson – volume: 54 start-page: 1503 year: 2005 end-page: 1518 article-title: B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil publication-title: Magn Reson Med – volume: 17 start-page: 1004 year: 1990 end-page: 10 article-title: Signal strength in subsecond FLASH magnetic resonance imaging: the dynamic approach to steady state publication-title: Med Phys – volume: 81 start-page: 43 year: 1989 end-page: 56 article-title: A k‐space analysis of small‐tip‐angle excitation publication-title: J Magn Reson – volume: 21 start-page: 398 year: 2004 article-title: Autocalibrated parallel imaging with GRAPPA using a single prescan as reference data publication-title: Proc Euro Soc Magn Reson Med B – volume: 47 start-page: 1202 year: 2002 end-page: 1210 article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA) publication-title: Magn Reson Med – volume: 21 start-page: 192 year: 2005 end-page: 196 article-title: Central brightening due to constructive interference with, without, and despite dielectric resonance. J publication-title: Magn Reson Imaging – volume: 145 start-page: 184 year: 2000 end-page: 191 article-title: Reducing inhomogeneity artifacts in functional MRI of human brain activation‐thin sections vs gradient compensation publication-title: J Magn Reson – year: 2014 – volume: 67 start-page: 1210 year: 2012 end-page: 1224 article-title: Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty publication-title: Magn Reson Med – year: 2010 – year: 2012 – volume: 31 start-page: 67 year: 1994 end-page: 72 article-title: Interleaved echo planar imaging on a standard MRI system publication-title: Magn Reson Med – volume: 42 start-page: 952 year: 1999 end-page: 962 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn Reson Med – volume: 30 start-page: 609 year: 1993 end-page: 616 article-title: Ultrafast interleaved gradient‐echo‐planar imaging on a standard scanner publication-title: Magn Reson Med – volume: 33 start-page: 377 year: 1995 end-page: 395 article-title: Optimized ultra‐fast imaging sequence (OUFIS) publication-title: Magn Reson Med – year: 2005 article-title: Turbo Segmented Imaging (TSI) publication-title: Proc Intl Soc Mag Reson Med – volume: 1 start-page: 370 year: 1984 end-page: 386 article-title: Spatial mapping of the chemical shift in NMR publication-title: Magn Reson Med – volume: 19 start-page: 316 year: 2006 end-page: 324 article-title: Autocalibrated coil sensitivity estimation for parallel imaging publication-title: NMR Biomed – volume: 62 start-page: 1221 year: 2012 end-page: 1229 article-title: The future of acquisition speed, coverage, sensitivity, and resolution publication-title: Neuroimage – year: 2008 – volume: 60 start-page: 1457 year: 2008 end-page: 1465 article-title: An auto‐calibrated, angularly continuous, two‐dimensional GRAPPA kernel for propeller trajectories publication-title: Magn Reson Med – volume: 19 start-page: 108 year: 2006 end-page: 115 article-title: Interleaved snapshot echo planar imaging of mouse brain at 7.0 T publication-title: NMR Biomed – year: 2004 – volume: 44 start-page: 243 year: 2000 end-page: 251 article-title: Tailored SMASH image reconstructions for robust in vivo parallel MR imaging publication-title: Magn Reson Med – volume: 19 start-page: 342 year: 2006 end-page: 351 article-title: Accelerated parallel imaging for functional imaging of the human brain publication-title: NMR Biomed – volume: 52 start-page: 1156 year: 2004 end-page: 1166 article-title: Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo‐planar imaging distortion correction publication-title: Magn Reson Med – volume: 26 start-page: 243 year: 2005 end-page: 250 article-title: Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters publication-title: Neuroimage – volume: 55 start-page: 597 year: 2011 end-page: 606 article-title: Physiological noise and signal‐to‐noise ratio in fMRI with multi‐channel array coils publication-title: Neuroimage – volume: 73 start-page: 442 year: 2015 end-page: 450 article-title: An anatomically realistic temperature phantom for radiofrequency heating measurements publication-title: Magn Reson Med – volume: 5 start-page: 246 year: 1987 end-page: 54 article-title: Real‐time movie imaging from a single cardiac cycle by NMR publication-title: Magn Reson Med – volume: 57 start-page: 731 year: 2007 end-page: 741 article-title: Correction for geometric distortion and N/2 ghosting in EPI by phase labeling for additional coordinate encoding (PLACE) publication-title: Magn Reson Med – year: 2013 – volume: 46 start-page: 3331 year: 2001 end-page: 3340 article-title: Respiratory effects in human functional magnetic resonance imaging due to bulk susceptibility changes publication-title: Phys Med Biol – volume: 83 start-page: 991 year: 2013 end-page: 1001 article-title: Evaluation of slice accelerations using multiband echo planar imaging at 3T publication-title: Neuroimage – ident: e_1_2_7_39_1 doi: 10.1006/jmre.2000.2105 – volume-title: Proceedings of the 18th Annual Meeting of ISMRM year: 2010 ident: e_1_2_7_23_1 – ident: e_1_2_7_33_1 doi: 10.1002/mrm.20708 – ident: e_1_2_7_11_1 doi: 10.1002/mrm.21187 – ident: e_1_2_7_29_1 doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – ident: e_1_2_7_26_1 doi: 10.1088/0031-9155/46/12/318 – ident: e_1_2_7_28_1 doi: 10.1002/mrm.23097 – volume-title: Proceedings of the 22nd Annual Meeting of ISMRM year: 2014 ident: e_1_2_7_41_1 – ident: e_1_2_7_10_1 doi: 10.1002/mrm.20261 – ident: e_1_2_7_21_1 doi: 10.1002/mrm.1910310111 – volume-title: Handbook of MRI pulse sequences year: 2004 ident: e_1_2_7_18_1 – volume-title: Proceedings of the 16th Annual Meeting of ISMRM year: 2008 ident: e_1_2_7_27_1 – volume-title: Proceedings of the 19th Annual Meeting of ISMRM year: 2011 ident: e_1_2_7_34_1 – ident: e_1_2_7_3_1 doi: 10.1002/mrm.10171 – ident: e_1_2_7_19_1 doi: 10.1002/mrm.1910320418 – ident: e_1_2_7_22_1 doi: 10.1002/mrm.1910300512 – ident: e_1_2_7_13_1 doi: 10.1002/nbm.1009 – ident: e_1_2_7_40_1 doi: 10.1016/j.neuroimage.2013.07.055 – ident: e_1_2_7_36_1 doi: 10.1118/1.596452 – volume-title: Proceedings of the 6th Annual Meeting of SMRM year: 1987 ident: e_1_2_7_20_1 – ident: e_1_2_7_7_1 doi: 10.1016/0022-2364(86)90433-6 – ident: e_1_2_7_12_1 doi: 10.1002/mrm.1910010308 – ident: e_1_2_7_31_1 doi: 10.1002/1522-2594(200008)44:2<243::AID-MRM11>3.0.CO;2-L – volume: 21 start-page: 398 year: 2004 ident: e_1_2_7_38_1 article-title: Autocalibrated parallel imaging with GRAPPA using a single prescan as reference data publication-title: Proc Euro Soc Magn Reson Med B – volume-title: Proceedings of the 21st Annual Meeting of ISMRM year: 2013 ident: e_1_2_7_8_1 – volume-title: Proceedings of the 21st Annual Meeting of ISMRM year: 2013 ident: e_1_2_7_17_1 – ident: e_1_2_7_6_1 doi: 10.1016/j.neuroimage.2012.02.077 – volume-title: Proceedings of the 20th Annual Meeting of ISMRM year: 2012 ident: e_1_2_7_14_1 – ident: e_1_2_7_9_1 doi: 10.1002/mrm.1910340111 – ident: e_1_2_7_24_1 doi: 10.1002/mrm.25123 – ident: e_1_2_7_30_1 doi: 10.1016/j.neuroimage.2005.01.007 – year: 2005 ident: e_1_2_7_15_1 article-title: Turbo Segmented Imaging (TSI) publication-title: Proc Intl Soc Mag Reson Med – ident: e_1_2_7_37_1 doi: 10.1002/mrm.1910330311 – ident: e_1_2_7_16_1 doi: 10.1002/mrm.1910050305 – ident: e_1_2_7_4_1 doi: 10.1002/nbm.1048 – ident: e_1_2_7_25_1 doi: 10.1016/j.neuroimage.2010.11.084 – ident: e_1_2_7_32_1 doi: 10.1002/jmri.20245 – ident: e_1_2_7_2_1 doi: 10.1002/nbm.1043 – ident: e_1_2_7_5_1 doi: 10.1002/mrm.21788 – ident: e_1_2_7_35_1 doi: 10.1016/0022-2364(89)90265-5 |
SSID | ssj0009974 |
Score | 2.4912074 |
Snippet | Purpose
To reduce the sensitivity of echo‐planar imaging (EPI) auto‐calibration signal (ACS) data to patient respiration and motion to improve the image... To reduce the sensitivity of echo-planar imaging (EPI) auto-calibration signal (ACS) data to patient respiration and motion to improve the image quality and... Purpose To reduce the sensitivity of echo-planar imaging (EPI) auto-calibration signal (ACS) data to patient respiration and motion to improve the image... PurposeTo reduce the sensitivity of echo‐planar imaging (EPI) auto‐calibration signal (ACS) data to patient respiration and motion to improve the image quality... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 665 |
SubjectTerms | Adult Brain - anatomy & histology Calibration Data acquisition Echo-Planar Imaging - methods Female GRAPPA Healthy Volunteers high-field fMRI high-resolution fMRI Humans Image Enhancement - methods Image processing Image Processing, Computer-Assisted - methods Image quality image reconstruction Male Middle Aged Motion parallel imaging Phantoms, Imaging Respiration Segments Sensitivity Signal quality Signal-To-Noise Ratio |
Title | Reducing sensitivity losses due to respiration and motion in accelerated echo planar imaging by reordering the autocalibration data acquisition |
URI | https://api.istex.fr/ark:/67375/WNG-73TGX4R7-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25628 https://www.ncbi.nlm.nih.gov/pubmed/25809559 https://www.proquest.com/docview/1757596303 https://www.proquest.com/docview/2509219138 https://www.proquest.com/docview/1760876262 https://www.proquest.com/docview/1776658442 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamIRAvXAaMwkAGIcRLutZxYls8IWCbkLKHahN9QIp8i1StTUeaSMCf4C9zjnOZhgpCPCVRTtzYOZfP9fF3CHklPSYtwuxEaiMiroWOlOUiSpxWRco0FxY3OGen6ck5_zRP5jvkbb8XpuWHGP5wQ8sI_hoNXJvN4RVp6KpajSFeM9zoO41T5M3_MLuijlKqZWAWHP2M4j2r0IQdDk9ei0U3cFi_bQOa13FrCDxHd8mX_pXbfJOLcVObsf3xG5vjf_bpHrnTAVL6rtWg-2THl3vkVtYtue-RmyFH1G4ekJ8zpHmFUEc3mPXelp2gyzUuG1PXeFqvadWt3MPXprp0tC0SRBdwZS1EOCSmcNSDz6WXS13qii5WoU4SNd_h4UAEilcAS6luagy02KHQCCazQjNfm0WbZ_aQnB99PHt_EnX1HCKboF-dOi8csxzMXjAN8zTOmZXWKSyVkxYwuZIunfhCm8ILI11ip6oAeAVHznUax4_Ibrku_WNCjTZKegnNIZ-_nRhwTZ556ZiTyhRyRN70Xza3Hdk51txY5i1NM8thqPMw1CPychC9bBk-tgm9DuoxSOjqAlPiRJJ_Pj3ORXx2POczkWcjctDrT955g00OEE0k4Okm8dbbgEIVBI5pDD_zYrgNZo5rN7r06wabSJE8kKXsbzIiRUDJQWa_Vd3hfVkiA9kgDExQwD93Nc9mWTh58u-iT8ltAJJdNvsB2a2rxj8DsFab58EqfwGTMTvg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWXfG48FhehQUMQohLuq3rxI7EBSF2C2x6qLqiF2Q5tiNV26ZLmkjAn-AvM-M8VosKQpySKBMndsYznzOTbwh5KR0mLcLqROpUBFwLHcSGiyC0Os4iprkw-INzMonGp_zjPJzvkDftvzA1P0T3wQ1nhrfXOMHxg_ThBWvoqlj1wWEzeYXscQAaPkg7vSCPiuOag1lwtDQxb3mFBuywu_SSN9rDgf22DWpeRq7e9RzdIl_ah64zTs76VZn2zY_f-Bz_t1e3yc0Gk9K3tRLdITsu3yfXkibqvk-u-jRRs7lLfk6R6RW8Hd1g4ntdeYIu1xg5prZytFzTognewwunOre0rhNEF3BkDDg55Kaw1IHZpedLneuCLla-VBJNv8PFngsUjwCZUl2V6GuxR74RzGeFZr5WizrV7B45PXo_ezcOmpIOgQnRtA6tE5YZDjNfMA1LNc6ZkcbGWC0nymB9JW00cJlOMydSaUMzjDNAWLDlXEej0X2ym69z95DQVKexdBKaQ0p_M0jBOjnmpGVWxmkme-R1-2qVafjOsezGUtVMzUzBUCs_1D3yohM9r0k-tgm98vrRSejiDLPiRKg-T46VGM2O53wqVNIjB60CqcYgbBSgNBGCsRuMtp4GIBqD7xiO4DbPu9Mw0zF8o3O3rrCJCPkDWcT-JiMixJQcZB7Uuts9Lwul5xuEgfEa-OeuqmSa-J1H_y76jFwfz5ITdfJh8ukxuQG4skluPyC7ZVG5J4DdyvSpn6K_ADGgP_4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJiZeBoxbYYBBCPHSrnWd2BFPCOjGJRWqNtGHSZZvkaq1adcmEvAn-Muc46SZhgpCPCVRTpzYOZfP8cl3CHkhPSYtwuxEaiPaXAvdTiwX7cjpJIuZ5sLiD87pMD4-5R_H0XiLvF7_C1PxQzQf3NAygr9GA1-47PCSNHS2nHUgXjN5jezwGCIZIqLRJXdUklQUzIKjo0n4mlaoyw6bS68Eox0c12-bkOZV4Boiz-AmOVs_c5Vwct4pC9OxP36jc_zPTt0iezUipW8qFbpNtny-T3bTes19n1wPSaJ2dYf8HCHPK8Q6usK096ruBJ3Ocd2YutLTYk6X9dI9vG6qc0erKkF0AkfWQohDZgpHPThdupjqXC_pZBYKJVHzHS4OTKB4BLiU6rLASIsdCo1gNis0c1FOqkSzu-R08P7k7XG7LujQthE61p7zwjHLwe4F0zBR45xZaV2CtXLiDGZX0sVdn2mTeWGki2wvyQBfwZZzHff798h2Ps_9A0KNNon0EppDQn_bNeCbPPPSMScTk8kWebV-s8rWbOdYdGOqKp5mpmCoVRjqFnneiC4qio9NQi-DejQSenmOOXEiUl-HR0r0T47GfCRU2iIHa_1RtTtYKcBoIgJX1-1vPA0wNIHI0evDbZ41p8HOcfFG535eYhMxsgeymP1NRsSIKDnI3K9Ut3leFsnANggDExTwz11V6SgNOw__XfQp2f3ybqA-fxh-ekRuAKisM9sPyHaxLP1jAG6FeRIM9BdE1T6t |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reducing+sensitivity+losses+due+to+respiration+and+motion+in+accelerated+echo+planar+imaging+by+reordering+the+autocalibration+data+acquisition&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Polimeni%2C+Jonathan+R&rft.au=Bhat%2C+Himanshu&rft.au=Witzel%2C+Thomas&rft.au=Benner%2C+Thomas&rft.date=2016-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=75&rft.issue=2&rft.spage=665&rft.epage=679&rft_id=info:doi/10.1002%2Fmrm.25628&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |