Transgenic system for conditional induction and rescue of chronic myocardial hibernation provides insights into genomic programs of hibernation

A key energy-saving adaptation to chronic hypoxia that enables cardiomyocytes to withstand severe ischemic insults is hibernation, i.e., a reversible arrest of contractile function. Whereas hibernating cardiomyocytes represent the critical reserve of dysfunctional cells that can be potentially rescu...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 105; no. 1; pp. 282 - 287
Main Authors May, Dalit, Gilon, Dan, Djonov, Valentin, Itin, Ahuva, Lazarus, Alon, Gordon, Oren, Rosenberger, Christian, Keshet, Eli
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 08.01.2008
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.0707778105

Cover

Abstract A key energy-saving adaptation to chronic hypoxia that enables cardiomyocytes to withstand severe ischemic insults is hibernation, i.e., a reversible arrest of contractile function. Whereas hibernating cardiomyocytes represent the critical reserve of dysfunctional cells that can be potentially rescued, a lack of a suitable animal model has hampered insights on this medically important condition. We developed a transgenic mouse system for conditional induction of long-term hibernation and a system to rescue hibernating cardiomyocytes at will. Via myocardium-specific induction (and, in turn, deinduction) of a VEGF-sequestering soluble receptor, we show that VEGF is indispensable for adjusting the coronary vasculature to match increased oxygen consumption and exploit this finding to generate a hypoperfused heart. Importantly, ensuing ischemia is tunable to a level at which large cohorts of cardiomyocytes are driven to enter a hibernation mode, without cardiac cell death. Relieving the VEGF blockade even months later resulted in rapid revascularization and full recovery of contractile function. Furthermore, we show that left ventricular remodeling associated with hibernation is also fully reversible. The unique opportunity to uncouple hibernation from other ischemic heart phenotypes (e.g., infarction) was used to determine the genetic program of hibernation; uncovering hypoxia-inducible factor target genes associated with metabolic adjustments and induced expression of several cardioprotective genes. Autophagy, specifically self-digestion of mitochondria, was identified as a key prosurvival mechanism in hibernating cardiomyocytes. This system may lend itself for examining the potential utility of treatments to rescue dysfunctional cardiomyocytes and reverse maladaptive remodeling.
AbstractList A key energy-saving adaptation to chronic hypoxia that enables cardiomyocytes to withstand severe ischemic insults is hibernation, i.e., a reversible arrest of contractile function. Whereas hibernating cardiomyocytes represent the critical reserve of dysfunctional cells that can be potentially rescued, a lack of a suitable animal model has hampered insights on this medically important condition. We developed a transgenic mouse system for conditional induction of long-term hibernation and a system to rescue hibernating cardiomyocytes at will. Via myocardium-specific induction (and, in turn, deinduction) of a VEGF-sequestering soluble receptor, we show that VEGF is indispensable for adjusting the coronary vasculature to match increased oxygen consumption and exploit this finding to generate a hypoperfused heart. Importantly, ensuing ischemia is tunable to a level at which large cohorts of cardiomyocytes are driven to enter a hibernation mode, without cardiac cell death. Relieving the VEGF blockade even months later resulted in rapid revascularization and full recovery of contractile function. Furthermore, we show that left ventricular remodeling associated with hibernation is also fully reversible. The unique opportunity to uncouple hibernation from other ischemic heart phenotypes (e.g., infarction) was used to determine the genetic program of hibernation; uncovering hypoxia-inducible factor target genes associated with metabolic adjustments and induced expression of several cardioprotective genes. Autophagy, specifically self-digestion of mitochondria, was identified as a key prosurvival mechanism in hibernating cardiomyocytes. This system may lend itself for examining the potential utility of treatments to rescue dysfunctional cardiomyocytes and reverse maladaptive remodeling.
A key energy-saving adaptation to chronic hypoxia that enables cardiomyocytes to withstand severe ischemic insults is hibernation, i.e., a reversible arrest of contractile function. Whereas hibernating cardiomyocytes represent the critical reserve of dysfunctional cells that can be potentially rescued, a lack of a suitable animal model has hampered insights on this medically important condition. We developed a transgenic mouse system for conditional induction of long-term hibernation and a system to rescue hibernating cardiomyocytes at will. Via myocardium-specific induction (and, in turn, deinduction) of a VEGF-sequestering soluble receptor, we show that VEGF is indispensable for adjusting the coronary vasculature to match increased oxygen consumption and exploit this finding to generate a hypoperfused heart. Importantly, ensuing ischemia is tunable to a level at which large cohorts of cardiomyocytes are driven to enter a hibernation mode, without cardiac cell death. Relieving the VEGF blockade even months later resulted in rapid revascularization and full recovery of contractile function. Furthermore, we show that left ventricular remodeling associated with hibernation is also fully reversible. The unique opportunity to uncouple hibernation from other ischemic heart phenotypes (e.g., infarction) was used to determine the genetic program of hibernation; uncovering hypoxia-inducible factor target genes associated with metabolic adjustments and induced expression of several cardioprotective genes. Autophagy, specifically self-digestion of mitochondria, was identified as a key prosurvival mechanism in hibernating cardiomyocytes. This system may lend itself for examining the potential utility of treatments to rescue dysfunctional cardiomyocytes and reverse maladaptive remodeling. hypoxia ischemia remodeling VEGF heart
A key energy-saving adaptation to chronic hypoxia that enables cardiomyocytes to withstand severe ischemic insults is hibernation, i.e., a reversible arrest of contractile function. Whereas hibernating cardiomyocytes represent the critical reserve of dysfunctional cells that can be potentially rescued, a lack of a suitable animal model has hampered insights on this medically important condition. We developed a transgenic mouse system for conditional induction of long-term hibernation and a system to rescue hibernating cardiomyocytes at will. Via myocardium-specific induction (and, in turn, deinduction) of a VEGF-sequestering soluble receptor, we show that VEGF is indispensable for adjusting the coronary vasculature to match increased oxygen consumption and exploit this finding to generate a hypoperfused heart. Importantly, ensuing ischemia is tunable to a level at which large cohorts of cardiomyocytes are driven to enter a hibernation mode, without cardiac cell death. Relieving the VEGF blockade even months later resulted in rapid revascularization and full recovery of contractile function. Furthermore, we show that left ventricular remodeling associated with hibernation is also fully reversible. The unique opportunity to uncouple hibernation from other ischemic heart phenotypes (e.g., infarction) was used to determine the genetic program of hibernation; uncovering hypoxia-inducible factor target genes associated with metabolic adjustments and induced expression of several cardioprotective genes. Autophagy, specifically self-digestion of mitochondria, was identified as a key prosurvival mechanism in hibernating cardiomyocytes. This system may lend itself for examining the potential utility of treatments to rescue dysfunctional cardiomyocytes and reverse maladaptive remodeling.A key energy-saving adaptation to chronic hypoxia that enables cardiomyocytes to withstand severe ischemic insults is hibernation, i.e., a reversible arrest of contractile function. Whereas hibernating cardiomyocytes represent the critical reserve of dysfunctional cells that can be potentially rescued, a lack of a suitable animal model has hampered insights on this medically important condition. We developed a transgenic mouse system for conditional induction of long-term hibernation and a system to rescue hibernating cardiomyocytes at will. Via myocardium-specific induction (and, in turn, deinduction) of a VEGF-sequestering soluble receptor, we show that VEGF is indispensable for adjusting the coronary vasculature to match increased oxygen consumption and exploit this finding to generate a hypoperfused heart. Importantly, ensuing ischemia is tunable to a level at which large cohorts of cardiomyocytes are driven to enter a hibernation mode, without cardiac cell death. Relieving the VEGF blockade even months later resulted in rapid revascularization and full recovery of contractile function. Furthermore, we show that left ventricular remodeling associated with hibernation is also fully reversible. The unique opportunity to uncouple hibernation from other ischemic heart phenotypes (e.g., infarction) was used to determine the genetic program of hibernation; uncovering hypoxia-inducible factor target genes associated with metabolic adjustments and induced expression of several cardioprotective genes. Autophagy, specifically self-digestion of mitochondria, was identified as a key prosurvival mechanism in hibernating cardiomyocytes. This system may lend itself for examining the potential utility of treatments to rescue dysfunctional cardiomyocytes and reverse maladaptive remodeling.
Author Djonov, Valentin
Gordon, Oren
Rosenberger, Christian
Keshet, Eli
Itin, Ahuva
Gilon, Dan
May, Dalit
Lazarus, Alon
Author_xml – sequence: 1
  fullname: May, Dalit
– sequence: 2
  fullname: Gilon, Dan
– sequence: 3
  fullname: Djonov, Valentin
– sequence: 4
  fullname: Itin, Ahuva
– sequence: 5
  fullname: Lazarus, Alon
– sequence: 6
  fullname: Gordon, Oren
– sequence: 7
  fullname: Rosenberger, Christian
– sequence: 8
  fullname: Keshet, Eli
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18162550$$D View this record in MEDLINE/PubMed
BookMark eNqFkkFv1DAQhS1URLeFMycgJ25px44dJxekqoIWqRIH2rPlOPauq8RebKdifwV_Gafb7hYk6MmW3vfejD1zhA6cdxqhtxhOMPDqdO1kPAEOnPMGA3uBFhhaXNa0hQO0ACC8bCihh-goxlsAaFkDr9AhbnBNGIMF-nUdpItL7awq4iYmPRbGh0J519tkvZNDYV0_qfleSNcXQUc16cKbQq2Cn23jxisZepvRle10cPIeXgd_Z3sdsz_a5SrNl-SLXMqP2ZXlZZBjnJOe2F6jl0YOUb95OI_RzZfP1-eX5dW3i6_nZ1elYoyk0tQ9x4BNRSWjbVv1nLCKcaMVAGNGqQZTaSStZAcad31HtKwJ14ArLInpqmP0aZu7nrpR90q7FOQg1sGOMmyEl1b8qTi7Ekt_JwghlADJAR8fAoL_MemYxGij0sMgnfZTFBxwmzn2LEg5w1UL9FmQACNtXc-J75_2vmv6caoZYFtABR9j0EYom-6_Nz_FDgKDmLdHzNsj9tuTfad_-XbR_3Q89jwLe5oJLEhDhJmGIemfKYPv_gfu9duYfNgBhFGWC8-FPmx1I72Qy2CjuPlO8jgBGsoYrarff4v2Kw
CitedBy_id crossref_primary_10_1016_j_ahjo_2024_100374
crossref_primary_10_1161_ATVBAHA_112_248674
crossref_primary_10_1086_679702
crossref_primary_10_1086_679704
crossref_primary_10_3389_fcvm_2019_00020
crossref_primary_10_1371_journal_pone_0092869
crossref_primary_10_1681_ASN_2020111579
crossref_primary_10_1161_CIRCULATIONAHA_115_018347
crossref_primary_10_1242_dev_060723
crossref_primary_10_1038_s42003_023_05547_x
crossref_primary_10_1161_CIRCULATIONAHA_109_922427
crossref_primary_10_1093_ndt_gfu043
crossref_primary_10_1111_j_1464_410X_2012_11134_x
crossref_primary_10_1242_dev_039636
crossref_primary_10_1161_CIRCULATIONAHA_118_033631
crossref_primary_10_1016_j_tcm_2012_09_008
crossref_primary_10_1126_science_abc8479
crossref_primary_10_1155_2015_138148
crossref_primary_10_1016_j_cardfail_2016_04_008
crossref_primary_10_1161_RES_0000000000000473
crossref_primary_10_1016_j_bbamcr_2008_12_011
crossref_primary_10_1093_cvr_cvs346
crossref_primary_10_1007_s11936_014_0335_0
crossref_primary_10_1161_CIRCRESAHA_117_312586
crossref_primary_10_1165_rcmb_2010_0412OC
crossref_primary_10_1038_cdd_2008_163
crossref_primary_10_1016_j_diff_2012_04_002
crossref_primary_10_1016_j_lungcan_2020_10_021
crossref_primary_10_1080_14737140_2024_2357814
crossref_primary_10_1161_CIRCULATIONAHA_108_847731
crossref_primary_10_1161_CIR_0000000000000641
crossref_primary_10_1016_j_jacc_2013_08_1647
crossref_primary_10_1042_CS20200305
crossref_primary_10_24884_1682_6655_2019_18_3_9_15
crossref_primary_10_1186_s13395_016_0114_6
crossref_primary_10_1161_CIRCRESAHA_109_206920
crossref_primary_10_1016_j_isci_2025_111895
crossref_primary_10_1177_1078155215585189
crossref_primary_10_1016_j_cjca_2017_06_012
crossref_primary_10_1007_s00109_008_0364_9
crossref_primary_10_1126_scitranslmed_3005066
crossref_primary_10_1371_journal_pone_0021478
crossref_primary_10_1097_CRD_0b013e31826287f6
crossref_primary_10_1007_s10741_016_9526_y
crossref_primary_10_1177_1074248410370327
crossref_primary_10_3390_jcm8020267
crossref_primary_10_3892_etm_2019_7743
crossref_primary_10_1016_j_cmet_2008_10_001
crossref_primary_10_1089_ten_tea_2009_0721
crossref_primary_10_1073_pnas_1007640108
crossref_primary_10_1161_CIRCRESAHA_113_300218
crossref_primary_10_1093_cvr_cvw101
crossref_primary_10_1161_CIRCULATIONAHA_110_957332
crossref_primary_10_1172_JCI80369
crossref_primary_10_1161_CIRCIMAGING_113_000828
crossref_primary_10_1189_jlb_0910505
crossref_primary_10_1038_nrd2761
crossref_primary_10_1111_apha_12613
crossref_primary_10_1016_j_bbabio_2008_05_001
crossref_primary_10_4103_2045_8932_109957
crossref_primary_10_1093_eurjhf_hfq213
crossref_primary_10_1002_ccd_30365
crossref_primary_10_1021_mp400178m
crossref_primary_10_1186_1475_2840_10_59
crossref_primary_10_1002_phy2_143
crossref_primary_10_1089_ars_2016_6930
crossref_primary_10_1073_pnas_1605431113
crossref_primary_10_1038_nature11040
crossref_primary_10_1016_j_ejphar_2024_176969
crossref_primary_10_1016_j_yjmcc_2011_02_010
crossref_primary_10_1161_CIRCHEARTFAILURE_113_000912
crossref_primary_10_1016_j_ahj_2010_09_025
crossref_primary_10_1172_JCI79401
crossref_primary_10_1161_CIRCRESAHA_114_303452
crossref_primary_10_1038_s41569_022_00698_6
crossref_primary_10_1126_scitranslmed_3006490
crossref_primary_10_1016_j_jconrel_2014_07_041
crossref_primary_10_1371_journal_pone_0151396
crossref_primary_10_1097_MD_0000000000037606
crossref_primary_10_1161_CIRCRESAHA_115_303829
crossref_primary_10_14814_phy2_12340
crossref_primary_10_1002_jcp_21445
crossref_primary_10_1242_dev_066548
crossref_primary_10_1161_CIRCULATIONAHA_115_010484
crossref_primary_10_1139_Y09_011
crossref_primary_10_1002_pbc_25036
crossref_primary_10_1093_cvr_cvq256
crossref_primary_10_1371_journal_pone_0165545
crossref_primary_10_1007_s00395_015_0487_4
crossref_primary_10_1161_JAHA_118_010025
crossref_primary_10_1056_NEJMc1108849
crossref_primary_10_1186_bcr3142
crossref_primary_10_1007_s00125_017_4243_1
crossref_primary_10_1161_RES_0000000000000054
crossref_primary_10_2337_db12_1827
crossref_primary_10_1093_cvr_cvr358
crossref_primary_10_1128_JVI_00001_11
Cites_doi 10.1016/j.tem.2005.10.007
10.1172/JCI24682
10.1016/j.yjmcc.2004.11.007
10.1073/pnas.0506843102
10.1038/sj.embor.7400598
10.1016/S0735-1097(99)00630-0
10.1182/blood-2005-05-2047
10.1016/j.tcm.2005.04.006
10.1172/JCI24144
10.1073/pnas.93.6.2576
10.1136/hrt.2005.071233
10.1016/S0002-9149(00)00790-6
10.1136/jcp.2003.015032
10.1161/01.RES.79.4.691
10.1093/emboj/21.8.1939
10.1016/S0006-3495(03)74585-8
10.1161/hh1101.091191
10.1161/01.HYP.0000215207.54689.31
10.1172/JCI26390
10.1007/s10456-006-9055-8
10.1161/01.CIR.96.9.2920
10.1038/nm1574
10.1016/S0046-8177(79)80113-6
10.1016/j.jacc.2005.11.038
10.1161/01.RES.0000138301.42713.18
10.1007/s00424-004-1241-1
10.1074/jbc.M508744200
10.1161/01.RES.86.3.286
10.1073/pnas.091415198
10.1152/ajpheart.01109.2004
ContentType Journal Article
Copyright Copyright 2008 The National Academy of Sciences of the United States of America
2007 by The National Academy of Sciences of the USA 2007
Copyright_xml – notice: Copyright 2008 The National Academy of Sciences of the United States of America
– notice: 2007 by The National Academy of Sciences of the USA 2007
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.0707778105
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList


Genetics Abstracts
MEDLINE - Academic

MEDLINE
AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 287
ExternalDocumentID PMC2224202
18162550
10_1073_pnas_0707778105
105_1_282
25451075
US201300845543
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
7QO
8FD
FR3
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c552t-f6d7101f34a54993d725357fec0055fcc814afa43ab0e1bdb2ea627e0131a2fb3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:31:02 EDT 2025
Sun Aug 24 04:08:39 EDT 2025
Fri Sep 05 03:22:33 EDT 2025
Thu Sep 04 21:34:18 EDT 2025
Wed Feb 19 01:48:23 EST 2025
Tue Jul 01 02:38:51 EDT 2025
Thu Apr 24 23:07:21 EDT 2025
Wed Nov 11 00:29:14 EST 2020
Thu May 30 08:49:34 EDT 2019
Thu May 29 08:42:54 EDT 2025
Wed Dec 27 19:22:21 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c552t-f6d7101f34a54993d725357fec0055fcc814afa43ab0e1bdb2ea627e0131a2fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by Napoleone Ferrara, Genentech, Inc., South San Francisco, CA, and approved November 9, 2007
Author contributions: D.M., D.G., V.D., A.I., A.L., O.G., and C.R. performed research; and E.K. wrote the paper.
OpenAccessLink http://doi.org/10.1073/pnas.0707778105
PMID 18162550
PQID 20529665
PQPubID 23462
PageCount 6
ParticipantIDs pubmed_primary_18162550
proquest_miscellaneous_20529665
proquest_miscellaneous_70192025
proquest_miscellaneous_47513904
pnas_primary_105_1_282
jstor_primary_25451075
fao_agris_US201300845543
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2224202
pnas_primary_105_1_282_fulltext
crossref_citationtrail_10_1073_pnas_0707778105
crossref_primary_10_1073_pnas_0707778105
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-01-08
PublicationDateYYYYMMDD 2008-01-08
PublicationDate_xml – month: 01
  year: 2008
  text: 2008-01-08
  day: 08
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2008
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
16269246 - Trends Endocrinol Metab. 2005 Dec;16(10):469-77
10856388 - Am J Cardiol. 2000 Jun 15;85(12):1432-9
8637916 - Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2576-81
16075055 - J Clin Invest. 2005 Aug;115(8):2108-18
10716457 - J Am Coll Cardiol. 2000 Mar 1;35(3):569-82
16174725 - Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13807-12
17109193 - Angiogenesis. 2006;9(4):225-30; discussion 231
16039970 - Trends Cardiovasc Med. 2005 Apr;15(3):101-10
10679480 - Circ Res. 2000 Feb 18;86(3):286-92
17450150 - Nat Med. 2007 May;13(5):619-24
527966 - Hum Pathol. 1979 Nov;10(6):695-705
15623420 - J Mol Cell Cardiol. 2005 Jan;38(1):35-45
16698841 - Heart. 2006 Jun;92(6):843-9
15452150 - J Clin Pathol. 2004 Oct;57(10):1009-14
15765135 - J Clin Invest. 2005 Mar;115(3):538-46
16170200 - J Biol Chem. 2005 Nov 18;280(46):38464-70
15563526 - Am J Physiol Heart Circ Physiol. 2005 Mar;288(3):H984-99
11953313 - EMBO J. 2002 Apr 15;21(8):1939-47
16189273 - Blood. 2006 Jan 15;107(2):550-7
12944270 - Biophys J. 2003 Sep;85(3):1525-37
16391536 - EMBO Rep. 2006 Jan;7(1):41-5
14762718 - Pflugers Arch. 2004 May;448(2):175-80
16567591 - Hypertension. 2006 May;47(5):887-93
16200202 - J Clin Invest. 2005 Oct;115(10):2679-88
8831492 - Circ Res. 1996 Oct;79(4):691-7
11331753 - Proc Natl Acad Sci U S A. 2001 May 8;98(10):5780-5
9386158 - Circulation. 1997 Nov 4;96(9):2920-31
15242971 - Circ Res. 2004 Aug 20;95(4):433-40
16516080 - J Am Coll Cardiol. 2006 Mar 7;47(5):978-80
11397779 - Circ Res. 2001 Jun 8;88(11):1135-41
References_xml – ident: e_1_3_3_12_2
  doi: 10.1016/j.tem.2005.10.007
– ident: e_1_3_3_26_2
  doi: 10.1172/JCI24682
– ident: e_1_3_3_14_2
  doi: 10.1016/j.yjmcc.2004.11.007
– ident: e_1_3_3_23_2
  doi: 10.1073/pnas.0506843102
– ident: e_1_3_3_10_2
  doi: 10.1038/sj.embor.7400598
– ident: e_1_3_3_3_2
  doi: 10.1016/S0735-1097(99)00630-0
– ident: e_1_3_3_17_2
  doi: 10.1182/blood-2005-05-2047
– ident: e_1_3_3_2_2
  doi: 10.1016/j.tcm.2005.04.006
– ident: e_1_3_3_7_2
  doi: 10.1172/JCI24144
– ident: e_1_3_3_16_2
  doi: 10.1073/pnas.93.6.2576
– ident: e_1_3_3_13_2
  doi: 10.1136/hrt.2005.071233
– ident: e_1_3_3_19_2
  doi: 10.1016/S0002-9149(00)00790-6
– ident: e_1_3_3_5_2
  doi: 10.1136/jcp.2003.015032
– ident: e_1_3_3_28_2
  doi: 10.1161/01.RES.79.4.691
– ident: e_1_3_3_29_2
  doi: 10.1093/emboj/21.8.1939
– ident: e_1_3_3_11_2
  doi: 10.1016/S0006-3495(03)74585-8
– ident: e_1_3_3_4_2
  doi: 10.1161/hh1101.091191
– ident: e_1_3_3_25_2
  doi: 10.1161/01.HYP.0000215207.54689.31
– ident: e_1_3_3_22_2
  doi: 10.1172/JCI26390
– ident: e_1_3_3_6_2
  doi: 10.1007/s10456-006-9055-8
– ident: e_1_3_3_18_2
  doi: 10.1161/01.CIR.96.9.2920
– ident: e_1_3_3_24_2
  doi: 10.1038/nm1574
– ident: e_1_3_3_8_2
  doi: 10.1016/S0046-8177(79)80113-6
– ident: e_1_3_3_27_2
  doi: 10.1016/j.jacc.2005.11.038
– ident: e_1_3_3_9_2
  doi: 10.1161/01.RES.0000138301.42713.18
– ident: e_1_3_3_20_2
  doi: 10.1007/s00424-004-1241-1
– ident: e_1_3_3_21_2
  doi: 10.1074/jbc.M508744200
– ident: e_1_3_3_30_2
  doi: 10.1161/01.RES.86.3.286
– ident: e_1_3_3_15_2
  doi: 10.1073/pnas.091415198
– ident: e_1_3_3_1_2
  doi: 10.1152/ajpheart.01109.2004
– reference: 12944270 - Biophys J. 2003 Sep;85(3):1525-37
– reference: 9386158 - Circulation. 1997 Nov 4;96(9):2920-31
– reference: 16516080 - J Am Coll Cardiol. 2006 Mar 7;47(5):978-80
– reference: 527966 - Hum Pathol. 1979 Nov;10(6):695-705
– reference: 16075055 - J Clin Invest. 2005 Aug;115(8):2108-18
– reference: 16174725 - Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13807-12
– reference: 11331753 - Proc Natl Acad Sci U S A. 2001 May 8;98(10):5780-5
– reference: 10679480 - Circ Res. 2000 Feb 18;86(3):286-92
– reference: 15452150 - J Clin Pathol. 2004 Oct;57(10):1009-14
– reference: 16269246 - Trends Endocrinol Metab. 2005 Dec;16(10):469-77
– reference: 10716457 - J Am Coll Cardiol. 2000 Mar 1;35(3):569-82
– reference: 17450150 - Nat Med. 2007 May;13(5):619-24
– reference: 10856388 - Am J Cardiol. 2000 Jun 15;85(12):1432-9
– reference: 8637916 - Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2576-81
– reference: 16391536 - EMBO Rep. 2006 Jan;7(1):41-5
– reference: 16567591 - Hypertension. 2006 May;47(5):887-93
– reference: 15765135 - J Clin Invest. 2005 Mar;115(3):538-46
– reference: 16189273 - Blood. 2006 Jan 15;107(2):550-7
– reference: 14762718 - Pflugers Arch. 2004 May;448(2):175-80
– reference: 11953313 - EMBO J. 2002 Apr 15;21(8):1939-47
– reference: 17109193 - Angiogenesis. 2006;9(4):225-30; discussion 231
– reference: 16170200 - J Biol Chem. 2005 Nov 18;280(46):38464-70
– reference: 15242971 - Circ Res. 2004 Aug 20;95(4):433-40
– reference: 16698841 - Heart. 2006 Jun;92(6):843-9
– reference: 15563526 - Am J Physiol Heart Circ Physiol. 2005 Mar;288(3):H984-99
– reference: 16039970 - Trends Cardiovasc Med. 2005 Apr;15(3):101-10
– reference: 16200202 - J Clin Invest. 2005 Oct;115(10):2679-88
– reference: 8831492 - Circ Res. 1996 Oct;79(4):691-7
– reference: 11397779 - Circ Res. 2001 Jun 8;88(11):1135-41
– reference: 15623420 - J Mol Cell Cardiol. 2005 Jan;38(1):35-45
SSID ssj0009580
Score 2.2639434
Snippet A key energy-saving adaptation to chronic hypoxia that enables cardiomyocytes to withstand severe ischemic insults is hibernation, i.e., a reversible arrest of...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 282
SubjectTerms Animal models
Animals
autophagy
Biological Sciences
cardiomyocytes
Cell death
Gene Expression Profiling
genes
Heart
Heart - physiology
Hibernation
Hypoxia
infarction
Ischemia
Ischemia - pathology
Mice
Mice, Transgenic
mitochondria
Models, Genetic
Myocardial Ischemia
Myocardium
Myocardium - pathology
Neovascularization, Physiologic
Oxygen
Oxygen - metabolism
oxygen consumption
Phenotype
Renovations
Transgenes
Transgenic animals
Vascular Endothelial Growth Factor A - metabolism
vascular endothelial growth factors
Title Transgenic system for conditional induction and rescue of chronic myocardial hibernation provides insights into genomic programs of hibernation
URI https://www.jstor.org/stable/25451075
http://www.pnas.org/content/105/1/282.abstract
https://www.ncbi.nlm.nih.gov/pubmed/18162550
https://www.proquest.com/docview/20529665
https://www.proquest.com/docview/47513904
https://www.proquest.com/docview/70192025
https://pubmed.ncbi.nlm.nih.gov/PMC2224202
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l5cIFUSA0PPfAoShysNe7XucYUVCFRFSJRurNWr9oKrBRHVeCP8Hv498ws7t-tQkCLlZkrydW5svuzPibbwl5JZVkzPVTRygvdLiQmTNPAct5int1q0Blc-xG_rgMTlb8w7k4H41-9VhL9SaeJT-29pX8j1fhHPgVu2T_wbOtUTgBn8G_cAQPw_HvfIwLDVxdJ1aRWZMGIcNN17bEBxl3bTcD130qVVLrIkFiNHGnX7_DWnalm0cukDtiaoNT25-HXK0Ks3f8AEEqCroil96SujQLpHdbP9A9bRfGqqEhLJu646LrYrFTSzV1pqfLRa8-bl7uY5LQMoTWliFw3AH6-LIsymvN1VW4fK47qDfiCBf1tRqUNkJd2gg75scfHqs_pzNYZ7npxJ5lZhqHKMgJuNmItJ3nXXEL0HbWNvsf2QCAmQjg1toCkyFuiFyoaoYaSVKGjcWhYPfqE8PXwW7IIVTz98gdJiGsawpJrR50aLqj7MM3qlPSf3PjGwYB016uyoY5i3K8MHRbanST4dsLmc7uk3s216ELA9wDMsqKB-Sg-W3pkZU8f_2Q_OyQTA2SKSCZ9pBMWyRTQDI1SKZlTi2SaYdk2oMkbZBMGyRTRDK1SKYNktFS77ZHZPX-3dnbE8duFeIkQrCNkwcphMpe7nOFBQ8_lUz4QuZZgiJzeZKEHle54r6K3cyL05hlKmAyQ7UpxfLYH5P9oiyyQ0J56iW578aQOCguU668eB7MU5-hzJTwkgmZNf6IEqujj9u5fIk0n0P6EXol6hw4IUftDd-MhMzuoYfg4Eh9hgU-GuJoQsba660JBrkP2IB7xtpKZ1pEXgSQnpCX2y9EueWV4QgLnQhWFXxVqIqsrKuIIQEgCMTuEVwKSB5dvnsEbvQAEz7YeGzA2D1J6AVMCHdC5ACm7QDUvB9eKdYXWvse0hkORp_s_qGekrvdXPKM7G-u6uw5JA6b-IX-C_4Gugoeqg
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transgenic+system+for+conditional+induction+and+rescue+of+chronic+myocardial+hibernation+provides+insights+into+genomic+programs+of+hibernation&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=May%2C+Dalit&rft.au=Gilon%2C+Dan&rft.au=Djonov%2C+Valentin&rft.au=Itin%2C+Ahuva&rft.date=2008-01-08&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=105&rft.issue=1&rft.spage=282&rft.epage=287&rft_id=info:doi/10.1073%2Fpnas.0707778105&rft.externalDocID=US201300845543
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F1.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F1.cover.gif