Reducing sensitivity losses due to respiration and motion in accelerated echo planar imaging by reordering the autocalibration data acquisition

Purpose To reduce the sensitivity of echo‐planar imaging (EPI) auto‐calibration signal (ACS) data to patient respiration and motion to improve the image quality and temporal signal‐to‐noise ratio (tSNR) of accelerated EPI time‐series data. Methods ACS data for accelerated EPI are generally acquired...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 75; no. 2; pp. 665 - 679
Main Authors Polimeni, Jonathan R., Bhat, Himanshu, Witzel, Thomas, Benner, Thomas, Feiweier, Thorsten, Inati, Souheil J., Renvall, Ville, Heberlein, Keith, Wald, Lawrence L.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.02.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.25628

Cover

Abstract Purpose To reduce the sensitivity of echo‐planar imaging (EPI) auto‐calibration signal (ACS) data to patient respiration and motion to improve the image quality and temporal signal‐to‐noise ratio (tSNR) of accelerated EPI time‐series data. Methods ACS data for accelerated EPI are generally acquired using segmented, multishot EPI to distortion‐match the ACS and time‐series data. The ACS data are, therefore, typically collected over multiple TR periods, leading to increased vulnerability to motion and dynamic B0 changes. The fast low‐angle excitation echo‐planar technique (FLEET) is adopted to reorder the ACS segments so that segments within any given slice are acquired consecutively in time, thereby acquiring ACS data for each slice as rapidly as possible. Results Subject breathhold and motion phantom experiments demonstrate that artifacts in the ACS data reduce tSNR and produce tSNR discontinuities across slices in the accelerated EPI time‐series data. Accelerated EPI data reconstructed using FLEET‐ACS exhibit improved tSNR and increased tSNR continuity across slices. Additionally, image quality is improved dramatically when bulk motion occurs during the ACS acquisition. Conclusion FLEET‐ACS provides reduced respiration and motion sensitivity in accelerated EPI, which yields higher tSNR and image quality. Benefits are demonstrated in both conventional‐resolution 3T and high‐resolution 7T EPI time‐series data. Magn Reson Med 75:665–679, 2016. © 2015 Wiley Periodicals, Inc.
AbstractList To reduce the sensitivity of echo-planar imaging (EPI) auto-calibration signal (ACS) data to patient respiration and motion to improve the image quality and temporal signal-to-noise ratio (tSNR) of accelerated EPI time-series data.PURPOSETo reduce the sensitivity of echo-planar imaging (EPI) auto-calibration signal (ACS) data to patient respiration and motion to improve the image quality and temporal signal-to-noise ratio (tSNR) of accelerated EPI time-series data.ACS data for accelerated EPI are generally acquired using segmented, multishot EPI to distortion-match the ACS and time-series data. The ACS data are, therefore, typically collected over multiple TR periods, leading to increased vulnerability to motion and dynamic B0 changes. The fast low-angle excitation echo-planar technique (FLEET) is adopted to reorder the ACS segments so that segments within any given slice are acquired consecutively in time, thereby acquiring ACS data for each slice as rapidly as possible.METHODSACS data for accelerated EPI are generally acquired using segmented, multishot EPI to distortion-match the ACS and time-series data. The ACS data are, therefore, typically collected over multiple TR periods, leading to increased vulnerability to motion and dynamic B0 changes. The fast low-angle excitation echo-planar technique (FLEET) is adopted to reorder the ACS segments so that segments within any given slice are acquired consecutively in time, thereby acquiring ACS data for each slice as rapidly as possible.Subject breathhold and motion phantom experiments demonstrate that artifacts in the ACS data reduce tSNR and produce tSNR discontinuities across slices in the accelerated EPI time-series data. Accelerated EPI data reconstructed using FLEET-ACS exhibit improved tSNR and increased tSNR continuity across slices. Additionally, image quality is improved dramatically when bulk motion occurs during the ACS acquisition.RESULTSSubject breathhold and motion phantom experiments demonstrate that artifacts in the ACS data reduce tSNR and produce tSNR discontinuities across slices in the accelerated EPI time-series data. Accelerated EPI data reconstructed using FLEET-ACS exhibit improved tSNR and increased tSNR continuity across slices. Additionally, image quality is improved dramatically when bulk motion occurs during the ACS acquisition.FLEET-ACS provides reduced respiration and motion sensitivity in accelerated EPI, which yields higher tSNR and image quality. Benefits are demonstrated in both conventional-resolution 3T and high-resolution 7T EPI time-series data.CONCLUSIONFLEET-ACS provides reduced respiration and motion sensitivity in accelerated EPI, which yields higher tSNR and image quality. Benefits are demonstrated in both conventional-resolution 3T and high-resolution 7T EPI time-series data.
Purpose To reduce the sensitivity of echo-planar imaging (EPI) auto-calibration signal (ACS) data to patient respiration and motion to improve the image quality and temporal signal-to-noise ratio (tSNR) of accelerated EPI time-series data. Methods ACS data for accelerated EPI are generally acquired using segmented, multishot EPI to distortion-match the ACS and time-series data. The ACS data are, therefore, typically collected over multiple TR periods, leading to increased vulnerability to motion and dynamic B0 changes. The fast low-angle excitation echo-planar technique (FLEET) is adopted to reorder the ACS segments so that segments within any given slice are acquired consecutively in time, thereby acquiring ACS data for each slice as rapidly as possible. Results Subject breathhold and motion phantom experiments demonstrate that artifacts in the ACS data reduce tSNR and produce tSNR discontinuities across slices in the accelerated EPI time-series data. Accelerated EPI data reconstructed using FLEET-ACS exhibit improved tSNR and increased tSNR continuity across slices. Additionally, image quality is improved dramatically when bulk motion occurs during the ACS acquisition. Conclusion FLEET-ACS provides reduced respiration and motion sensitivity in accelerated EPI, which yields higher tSNR and image quality. Benefits are demonstrated in both conventional-resolution 3T and high-resolution 7T EPI time-series data. Magn Reson Med 75:665-679, 2016. © 2015 Wiley Periodicals, Inc.
Purpose To reduce the sensitivity of echo-planar imaging (EPI) auto-calibration signal (ACS) data to patient respiration and motion to improve the image quality and temporal signal-to-noise ratio (tSNR) of accelerated EPI time-series data. Methods ACS data for accelerated EPI are generally acquired using segmented, multishot EPI to distortion-match the ACS and time-series data. The ACS data are, therefore, typically collected over multiple TR periods, leading to increased vulnerability to motion and dynamic B sub(0) changes. The fast low-angle excitation echo-planar technique (FLEET) is adopted to reorder the ACS segments so that segments within any given slice are acquired consecutively in time, thereby acquiring ACS data for each slice as rapidly as possible. Results Subject breathhold and motion phantom experiments demonstrate that artifacts in the ACS data reduce tSNR and produce tSNR discontinuities across slices in the accelerated EPI time-series data. Accelerated EPI data reconstructed using FLEET-ACS exhibit improved tSNR and increased tSNR continuity across slices. Additionally, image quality is improved dramatically when bulk motion occurs during the ACS acquisition. Conclusion FLEET-ACS provides reduced respiration and motion sensitivity in accelerated EPI, which yields higher tSNR and image quality. Benefits are demonstrated in both conventional-resolution 3T and high-resolution 7T EPI time-series data. Magn Reson Med 75:665-679, 2016.
To reduce the sensitivity of echo-planar imaging (EPI) auto-calibration signal (ACS) data to patient respiration and motion to improve the image quality and temporal signal-to-noise ratio (tSNR) of accelerated EPI time-series data. ACS data for accelerated EPI are generally acquired using segmented, multishot EPI to distortion-match the ACS and time-series data. The ACS data are, therefore, typically collected over multiple TR periods, leading to increased vulnerability to motion and dynamic B0 changes. The fast low-angle excitation echo-planar technique (FLEET) is adopted to reorder the ACS segments so that segments within any given slice are acquired consecutively in time, thereby acquiring ACS data for each slice as rapidly as possible. Subject breathhold and motion phantom experiments demonstrate that artifacts in the ACS data reduce tSNR and produce tSNR discontinuities across slices in the accelerated EPI time-series data. Accelerated EPI data reconstructed using FLEET-ACS exhibit improved tSNR and increased tSNR continuity across slices. Additionally, image quality is improved dramatically when bulk motion occurs during the ACS acquisition. FLEET-ACS provides reduced respiration and motion sensitivity in accelerated EPI, which yields higher tSNR and image quality. Benefits are demonstrated in both conventional-resolution 3T and high-resolution 7T EPI time-series data.
PurposeTo reduce the sensitivity of echo‐planar imaging (EPI) auto‐calibration signal (ACS) data to patient respiration and motion to improve the image quality and temporal signal‐to‐noise ratio (tSNR) of accelerated EPI time‐series data.MethodsACS data for accelerated EPI are generally acquired using segmented, multishot EPI to distortion‐match the ACS and time‐series data. The ACS data are, therefore, typically collected over multiple TR periods, leading to increased vulnerability to motion and dynamic B0 changes. The fast low‐angle excitation echo‐planar technique (FLEET) is adopted to reorder the ACS segments so that segments within any given slice are acquired consecutively in time, thereby acquiring ACS data for each slice as rapidly as possible.ResultsSubject breathhold and motion phantom experiments demonstrate that artifacts in the ACS data reduce tSNR and produce tSNR discontinuities across slices in the accelerated EPI time‐series data. Accelerated EPI data reconstructed using FLEET‐ACS exhibit improved tSNR and increased tSNR continuity across slices. Additionally, image quality is improved dramatically when bulk motion occurs during the ACS acquisition.ConclusionFLEET‐ACS provides reduced respiration and motion sensitivity in accelerated EPI, which yields higher tSNR and image quality. Benefits are demonstrated in both conventional‐resolution 3T and high‐resolution 7T EPI time‐series data. Magn Reson Med 75:665–679, 2016. © 2015 Wiley Periodicals, Inc.
Purpose To reduce the sensitivity of echo‐planar imaging (EPI) auto‐calibration signal (ACS) data to patient respiration and motion to improve the image quality and temporal signal‐to‐noise ratio (tSNR) of accelerated EPI time‐series data. Methods ACS data for accelerated EPI are generally acquired using segmented, multishot EPI to distortion‐match the ACS and time‐series data. The ACS data are, therefore, typically collected over multiple TR periods, leading to increased vulnerability to motion and dynamic B0 changes. The fast low‐angle excitation echo‐planar technique (FLEET) is adopted to reorder the ACS segments so that segments within any given slice are acquired consecutively in time, thereby acquiring ACS data for each slice as rapidly as possible. Results Subject breathhold and motion phantom experiments demonstrate that artifacts in the ACS data reduce tSNR and produce tSNR discontinuities across slices in the accelerated EPI time‐series data. Accelerated EPI data reconstructed using FLEET‐ACS exhibit improved tSNR and increased tSNR continuity across slices. Additionally, image quality is improved dramatically when bulk motion occurs during the ACS acquisition. Conclusion FLEET‐ACS provides reduced respiration and motion sensitivity in accelerated EPI, which yields higher tSNR and image quality. Benefits are demonstrated in both conventional‐resolution 3T and high‐resolution 7T EPI time‐series data. Magn Reson Med 75:665–679, 2016. © 2015 Wiley Periodicals, Inc.
Author Bhat, Himanshu
Benner, Thomas
Witzel, Thomas
Feiweier, Thorsten
Wald, Lawrence L.
Polimeni, Jonathan R.
Inati, Souheil J.
Heberlein, Keith
Renvall, Ville
Author_xml – sequence: 1
  givenname: Jonathan R.
  surname: Polimeni
  fullname: Polimeni, Jonathan R.
  email: jonp@nmr.mgh.harvard.edu
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, MA, Charlestown, USA
– sequence: 2
  givenname: Himanshu
  surname: Bhat
  fullname: Bhat, Himanshu
  organization: Siemens Medical Solutions USA Inc., MA, Charlestown, USA
– sequence: 3
  givenname: Thomas
  surname: Witzel
  fullname: Witzel, Thomas
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, MA, Charlestown, USA
– sequence: 4
  givenname: Thomas
  surname: Benner
  fullname: Benner, Thomas
  organization: Siemens AG, Healthcare Sector, Bavaria, Erlangen, Germany
– sequence: 5
  givenname: Thorsten
  surname: Feiweier
  fullname: Feiweier, Thorsten
  organization: Siemens AG, Healthcare Sector, Bavaria, Erlangen, Germany
– sequence: 6
  givenname: Souheil J.
  surname: Inati
  fullname: Inati, Souheil J.
  organization: National Institute of Mental Health, MD, Bethesda, USA
– sequence: 7
  givenname: Ville
  surname: Renvall
  fullname: Renvall, Ville
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, MA, Charlestown, USA
– sequence: 8
  givenname: Keith
  surname: Heberlein
  fullname: Heberlein, Keith
  organization: Siemens Medical Solutions USA Inc., MA, Charlestown, USA
– sequence: 9
  givenname: Lawrence L.
  surname: Wald
  fullname: Wald, Lawrence L.
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25809559$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAUhiNURKeFBS-ALLGBRVrfHS9RVQakDkijIthZHttpXZJ4ajvAPAWvjDMXFhUgVseWv__3uZ1UR0MYXFU9R_AMQYjP-9ifYcZx86iaIYZxjZmkR9UMCgprgiQ9rk5SuoMQSinok-oYswZKxuSs-rl0djR-uAHJDcln_83nDehCSi4BOzqQA4gurX3U2YcB6MGCPmyPvtyMcZ0rT84CZ24DWHd60BH4Xt9MnqtNEYdoXZxu-dYBPeZgdOdXez-rsy4296OfPg_D0-pxq7vknu3jafXp7eX1xbv66uP8_cWbq9owRpoaWScsNpQRJLBGnFKKTWOsFERg3sKGN5ZD1-pV68Sqscwg2WJBSqRUc0JOq1c733UM96NLWfU-lWJK_i6MSSEhOGdNsf0PlMNGcMwn9OUD9C6McSiFKMygxEgi0vyLQoIJJjmBU4Yv9tS46p1V61i6GjfqMLsCnO8AE8u4omuV8Xnb1Ry17xSCatoOVbZDbbejKF4_UBxM_8Tu3b_7zm3-DqrFcnFQ1DuFT9n9-K3Q8aviZSxMff4wV4Jcz7_QpVAL8gvP69jM
CODEN MRMEEN
CitedBy_id crossref_primary_10_1016_j_neuroimage_2019_116434
crossref_primary_10_1093_cercor_bhad384
crossref_primary_10_1089_brain_2017_0499
crossref_primary_10_1016_j_brs_2019_02_003
crossref_primary_10_1002_hbm_26081
crossref_primary_10_1002_mrm_30301
crossref_primary_10_1038_s41597_021_01092_6
crossref_primary_10_1109_TMI_2021_3104291
crossref_primary_10_1523_JNEUROSCI_2124_19_2019
crossref_primary_10_1002_mrm_27813
crossref_primary_10_1007_s00259_024_06796_6
crossref_primary_10_1002_mrm_26889
crossref_primary_10_1002_mrm_28505
crossref_primary_10_1002_mrm_26289
crossref_primary_10_1016_j_mri_2017_11_011
crossref_primary_10_1002_mrm_27413
crossref_primary_10_1002_mrm_27699
crossref_primary_10_1016_j_neuroimage_2017_05_038
crossref_primary_10_1002_hbm_25867
crossref_primary_10_1002_mrm_25839
crossref_primary_10_1152_jn_00808_2018
crossref_primary_10_1002_mrm_25835
crossref_primary_10_1371_journal_pone_0280855
crossref_primary_10_1016_j_neuroimage_2021_118082
crossref_primary_10_1093_cercor_bhaa284
crossref_primary_10_1523_JNEUROSCI_0745_24_2024
crossref_primary_10_1002_hbm_24375
crossref_primary_10_1002_mrm_26032
crossref_primary_10_1002_mrm_26351
crossref_primary_10_1002_mrm_27120
crossref_primary_10_1002_nbm_3478
crossref_primary_10_1002_mrm_27123
crossref_primary_10_1002_mrm_28850
crossref_primary_10_1007_s10334_017_0641_0
crossref_primary_10_1098_rsta_2015_0189
crossref_primary_10_1002_mrm_26390
crossref_primary_10_1016_j_neuroimage_2017_05_022
crossref_primary_10_1016_j_neuroimage_2016_11_039
crossref_primary_10_1002_mrm_28415
crossref_primary_10_1016_j_neuroimage_2019_04_036
crossref_primary_10_1073_pnas_1608117113
crossref_primary_10_1523_JNEUROSCI_3518_15_2016
crossref_primary_10_7554_eLife_91601
crossref_primary_10_7554_eLife_91601_3
crossref_primary_10_1002_mrm_27801
crossref_primary_10_1016_j_cobeha_2021_01_011
crossref_primary_10_1016_j_neuroimage_2017_02_001
crossref_primary_10_1093_braincomms_fcae359
crossref_primary_10_1002_hbm_26143
crossref_primary_10_1002_mrm_29291
crossref_primary_10_1002_nbm_3620
crossref_primary_10_1016_j_neuroimage_2017_04_006
crossref_primary_10_1002_mrm_27076
crossref_primary_10_1002_mrm_28044
crossref_primary_10_1002_mrm_29573
crossref_primary_10_1002_mrm_28480
crossref_primary_10_1016_j_neuroimage_2020_116703
crossref_primary_10_1016_j_jmr_2018_01_022
crossref_primary_10_1016_j_neuroimage_2016_11_049
crossref_primary_10_1007_s00062_023_01338_3
crossref_primary_10_1016_j_media_2019_02_014
crossref_primary_10_1016_j_mri_2018_09_016
crossref_primary_10_1016_j_neuroimage_2019_03_040
crossref_primary_10_1016_j_neuroimage_2019_04_002
crossref_primary_10_1002_mrm_25897
crossref_primary_10_1016_j_pneurobio_2024_102584
crossref_primary_10_1016_j_neuroimage_2017_04_044
crossref_primary_10_1002_mrm_26823
crossref_primary_10_1002_mrm_27113
crossref_primary_10_1002_mrm_29415
crossref_primary_10_1002_mrm_28524
crossref_primary_10_1038_s41592_023_02068_7
crossref_primary_10_1016_j_neuroimage_2016_04_004
crossref_primary_10_1016_j_neuroimage_2018_06_056
crossref_primary_10_1016_j_neuroimage_2016_12_002
crossref_primary_10_1007_s00234_017_1962_4
crossref_primary_10_1016_j_neuroimage_2016_08_054
crossref_primary_10_1002_mrm_30038
crossref_primary_10_1002_mrm_29167
crossref_primary_10_1002_mrm_30436
crossref_primary_10_1016_j_brs_2023_10_007
crossref_primary_10_1002_mrm_26974
crossref_primary_10_1002_mrm_27822
crossref_primary_10_1002_mrm_28559
crossref_primary_10_1002_mrm_27546
crossref_primary_10_1002_mrm_28638
crossref_primary_10_1016_j_neuroimage_2017_02_029
crossref_primary_10_1371_journal_pone_0279722
crossref_primary_10_1002_mrm_26179
crossref_primary_10_1002_mrm_27784
crossref_primary_10_1016_j_neuroimage_2020_117078
crossref_primary_10_1162_imag_a_00399
crossref_primary_10_1002_mrm_25846
crossref_primary_10_1002_mrm_29608
crossref_primary_10_1016_j_neuroimage_2016_12_018
Cites_doi 10.1006/jmre.2000.2105
10.1002/mrm.20708
10.1002/mrm.21187
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1088/0031-9155/46/12/318
10.1002/mrm.23097
10.1002/mrm.20261
10.1002/mrm.1910310111
10.1002/mrm.10171
10.1002/mrm.1910320418
10.1002/mrm.1910300512
10.1002/nbm.1009
10.1016/j.neuroimage.2013.07.055
10.1118/1.596452
10.1016/0022-2364(86)90433-6
10.1002/mrm.1910010308
10.1002/1522-2594(200008)44:2<243::AID-MRM11>3.0.CO;2-L
10.1016/j.neuroimage.2012.02.077
10.1002/mrm.1910340111
10.1002/mrm.25123
10.1016/j.neuroimage.2005.01.007
10.1002/mrm.1910330311
10.1002/mrm.1910050305
10.1002/nbm.1048
10.1016/j.neuroimage.2010.11.084
10.1002/jmri.20245
10.1002/nbm.1043
10.1002/mrm.21788
10.1016/0022-2364(89)90265-5
ContentType Journal Article
Copyright 2015 Wiley Periodicals, Inc.
2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2015 Wiley Periodicals, Inc.
– notice: 2016 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
DOI 10.1002/mrm.25628
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE - Academic
Biochemistry Abstracts 1
Engineering Research Database
MEDLINE
Biochemistry Abstracts 1

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 679
ExternalDocumentID 3923831881
25809559
10_1002_mrm_25628
MRM25628
ark_67375_WNG_73TGX4R7_M
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH National Center for Research Resources
  funderid: P41‐RR14075, S10‐RR023401, S10‐RR019307, S10‐RR023043, S10‐RR019371, S10‐RR020948
– fundername: the NIH Blueprint for Neuroscience Research
  funderid: U01‐MH093765
– fundername: NIH National Institute for Biomedical Imaging and Bioengineering
  funderid: P41‐EB015896, K01‐EB011498
– fundername: NIBIB NIH HHS
  grantid: P41 EB015896
– fundername: NCRR NIH HHS
  grantid: S10-RR023401
– fundername: NCRR NIH HHS
  grantid: P41 RR014075
– fundername: NCRR NIH HHS
  grantid: S10-RR023043
– fundername: NCRR NIH HHS
  grantid: S10-RR019307
– fundername: NCRR NIH HHS
  grantid: S10 RR019307
– fundername: NIMH NIH HHS
  grantid: U01 MH093765
– fundername: NIBIB NIH HHS
  grantid: P41-EB015896
– fundername: NIMH NIH HHS
  grantid: U01-MH093765
– fundername: NCRR NIH HHS
  grantid: S10 RR019371
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
ID FETCH-LOGICAL-c5538-1de7d2c453172a164442c8cd973726f0868d60efabfe7b8d5c19f2735c144a633
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 05:30:43 EDT 2025
Fri Jul 11 14:43:42 EDT 2025
Fri Jul 25 12:19:17 EDT 2025
Fri Jul 25 12:13:26 EDT 2025
Mon Jul 21 05:49:18 EDT 2025
Tue Jul 01 01:20:58 EDT 2025
Thu Apr 24 23:03:25 EDT 2025
Wed Jan 22 17:05:47 EST 2025
Sun Sep 21 06:15:41 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords GRAPPA
high-resolution fMRI
parallel imaging
high-field fMRI
image reconstruction
Language English
License 2015 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5538-1de7d2c453172a164442c8cd973726f0868d60efabfe7b8d5c19f2735c144a633
Notes ark:/67375/WNG-73TGX4R7-M
ArticleID:MRM25628
the NIH Blueprint for Neuroscience Research - No. U01-MH093765
NIH National Center for Research Resources - No. P41-RR14075, S10-RR023401, S10-RR019307, S10-RR023043, S10-RR019371, S10-RR020948
istex:5ABF312F6DFE11D9BBA835B1AF258310151FA505
NIH National Institute for Biomedical Imaging and Bioengineering - No. P41-EB015896, K01-EB011498
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://doi.org/10.1002/mrm.25628
PMID 25809559
PQID 1757596303
PQPubID 1016391
PageCount 15
ParticipantIDs proquest_miscellaneous_1776658442
proquest_miscellaneous_1760876262
proquest_journals_2509219138
proquest_journals_1757596303
pubmed_primary_25809559
crossref_citationtrail_10_1002_mrm_25628
crossref_primary_10_1002_mrm_25628
wiley_primary_10_1002_mrm_25628_MRM25628
istex_primary_ark_67375_WNG_73TGX4R7_M
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2016
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: February 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Mansfield P. Spatial mapping of the chemical shift in NMR. Magn Reson Med 1984;1:370-386.
Guilfoyle DN, Hrabe J. Interleaved snapshot echo planar imaging of mouse brain at 7.0 T. NMR Biomed 2006;19:108-115.
De Zwart JA, van Gelderen P, Golay X, Ikonomidou VN, Duyn JH. Accelerated parallel imaging for functional imaging of the human brain. NMR Biomed 2006;19:342-351.
Triantafyllou C, Hoge RD, Krueger G, Wiggins CJ, Potthast A, Wiggins GC, Wald LL. Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 2005;26:243-250.
Butts K, Riederer SJ, Ehman RL, Thompson RM, Jack CR. Interleaved echo planar imaging on a standard MRI system. Magn Reson Med 1994;31:67-72.
Sodickson DK. Tailored SMASH image reconstructions for robust in vivo parallel MR imaging. Magn Reson Med 2000;44:243-251.
Hänicke W, Merboldt KD, Chien D, Gyngell ML, Bruhn H, Frahm J. Signal strength in subsecond FLASH magnetic resonance imaging: the dynamic approach to steady state. Med Phys 1990;17:1004-10.
Triantafyllou C, Polimeni JR, Wald LL. Physiological noise and signal-to-noise ratio in fMRI with multi-channel array coils. Neuroimage 2011;55:597-606.
Jezzard P, Balaban RS. Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med 1995;34:65-73.
Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002;47:1202-1210.
Chapman B, Turner R, Ordidge RJ, Doyle M, Cawley M, Coxon R, Glover P, Mansfield P. Real-time movie imaging from a single cardiac cycle by NMR. Magn Reson Med 1987;5:246-54.
Graedel NN, Polimeni JR, Guerin B, Gagoski B, Wald LL. An anatomically realistic temperature phantom for radiofrequency heating measurements. Magn Reson Med 2015;73:442-450.
Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962.
Wang D, Zhao T, Zhou L, Hu X. Turbo Segmented Imaging (TSI). Proc Intl Soc Mag Reson Med 2005. Abstract 2409.
Breuer F, Blaimer M, Mueller M, Heidemann R, Griswold M, Jakob P. Autocalibrated parallel imaging with GRAPPA using a single prescan as reference data. Proc Euro Soc Magn Reson Med B 2004;21:398.
Xiang Q-S, Ye FQ. Correction for geometric distortion and N/2 ghosting in EPI by phase labeling for additional coordinate encoding (PLACE). Magn Reson Med 2007;57:731-741.
Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 2012;67:1210-1224.
Bernstein MA, King KF, Zhou XJ. Handbook of MRI pulse sequences. San Diego: Academic Press; 2004.
Zha L, Lowe IJ. Optimized ultra-fast imaging sequence (OUFIS). Magn Reson Med 1995;33:377-395.
Collins CM, Liu W, Schreiber W, Yang QX, Smith MB. Central brightening due to constructive interference with, without, and despite dielectric resonance. J. Magn Reson Imaging 2005;21:192-196.
Van de Moortele P-F, Akgun C, Adriany G, Moeller S, Ritter J, Collins CM, Smith MB, Vaughan JT, Uğurbil K. B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 2005;54:1503-1518.
Merboldt KD, Finsterbusch J, Frahm J. Reducing inhomogeneity artifacts in functional MRI of human brain activation-thin sections vs gradient compensation. J Magn Reson 2000;145:184-191.
Zaitsev M, Hennig J, Speck O. Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo-planar imaging distortion correction. Magn Reson Med 2004;52:1156-1166.
Feinberg DA, Oshio K. Phase errors in multi-shot echo planar imaging. Magn Reson Med 1994;32:535-539.
Raj D, Anderson AW, Gore JC. Respiratory effects in human functional magnetic resonance imaging due to bulk susceptibility changes. Phys Med Biol 2001;46:3331-3340.
McKinnon GC. Ultrafast interleaved gradient-echo-planar imaging on a standard scanner. Magn Reson Med 1993;30:609-616.
Haase A, Frahm J, Matthaei D, Hanicke W, Merboldt K-D. FLASH imaging. Rapid NMR imaging using low flip-angle pulses. J Magn Reson 1986;67:258-266.
Wald LL. The future of acquisition speed, coverage, sensitivity, and resolution. Neuroimage 2012;62:1221-1229.
Pauly J, Nishimura D, Macovski A. A k-space analysis of small-tip-angle excitation. J Magn Reson 1989;81:43-56.
Xu J, Moeller S, Auerbach EJ, Strupp J, Smith SM, Feinberg DA, Yacoub E, Uğurbil K. Evaluation of slice accelerations using multiband echo planar imaging at 3T. Neuroimage 2013;83:991-1001.
Griswold MA, Breuer F, Blaimer M, Kannengiesser S, Heidemann RM, Mueller M, Nittka M, Jellus V, Kiefer B, Jakob PM. Autocalibrated coil sensitivity estimation for parallel imaging. NMR Biomed 2006;19:316-324.
Skare S, Newbould RD, Nordell A, Holdsworth SJ, Bammer R. An auto-calibrated, angularly continuous, two-dimensional GRAPPA kernel for propeller trajectories. Magn Reson Med 2008;60:1457-1465.
2004; 21
2012
2011
2010
2015; 73
1990; 17
1995; 34
1987; 5
2000; 44
1989; 81
2013; 83
1995; 33
2008
2011; 55
2006; 19
2005; 21
2005
1999; 42
2004
2005; 26
2001; 46
2007; 57
2002; 47
2004; 52
1984; 1
1986; 67
1993; 30
1987
2005; 54
2014
2013
2000; 145
2012; 67
2008; 60
1994; 32
2012; 62
1994; 31
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
Polimeni JR (e_1_2_7_17_1) 2013
e_1_2_7_19_1
Breuer F (e_1_2_7_38_1) 2004; 21
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
Wang D (e_1_2_7_15_1) 2005
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_29_1
Bernstein MA (e_1_2_7_18_1) 2004
Cho ZH (e_1_2_7_20_1) 1987
Polimeni JR (e_1_2_7_27_1) 2008
Bhat H (e_1_2_7_41_1) 2014
Keil B (e_1_2_7_23_1) 2010
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
Kang D (e_1_2_7_34_1) 2011
Talagala SL (e_1_2_7_8_1) 2013
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_39_1
Kang D‐H (e_1_2_7_14_1) 2012
References_xml – reference: Sodickson DK. Tailored SMASH image reconstructions for robust in vivo parallel MR imaging. Magn Reson Med 2000;44:243-251.
– reference: McKinnon GC. Ultrafast interleaved gradient-echo-planar imaging on a standard scanner. Magn Reson Med 1993;30:609-616.
– reference: Chapman B, Turner R, Ordidge RJ, Doyle M, Cawley M, Coxon R, Glover P, Mansfield P. Real-time movie imaging from a single cardiac cycle by NMR. Magn Reson Med 1987;5:246-54.
– reference: Butts K, Riederer SJ, Ehman RL, Thompson RM, Jack CR. Interleaved echo planar imaging on a standard MRI system. Magn Reson Med 1994;31:67-72.
– reference: Griswold MA, Breuer F, Blaimer M, Kannengiesser S, Heidemann RM, Mueller M, Nittka M, Jellus V, Kiefer B, Jakob PM. Autocalibrated coil sensitivity estimation for parallel imaging. NMR Biomed 2006;19:316-324.
– reference: Graedel NN, Polimeni JR, Guerin B, Gagoski B, Wald LL. An anatomically realistic temperature phantom for radiofrequency heating measurements. Magn Reson Med 2015;73:442-450.
– reference: Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002;47:1202-1210.
– reference: Breuer F, Blaimer M, Mueller M, Heidemann R, Griswold M, Jakob P. Autocalibrated parallel imaging with GRAPPA using a single prescan as reference data. Proc Euro Soc Magn Reson Med B 2004;21:398.
– reference: Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 2012;67:1210-1224.
– reference: Skare S, Newbould RD, Nordell A, Holdsworth SJ, Bammer R. An auto-calibrated, angularly continuous, two-dimensional GRAPPA kernel for propeller trajectories. Magn Reson Med 2008;60:1457-1465.
– reference: Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962.
– reference: Triantafyllou C, Hoge RD, Krueger G, Wiggins CJ, Potthast A, Wiggins GC, Wald LL. Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 2005;26:243-250.
– reference: Zha L, Lowe IJ. Optimized ultra-fast imaging sequence (OUFIS). Magn Reson Med 1995;33:377-395.
– reference: Raj D, Anderson AW, Gore JC. Respiratory effects in human functional magnetic resonance imaging due to bulk susceptibility changes. Phys Med Biol 2001;46:3331-3340.
– reference: Merboldt KD, Finsterbusch J, Frahm J. Reducing inhomogeneity artifacts in functional MRI of human brain activation-thin sections vs gradient compensation. J Magn Reson 2000;145:184-191.
– reference: Xiang Q-S, Ye FQ. Correction for geometric distortion and N/2 ghosting in EPI by phase labeling for additional coordinate encoding (PLACE). Magn Reson Med 2007;57:731-741.
– reference: Collins CM, Liu W, Schreiber W, Yang QX, Smith MB. Central brightening due to constructive interference with, without, and despite dielectric resonance. J. Magn Reson Imaging 2005;21:192-196.
– reference: Haase A, Frahm J, Matthaei D, Hanicke W, Merboldt K-D. FLASH imaging. Rapid NMR imaging using low flip-angle pulses. J Magn Reson 1986;67:258-266.
– reference: Zaitsev M, Hennig J, Speck O. Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo-planar imaging distortion correction. Magn Reson Med 2004;52:1156-1166.
– reference: Feinberg DA, Oshio K. Phase errors in multi-shot echo planar imaging. Magn Reson Med 1994;32:535-539.
– reference: Mansfield P. Spatial mapping of the chemical shift in NMR. Magn Reson Med 1984;1:370-386.
– reference: Jezzard P, Balaban RS. Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med 1995;34:65-73.
– reference: Van de Moortele P-F, Akgun C, Adriany G, Moeller S, Ritter J, Collins CM, Smith MB, Vaughan JT, Uğurbil K. B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 2005;54:1503-1518.
– reference: Wang D, Zhao T, Zhou L, Hu X. Turbo Segmented Imaging (TSI). Proc Intl Soc Mag Reson Med 2005. Abstract 2409.
– reference: Bernstein MA, King KF, Zhou XJ. Handbook of MRI pulse sequences. San Diego: Academic Press; 2004.
– reference: Triantafyllou C, Polimeni JR, Wald LL. Physiological noise and signal-to-noise ratio in fMRI with multi-channel array coils. Neuroimage 2011;55:597-606.
– reference: Guilfoyle DN, Hrabe J. Interleaved snapshot echo planar imaging of mouse brain at 7.0 T. NMR Biomed 2006;19:108-115.
– reference: Pauly J, Nishimura D, Macovski A. A k-space analysis of small-tip-angle excitation. J Magn Reson 1989;81:43-56.
– reference: De Zwart JA, van Gelderen P, Golay X, Ikonomidou VN, Duyn JH. Accelerated parallel imaging for functional imaging of the human brain. NMR Biomed 2006;19:342-351.
– reference: Xu J, Moeller S, Auerbach EJ, Strupp J, Smith SM, Feinberg DA, Yacoub E, Uğurbil K. Evaluation of slice accelerations using multiband echo planar imaging at 3T. Neuroimage 2013;83:991-1001.
– reference: Wald LL. The future of acquisition speed, coverage, sensitivity, and resolution. Neuroimage 2012;62:1221-1229.
– reference: Hänicke W, Merboldt KD, Chien D, Gyngell ML, Bruhn H, Frahm J. Signal strength in subsecond FLASH magnetic resonance imaging: the dynamic approach to steady state. Med Phys 1990;17:1004-10.
– year: 2011
– volume: 34
  start-page: 65
  year: 1995
  end-page: 73
  article-title: Correction for geometric distortion in echo planar images from B0 field variations
  publication-title: Magn Reson Med
– volume: 32
  start-page: 535
  year: 1994
  end-page: 539
  article-title: Phase errors in multi‐shot echo planar imaging
  publication-title: Magn Reson Med
– year: 1987
– volume: 67
  start-page: 258
  year: 1986
  end-page: 266
  article-title: FLASH imaging. Rapid NMR imaging using low flip‐angle pulses
  publication-title: J Magn Reson
– volume: 54
  start-page: 1503
  year: 2005
  end-page: 1518
  article-title: B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil
  publication-title: Magn Reson Med
– volume: 17
  start-page: 1004
  year: 1990
  end-page: 10
  article-title: Signal strength in subsecond FLASH magnetic resonance imaging: the dynamic approach to steady state
  publication-title: Med Phys
– volume: 81
  start-page: 43
  year: 1989
  end-page: 56
  article-title: A k‐space analysis of small‐tip‐angle excitation
  publication-title: J Magn Reson
– volume: 21
  start-page: 398
  year: 2004
  article-title: Autocalibrated parallel imaging with GRAPPA using a single prescan as reference data
  publication-title: Proc Euro Soc Magn Reson Med B
– volume: 47
  start-page: 1202
  year: 2002
  end-page: 1210
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn Reson Med
– volume: 21
  start-page: 192
  year: 2005
  end-page: 196
  article-title: Central brightening due to constructive interference with, without, and despite dielectric resonance. J
  publication-title: Magn Reson Imaging
– volume: 145
  start-page: 184
  year: 2000
  end-page: 191
  article-title: Reducing inhomogeneity artifacts in functional MRI of human brain activation‐thin sections vs gradient compensation
  publication-title: J Magn Reson
– year: 2014
– volume: 67
  start-page: 1210
  year: 2012
  end-page: 1224
  article-title: Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty
  publication-title: Magn Reson Med
– year: 2010
– year: 2012
– volume: 31
  start-page: 67
  year: 1994
  end-page: 72
  article-title: Interleaved echo planar imaging on a standard MRI system
  publication-title: Magn Reson Med
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
– volume: 30
  start-page: 609
  year: 1993
  end-page: 616
  article-title: Ultrafast interleaved gradient‐echo‐planar imaging on a standard scanner
  publication-title: Magn Reson Med
– volume: 33
  start-page: 377
  year: 1995
  end-page: 395
  article-title: Optimized ultra‐fast imaging sequence (OUFIS)
  publication-title: Magn Reson Med
– year: 2005
  article-title: Turbo Segmented Imaging (TSI)
  publication-title: Proc Intl Soc Mag Reson Med
– volume: 1
  start-page: 370
  year: 1984
  end-page: 386
  article-title: Spatial mapping of the chemical shift in NMR
  publication-title: Magn Reson Med
– volume: 19
  start-page: 316
  year: 2006
  end-page: 324
  article-title: Autocalibrated coil sensitivity estimation for parallel imaging
  publication-title: NMR Biomed
– volume: 62
  start-page: 1221
  year: 2012
  end-page: 1229
  article-title: The future of acquisition speed, coverage, sensitivity, and resolution
  publication-title: Neuroimage
– year: 2008
– volume: 60
  start-page: 1457
  year: 2008
  end-page: 1465
  article-title: An auto‐calibrated, angularly continuous, two‐dimensional GRAPPA kernel for propeller trajectories
  publication-title: Magn Reson Med
– volume: 19
  start-page: 108
  year: 2006
  end-page: 115
  article-title: Interleaved snapshot echo planar imaging of mouse brain at 7.0 T
  publication-title: NMR Biomed
– year: 2004
– volume: 44
  start-page: 243
  year: 2000
  end-page: 251
  article-title: Tailored SMASH image reconstructions for robust in vivo parallel MR imaging
  publication-title: Magn Reson Med
– volume: 19
  start-page: 342
  year: 2006
  end-page: 351
  article-title: Accelerated parallel imaging for functional imaging of the human brain
  publication-title: NMR Biomed
– volume: 52
  start-page: 1156
  year: 2004
  end-page: 1166
  article-title: Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo‐planar imaging distortion correction
  publication-title: Magn Reson Med
– volume: 26
  start-page: 243
  year: 2005
  end-page: 250
  article-title: Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters
  publication-title: Neuroimage
– volume: 55
  start-page: 597
  year: 2011
  end-page: 606
  article-title: Physiological noise and signal‐to‐noise ratio in fMRI with multi‐channel array coils
  publication-title: Neuroimage
– volume: 73
  start-page: 442
  year: 2015
  end-page: 450
  article-title: An anatomically realistic temperature phantom for radiofrequency heating measurements
  publication-title: Magn Reson Med
– volume: 5
  start-page: 246
  year: 1987
  end-page: 54
  article-title: Real‐time movie imaging from a single cardiac cycle by NMR
  publication-title: Magn Reson Med
– volume: 57
  start-page: 731
  year: 2007
  end-page: 741
  article-title: Correction for geometric distortion and N/2 ghosting in EPI by phase labeling for additional coordinate encoding (PLACE)
  publication-title: Magn Reson Med
– year: 2013
– volume: 46
  start-page: 3331
  year: 2001
  end-page: 3340
  article-title: Respiratory effects in human functional magnetic resonance imaging due to bulk susceptibility changes
  publication-title: Phys Med Biol
– volume: 83
  start-page: 991
  year: 2013
  end-page: 1001
  article-title: Evaluation of slice accelerations using multiband echo planar imaging at 3T
  publication-title: Neuroimage
– ident: e_1_2_7_39_1
  doi: 10.1006/jmre.2000.2105
– volume-title: Proceedings of the 18th Annual Meeting of ISMRM
  year: 2010
  ident: e_1_2_7_23_1
– ident: e_1_2_7_33_1
  doi: 10.1002/mrm.20708
– ident: e_1_2_7_11_1
  doi: 10.1002/mrm.21187
– ident: e_1_2_7_29_1
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– ident: e_1_2_7_26_1
  doi: 10.1088/0031-9155/46/12/318
– ident: e_1_2_7_28_1
  doi: 10.1002/mrm.23097
– volume-title: Proceedings of the 22nd Annual Meeting of ISMRM
  year: 2014
  ident: e_1_2_7_41_1
– ident: e_1_2_7_10_1
  doi: 10.1002/mrm.20261
– ident: e_1_2_7_21_1
  doi: 10.1002/mrm.1910310111
– volume-title: Handbook of MRI pulse sequences
  year: 2004
  ident: e_1_2_7_18_1
– volume-title: Proceedings of the 16th Annual Meeting of ISMRM
  year: 2008
  ident: e_1_2_7_27_1
– volume-title: Proceedings of the 19th Annual Meeting of ISMRM
  year: 2011
  ident: e_1_2_7_34_1
– ident: e_1_2_7_3_1
  doi: 10.1002/mrm.10171
– ident: e_1_2_7_19_1
  doi: 10.1002/mrm.1910320418
– ident: e_1_2_7_22_1
  doi: 10.1002/mrm.1910300512
– ident: e_1_2_7_13_1
  doi: 10.1002/nbm.1009
– ident: e_1_2_7_40_1
  doi: 10.1016/j.neuroimage.2013.07.055
– ident: e_1_2_7_36_1
  doi: 10.1118/1.596452
– volume-title: Proceedings of the 6th Annual Meeting of SMRM
  year: 1987
  ident: e_1_2_7_20_1
– ident: e_1_2_7_7_1
  doi: 10.1016/0022-2364(86)90433-6
– ident: e_1_2_7_12_1
  doi: 10.1002/mrm.1910010308
– ident: e_1_2_7_31_1
  doi: 10.1002/1522-2594(200008)44:2<243::AID-MRM11>3.0.CO;2-L
– volume: 21
  start-page: 398
  year: 2004
  ident: e_1_2_7_38_1
  article-title: Autocalibrated parallel imaging with GRAPPA using a single prescan as reference data
  publication-title: Proc Euro Soc Magn Reson Med B
– volume-title: Proceedings of the 21st Annual Meeting of ISMRM
  year: 2013
  ident: e_1_2_7_8_1
– volume-title: Proceedings of the 21st Annual Meeting of ISMRM
  year: 2013
  ident: e_1_2_7_17_1
– ident: e_1_2_7_6_1
  doi: 10.1016/j.neuroimage.2012.02.077
– volume-title: Proceedings of the 20th Annual Meeting of ISMRM
  year: 2012
  ident: e_1_2_7_14_1
– ident: e_1_2_7_9_1
  doi: 10.1002/mrm.1910340111
– ident: e_1_2_7_24_1
  doi: 10.1002/mrm.25123
– ident: e_1_2_7_30_1
  doi: 10.1016/j.neuroimage.2005.01.007
– year: 2005
  ident: e_1_2_7_15_1
  article-title: Turbo Segmented Imaging (TSI)
  publication-title: Proc Intl Soc Mag Reson Med
– ident: e_1_2_7_37_1
  doi: 10.1002/mrm.1910330311
– ident: e_1_2_7_16_1
  doi: 10.1002/mrm.1910050305
– ident: e_1_2_7_4_1
  doi: 10.1002/nbm.1048
– ident: e_1_2_7_25_1
  doi: 10.1016/j.neuroimage.2010.11.084
– ident: e_1_2_7_32_1
  doi: 10.1002/jmri.20245
– ident: e_1_2_7_2_1
  doi: 10.1002/nbm.1043
– ident: e_1_2_7_5_1
  doi: 10.1002/mrm.21788
– ident: e_1_2_7_35_1
  doi: 10.1016/0022-2364(89)90265-5
SSID ssj0009974
Score 2.4912074
Snippet Purpose To reduce the sensitivity of echo‐planar imaging (EPI) auto‐calibration signal (ACS) data to patient respiration and motion to improve the image...
To reduce the sensitivity of echo-planar imaging (EPI) auto-calibration signal (ACS) data to patient respiration and motion to improve the image quality and...
Purpose To reduce the sensitivity of echo-planar imaging (EPI) auto-calibration signal (ACS) data to patient respiration and motion to improve the image...
PurposeTo reduce the sensitivity of echo‐planar imaging (EPI) auto‐calibration signal (ACS) data to patient respiration and motion to improve the image quality...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 665
SubjectTerms Adult
Brain - anatomy & histology
Calibration
Data acquisition
Echo-Planar Imaging - methods
Female
GRAPPA
Healthy Volunteers
high-field fMRI
high-resolution fMRI
Humans
Image Enhancement - methods
Image processing
Image Processing, Computer-Assisted - methods
Image quality
image reconstruction
Male
Middle Aged
Motion
parallel imaging
Phantoms, Imaging
Respiration
Segments
Sensitivity
Signal quality
Signal-To-Noise Ratio
Title Reducing sensitivity losses due to respiration and motion in accelerated echo planar imaging by reordering the autocalibration data acquisition
URI https://api.istex.fr/ark:/67375/WNG-73TGX4R7-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25628
https://www.ncbi.nlm.nih.gov/pubmed/25809559
https://www.proquest.com/docview/1757596303
https://www.proquest.com/docview/2509219138
https://www.proquest.com/docview/1760876262
https://www.proquest.com/docview/1776658442
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamIRAvXAaMwkAGIcRLutZxYls8IWCbkLKHahN9QIp8i1StTUeaSMCf4C9zjnOZhgpCPCVRTtzYOZfP9fF3CHklPSYtwuxEaiMiroWOlOUiSpxWRco0FxY3OGen6ck5_zRP5jvkbb8XpuWHGP5wQ8sI_hoNXJvN4RVp6KpajSFeM9zoO41T5M3_MLuijlKqZWAWHP2M4j2r0IQdDk9ei0U3cFi_bQOa13FrCDxHd8mX_pXbfJOLcVObsf3xG5vjf_bpHrnTAVL6rtWg-2THl3vkVtYtue-RmyFH1G4ekJ8zpHmFUEc3mPXelp2gyzUuG1PXeFqvadWt3MPXprp0tC0SRBdwZS1EOCSmcNSDz6WXS13qii5WoU4SNd_h4UAEilcAS6luagy02KHQCCazQjNfm0WbZ_aQnB99PHt_EnX1HCKboF-dOi8csxzMXjAN8zTOmZXWKSyVkxYwuZIunfhCm8ILI11ip6oAeAVHznUax4_Ibrku_WNCjTZKegnNIZ-_nRhwTZ556ZiTyhRyRN70Xza3Hdk51txY5i1NM8thqPMw1CPychC9bBk-tgm9DuoxSOjqAlPiRJJ_Pj3ORXx2POczkWcjctDrT955g00OEE0k4Okm8dbbgEIVBI5pDD_zYrgNZo5rN7r06wabSJE8kKXsbzIiRUDJQWa_Vd3hfVkiA9kgDExQwD93Nc9mWTh58u-iT8ltAJJdNvsB2a2rxj8DsFab58EqfwGTMTvg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWXfG48FhehQUMQohLuq3rxI7EBSF2C2x6qLqiF2Q5tiNV26ZLmkjAn-AvM-M8VosKQpySKBMndsYznzOTbwh5KR0mLcLqROpUBFwLHcSGiyC0Os4iprkw-INzMonGp_zjPJzvkDftvzA1P0T3wQ1nhrfXOMHxg_ThBWvoqlj1wWEzeYXscQAaPkg7vSCPiuOag1lwtDQxb3mFBuywu_SSN9rDgf22DWpeRq7e9RzdIl_ah64zTs76VZn2zY_f-Bz_t1e3yc0Gk9K3tRLdITsu3yfXkibqvk-u-jRRs7lLfk6R6RW8Hd1g4ntdeYIu1xg5prZytFzTognewwunOre0rhNEF3BkDDg55Kaw1IHZpedLneuCLla-VBJNv8PFngsUjwCZUl2V6GuxR74RzGeFZr5WizrV7B45PXo_ezcOmpIOgQnRtA6tE5YZDjNfMA1LNc6ZkcbGWC0nymB9JW00cJlOMydSaUMzjDNAWLDlXEej0X2ym69z95DQVKexdBKaQ0p_M0jBOjnmpGVWxmkme-R1-2qVafjOsezGUtVMzUzBUCs_1D3yohM9r0k-tgm98vrRSejiDLPiRKg-T46VGM2O53wqVNIjB60CqcYgbBSgNBGCsRuMtp4GIBqD7xiO4DbPu9Mw0zF8o3O3rrCJCPkDWcT-JiMixJQcZB7Uuts9Lwul5xuEgfEa-OeuqmSa-J1H_y76jFwfz5ITdfJh8ukxuQG4skluPyC7ZVG5J4DdyvSpn6K_ADGgP_4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJiZeBoxbYYBBCPHSrnWd2BFPCOjGJRWqNtGHSZZvkaq1adcmEvAn-Muc46SZhgpCPCVRTpzYOZfP8cl3CHkhPSYtwuxEaiPaXAvdTiwX7cjpJIuZ5sLiD87pMD4-5R_H0XiLvF7_C1PxQzQf3NAygr9GA1-47PCSNHS2nHUgXjN5jezwGCIZIqLRJXdUklQUzIKjo0n4mlaoyw6bS68Eox0c12-bkOZV4Boiz-AmOVs_c5Vwct4pC9OxP36jc_zPTt0iezUipW8qFbpNtny-T3bTes19n1wPSaJ2dYf8HCHPK8Q6usK096ruBJ3Ocd2YutLTYk6X9dI9vG6qc0erKkF0AkfWQohDZgpHPThdupjqXC_pZBYKJVHzHS4OTKB4BLiU6rLASIsdCo1gNis0c1FOqkSzu-R08P7k7XG7LujQthE61p7zwjHLwe4F0zBR45xZaV2CtXLiDGZX0sVdn2mTeWGki2wvyQBfwZZzHff798h2Ps_9A0KNNon0EppDQn_bNeCbPPPSMScTk8kWebV-s8rWbOdYdGOqKp5mpmCoVRjqFnneiC4qio9NQi-DejQSenmOOXEiUl-HR0r0T47GfCRU2iIHa_1RtTtYKcBoIgJX1-1vPA0wNIHI0evDbZ41p8HOcfFG535eYhMxsgeymP1NRsSIKDnI3K9Ut3leFsnANggDExTwz11V6SgNOw__XfQp2f3ybqA-fxh-ekRuAKisM9sPyHaxLP1jAG6FeRIM9BdE1T6t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reducing+sensitivity+losses+due+to+respiration+and+motion+in+accelerated+echo+planar+imaging+by+reordering+the+autocalibration+data+acquisition&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Polimeni%2C+Jonathan+R&rft.au=Bhat%2C+Himanshu&rft.au=Witzel%2C+Thomas&rft.au=Benner%2C+Thomas&rft.date=2016-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=75&rft.issue=2&rft.spage=665&rft.epage=679&rft_id=info:doi/10.1002%2Fmrm.25628&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon