Transgenic system for conditional induction and rescue of chronic myocardial hibernation provides insights into genomic programs of hibernation
A key energy-saving adaptation to chronic hypoxia that enables cardiomyocytes to withstand severe ischemic insults is hibernation, i.e., a reversible arrest of contractile function. Whereas hibernating cardiomyocytes represent the critical reserve of dysfunctional cells that can be potentially rescu...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 105; no. 1; pp. 282 - 287 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
08.01.2008
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.0707778105 |
Cover
Abstract | A key energy-saving adaptation to chronic hypoxia that enables cardiomyocytes to withstand severe ischemic insults is hibernation, i.e., a reversible arrest of contractile function. Whereas hibernating cardiomyocytes represent the critical reserve of dysfunctional cells that can be potentially rescued, a lack of a suitable animal model has hampered insights on this medically important condition. We developed a transgenic mouse system for conditional induction of long-term hibernation and a system to rescue hibernating cardiomyocytes at will. Via myocardium-specific induction (and, in turn, deinduction) of a VEGF-sequestering soluble receptor, we show that VEGF is indispensable for adjusting the coronary vasculature to match increased oxygen consumption and exploit this finding to generate a hypoperfused heart. Importantly, ensuing ischemia is tunable to a level at which large cohorts of cardiomyocytes are driven to enter a hibernation mode, without cardiac cell death. Relieving the VEGF blockade even months later resulted in rapid revascularization and full recovery of contractile function. Furthermore, we show that left ventricular remodeling associated with hibernation is also fully reversible. The unique opportunity to uncouple hibernation from other ischemic heart phenotypes (e.g., infarction) was used to determine the genetic program of hibernation; uncovering hypoxia-inducible factor target genes associated with metabolic adjustments and induced expression of several cardioprotective genes. Autophagy, specifically self-digestion of mitochondria, was identified as a key prosurvival mechanism in hibernating cardiomyocytes. This system may lend itself for examining the potential utility of treatments to rescue dysfunctional cardiomyocytes and reverse maladaptive remodeling. |
---|---|
AbstractList | A key energy-saving adaptation to chronic hypoxia that enables cardiomyocytes to withstand severe ischemic insults is hibernation, i.e., a reversible arrest of contractile function. Whereas hibernating cardiomyocytes represent the critical reserve of dysfunctional cells that can be potentially rescued, a lack of a suitable animal model has hampered insights on this medically important condition. We developed a transgenic mouse system for conditional induction of long-term hibernation and a system to rescue hibernating cardiomyocytes at will. Via myocardium-specific induction (and, in turn, deinduction) of a VEGF-sequestering soluble receptor, we show that VEGF is indispensable for adjusting the coronary vasculature to match increased oxygen consumption and exploit this finding to generate a hypoperfused heart. Importantly, ensuing ischemia is tunable to a level at which large cohorts of cardiomyocytes are driven to enter a hibernation mode, without cardiac cell death. Relieving the VEGF blockade even months later resulted in rapid revascularization and full recovery of contractile function. Furthermore, we show that left ventricular remodeling associated with hibernation is also fully reversible. The unique opportunity to uncouple hibernation from other ischemic heart phenotypes (e.g., infarction) was used to determine the genetic program of hibernation; uncovering hypoxia-inducible factor target genes associated with metabolic adjustments and induced expression of several cardioprotective genes. Autophagy, specifically self-digestion of mitochondria, was identified as a key prosurvival mechanism in hibernating cardiomyocytes. This system may lend itself for examining the potential utility of treatments to rescue dysfunctional cardiomyocytes and reverse maladaptive remodeling. A key energy-saving adaptation to chronic hypoxia that enables cardiomyocytes to withstand severe ischemic insults is hibernation, i.e., a reversible arrest of contractile function. Whereas hibernating cardiomyocytes represent the critical reserve of dysfunctional cells that can be potentially rescued, a lack of a suitable animal model has hampered insights on this medically important condition. We developed a transgenic mouse system for conditional induction of long-term hibernation and a system to rescue hibernating cardiomyocytes at will. Via myocardium-specific induction (and, in turn, deinduction) of a VEGF-sequestering soluble receptor, we show that VEGF is indispensable for adjusting the coronary vasculature to match increased oxygen consumption and exploit this finding to generate a hypoperfused heart. Importantly, ensuing ischemia is tunable to a level at which large cohorts of cardiomyocytes are driven to enter a hibernation mode, without cardiac cell death. Relieving the VEGF blockade even months later resulted in rapid revascularization and full recovery of contractile function. Furthermore, we show that left ventricular remodeling associated with hibernation is also fully reversible. The unique opportunity to uncouple hibernation from other ischemic heart phenotypes (e.g., infarction) was used to determine the genetic program of hibernation; uncovering hypoxia-inducible factor target genes associated with metabolic adjustments and induced expression of several cardioprotective genes. Autophagy, specifically self-digestion of mitochondria, was identified as a key prosurvival mechanism in hibernating cardiomyocytes. This system may lend itself for examining the potential utility of treatments to rescue dysfunctional cardiomyocytes and reverse maladaptive remodeling. hypoxia ischemia remodeling VEGF heart A key energy-saving adaptation to chronic hypoxia that enables cardiomyocytes to withstand severe ischemic insults is hibernation, i.e., a reversible arrest of contractile function. Whereas hibernating cardiomyocytes represent the critical reserve of dysfunctional cells that can be potentially rescued, a lack of a suitable animal model has hampered insights on this medically important condition. We developed a transgenic mouse system for conditional induction of long-term hibernation and a system to rescue hibernating cardiomyocytes at will. Via myocardium-specific induction (and, in turn, deinduction) of a VEGF-sequestering soluble receptor, we show that VEGF is indispensable for adjusting the coronary vasculature to match increased oxygen consumption and exploit this finding to generate a hypoperfused heart. Importantly, ensuing ischemia is tunable to a level at which large cohorts of cardiomyocytes are driven to enter a hibernation mode, without cardiac cell death. Relieving the VEGF blockade even months later resulted in rapid revascularization and full recovery of contractile function. Furthermore, we show that left ventricular remodeling associated with hibernation is also fully reversible. The unique opportunity to uncouple hibernation from other ischemic heart phenotypes (e.g., infarction) was used to determine the genetic program of hibernation; uncovering hypoxia-inducible factor target genes associated with metabolic adjustments and induced expression of several cardioprotective genes. Autophagy, specifically self-digestion of mitochondria, was identified as a key prosurvival mechanism in hibernating cardiomyocytes. This system may lend itself for examining the potential utility of treatments to rescue dysfunctional cardiomyocytes and reverse maladaptive remodeling.A key energy-saving adaptation to chronic hypoxia that enables cardiomyocytes to withstand severe ischemic insults is hibernation, i.e., a reversible arrest of contractile function. Whereas hibernating cardiomyocytes represent the critical reserve of dysfunctional cells that can be potentially rescued, a lack of a suitable animal model has hampered insights on this medically important condition. We developed a transgenic mouse system for conditional induction of long-term hibernation and a system to rescue hibernating cardiomyocytes at will. Via myocardium-specific induction (and, in turn, deinduction) of a VEGF-sequestering soluble receptor, we show that VEGF is indispensable for adjusting the coronary vasculature to match increased oxygen consumption and exploit this finding to generate a hypoperfused heart. Importantly, ensuing ischemia is tunable to a level at which large cohorts of cardiomyocytes are driven to enter a hibernation mode, without cardiac cell death. Relieving the VEGF blockade even months later resulted in rapid revascularization and full recovery of contractile function. Furthermore, we show that left ventricular remodeling associated with hibernation is also fully reversible. The unique opportunity to uncouple hibernation from other ischemic heart phenotypes (e.g., infarction) was used to determine the genetic program of hibernation; uncovering hypoxia-inducible factor target genes associated with metabolic adjustments and induced expression of several cardioprotective genes. Autophagy, specifically self-digestion of mitochondria, was identified as a key prosurvival mechanism in hibernating cardiomyocytes. This system may lend itself for examining the potential utility of treatments to rescue dysfunctional cardiomyocytes and reverse maladaptive remodeling. |
Author | Djonov, Valentin Gordon, Oren Rosenberger, Christian Keshet, Eli Itin, Ahuva Gilon, Dan May, Dalit Lazarus, Alon |
Author_xml | – sequence: 1 fullname: May, Dalit – sequence: 2 fullname: Gilon, Dan – sequence: 3 fullname: Djonov, Valentin – sequence: 4 fullname: Itin, Ahuva – sequence: 5 fullname: Lazarus, Alon – sequence: 6 fullname: Gordon, Oren – sequence: 7 fullname: Rosenberger, Christian – sequence: 8 fullname: Keshet, Eli |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18162550$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkkFv1DAQhS1URLeFMycgJ25px44dJxekqoIWqRIH2rPlOPauq8RebKdifwV_Gafb7hYk6MmW3vfejD1zhA6cdxqhtxhOMPDqdO1kPAEOnPMGA3uBFhhaXNa0hQO0ACC8bCihh-goxlsAaFkDr9AhbnBNGIMF-nUdpItL7awq4iYmPRbGh0J519tkvZNDYV0_qfleSNcXQUc16cKbQq2Cn23jxisZepvRle10cPIeXgd_Z3sdsz_a5SrNl-SLXMqP2ZXlZZBjnJOe2F6jl0YOUb95OI_RzZfP1-eX5dW3i6_nZ1elYoyk0tQ9x4BNRSWjbVv1nLCKcaMVAGNGqQZTaSStZAcad31HtKwJ14ArLInpqmP0aZu7nrpR90q7FOQg1sGOMmyEl1b8qTi7Ekt_JwghlADJAR8fAoL_MemYxGij0sMgnfZTFBxwmzn2LEg5w1UL9FmQACNtXc-J75_2vmv6caoZYFtABR9j0EYom-6_Nz_FDgKDmLdHzNsj9tuTfad_-XbR_3Q89jwLe5oJLEhDhJmGIemfKYPv_gfu9duYfNgBhFGWC8-FPmx1I72Qy2CjuPlO8jgBGsoYrarff4v2Kw |
CitedBy_id | crossref_primary_10_1016_j_ahjo_2024_100374 crossref_primary_10_1161_ATVBAHA_112_248674 crossref_primary_10_1086_679702 crossref_primary_10_1086_679704 crossref_primary_10_3389_fcvm_2019_00020 crossref_primary_10_1371_journal_pone_0092869 crossref_primary_10_1681_ASN_2020111579 crossref_primary_10_1161_CIRCULATIONAHA_115_018347 crossref_primary_10_1242_dev_060723 crossref_primary_10_1038_s42003_023_05547_x crossref_primary_10_1161_CIRCULATIONAHA_109_922427 crossref_primary_10_1093_ndt_gfu043 crossref_primary_10_1111_j_1464_410X_2012_11134_x crossref_primary_10_1242_dev_039636 crossref_primary_10_1161_CIRCULATIONAHA_118_033631 crossref_primary_10_1016_j_tcm_2012_09_008 crossref_primary_10_1126_science_abc8479 crossref_primary_10_1155_2015_138148 crossref_primary_10_1016_j_cardfail_2016_04_008 crossref_primary_10_1161_RES_0000000000000473 crossref_primary_10_1016_j_bbamcr_2008_12_011 crossref_primary_10_1093_cvr_cvs346 crossref_primary_10_1007_s11936_014_0335_0 crossref_primary_10_1161_CIRCRESAHA_117_312586 crossref_primary_10_1165_rcmb_2010_0412OC crossref_primary_10_1038_cdd_2008_163 crossref_primary_10_1016_j_diff_2012_04_002 crossref_primary_10_1016_j_lungcan_2020_10_021 crossref_primary_10_1080_14737140_2024_2357814 crossref_primary_10_1161_CIRCULATIONAHA_108_847731 crossref_primary_10_1161_CIR_0000000000000641 crossref_primary_10_1016_j_jacc_2013_08_1647 crossref_primary_10_1042_CS20200305 crossref_primary_10_24884_1682_6655_2019_18_3_9_15 crossref_primary_10_1186_s13395_016_0114_6 crossref_primary_10_1161_CIRCRESAHA_109_206920 crossref_primary_10_1016_j_isci_2025_111895 crossref_primary_10_1177_1078155215585189 crossref_primary_10_1016_j_cjca_2017_06_012 crossref_primary_10_1007_s00109_008_0364_9 crossref_primary_10_1126_scitranslmed_3005066 crossref_primary_10_1371_journal_pone_0021478 crossref_primary_10_1097_CRD_0b013e31826287f6 crossref_primary_10_1007_s10741_016_9526_y crossref_primary_10_1177_1074248410370327 crossref_primary_10_3390_jcm8020267 crossref_primary_10_3892_etm_2019_7743 crossref_primary_10_1016_j_cmet_2008_10_001 crossref_primary_10_1089_ten_tea_2009_0721 crossref_primary_10_1073_pnas_1007640108 crossref_primary_10_1161_CIRCRESAHA_113_300218 crossref_primary_10_1093_cvr_cvw101 crossref_primary_10_1161_CIRCULATIONAHA_110_957332 crossref_primary_10_1172_JCI80369 crossref_primary_10_1161_CIRCIMAGING_113_000828 crossref_primary_10_1189_jlb_0910505 crossref_primary_10_1038_nrd2761 crossref_primary_10_1111_apha_12613 crossref_primary_10_1016_j_bbabio_2008_05_001 crossref_primary_10_4103_2045_8932_109957 crossref_primary_10_1093_eurjhf_hfq213 crossref_primary_10_1002_ccd_30365 crossref_primary_10_1021_mp400178m crossref_primary_10_1186_1475_2840_10_59 crossref_primary_10_1002_phy2_143 crossref_primary_10_1089_ars_2016_6930 crossref_primary_10_1073_pnas_1605431113 crossref_primary_10_1038_nature11040 crossref_primary_10_1016_j_ejphar_2024_176969 crossref_primary_10_1016_j_yjmcc_2011_02_010 crossref_primary_10_1161_CIRCHEARTFAILURE_113_000912 crossref_primary_10_1016_j_ahj_2010_09_025 crossref_primary_10_1172_JCI79401 crossref_primary_10_1161_CIRCRESAHA_114_303452 crossref_primary_10_1038_s41569_022_00698_6 crossref_primary_10_1126_scitranslmed_3006490 crossref_primary_10_1016_j_jconrel_2014_07_041 crossref_primary_10_1371_journal_pone_0151396 crossref_primary_10_1097_MD_0000000000037606 crossref_primary_10_1161_CIRCRESAHA_115_303829 crossref_primary_10_14814_phy2_12340 crossref_primary_10_1002_jcp_21445 crossref_primary_10_1242_dev_066548 crossref_primary_10_1161_CIRCULATIONAHA_115_010484 crossref_primary_10_1139_Y09_011 crossref_primary_10_1002_pbc_25036 crossref_primary_10_1093_cvr_cvq256 crossref_primary_10_1371_journal_pone_0165545 crossref_primary_10_1007_s00395_015_0487_4 crossref_primary_10_1161_JAHA_118_010025 crossref_primary_10_1056_NEJMc1108849 crossref_primary_10_1186_bcr3142 crossref_primary_10_1007_s00125_017_4243_1 crossref_primary_10_1161_RES_0000000000000054 crossref_primary_10_2337_db12_1827 crossref_primary_10_1093_cvr_cvr358 crossref_primary_10_1128_JVI_00001_11 |
Cites_doi | 10.1016/j.tem.2005.10.007 10.1172/JCI24682 10.1016/j.yjmcc.2004.11.007 10.1073/pnas.0506843102 10.1038/sj.embor.7400598 10.1016/S0735-1097(99)00630-0 10.1182/blood-2005-05-2047 10.1016/j.tcm.2005.04.006 10.1172/JCI24144 10.1073/pnas.93.6.2576 10.1136/hrt.2005.071233 10.1016/S0002-9149(00)00790-6 10.1136/jcp.2003.015032 10.1161/01.RES.79.4.691 10.1093/emboj/21.8.1939 10.1016/S0006-3495(03)74585-8 10.1161/hh1101.091191 10.1161/01.HYP.0000215207.54689.31 10.1172/JCI26390 10.1007/s10456-006-9055-8 10.1161/01.CIR.96.9.2920 10.1038/nm1574 10.1016/S0046-8177(79)80113-6 10.1016/j.jacc.2005.11.038 10.1161/01.RES.0000138301.42713.18 10.1007/s00424-004-1241-1 10.1074/jbc.M508744200 10.1161/01.RES.86.3.286 10.1073/pnas.091415198 10.1152/ajpheart.01109.2004 |
ContentType | Journal Article |
Copyright | Copyright 2008 The National Academy of Sciences of the United States of America 2007 by The National Academy of Sciences of the USA 2007 |
Copyright_xml | – notice: Copyright 2008 The National Academy of Sciences of the United States of America – notice: 2007 by The National Academy of Sciences of the USA 2007 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0707778105 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic MEDLINE AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 287 |
ExternalDocumentID | PMC2224202 18162550 10_1073_pnas_0707778105 105_1_282 25451075 US201300845543 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN 7QO 8FD FR3 P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c552t-f6d7101f34a54993d725357fec0055fcc814afa43ab0e1bdb2ea627e0131a2fb3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:31:02 EDT 2025 Sun Aug 24 04:08:39 EDT 2025 Fri Sep 05 03:22:33 EDT 2025 Thu Sep 04 21:34:18 EDT 2025 Wed Feb 19 01:48:23 EST 2025 Tue Jul 01 02:38:51 EDT 2025 Thu Apr 24 23:07:21 EDT 2025 Wed Nov 11 00:29:14 EST 2020 Thu May 30 08:49:34 EDT 2019 Thu May 29 08:42:54 EDT 2025 Wed Dec 27 19:22:21 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c552t-f6d7101f34a54993d725357fec0055fcc814afa43ab0e1bdb2ea627e0131a2fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by Napoleone Ferrara, Genentech, Inc., South San Francisco, CA, and approved November 9, 2007 Author contributions: D.M., D.G., V.D., A.I., A.L., O.G., and C.R. performed research; and E.K. wrote the paper. |
OpenAccessLink | http://doi.org/10.1073/pnas.0707778105 |
PMID | 18162550 |
PQID | 20529665 |
PQPubID | 23462 |
PageCount | 6 |
ParticipantIDs | pubmed_primary_18162550 proquest_miscellaneous_20529665 proquest_miscellaneous_70192025 proquest_miscellaneous_47513904 pnas_primary_105_1_282 jstor_primary_25451075 fao_agris_US201300845543 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2224202 pnas_primary_105_1_282_fulltext crossref_citationtrail_10_1073_pnas_0707778105 crossref_primary_10_1073_pnas_0707778105 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-01-08 |
PublicationDateYYYYMMDD | 2008-01-08 |
PublicationDate_xml | – month: 01 year: 2008 text: 2008-01-08 day: 08 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2008 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 16269246 - Trends Endocrinol Metab. 2005 Dec;16(10):469-77 10856388 - Am J Cardiol. 2000 Jun 15;85(12):1432-9 8637916 - Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2576-81 16075055 - J Clin Invest. 2005 Aug;115(8):2108-18 10716457 - J Am Coll Cardiol. 2000 Mar 1;35(3):569-82 16174725 - Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13807-12 17109193 - Angiogenesis. 2006;9(4):225-30; discussion 231 16039970 - Trends Cardiovasc Med. 2005 Apr;15(3):101-10 10679480 - Circ Res. 2000 Feb 18;86(3):286-92 17450150 - Nat Med. 2007 May;13(5):619-24 527966 - Hum Pathol. 1979 Nov;10(6):695-705 15623420 - J Mol Cell Cardiol. 2005 Jan;38(1):35-45 16698841 - Heart. 2006 Jun;92(6):843-9 15452150 - J Clin Pathol. 2004 Oct;57(10):1009-14 15765135 - J Clin Invest. 2005 Mar;115(3):538-46 16170200 - J Biol Chem. 2005 Nov 18;280(46):38464-70 15563526 - Am J Physiol Heart Circ Physiol. 2005 Mar;288(3):H984-99 11953313 - EMBO J. 2002 Apr 15;21(8):1939-47 16189273 - Blood. 2006 Jan 15;107(2):550-7 12944270 - Biophys J. 2003 Sep;85(3):1525-37 16391536 - EMBO Rep. 2006 Jan;7(1):41-5 14762718 - Pflugers Arch. 2004 May;448(2):175-80 16567591 - Hypertension. 2006 May;47(5):887-93 16200202 - J Clin Invest. 2005 Oct;115(10):2679-88 8831492 - Circ Res. 1996 Oct;79(4):691-7 11331753 - Proc Natl Acad Sci U S A. 2001 May 8;98(10):5780-5 9386158 - Circulation. 1997 Nov 4;96(9):2920-31 15242971 - Circ Res. 2004 Aug 20;95(4):433-40 16516080 - J Am Coll Cardiol. 2006 Mar 7;47(5):978-80 11397779 - Circ Res. 2001 Jun 8;88(11):1135-41 |
References_xml | – ident: e_1_3_3_12_2 doi: 10.1016/j.tem.2005.10.007 – ident: e_1_3_3_26_2 doi: 10.1172/JCI24682 – ident: e_1_3_3_14_2 doi: 10.1016/j.yjmcc.2004.11.007 – ident: e_1_3_3_23_2 doi: 10.1073/pnas.0506843102 – ident: e_1_3_3_10_2 doi: 10.1038/sj.embor.7400598 – ident: e_1_3_3_3_2 doi: 10.1016/S0735-1097(99)00630-0 – ident: e_1_3_3_17_2 doi: 10.1182/blood-2005-05-2047 – ident: e_1_3_3_2_2 doi: 10.1016/j.tcm.2005.04.006 – ident: e_1_3_3_7_2 doi: 10.1172/JCI24144 – ident: e_1_3_3_16_2 doi: 10.1073/pnas.93.6.2576 – ident: e_1_3_3_13_2 doi: 10.1136/hrt.2005.071233 – ident: e_1_3_3_19_2 doi: 10.1016/S0002-9149(00)00790-6 – ident: e_1_3_3_5_2 doi: 10.1136/jcp.2003.015032 – ident: e_1_3_3_28_2 doi: 10.1161/01.RES.79.4.691 – ident: e_1_3_3_29_2 doi: 10.1093/emboj/21.8.1939 – ident: e_1_3_3_11_2 doi: 10.1016/S0006-3495(03)74585-8 – ident: e_1_3_3_4_2 doi: 10.1161/hh1101.091191 – ident: e_1_3_3_25_2 doi: 10.1161/01.HYP.0000215207.54689.31 – ident: e_1_3_3_22_2 doi: 10.1172/JCI26390 – ident: e_1_3_3_6_2 doi: 10.1007/s10456-006-9055-8 – ident: e_1_3_3_18_2 doi: 10.1161/01.CIR.96.9.2920 – ident: e_1_3_3_24_2 doi: 10.1038/nm1574 – ident: e_1_3_3_8_2 doi: 10.1016/S0046-8177(79)80113-6 – ident: e_1_3_3_27_2 doi: 10.1016/j.jacc.2005.11.038 – ident: e_1_3_3_9_2 doi: 10.1161/01.RES.0000138301.42713.18 – ident: e_1_3_3_20_2 doi: 10.1007/s00424-004-1241-1 – ident: e_1_3_3_21_2 doi: 10.1074/jbc.M508744200 – ident: e_1_3_3_30_2 doi: 10.1161/01.RES.86.3.286 – ident: e_1_3_3_15_2 doi: 10.1073/pnas.091415198 – ident: e_1_3_3_1_2 doi: 10.1152/ajpheart.01109.2004 – reference: 12944270 - Biophys J. 2003 Sep;85(3):1525-37 – reference: 9386158 - Circulation. 1997 Nov 4;96(9):2920-31 – reference: 16516080 - J Am Coll Cardiol. 2006 Mar 7;47(5):978-80 – reference: 527966 - Hum Pathol. 1979 Nov;10(6):695-705 – reference: 16075055 - J Clin Invest. 2005 Aug;115(8):2108-18 – reference: 16174725 - Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13807-12 – reference: 11331753 - Proc Natl Acad Sci U S A. 2001 May 8;98(10):5780-5 – reference: 10679480 - Circ Res. 2000 Feb 18;86(3):286-92 – reference: 15452150 - J Clin Pathol. 2004 Oct;57(10):1009-14 – reference: 16269246 - Trends Endocrinol Metab. 2005 Dec;16(10):469-77 – reference: 10716457 - J Am Coll Cardiol. 2000 Mar 1;35(3):569-82 – reference: 17450150 - Nat Med. 2007 May;13(5):619-24 – reference: 10856388 - Am J Cardiol. 2000 Jun 15;85(12):1432-9 – reference: 8637916 - Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2576-81 – reference: 16391536 - EMBO Rep. 2006 Jan;7(1):41-5 – reference: 16567591 - Hypertension. 2006 May;47(5):887-93 – reference: 15765135 - J Clin Invest. 2005 Mar;115(3):538-46 – reference: 16189273 - Blood. 2006 Jan 15;107(2):550-7 – reference: 14762718 - Pflugers Arch. 2004 May;448(2):175-80 – reference: 11953313 - EMBO J. 2002 Apr 15;21(8):1939-47 – reference: 17109193 - Angiogenesis. 2006;9(4):225-30; discussion 231 – reference: 16170200 - J Biol Chem. 2005 Nov 18;280(46):38464-70 – reference: 15242971 - Circ Res. 2004 Aug 20;95(4):433-40 – reference: 16698841 - Heart. 2006 Jun;92(6):843-9 – reference: 15563526 - Am J Physiol Heart Circ Physiol. 2005 Mar;288(3):H984-99 – reference: 16039970 - Trends Cardiovasc Med. 2005 Apr;15(3):101-10 – reference: 16200202 - J Clin Invest. 2005 Oct;115(10):2679-88 – reference: 8831492 - Circ Res. 1996 Oct;79(4):691-7 – reference: 11397779 - Circ Res. 2001 Jun 8;88(11):1135-41 – reference: 15623420 - J Mol Cell Cardiol. 2005 Jan;38(1):35-45 |
SSID | ssj0009580 |
Score | 2.2639434 |
Snippet | A key energy-saving adaptation to chronic hypoxia that enables cardiomyocytes to withstand severe ischemic insults is hibernation, i.e., a reversible arrest of... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 282 |
SubjectTerms | Animal models Animals autophagy Biological Sciences cardiomyocytes Cell death Gene Expression Profiling genes Heart Heart - physiology Hibernation Hypoxia infarction Ischemia Ischemia - pathology Mice Mice, Transgenic mitochondria Models, Genetic Myocardial Ischemia Myocardium Myocardium - pathology Neovascularization, Physiologic Oxygen Oxygen - metabolism oxygen consumption Phenotype Renovations Transgenes Transgenic animals Vascular Endothelial Growth Factor A - metabolism vascular endothelial growth factors |
Title | Transgenic system for conditional induction and rescue of chronic myocardial hibernation provides insights into genomic programs of hibernation |
URI | https://www.jstor.org/stable/25451075 http://www.pnas.org/content/105/1/282.abstract https://www.ncbi.nlm.nih.gov/pubmed/18162550 https://www.proquest.com/docview/20529665 https://www.proquest.com/docview/47513904 https://www.proquest.com/docview/70192025 https://pubmed.ncbi.nlm.nih.gov/PMC2224202 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l5cIFUSA0PPfAoShysNe7XucYUVCFRFSJRurNWr9oKrBRHVeCP8Hv498ws7t-tQkCLlZkrydW5svuzPibbwl5JZVkzPVTRygvdLiQmTNPAct5int1q0Blc-xG_rgMTlb8w7k4H41-9VhL9SaeJT-29pX8j1fhHPgVu2T_wbOtUTgBn8G_cAQPw_HvfIwLDVxdJ1aRWZMGIcNN17bEBxl3bTcD130qVVLrIkFiNHGnX7_DWnalm0cukDtiaoNT25-HXK0Ks3f8AEEqCroil96SujQLpHdbP9A9bRfGqqEhLJu646LrYrFTSzV1pqfLRa8-bl7uY5LQMoTWliFw3AH6-LIsymvN1VW4fK47qDfiCBf1tRqUNkJd2gg75scfHqs_pzNYZ7npxJ5lZhqHKMgJuNmItJ3nXXEL0HbWNvsf2QCAmQjg1toCkyFuiFyoaoYaSVKGjcWhYPfqE8PXwW7IIVTz98gdJiGsawpJrR50aLqj7MM3qlPSf3PjGwYB016uyoY5i3K8MHRbanST4dsLmc7uk3s216ELA9wDMsqKB-Sg-W3pkZU8f_2Q_OyQTA2SKSCZ9pBMWyRTQDI1SKZlTi2SaYdk2oMkbZBMGyRTRDK1SKYNktFS77ZHZPX-3dnbE8duFeIkQrCNkwcphMpe7nOFBQ8_lUz4QuZZgiJzeZKEHle54r6K3cyL05hlKmAyQ7UpxfLYH5P9oiyyQ0J56iW578aQOCguU668eB7MU5-hzJTwkgmZNf6IEqujj9u5fIk0n0P6EXol6hw4IUftDd-MhMzuoYfg4Eh9hgU-GuJoQsba660JBrkP2IB7xtpKZ1pEXgSQnpCX2y9EueWV4QgLnQhWFXxVqIqsrKuIIQEgCMTuEVwKSB5dvnsEbvQAEz7YeGzA2D1J6AVMCHdC5ACm7QDUvB9eKdYXWvse0hkORp_s_qGekrvdXPKM7G-u6uw5JA6b-IX-C_4Gugoeqg |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transgenic+system+for+conditional+induction+and+rescue+of+chronic+myocardial+hibernation+provides+insights+into+genomic+programs+of+hibernation&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=May%2C+Dalit&rft.au=Gilon%2C+Dan&rft.au=Djonov%2C+Valentin&rft.au=Itin%2C+Ahuva&rft.date=2008-01-08&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=105&rft.issue=1&rft.spage=282&rft.epage=287&rft_id=info:doi/10.1073%2Fpnas.0707778105&rft.externalDocID=US201300845543 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F1.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F1.cover.gif |